WO2023068199A1 - Resin composition, vehicle component, and method for producing resin composition - Google Patents

Resin composition, vehicle component, and method for producing resin composition Download PDF

Info

Publication number
WO2023068199A1
WO2023068199A1 PCT/JP2022/038420 JP2022038420W WO2023068199A1 WO 2023068199 A1 WO2023068199 A1 WO 2023068199A1 JP 2022038420 W JP2022038420 W JP 2022038420W WO 2023068199 A1 WO2023068199 A1 WO 2023068199A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
resin composition
polybutylene terephthalate
styrene
Prior art date
Application number
PCT/JP2022/038420
Other languages
French (fr)
Japanese (ja)
Inventor
三枝一範
内田壮一
新田直毅
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2023068199A1 publication Critical patent/WO2023068199A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides

Definitions

  • the present invention relates to a resin composition that can be subjected to an electrodeposition coating process, can be electrostatically coated, and can be used for vehicle members, a vehicle member using the resin composition, and a method for producing a resin composition.
  • Patent Document 1 describes, as a resin composition that can be electrostatically coated, a resin composition obtained by blending conductive carbon black with compatibilized polyphenylene ether-polyamide (base resin).
  • the molded body formed from the resin composition described in Patent Document 1 easily absorbs moisture from the environment and has a problem of deformation.
  • Polyamide also has a problem of poor adhesion to the paint film for automobile bodies.
  • the present invention is capable of withstanding high-temperature exposure, undergoing an electrodeposition process without substantial deformation due to moisture absorption, can be electrostatically coated, and has excellent coating adhesion.
  • an excellent resin composition a vehicle member using the same, and a method for producing the resin composition.
  • the present invention comprises (A) 51 to 98 parts by weight of polyphenylene ether, (B) 1.9 to 48.9 parts by weight of polybutylene terephthalate resin, and (C) 0.1 to 15 parts by weight of styrene thermoplastic elastomer. (D) 1 to 6 parts by weight of the compatibilizer per 100 parts by weight of the total amount of (A) to (C), and (E) the conductive carbon, the total of (A) to (C) Contains 1 to 5 parts by weight per 100 parts by weight, has a deflection temperature under a load of 0.45 MPa of 180 ° C. or higher measured according to ISO 75-1 and ISO 75-2, and has a volume resistivity of 1.0 x 10 2 to 1.0 ⁇ 10 4 ⁇ m.
  • the present invention relates to a vehicle member including a molded body obtained by molding the resin composition.
  • step 1 100 parts by weight of a monomer mixture containing 60 to 90 parts by weight of styrene and 10 to 40 parts by weight of glycidyl methacrylate is polymerized to obtain a random polymer having a weight average molecular weight of 10,000 to 100,000.
  • Step of producing a copolymer step 2: The random copolymer obtained in step 1 is melt-kneaded in an extruder with polybutylene terephthalate having an IV value of 0.6 to 0.8 to form a (D) phase A step of producing a solubilizer, and step 3: The (D) compatibilizer obtained in step 2 is subjected to (A) polyphenylene ether, (B) polybutylene terephthalate resin, (C) styrene-based thermoplastic elastomer, and (E) It relates to a method for producing a resin composition including a step of melt kneading together with conductive carbon fiber in an extruder to obtain a resin composition.
  • the present invention provides a resin composition that can withstand exposure to high temperatures, substantially does not undergo moisture absorption deformation, can be subjected to an electrodeposition process, can be electrostatically coated, and has excellent coating adhesion, and a resin composition comprising the same.
  • the vehicle member used can be provided.
  • a resin composition can be produced.
  • a component polyphenylene ether
  • B component polybutylene terephthalate resin
  • C component styrene heat Plastic elastomer
  • D component compatibilizer
  • E component conductive carbon
  • the inventors have found that it is possible to obtain a resin composition which can be subjected to an electrodeposition process, can be electrostatically coated, and has excellent coating film adhesion.
  • PPE-PBT resin composition (Component A: polyphenylene ether)
  • Polyphenylene ether (hereinafter also referred to as “PPE”) is not particularly limited, but for example, a polymer containing a structural unit represented by the following general formula (1) in its main chain can be preferably used.
  • Polyphenylene ether may be a homopolymer or a copolymer.
  • R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, a phenyl group, a halogenated alkyl group, or a halogenated alkoxy groups and at least one of R 1 and R 2 is not a hydrogen atom.
  • alkyl groups include methyl group, ethyl group, n-propyl group, n-butyl group, n-amyl group, isoamyl group, 2-methylbutyl group, 2,3-dimethylbutyl group, 2-methylpentyl group, 3-methylpentyl group, 4-methylpentyl group, heptyl group, isopropyl group, sec-butyl group, 1-ethylpropyl group and the like.
  • R 1 and R 2 are preferably C 1-4 alkyl groups
  • R 3 and R 4 are preferably hydrogen or C 1-4 alkyl groups.
  • polyphenylene ether examples include poly(2,6-dimethyl-1,4-phenylene) ether, poly(2,6-diethyl-1,4-phenylene) ether, poly(2-methyl-6- ethyl-1,4-phenylene) ether, poly(2-methyl-6-propyl-1,4-phenylene) ether, poly(2-methyl-6-butyl-1,4-phenylene) ether, poly(2, 6-dipropyl-1,4-phenylene) ether, poly(2-ethyl-6-propyl-1,4-phenylene) ether, poly(2,6-dibutyl-1,4-phenylene) ether, poly(2, 6-dilauryl-1,4-phenylene) ether, poly(2,6-diphenyl-1,4-diphenylene) ether, poly(2,6-dimethoxy-1,4-phenylene) ether, poly(2,6- diethoxy-1,4-phenylene) ether, poly(
  • the polyphenylene ether is not particularly limited, but preferably has an intrinsic viscosity (IV value) of 0.2 to 0.9 dL/g, more preferably 0.3 to 0.8 dL/g at 30°C in chloroform. .
  • IV value intrinsic viscosity
  • the mechanical properties of the resin composition tend to be further improved. It tends to be easier to process.
  • the polyphenylene ether is not particularly limited, and one type may be used alone, or two or more types may be used in combination.
  • Polybutylene terephthalate resin (hereinafter referred to as "PBT") is mainly composed of polybutylene terephthalate units obtained by polymerizing terephthalic acid and/or ester-forming derivatives thereof and butanediol and/or ester-forming derivatives thereof. A component is preferred. From the viewpoint of heat resistance, the polybutylene terephthalate-based resin preferably contains 85% by weight or more of polybutylene terephthalate units, more preferably 90% by weight or more, and even more preferably 100% by weight.
  • the ester-forming derivative of terephthalic acid is preferably a dialkyl terephthalate, and the alkyl group of the dialkyl terephthalate is preferably a methyl group from the viewpoint of transesterification reactivity.
  • dicarboxylic acids include, but are not particularly limited to, aromatic dicarboxylic acids, alicyclic dicarboxylic acids, and aliphatic dicarboxylic acids.
  • aromatic dicarboxylic acids include phthalic acid, isophthalic acid, 4,4'-diphenyldicarboxylic acid, 4,4'-diphenyletherdicarboxylic acid, 4,4'-benzophenonedicarboxylic acid, and 4,4'-diphenoxyethane.
  • Alicyclic dicarboxylic acids include, for example, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid.
  • aliphatic dicarboxylic acids include malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, and sebacic acid.
  • it preferably contains 51 mol% or more, more preferably 70 mol% or more, still more preferably 85 mol% or more, and especially It preferably contains 95 mol % or more.
  • butanediol examples include 1,2-butanediol, 1,3-butanediol, and 1,4-butanediol, with 1,4-butanediol being preferred from the viewpoint of moldability.
  • other low molecular weight glycol components that form ester units can be used during polymerization.
  • specific examples of low-molecular-weight glycol components include low-molecular-weight glycols having 2 to 10 carbon atoms, such as ethylene glycol, trimethylene glycol, hexanediol, decanediol, and cyclohexanedimethanol.
  • it preferably contains 51 mol% or more, more preferably 70 mol% or more, still more preferably 85 mol% or more, and particularly preferably 95 mol% or more of the total diol component.
  • IV value of PBT is 0.3 dL/g or more, mechanical properties such as impact resistance are likely to be improved, and when it is 1.2 dL/g or less, fluidity is further improved and molding is easier. tends to be
  • the polybutylene terephthalate-based resin is not particularly limited, and one type may be used alone, or two or more types may be used in combination.
  • the styrenic thermoplastic elastomer functions as an impact modifier that improves the impact resistance of the PPE-PBT resin composition.
  • the styrenic thermoplastic elastomer refers to a thermoplastic elastomer containing a styrene block and a conjugated diene (which may be hydrogenated) block and having rubber elasticity.
  • the styrenic block may contain, in addition to styrene, a copolymer of styrene and an aromatic vinyl compound such as ⁇ -methylstyrene.
  • styrene-based thermoplastic elastomers include styrene-butadiene-styrene block copolymer (SBS), styrene-isoprene-styrene block copolymer (SIS), and styrene-ethylene-butylene-styrene block copolymer (SEBS).
  • SBS styrene-butadiene-styrene block copolymer
  • SIS styrene-isoprene-styrene block copolymer
  • SEBS styrene-ethylene-butylene-styrene block copolymer
  • styrene-ethylene-propylene-styrene block copolymer SEPS
  • styrene-butadiene-butylene-styrene block copolymer SBBS
  • styrene-isobutylene-styrene block copolymer SIBS
  • poly( ⁇ -methylstyrene)-poly(ethylene-propylene)-poly( ⁇ -methylstyrene) From the viewpoint of heat resistance and weather resistance, it is preferable that some or all of the unsaturated double bonds in the conjugated diene
  • the styrene-based thermoplastic elastomer is not particularly limited, and one type may be used alone, or two or more types may be used in combination.
  • the compatibilizer interacts with polyphenylene ether and/or polybutylene terephthalate-based resin to refine the polybutylene terephthalate phase, increase the interface between polyphenylene ether and polybutylene terephthalate-based resin, etc., thereby improving PPE-PBT. improve mechanical properties such as toughness of the resin composition.
  • Conventionally known compatibilizers used for mixing polyphenylene ether and polybutylene terephthalate resins can be appropriately used.
  • the compatibilizer is preferably a copolymer of a styrene-based copolymer containing an epoxy group and a polybutylene terephthalate-based resin.
  • the styrenic copolymer containing an epoxy group is not particularly limited, and examples thereof include a copolymer of a styrenic monomer and an epoxy group-containing ethylenically unsaturated monomer.
  • an epoxy group-containing styrene copolymer an epoxy-containing styrene-acrylic copolymer can be used from the viewpoint of easily improving the heat resistance and toughness of the PPE-PBT resin composition.
  • Epoxy-containing styrene-acrylic copolymers comprise styrenic monomers, (meth)acrylic ester monomers containing epoxy groups, and optionally (meth)acrylic ester monomers and/or (meth)acrylic It may be obtained by copolymerizing an acid, and after copolymerizing a styrene-based monomer, a (meth)acrylic acid ester monomer and/or (meth)acrylic acid, the (meth)acrylic acid in the copolymer An alcohol having an epoxy group may be added to the carboxyl group of the acid unit by a condensation reaction.
  • (meth)acrylic acid means both methacrylic acid and acrylic acid.
  • styrene-based monomers examples include styrene, ⁇ -methylstyrene, p-methylstyrene, m-methylstyrene, and o-methylstyrene, with styrene being preferred.
  • a styrene-type monomer may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the (meth)acrylic acid ester monomer containing an epoxy group can be, for example, a (meth)acrylate having one epoxy group and one or more (meth)acryloyl groups in the molecule.
  • examples include glycidyl ethers such as glycidyl methacrylate and glycidyl acrylate, and 3,4-epoxycyclohexylmethyl methacrylate. Among them, glycidyl methacrylate is preferred.
  • (Meth) acrylic acid ester monomers include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) ) acrylate, t-butyl (meth)acrylate, n-pentyl (meth)acrylate, n-hexyl (meth)acrylate, cyclohexyl (meth)acrylate, n-heptyl (meth)acrylate, n-octyl (meth)acrylate, 2 - ethylhexyl (meth)acrylate and the like.
  • the epoxy-containing styrene-acrylic copolymer preferably contains styrene units and glycidyl methacrylate units. preferably 51 to 98% by weight and 2 to 49% by weight of glycidyl methacrylate units; more preferably 60 to 90% by weight of styrene units and 10 to 40% by weight of glycidyl methacrylate units; more preferably ⁇ 90% by weight and 10-35% by weight of glycidyl methacrylate units, particularly preferably 71-80% by weight of styrene units and 20-29% by weight of glycidyl methacrylate units.
  • Epoxy-containing styrene-acrylic copolymers may also contain methyl methacrylate in addition to styrene units and glycidyl methacrylate units.
  • the epoxy-containing styrene-acrylic copolymer preferably contains 51 to 98% by weight of styrene units, 2 to 49% by weight of glycidyl methacrylate units, and 0 to 10% by weight of methyl methacrylate.
  • glycidyl methacrylate units 60 to 90% by weight of glycidyl methacrylate units, 10 to 40% by weight of glycidyl methacrylate units, and 0 to 5% by weight of methyl methacrylate, more preferably 65 to 90% by weight of styrene units, 10 to 35% by weight, and 0-5% by weight of methyl methacrylate, more preferably 71-80% by weight of styrene units, 20-29% by weight of glycidyl methacrylate units, and 0-5% by weight of methyl methacrylate. More preferably, it contains 72-77% by weight of styrene units, 20-29% by weight of glycidyl methacrylate units, and 1-5% by weight of methyl methacrylate.
  • the styrenic copolymer containing an epoxy group is not particularly limited. 000 to 100,000, preferably 10,000 to 80,000, more preferably 20,000 to 65,000. As used herein, the weight average molecular weight can be measured by gel permeation chromatography (GPC).
  • the styrenic copolymer containing an epoxy group is not particularly limited, but, for example, from the viewpoint of productivity of the compatibilizer, the glass transition temperature (Tg) is preferably 40 to 90°C, and 51 to 85°C. and more preferably 60 to 75°C. As used herein, the glass transition temperature can be measured by differential scanning calorimetry (DSC).
  • DSC differential scanning calorimetry
  • the method of polymerizing the styrenic copolymer containing an epoxy group is not particularly limited, and may be, for example, bulk polymerization, solution polymerization, suspension polymerization, emulsion polymerization, or the like.
  • polymerization initiators include azo compounds such as 2,2′-azobisisobutyronitrile and 2,2′-azobis(2-methylbutyronitrile), benzoyl peroxide, and t-butyl perbenzoate. Organic peroxides such as can be used.
  • a chain transfer agent such as 2-ethylhexyl thioglycolate, t-dodecylmercaptan, n-decylmercaptan, terpinolene may be used to adjust the molecular weight during polymerization.
  • an organic solvent such as toluene may be used as a polymerization solvent.
  • the polymerization temperature may be, for example, 60-100°C.
  • the same polybutylene terephthalate-based resin as the B component can be used, and specifically, those exemplified as the B component can be used as appropriate.
  • the intrinsic viscosity of the polybutylene terephthalate-based resin used here is not particularly limited, but is preferably 0.3 to 1.2 dL/g, more preferably 0.5 to 0.9 dL/g. more preferably 0.6 to 0.75 dL/g. When the IV value of PBT is 0.3 to 1.2 dL/g, mechanical properties such as impact resistance tend to be improved.
  • a compatibilizer can be obtained by reacting and extruding a styrene-based copolymer containing epoxy groups and a polybutylene terephthalate-based resin for graft polymerization.
  • Reactive extrusion is preferably carried out by, for example, melt-kneading a mixture of a styrene-based copolymer containing an epoxy group and a polybutylene terephthalate-based resin in an extruder.
  • kneading extruders include single-screw extruders and twin-screw extruders, with twin-screw extruders being preferred.
  • the temperature during melt-kneading may be, for example, 200 to 270°C.
  • the mixture used for melt-kneading may contain an antioxidant from the viewpoint of preventing gas and mold contamination due to thermal deterioration.
  • Phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, and the like can be used as antioxidants. These may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the styrene copolymer containing an epoxy group and the copolymer of a polybutylene terephthalate resin are not particularly limited. It is preferable to contain 20 to 80% by weight of the polymer and 20 to 80% by weight of the polybutylene terephthalate resin. It is more preferable to contain 65% by weight.
  • the copolymer of a styrene-based copolymer containing an epoxy group and a polybutylene terephthalate-based resin is not particularly limited. is preferably 50 to 120°C, more preferably 70 to 110°C, even more preferably 85 to 100°C.
  • the copolymer of a styrene-based copolymer containing an epoxy group and a polybutylene terephthalate-based resin is not particularly limited, but from the viewpoint of heat resistance, for example, it is preferable that the melting point (Tm) is 180 to 250°C. , 200 to 240°C, more preferably 215 to 230°C. As used herein, the melting point can be measured by DSC.
  • Conductive carbon can impart antistatic properties and conductivity to molded articles of the PPE-PBT resin composition, enabling electrostatic coating.
  • Conductive carbon also referred to as conductive carbon black
  • Conductive carbon black is not particularly limited, and examples thereof include acetylene black, ketjen black, furnace black, thermal black, carbon nanotubes, carbon microcoils, graphene, and graphite. be done.
  • Conductive carbon is a group consisting of acetylene black, ketjen black, furnace black, and thermal black from the viewpoint of excellent balance between conductivity and mechanical properties such as workability and impact resistance represented by fluidity.
  • One or more selected from is preferable, and Ketjenblack is more preferable in that excellent conductivity can be obtained with addition of a small amount.
  • the average primary particle size of the conductive carbon is not particularly limited, but from the viewpoint of dispersibility and conductivity, it is preferably 10 to 80 nm, more preferably 15 to 70 nm, and 20 to 60 nm. More preferably, it is particularly preferably 20 to 50 nm.
  • the average primary particle size of conductive carbon can be measured by a laser diffraction/scattering method.
  • modified polybutylene terephthalate resin (F component: modified polybutylene terephthalate resin)
  • modified polybutylene terephthalate resin (hereinafter also referred to as modified PBT) can adjust the melt viscosity of PBT and improve the fluidity of the PPE-PBT resin composition.
  • modified polybutylene terephthalate-based resin for example, polyoxyalkylene-modified polybutylene terephthalate can be used.
  • Polyoxyalkylene-modified polybutylene terephthalate has a structure in which a polyoxyalkylene component is copolymerized with a polybutylene terephthalate-based resin.
  • a block copolymer having a polybutylene terephthalate-based resin as a hard segment and a polyoxyalkylene component as a soft segment can be used.
  • the polybutylene terephthalate component in the modified PBT the same composition as the B component and the same manufacturing method can be used, and specifically, those exemplified as the B component can be used as appropriate.
  • polyoxyalkylene components include polyoxyethylene, polyoxy-1,2-propylene, polyoxy-1,3-propylene, polyoxy-1,4-butylene, and their bisphenols such as bisphenol A, 4,4 Examples include biphenols such as '-biphenol, and adducts to dicarboxylic acids such as terephthalic acid.
  • the number of repeating oxyalkylene units in the polyoxyalkylene component is preferably 2 or more, more preferably 4 or more, and still more preferably 8 or more, from the viewpoint of good fluidity, and has heat resistance and thermal stability. From the viewpoint of sexuality, it is preferably 100 or less, more preferably 60 or less, still more preferably 30 or less, and particularly preferably 20 or less.
  • the incorporated amount of the polyoxyalkylene component is preferably 5% by weight or more, more preferably 10% by weight or more, from the viewpoint of fluidity and heat resistance. From the viewpoint of thermal stability, the content is preferably 95% by weight or less, more preferably 90% by weight or less, further preferably 70% by weight or less, and particularly preferably 50% by weight or less.
  • the IV value of the modified PBT is 0.3 dL / g or more, it is excellent in workability such as suppressing the gas generated during molding, and when it is 1.2 dL / g or less, the fluidity is easily improved, and molding Easy to improve workability.
  • polyoxyalkylene-modified polybutylene terephthalate examples include block copolymers having PBT in the hard segment and a copolymer of polyoxy-1,4-butylene and terephthalic acid having a repeating number of oxyalkylene units of 4 or more in the soft segment. , a block copolymer having PBT in the hard segment and polyoxyethylene bisphenol A ether (polyoxyethylene adduct of bisphenol A, the number of repeating oxyethylene is 2 or more) in the soft segment.
  • Polyoxyalkylene-modified polybutylene terephthalate is not particularly limited. 3-way direct esterification of ether, (2) 3-way transesterification of dialkyl terephthalate, butanediol, modified polyether, and/or ester of modified polyether, (3) dialkyl terephthalate, butanediol (4) A method of polycondensing by adding a modified polyether during or after the transesterification, (4) a method of using high-molecular polybutylene terephthalate, mixing it with the modified polyether, and then melting and transesterifying under reduced pressure.
  • Polymerization catalysts include, for example, germanium catalysts (eg, germanium dioxide), titanium catalysts (eg, tetraethoxytitanium, etc.), aluminum catalysts, antimony catalysts (eg, antimony trioxide, etc.), and the like.
  • the PPE-PBT resin composition contains 51 to 98 parts by weight of polyphenylene ether (component A), 1.9 to 48.9 parts by weight of polybutylene terephthalate resin (component B), and a styrene thermoplastic elastomer (component C ) of 0.1 to 15 parts by weight, a compatibilizer (D component) of 1 to 6 parts by weight with respect to 100 parts by weight of the total amount of A component, B component and C component, and conductive carbon (E component) 1 to 5 parts by weight per 100 parts by weight of the total amount of A component, B component and C component.
  • D component compatibilizer
  • E component conductive carbon
  • the amount of PPE is less than 51 parts by weight, or the amount of PBT is more than 48.9 parts by weight, the heat resistance of the resin composition is reduced. descend.
  • the amount of PBT is less than 1.9 parts by weight, or the amount of PPE is more than 98 parts by weight, the fluidity of the resin composition is reduced. Unfortunately, the moldability is lowered, and mechanical properties such as impact resistance are lowered.
  • the total amount of component A, component B and component C is 100 parts by weight, if the amount of component C is less than 0.1 part by weight, mechanical properties such as impact resistance of the resin composition are reduced, and component C is reduced. exceeds 15 parts by weight, the heat resistance is lowered.
  • the PPE-PBT resin composition contains 55 to 85 parts by weight of the A component, 6 to 40 parts by weight of the B component, and 5 to 5 parts by weight of the C component. It is preferable to contain 9 parts by weight, 55 to 80 parts by weight of component A, 11 to 40 parts by weight of component B, more preferably 5 to 9 parts by weight of component C, 55 to 75 parts by weight of component A, B It is more preferable to contain 16 to 40 parts by weight of component, 5 to 9 parts by weight of component C, 55 to 75 parts by weight of component A, 20 to 40 parts by weight of component B, and 5 to 9 parts by weight of component C. is even more preferred.
  • the PPE-PBT resin composition preferably contains 2 to 5 parts by weight, more preferably 2 to 4 parts by weight, of component D with respect to 100 parts by weight of the total amount of components A, B and C. .
  • the PPE-PBT resin composition preferably contains 1.5 to 4 parts by weight, preferably 1.5 to 3 parts by weight, of the E component with respect to 100 parts by weight of the total amount of the A component, the B component and the C component. is more preferable.
  • the PPE-PBT resin composition contains 55 to 85 parts by weight of polyphenylene ether (component A), 6 to 40 parts by weight of polybutylene terephthalate resin (component B), and 5 to 40 parts by weight of a styrene thermoplastic elastomer (component C). 9 parts by weight of a compatibilizer (component D), 2 to 5 parts by weight per 100 parts by weight of the total amount of components A, B and C, and conductive carbon (component E) of components A, B and It is preferable to include 1.5 to 3 parts by weight per 100 parts by weight of the total amount of the C component.
  • the PPE-PBT resin composition may contain modified PBT as part of the B component. Thereby, the fluidity of the resin composition is likely to be improved.
  • PBT and modified PBT are 100 parts by weight, it is preferable that PBT is 30 to 90 parts by weight and modified PBT is 10 to 70 parts by weight, PBT is 51 to 79 parts by weight, and modified PBT is 21 to 49 parts by weight. Parts by weight are more preferred.
  • the PPE-PBT-based resin composition may contain additives as necessary within a range that does not impair the effects of the present invention.
  • Additives include, for example, antioxidants, heat stabilizers, light stabilizers, ultraviolet absorbers, weather stabilizers, catalysts, plasticizers, lubricants, release agents, antistatic agents, coloring agents, anti-shrinking agents, Examples include antibacterial agents and deodorants. These may be used singly or in combination of two or more. For example, 0.01 to 2 parts by weight of additives may be included with respect to 100 parts by weight of the total amount of A component, B component and C component.
  • the PPE-PBT resin composition may contain mineral fillers and fibers, if necessary, within a range that does not impair the effects of the present invention.
  • Mineral fillers include calcium carbonate, talc, mica, sericite, wollastonite, kaolin, chemically modified montmorillonite, silica, glass beads, fly ash, zeolite, alumina and the like.
  • the fibers may include organic fibers such as glass fibers, carbon fibers, and aramid fibers. Although these fibers can be used as normal short fibers, they can also be used as long fibers having a fiber length exceeding 1 cm in the molded article. However, the use of these fibers may not be desirable for good appearance after electrostatic painting.
  • the PPE-PBT resin composition has a deflection temperature under load of 0.45 MPa (hereinafter also simply referred to as "0.45 HDT") measured based on ISO 75-1 and ISO 75-2 is 180°C or higher.
  • 0.45 HDT is 180° C. or higher, high-temperature exposure becomes possible, and the vehicle body using the member containing the molded article of the resin composition can be subjected to online coating including electrodeposition coating.
  • 0.45HDT of the PPE-PBT resin composition is preferably 183° C. or higher, more preferably 185° C. or higher.
  • the volume resistivity (also referred to as volume resistivity) of the PPE-PBT resin composition ranges from 1.0 ⁇ 10 2 to 1.0 ⁇ 10 4 ⁇ m. This makes it possible to electrostatically coat a molded article of the resin composition.
  • the volume resistivity of the PPE-PBT resin composition can be measured as described in Examples.
  • the PPE-PBT resin composition has a spiral flow length (hereinafter referred to as "SFL”) is preferably 200 mm or more, more preferably 250 mm or more, and even more preferably 300 mm or more. From the viewpoint of suppressing molding defects due to overfilling, the SFL is preferably 800 mm or less, more preferably 600 mm or less.
  • the PPE-PBT resin composition preferably has a strain at break of 3% or more as measured according to ISO 527-1 and ISO 527-2, from the viewpoint of excellent breaking strength of fastening parts such as box bosses. It is more preferably 4% or more.
  • the PPE-PBT resin composition preferably has a flexural modulus of 2200 MPa or more, more preferably 2400 MPa or more, as measured according to ISO 178, from the viewpoint of small deformation when pushed by hand.
  • the bending elastic modulus is preferably 6500 MPa or less, more preferably 5500 MPa or less.
  • the PPE-PBT resin composition does not deform due to moisture absorption, and after holding the test piece under conditions of 23 ° C. and 50% relative humidity for 24 hours or more, the following formula when immersed in pure water at 50 ° C. for 24 hours
  • the water absorption calculated in 1 is preferably 0.50% or less, more preferably 0.20% or less, and even more preferably 0.10% or less.
  • Wa is the weight of the test piece after being immersed in pure water at 50° C. for 24 hours
  • Wb is the weight of the test piece before being immersed in pure water.
  • a test piece is a flat plate molding of 120 mm ⁇ 120 mm ⁇ 3 mm (thickness).
  • Water absorption (%) (Wa - Wb) / Wb x 100
  • the PPE-PBT resin composition is not particularly limited, but can be obtained, for example, by melt-kneading the A component, B component, C component, D component and E component with an extruder. From the viewpoint of easily obtaining a resin composition that can withstand high-temperature exposure, does not substantially undergo moisture absorption deformation, can be electrostatically coated, and has excellent coating film adhesion, the PPE-PBT resin composition is prepared by the following steps. It is preferable to manufacture by a manufacturing method including steps 1 to 3.
  • Step 1 A random copolymer having a weight average molecular weight of 10,000 to 100,000 (epoxy-containing styrene acrylic copolymer) can be produced.
  • the monomer mixture may contain methyl methacrylate. 100 parts by weight of the monomer mixture may contain 51 to 98 parts by weight of styrene, 2 to 49 parts by weight of glycidyl methacrylate, and 0 to 10 parts by weight of methyl methacrylate, 60 to 90 parts by weight of styrene, 10 to 40 parts by weight of glycidyl methacrylate.
  • methyl methacrylate which may include 65-90 parts by weight of styrene, 10-35 parts by weight of glycidyl methacrylate, and 0-5 parts by weight of methyl methacrylate, 71-80 parts by weight of styrene, It may contain 20-29 parts by weight of glycidyl methacrylate and 0-5 parts by weight of methyl methacrylate, and may contain 69-78 parts by weight of styrene, 20-29 parts by weight of glycidyl methacrylate, and 1-5 parts by weight of methyl methacrylate.
  • the polymerization method is not particularly limited, and may be, for example, bulk polymerization method, solution polymerization method, suspension polymerization method, emulsion polymerization method, or the like.
  • polymerization initiators include azo compounds such as 2,2′-azobisisobutyronitrile and 2,2′-azobis(2-methylbutyronitrile), benzoyl peroxide, and t-butyl perbenzoate.
  • Organic peroxides such as can be used.
  • a chain transfer agent such as 2-ethylhexyl thioglycolate, t-dodecylmercaptan, n-decylmercaptan, terpinolene may be used to adjust the molecular weight during polymerization.
  • an organic solvent such as toluene may be used as a polymerization solvent.
  • the polymerization temperature may be, for example, 60-100°C.
  • Step 2 The random copolymer (epoxy-containing styrene acrylic copolymer) obtained in step 1 is melt-kneaded in an extruder with polybutylene terephthalate having an IV value of 0.6 to 0.8 to produce a compatibilizer. do.
  • 100 parts by weight of a resin mixture containing 35 to 65 parts by weight of an epoxy-containing styrene acrylic copolymer and 35 to 65 parts by weight of a polybutylene terephthalate resin can be melt-kneaded by an extruder.
  • extruders include single-screw extruders and twin-screw extruders, with twin-screw extruders being preferred.
  • the temperature during melt-kneading may be, for example, 200 to 270°C.
  • the resin mixture used for melt-kneading may contain an antioxidant from the viewpoint of preventing gas and mold contamination due to thermal deterioration.
  • Phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, and the like can be used as antioxidants.
  • An antioxidant may be used individually by 1 type, and may be used in combination of 2 or more type. 0.01 to 2 parts by weight of an antioxidant may be included with respect to 100 parts by weight of the resin mixture used for melt-kneading.
  • Step 3 The compatibilizing agent (D component) obtained in step 2 is combined with polyphenylene ether (A component), polybutylene terephthalate resin (B component), styrene thermoplastic elastomer (C component), and conductive carbon (E component). Together, they are melt-kneaded in an extruder to obtain a resin composition.
  • extruders include single-screw extruders and twin-screw extruders, with twin-screw extruders being preferred.
  • the temperature during melt-kneading may be, for example, 230 to 300°C.
  • additives may be melt-kneaded together with A component, B component, C component, D component and E component, if necessary. As the additive, those described above can be used as appropriate.
  • a vehicle member includes a molded body obtained by molding a PPE-PBT resin composition.
  • a molded article can be obtained by injection molding the PPE-PBT resin composition into a predetermined shape.
  • the vehicle member may be an automobile exterior member or an automobile outer plate member.
  • Exterior parts for automobiles include, for example, license garnishes, pillar garnishes, slide rail covers, roof panels and spoilers.
  • Exterior panel members for automobiles include, for example, fenders, door panels, back door panels, roofs, fuel lids, trunk lids, and retractable headlight panels.
  • the PPE-PBT-based resin composition molded body can withstand high temperature exposure, is substantially free from moisture absorption deformation, can be electrostatically coated, has excellent coating film adhesion, and exhibits tensile strength, strain at break, and bending. It also has excellent mechanical properties such as strength, flexural modulus, Charpy impact strength, and surface impact strength.
  • a molded body obtained by molding a PPE-PBT resin composition may be used directly as an exterior/skin member for automobiles, but the appearance is improved. For this reason, it is preferable to use a laminate containing the molded article and a coating film disposed on the surface of the molded article as an exterior/skin member for automobiles.
  • Coating films are made of cured polyester melamine resin, cured alkyd melamine resin, cured acrylic melamine resin, cured epoxy ester resin, cured acrylic urethane resin, cured epoxy melamine resin, cured epoxy group-containing acrylic acid resin, etc.
  • One or more layers of cured resin such as cured acid epoxy resin may be included.
  • the thickness of the coating film may be appropriately determined according to the application and purpose of the vehicle member, and is not particularly limited, but may be, for example, 30 to 100 ⁇ m.
  • a coating containing a curable resin composition which is a precursor of the cured resin, is applied to the molded body of the PPE-PBT resin composition by electrostatic coating, passed through a baking furnace, and the cured resin is PPE-PBT. It can be formed on one surface of the molded body of the resin composition.
  • the cured resin is preferably one or more selected from the group consisting of cured polyester melamine resin, cured alkyd melamine resin, cured acrylic melamine resin, cured acid epoxy resin, and cured acrylic urethane resin.
  • a curable resin composition that forms a cured acrylic melamine resin and a cured polyester melamine resin as an intermediate coat, and a cured acrylic melamine resin, cured acrylic melamine epoxy resin, and/or epoxy group-containing acrylic-carboxylic anhydride as a top coat.
  • a cured product of an acrylic resin containing the acrylic resin is used.
  • Raw materials used in Examples and Comparative Examples are as follows. ⁇ raw materials> Component A: Polyphenylene ether (PPE), manufactured by Mitsubishi Engineering-Plastics Co., Ltd., poly(2,6-dimethyl-1,4-phenylene) ether, product name “IUPIACE PX100L”, intrinsic viscosity: 0.47 dL/g B component: polybutylene terephthalate (PBT), manufactured by Yingkou Kangpyochemical Co., Ltd., product name "KH-2100", intrinsic viscosity: 1.00 dL / g Component C: styrene-based thermoplastic elastomer, styrene-ethylene-butylene-styrene block copolymer (SEBS), manufactured by Kraton Polymers LLC, product name "Kraton G 1650 E Polymer” D component: compatibilizer, compatibilizer (D-1) obtained in Production Example 1 E component: conductive carbon, Ketjenblack, manufactured by Lion Specialty Chemical
  • FTIR Fourier transform infrared spectroscopy
  • GPC Gel permeation chromatography
  • DSC differential scanning calorimetry
  • Primer (manufactured by Some Q Technology Co., Ltd., product name "Mitchakuron EP X”) is sprayed on a flat plate molded body of 120 mm x 120 mm x 3 mm (thickness), and after air drying, it is 180 mm, assuming a baking furnace in the electrodeposition process of automobiles. °C for 30 minutes.
  • a melamine paint (manufactured by AS Paint Co., Ltd., product name "Sagran 33 Black”) was sprayed, and after being semi-dried, a clear paint (manufactured by AS Paint Co., Ltd., product name "Sagran 7000 Clear”) was sprayed. .
  • the epoxy group-containing styrene acrylic copolymer (D1-1) had a weight average molecular weight of 42,000 as determined by GPC in terms of polystyrene, and a Tg of 71° C. as determined by DSC.
  • FTIR confirmed the presence of infrared absorption derived from the St unit and infrared absorption derived from the GMA and MMA units.
  • the epoxy group-containing styrene-acrylic copolymer (D1-1) contains 75.2% by weight of St units, 23.3% by weight of GMA units, and 1.5% by weight of MMA units. 50 parts by weight of the epoxy group-containing styrene acrylic copolymer (D1-1), 50 parts by weight of polybutylene terephthalate (manufactured by Polyplastics Co., Ltd., product name "DURANEX" 300FP, intrinsic viscosity 0.69 dL / g), phenolic oxidation A mixture of 0.20 parts by weight of inhibitor 1 and 0.20 parts by weight of a phosphorus-based antioxidant is kneaded at a temperature of 240 ° C.
  • the compatibilizer (D-1) was produced by melt kneading and pelletizing.
  • the Tg determined by DSC was 96°C, and the melting point (Tm) was 222°C.
  • FTIR confirmed the presence of infrared absorption derived from St units and infrared absorption derived from PBT.
  • the internal temperature of the autoclave was raised to 202°C.
  • nitrogen supply was stopped and pressure reduction was started, and the pressure was reduced to 15 hPa while distilling 1,4-butanediol.
  • the internal temperature of the autoclave was raised to 210°C.
  • Nitrogen was immediately supplied to return the pressure to atmospheric pressure, and the content was discharged from the lower part of the autoclave into a stainless vat, air-cooled and solidified, and pulverized to obtain modified PBT (F-1).
  • the intrinsic viscosity was 0.70 dL/g, no Tg was observed by DSC, and Tm was observed at 199°C and 211°C.
  • the incorporated weight ratio of 1,4-butanediol units and polyoxyethylene bisphenol A ether units determined by NMR was 68/32.
  • Example 1 PPE, PBT, styrene-based thermoplastic elastomer, compatibilizer, conductive carbon, modified PBT, phenol-based antioxidant 1, and phosphorus-based antioxidant were premixed in the proportions shown in Table 1 below, and biaxially extruded.
  • Pellets were produced by melt-kneading at 270° C. using a machine “TEX-44SS” (manufactured by The Japan Steel Works, Ltd.). Using the obtained pellets, an ISO type A1 dumbbell test piece was prepared with an injection molding machine "FN-1000" (manufactured by Nissei Plastic Industry Co., Ltd.) set at a cylinder temperature of 310 ° C.
  • Example 2 Same as Example 1, except that PPE, PBT, styrene-based thermoplastic elastomer, compatibilizer, modified PBT, phenol-based antioxidant 1, and phosphorus-based antioxidant were premixed in the proportions shown in Table 1 below.
  • a pellet, an ISO type A1 dumbbell test piece and a flat plate were prepared as a material and evaluated for physical properties.
  • the volume resistivity exceeded the upper limit of the measurement range (2 x 10 7 ⁇ m), and it was judged that it would be difficult to use the electrostatic coating used in the actual automobile manufacturing line (with the risk of electrical discharge). Measurements of resistance and post-painting deformation were not carried out. The results are shown in Table 1 below.
  • Example 3 Comparative Example 3
  • pellets, An ISO type A1 dumbbell test piece and a flat plate were prepared and evaluated for physical properties.
  • the volume resistivity exceeded the upper limit of the measurement range (2 x 10 7 ⁇ m), and it was judged that it would be difficult to use the electrostatic coating used in the actual automobile manufacturing line (with the risk of electrical discharge). Measurements of resistance and post-painting deformation were not carried out. The results are shown in Table 1 below.
  • Example 4 Pellets and ISO type A1 dumbbells were prepared in the same manner as in Example 1, except that PPE, PBT, a styrene-based thermoplastic elastomer, phenol-based antioxidant 1, and phosphorus-based antioxidant were premixed in the proportions shown in Table 1 below. A test piece and a flat plate were prepared and evaluated for physical properties. In addition, the volume resistivity exceeded the upper limit of the measurement range (2 x 10 7 ⁇ m), and it was judged that it would be difficult to use the electrostatic coating used in the actual automobile manufacturing line (with the risk of electrical discharge). Measurements of resistance and post-painting deformation were not carried out. The results are shown in Table 1 below.
  • the PPE/PBT-based resin compositions of Examples have low water absorption, do not deform during coating, are excellent in coating adhesion, and at the same time have a volume resistivity of 1 ⁇ 10 4 or less. It can also be used for electrocoating, and because it has excellent heat resistance, deformation in the baking furnace in the electrocoating process can be suppressed, making it suitable for so-called on-line coating processes in automobile manufacturing.
  • the present invention includes, but is not limited to, at least the following embodiments.
  • [1] (A) 51 to 98 parts by weight of polyphenylene ether, (B) 1.9 to 48.9 parts by weight of polybutylene terephthalate resin; (C) 0.1 to 15 parts by weight of a styrenic thermoplastic elastomer; (D) 1 to 6 parts by weight of a compatibilizing agent per 100 parts by weight of the total amount of (A) to (C), and (E) 100 parts by weight of conductive carbon in the total amount of (A) to (C).
  • the load deflection temperature at a load of 0.45 MPa measured based on ISO 75-1 and ISO 75-2 is 180 ° C. or higher, A resin composition having a volume resistivity of 1.0 ⁇ 10 2 to 1.0 ⁇ 10 4 ⁇ m.
  • the compatibilizer is a copolymer of a styrene-based copolymer containing an epoxy group and a polybutylene terephthalate-based resin.
  • the epoxy group-containing styrenic copolymer contains styrene units and glycidyl methacrylate units.
  • the epoxy group-containing styrenic copolymer contains 60 to 90% by weight of styrene units, 10 to 40% by weight of glycidyl methacrylate units, and 0 to 5% by weight of methyl methacrylate, [2] or The resin composition according to [3].
  • Step 1 100 parts by weight of a monomer mixture containing 51 to 98 parts by weight of styrene and 2 to 49 parts by weight of glycidyl methacrylate is polymerized to form a random copolymer having a weight average molecular weight of 10,000 to 100,000.
  • Step 2 A step of melt-kneading the random copolymer obtained in Step 1 together with polybutylene terephthalate having an IV value of 0.6 to 0.8 in an extruder to produce (D) a compatibilizer;
  • Step 3 (D) the compatibilizer obtained in step 2 is extruded together with (A) polyphenylene ether, (B) polybutylene terephthalate-based resin, (C) styrenic thermoplastic elastomer, and (E) conductive carbon.
  • a method for producing a resin composition comprising a step of melt-kneading to obtain a resin composition in a machine.
  • the monomer mixture contains 60 to 90 parts by weight of styrene, 10 to 40 parts by weight of glycidyl methacrylate, and 0 to 5 parts by weight of methyl methacrylate with respect to 100 parts by weight of the monomer mixture.
  • a method for producing the described resin composition is 60 to 90 parts by weight of styrene, 10 to 40 parts by weight of glycidyl methacrylate, and 0 to 5 parts by weight of methyl methacrylate with respect to 100 parts by weight of the monomer mixture.

