WO2023068174A1 - Thermosetting resin and cured product thereof - Google Patents

Thermosetting resin and cured product thereof Download PDF

Info

Publication number
WO2023068174A1
WO2023068174A1 PCT/JP2022/038299 JP2022038299W WO2023068174A1 WO 2023068174 A1 WO2023068174 A1 WO 2023068174A1 JP 2022038299 W JP2022038299 W JP 2022038299W WO 2023068174 A1 WO2023068174 A1 WO 2023068174A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
aromatic compound
thermosetting resin
mol
polymerization initiator
Prior art date
Application number
PCT/JP2022/038299
Other languages
French (fr)
Japanese (ja)
Inventor
綾太 小倉
汰玖哉 吉岡
美伽 山本
賢志 村上
Original Assignee
第一工業製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一工業製薬株式会社 filed Critical 第一工業製薬株式会社
Priority to CN202280059685.XA priority Critical patent/CN117897418A/en
Publication of WO2023068174A1 publication Critical patent/WO2023068174A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/34Monomers containing two or more unsaturated aliphatic radicals
    • C08F212/36Divinylbenzene
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate

Definitions

  • An embodiment of the present invention relates to a thermosetting resin, a cured product thereof, and a thermosetting composition containing the thermosetting resin.
  • Patent Document 1 discloses a vinyl compound obtained by converting the end of a bifunctional PPE (polyphenylene ether) oligomer into a vinyl group as a thermosetting resin material with excellent heat resistance and electrical properties.
  • Patent Document 2 describes a curable resin composition that improves dielectric properties, long-term environmental reliability, heat resistance, and adhesion, containing 2 to 95 mol% of repeating units derived from a divinyl aromatic compound and a monovinyl aromatic compound.
  • a curable resin composition containing a polyfunctional vinyl aromatic copolymer containing 5 to 98 mol % of repeating units, a thermoplastic resin, and a thermosetting cross-linking agent is disclosed.
  • thermosetting resins described in Patent Documents 1 and 2 have relatively low dielectric loss tangents, there is a demand for further improvements in dielectric properties.
  • an object of the embodiments of the present invention is to provide a thermosetting resin from which a cured product having excellent dielectric properties can be obtained.
  • the present invention includes embodiments shown below. [1] It has a repeating unit corresponding to a monovinyl aromatic compound and a repeating unit corresponding to a divinyl aromatic compound, and the content of the repeating unit corresponding to the divinyl aromatic compound is 5.0 to 25.0 mol%.
  • a linear vinyl copolymer having at its terminal a structure derived from a polymerization initiator represented by general formula (1): R 1 —N N—R 2 , or general formula (2) : having at least one structure derived from a polymerization initiator represented by R 3 —O—O—R 4 , and R 1 , R 2 , R 3 and R 4 in general formulas (1) and (2) are , each independently representing a monovalent saturated hydrocarbon group or a monovalent aromatic hydrocarbon group.
  • thermosetting resin according to [1] which has a structure obtained by reacting the resulting copolymer with formaldehyde.
  • thermosetting resin according to [1] or [2] which is a random copolymer having repeating units corresponding to the monovinyl aromatic compound and repeating units corresponding to the divinyl aromatic compound.
  • the thermosetting composition according to [6] which is a printed circuit board material.
  • thermosetting resin according to the embodiment of the present invention With the thermosetting resin according to the embodiment of the present invention, a cured product with excellent dielectric properties can be obtained.
  • thermosetting resin according to this embodiment is a vinyl copolymer having repeating units corresponding to monovinyl aromatic compounds and repeating units corresponding to divinyl aromatic compounds.
  • the repeating unit corresponding to the monovinyl aromatic compound is a structural unit of a vinyl copolymer and has a structure formed by addition polymerization of a monovinyl aromatic compound as a monomer. As long as it has a structure corresponding to the compound, it is not necessarily limited to the one obtained by polymerization using the monovinyl aromatic compound, and the structure corresponding to the monovinyl aromatic compound is obtained by further reacting after polymerization. It's okay.
  • repeating unit corresponding to the monovinyl aromatic compound examples include repeating units having a structure in which the vinyl group of the monovinyl aromatic compound is formed into a single bond by addition polymerization, as represented by the following general formula (3).
  • R 5 represents a monovalent aromatic hydrocarbon group having 6 to 30 carbon atoms. More specifically, R 5 is a phenyl group optionally having substituents, a biphenyl group optionally having substituents, a naphthyl group optionally having substituents, and Examples include monovalent aromatic hydrocarbon groups having 6 to 30 carbon atoms (more preferably 6 to 20 carbon atoms) selected from the group consisting of good terphenyl groups.
  • the carbon number of R 5 is the total carbon number of R 5 including the number of carbon atoms contained in the substituent when it has a substituent.
  • the monovinyl aromatic compound that forms such a repeating unit may be an aromatic compound having one vinyl group.
  • the repeating unit corresponding to the divinyl aromatic compound is a structural unit of a vinyl copolymer, and is a structural unit having a structure having one vinyl group, which is formed by addition polymerization of a divinyl aromatic compound as a monomer. is.
  • the repeating unit is not necessarily limited to those obtained by polymerization using the divinyl aromatic compound as long as it has a structure corresponding to the divinyl aromatic compound. It may have a structure corresponding to a compound.
  • repeating unit corresponding to the divinyl aromatic compound examples include repeating units having a structure in which one vinyl group of the divinyl aromatic compound is formed into a single bond by addition polymerization, as represented by the following general formula (4). .
  • R 6 represents a divalent aromatic hydrocarbon group having 6 to 30 carbon atoms. More specifically, R 6 is a phenylene group optionally having a substituent, a biphenyldiyl group optionally having a substituent, a naphthylene group optionally having a substituent, and a divalent aromatic hydrocarbon groups having 6 to 30 carbon atoms (more preferably 6 to 20 carbon atoms) selected from the group consisting of terphenyldiyl groups.
  • the number of carbon atoms in R 6 is the total number of carbon atoms in R 6 including the number of carbon atoms contained in the substituents, if any.
  • the divinyl aromatic compound that forms such a repeating unit may be an aromatic compound having two vinyl groups. positional isomers or mixtures thereof), divinylbiphenyl (including positional isomers or mixtures thereof), and these can be used singly or in combination of two or more. Among these, divinylbenzene (m-isomer, p-isomer, or a mixture of positional isomers thereof) is preferred.
  • thermosetting resin according to this embodiment is preferably a linear vinyl copolymer.
  • linear the concentration of terminal groups derived from the polymerization initiator can be reduced to improve the dielectric properties.
  • straight-chain refers to having a structure in which the repeating units constituting the vinyl copolymer are connected to each other in a one-dimensional chain and having a structure without a crosslinked structure.
  • thermosetting resin In the thermosetting resin according to the present embodiment, the arrangement order of the repeating unit corresponding to the monovinyl aromatic compound and the repeating unit corresponding to the divinyl aromatic compound may be arranged regularly or randomly. good.
  • the thermosetting resin is preferably a random copolymer in which repeating units corresponding to the monovinyl aromatic compound and repeating units corresponding to the divinyl aromatic compound are randomly arranged.
  • thermosetting resin according to the present embodiment includes repeating units corresponding to other monomers as long as the effect is not impaired. May contain units.
  • Such other monomers include, for example, trivinyl aromatic compounds, trivinyl aliphatic compounds, divinyl aliphatic compounds, monovinyl aliphatic compounds, and the like.
  • the content of repeating units corresponding to the divinyl aromatic compound is preferably 5.0 to 25.0 mol%. That is, the content of the repeating unit corresponding to the divinyl aromatic compound is 5.0 mol % or more and 25.0 mol % or less based on 100 mol % of all repeating units constituting the vinyl copolymer.