Abstract

The present invention relates to a resin composition which contains: (A) 51-98 parts by weight of a poly(phenylene ether); (B) 1.9-48.9 parts by weight of a poly(butylene terephthalate)-based resin; (C) 0.1-15 parts by weight of a styrene-based thermoplastic elastomer; (D) a compatibilizer at a quantity of 1-6 parts by weight relative to a total of 100 parts by weight of the components (A) to (C); and (E) electrically conductive carbon at a quantity of 1-5 parts by weight relative to a total of 100 parts by weight of the components (A) to (C). The resin composition has an HDT under a load of 0.45 MPa, as measured in accordance with ISO 75-1 and ISO 75-2, of 180°C or higher and a volume resistivity of 1.0×102 to 1.0×104 Ω·m.

Description

樹脂組成物、車両用部材および樹脂組成物の製造方法Resin composition, vehicle member, and method for producing resin composition
 本発明は、電着塗装工程を経由でき、静電塗装が可能であり、車両用部材に用いることができる樹脂組成物、それを用いた車両用部材および樹脂組成物の製造方法に関する。 The present invention relates to a resin composition that can be subjected to an electrodeposition coating process, can be electrostatically coated, and can be used for vehicle members, a vehicle member using the resin composition, and a method for producing a resin composition.
 CO2排出量削減や運転支援システムの高度化などに伴う自動車重量増加を相殺するため、自動車においては一部の金属製部品の樹脂化が進んでいる。一方、自動車の車体は組み立てられた後、防錆のための電着工程にて180℃以上の環境に一定時間さらされ、その後、静電塗装が行われている。特許文献1には、静電塗装が可能な樹脂組成物として、相溶化されたポリフェニレンエーテル-ポリアミド(ベース樹脂)に導電性カーボンブラックを配合した樹脂組成物が記載されている。 In order to offset the increase in automobile weight due to the reduction of CO 2 emissions and the advancement of driving support systems, some metal parts in automobiles are being replaced with resin. On the other hand, after an automobile body is assembled, it is exposed to an environment of 180° C. or higher for a certain period of time in an electrodeposition process for rust prevention, and then electrostatically coated. Patent Document 1 describes, as a resin composition that can be electrostatically coated, a resin composition obtained by blending conductive carbon black with compatibilized polyphenylene ether-polyamide (base resin).
特開平8-48869号公報JP-A-8-48869
 しかし、特許文献1に記載の樹脂組成物を成形した成形体は、環境から吸湿しやすく、変形が生じる問題があった。また、ポリアミドは車体用塗料塗膜との密着性不良といった問題もあった。 However, the molded body formed from the resin composition described in Patent Document 1 easily absorbs moisture from the environment and has a problem of deformation. Polyamide also has a problem of poor adhesion to the paint film for automobile bodies.
 本発明は、従来の問題を解決するため、高温暴露に耐えることができ、吸湿変形を実質的に伴わず、電着工程を経由することが可能で、静電塗装でき、塗膜密着性に優れた樹脂組成物、それを用いた車両用部材および樹脂組成物の製造方法を提供する。 In order to solve the conventional problems, the present invention is capable of withstanding high-temperature exposure, undergoing an electrodeposition process without substantial deformation due to moisture absorption, can be electrostatically coated, and has excellent coating adhesion. Provided are an excellent resin composition, a vehicle member using the same, and a method for producing the resin composition.
 本発明は、(A)ポリフェニレンエーテルを51~98重量部、(B)ポリブチレンテレフタレート系樹脂を1.9~48.9重量部、(C)スチレン系熱可塑性エラストマーを0.1~15重量部、(D)相溶化剤を前記(A)~(C)の合計量100重量部に対して1~6重量部、および(E)導電性カーボンを前記(A)~(C)の合計量100重量部に対して1~5重量部含み、ISO 75-1およびISO 75-2に基づき測定した0.45MPa荷重での荷重たわみ温度が180℃以上であり、体積固有抵抗が1.0X102~1.0X104Ω・mである樹脂組成物に関する。 The present invention comprises (A) 51 to 98 parts by weight of polyphenylene ether, (B) 1.9 to 48.9 parts by weight of polybutylene terephthalate resin, and (C) 0.1 to 15 parts by weight of styrene thermoplastic elastomer. (D) 1 to 6 parts by weight of the compatibilizer per 100 parts by weight of the total amount of (A) to (C), and (E) the conductive carbon, the total of (A) to (C) Contains 1 to 5 parts by weight per 100 parts by weight, has a deflection temperature under a load of 0.45 MPa of 180 ° C. or higher measured according to ISO 75-1 and ISO 75-2, and has a volume resistivity of 1.0 x 10 2 to 1.0×10 4 Ω·m.
 本発明は、前記樹脂組成物を成形した成形体を含む車両用部材に関する。 The present invention relates to a vehicle member including a molded body obtained by molding the resin composition.
 本発明は、工程1:スチレン60~90重量部、およびグリシジルメタクリレート10~40重量部を含む100重量部の単量体混合物を重合し、重量平均分子量が10,000~100,000であるランダム共重合体を製造する工程、工程2:工程1で得られたランダム共重合体を、IV値0.6~0.8のポリブチレンテレフタレートとともに押出機中で溶融混練して、(D)相溶化剤を製造する工程、および工程3:工程2で得られた(D)相溶化剤を、(A)ポリフェニレンエーテル、(B)ポリブチレンテレフタレート系樹脂、(C)スチレン系熱可塑性エラストマー、および(E)導電性カーボンブとともに押出機中で溶融混錬して樹脂組成物を得る工程を含む樹脂組成物の製造方法に関する。 In the present invention, step 1: 100 parts by weight of a monomer mixture containing 60 to 90 parts by weight of styrene and 10 to 40 parts by weight of glycidyl methacrylate is polymerized to obtain a random polymer having a weight average molecular weight of 10,000 to 100,000. Step of producing a copolymer, step 2: The random copolymer obtained in step 1 is melt-kneaded in an extruder with polybutylene terephthalate having an IV value of 0.6 to 0.8 to form a (D) phase A step of producing a solubilizer, and step 3: The (D) compatibilizer obtained in step 2 is subjected to (A) polyphenylene ether, (B) polybutylene terephthalate resin, (C) styrene-based thermoplastic elastomer, and (E) It relates to a method for producing a resin composition including a step of melt kneading together with conductive carbon fiber in an extruder to obtain a resin composition.
 本発明は、高温暴露に耐えることができ、吸湿変形を実質的に伴わず、電着工程を経由することが可能で、静電塗装でき、塗膜密着性に優れた樹脂組成物およびそれを用いた車両用部材を提供することができる。
 また、本発明の製造方法によれば、高温暴露に耐えることができ、吸湿変形を実質的に伴わず、電着工程を経由することが可能で、静電塗装でき、塗膜密着性に優れた樹脂組成物を製造することができる。
The present invention provides a resin composition that can withstand exposure to high temperatures, substantially does not undergo moisture absorption deformation, can be subjected to an electrodeposition process, can be electrostatically coated, and has excellent coating adhesion, and a resin composition comprising the same. The vehicle member used can be provided.
In addition, according to the production method of the present invention, it is possible to withstand exposure to high temperatures, undergo an electrodeposition process substantially without moisture absorption deformation, perform electrostatic coating, and have excellent coating film adhesion. A resin composition can be produced.
 本発明の発明者らは、上記課題を解決するために鋭意検討を重ねた。その結果、樹脂組成物に(A)ポリフェニレンエーテル(以下、「A成分」とも記す。)、(B)ポリブチレンテレフタレート系樹脂(以下、「B成分」とも記す。)、(C)スチレン系熱可塑性エラストマー(以下、「C成分」とも記す。)、(D)相溶化剤(以下、「D成分」とも記す。)、および(E)導電性カーボン(以下、「E成分」とも記す。)を所定量含有させるとともに、該樹脂組成物(以下、「PPE-PBT系樹脂組成物とも記す。」)のISO 75-1およびISO 75-2に基づき測定した0.45MPa荷重での荷重たわみ温度(以下、HDTとも記す。)を180℃以上とし、体積固有抵抗を1.0X102~1.0X104Ω・mの範囲にすることで、高温暴露に耐えることができ、吸湿変形を実質的に伴わず、電着工程を経由することが可能で、静電塗装でき、塗膜密着性に優れた樹脂組成物が得られることを見出した。 The inventors of the present invention have made intensive studies to solve the above problems. As a result, (A) polyphenylene ether (hereinafter also referred to as "A component"), (B) polybutylene terephthalate resin (hereinafter also referred to as "B component"), (C) styrene heat Plastic elastomer (hereinafter also referred to as "C component"), (D) compatibilizer (hereinafter also referred to as "D component"), and (E) conductive carbon (hereinafter also referred to as "E component") is contained in a predetermined amount, and the load deflection temperature at a load of 0.45 MPa of the resin composition (hereinafter also referred to as "PPE-PBT resin composition") measured based on ISO 75-1 and ISO 75-2 (hereinafter also referred to as HDT) is 180° C. or higher and the volume resistivity is in the range of 1.0×10 2 to 1.0×10 4 Ω·m. The inventors have found that it is possible to obtain a resin composition which can be subjected to an electrodeposition process, can be electrostatically coated, and has excellent coating film adhesion.
 [PPE-PBT系樹脂組成物]
 (A成分:ポリフェニレンエーテル)
 ポリフェニレンエーテル(以下、「PPE」とも記す。)としては、特に限定されないが、例えば、下記一般式(1)で表される構成単位を主鎖に含む重合体を好適に用いることができる。ポリフェニレンエーテルは、単独重合体でもよく、共重合体でもよい。
Figure JPOXMLDOC01-appb-C000001
[PPE-PBT resin composition]
(Component A: polyphenylene ether)
Polyphenylene ether (hereinafter also referred to as “PPE”) is not particularly limited, but for example, a polymer containing a structural unit represented by the following general formula (1) in its main chain can be preferably used. Polyphenylene ether may be a homopolymer or a copolymer.
Figure JPOXMLDOC01-appb-C000001
 前記一般式(1)において、R1、R2、R3およびR4は、それぞれ独立して、水素原子、ハロゲン原子、アルキル基、アルコキシ基、フェニル基、ハロゲン化アルキル基、またはハロゲン化アルコキシ基を示し、R1およびR2の少なくとも一つは水素原子ではない。アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、n-ブチル基、n-アミル基、イソアミル基、2-メチルブチル基、2,3-ジメチルブチル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基、ヘプチル基、イソプロピル基、sec-ブチル基、および1-エチルプロピル基などが挙げられる。なかでも、R1およびR2は、炭素数1~4のアルキル基であり、R3およびR4が水素若しくは炭素数1~4のアルキル基であることが好ましい。 In the general formula (1), R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, a phenyl group, a halogenated alkyl group, or a halogenated alkoxy groups and at least one of R 1 and R 2 is not a hydrogen atom. Examples of alkyl groups include methyl group, ethyl group, n-propyl group, n-butyl group, n-amyl group, isoamyl group, 2-methylbutyl group, 2,3-dimethylbutyl group, 2-methylpentyl group, 3-methylpentyl group, 4-methylpentyl group, heptyl group, isopropyl group, sec-butyl group, 1-ethylpropyl group and the like. Among them, R 1 and R 2 are preferably C 1-4 alkyl groups, and R 3 and R 4 are preferably hydrogen or C 1-4 alkyl groups.
 ポリフェニレンエーテルとしては、具体的には、ポリ(2,6-ジメチル-1,4-フェニレン)エーテル、ポリ(2,6-ジエチル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-エチル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-プロピル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-ブチル-1,4-フェニレン)エーテル、ポリ(2,6-ジプロピル-1,4-フェニレン)エーテル、ポリ(2-エチル-6-プロピル-1,4-フェニレン)エーテル、ポリ(2,6-ジブチル-1,4-フェニレン)エーテル、ポリ(2,6-ジラウリル-1,4-フェニレン)エーテル、ポリ(2,6-ジフェニル-1,4-ジフェニレン)エーテル、ポリ(2,6-ジメトキシ-1,4-フェニレン)エーテル、ポリ(2,6-ジエトキシ-1,4-フェニレン)エーテル、ポリ(2-メトキシ-6-エトキシ-1,4-フェニレン)エーテル、ポリ(2-エチル-6-ステアリルオキシ-1,4-フェニレン)エーテル、ポリ(2,6-ジクロロ-1,4-フェニレン)エーテル、ポリ(2-メチル-6-フェニル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-クロロ-1,4-フェニレン)エーテル、ポリ(2-メチル-6-ブロモ-1,4-フェニレン)エーテル、ポリ(2-エチル-6-クロロ-1,4-フェニレン)エーテル、ポリ(2,6-ジベンジル-1,4-フェニレン)エーテル、ポリ(2-エトキシ-1,4-フェニレン)エーテル、ポリ(2-クロロ-1,4-フェニレン)エーテル、ポリ(2,6-ジブロモ-1,4-フェニレン)エーテルなどが挙げられる。 Specific examples of polyphenylene ether include poly(2,6-dimethyl-1,4-phenylene) ether, poly(2,6-diethyl-1,4-phenylene) ether, poly(2-methyl-6- ethyl-1,4-phenylene) ether, poly(2-methyl-6-propyl-1,4-phenylene) ether, poly(2-methyl-6-butyl-1,4-phenylene) ether, poly(2, 6-dipropyl-1,4-phenylene) ether, poly(2-ethyl-6-propyl-1,4-phenylene) ether, poly(2,6-dibutyl-1,4-phenylene) ether, poly(2, 6-dilauryl-1,4-phenylene) ether, poly(2,6-diphenyl-1,4-diphenylene) ether, poly(2,6-dimethoxy-1,4-phenylene) ether, poly(2,6- diethoxy-1,4-phenylene) ether, poly(2-methoxy-6-ethoxy-1,4-phenylene) ether, poly(2-ethyl-6-stearyloxy-1,4-phenylene) ether, poly(2 ,6-dichloro-1,4-phenylene) ether, poly(2-methyl-6-phenyl-1,4-phenylene) ether, poly(2-methyl-6-chloro-1,4-phenylene) ether, poly (2-methyl-6-bromo-1,4-phenylene) ether, poly(2-ethyl-6-chloro-1,4-phenylene) ether, poly(2,6-dibenzyl-1,4-phenylene) ether , poly(2-ethoxy-1,4-phenylene) ether, poly(2-chloro-1,4-phenylene) ether, poly(2,6-dibromo-1,4-phenylene) ether, and the like.
 ポリフェニレンエーテルは、特に限定されないが、クロロホルム中、30℃における固有粘度(IV値)が0.2~0.9dL/gのものが好ましく、0.3~0.8dL/gのものがより好ましい。PPEの固有粘度が0.2dL/g以上であることにより、樹脂組成物の機械的物性がより向上する傾向にあり、0.9dL/g以下であることにより、流動性がより向上し、成形加工がより容易になる傾向にある。 The polyphenylene ether is not particularly limited, but preferably has an intrinsic viscosity (IV value) of 0.2 to 0.9 dL/g, more preferably 0.3 to 0.8 dL/g at 30°C in chloroform. . When the intrinsic viscosity of the PPE is 0.2 dL/g or more, the mechanical properties of the resin composition tend to be further improved. It tends to be easier to process.
 ポリフェニレンエーテルは、特に限定されず、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The polyphenylene ether is not particularly limited, and one type may be used alone, or two or more types may be used in combination.
 (B成分:ポリブチレンテレフタレート系樹脂)
 ポリブチレンテレフタレート系樹脂(以下、「PBT」と記す。)は、例えば、テレフタル酸および/またはそのエステル形成性誘導体と、ブタンジオールおよび/またはそのエステル形成性誘導体を重合したポリブチレンテレフタレート単位を主成分とするものが好ましい。ポリブチレンテレフタレート系樹脂は、耐熱性の観点からは、ポリブチレンテレフタレート単位を85重量%以上含むことが好ましく、90重量%以上含むことがより好ましく、100重量%からなることがさらに好ましい。
(B component: polybutylene terephthalate resin)
Polybutylene terephthalate resin (hereinafter referred to as "PBT") is mainly composed of polybutylene terephthalate units obtained by polymerizing terephthalic acid and/or ester-forming derivatives thereof and butanediol and/or ester-forming derivatives thereof. A component is preferred. From the viewpoint of heat resistance, the polybutylene terephthalate-based resin preferably contains 85% by weight or more of polybutylene terephthalate units, more preferably 90% by weight or more, and even more preferably 100% by weight.
 テレフタル酸のエステル形成性誘導体としては、テレフタル酸ジアルキルが好ましく、該テレフタル酸ジアルキルのアルキル基としては、メチル基がエステル交換反応性の観点から好ましい。 The ester-forming derivative of terephthalic acid is preferably a dialkyl terephthalate, and the alkyl group of the dialkyl terephthalate is preferably a methyl group from the viewpoint of transesterification reactivity.
 テレフタル酸またはそのエステル形成性誘導体に加えて、その他のジカルボン酸を併用してもよい。その他のジカルボン酸としては、特に限定されないが、例えば、芳香族ジカルボン酸、脂環式ジカルボン酸、および脂肪族ジカルボン酸などが挙げられる。芳香族ジカルボン酸としては、例えば、フタル酸、イソフタル酸、4,4'-ジフェニルジカルボン酸、4,4'-ジフェニルエーテルジカルボン酸、4,4'-ベンゾフェノンジカルボン酸、4,4'-ジフェノキシエタンジカルボン酸、4,4'-ジフェニルスルホンジカルボン酸、2,6-ナフタレンジカルボン酸などがあげられる。脂環式ジカルボン酸としては、例えば、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸などが挙げられる。脂肪族ジカルボン酸としては、例えば、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸などが挙げられる。 In addition to terephthalic acid or its ester-forming derivative, other dicarboxylic acids may be used in combination. Other dicarboxylic acids include, but are not particularly limited to, aromatic dicarboxylic acids, alicyclic dicarboxylic acids, and aliphatic dicarboxylic acids. Examples of aromatic dicarboxylic acids include phthalic acid, isophthalic acid, 4,4'-diphenyldicarboxylic acid, 4,4'-diphenyletherdicarboxylic acid, 4,4'-benzophenonedicarboxylic acid, and 4,4'-diphenoxyethane. dicarboxylic acid, 4,4'-diphenylsulfonedicarboxylic acid, 2,6-naphthalenedicarboxylic acid and the like. Alicyclic dicarboxylic acids include, for example, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid. Examples of aliphatic dicarboxylic acids include malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, and sebacic acid.
 耐熱性の観点から、全ジカルボン酸成分に対して、テレフタル酸および/またはエステル形成性誘導体由来の単位を51mol%以上含むことが好ましく、より好ましくは70mol%以上、さらに好ましくは85mol%以上、特に好ましくは95mol%以上含む。 From the viewpoint of heat resistance, it preferably contains 51 mol% or more, more preferably 70 mol% or more, still more preferably 85 mol% or more, and especially It preferably contains 95 mol % or more.
 ブタンジオールとしては、例えば、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオールが挙げられ、成形性の観点から、1,4-ブタンジオールが好ましい。ブタンジオールとともに、その他のエステル単位を形成する低分子量グリコール成分を重合時に用いることができる。低分子量グリコール成分としては、具体的には、炭素数2~10の低分子量グリコール、例えば、エチレングリコール、トリメチレングリコール、ヘキサンジオール、デカンジオール、シクロヘキサンジメタノールなどを用いることができる。 Examples of butanediol include 1,2-butanediol, 1,3-butanediol, and 1,4-butanediol, with 1,4-butanediol being preferred from the viewpoint of moldability. Along with butanediol, other low molecular weight glycol components that form ester units can be used during polymerization. Specific examples of low-molecular-weight glycol components include low-molecular-weight glycols having 2 to 10 carbon atoms, such as ethylene glycol, trimethylene glycol, hexanediol, decanediol, and cyclohexanedimethanol.
 耐熱性の観点から、全ジーオル成分に対して、ブタンジオール成分を51mol%以上含むことが好ましく、より好ましくは70mol%以上、さらに好ましくは85mol%以上、特に好ましくは95mol%以上含む。 From the viewpoint of heat resistance, it preferably contains 51 mol% or more, more preferably 70 mol% or more, still more preferably 85 mol% or more, and particularly preferably 95 mol% or more of the total diol component.
 ポリブチレンテレフタレート系樹脂は、特に限定されないが、フェノール/テトラクロロエタン=1/1(重量比)混合溶媒中、25℃における固有粘度が0.3~1.2dL/gであることが好ましく、0.45~1.1dL/gであることがより好ましい。PBTのIV値が0.3dL/g以上であると、耐衝撃性などの機械的物性が向上しやすく、1.2dL/g以下であると、流動性がより向上し、成形加工がより容易になる傾向にある。 The polybutylene terephthalate-based resin is not particularly limited, but preferably has an intrinsic viscosity of 0.3 to 1.2 dL/g at 25°C in a phenol/tetrachloroethane = 1/1 (weight ratio) mixed solvent. 0.45 to 1.1 dL/g is more preferred. When the IV value of PBT is 0.3 dL/g or more, mechanical properties such as impact resistance are likely to be improved, and when it is 1.2 dL/g or less, fluidity is further improved and molding is easier. tends to be
 ポリブチレンテレフタレート系樹脂は、特に限定されず、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The polybutylene terephthalate-based resin is not particularly limited, and one type may be used alone, or two or more types may be used in combination.
 (C成分:スチレン系熱可塑性エラストマー)
 スチレン系熱可塑性エラストマーは、PPE-PBT系樹脂組成物の耐衝撃性を向上する耐衝撃性改良剤として機能する。スチレン系熱可塑性エラストマーは、スチレン系ブロックと共役ジエン系(水素添加されていてもよい)ブロックを含み、ゴム弾性を有する熱可塑性エラストマーをいい、スチレン系熱可塑性エラストマーとして知られるものは、特に限定されることなく使用できる。例えば、スチレンブロックを、少なくとも一つの末端ブロックとして含み、共役ジエンもしくはその水添物のエラストマーブロックを少なくとも一つ中間ブロックとして含むブロック共重合体、または、スチレンと共役ジエン化合物とのランダム共重合体もしくはその水添物が挙げられる。スチレン系ブロックは、スチレンのほかに、スチレンとα-メチルスチレンなどの芳香族系ビニル化合物の共重合体を含んでもよい。
(Component C: Styrene-based thermoplastic elastomer)
The styrenic thermoplastic elastomer functions as an impact modifier that improves the impact resistance of the PPE-PBT resin composition. The styrenic thermoplastic elastomer refers to a thermoplastic elastomer containing a styrene block and a conjugated diene (which may be hydrogenated) block and having rubber elasticity. can be used without For example, a block copolymer containing a styrene block as at least one terminal block and an elastomeric block of a conjugated diene or its hydrogenation as at least one intermediate block, or a random copolymer of styrene and a conjugated diene compound. Or its hydrogenation product is mentioned. The styrenic block may contain, in addition to styrene, a copolymer of styrene and an aromatic vinyl compound such as α-methylstyrene.
 スチレン系熱可塑性エラストマーの具体例として、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、スチレン-イソプレン-スチレンブロック共重合体(SIS)、スチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS)、スチレン-エチレン-プロピレン-スチレンブロック共重合体(SEPS)、スチレン-ブタジエン-ブチレン-スチレンブロック共重合体(SBBS)、スチレン-イソブチレン-スチレンブロック共重合体(SIBS)、ポリ(α-メチルスチレン)-ポリブタジエン-ポリ(α-メチルスチレン)、ポリ(α-メチルスチレン)-ポリイソプレン-ポリ(α-メチルスチレン)、ポリ(α-メチルスチレン)-ポリ(エチレン-1-ブテン)-ポリ(α-メチルスチレン)、およびポリ(α-メチルスチレン)-ポリ(エチレン-プロピレン)-ポリ(α-メチルスチレン)などが挙げられる。耐熱性および耐候性の観点から、その共役ジエン系ブロックにおける不飽和二重結合の一部または全部が水素添加されていることが好ましい。 Specific examples of styrene-based thermoplastic elastomers include styrene-butadiene-styrene block copolymer (SBS), styrene-isoprene-styrene block copolymer (SIS), and styrene-ethylene-butylene-styrene block copolymer (SEBS). , styrene-ethylene-propylene-styrene block copolymer (SEPS), styrene-butadiene-butylene-styrene block copolymer (SBBS), styrene-isobutylene-styrene block copolymer (SIBS), poly(α-methylstyrene )-polybutadiene-poly(α-methylstyrene), poly(α-methylstyrene)-polyisoprene-poly(α-methylstyrene), poly(α-methylstyrene)-poly(ethylene-1-butene)-poly( α-methylstyrene), and poly(α-methylstyrene)-poly(ethylene-propylene)-poly(α-methylstyrene). From the viewpoint of heat resistance and weather resistance, it is preferable that some or all of the unsaturated double bonds in the conjugated diene block are hydrogenated.
 スチレン系熱可塑性エラストマーは、特に限定されず、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The styrene-based thermoplastic elastomer is not particularly limited, and one type may be used alone, or two or more types may be used in combination.
 (D成分:相溶化剤)
 相溶化剤は、ポリフェニレンエーテルおよび/またはポリブチレンテレフタレート系樹脂と相互作用し、ポリブチレンテレフタレート相を微細化することや、ポリフェニレンエーテルとポリブチレンテレフタレート系樹脂の界面を増やすことなどにより、PPE-PBT系樹脂組成物の靭性などの機械的特性を向上する。ポリフェニレンエーテルおよびポリブチレンテレフタレート系樹脂の混合に用いる従来公知の相溶化剤を適宜用いることができる。
(D component: compatibilizer)
The compatibilizer interacts with polyphenylene ether and/or polybutylene terephthalate-based resin to refine the polybutylene terephthalate phase, increase the interface between polyphenylene ether and polybutylene terephthalate-based resin, etc., thereby improving PPE-PBT. improve mechanical properties such as toughness of the resin composition. Conventionally known compatibilizers used for mixing polyphenylene ether and polybutylene terephthalate resins can be appropriately used.
 樹脂組成物の耐熱性および靭性を向上しやすい観点から、相溶化剤は、エポキシ基を含有するスチレン系共重合体と、ポリブチレンテレフタレート系樹脂の共重合体であることが好ましい。 From the viewpoint of easily improving the heat resistance and toughness of the resin composition, the compatibilizer is preferably a copolymer of a styrene-based copolymer containing an epoxy group and a polybutylene terephthalate-based resin.
 エポキシ基を含有するスチレン系共重合体は、特に限定されず、例えば、スチレン系単量体と、エポキシ基含有エチレン性不飽和単量体の共重合体などが挙げられる。エポキシ基を含有するスチレン系共重合体としては、PPE-PBT系樹脂組成物の耐熱性および靭性を向上しやすい観点から、エポキシ含有スチレンアクリル系共重合体を用いることができる。 The styrenic copolymer containing an epoxy group is not particularly limited, and examples thereof include a copolymer of a styrenic monomer and an epoxy group-containing ethylenically unsaturated monomer. As the epoxy group-containing styrene copolymer, an epoxy-containing styrene-acrylic copolymer can be used from the viewpoint of easily improving the heat resistance and toughness of the PPE-PBT resin composition.
 エポキシ含有スチレンアクリル系共重合体は、スチレン系単量体、エポキシ基を含有する(メタ)アクリル酸エステル単量体、並びに任意に(メタ)アクリル酸エステル単量体および/または(メタ)アクリル酸を共重合させたものでもよく、スチレン系単量体と、(メタ)アクリル酸エステル単量体および/または(メタ)アクリル酸を共重合させた後に該共重合体中の(メタ)アクリル酸単位のカルボキシル基にエポキシ基を有するアルコール類を縮合反応により付加させたものでもよい。本明細書において、(メタ)アクリル酸は、メタクリル酸およびアクリル酸の両方を意味する。 Epoxy-containing styrene-acrylic copolymers comprise styrenic monomers, (meth)acrylic ester monomers containing epoxy groups, and optionally (meth)acrylic ester monomers and/or (meth)acrylic It may be obtained by copolymerizing an acid, and after copolymerizing a styrene-based monomer, a (meth)acrylic acid ester monomer and/or (meth)acrylic acid, the (meth)acrylic acid in the copolymer An alcohol having an epoxy group may be added to the carboxyl group of the acid unit by a condensation reaction. As used herein, (meth)acrylic acid means both methacrylic acid and acrylic acid.
 スチレン系単量体は、例えば、スチレン、α-メチルスチレン、p-メチルスチレン、m-メチルスチレン、o-メチルスチレンなどが挙げられるが、スチレンが好ましい。なお、スチレン系単量体は、1種を単独で用いてもよく、2種以上組み合わせて用いてもよい。 Examples of styrene-based monomers include styrene, α-methylstyrene, p-methylstyrene, m-methylstyrene, and o-methylstyrene, with styrene being preferred. In addition, a styrene-type monomer may be used individually by 1 type, and may be used in combination of 2 or more types.
 エポキシ基を含有する(メタ)アクリル酸エステル単量体は、例えば、分子内に1つのエポキシ基と1つ以上の(メタ)アクリロイル基を持つ(メタ)アクリレートを用いることができ、具体的には、グリシジルメタクリレート、グリシジルアクリレートなどのグリシジルエーテル、3,4-エポキシシクロヘキシルメチルメタクリレートなどが挙げられる。なかでも、グリシジルメタクリレートが好ましい。 The (meth)acrylic acid ester monomer containing an epoxy group can be, for example, a (meth)acrylate having one epoxy group and one or more (meth)acryloyl groups in the molecule. Examples include glycidyl ethers such as glycidyl methacrylate and glycidyl acrylate, and 3,4-epoxycyclohexylmethyl methacrylate. Among them, glycidyl methacrylate is preferred.
 (メタ)アクリル酸エステル単量体は、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、n-ヘプチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレートなどが挙げられる。 (Meth) acrylic acid ester monomers include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) ) acrylate, t-butyl (meth)acrylate, n-pentyl (meth)acrylate, n-hexyl (meth)acrylate, cyclohexyl (meth)acrylate, n-heptyl (meth)acrylate, n-octyl (meth)acrylate, 2 - ethylhexyl (meth)acrylate and the like.
 エポキシ含有スチレンアクリル系共重合体は、スチレン単位およびグリシジルメタクリレート単位を含むことが好ましく、樹脂組成物の耐衝撃性などの機械的物性、および相溶化剤の生産性などの観点から、スチレン単位を51~98重量%、およびグリシジルメタクリレート単位を2~49重量%含むことが好ましく、スチレン単位を60~90重量%、およびグリシジルメタクリレート単位を10~40重量%含むことがより好ましく、スチレン単位を65~90重量%、およびグリシジルメタクリレート単位を10~35重量%含むことがさらに好ましく、スチレン単位を71~80重量%、およびグリシジルメタクリレート単位を20~29重量%含むことが特に好ましい。また、エポキシ含有スチレンアクリル系共重合体は、スチレン単位およびグリシジルメタクリレート単位に加えて、メチルメタクリレートを含んでもよい。具体的には、エポキシ含有スチレンアクリル系共重合体は、スチレン単位を51~98重量%、グリシジルメタクリレート単位を2~49重量%、およびメチルメタクリレートを0~10重量%含むことが好ましく、スチレン単位を60~90重量%、グリシジルメタクリレート単位を10~40重量%、およびメチルメタクリレートを0~5重量%含むことが含むことがより好ましく、スチレン単位を65~90重量%、グリシジルメタクリレート単位を10~35重量%、およびメチルメタクリレートを0~5重量%含むことが含むことがさらに好ましく、スチレン単位を71~80重量%、グリシジルメタクリレート単位を20~29重量%、およびメチルメタクリレートを0~5重量%含むことがさらに好ましく、スチレン単位を72~77重量%、グリシジルメタクリレート単位を20~29重量%、およびメチルメタクリレートを1~5重量%含むことが特に好ましい。 The epoxy-containing styrene-acrylic copolymer preferably contains styrene units and glycidyl methacrylate units. preferably 51 to 98% by weight and 2 to 49% by weight of glycidyl methacrylate units; more preferably 60 to 90% by weight of styrene units and 10 to 40% by weight of glycidyl methacrylate units; more preferably ˜90% by weight and 10-35% by weight of glycidyl methacrylate units, particularly preferably 71-80% by weight of styrene units and 20-29% by weight of glycidyl methacrylate units. Epoxy-containing styrene-acrylic copolymers may also contain methyl methacrylate in addition to styrene units and glycidyl methacrylate units. Specifically, the epoxy-containing styrene-acrylic copolymer preferably contains 51 to 98% by weight of styrene units, 2 to 49% by weight of glycidyl methacrylate units, and 0 to 10% by weight of methyl methacrylate. 60 to 90% by weight of glycidyl methacrylate units, 10 to 40% by weight of glycidyl methacrylate units, and 0 to 5% by weight of methyl methacrylate, more preferably 65 to 90% by weight of styrene units, 10 to 35% by weight, and 0-5% by weight of methyl methacrylate, more preferably 71-80% by weight of styrene units, 20-29% by weight of glycidyl methacrylate units, and 0-5% by weight of methyl methacrylate. More preferably, it contains 72-77% by weight of styrene units, 20-29% by weight of glycidyl methacrylate units, and 1-5% by weight of methyl methacrylate.
 エポキシ基を含有するスチレン系共重合体は、特に限定されないが、例えば、樹脂組成物の耐衝撃性などの機械的物性、および相溶化剤の生産性などの観点から、重量平均分子量が8,000~100,000であることが好ましく、10,000~80,000であることが好ましく、20,000~65,000であることがさらに好ましい。本明細書において、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)にて測定することができる。 The styrenic copolymer containing an epoxy group is not particularly limited. 000 to 100,000, preferably 10,000 to 80,000, more preferably 20,000 to 65,000. As used herein, the weight average molecular weight can be measured by gel permeation chromatography (GPC).
 エポキシ基を含有するスチレン系共重合体は、特に限定されないが、例えば、相溶化剤の生産性の観点から、ガラス転移温度(Tg)が40~90℃であることが好ましく、51~85℃であることが好ましく、60~75℃であることがさらに好ましい。本明細書において、ガラス転移温度は、示差走査熱量分析(DSC)にて測定することができる。 The styrenic copolymer containing an epoxy group is not particularly limited, but, for example, from the viewpoint of productivity of the compatibilizer, the glass transition temperature (Tg) is preferably 40 to 90°C, and 51 to 85°C. and more preferably 60 to 75°C. As used herein, the glass transition temperature can be measured by differential scanning calorimetry (DSC).
 エポキシ基を含有するスチレン系共重合体の重合方法は、特に限定されず、例えば、塊状重合法、溶液重合法、縣濁重合法、乳化重合法などのいずれでもよい。重合開始剤としては、例えば、2,2'-アゾビスイソブチロニトリル、2,2'-アゾビス(2-メチルブチロニトリル)などのアゾ系化合物や過酸化ベンゾイル、t-ブチルパーベンゾエイトなどの有機過酸化物を用いることができる。重合の際、分子量を調整するため、2-エチルヘキシルチオグリコレート、t-ドデシルメルカプタン、n-デシルメルカプタン、ターピノーレンなどの連鎖移動剤を使用してもよい。重合の際、トルエンなどの有機溶媒を重合溶媒として用いてもよい。重合温度は、例えば、60~100℃でもよい。 The method of polymerizing the styrenic copolymer containing an epoxy group is not particularly limited, and may be, for example, bulk polymerization, solution polymerization, suspension polymerization, emulsion polymerization, or the like. Examples of polymerization initiators include azo compounds such as 2,2′-azobisisobutyronitrile and 2,2′-azobis(2-methylbutyronitrile), benzoyl peroxide, and t-butyl perbenzoate. Organic peroxides such as can be used. A chain transfer agent such as 2-ethylhexyl thioglycolate, t-dodecylmercaptan, n-decylmercaptan, terpinolene may be used to adjust the molecular weight during polymerization. During polymerization, an organic solvent such as toluene may be used as a polymerization solvent. The polymerization temperature may be, for example, 60-100°C.
 相溶化剤において、ポリブチレンテレフタレート系樹脂としては、B成分と同様のポリブチレンテレフタレート系樹脂を用いることができ、具体的にはB成分として例示したものを適宜用いることができる。ここで用いるポリブチレンテレフタレート系樹脂の前述と同様に求めた固有粘度は、特に限定されないが、0.3~1.2dL/gであることが好ましく、0.5~0.9dL/gであることがより好ましいく、0.6~0.75dL/gであることがさらに好ましい。PBTのIV値が0.3~1.2dL/gであると、耐衝撃性などの機械的物性が向上しやすい傾向にある。 In the compatibilizer, as the polybutylene terephthalate-based resin, the same polybutylene terephthalate-based resin as the B component can be used, and specifically, those exemplified as the B component can be used as appropriate. The intrinsic viscosity of the polybutylene terephthalate-based resin used here is not particularly limited, but is preferably 0.3 to 1.2 dL/g, more preferably 0.5 to 0.9 dL/g. more preferably 0.6 to 0.75 dL/g. When the IV value of PBT is 0.3 to 1.2 dL/g, mechanical properties such as impact resistance tend to be improved.
 エポキシ基を含有するスチレン系共重合体と、ポリブチレンテレフタレート系樹脂を、反応押出してグラフト重合させることで、相溶化剤を得ることができる。反応押出は、例えば、エポキシ基を含有するスチレン系共重合体と、ポリブチレンテレフタレート系樹脂を混合した混合物を押出機で溶融混練することで行うことが好ましい。混練押出機としては、例えば一軸押出機、二軸押出機などが挙げられるが、二軸押出機が好ましい。溶融混練時の温度は、例えば、200~270℃でもよい。 A compatibilizer can be obtained by reacting and extruding a styrene-based copolymer containing epoxy groups and a polybutylene terephthalate-based resin for graft polymerization. Reactive extrusion is preferably carried out by, for example, melt-kneading a mixture of a styrene-based copolymer containing an epoxy group and a polybutylene terephthalate-based resin in an extruder. Examples of kneading extruders include single-screw extruders and twin-screw extruders, with twin-screw extruders being preferred. The temperature during melt-kneading may be, for example, 200 to 270°C.
 溶融混練に用いる混合物は、熱劣化によるガスや金型の汚れを防止する観点から、酸化防止剤を含んでもよい。酸化防止剤としては、フェノール系酸化防止剤、リン系酸化防止剤、硫黄系酸化防止剤などを使用することができる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The mixture used for melt-kneading may contain an antioxidant from the viewpoint of preventing gas and mold contamination due to thermal deterioration. Phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, and the like can be used as antioxidants. These may be used individually by 1 type, and may be used in combination of 2 or more type.
 エポキシ基を含有するスチレン系共重合体と、ポリブチレンテレフタレート系樹脂の共重合体は、特に限定されないが、例えば、耐衝撃性などの機械的物性の観点から、エポキシ基を含有するスチレン系共重合体を20~80重量%、ポリブチレンテレフタレート系樹脂を20~80重量%含むことが好ましく、エポキシ基を含有するスチレン系共重合体を35~65重量%、ポリブチレンテレフタレート系樹脂を35~65重量%含むことがより好ましい。 The styrene copolymer containing an epoxy group and the copolymer of a polybutylene terephthalate resin are not particularly limited. It is preferable to contain 20 to 80% by weight of the polymer and 20 to 80% by weight of the polybutylene terephthalate resin. It is more preferable to contain 65% by weight.
 エポキシ基を含有するスチレン系共重合体と、ポリブチレンテレフタレート系樹脂の共重合体は、特に限定されないが、例えば、耐衝撃性などの機械的物性と耐熱性、ならびに生産性の観点から、Tgが50~120℃であることが好ましく、70~110℃であることがより好ましく、85~100℃であることがさらに好ましい。 The copolymer of a styrene-based copolymer containing an epoxy group and a polybutylene terephthalate-based resin is not particularly limited. is preferably 50 to 120°C, more preferably 70 to 110°C, even more preferably 85 to 100°C.
 エポキシ基を含有するスチレン系共重合体と、ポリブチレンテレフタレート系樹脂の共重合体は、特に限定されないが、例えば、耐熱性の観点から、融点(Tm)が180~250℃であることが好ましく、200~240℃であることがより好ましく、215~230℃であることがさらに好ましい。本明細書において、融点は、DSCにて測定することができる。 The copolymer of a styrene-based copolymer containing an epoxy group and a polybutylene terephthalate-based resin is not particularly limited, but from the viewpoint of heat resistance, for example, it is preferable that the melting point (Tm) is 180 to 250°C. , 200 to 240°C, more preferably 215 to 230°C. As used herein, the melting point can be measured by DSC.
 (E成分:導電性カーボン)
 導電性カーボンは、PPE-PBT系樹脂組成物の成形体に帯電防止性や導電性を付与することができ、静電塗装が可能となる。導電性カーボン(導電性カーボンブラックとも称される。)としては、特に限定されず、例えば、アセチレンブラック、ケッチェンブラック、ファーネスブラック、サーマルブラック、カーボンナノチューブ、カーボンマイクロコイル、グラフェン、黒鉛などが挙げられる。導電性カーボンは、導電性と、流動性に代表される加工性や耐衝撃性などの機械的物性とのバランスに優れる観点から、アセチレンブラック、ケッチェンブラック、ファーネスブラック、およびサーマルブラックからなる群から選ばれる一種以上が好ましく、少量の添加で優れた導電性が得られる点で、ケッチェンブラックがより好ましい。
(E component: conductive carbon)
Conductive carbon can impart antistatic properties and conductivity to molded articles of the PPE-PBT resin composition, enabling electrostatic coating. Conductive carbon (also referred to as conductive carbon black) is not particularly limited, and examples thereof include acetylene black, ketjen black, furnace black, thermal black, carbon nanotubes, carbon microcoils, graphene, and graphite. be done. Conductive carbon is a group consisting of acetylene black, ketjen black, furnace black, and thermal black from the viewpoint of excellent balance between conductivity and mechanical properties such as workability and impact resistance represented by fluidity. One or more selected from is preferable, and Ketjenblack is more preferable in that excellent conductivity can be obtained with addition of a small amount.
 導電性カーボンの平均一次粒子径は、特に限定されないが、分散性および導電性の観点から、10~80nmであることが好ましく、15~70nmであることがより好ましく、20~60nmであることがさらに好ましい、20~50nmであることが特に好ましい。導電性カーボンの平均一次粒子径は、レーザー回折・散乱法で測定することができる。 The average primary particle size of the conductive carbon is not particularly limited, but from the viewpoint of dispersibility and conductivity, it is preferably 10 to 80 nm, more preferably 15 to 70 nm, and 20 to 60 nm. More preferably, it is particularly preferably 20 to 50 nm. The average primary particle size of conductive carbon can be measured by a laser diffraction/scattering method.
 (F成分:変性ポリブチレンテレフタレート系樹脂)
 変性ポリブチレンテレフタレート系樹脂(以下、変性PBTとも記す。)は、PBTの溶融粘度を調整して、PPE-PBT系樹脂組成物の流動性を向上することができる。変性ポリブチレンテレフタレート系樹脂としては、例えば、ポリオキシアルキレン変性ポリブチレンテレフタレートを用いることができる。ポリオキシアルキレン変性ポリブチレンテレフタレートは、ポリブチレンテレフタレート系樹脂にポリオキシアルキレン成分を共重合させた構造を有する。好ましくは、ポリブチレンテレフタレート系樹脂をハードセグメント、ポリオキシアルキレン成分をソフトセグメントとする、ブロック共重合体とすることができる。変性PBTにおけるポリブチレンテレフタレート成分としては、B成分と同様の組成とし、同様の製造方法を用いることができ、具体的にはB成分として例示したものを適宜用いることができる。
(F component: modified polybutylene terephthalate resin)
The modified polybutylene terephthalate resin (hereinafter also referred to as modified PBT) can adjust the melt viscosity of PBT and improve the fluidity of the PPE-PBT resin composition. As the modified polybutylene terephthalate-based resin, for example, polyoxyalkylene-modified polybutylene terephthalate can be used. Polyoxyalkylene-modified polybutylene terephthalate has a structure in which a polyoxyalkylene component is copolymerized with a polybutylene terephthalate-based resin. Preferably, a block copolymer having a polybutylene terephthalate-based resin as a hard segment and a polyoxyalkylene component as a soft segment can be used. As the polybutylene terephthalate component in the modified PBT, the same composition as the B component and the same manufacturing method can be used, and specifically, those exemplified as the B component can be used as appropriate.
 ポリオキシアルキレン成分としては、例えば、ポリオキシエチレン、ポリオキシ-1,2-プロピレン、ポリオキシ-1,3-プロピレン、ポリオキシ-1,4-ブチレン、並びにこれらのビスフェノールAなどのビスフェノール類、4,4'-ビフェノールなどのビフェノール類、およびテレフタル酸などのジカルボン酸類などへの付加体などが挙げられる。ポリオキシアルキレン成分中のオキシアルキレン単位の繰り返し数は、流動性を良好とする観点から、2以上であることが好ましく、より好ましくは4以上、さらに好ましくは8以上であり、耐熱性や熱安定性の観点から、100以下であることが好ましく、より好ましくは60以下であり、さらに好ましくは30以下、特に好ましくは20以下である。 Examples of polyoxyalkylene components include polyoxyethylene, polyoxy-1,2-propylene, polyoxy-1,3-propylene, polyoxy-1,4-butylene, and their bisphenols such as bisphenol A, 4,4 Examples include biphenols such as '-biphenol, and adducts to dicarboxylic acids such as terephthalic acid. The number of repeating oxyalkylene units in the polyoxyalkylene component is preferably 2 or more, more preferably 4 or more, and still more preferably 8 or more, from the viewpoint of good fluidity, and has heat resistance and thermal stability. From the viewpoint of sexuality, it is preferably 100 or less, more preferably 60 or less, still more preferably 30 or less, and particularly preferably 20 or less.
 ポリオキシアルキレン変性ポリブチレンテレフタレートにおいて、ポリオキシアルキレン成分の組込量は、流動性および耐熱性の観点から、好ましくは5重量%以上であり、より好ましくは10重量%以上であり、耐熱性や熱安定性の観点から、好ましくは95重量%以下であり、より好ましくは90重量%以下であり、さらには70重量%以下であり、特に好ましくは50重量%以下である。 In the polyoxyalkylene-modified polybutylene terephthalate, the incorporated amount of the polyoxyalkylene component is preferably 5% by weight or more, more preferably 10% by weight or more, from the viewpoint of fluidity and heat resistance. From the viewpoint of thermal stability, the content is preferably 95% by weight or less, more preferably 90% by weight or less, further preferably 70% by weight or less, and particularly preferably 50% by weight or less.