  • the content of the repeating unit corresponding to the divinyl aromatic compound is 5.0 mol% or more, the thermosetting property can be enhanced to obtain a good cured product, and the content is 25.0 mol. % or less, it is possible to reduce the amount of vinyl groups remaining after heat curing.
  • the content of repeating units corresponding to the divinyl aromatic compound is preferably 7.0 mol % or more, preferably 20.0 mol % or less, and may be 16.0 mol % or less.
  • the content of the repeating unit corresponding to the monovinyl aromatic compound is not particularly limited, but the total repeating unit constituting the vinyl copolymer is 75.0 to 75.0 mol%. It is preferably 95.0 mol %.
  • the content of repeating units corresponding to the monovinyl aromatic compound is more preferably 80.0 mol % or more, may be 74.0 mol % or more, and is preferably 93.0 mol % or less.
  • the thermosetting resin according to the present embodiment has at least a structure derived from a polymerization initiator represented by the following general formula (1) or a structure derived from a polymerization initiator represented by general formula (2) at its terminal It is preferable to have one.
  • the polymerization initiator represented by formula (1) is an azo initiator that does not have a cyano group, unlike azobisisobutyronitrile (AIBN), which is a general-purpose azo initiator.
  • the polymerization initiator represented by formula (2) is an organic peroxide such as dialkyl peroxide. Since these polymerization initiators do not have a polar group such as an active hydrogen group at the end, they can reduce the dielectric loss tangent of the thermosetting resin.
  • R 1 -N N-R 2 (1)
  • R 1 , R 2 , R 3 and R 4 each independently represent a monovalent saturated hydrocarbon group or a monovalent aromatic hydrocarbon group containing a heteroatom. do not have.
  • the number of carbon atoms in the saturated hydrocarbon group is not particularly limited, it is preferably 1-23, more preferably 4-13.
  • the number of carbon atoms in the aromatic hydrocarbon group is not particularly limited, it is preferably 6-23, more preferably 6-13.
  • the saturated hydrocarbon group may be a branched or linear saturated aliphatic hydrocarbon group (alkyl group) or a saturated alicyclic hydrocarbon group.
  • saturated hydrocarbon groups include alkyl groups such as tert-butyl, tert-pentyl, tert-hexyl and 1,1,3,3-tetramethylbutyl, and saturated lipids such as cyclohexyl.
  • alkyl groups such as tert-butyl, tert-pentyl, tert-hexyl and 1,1,3,3-tetramethylbutyl
  • saturated lipids such as cyclohexyl.
  • a cyclic hydrocarbon group is mentioned.
  • aromatic hydrocarbon group examples include aryl groups such as phenyl group, tolyl group and naphthyl group , and aralkyl groups such as cumyl group, benzyl group and phenethyl group .
  • R 1 , R 2 , R 3 and R 4 may each independently be a group represented by the following general formula (5).
  • R 7 , R 8 and R 9 each independently represent a monovalent saturated hydrocarbon group or a monovalent aromatic hydrocarbon group. More preferably, R 7 is a monovalent saturated hydrocarbon group having 1 to 20 carbon atoms (more preferably 1 to 10 carbon atoms) or a monovalent saturated hydrocarbon group having 6 to 20 carbon atoms (more preferably 6 to 10 carbon atoms). Represents an aromatic hydrocarbon group, R 8 and R 9 represent a methyl group.
  • Saturated hydrocarbon groups for R 7 , R 8 and R 9 may be branched or straight-chain, such as methyl, ethyl, propyl, butyl, heptyl, isopropyl, Alkyl groups such as a tert-butyl group and a 2,2-dimethylpropyl group, and saturated alicyclic hydrocarbon groups such as a cyclohexyl group can be mentioned.
  • Aromatic hydrocarbons for R 7 , R 8 and R 9 include phenyl group, tolyl group, naphthyl group and the like.
  • both ends of the obtained vinyl copolymer usually have a structure derived from the polymerization initiator.
  • the polymerization initiator of the above formula (1) is used for polymerization, a vinyl copolymer having the above R 1 — and/or R 2 — at both ends is obtained. That is, both ends of the vinyl copolymer may be R 1 -, both ends may be R 2 -, or one end may be R 1 - and the other end may be R 2 - .
  • R 5 is as described above for formula (3)
  • R 6 is as described above for formula (4)
  • R 7 , R 8 and R 9 are as described above for formula (5). That's right.
  • R 7 , R 8 and R 9 at both ends may be the same or different.
  • m and n each represent the repeating number of the repeating unit corresponding to the monovinyl aromatic compound and the repeating unit corresponding to the divinyl aromatic compound. is.
  • both ends of the vinyl copolymer may be R 3 O--, both ends may be R 4 O--, or one end may be R 3 O-- and the other end may be R 4 O--.
  • R 5 is as described above in formula (3)
  • R 6 is as described above in formula (4)
  • R 7 , R 8 and R 9 are as described above in formula (5). That's right.
  • R 7 , R 8 and R 9 at both ends may be the same or different.
  • m and n each represent the repeating number of the repeating unit corresponding to the monovinyl aromatic compound and the repeating unit corresponding to the divinyl aromatic compound. is.
  • the thermosetting resin according to this embodiment preferably has a number average molecular weight Mn of 3,000 or more and 100,000 or less.
  • Mn number average molecular weight
  • the concentration of terminal groups derived from the polymerization initiator can be lowered to improve the dielectric properties.
  • the number average molecular weight Mn is 100,000 or less, it is possible to suppress an increase in viscosity when the thermosetting resin is made into a solution, and to improve handleability.
  • the larger the molecular weight the greater the amount of residual vinyl group after heat curing.
  • the number average molecular weight Mn is more preferably 7,000 or more, still more preferably 10,000 or more, still more preferably 15,000 or more, and may be 20,000 or more.
  • the number average molecular weight Mn is more preferably 50,000 or less, still more preferably 40,000 or less, and may be 30,000 or less, from the viewpoint of handleability and residual vinyl group amount.
  • the thermosetting resin according to this embodiment preferably has a weight average molecular weight Mw of 3,000 or more and 100,000 or less.
  • the weight-average molecular weight Mw is 3,000 or more, the concentration of terminal groups derived from the polymerization initiator can be lowered to improve the dielectric properties.
  • the weight average molecular weight Mw is 100,000 or less, it is possible to suppress the increase in viscosity when the thermosetting resin is made into a solution, improve the handleability, and reduce the amount of residual vinyl groups.
  • the weight average molecular weight Mw is more preferably 10,000 or more, more preferably 20,000 or more, may be 30,000 or more, or may be 40,000 or more.
  • the weight average molecular weight Mw is more preferably 90,000 or less, still more preferably 80,000 or less, and may be 70,000 or less, from the viewpoint of handleability and residual vinyl group amount.
  • the molecular weight distribution Mw/Mn which is the ratio of the weight average molecular weight Mw to the number average molecular weight Mn, is not particularly limited, but is preferably 4.0 or less, more preferably 1 .2 to 3.5, more preferably 1.5 to 3.0.
  • the number average molecular weight Mn and the weight average molecular weight Mw are polystyrene-equivalent number average molecular weight and weight average molecular weight measured by gel permeation chromatography (GPC).
  • the method for producing the thermosetting resin according to this embodiment is not particularly limited.
  • the polymerization initiator represented by the above formula (1) or the polymerization initiator represented by formula (2) The vinylbenzyl phosphonium salt is copolymerized with a monovinyl aromatic compound using at least one of , and the resulting copolymer is reacted with formaldehyde.
  • it is not limited to this manufacturing method.
  • vinylbenzylphosphonium salt it is preferable to use a vinylbenzylphosphonium halide.