 ポリオキシアルキレン変性ポリブチレンテレフタレートは、特に限定されないが、フェノール/テトラクロロエタン=1/1(重量比)混合溶媒中、25℃における固有粘度が0.3~1.2dL/gであることが好ましく、0.4~0.95dL/g以下であることがより好ましく、0.6~0.8dL/gであることがさらに好ましい。変性PBTのIV値が0.3dL/g以上であると、成形時に発生するガスが抑制されるなどの加工性に優れ、1.2dL/g以下であると、流動性が向上しやすく、成形加工性が向上しやすい。 The polyoxyalkylene-modified polybutylene terephthalate is not particularly limited, but preferably has an intrinsic viscosity of 0.3 to 1.2 dL/g at 25°C in a mixed solvent of phenol/tetrachloroethane = 1/1 (weight ratio). , 0.4 to 0.95 dL/g or less, more preferably 0.6 to 0.8 dL/g. When the IV value of the modified PBT is 0.3 dL / g or more, it is excellent in workability such as suppressing the gas generated during molding, and when it is 1.2 dL / g or less, the fluidity is easily improved, and molding Easy to improve workability.
 ポリオキシアルキレン変性ポリブチレンテレフタレートとしては、例えば、ハードセグメントにPBT、ソフトセグメントにオキシアルキレン単位の繰り返し数が4以上のポリオキシ-1,4-ブチレンとテレフタル酸の共重合体を有するブロック共重合体、ハードセグメントにPBT、ソフトセグメントにポリオキシエチレンビスフェノールAエーテル(ビスフェノールAのポリオキシエチレン付加物、オキシエチレンの繰り返し数は2以上)を有するブロック共重合体などが挙げられる。なかでも、耐熱性を維持しつつ流動性を顕著に改善できることから、ハードセグメントとしてのPBT由来単位を60~85重量%、ソフトセグメントとしてのポリオキシエチレンビスフェノールAエーテル(オキシエチレンの繰り返し数は8~20)由来単位を15~40重量%含む、ポリオキシエチレン変性ブチレンテレフタレートが特に好ましい。 Examples of the polyoxyalkylene-modified polybutylene terephthalate include block copolymers having PBT in the hard segment and a copolymer of polyoxy-1,4-butylene and terephthalic acid having a repeating number of oxyalkylene units of 4 or more in the soft segment. , a block copolymer having PBT in the hard segment and polyoxyethylene bisphenol A ether (polyoxyethylene adduct of bisphenol A, the number of repeating oxyethylene is 2 or more) in the soft segment. Among them, since it is possible to significantly improve fluidity while maintaining heat resistance, 60 to 85% by weight of PBT-derived units as a hard segment and polyoxyethylene bisphenol A ether (the number of repeating oxyethylene is 8 Particularly preferred are polyoxyethylene-modified butylene terephthalates containing 15 to 40% by weight of units derived from ∼20).
 ポリオキシアルキレン変性ポリブチレンテレフタレートは、特に限定されず、例えば、重合触媒を用いて、(1)テレフタル酸および/またはそのエステル形成性誘導体、ブタンジオールおよび/またはそのエステル形成性誘導体、および変性ポリエーテルの三者の直接エステル化法、(2)テレフタル酸ジアルキル、ブタンジオール、変性ポリエーテル、および/または、変性ポリエーテルのエステルの三者のエステル交換法、(3)テレフタル酸ジアルキル、ブタンジオールのエステル交換中、または、エステル交換後に変性ポリエーテルを加えて、重縮合する方法、(4)高分子のポリブチレンテレフタレートを用い、変性ポリエーテルと混合後、溶融減圧下でエステル交換する方法などで製造することができる。重合触媒としては、例えば、ゲルマニウム触媒(例えば、二酸化ゲルマニウムなど)、チタン触媒(例えば、テトラエトキシチタンなど)、アルミニウム触媒、アンチモン触媒(例えば、三酸化アンチモンなど)などが挙げられる。 Polyoxyalkylene-modified polybutylene terephthalate is not particularly limited. 3-way direct esterification of ether, (2) 3-way transesterification of dialkyl terephthalate, butanediol, modified polyether, and/or ester of modified polyether, (3) dialkyl terephthalate, butanediol (4) A method of polycondensing by adding a modified polyether during or after the transesterification, (4) a method of using high-molecular polybutylene terephthalate, mixing it with the modified polyether, and then melting and transesterifying under reduced pressure. can be manufactured in Polymerization catalysts include, for example, germanium catalysts (eg, germanium dioxide), titanium catalysts (eg, tetraethoxytitanium, etc.), aluminum catalysts, antimony catalysts (eg, antimony trioxide, etc.), and the like.
 PPE-PBT系樹脂組成物は、ポリフェニレンエーテル(A成分)を51~98重量部、ポリブチレンテレフタレート系樹脂(B成分)を1.9~48.9重量部、スチレン系熱可塑性エラストマー(C成分)を0.1~15重量部、相溶化剤(D成分)をA成分、B成分およびC成分の合計量100重量部に対して1~6重量部、および導電性カーボン(E成分)をA成分、B成分およびC成分の合計量100重量部に対して1~5重量部含む。これにより、PPE-PBT系樹脂組成物の耐熱性が良好になり、体積固有抵抗が低下し、吸湿率が低下し、成形体の塗膜密着性が向上する。 The PPE-PBT resin composition contains 51 to 98 parts by weight of polyphenylene ether (component A), 1.9 to 48.9 parts by weight of polybutylene terephthalate resin (component B), and a styrene thermoplastic elastomer (component C ) of 0.1 to 15 parts by weight, a compatibilizer (D component) of 1 to 6 parts by weight with respect to 100 parts by weight of the total amount of A component, B component and C component, and conductive carbon (E component) 1 to 5 parts by weight per 100 parts by weight of the total amount of A component, B component and C component. As a result, the heat resistance of the PPE-PBT resin composition is improved, the volume resistivity is lowered, the moisture absorption rate is lowered, and the coating film adhesion of the molded article is improved.
 A成分、B成分およびC成分の合計量100重量部において、PPEの配合量が51重量部未満である、或いはPBTの配合量が48.9重量部を超えると、樹脂組成物の耐熱性が低下する。A成分、B成分およびC成分の合計量100重量部において、PBTの配合量が1.9重量部未満である、或いはPPEの配合量が98重量部を超えると、樹脂組成物の流動性が悪く、成形性が低下し、また、耐衝撃性などの機械的物性が低下する。A成分、B成分およびC成分の合計量100重量部において、C成分の配合量が0.1重量部未満であると、樹脂組成物の耐衝撃性などの機械的物性が低下し、C成分の配合量が15重量部を超えると、耐熱性が低下する。 When the total amount of A component, B component and C component is 100 parts by weight, the amount of PPE is less than 51 parts by weight, or the amount of PBT is more than 48.9 parts by weight, the heat resistance of the resin composition is reduced. descend. When the total amount of A component, B component and C component is 100 parts by weight, the amount of PBT is less than 1.9 parts by weight, or the amount of PPE is more than 98 parts by weight, the fluidity of the resin composition is reduced. Unfortunately, the moldability is lowered, and mechanical properties such as impact resistance are lowered. When the total amount of component A, component B and component C is 100 parts by weight, if the amount of component C is less than 0.1 part by weight, mechanical properties such as impact resistance of the resin composition are reduced, and component C is reduced. exceeds 15 parts by weight, the heat resistance is lowered.
 PPE-PBT系樹脂組成物は、A成分、B成分およびC成分の合計量100重量部とした場合、A成分を55~85重量部、B成分を6~40重量部、C成分を5~9重量部含むことが好ましく、A成分を55~80重量部、B成分を11~40重量部、C成分を5~9重量部含むことがより好ましく、A成分を55~75重量部、B成分を16~40重量部、C成分を5~9重量部含むことがさらに好ましく、A成分を55~75重量部、B成分を20~40重量部、C成分を5~9重量部含むことがさらにより好ましい。 When the total amount of the A component, the B component and the C component is 100 parts by weight, the PPE-PBT resin composition contains 55 to 85 parts by weight of the A component, 6 to 40 parts by weight of the B component, and 5 to 5 parts by weight of the C component. It is preferable to contain 9 parts by weight, 55 to 80 parts by weight of component A, 11 to 40 parts by weight of component B, more preferably 5 to 9 parts by weight of component C, 55 to 75 parts by weight of component A, B It is more preferable to contain 16 to 40 parts by weight of component, 5 to 9 parts by weight of component C, 55 to 75 parts by weight of component A, 20 to 40 parts by weight of component B, and 5 to 9 parts by weight of component C. is even more preferred.
 A成分、B成分およびC成分の合計量100重量部に対して、D成分が1重量部未満であると、PBTを微細化することやPPEとPBTの界面を増やすことができず、樹脂組成物の機械的物性が低下する。A成分、B成分およびC成分の合計量100重量部に対して、D成分が6重量部を超えると、耐熱性が低下する場合がある。PPE-PBT系樹脂組成物は、A成分、B成分およびC成分の合計量100重量部に対して、D成分を2~5重量部含むことが好ましく、2~4重量部含むことがさらに好ましい。 If the amount of component D is less than 1 part by weight with respect to 100 parts by weight of the total amount of components A, B and C, the PBT cannot be made finer and the interface between PPE and PBT cannot be increased, and the resin composition The mechanical properties of the object deteriorate. If the D component exceeds 6 parts by weight with respect to 100 parts by weight of the total amount of the A component, the B component and the C component, the heat resistance may deteriorate. The PPE-PBT resin composition preferably contains 2 to 5 parts by weight, more preferably 2 to 4 parts by weight, of component D with respect to 100 parts by weight of the total amount of components A, B and C. .
 A成分、B成分およびC成分の合計量100重量部に対して、E成分が1重量部未満であると、樹脂組成物の成形体に帯電防止性や導電性を付与することができない。A成分、B成分およびC成分の合計量100重量部に対して、D成分が5重量部を超えると、樹脂組成物の機械的物性が低下したり、流動性が悪化する。PPE-PBT系樹脂組成物は、A成分、B成分およびC成分の合計量100重量部に対して、E成分を1.5~4重量部含むことが好ましく、1.5~3重量部含むことがより好ましい。 If the E component is less than 1 part by weight with respect to 100 parts by weight of the total amount of the A component, the B component and the C component, antistatic properties and electrical conductivity cannot be imparted to the resin composition molded article. If component D exceeds 5 parts by weight with respect to 100 parts by weight of the total amount of components A, B and C, the mechanical properties of the resin composition deteriorate and fluidity deteriorates. The PPE-PBT resin composition preferably contains 1.5 to 4 parts by weight, preferably 1.5 to 3 parts by weight, of the E component with respect to 100 parts by weight of the total amount of the A component, the B component and the C component. is more preferable.
 PPE-PBT系樹脂組成物は、ポリフェニレンエーテル(A成分)を55~85重量部、ポリブチレンテレフタレート系樹脂(B成分)を6~40重量部、スチレン系熱可塑性エラストマー(C成分)を5~9重量部、相溶化剤(D成分)をA成分、B成分およびC成分の合計量100重量部に対して2~5重量部、および導電性カーボン(E成分)をA成分、B成分およびC成分の合計量100重量部に対して1.5~3重量部含むことが好ましい。 The PPE-PBT resin composition contains 55 to 85 parts by weight of polyphenylene ether (component A), 6 to 40 parts by weight of polybutylene terephthalate resin (component B), and 5 to 40 parts by weight of a styrene thermoplastic elastomer (component C). 9 parts by weight of a compatibilizer (component D), 2 to 5 parts by weight per 100 parts by weight of the total amount of components A, B and C, and conductive carbon (component E) of components A, B and It is preferable to include 1.5 to 3 parts by weight per 100 parts by weight of the total amount of the C component.
 PPE-PBT系樹脂組成物は、B成分の一部として変性PBTを含んでもよい。これにより、樹脂組成物の流動性が向上しやすい。PBTと変性PBTを100重量部とした場合、PBTは30~90重量部、および変性PBTは10~70重量部であることが好ましく、PBTは51~79重量部、および変性PBTは21~49重量部であることがより好ましい。 The PPE-PBT resin composition may contain modified PBT as part of the B component. Thereby, the fluidity of the resin composition is likely to be improved. When PBT and modified PBT are 100 parts by weight, it is preferable that PBT is 30 to 90 parts by weight and modified PBT is 10 to 70 parts by weight, PBT is 51 to 79 parts by weight, and modified PBT is 21 to 49 parts by weight. Parts by weight are more preferred.
 PPE-PBT系樹脂組成物は、本発明の効果を阻害しない範囲内で、必要に応じて、添加剤を含んでもよい。添加剤としては、例えば、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、耐候性安定剤、触媒、可塑剤、滑剤、離型剤、帯電防止剤、着色剤、収縮防止剤、抗菌剤、脱臭剤などが挙げられる。これらは、1種を単独で用いてもよく、2種以上を組み合わせても用いてもよい。A成分、B成分およびC成分の合計量100重量部に対して、例えば、添加剤を0.01~2重量部含んでもよい。PPE-PBT系樹脂組成物は、本発明の効果を阻害しない範囲内で、必要に応じて、鉱物系フィラーや繊維を含んでもよい。鉱物系フィラーとしては炭酸カルシウム、タルク、マイカ、セリサイト、ワラストナイト、カオリン、化学修飾されたモンモリロナイト、シリカ、ガラスビーズ、フライアッシュ、ゼオライト、アルミナなどが含まれる。繊維としてはガラス繊維、カーボン繊維、アラミド繊維などの有機繊維を含むことができる。これら繊維は通常の短繊維で用いることができるが、成形体中での繊維長が1cmを超える長繊維として用いることもできる。ただし静電塗装後に良好な外観を得るためには、これら繊維の使用は好ましくない場合がある。 The PPE-PBT-based resin composition may contain additives as necessary within a range that does not impair the effects of the present invention. Additives include, for example, antioxidants, heat stabilizers, light stabilizers, ultraviolet absorbers, weather stabilizers, catalysts, plasticizers, lubricants, release agents, antistatic agents, coloring agents, anti-shrinking agents, Examples include antibacterial agents and deodorants. These may be used singly or in combination of two or more. For example, 0.01 to 2 parts by weight of additives may be included with respect to 100 parts by weight of the total amount of A component, B component and C component. The PPE-PBT resin composition may contain mineral fillers and fibers, if necessary, within a range that does not impair the effects of the present invention. Mineral fillers include calcium carbonate, talc, mica, sericite, wollastonite, kaolin, chemically modified montmorillonite, silica, glass beads, fly ash, zeolite, alumina and the like. The fibers may include organic fibers such as glass fibers, carbon fibers, and aramid fibers. Although these fibers can be used as normal short fibers, they can also be used as long fibers having a fiber length exceeding 1 cm in the molded article. However, the use of these fibers may not be desirable for good appearance after electrostatic painting.
 PPE-PBT系樹脂組成物のISO 75-1およびISO 75-2に基づき測定した0.45MPa荷重での荷重たわみ温度(以下、単に「0.45HDT」とも記す。)は180℃以上である。0.45HDTが180℃以上であることにより、高温暴露が可能となり、樹脂組成物の成形体を含む部材を用いた車体を電着塗装を含むオンライン塗装に供することができる。PPE-PBT系樹脂組成物の0.45HDTは183℃以上であることが好ましく、185℃以上であることがより好ましい。 The PPE-PBT resin composition has a deflection temperature under load of 0.45 MPa (hereinafter also simply referred to as "0.45 HDT") measured based on ISO 75-1 and ISO 75-2 is 180°C or higher. When 0.45 HDT is 180° C. or higher, high-temperature exposure becomes possible, and the vehicle body using the member containing the molded article of the resin composition can be subjected to online coating including electrodeposition coating. 0.45HDT of the PPE-PBT resin composition is preferably 183° C. or higher, more preferably 185° C. or higher.
 PPE-PBT系樹脂組成物の体積固有抵抗(体積抵抗率とも称される)は1.0X102~1.0X104Ω・mの範囲である。これにより、該樹脂組成物の成形体の静電塗装が可能となる。PPE-PBT系樹脂組成物の体積固有抵抗は、実施例に記載のとおりに測定することができる。 The volume resistivity (also referred to as volume resistivity) of the PPE-PBT resin composition ranges from 1.0×10 2 to 1.0×10 4 Ω·m. This makes it possible to electrostatically coat a molded article of the resin composition. The volume resistivity of the PPE-PBT resin composition can be measured as described in Examples.
 PPE-PBT系樹脂組成物は、流動性に優れる観点から、シリンダー温度310℃、金型温度50℃にて、3mm厚みのスパイラル金型を用いて射出成形した際のスパイラル流動長(以下、「SFL」とも記す。)が200mm以上であることが好ましく、250mm以上であることがより好ましく、300mm以上であることがさらに好ましい。また、過充填などによる成形不良を抑制する観点から、SFLは800mm以下であることが好ましく、600mm以下であることがより好ましい。 From the viewpoint of excellent fluidity, the PPE-PBT resin composition has a spiral flow length (hereinafter referred to as " SFL”) is preferably 200 mm or more, more preferably 250 mm or more, and even more preferably 300 mm or more. From the viewpoint of suppressing molding defects due to overfilling, the SFL is preferably 800 mm or less, more preferably 600 mm or less.
 PPE-PBT系樹脂組成物は、箱ボスなどの締結部位の破壊強度に優れる観点から、ISO 527-1およびISO 527-2に準じて測定した破断点ひずみが3%以上であることが好ましく、4%以上であることがより好ましい。 The PPE-PBT resin composition preferably has a strain at break of 3% or more as measured according to ISO 527-1 and ISO 527-2, from the viewpoint of excellent breaking strength of fastening parts such as box bosses. It is more preferably 4% or more.
 PPE-PBT系樹脂組成物は、手押し時の変形量が小さい観点から、ISO 178に準じて測定した曲げ弾性率が2200MPa以上であることが好ましく、2400MPa以上であることがより好ましい。また、脆くなりすぎないために、曲げ弾性率は6500MPa以下が好ましく、5500MPa以下がより好ましい。 The PPE-PBT resin composition preferably has a flexural modulus of 2200 MPa or more, more preferably 2400 MPa or more, as measured according to ISO 178, from the viewpoint of small deformation when pushed by hand. In order not to become too brittle, the bending elastic modulus is preferably 6500 MPa or less, more preferably 5500 MPa or less.
 PPE-PBT系樹脂組成物は、吸湿変形することなく、試験片を23℃、相対湿度50%の条件下で24時間以上保持した後に、50℃で24時間純水に浸漬した際の下記数式1で求めた吸水率が0.50%以下であることが好ましく、0.20%以下であることがより好ましく、0.10%以下であることがさらに好ましい。下記数式1において、Waは50℃で24時間純水に浸漬した後の試験片の重量であり、Wbは純水に浸漬する前の試験片の重量である。試験片は、120mm×120mm×3mm(厚み)の平板成形体である。
 [数式1]
 吸水率(%)=(Wa-Wb)/Wb×100
The PPE-PBT resin composition does not deform due to moisture absorption, and after holding the test piece under conditions of 23 ° C. and 50% relative humidity for 24 hours or more, the following formula when immersed in pure water at 50 ° C. for 24 hours The water absorption calculated in 1 is preferably 0.50% or less, more preferably 0.20% or less, and even more preferably 0.10% or less. In the following formula 1, Wa is the weight of the test piece after being immersed in pure water at 50° C. for 24 hours, and Wb is the weight of the test piece before being immersed in pure water. A test piece is a flat plate molding of 120 mm×120 mm×3 mm (thickness).
[Formula 1]
Water absorption (%) = (Wa - Wb) / Wb x 100
 [PPE-PBT系樹脂組成物の製造方法]
 PPE-PBT系樹脂組成物は、特に限定されないが、例えば、A成分、B成分、C成分、D成分およびE成分を押出機で溶融混練することで得ることができる。高温暴露に耐えることができ、吸湿変形を実質的に伴わず、静電塗装でき、塗膜密着性に優れた樹脂組成物を得やすい観点から、PPE-PBT系樹脂組成物は、下記の工程1~工程3を含む製造方法にて製造することが好ましい。
[Method for producing PPE-PBT resin composition]
The PPE-PBT resin composition is not particularly limited, but can be obtained, for example, by melt-kneading the A component, B component, C component, D component and E component with an extruder. From the viewpoint of easily obtaining a resin composition that can withstand high-temperature exposure, does not substantially undergo moisture absorption deformation, can be electrostatically coated, and has excellent coating film adhesion, the PPE-PBT resin composition is prepared by the following steps. It is preferable to manufacture by a manufacturing method including steps 1 to 3.
 (工程1)
 スチレン51~98重量部、およびグリシジルメタクリレート2~49重量部を含む100重量部の単量体混合物を重合し、重量平均分子量が10,000~100,000であるランダム共重合体(エポキシ含有スチレンアクリル系共重合体)を製造することができる。単量体混合物は、メチルメタクリレートを含んでもよい。単量体混合物100重量部は、スチレン51~98重量部、グリシジルメタクリレート2~49重量部、およびメチルメタクリレート0~10重量部を含んでもよく、スチレン60~90重量部、グリシジルメタクリレート10~40重量部、およびメチルメタクリレート0~5重量部を含んでもよく、スチレン65~90重量部、グリシジルメタクリレート10~35重量部、およびメチルメタクリレート0~5重量部を含んでもよく、スチレン71~80重量部、グリシジルメタクリレート20~29重量部、およびメチルメタクリレート0~5重量部を含んでもよく、スチレン69~78重量部、グリシジルメタクリレート20~29重量部、およびメチルメタクリレート1~5重量部を含んでもよい。
(Step 1)
A random copolymer having a weight average molecular weight of 10,000 to 100,000 (epoxy-containing styrene acrylic copolymer) can be produced. The monomer mixture may contain methyl methacrylate. 100 parts by weight of the monomer mixture may contain 51 to 98 parts by weight of styrene, 2 to 49 parts by weight of glycidyl methacrylate, and 0 to 10 parts by weight of methyl methacrylate, 60 to 90 parts by weight of styrene, 10 to 40 parts by weight of glycidyl methacrylate. and 0-5 parts by weight of methyl methacrylate, which may include 65-90 parts by weight of styrene, 10-35 parts by weight of glycidyl methacrylate, and 0-5 parts by weight of methyl methacrylate, 71-80 parts by weight of styrene, It may contain 20-29 parts by weight of glycidyl methacrylate and 0-5 parts by weight of methyl methacrylate, and may contain 69-78 parts by weight of styrene, 20-29 parts by weight of glycidyl methacrylate, and 1-5 parts by weight of methyl methacrylate.
 工程1において、重合方法は、特に限定されず、例えば、塊状重合法、溶液重合法、懸濁重合法、乳化重合法などのいずれでもよい。重合開始剤としては、例えば、2,2'-アゾビスイソブチロニトリル、2,2'-アゾビス(2-メチルブチロニトリル)などのアゾ系化合物や過酸化ベンゾイル、t-ブチルパーベンゾエイトなどの有機過酸化物を用いることができる。重合の際、分子量を調整するため、2-エチルヘキシルチオグリコレート、t-ドデシルメルカプタン、n-デシルメルカプタン、ターピノーレンなどの連鎖移動剤を使用してもよい。重合の際、トルエンなどの有機溶媒を重合溶媒として用いてもよい。重合温度は、例えば、60~100℃でもよい。 In step 1, the polymerization method is not particularly limited, and may be, for example, bulk polymerization method, solution polymerization method, suspension polymerization method, emulsion polymerization method, or the like. Examples of polymerization initiators include azo compounds such as 2,2′-azobisisobutyronitrile and 2,2′-azobis(2-methylbutyronitrile), benzoyl peroxide, and t-butyl perbenzoate. Organic peroxides such as can be used. A chain transfer agent such as 2-ethylhexyl thioglycolate, t-dodecylmercaptan, n-decylmercaptan, terpinolene may be used to adjust the molecular weight during polymerization. During polymerization, an organic solvent such as toluene may be used as a polymerization solvent. The polymerization temperature may be, for example, 60-100°C.
 (工程2)
 工程1で得られたランダム共重合体(エポキシ含有スチレンアクリル系共重合体)を、IV値0.6~0.8のポリブチレンテレフタレートとともに押出機中で溶融混練して、相溶化剤を製造する。具体的には、エポキシ含有スチレンアクリル系共重合体35~65重量部と、ポリブチレンテレフタレート系樹脂35~65重量部を含む100重量部の樹脂混合物を押出機で溶融混練することができる。押出機としては、例えば一軸押出機、二軸押出機などが挙げられるが、二軸押出機が好ましい。溶融混練時の温度は、例えば、200~270℃でもよい。
(Step 2)
The random copolymer (epoxy-containing styrene acrylic copolymer) obtained in step 1 is melt-kneaded in an extruder with polybutylene terephthalate having an IV value of 0.6 to 0.8 to produce a compatibilizer. do. Specifically, 100 parts by weight of a resin mixture containing 35 to 65 parts by weight of an epoxy-containing styrene acrylic copolymer and 35 to 65 parts by weight of a polybutylene terephthalate resin can be melt-kneaded by an extruder. Examples of extruders include single-screw extruders and twin-screw extruders, with twin-screw extruders being preferred. The temperature during melt-kneading may be, for example, 200 to 270°C.
 溶融混練に用いる樹脂混合物は、熱劣化によるガスや金型の汚れを防止する観点から、酸化防止剤を含んでもよい。酸化防止剤としては、フェノール系酸化防止剤、リン系酸化防止剤、硫黄系酸化防止剤などを使用することができる。酸化防止剤は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。溶融混練に用いる樹脂混合物100重量部に対して酸化防止剤を0.01~2重量部含んでもよい。 The resin mixture used for melt-kneading may contain an antioxidant from the viewpoint of preventing gas and mold contamination due to thermal deterioration. Phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, and the like can be used as antioxidants. An antioxidant may be used individually by 1 type, and may be used in combination of 2 or more type. 0.01 to 2 parts by weight of an antioxidant may be included with respect to 100 parts by weight of the resin mixture used for melt-kneading.
 (工程3)
 工程2で得られた相溶化剤(D成分)を、ポリフェニレンエーテル(A成分)、ポリブチレンテレフタレート系樹脂(B成分)、スチレン系熱可塑性エラストマー(C成分)、および導電性カーボン(E成分)とともに押出機中で溶融混錬して樹脂組成物を得る。押出機としては、例えば一軸押出機、二軸押出機などが挙げられるが、二軸押出機が好ましい。溶融混練時の温度は、例えば、230~300℃でもよい。工程3において、必要に応じて、添加剤をA成分、B成分、C成分、D成分およびE成分とともに溶融混錬してもよい。添加剤としては、上述したものを適宜用いることができる。
(Step 3)
The compatibilizing agent (D component) obtained in step 2 is combined with polyphenylene ether (A component), polybutylene terephthalate resin (B component), styrene thermoplastic elastomer (C component), and conductive carbon (E component). Together, they are melt-kneaded in an extruder to obtain a resin composition. Examples of extruders include single-screw extruders and twin-screw extruders, with twin-screw extruders being preferred. The temperature during melt-kneading may be, for example, 230 to 300°C. In step 3, additives may be melt-kneaded together with A component, B component, C component, D component and E component, if necessary. As the additive, those described above can be used as appropriate.
 (車両用部材)
 車両用部材は、PPE-PBT系樹脂組成物を成形した成形体を含む。PPE-PBT系樹脂組成物を所定の形状になるように射出成形して成形体を得ることができる。車両用部材は、自動車用外装部材でもよく、自動車用外板部材でもよい。自動車用外装部材としては、例えば、ライセンスガーニッシュ、ピラーガーニッシュ、スライドレールカバー、ルーフパネルおよびスポイラーなどが挙げられる。自動車用外板部材としては、例えば、フェンダー、ドアパネル、バックドアパネル、ルーフ、フューエルリット、トランクリット、リトラクタブルヘッドライトパネルなどが挙げられる。
(vehicle parts)
A vehicle member includes a molded body obtained by molding a PPE-PBT resin composition. A molded article can be obtained by injection molding the PPE-PBT resin composition into a predetermined shape. The vehicle member may be an automobile exterior member or an automobile outer plate member. Exterior parts for automobiles include, for example, license garnishes, pillar garnishes, slide rail covers, roof panels and spoilers. Exterior panel members for automobiles include, for example, fenders, door panels, back door panels, roofs, fuel lids, trunk lids, and retractable headlight panels.
 PPE-PBT系樹脂組成物の成形体は、高温暴露に耐えることができ、吸湿変形を実質的に伴わず、静電塗装でき、塗膜密着性に優れるともに、引張強度、破断点ひずみ、曲げ強度、曲げ弾性率、シャルピー衝撃強度、面衝撃強度などの機械的物性にも優れる。 The PPE-PBT-based resin composition molded body can withstand high temperature exposure, is substantially free from moisture absorption deformation, can be electrostatically coated, has excellent coating film adhesion, and exhibits tensile strength, strain at break, and bending. It also has excellent mechanical properties such as strength, flexural modulus, Charpy impact strength, and surface impact strength.
 車両用部材が、自動車用外装・外板部材である場合、PPE-PBT系樹脂組成物を成形した成形体を直接自動車用外装・外板部材として使用してもよいが、外観を良好にするために、該成形体と、該成形体の表面に配置された塗膜を含む積層体を自動車用外装・外板部材として使用することが好ましい。塗膜は、ポリエステルメラミン樹脂硬化物、アルキドメラミン樹脂硬化物、アクリルメラミン樹脂硬化物、エポキシエステル樹脂硬化物、アクリルウレタン樹脂硬化物、エポキシメラミン樹脂硬化物、エポキシ基含有アクリル酸樹脂硬化物などの酸エポキシ樹脂硬化物などの樹脂硬化物を1層以上含んでもよい。塗膜の厚みは、車両用部材の用途や目的などに応じて適宜に決めればよく、特に限定されないが、例えば、30~100μmであってもよい。PPE-PBT系樹脂組成物の成形体に、樹脂硬化物の前駆体となる硬化性樹脂組成物を含む塗料を、静電塗装により塗布し、焼付炉を経由させ、樹脂硬化物をPPE-PBT系樹脂組成物の成形体の一方の表面上に形成させることができる。樹脂硬化物はポリエステルメラミン樹脂硬化物、アルキドメラミン樹脂硬化物、アクリルメラミン樹脂硬化物、酸エポキシ樹脂硬化物、およびアクリルウレタン樹脂硬化物からなる群から選ばれる一種以上であることが好ましい。中塗りとして、アクリルメラミン樹脂硬化物、ポリエステルメラミン樹脂硬化物を形成する硬化性樹脂組成物、上塗りとしてアクリルメラミン樹脂硬化物、アクリルメラミンエポキシ樹脂硬化物、および/またはエポキシ基含有アクリル-無水カルボン酸含有アクリル樹脂硬化物を用いることなどが挙げられる。 When the vehicle member is an exterior/skin member for automobiles, a molded body obtained by molding a PPE-PBT resin composition may be used directly as an exterior/skin member for automobiles, but the appearance is improved. For this reason, it is preferable to use a laminate containing the molded article and a coating film disposed on the surface of the molded article as an exterior/skin member for automobiles. Coating films are made of cured polyester melamine resin, cured alkyd melamine resin, cured acrylic melamine resin, cured epoxy ester resin, cured acrylic urethane resin, cured epoxy melamine resin, cured epoxy group-containing acrylic acid resin, etc. One or more layers of cured resin such as cured acid epoxy resin may be included. The thickness of the coating film may be appropriately determined according to the application and purpose of the vehicle member, and is not particularly limited, but may be, for example, 30 to 100 μm. A coating containing a curable resin composition, which is a precursor of the cured resin, is applied to the molded body of the PPE-PBT resin composition by electrostatic coating, passed through a baking furnace, and the cured resin is PPE-PBT. It can be formed on one surface of the molded body of the resin composition. The cured resin is preferably one or more selected from the group consisting of cured polyester melamine resin, cured alkyd melamine resin, cured acrylic melamine resin, cured acid epoxy resin, and cured acrylic urethane resin. A curable resin composition that forms a cured acrylic melamine resin and a cured polyester melamine resin as an intermediate coat, and a cured acrylic melamine resin, cured acrylic melamine epoxy resin, and/or epoxy group-containing acrylic-carboxylic anhydride as a top coat. For example, the use of a cured product of an acrylic resin containing the acrylic resin is used.
 以下、本発明を実施例に基づいてより具体的に説明する。なお、本発明は、下記の実施例に限定されない。 Hereinafter, the present invention will be described more specifically based on examples. In addition, the present invention is not limited to the following examples.
 実施例および比較例で用いた原料は以下のとおりである。
 <原料>
A成分:ポリフェニレンエーテル(PPE)、三菱エンジニアリングプラスチックス株式会社製、ポリ(2,6-ジメチル-1,4-フェニレン)エーテル、製品名「IUPIACE PX100L」、固有粘度:0.47dL/g
B成分:ポリブチレンテレフタレート(PBT)、営口康輝石化有限公司製、製品名「KH-2100」、固有粘度:1.00dL/g
C成分:スチレン系熱可塑性エラストマー、スチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS)、クレイトン・ポリマーズLLC製、製品名「クレイトン G 1650 E Polymer」
D成分:相溶化剤、製造例1で得られた相溶化剤(D-1)
E成分:導電性カーボン、ケチェンブラック、ライオン・スペシャルティ・ケミカルズ株式会社製、製品名「ケッチェンブラックEC600JD」
F成分:変性ポリブチレンテレフタレート(変性PBT)、製造例2で得られた変性PBT(F-1)
ポリアミド6:ユニチカ株式会社製、製品名「ユニチカナイロン6 A1020BRL」フェノール系酸化防止剤1:BASF SE製、製品名「Irganox 1010」フェノール系酸化防止剤2:株式会社ADEKA製、製品名「アデカスタブ AO-60」
リン系酸化防止剤:株式会社ADEKA製、製品名「アデカスタブ2112」
三酸化アンチモン:日本精鉱株式会社製、製品名「PATOX-P」
ポリオキシエチレンビスフェノールAエーテル:オキシエチレン単位の繰り返し数:9、東邦化学工業株式会社製、製品名「ビスオール 18EN」
Raw materials used in Examples and Comparative Examples are as follows.
<raw materials>
Component A: Polyphenylene ether (PPE), manufactured by Mitsubishi Engineering-Plastics Co., Ltd., poly(2,6-dimethyl-1,4-phenylene) ether, product name “IUPIACE PX100L”, intrinsic viscosity: 0.47 dL/g
B component: polybutylene terephthalate (PBT), manufactured by Yingkou Kangpyochemical Co., Ltd., product name "KH-2100", intrinsic viscosity: 1.00 dL / g
Component C: styrene-based thermoplastic elastomer, styrene-ethylene-butylene-styrene block copolymer (SEBS), manufactured by Kraton Polymers LLC, product name "Kraton G 1650 E Polymer"
D component: compatibilizer, compatibilizer (D-1) obtained in Production Example 1
E component: conductive carbon, Ketjenblack, manufactured by Lion Specialty Chemicals Co., Ltd., product name "Ketjenblack EC600JD"
Component F: modified polybutylene terephthalate (modified PBT), modified PBT obtained in Production Example 2 (F-1)
Polyamide 6: manufactured by Unitika Ltd., product name "Unitika Nylon 6 A1020BRL" Phenolic antioxidant 1: manufactured by BASF SE, product name "Irganox 1010" Phenolic antioxidant 2: manufactured by ADEKA Co., Ltd., product name "ADEKA STAB AO -60"
Phosphorus-based antioxidant: manufactured by ADEKA Co., Ltd., product name "ADEKA STAB 2112"
Antimony trioxide: manufactured by Nippon Seiko Co., Ltd., product name "PATOX-P"
Polyoxyethylene bisphenol A ether: Repeat number of oxyethylene units: 9, manufactured by Toho Chemical Industry Co., Ltd., product name "Bisol 18EN"
 実施例および比較例で用いた測定・評価方法は、下記のとおりである。 The measurement and evaluation methods used in Examples and Comparative Examples are as follows.
 <測定・評価方法>
 [固有粘度(IV値)(PBTおよび変性PBT)]
 テトラクロロエタン/フェノール=50/50(重量比)の混合溶媒を用い、PBTまたは変性PBTの濃度が0.5g/dLの溶液に調整し、ウーベローデ型粘度計を用いて25℃にて測定して得た対数粘度から算出した。
<Measurement/evaluation method>
[Intrinsic viscosity (IV value) (PBT and modified PBT)]
Using a mixed solvent of tetrachloroethane/phenol = 50/50 (weight ratio), the concentration of PBT or modified PBT was adjusted to 0.5 g/dL, and measured at 25°C using an Ubbelohde viscometer. It was calculated from the obtained logarithmic viscosity.
 [固有粘度(IV値)(PPE)]
 クロロホルムを溶媒に用い、PPEの濃度が0.5g/dLの溶液に調整し、ウーベローデ型粘度計を用いて30℃にて測定して得た対数粘度から算出した。
[Intrinsic viscosity (IV value) (PPE)]
A PPE concentration of 0.5 g/dL was prepared using chloroform as a solvent, and the logarithmic viscosity was measured at 30° C. using an Ubbelohde viscometer.
 [核磁気共鳴分光分析(NMR)]
 サンプルをクロロホルム‐dに溶解し、BRUKER製NMR装置(400MHz)を用いて、1H核を対象に測定した。
[Nuclear magnetic resonance spectroscopy (NMR)]
The sample was dissolved in chloroform-d and measured for 1 H nuclei using a BRUKER NMR instrument (400 MHz).
 [フーリエ変換赤外分光分析(FTIR)]
 サンプルを250℃で熱プレスしてシート状にしたものを用い、日本分光株式会社製フーリエ変換赤外分光光度計 FT/IR-4700を用い測定した。
[Fourier transform infrared spectroscopy (FTIR)]
A sample was hot-pressed at 250° C. into a sheet and measured using a Fourier transform infrared spectrophotometer FT/IR-4700 manufactured by JASCO Corporation.
 [ゲルパーミエーションクロマトグラフィー(GPC)]
 重合体を約20mg/10mLのクロロホルム溶液とし、その溶液をゲルパーミエーションクロマトグラフィー(GPC)分析することにより重量平均分子量(Mw)を決定した。GPC分析においてはGPCシステム(Waters社製)を使用し、カラムはポリスチレンゲルカラム「Shodex K-806」および「Shodex K805」(昭和電工(株)製)を用い、クロロホルムを溶出液として30℃で展開、ポリスチレン換算で解析した。
[Gel permeation chromatography (GPC)]
About 20 mg/10 mL of chloroform solution was prepared from the polymer, and the solution was analyzed by gel permeation chromatography (GPC) to determine the weight average molecular weight (Mw). In the GPC analysis, a GPC system (manufactured by Waters) was used, polystyrene gel columns "Shodex K-806" and "Shodex K805" (manufactured by Showa Denko Co., Ltd.) were used, and chloroform was used as an eluent at 30°C. It was developed and analyzed in terms of polystyrene.
 [示差走査熱量分析(DSC)]
 エスアイアイ・ナノテクノロジー株式会社製の示差走査熱量計 DSC7020を用い、窒素気流下、昇温速度10℃/分にて測定した。ガラス転移温度(Tg)は階段状に現れたDSC曲線の低温側接線と最大勾配点における傾きの外挿線との交点から求めた。融点(Tm)は融解ピークの極大点の温度を用いた。
[Differential scanning calorimetry (DSC)]
Using a differential scanning calorimeter DSC7020 manufactured by SII Nanotechnology Co., Ltd., measurement was performed at a temperature elevation rate of 10° C./min under a nitrogen stream. The glass transition temperature (Tg) was determined from the intersection of the low-temperature side tangent line of the DSC curve appearing in a stepped manner and the extrapolation line of the slope at the maximum gradient point. As the melting point (Tm), the maximum temperature of the melting peak was used.
 [引張試験]
 ISO 527-1およびISO 527-2に従い、ISO 20753に規定されるタイプA1ダンベル試験片(以下、ISOダンベル試験片とも記す)を用いて、試験速度10mm/min、23℃にて、破断強度および破断伸びを測定した。
[Tensile test]
According to ISO 527-1 and ISO 527-2, using a type A1 dumbbell test piece (hereinafter also referred to as ISO dumbbell test piece) specified in ISO 20753, breaking strength and Elongation at break was measured.
 [曲げ試験]
 前記ISOタイプA1ダンベル試験片の直胴部から試験片を切り出し、ISO 178に従い、試験速度5mm/min、23℃にて、曲げ強度および曲げ弾性率を測定した。
[Bending test]
A test piece was cut from the straight body portion of the ISO type A1 dumbbell test piece, and the flexural strength and flexural modulus were measured at a test speed of 5 mm/min and 23° C. according to ISO 178.
 [シャルピー衝撃試験]
 前記ISOタイプA1ダンベル試験片の直胴部から試験片を切り出し、ISO 179に準じ、23℃および-30℃にて、シャルピー強度を測定した。
[Charpy impact test]
A test piece was cut from the straight body portion of the ISO type A1 dumbbell test piece, and the Charpy strength was measured at 23° C. and −30° C. according to ISO 179.
 [荷重たわみ温度]
 前記ISOタイプA1ダンベル試験片の直胴部から試験片を切り出し、ISO 75に準じ、0.45MPa荷重および1.80MPa荷重で測定した。
[Deflection temperature under load]
A test piece was cut from the straight body portion of the ISO type A1 dumbbell test piece, and measured under a load of 0.45 MPa and a load of 1.80 MPa according to ISO 75.
 [面衝撃強度]
 ASTM D2794(プラスチック用)に準じ、落錘1.0kgとし、23℃および-30℃で最大非破壊高さを求め、重力加速度(9.807m/s2)×落錘重量×最大非破壊高さにより、エネルギー値に換算した。
[Flat impact strength]
According to ASTM D2794 (for plastics), with a falling weight of 1.0 kg, obtain the maximum non-destructive height at 23°C and -30°C, gravitational acceleration (9.807 m/s 2 ) x weight of falling weight x maximum non-destructive height It was converted to an energy value depending on the strength.
 [スパイラル流動長(SFL)]
 射出成形機「FAS-150B」(ファナック株式会社製)を用い、シリンダー温度310℃または280℃、金型温度は50℃にて、3mm厚みのスパイラル金型を用いて成形を行い、流動長を評価した。測定には110℃で5時間以上乾燥したペレットを用いた。
[Spiral flow length (SFL)]
Using an injection molding machine "FAS-150B" (manufactured by Fanuc Co., Ltd.), molding is performed using a spiral mold with a thickness of 3 mm at a cylinder temperature of 310 ° C. or 280 ° C. and a mold temperature of 50 ° C., and the flow length is adjusted. evaluated. Pellets dried at 110° C. for 5 hours or more were used for the measurement.
 [体積固有抵抗]
 前記ISOタイプA1ダンベル試験片の直胴部を10mm長に切出し、両端の破断面に銀塗料を塗布し、絶縁抵抗計(日置電機株式会社製、型式「IR4052-10」)を用いて、500V印加時の両方の破断面間で抵抗を測定し、体積抵抗率に換算し、体積固有抵抗とした。
[Volume resistivity]
Cut the straight body part of the ISO type A1 dumbbell test piece into a length of 10 mm, apply silver paint to the fractured surfaces at both ends, and use an insulation resistance meter (manufactured by Hioki Electric Co., Ltd., model "IR4052-10") to measure 500 V. The resistance was measured between both fractured surfaces at the time of application, converted into volume resistivity, and taken as volume resistivity.
 [塗装密着性]
 120mmx120mmx3mm(厚み)の平板成形体にプライマー(株式会社染めQテクノロジィ製、製品名「ミッチャクロンEP・X」)を噴霧し、自然乾燥させた後、自動車の電着工程の焼付炉を想定して180℃で30分間保持した。次にメラミン塗料(エーエスペイント株式会社製、製品名「サグラン33 ブラック」)を噴霧し、半乾き状態にした後、クリヤー塗料(エーエスペイント株式会社製、製品名「サグラン7000 クリヤー」)を噴霧した。これら塗料は希釈剤(エーエスペイント株式会社製、製品名「No.5000 TS静電用シンナー」)で適宜粘度を調整して用いた。この後、150℃で20分保持して焼付を行った。得られた塗装済み平板成形体(塗膜の設定厚み65μm)を用い、ISO 2409に準じ、ただし25マスではなく100マスで評価した。100マスのうち、テープ剥離後に成形体に塗膜が残留した数をカウントし、残留数が100を良好の最大値、0を不良の最大値とした。
[Paint adhesion]
Primer (manufactured by Some Q Technology Co., Ltd., product name "Mitchakuron EP X") is sprayed on a flat plate molded body of 120 mm x 120 mm x 3 mm (thickness), and after air drying, it is 180 mm, assuming a baking furnace in the electrodeposition process of automobiles. °C for 30 minutes. Next, a melamine paint (manufactured by AS Paint Co., Ltd., product name "Sagran 33 Black") was sprayed, and after being semi-dried, a clear paint (manufactured by AS Paint Co., Ltd., product name "Sagran 7000 Clear") was sprayed. . These paints were used after appropriately adjusting the viscosity with a diluent (manufactured by AS Paint Co., Ltd., product name "No. 5000 TS Electrostatic Thinner"). After that, baking was performed by holding at 150° C. for 20 minutes. Using the obtained coated flat plate (set thickness of the coating film: 65 μm), evaluation was performed according to ISO 2409, but with 100 squares instead of 25 squares. Among 100 squares, the number of remaining coating films on the molded body after the tape was peeled off was counted, and 100 of the residual number was defined as the maximum value of good, and 0 was defined as the maximum value of unsatisfactory.
 [塗装後変形]
 前記塗膜密着試験において得られた塗装済み平板成形体を23℃、相対湿度50%で120時間常態調整した後、平坦な台の上に置き、四隅の一か所ずつ順に50gの分銅を置き、反りの有無を確認した。
[Deformation after painting]