  • Phosphonium groups in vinylbenzylphosphonium salts include, for example, quaternary phosphonium groups such as trialkylphosphonium, triarylphosphonium, and trialalkylphosphonium.
  • Halogens that form salts with phosphonium groups include, for example, chlorine and bromine.
  • a known vinyl polymerization method can be used as a method for copolymerizing the vinylbenzylphosphonium salt with the monovinyl aromatic compound.
  • a radical polymerization initiator represented by the above formula (1) and/or formula (2) as a polymerization initiator, repeating units derived from a vinylbenzylphosphonium salt and repeating units derived from a monovinyl aromatic compound are A copolymer having
  • the vinylbenzylphosphonium salt is monovinyl in the copolymerization step, a straight-chain copolymer having no branch is obtained, and after copolymerization, the repeating units derived from the vinylbenzylphosphonium salt have vinyl Since the group is introduced, a linear vinyl copolymer having no branch can be obtained while having repeating units corresponding to the divinyl aromatic compound.
  • thermosetting composition according to this embodiment contains the above thermosetting resin.
  • the content of the thermosetting resin in the thermosetting composition is not particularly limited as long as the composition has the property of being cured by heat.
  • the solid content of the thermosetting composition if it contains an organic solvent described later, it is the amount excluding the organic solvent, and if it does not contain the organic solvent, the total amount of the composition
  • 100% by mass It may be 1 to 99% by mass, or 10 to 95% by mass.
  • thermosetting composition in addition to the above thermosetting resins, for example, other thermosetting resins (thermosetting cross-linking agents), thermoplastic resins, fillers, flame retardants, curing accelerators, polymerization initiators , antifoaming agents, heat stabilizers, antistatic agents, ultraviolet absorbers, colorants such as dyes and pigments, lubricants, dispersants, and the like.
  • thermosetting resins thermosetting cross-linking agents
  • thermoplastic resins fillers, flame retardants, curing accelerators, polymerization initiators , antifoaming agents, heat stabilizers, antistatic agents, ultraviolet absorbers, colorants such as dyes and pigments, lubricants, dispersants, and the like.
  • thermosetting composition may contain an organic solvent to adjust its viscosity
  • thermosetting composition may be a solution containing the thermosetting resin.
  • organic solvent those capable of dissolving the above thermosetting resin are used. Amides such as formamide, aromatic hydrocarbons such as toluene and xylene, and the like can be mentioned, and these can be used singly or in combination of two or more.
  • thermosetting resin or thermosetting composition of the present embodiment can be crosslinked by polymerization because it has a vinyl group in the molecular chain of the vinyl copolymer, and a cured product can be obtained by thermosetting. Since the cured product has a low dielectric loss tangent and excellent dielectric properties, it can be used for electronic materials such as printed circuit board materials and semiconductor sealing materials. That is, the thermosetting composition according to one embodiment is a thermosetting composition for electronic materials.
  • printed circuit board materials include rigid printed circuit board materials such as single-sided boards, double-sided boards, multilayer boards, and build-up boards, as well as film-like and sheet-like flexible printed circuit board materials.
  • rigid printed circuit board materials such as single-sided boards, double-sided boards, multilayer boards, and build-up boards, as well as film-like and sheet-like flexible printed circuit board materials.
  • it since it has a low dielectric loss tangent, it is suitably used as a high-frequency substrate material for high-frequency communication equipment.
  • a column oven temperature of 40° C., a THF flow rate of 0.6 mL/min, a sample concentration of 0.1% by mass, and a sample injection amount of 10 ⁇ L were used, and a differential refractive index detector (Shodex RI-504, manufactured by Showa Denko) was used.
  • thermosetting Using the products obtained in Examples 1 to 13 and Comparative Examples 1 to 8 as samples, a differential scanning calorimeter (manufactured by Rigaku) was used to raise the temperature from room temperature to 350° C. at a heating rate of 10° C./min. When the heat generation amount at the exothermic peak was 20 J/g or more, it was evaluated as " ⁇ " (good thermosetting), and when it was less than 20 J/g, it was evaluated as "X" (poor thermosetting).
  • the residual vinyl group amount was calculated from the divinylbenzene ratio and the vinyl group reaction rate according to the following ⁇ Formula B>.
  • ⁇ Formula B>: Vinyl group residual amount (mol%) divinylbenzene ratio (mol%) x (100 - vinyl group reaction rate (%)) / 100
  • the amount of residual vinyl groups is large, the durability of the product decreases due to oxidation of the vinyl groups. The sample was evaluated as "good" (a small amount of residual vinyl groups).
  • the product 18 was recovered by drying under reduced pressure at 92°C.
  • Product 18 had an Mn of 26,600, an Mw of 48,900, a styrene ratio of 85.3 mol%, and a divinylbenzene ratio of 14.7 mol%.
  • the products of Examples 1 to 13 had a divinylbenzene ratio within the specified range, so that they had excellent thermosetting properties and had a lower residual vinyl group amount than Comparative Example 2.
  • the products of Examples 1 to 13 are linear vinyl copolymers having a terminal structure derived from the polymerization initiator of the above formula (1) or formula (2), and there is no cyano group at the terminal.
  • Comparative Examples 4 and 5 and Comparative Examples 7 and 8 the dielectric loss tangent was low and the dielectric properties were excellent.
  • the products of Examples 1 to 13 were excellent in formability, as they could be formed into sheets sufficient to stand on their own without the combined use of a thermoplastic resin and a cross-linking agent.
  • Examples 1 to 5 When comparing Examples 1 to 5 using the polymerization initiator of formula (1) and Examples 6 to 13 using the polymerization initiator of formula (2), Examples 1 to 5 have a higher dielectric loss tangent tended to be low. This is probably because the polymerization initiator of formula (2) introduces an ether bond at the terminal, whereas the heteroatom is not introduced in formula (1).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Provided is a thermosetting resin capable of giving a cured product having excellent dielectric characteristics. A thermosetting resin according to an embodiment is a straight-chain vinyl copolymer that has repeating units corresponding to a monovinyl aromatic compound and repeating units corresponding to a divinyl aromatic compound. The amount of the repeating units corresponding to the divinyl aromatic compound is 5.0-25.0 mol%. A terminal of the vinyl copolymer has a structure derived from a polymerization initiator represented by general formula (1): R1-N=N-R2 and/or a structure derived from a polymerization initiator represented by general formula (2): R3-O-O-R4. In general formulae (1) and (2), R1, R2, R3 and R4 each independently represent a monovalent saturated hydrocarbon group or a monovalent aromatic hydrocarbon group.

Description

熱硬化性樹脂およびその硬化物Thermosetting resin and its cured product
 本発明の実施形態は、熱硬化性樹脂、およびその硬化物に関し、また該熱硬化性樹脂を含む熱硬化性組成物に関する。 An embodiment of the present invention relates to a thermosetting resin, a cured product thereof, and a thermosetting composition containing the thermosetting resin.
 近年、電子機器の小型化、高性能化が進んでおり、これに伴って使用される各種材料の要求性能が向上している。例えば、高周波通信に対応できる低誘電正接のプリント基板材料が求められている。 In recent years, the miniaturization and performance enhancement of electronic devices have progressed, and along with this, the required performance of various materials used has increased. For example, there is a demand for printed circuit board materials with low dielectric loss tangent that are compatible with high-frequency communication.
 特許文献1には、耐熱性、電気特性に優れた熱硬化性樹脂材料として、2官能PPE(ポリフェニレンエーテル)系オリゴマーの末端をビニル基に変換したビニル化合物が開示されている。 Patent Document 1 discloses a vinyl compound obtained by converting the end of a bifunctional PPE (polyphenylene ether) oligomer into a vinyl group as a thermosetting resin material with excellent heat resistance and electrical properties.
 特許文献2には、誘電特性、長期環境信頼性、耐熱性、密着性を改善する硬化性樹脂組成物として、ジビニル芳香族化合物に由来する繰り返し単位2~95モル%とモノビニル芳香族化合物に由来する繰り返し単位5~98モル%含有する多官能ビニル芳香族共重合体と、熱可塑性樹脂と、熱硬化性架橋剤とを含む硬化性樹脂組成物が開示されている。 Patent Document 2 describes a curable resin composition that improves dielectric properties, long-term environmental reliability, heat resistance, and adhesion, containing 2 to 95 mol% of repeating units derived from a divinyl aromatic compound and a monovinyl aromatic compound. A curable resin composition containing a polyfunctional vinyl aromatic copolymer containing 5 to 98 mol % of repeating units, a thermoplastic resin, and a thermosetting cross-linking agent is disclosed.
特開2004-067727号公報JP 2004-067727 A 特開2019-178310号公報JP 2019-178310 A
 特許文献1や特許文献2に記載の熱硬化性樹脂は比較的低誘電正接であるが、更なる誘電特性の向上が求められている。 Although the thermosetting resins described in Patent Documents 1 and 2 have relatively low dielectric loss tangents, there is a demand for further improvements in dielectric properties.
 本発明の実施形態は、以上の点に鑑み、優れた誘電特性を持つ硬化物が得られる熱硬化性樹脂を提供することを目的とする。 In view of the above points, an object of the embodiments of the present invention is to provide a thermosetting resin from which a cured product having excellent dielectric properties can be obtained.
 本発明は以下に示される実施形態を含む。
[1] モノビニル芳香族化合物に対応する繰り返し単位およびジビニル芳香族化合物に対応する繰り返し単位を有し、前記ジビニル芳香族化合物に対応する繰り返し単位の含有量が5.0~25.0モル%である、直鎖状のビニル共重合体であって、その末端に、一般式(1):R-N=N-Rで表される重合開始剤由来の構造、または一般式(2):R-O-O-Rで表される重合開始剤由来の構造の少なくとも一方を有し、一般式(1)および(2)中のR、R、RおよびRは、それぞれ独立に一価の飽和炭化水素基または一価の芳香族炭化水素基を表す、熱硬化性樹脂。
[2] 前記一般式(1)で表される重合開始剤または前記一般式(2)で表される重合
開始剤の少なくとも一方を用いてビニルベンジルホスホニウム塩をモノビニル芳香族化合物と共重合させて得られる共重合体と、ホルムアルデヒドとを反応させて得られる構造を有する、[1]に記載の熱硬化性樹脂。
[3] 前記モノビニル芳香族化合物に対応する繰り返し単位および前記ジビニル芳香族化合物に対応する繰り返し単位を有するランダム共重合体である、[1]または[2]に記載の熱硬化性樹脂。
[4] 数平均分子量Mnおよび重量平均分子量Mwがそれぞれ3千以上10万以下である、[1]~[3]のいずれか1項に記載の熱硬化性樹脂。
[5] [1]~[4]のいずれか1項に記載の熱硬化性樹脂を硬化してなる硬化物。
[6] [1]~[4]のいずれか1項に記載の熱硬化性樹脂を含む熱硬化性組成物。
[7] プリント基板材料である[6]に記載の熱硬化性組成物。
The present invention includes embodiments shown below.
[1] It has a repeating unit corresponding to a monovinyl aromatic compound and a repeating unit corresponding to a divinyl aromatic compound, and the content of the repeating unit corresponding to the divinyl aromatic compound is 5.0 to 25.0 mol%. A linear vinyl copolymer having at its terminal a structure derived from a polymerization initiator represented by general formula (1): R 1 —N=N—R 2 , or general formula (2) : having at least one structure derived from a polymerization initiator represented by R 3 —O—O—R 4 , and R 1 , R 2 , R 3 and R 4 in general formulas (1) and (2) are , each independently representing a monovalent saturated hydrocarbon group or a monovalent aromatic hydrocarbon group.
[2] Copolymerizing a vinylbenzylphosphonium salt with a monovinyl aromatic compound using at least one of the polymerization initiator represented by the general formula (1) and the polymerization initiator represented by the general formula (2) The thermosetting resin according to [1], which has a structure obtained by reacting the resulting copolymer with formaldehyde.
[3] The thermosetting resin according to [1] or [2], which is a random copolymer having repeating units corresponding to the monovinyl aromatic compound and repeating units corresponding to the divinyl aromatic compound.
[4] The thermosetting resin according to any one of [1] to [3], which has a number average molecular weight Mn and a weight average molecular weight Mw of 3,000 or more and 100,000 or less.
[5] A cured product obtained by curing the thermosetting resin according to any one of [1] to [4].
[6] A thermosetting composition containing the thermosetting resin according to any one of [1] to [4].
[7] The thermosetting composition according to [6], which is a printed circuit board material.
 本発明の実施形態に係る熱硬化性樹脂であると、優れた誘電特性を持つ硬化物が得られる。 With the thermosetting resin according to the embodiment of the present invention, a cured product with excellent dielectric properties can be obtained.
 本実施形態に係る熱硬化性樹脂は、モノビニル芳香族化合物に対応する繰り返し単位およびジビニル芳香族化合物に対応する繰り返し単位を有するビニル共重合体である。 The thermosetting resin according to this embodiment is a vinyl copolymer having repeating units corresponding to monovinyl aromatic compounds and repeating units corresponding to divinyl aromatic compounds.
 モノビニル芳香族化合物に対応する繰り返し単位とは、ビニル共重合体の構成単位であって、モノビニル芳香族化合物をモノマーとして付加重合させることで形成される構造を持つ構成単位であり、当該モノビニル芳香族化合物に対応する構造を持つものであれば、必ずしも当該モノビニル芳香族化合物を用いて重合してなるものには限定されず、重合後に更に反応させることでモノビニル芳香族化合物に対応する構造としたものでもよい。 The repeating unit corresponding to the monovinyl aromatic compound is a structural unit of a vinyl copolymer and has a structure formed by addition polymerization of a monovinyl aromatic compound as a monomer. As long as it has a structure corresponding to the compound, it is not necessarily limited to the one obtained by polymerization using the monovinyl aromatic compound, and the structure corresponding to the monovinyl aromatic compound is obtained by further reacting after polymerization. It's okay.
 モノビニル芳香族化合物に対応する繰り返し単位としては、下記一般式(3)で表されるようにモノビニル芳香族化合物のビニル基が付加重合により単結合となった構造を持つ繰り返し単位が挙げられる。
Figure JPOXMLDOC01-appb-C000001
Examples of the repeating unit corresponding to the monovinyl aromatic compound include repeating units having a structure in which the vinyl group of the monovinyl aromatic compound is formed into a single bond by addition polymerization, as represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000001
 式(3)中、Rは、炭素数6~30の一価の芳香族炭化水素基を表す。より詳細には、Rは、置換基を有してもよいフェニル基、置換基を有してもよいビフェニル基、置換基を有してもよいナフチル基、および置換基を有してもよいターフェニル基からなる群から選ばれる炭素数6~30(より好ましくは炭素数6~20)の一価の芳香族炭化水素基が挙げられる。ここで、Rの炭素数は、置換基を有する場合、当該置換基に含まれる炭素原子の数を含めたR全体での炭素数である。 In formula (3), R 5 represents a monovalent aromatic hydrocarbon group having 6 to 30 carbon atoms. More specifically, R 5 is a phenyl group optionally having substituents, a biphenyl group optionally having substituents, a naphthyl group optionally having substituents, and Examples include monovalent aromatic hydrocarbon groups having 6 to 30 carbon atoms (more preferably 6 to 20 carbon atoms) selected from the group consisting of good terphenyl groups. Here, the carbon number of R 5 is the total carbon number of R 5 including the number of carbon atoms contained in the substituent when it has a substituent.