After the coated flat plate molded body obtained in the coating film adhesion test was normalized for 120 hours at 23 ° C. and 50% relative humidity, it was placed on a flat table, and a 50 g weight was placed in order at each of the four corners. , the presence or absence of warpage was confirmed.
 [吸水率]
 120mmx120mmx3mm(厚み)の平板成形体を試験片とし、該試験片を23℃、相対湿度50%で24時間以上保持した後、50℃で24時間純水に浸漬した際の吸水率を下記数式1に基づいて求めた。下記数式(1)において、Waは50℃で24時間純水に浸漬した後の試験片の重量であり、Wbは純水に浸漬する前の試験片の重量である。
 [数式1]
 吸水率(%)=(Wa-Wb)/Wb×100
[Water absorption]
A flat plate molded body of 120 mm x 120 mm x 3 mm (thickness) is used as a test piece, and the test piece is held at 23 ° C. and a relative humidity of 50% for 24 hours or more, and then immersed in pure water at 50 ° C. for 24 hours. sought based on In the following formula (1), Wa is the weight of the test piece after being immersed in pure water at 50° C. for 24 hours, and Wb is the weight of the test piece before being immersed in pure water.
[Formula 1]
Water absorption (%) = (Wa - Wb) / Wb x 100
 [比重]
 ISO 1183-1に従い、液浸法にて求めた。
[specific gravity]
It was determined by the liquid immersion method according to ISO 1183-1.
 (製造例1:相溶化剤(D-1)の製造)
 真空シール付き攪拌機、窒素ライン、熱電対、および還流冷却器を備え付けたガラス製1L四ツ口セパラブルフラスコにスチレン(St)230.0g、グリシジルメタクリレート(GMA)75.0g、メチルメタクリレート(MMA)5.0g、ターピノーレン2.0g、およびトルエン(TL)500.0gを仕込み、窒素気流下で攪拌し、四ツ口セパラブルフラスコの内温を75℃に昇温させた。10重量%の2,2-アゾビス(2-メチルブチロニトリル)(AMBN)のトルエン溶液30gを追加し重合を開始させた。重合開始から5時間後に四ツ口セパラブルフラスコの内温を95℃に昇温した。1時間後、10重量%AMBNトルエン溶液を2g追加した。同様の操作を3回繰り返したのち、さらに1時間攪拌し、重合を終了した。固形分濃度からモノマーのポリマーへの転化率は80%と見積もった。次に、還流冷却器を、熱交換機を備えた減圧蒸留装置に切り替え、トルエンを減圧留去した。四ツ口セパラブルフラスコの内温160℃、内圧5hPaに到達した時点で減圧留去を終了した。冷却後、内容物を取り出し、粉砕して、エポキシ基含有スチレンアクリルコポリマー(D1-1)を得た。エポキシ基含有スチレンアクリルコポリマー(D1-1)のGPCによりポリスチレン換算で求めた重量平均分子量は42,000、DSCにより求めたTgは71℃であった。FTIRによりSt単位由来の赤外吸収とGMA単位およびMMA単位由来の赤外吸収の存在を確認した。エポキシ基含有スチレンアクリルコポリマー(D1-1)は、St単位を75.2重量%、GMA単位23.3重量%、およびMMA単位を1.5重量%含む。
 前記エポキシ基含有スチレンアクリルコポリマー(D1-1)50重量部、ポリブチレンテレフタレート(ポリプラスチックス株式会社製、製品名「ジュラネックス」300FP、固有粘度0.69dL/g)50重量部、フェノール系酸化防止剤1 0.20重量部、およびリン系酸化防止剤0.20重量部の混合物を、二軸混錬押出機(株式会社テクノベル製、型式名:MFU25)を用い、混錬温度240℃にて溶融混錬し、ペレット化して相溶化剤(D-1)を製造した。DSCにより求めたTgは96℃、融点(Tm)は222℃であった。FTIRによりSt単位由来の赤外吸収とPBT由来の赤外吸収の存在を確認した。
(Production Example 1: Production of compatibilizer (D-1))
230.0 g of styrene (St), 75.0 g of glycidyl methacrylate (GMA), methyl methacrylate (MMA) were added to a 1 L four-necked glass flask equipped with a vacuum-sealed stirrer, nitrogen line, thermocouple, and reflux condenser. 5.0 g of terpinolene, 2.0 g of terpinolene, and 500.0 g of toluene (TL) were charged, stirred under a nitrogen stream, and the internal temperature of the four-necked separable flask was raised to 75°C. An additional 30 g of a 10 weight percent toluene solution of 2,2-azobis(2-methylbutyronitrile) (AMBN) was added to initiate polymerization. Five hours after the initiation of polymerization, the internal temperature of the four-necked separable flask was raised to 95°C. After 1 hour, an additional 2 g of 10 wt % AMBN toluene solution was added. After repeating the same operation three times, the mixture was further stirred for 1 hour to complete the polymerization. From the solids concentration the conversion of monomer to polymer was estimated at 80%. Next, the reflux condenser was switched to a vacuum distillation apparatus equipped with a heat exchanger, and toluene was distilled off under reduced pressure. When the internal temperature of the four-necked separable flask reached 160° C. and the internal pressure reached 5 hPa, distillation under reduced pressure was terminated. After cooling, the content was taken out and pulverized to obtain an epoxy group-containing styrene acrylic copolymer (D1-1). The epoxy group-containing styrene-acrylic copolymer (D1-1) had a weight average molecular weight of 42,000 as determined by GPC in terms of polystyrene, and a Tg of 71° C. as determined by DSC. FTIR confirmed the presence of infrared absorption derived from the St unit and infrared absorption derived from the GMA and MMA units. The epoxy group-containing styrene-acrylic copolymer (D1-1) contains 75.2% by weight of St units, 23.3% by weight of GMA units, and 1.5% by weight of MMA units.
50 parts by weight of the epoxy group-containing styrene acrylic copolymer (D1-1), 50 parts by weight of polybutylene terephthalate (manufactured by Polyplastics Co., Ltd., product name "DURANEX" 300FP, intrinsic viscosity 0.69 dL / g), phenolic oxidation A mixture of 0.20 parts by weight of inhibitor 1 and 0.20 parts by weight of a phosphorus-based antioxidant is kneaded at a temperature of 240 ° C. using a twin-screw kneading extruder (manufactured by Technobell Co., Ltd., model name: MFU25). The compatibilizer (D-1) was produced by melt kneading and pelletizing. The Tg determined by DSC was 96°C, and the melting point (Tm) was 222°C. FTIR confirmed the presence of infrared absorption derived from St units and infrared absorption derived from PBT.
 (製造例2:変性PBT(F-1)の製造)
 撹拌機、窒素ライン、熱電対、および熱交換機を備えた減圧蒸留装置を備え付けた20Lオートクレーブにテレフタル酸(TPA)を3921g、1,4-ブタンジオール(BDOH)を11850g、フェノール系酸化防止剤2を3.0gおよび三酸化アンチモンを0.15g仕込み、窒素気流下かつ大気圧の条件下で攪拌し、オートクレーブの内温を150℃に昇温した。途中で留出を開始した水は熱交換機を通過させた後に除去した。水の留出が停止するまで同温度を維持した。次にポリオキシエチレンビスフェノールAエーテル(オキシエチレン単位の繰り返し数:9)881gを追加した。30分間保持した後に、オートクレーブの内温を202℃まで昇温した。同温度到達後直ちに窒素供給を停止、減圧を開始し、1,4-ブタンジオールの留出を伴いながら15hPaまで減圧した。その後にオートクレーブの内温を210℃まで昇温した。直ちに窒素を供給して大気圧まで戻し、オートクレーブ下部から内容物をステンレスバットに払出して空冷・固化させ、粉砕して、変性PBT(F-1)を得た。固有粘度は0.70dL/g、DSCによりTgは観察されず、Tmは199℃と211℃に観察された。NMRにより求めた1,4-ブタンジオール単位とポリオキシエチレンビスフェノールAエーテル単位の組込重量比率は68/32であった。
(Production Example 2: Production of modified PBT (F-1))
3921 g of terephthalic acid (TPA), 11850 g of 1,4-butanediol (BDOH), phenolic antioxidant 2 in a 20 L autoclave equipped with a stirrer, nitrogen line, thermocouple, and vacuum distillation apparatus with heat exchanger. and 0.15 g of antimony trioxide were charged, stirred under nitrogen flow and atmospheric pressure, and the internal temperature of the autoclave was raised to 150°C. The water that started to distill on the way was removed after passing through a heat exchanger. The same temperature was maintained until water stopped distilling. Next, 881 g of polyoxyethylene bisphenol A ether (repeating number of oxyethylene units: 9) was added. After holding for 30 minutes, the internal temperature of the autoclave was raised to 202°C. Immediately after reaching the same temperature, nitrogen supply was stopped and pressure reduction was started, and the pressure was reduced to 15 hPa while distilling 1,4-butanediol. After that, the internal temperature of the autoclave was raised to 210°C. Nitrogen was immediately supplied to return the pressure to atmospheric pressure, and the content was discharged from the lower part of the autoclave into a stainless vat, air-cooled and solidified, and pulverized to obtain modified PBT (F-1). The intrinsic viscosity was 0.70 dL/g, no Tg was observed by DSC, and Tm was observed at 199°C and 211°C. The incorporated weight ratio of 1,4-butanediol units and polyoxyethylene bisphenol A ether units determined by NMR was 68/32.
 (実施例1、2)
 PPE、PBT、スチレン系熱可塑性エラストマー、相溶化剤、導電性カーボン、変性PBT、フェノール系酸化防止剤1、およびリン系酸化防止剤を下記表1に示した割合で予備混合し、二軸押出機「TEX-44SS」(株式会社日本製鋼所製)を用いて270℃で溶融混練してペレットを製造した。
 得られたペレットを用いて、シリンダー温度310℃、金型温度50℃に設定した射出成形機「FN-1000」(日精樹脂工業株式会社製)で、ISOタイプA1ダンベル試験片を作製し、上述した方法により物性を評価した。
 また、同様に射出成形機「FN-1000」(日精樹脂工業株式会社製)で120mm×120mm×3mm(厚み)の平板を作製し、塗装密着性・塗装後変形・吸水率を測定した。
 さらに前記平板から60mm×60mm四方の試験片を切り出した上で、上述した方法により面衝撃強度を評価した。
 また上述した方法により、シリンダー温度310℃でスパイラル流動長(SFL)を求めた。
 結果を下記表1に示した。
(Examples 1 and 2)
PPE, PBT, styrene-based thermoplastic elastomer, compatibilizer, conductive carbon, modified PBT, phenol-based antioxidant 1, and phosphorus-based antioxidant were premixed in the proportions shown in Table 1 below, and biaxially extruded. Pellets were produced by melt-kneading at 270° C. using a machine “TEX-44SS” (manufactured by The Japan Steel Works, Ltd.).
Using the obtained pellets, an ISO type A1 dumbbell test piece was prepared with an injection molding machine "FN-1000" (manufactured by Nissei Plastic Industry Co., Ltd.) set at a cylinder temperature of 310 ° C. and a mold temperature of 50 ° C., and the above-mentioned The physical properties were evaluated by the method described above.
Similarly, a flat plate of 120 mm × 120 mm × 3 mm (thickness) was prepared using an injection molding machine "FN-1000" (manufactured by Nissei Plastic Industry Co., Ltd.), and the coating adhesion, deformation after coating, and water absorption were measured.
Furthermore, after cutting out a 60 mm×60 mm square test piece from the flat plate, the surface impact strength was evaluated by the method described above.
Also, the spiral flow length (SFL) was determined at a cylinder temperature of 310° C. by the method described above.
The results are shown in Table 1 below.
 (比較例1)
 PPE、ポリアミド6、無水マレイン酸(富士フィルム和光純薬)、スチレン系熱可塑性エラストマー、フェノール系酸化防止剤1、およびリン系酸化防止剤を下記表1に示した割合で予備混合したこと、ISOタイプA1ダンベル試験片作製時およびSFL評価時の射出成型機のシリンダー温度を290℃に設定したこと以外は実施例1と同様としてペレット、ISOダンベル試験片および平板を作製し、物性評価を行った。結果を下記表1に示した。
(Comparative example 1)
PPE, polyamide 6, maleic anhydride (Fujifilm Wako Pure Chemical Industries), styrene thermoplastic elastomer, phenolic antioxidant 1, and phosphorus antioxidant were premixed in the proportions shown in Table 1 below, ISO A pellet, an ISO dumbbell test piece, and a flat plate were prepared in the same manner as in Example 1, except that the cylinder temperature of the injection molding machine was set to 290°C when preparing the type A1 dumbbell test piece and when evaluating the SFL, and the physical properties were evaluated. . The results are shown in Table 1 below.
 (比較例2)
 PPE、PBT、スチレン系熱可塑性エラストマー、相溶化剤、変性PBT、フェノール系酸化防止剤1、およびリン系酸化防止剤を下記表1に示した割合で予備混合した以外は、実施例1と同様としてペレット、ISOタイプA1ダンベル試験片および平板を作製し、物性評価を行った。なお、体積抵抗率が測定範囲の上限(2x107Ω・m)を超えており、実際の自動車製造ラインで用いられる静電塗装に供することが困難(放電リスクあり)と判断されたため、塗装密着性・塗装後変形の測定は実施しなかった。結果を下記表1に示した。
(Comparative example 2)
Same as Example 1, except that PPE, PBT, styrene-based thermoplastic elastomer, compatibilizer, modified PBT, phenol-based antioxidant 1, and phosphorus-based antioxidant were premixed in the proportions shown in Table 1 below. A pellet, an ISO type A1 dumbbell test piece and a flat plate were prepared as a material and evaluated for physical properties. In addition, the volume resistivity exceeded the upper limit of the measurement range (2 x 10 7 Ω·m), and it was judged that it would be difficult to use the electrostatic coating used in the actual automobile manufacturing line (with the risk of electrical discharge). Measurements of resistance and post-painting deformation were not carried out. The results are shown in Table 1 below.
 (比較例3)
 PPE、PBT、スチレン系熱可塑性エラストマー、相溶化剤、フェノール系酸化防止剤1、およびリン系酸化防止剤を下記表1に示した割合で予備混合した以外は、実施例1と同様としてペレット、ISOタイプA1ダンベル試験片および平板を作製し、物性評価を行った。なお、体積抵抗率が測定範囲の上限(2x107Ω・m)を超えており、実際の自動車製造ラインで用いられる静電塗装に供することが困難(放電リスクあり)と判断されたため、塗装密着性・塗装後変形の測定は実施しなかった。結果を下記表1に示した。
(Comparative Example 3)
In the same manner as in Example 1, pellets, An ISO type A1 dumbbell test piece and a flat plate were prepared and evaluated for physical properties. In addition, the volume resistivity exceeded the upper limit of the measurement range (2 x 10 7 Ω·m), and it was judged that it would be difficult to use the electrostatic coating used in the actual automobile manufacturing line (with the risk of electrical discharge). Measurements of resistance and post-painting deformation were not carried out. The results are shown in Table 1 below.
 (比較例4)
 PPE、PBT、スチレン系熱可塑性エラストマー、フェノール系酸化防止剤1、およびリン系酸化防止剤を下記表1に示した割合で予備混合した以外は、実施例1と同様としてペレット、ISOタイプA1ダンベル試験片および平板を作製し、物性評価を行った。なお、体積抵抗率が測定範囲の上限(2x107Ω・m)を超えており、実際の自動車製造ラインで用いられる静電塗装に供することが困難(放電リスクあり)と判断されたため、塗装密着性・塗装後変形の測定は実施しなかった。結果を下記表1に示した。
(Comparative Example 4)
Pellets and ISO type A1 dumbbells were prepared in the same manner as in Example 1, except that PPE, PBT, a styrene-based thermoplastic elastomer, phenol-based antioxidant 1, and phosphorus-based antioxidant were premixed in the proportions shown in Table 1 below. A test piece and a flat plate were prepared and evaluated for physical properties. In addition, the volume resistivity exceeded the upper limit of the measurement range (2 x 10 7 Ω·m), and it was judged that it would be difficult to use the electrostatic coating used in the actual automobile manufacturing line (with the risk of electrical discharge). Measurements of resistance and post-painting deformation were not carried out. The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1から分かるように、実施例のPPE/PBT系樹脂組成物は吸水率が低く、塗装時の変形が無く、塗装密着性に優れ、同時に体積抵抗率も1x104以下に抑えられることから静電塗装にも供することができ、耐熱性にも優れることから電着工程の焼付炉内での変形も抑制でき、自動車製造時におけるいわゆるオンライン塗装プロセスに適している。 As can be seen from Table 1, the PPE/PBT-based resin compositions of Examples have low water absorption, do not deform during coating, are excellent in coating adhesion, and at the same time have a volume resistivity of 1×10 4 or less. It can also be used for electrocoating, and because it has excellent heat resistance, deformation in the baking furnace in the electrocoating process can be suppressed, making it suitable for so-called on-line coating processes in automobile manufacturing.
 本発明は、特に限定されないが、少なくとも、下記の実施形態を含む。
[1] (A)ポリフェニレンエーテルを51~98重量部、
 (B)ポリブチレンテレフタレート系樹脂を1.9~48.9重量部、
 (C)スチレン系熱可塑性エラストマーを0.1~15重量部、
 (D)相溶化剤を前記(A)~(C)の合計量100重量部に対して1~6重量部、および
 (E)導電性カーボンを前記(A)~(C)の合計量100重量部に対して1~5重量部含み、
 ISO 75-1およびISO 75-2に基づき測定した0.45MPa荷重での荷重たわみ温度が180℃以上であり、
 体積固有抵抗が1.0X102~1.0X104Ω・mである、樹脂組成物。
[2] 前記(D)相溶化剤が、エポキシ基を含有するスチレン系共重合体と、ポリブチレンテレフタレート系樹脂の共重合体である、[1]に記載の樹脂組成物。
[3] 前記エポキシ基を含有するスチレン系共重合体は、スチレン単位およびグリシジルメタクリレート単位を含む、[2]に記載の樹脂組成物。
[4] 前記エポキシ基を含有するスチレン系共重合体は、スチレン単位を60~90重量%、グリシジルメタクリレート単位を10~40重量%、およびメチルメタクリレートを0~5重量%含む、[2]又は[3]に記載の樹脂組成物。
[5] 前記エポキシ基を含有するスチレン系共重合体は、重量平均分子量が10,000~100,000のランダム共重合体を含む、[2]~[4]のいずれかに記載の樹脂組成物。
[6] 前記(E)導電性カーボンがケッチェンブラックである、[1]~[5]のいずれかに記載の樹脂組成物。
[7] 前記(B)ポリブチレンテレフタレート系樹脂が、(F)変性ポリブチレンテレフタレートを含有する、[1]~[6]のいずれかに記載の樹脂組成物。
[8] 前記(F)変性ポリブチレンテレフタレートは、ポリオキシアルキレン変性ポリブチレンテレフタレートである、[7]に記載の樹脂組成物。
[9] [1]~[8]のいずれかに記載の樹脂組成物を成形した成形体を含む、車両用部材。
[10] さらに前記成形体の表面に配置された塗膜を含む、[9]に記載の車両用部材。
[11] 工程1:スチレン51~98重量部、およびグリシジルメタクリレート2~49重量部を含む100重量部の単量体混合物を重合し、重量平均分子量が10,000~100,000であるランダム共重合体を製造する工程、
 工程2:工程1で得られたランダム共重合体を、IV値0.6~0.8のポリブチレンテレフタレートとともに押出機中で溶融混練して、(D)相溶化剤を製造する工程、
 工程3:工程2で得られた(D)相溶化剤を、(A)ポリフェニレンエーテル、(B)ポリブチレンテレフタレート系樹脂、(C)スチレン系熱可塑性エラストマー、および(E)導電性カーボンとともに押出機中で溶融混錬して樹脂組成物を得る工程を含む、樹脂組成物の製造方法。
[12] 前記単量体混合物は、単量体混合物100重量部に対し、スチレン60~90重量部、グリシジルメタクリレート10~40重量部、およびメチルメタクリレート0~5重量部を含む、[11]に記載の樹脂組成物の製造方法。
The present invention includes, but is not limited to, at least the following embodiments.
[1] (A) 51 to 98 parts by weight of polyphenylene ether,
(B) 1.9 to 48.9 parts by weight of polybutylene terephthalate resin;
(C) 0.1 to 15 parts by weight of a styrenic thermoplastic elastomer;
(D) 1 to 6 parts by weight of a compatibilizing agent per 100 parts by weight of the total amount of (A) to (C), and (E) 100 parts by weight of conductive carbon in the total amount of (A) to (C). Contains 1 to 5 parts by weight with respect to parts by weight,
The load deflection temperature at a load of 0.45 MPa measured based on ISO 75-1 and ISO 75-2 is 180 ° C. or higher,
A resin composition having a volume resistivity of 1.0×10 2 to 1.0×10 4 Ω·m.
[2] The resin composition according to [1], wherein (D) the compatibilizer is a copolymer of a styrene-based copolymer containing an epoxy group and a polybutylene terephthalate-based resin.
[3] The resin composition according to [2], wherein the epoxy group-containing styrenic copolymer contains styrene units and glycidyl methacrylate units.
[4] The epoxy group-containing styrenic copolymer contains 60 to 90% by weight of styrene units, 10 to 40% by weight of glycidyl methacrylate units, and 0 to 5% by weight of methyl methacrylate, [2] or The resin composition according to [3].
[5] The resin composition according to any one of [2] to [4], wherein the epoxy group-containing styrenic copolymer includes a random copolymer having a weight average molecular weight of 10,000 to 100,000. thing.
[6] The resin composition according to any one of [1] to [5], wherein (E) the conductive carbon is ketjen black.
[7] The resin composition according to any one of [1] to [6], wherein the (B) polybutylene terephthalate-based resin contains (F) modified polybutylene terephthalate.
[8] The resin composition according to [7], wherein the (F) modified polybutylene terephthalate is a polyoxyalkylene-modified polybutylene terephthalate.
[9] A vehicle member comprising a molded article obtained by molding the resin composition according to any one of [1] to [8].
[10] The vehicle member according to [9], further comprising a coating film disposed on the surface of the molded body.
[11] Step 1: 100 parts by weight of a monomer mixture containing 51 to 98 parts by weight of styrene and 2 to 49 parts by weight of glycidyl methacrylate is polymerized to form a random copolymer having a weight average molecular weight of 10,000 to 100,000. a step of producing a polymer;
Step 2: A step of melt-kneading the random copolymer obtained in Step 1 together with polybutylene terephthalate having an IV value of 0.6 to 0.8 in an extruder to produce (D) a compatibilizer;
Step 3: (D) the compatibilizer obtained in step 2 is extruded together with (A) polyphenylene ether, (B) polybutylene terephthalate-based resin, (C) styrenic thermoplastic elastomer, and (E) conductive carbon. A method for producing a resin composition, comprising a step of melt-kneading to obtain a resin composition in a machine.
[12] The monomer mixture contains 60 to 90 parts by weight of styrene, 10 to 40 parts by weight of glycidyl methacrylate, and 0 to 5 parts by weight of methyl methacrylate with respect to 100 parts by weight of the monomer mixture. A method for producing the described resin composition.