 このような繰り返し単位を形成するモノビニル芳香族化合物としては、ビニル基を1つ有する芳香族化合物であればよく、例えば、スチレン、ビニルナフタレン、ビニルビフェニルなどのビニル芳香族化合物、アルキルスチレン(例えばo-メチルスチレン、m-メチルスチレン、p-メチルスチレン、o-エチルスチレンン、m-エチルスチレン、p-エチルスチレン)、ジアルキルスチレン(例えば3,5-ジメチルスチレン、2,5-ジメチルスチレン、2,5-ジエチルスチレン)、アルキルビニルビフェニル(例えばエチルビニルビフェニル)、アルキルビニルナフタレン(例えばエチルビニルナフタレン)などの核アルキル置換ビニル芳香族化合物などが挙げられ、これらはいずれか1種または2種以上組み合わせて用いることができる。これらの中でもスチレンが好ましい。 The monovinyl aromatic compound that forms such a repeating unit may be an aromatic compound having one vinyl group. -methylstyrene, m-methylstyrene, p-methylstyrene, o-ethylstyrene, m-ethylstyrene, p-ethylstyrene), dialkylstyrenes (e.g. 3,5-dimethylstyrene, 2,5-dimethylstyrene, 2 , 5-diethylstyrene), alkylvinylbiphenyl (e.g. ethylvinylbiphenyl), alkylvinylnaphthalene (e.g. ethylvinylnaphthalene). They can be used in combination. Among these, styrene is preferred.
 ジビニル芳香族化合物に対応する繰り返し単位とは、ビニル共重合体の構成単位であって、ジビニル芳香族化合物をモノマーとして付加重合させることで形成される、1つのビニル基を有する構造を持つ構成単位である。該繰り返し単位は、ジビニル芳香族化合物に対応する構造を持つものであれば、必ずしも当該ジビニル芳香族化合物を用いて重合してなるものには限定されず、重合後に更に反応させることでジビニル芳香族化合物に対応する構造としたものでもよい。 The repeating unit corresponding to the divinyl aromatic compound is a structural unit of a vinyl copolymer, and is a structural unit having a structure having one vinyl group, which is formed by addition polymerization of a divinyl aromatic compound as a monomer. is. The repeating unit is not necessarily limited to those obtained by polymerization using the divinyl aromatic compound as long as it has a structure corresponding to the divinyl aromatic compound. It may have a structure corresponding to a compound.
 ジビニル芳香族化合物に対応する繰り返し単位としては、下記一般式(4)で表されるようにジビニル芳香族化合物の1つのビニル基が付加重合により単結合となった構造を持つ繰り返し単位が挙げられる。
Figure JPOXMLDOC01-appb-C000002
Examples of the repeating unit corresponding to the divinyl aromatic compound include repeating units having a structure in which one vinyl group of the divinyl aromatic compound is formed into a single bond by addition polymerization, as represented by the following general formula (4). .
Figure JPOXMLDOC01-appb-C000002
 式(4)中、Rは、炭素数6~30の二価の芳香族炭化水素基を表す。より詳細には、Rは、置換基を有してもよいフェニレン基、置換基を有してもよいビフェニルジイル基、置換基を有してもよいナフチレン基、及び置換基を有してもよいターフェニルジイル基からなる群から選ばれる炭素数6~30(より好ましくは炭素数6~20)の二価の芳香族炭化水素基が挙げられる。ここで、Rの炭素数は、置換基を有する場合、当該置換基に含まれる炭素原子の数を含めたR全体での炭素数である。 In formula (4), R 6 represents a divalent aromatic hydrocarbon group having 6 to 30 carbon atoms. More specifically, R 6 is a phenylene group optionally having a substituent, a biphenyldiyl group optionally having a substituent, a naphthylene group optionally having a substituent, and a divalent aromatic hydrocarbon groups having 6 to 30 carbon atoms (more preferably 6 to 20 carbon atoms) selected from the group consisting of terphenyldiyl groups. Here, the number of carbon atoms in R 6 is the total number of carbon atoms in R 6 including the number of carbon atoms contained in the substituents, if any.
 このような繰り返し単位を形成するジビニル芳香族化合物としては、ビニル基を2つ有する芳香族化合物であればよく、例えば、ジビニルベンゼン(各位置異性体又はこれらの混合物を含む)、ジビニルナフタレン(各位置異性体又はこれらの混合物を含む)、ジビニルビフェニル(各位置異性体又はこれらの混合物を含む)が挙げられ、これらはいずれか1種または2種以上組み合わせて用いることができる。これらの中でも、ジビニルベンゼン(m-体、p-体又はこれらの位置異性体混合物)が好ましい。 The divinyl aromatic compound that forms such a repeating unit may be an aromatic compound having two vinyl groups. positional isomers or mixtures thereof), divinylbiphenyl (including positional isomers or mixtures thereof), and these can be used singly or in combination of two or more. Among these, divinylbenzene (m-isomer, p-isomer, or a mixture of positional isomers thereof) is preferred.
 本実施形態に係る熱硬化性樹脂は、直鎖状のビニル共重合体であることが好ましい。直鎖状であることにより、重合開始剤由来の末端基の濃度を下げて誘電特性を向上することができる。ここで、直鎖状とは、ビニル共重合体を構成する繰り返し単位が互いに一次元の鎖状に連なって結合した構造を持つことをいい、架橋構造を持たない構造を持つことをいう。 The thermosetting resin according to this embodiment is preferably a linear vinyl copolymer. By being linear, the concentration of terminal groups derived from the polymerization initiator can be reduced to improve the dielectric properties. Here, the term "straight-chain" refers to having a structure in which the repeating units constituting the vinyl copolymer are connected to each other in a one-dimensional chain and having a structure without a crosslinked structure.
 本実施形態に係る熱硬化性樹脂において、モノビニル芳香族化合物に対応する繰り返し単位とジビニル芳香族化合物に対応する繰り返し単位の配列順序は、規則的に配列されてもよく、ランダムに配列されてもよい。該熱硬化性樹脂は、好ましくは、モノビニル芳香族化合物に対応する繰り返し単位とジビニル芳香族化合物に対応する繰り返し単位がランダムに配列されたランダム共重合体である。 In the thermosetting resin according to the present embodiment, the arrangement order of the repeating unit corresponding to the monovinyl aromatic compound and the repeating unit corresponding to the divinyl aromatic compound may be arranged regularly or randomly. good. The thermosetting resin is preferably a random copolymer in which repeating units corresponding to the monovinyl aromatic compound and repeating units corresponding to the divinyl aromatic compound are randomly arranged.
 本実施形態に係る熱硬化性樹脂は、モノビニル芳香族化合物に対応する繰り返し単位およびジビニル芳香族化合物に対応する繰り返し単位の他に、その効果が損なわれない範囲で、他のモノマーに対応する繰り返し単位を含んでもよい。そのような他のモノマーとしては、例えば、トリビニル芳香族化合物、トリビニル脂肪族化合物、ジビニル脂肪族化合物、モノビニル脂肪族化合物などが挙げられる。 In addition to repeating units corresponding to monovinyl aromatic compounds and repeating units corresponding to divinyl aromatic compounds, the thermosetting resin according to the present embodiment includes repeating units corresponding to other monomers as long as the effect is not impaired. May contain units. Such other monomers include, for example, trivinyl aromatic compounds, trivinyl aliphatic compounds, divinyl aliphatic compounds, monovinyl aliphatic compounds, and the like.
 本実施形態に係る熱硬化性樹脂において、ジビニル芳香族化合物に対応する繰り返し単位の含有量は5.0~25.0モル%であることが好ましい。すなわち、ビニル共重合体を構成する全繰り返し単位を100モル%として、ジビニル芳香族化合物に対応する繰り返し単位の含有量が5.0モル%以上25.0モル%以下である。ジビニル芳香族化合物に対応する繰り返し単位の含有量が5.0モル%以上であることにより、熱硬化性を高めて良好な硬化物を得ることができ、また、該含有量が25.0モル%以下であることにより、熱硬化後のビニル基残存量を低減することができる。ジビニル芳香族化合物に対応する繰り返し単位の含有量は7.0モル%以上であることが好ましく、また20.0モル%以下であることが好ましく、16.0モル%以下でもよい。 In the thermosetting resin according to this embodiment, the content of repeating units corresponding to the divinyl aromatic compound is preferably 5.0 to 25.0 mol%. That is, the content of the repeating unit corresponding to the divinyl aromatic compound is 5.0 mol % or more and 25.0 mol % or less based on 100 mol % of all repeating units constituting the vinyl copolymer. When the content of the repeating unit corresponding to the divinyl aromatic compound is 5.0 mol% or more, the thermosetting property can be enhanced to obtain a good cured product, and the content is 25.0 mol. % or less, it is possible to reduce the amount of vinyl groups remaining after heat curing. The content of repeating units corresponding to the divinyl aromatic compound is preferably 7.0 mol % or more, preferably 20.0 mol % or less, and may be 16.0 mol % or less.
 本実施形態に係る熱硬化性樹脂において、モノビニル芳香族化合物に対応する繰り返し単位の含有量は、特に限定されないが、ビニル共重合体を構成する全繰り返し単位を100モル%として、75.0~95.0モル%であることが好ましい。モノビニル芳香族化合物に対応する繰り返し単位の含有量は、より好ましくは80.0モル%以上であり、74.0モル%以上でもよく、また93.0モル%以下であることが好ましい。 In the thermosetting resin according to the present embodiment, the content of the repeating unit corresponding to the monovinyl aromatic compound is not particularly limited, but the total repeating unit constituting the vinyl copolymer is 75.0 to 75.0 mol%. It is preferably 95.0 mol %. The content of repeating units corresponding to the monovinyl aromatic compound is more preferably 80.0 mol % or more, may be 74.0 mol % or more, and is preferably 93.0 mol % or less.
 本実施形態に係る熱硬化性樹脂は、その末端に、下記一般式(1)で表される重合開始剤由来の構造、または一般式(2)で表される重合開始剤由来の構造の少なくとも一方を有することが好ましい。式(1)で表される重合開始剤は、汎用のアゾ系開始剤であるアゾビスイソブチロニトリル(AIBN)とは異なり、シアノ基を持たないアゾ系開始剤である。式(2)で表される重合開始剤は、ジアルキルパーオキサイドなどの有機過酸化物である。これらの重合開始剤は、末端に活性水素基などの極性基を有しないため、熱硬化性樹脂の誘電正接を低減することができる。
 R-N=N-R   (1)
 R-O-O-R   (2)
The thermosetting resin according to the present embodiment has at least a structure derived from a polymerization initiator represented by the following general formula (1) or a structure derived from a polymerization initiator represented by general formula (2) at its terminal It is preferable to have one. The polymerization initiator represented by formula (1) is an azo initiator that does not have a cyano group, unlike azobisisobutyronitrile (AIBN), which is a general-purpose azo initiator. The polymerization initiator represented by formula (2) is an organic peroxide such as dialkyl peroxide. Since these polymerization initiators do not have a polar group such as an active hydrogen group at the end, they can reduce the dielectric loss tangent of the thermosetting resin.
R 1 -N=N-R 2 (1)
R 3 —O—O—R 4 (2)
 式(1)および式(2)中、R、R、RおよびRは、それぞれ独立に一価の飽和炭化水素基または一価の芳香族炭化水素基を表し、ヘテロ原子を含まない。飽和炭化水素基の炭素数は、特に限定されないが、1~23であることが好ましく、より好ましくは4~13である。芳香族炭化水素基の炭素数は、特に限定されないが、6~23であることが好ましく、より好ましくは6~13である。 In formulas (1) and (2), R 1 , R 2 , R 3 and R 4 each independently represent a monovalent saturated hydrocarbon group or a monovalent aromatic hydrocarbon group containing a heteroatom. do not have. Although the number of carbon atoms in the saturated hydrocarbon group is not particularly limited, it is preferably 1-23, more preferably 4-13. Although the number of carbon atoms in the aromatic hydrocarbon group is not particularly limited, it is preferably 6-23, more preferably 6-13.
 飽和炭化水素基としては、分岐または直鎖の飽和脂肪族炭化水素基(アルキル基)でもよく、飽和脂環式炭化水素基でもよい。飽和炭化水素基の具体例としては、tert-ブチル基、tert-ペンチル基、tert-ヘキシル基、1,1,3,3-テトラメチルブチル基などのアルキル基、シクロへキシルなどの飽和脂環式炭化水素基が挙げられる。 The saturated hydrocarbon group may be a branched or linear saturated aliphatic hydrocarbon group (alkyl group) or a saturated alicyclic hydrocarbon group. Specific examples of saturated hydrocarbon groups include alkyl groups such as tert-butyl, tert-pentyl, tert-hexyl and 1,1,3,3-tetramethylbutyl, and saturated lipids such as cyclohexyl. A cyclic hydrocarbon group is mentioned.
 芳香族炭化水素基の具体例としては、フェニル基、トリル基、ナフチルなどのアリール基、クミル基、ベンジル基、フェネチルなどのアラルキル基が挙げられる。 Specific examples of the aromatic hydrocarbon group include aryl groups such as phenyl group, tolyl group and naphthyl group , and aralkyl groups such as cumyl group, benzyl group and phenethyl group .
 一実施形態において、R、R、RおよびRは、それぞれ独立に下記一般式(5)で表される基でもよい。
Figure JPOXMLDOC01-appb-C000003
In one embodiment, R 1 , R 2 , R 3 and R 4 may each independently be a group represented by the following general formula (5).
Figure JPOXMLDOC01-appb-C000003
 式(5)中、R、RおよびRは、それぞれ独立に一価の飽和炭化水素基または一価の芳香族炭化水素基を表す。より好ましくは、Rは炭素数1~20(より好ましくは炭素数1~10)の一価の飽和炭化水素基または炭素数6~20(より好ましくは炭素数6~10)の一価の芳香族炭化水素基を表し、RおよびRはメチル基を表す。R、RおよびR(好ましくはR)についての飽和炭化水素基としては、分岐でも直鎖でもよく、例えば、メチル基、エチル基、プロピル基、ブチル基、ヘプチル基、イソプロピル基、tert-ブチル基、2,2-ジメチルプロピル基などのアルキル基、シクロへキシル基などの飽和脂環式炭化水素基が挙げられる。R、RおよびR(好ましくはR)についての芳香族炭化水素としては、フェニル基、トリル基、ナフチル基等が挙げられる。 In formula (5), R 7 , R 8 and R 9 each independently represent a monovalent saturated hydrocarbon group or a monovalent aromatic hydrocarbon group. More preferably, R 7 is a monovalent saturated hydrocarbon group having 1 to 20 carbon atoms (more preferably 1 to 10 carbon atoms) or a monovalent saturated hydrocarbon group having 6 to 20 carbon atoms (more preferably 6 to 10 carbon atoms). Represents an aromatic hydrocarbon group, R 8 and R 9 represent a methyl group. Saturated hydrocarbon groups for R 7 , R 8 and R 9 (preferably R 7 ) may be branched or straight-chain, such as methyl, ethyl, propyl, butyl, heptyl, isopropyl, Alkyl groups such as a tert-butyl group and a 2,2-dimethylpropyl group, and saturated alicyclic hydrocarbon groups such as a cyclohexyl group can be mentioned. Aromatic hydrocarbons for R 7 , R 8 and R 9 (preferably R 7 ) include phenyl group, tolyl group, naphthyl group and the like.