Claims (12)

  1.  (A)ポリフェニレンエーテルを51~98重量部、
     (B)ポリブチレンテレフタレート系樹脂を1.9~48.9重量部、
     (C)スチレン系熱可塑性エラストマーを0.1~15重量部、
     (D)相溶化剤を前記(A)~(C)の合計量100重量部に対して1~6重量部、および
     (E)導電性カーボンを前記(A)~(C)の合計量100重量部に対して1~5重量部含み、
     ISO 75-1およびISO 75-2に基づき測定した0.45MPa荷重での荷重たわみ温度が180℃以上であり、
     体積固有抵抗が1.0X102~1.0X104Ω・mである、樹脂組成物。
    (A) 51 to 98 parts by weight of polyphenylene ether,
    (B) 1.9 to 48.9 parts by weight of polybutylene terephthalate resin;
    (C) 0.1 to 15 parts by weight of a styrenic thermoplastic elastomer;
    (D) 1 to 6 parts by weight of a compatibilizing agent per 100 parts by weight of the total amount of (A) to (C), and (E) 100 parts by weight of conductive carbon in the total amount of (A) to (C). Contains 1 to 5 parts by weight with respect to parts by weight,
    The load deflection temperature at a load of 0.45 MPa measured based on ISO 75-1 and ISO 75-2 is 180 ° C. or higher,
    A resin composition having a volume resistivity of 1.0×10 2 to 1.0×10 4 Ω·m.
  2.  前記(D)相溶化剤が、エポキシ基を含有するスチレン系共重合体と、ポリブチレンテレフタレート系樹脂の共重合体である、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the (D) compatibilizing agent is a copolymer of a styrene-based copolymer containing an epoxy group and a polybutylene terephthalate-based resin.
  3.  前記エポキシ基を含有するスチレン系共重合体は、スチレン単位およびグリシジルメタクリレート単位を含む、請求項2に記載の樹脂組成物。 The resin composition according to claim 2, wherein the epoxy group-containing styrenic copolymer contains styrene units and glycidyl methacrylate units.
  4.  前記エポキシ基を含有するスチレン系共重合体は、スチレン単位を60~90重量%、グリシジルメタクリレート単位を10~40重量%、およびメチルメタクリレートを0~5重量%含む、請求項2又は3に記載の樹脂組成物。 4. The epoxy group-containing styrenic copolymer according to claim 2 or 3, which contains 60 to 90% by weight of styrene units, 10 to 40% by weight of glycidyl methacrylate units, and 0 to 5% by weight of methyl methacrylate. of the resin composition.
  5.  前記エポキシ基を含有するスチレン系共重合体は、重量平均分子量が10,000~100,000のランダム共重合体を含む、請求項2~4のいずれかに記載の樹脂組成物。 The resin composition according to any one of claims 2 to 4, wherein the epoxy group-containing styrenic copolymer includes a random copolymer having a weight average molecular weight of 10,000 to 100,000.
  6.  前記(E)導電性カーボンがケッチェンブラックである、請求項1~5のいずれかに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 5, wherein (E) the conductive carbon is ketjen black.
  7.  前記(B)ポリブチレンテレフタレート系樹脂が、(F)変性ポリブチレンテレフタレートを含有する、請求項1~6のいずれかに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 6, wherein the (B) polybutylene terephthalate-based resin contains (F) modified polybutylene terephthalate.
  8.  前記(F)変性ポリブチレンテレフタレートは、ポリオキシアルキレン変性ポリブチレンテレフタレートである、請求項7に記載の樹脂組成物。 The resin composition according to claim 7, wherein the (F) modified polybutylene terephthalate is polyoxyalkylene-modified polybutylene terephthalate.
  9.  請求項1~8のいずれかに記載の樹脂組成物を成形した成形体を含む、車両用部材。 A vehicle member comprising a molded body obtained by molding the resin composition according to any one of claims 1 to 8.
  10.  さらに前記成形体の表面に配置された塗膜を含む、請求項9に記載の車両用部材。 The vehicle member according to claim 9, further comprising a coating film disposed on the surface of the molded body.
  11.  工程1:スチレン51~98重量部、およびグリシジルメタクリレート2~49重量部を含む100重量部の単量体混合物を重合し、重量平均分子量が10,000~100,000であるランダム共重合体を製造する工程、
     工程2:工程1で得られたランダム共重合体を、IV値0.6~0.8のポリブチレンテレフタレートとともに押出機中で溶融混練して、(D)相溶化剤を製造する工程、
     工程3:工程2で得られた(D)相溶化剤を、(A)ポリフェニレンエーテル、(B)ポリブチレンテレフタレート系樹脂、(C)スチレン系熱可塑性エラストマー、および(E)導電性カーボンとともに押出機中で溶融混錬して樹脂組成物を得る工程を含む、樹脂組成物の製造方法。
    Step 1: 100 parts by weight of a monomer mixture containing 51 to 98 parts by weight of styrene and 2 to 49 parts by weight of glycidyl methacrylate is polymerized to obtain a random copolymer having a weight average molecular weight of 10,000 to 100,000. manufacturing process,
    Step 2: A step of melt-kneading the random copolymer obtained in Step 1 together with polybutylene terephthalate having an IV value of 0.6 to 0.8 in an extruder to produce (D) a compatibilizer;
    Step 3: (D) the compatibilizer obtained in step 2 is extruded together with (A) polyphenylene ether, (B) polybutylene terephthalate-based resin, (C) styrenic thermoplastic elastomer, and (E) conductive carbon. A method for producing a resin composition, comprising a step of melt-kneading to obtain a resin composition in a machine.
  12.  前記単量体混合物は、単量体混合物100重量部に対し、スチレン60~90重量部、グリシジルメタクリレート10~40重量部、およびメチルメタクリレート0~5重量部を含む、請求項11に記載の樹脂組成物の製造方法。 The resin of claim 11, wherein the monomer mixture comprises 60 to 90 parts by weight of styrene, 10 to 40 parts by weight of glycidyl methacrylate, and 0 to 5 parts by weight of methyl methacrylate with respect to 100 parts by weight of the monomer mixture. A method of making the composition.
PCT/JP2022/038420 2021-10-20 2022-10-14 Resin composition, vehicle component, and method for producing resin composition WO2023068199A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021171683 2021-10-20
JP2021-171683 2021-10-20