 これらの重合開始剤を用いてラジカル重合によりビニル共重合体を合成した場合、通常、得られたビニル共重合体の両末端が該重合開始剤由来の構造となる。上記式(1)の重合開始剤を用いて重合した場合、上記のR-および/またはR-を両末端に持つビニル共重合体が得られる。すなわち、ビニル共重合体の両末端は、ともにR-でもよく、ともにR-でもよく、一端がR-で他端がR-でもよい。 When a vinyl copolymer is synthesized by radical polymerization using these polymerization initiators, both ends of the obtained vinyl copolymer usually have a structure derived from the polymerization initiator. When the polymerization initiator of the above formula (1) is used for polymerization, a vinyl copolymer having the above R 1 — and/or R 2 — at both ends is obtained. That is, both ends of the vinyl copolymer may be R 1 -, both ends may be R 2 -, or one end may be R 1 - and the other end may be R 2 - .
 一実施形態において、式(1)の重合開始剤としてRおよびRが上記式(5)で表される基を持つ重合開始剤を用いた場合、ビニル共重合体の両末端には上記式(5)で表される基が導入される。そのため、該ビニル共重合体は、下記式(6)で表される。
Figure JPOXMLDOC01-appb-C000004
In one embodiment, when a polymerization initiator having groups represented by the above formula (5) for R 1 and R 2 is used as the polymerization initiator of formula (1), both ends of the vinyl copolymer have the above A group represented by formula (5) is introduced. Therefore, the vinyl copolymer is represented by the following formula (6).
Figure JPOXMLDOC01-appb-C000004
 式(6)中、Rは式(3)において上述したとおりであり、Rは式(4)において上述したとおりであり、R、RおよびRは式(5)において上述したとおりである。なお、両末端のR、RおよびRは同一でも異なってもよい。mおよびnは、それぞれモノビニル芳香族化合物に対応する繰り返し単位とジビニル芳香族化合物に対応する繰り返し単位の繰り返し数を表し、それらの繰り返し単位はランダム配列でもよくブロック配列でもよいが、好ましくはランダム配列である。 In formula (6), R 5 is as described above for formula (3), R 6 is as described above for formula (4), and R 7 , R 8 and R 9 are as described above for formula (5). That's right. R 7 , R 8 and R 9 at both ends may be the same or different. m and n each represent the repeating number of the repeating unit corresponding to the monovinyl aromatic compound and the repeating unit corresponding to the divinyl aromatic compound. is.
 一方、上記式(2)の重合開始剤を用いて重合した場合、RO-および/またはRO-を両末端に持つビニル共重合体が得られる。すなわち、ビニル共重合体の両末端は、ともにRO-でもよく、ともにRO-でもよく、一端がRO-で他端がRO-でもよい。 On the other hand, when polymerization is performed using the polymerization initiator of the above formula (2), a vinyl copolymer having R 3 O-- and/or R 4 O-- at both ends is obtained. That is, both ends of the vinyl copolymer may be R 3 O--, both ends may be R 4 O--, or one end may be R 3 O-- and the other end may be R 4 O--.
 一実施形態において、式(2)の重合開始剤としてRおよびRが上記式(5)で表される基を持つ重合開始剤を用いた場合、下記式(7)で表されるビニル共重合体が得られる。
Figure JPOXMLDOC01-appb-C000005
In one embodiment, when a polymerization initiator having a group represented by the above formula (5) for R 3 and R 4 is used as the polymerization initiator of formula (2), vinyl represented by the following formula (7) A copolymer is obtained.
Figure JPOXMLDOC01-appb-C000005
 式(7)中、Rは式(3)において上述したとおりであり、Rは式(4)において上述したとおりであり、R、RおよびRは式(5)において上述したとおりである。なお、両末端のR、RおよびRは同一でも異なってもよい。mおよびnは、それぞれモノビニル芳香族化合物に対応する繰り返し単位とジビニル芳香族化合物に対応する繰り返し単位の繰り返し数を表し、それらの繰り返し単位はランダム配列でもよくブロック配列でもよいが、好ましくはランダム配列である。 In formula (7), R 5 is as described above in formula (3), R 6 is as described above in formula (4), and R 7 , R 8 and R 9 are as described above in formula (5). That's right. R 7 , R 8 and R 9 at both ends may be the same or different. m and n each represent the repeating number of the repeating unit corresponding to the monovinyl aromatic compound and the repeating unit corresponding to the divinyl aromatic compound. is.
 本実施形態に係る熱硬化性樹脂は、数平均分子量Mnが3千以上10万以下であることが好ましい。数平均分子量Mnが3千以上であることにより、重合開始剤由来の末端基の濃度を下げて誘電特性を向上することができる。また、数平均分子量Mnが10万以下であることにより、熱硬化性樹脂を溶液としたときの高粘度化を抑えて取り扱い性を向上することができる。また、分子量が大きいほど、熱硬化後のビニル基残存量が多くなる傾向がある。誘電特性の観点から、数平均分子量Mnは、より好ましくは7千以上であり、更に好ましくは1万以上であり、更に好ましくは1.5万以上であり、2万以上でもよい。取り扱い性およびビニル基残存量の観点より、数平均分子量Mnは、より好ましくは5万以下であり、更に好ましくは4万以下であり、3万以下でもよい。 The thermosetting resin according to this embodiment preferably has a number average molecular weight Mn of 3,000 or more and 100,000 or less. When the number average molecular weight Mn is 3,000 or more, the concentration of terminal groups derived from the polymerization initiator can be lowered to improve the dielectric properties. Further, when the number average molecular weight Mn is 100,000 or less, it is possible to suppress an increase in viscosity when the thermosetting resin is made into a solution, and to improve handleability. Also, the larger the molecular weight, the greater the amount of residual vinyl group after heat curing. From the viewpoint of dielectric properties, the number average molecular weight Mn is more preferably 7,000 or more, still more preferably 10,000 or more, still more preferably 15,000 or more, and may be 20,000 or more. The number average molecular weight Mn is more preferably 50,000 or less, still more preferably 40,000 or less, and may be 30,000 or less, from the viewpoint of handleability and residual vinyl group amount.
 本実施形態に係る熱硬化性樹脂は、重量平均分子量Mwが3千以上10万以下であることが好ましい。重量平均分子量Mwが3千以上であることにより、重合開始剤由来の末端基の濃度を下げて誘電特性を向上することができる。また、重量平均分子量Mwが10万以下であることにより、熱硬化性樹脂を溶液としたときの高粘度化を抑えて取り扱い性を向上することができ、ビニル基残存量を減らすことができる。誘電特性の観点から、重量平均分子量Mwは、より好ましくは1万以上であり、更に好ましくは2万以上であり、3万以上でもよく、4万以上でもよい。取り扱い性およびビニル基残存量の観点より、重量平均分子量Mwは、より好ましくは9万以下であり、更に好ましくは8万以下であり、7万以下でもよい。 The thermosetting resin according to this embodiment preferably has a weight average molecular weight Mw of 3,000 or more and 100,000 or less. When the weight-average molecular weight Mw is 3,000 or more, the concentration of terminal groups derived from the polymerization initiator can be lowered to improve the dielectric properties. In addition, when the weight average molecular weight Mw is 100,000 or less, it is possible to suppress the increase in viscosity when the thermosetting resin is made into a solution, improve the handleability, and reduce the amount of residual vinyl groups. From the viewpoint of dielectric properties, the weight average molecular weight Mw is more preferably 10,000 or more, more preferably 20,000 or more, may be 30,000 or more, or may be 40,000 or more. The weight average molecular weight Mw is more preferably 90,000 or less, still more preferably 80,000 or less, and may be 70,000 or less, from the viewpoint of handleability and residual vinyl group amount.