Publications (1)

Publication Number Publication Date
WO2023068199A1 true WO2023068199A1 (en) 2023-04-27

Family

ID=86059284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038420 WO2023068199A1 (en) 2021-10-20 2022-10-14 Resin composition, vehicle component, and method for producing resin composition

Country Status (1)

Country Link
WO (1) WO2023068199A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004518774A (en) * 2000-10-13 2004-06-24 ゼネラル・エレクトリック・カンパニイ Thermoplastic blend containing poly (arylene ether) and polyamide
JP2004346245A (en) * 2003-05-23 2004-12-09 Mitsubishi Engineering Plastics Corp Electroconductive thermoplastic resin composition
US20050228109A1 (en) * 2004-04-07 2005-10-13 Tapan Chandra Thermoplastic compositions with improved paint adhesion
US20070049690A1 (en) * 2005-08-29 2007-03-01 Pravin Borade Impact modified poly(arylene ether)/polyester blends and method
US20090014692A1 (en) * 2007-07-12 2009-01-15 General Electric Company Thermoplastic poly(arylene ether) / polyester blends and articles thereof
US20090036606A1 (en) * 2007-07-12 2009-02-05 General Electric Company Thermoplastic poly(arylene ether) / polyester blends and method of making

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004518774A (en) * 2000-10-13 2004-06-24 ゼネラル・エレクトリック・カンパニイ Thermoplastic blend containing poly (arylene ether) and polyamide
JP2004346245A (en) * 2003-05-23 2004-12-09 Mitsubishi Engineering Plastics Corp Electroconductive thermoplastic resin composition
US20050228109A1 (en) * 2004-04-07 2005-10-13 Tapan Chandra Thermoplastic compositions with improved paint adhesion
US20070049690A1 (en) * 2005-08-29 2007-03-01 Pravin Borade Impact modified poly(arylene ether)/polyester blends and method
US20090014692A1 (en) * 2007-07-12 2009-01-15 General Electric Company Thermoplastic poly(arylene ether) / polyester blends and articles thereof
US20090036606A1 (en) * 2007-07-12 2009-02-05 General Electric Company Thermoplastic poly(arylene ether) / polyester blends and method of making

Similar Documents

Publication Publication Date Title
US9200157B2 (en) Aromatic polycarbonate composition
US8153720B2 (en) Resin composition
CN103221484B (en) Auto lamp extends device formed body
WO2016024531A1 (en) Thermoplastic resin composition and molded body thereof
EP0373834A2 (en) Hydrogenated diene copolymer-containing resin composition and process for producing the same
JP5965188B2 (en) Light reflection molding
JPH0449579B2 (en)
JP5654377B2 (en) High brightness, low gas thin-walled resin reflector
WO2023068199A1 (en) Resin composition, vehicle component, and method for producing resin composition
JP5385539B2 (en) Thermoplastic resin composition
JPH0232143A (en) Thermoplastic resin composition
JPH036185B2 (en)
JP2001200038A (en) Polyester resin, polyester resin composition and extrusion molding
EP3305851B1 (en) Polycarbonate resin composition having excellent thermal decomposition resistance
US11186715B2 (en) Polyphenylene ether resin composition and vehicle lighting fixture bezel
JP2019119874A (en) Thermoplastic resin composition and molded article using the same
JPH09124923A (en) Exterior part for vehicle
JP2008144091A (en) Thermoplastic elastomer resin composition and molded article
JPH06100765A (en) Thermoplastic resin composition
JP2002047397A (en) High rigidity thermoplastic polyester resin composition with good mold surface transfer
JPH0352950A (en) Thermoplastic resin composition
WO2024024662A1 (en) Resin composition and molded object
JPH02225557A (en) Resin composition
JPH057420B2 (en)
TW202411345A (en) Resin composition and molded article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22883503

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023554652

Country of ref document: JP