 本実施形態に係る熱硬化性樹脂において、数平均分子量Mnに対する重量平均分子量Mwの比である分子量分布Mw/Mnは、特に限定されないが、4.0以下であることが好ましく、より好ましくは1.2~3.5であり、更に好ましくは1.5~3.0である。 In the thermosetting resin according to the present embodiment, the molecular weight distribution Mw/Mn, which is the ratio of the weight average molecular weight Mw to the number average molecular weight Mn, is not particularly limited, but is preferably 4.0 or less, more preferably 1 .2 to 3.5, more preferably 1.5 to 3.0.
 ここで、数平均分子量Mnおよび重量平均分子量Mwは、ゲル浸透クロマトグラフィー(GPC)により測定されるポリスチレン換算の数平均分子量および重量平均分子量である。 Here, the number average molecular weight Mn and the weight average molecular weight Mw are polystyrene-equivalent number average molecular weight and weight average molecular weight measured by gel permeation chromatography (GPC).
 本実施形態に係る熱硬化性樹脂の製造方法は、特に限定されない。直鎖状のビニル共重合体を合成するための方法として、好ましい一実施形態に係る製造方法では、上記式(1)で表される重合開始剤または式(2)で表される重合開始剤の少なくとも一方を用いてビニルベンジルホスホニウム塩をモノビニル芳香族化合物と共重合させ、得られた共重合体をホルムアルデヒドと反応させる。但し、この製造方法に限定されるものではない。 The method for producing the thermosetting resin according to this embodiment is not particularly limited. As a method for synthesizing a linear vinyl copolymer, in a production method according to a preferred embodiment, the polymerization initiator represented by the above formula (1) or the polymerization initiator represented by formula (2) The vinylbenzyl phosphonium salt is copolymerized with a monovinyl aromatic compound using at least one of , and the resulting copolymer is reacted with formaldehyde. However, it is not limited to this manufacturing method.
 ビニルベンジルホスホニウム塩としては、ビニルベンジルホスホニウムハライドを用いることが好ましい。ビニルベンジルホスホニウム塩におけるホスホニウム基としては、例えば、トリアルキルホスホニウム、トリアリールホスホニウム、トリアラルキルホスホニウムなどの第四級ホスホニウム基が挙げられる。また、ホスホニウム基と塩を形成するハロゲンとしては、例えば塩素、臭素などが挙げられる。 As the vinylbenzylphosphonium salt, it is preferable to use a vinylbenzylphosphonium halide. Phosphonium groups in vinylbenzylphosphonium salts include, for example, quaternary phosphonium groups such as trialkylphosphonium, triarylphosphonium, and trialalkylphosphonium. Halogens that form salts with phosphonium groups include, for example, chlorine and bromine.
 ビニルベンジルホスホニウム塩をモノビニル芳香族化合物と共重合させる方法としては、公知のビニル重合法を用いることができる。重合開始剤として、上記式(1)および/または式(2)で表されるラジカル重合開始剤を用いることにより、ビニルベンジルホスホニウム塩に由来する繰り返し単位とモノビニル芳香族化合物に由来する繰り返し単位を有する共重合体が得られる。 As a method for copolymerizing the vinylbenzylphosphonium salt with the monovinyl aromatic compound, a known vinyl polymerization method can be used. By using a radical polymerization initiator represented by the above formula (1) and/or formula (2) as a polymerization initiator, repeating units derived from a vinylbenzylphosphonium salt and repeating units derived from a monovinyl aromatic compound are A copolymer having
 そして、得られた共重合体をホルムアルデヒドと反応させる方法としては、公知のウィッティッヒ反応を用いることができ、該共重合体を塩基で処理してホルムアルデヒドと反応させることにより、ホスホニウム基が外れてビニル基が導入される。 Then, as a method of reacting the obtained copolymer with formaldehyde, a known Wittig reaction can be used. groups are introduced.
 この製造方法であると、共重合工程ではビニルベンジルホスホニウム塩がモノビニルであるため、分岐を持たない直鎖状の共重合体が得られ、共重合後にビニルベンジルホスホニウム塩に由来する繰り返し単位にビニル基を導入するため、ジビニル芳香族化合物に対応する繰り返し単位を有するものでありながら、分岐のない直鎖状のビニル共重合体を得ることができる。 According to this production method, since the vinylbenzylphosphonium salt is monovinyl in the copolymerization step, a straight-chain copolymer having no branch is obtained, and after copolymerization, the repeating units derived from the vinylbenzylphosphonium salt have vinyl Since the group is introduced, a linear vinyl copolymer having no branch can be obtained while having repeating units corresponding to the divinyl aromatic compound.
 本実施形態に係る熱硬化性組成物は、上記熱硬化性樹脂を含むものである。熱硬化性組成物における熱硬化性樹脂の含有量は、当該組成物が熱により硬化する性質を有する限り、特に限定されない。例えば、熱硬化性組成物の固形分(後述する有機溶媒を含む場合は当該有機溶媒を除いた量であり、有機溶媒を含まない場合は当該組成物全体の量)100質量%に対して、1~99質量%でもよく、10~95質量%でもよい。 The thermosetting composition according to this embodiment contains the above thermosetting resin. The content of the thermosetting resin in the thermosetting composition is not particularly limited as long as the composition has the property of being cured by heat. For example, the solid content of the thermosetting composition (if it contains an organic solvent described later, it is the amount excluding the organic solvent, and if it does not contain the organic solvent, the total amount of the composition) 100% by mass, It may be 1 to 99% by mass, or 10 to 95% by mass.
 熱硬化性組成物には、上記熱硬化性樹脂の他に、例えば、他の熱硬化性樹脂(熱硬化性架橋剤)、熱可塑性樹脂、充填剤、難燃剤、硬化促進剤、重合開始剤、消泡剤、熱安定剤、帯電防止剤、紫外線吸収剤、染料や顔料等の着色剤、滑剤、分散剤などの種々の成分を含有してもよい。 In the thermosetting composition, in addition to the above thermosetting resins, for example, other thermosetting resins (thermosetting cross-linking agents), thermoplastic resins, fillers, flame retardants, curing accelerators, polymerization initiators , antifoaming agents, heat stabilizers, antistatic agents, ultraviolet absorbers, colorants such as dyes and pigments, lubricants, dispersants, and the like.
 また、熱硬化性組成物はその粘度を調整するために有機溶媒を含んでもよく、熱硬化性組成物は上記熱硬化性樹脂を含む溶液であってもよい。有機溶媒としては、上記熱硬化性樹脂を溶解させることができるものが用いられ、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン、酢酸エチル、酢酸プロピル、酢酸ブチル等のエステル、ジメチルアセトアミド、ジメチルホルムアミド等のアミド、トルエン、キシレン等の芳香族炭化水素などが挙げられ、これらをいずれか1種または2種以上組み合わせて用いることができる。 In addition, the thermosetting composition may contain an organic solvent to adjust its viscosity, and the thermosetting composition may be a solution containing the thermosetting resin. As the organic solvent, those capable of dissolving the above thermosetting resin are used. Amides such as formamide, aromatic hydrocarbons such as toluene and xylene, and the like can be mentioned, and these can be used singly or in combination of two or more.
 本実施形態の熱硬化性樹脂または熱硬化性組成物は、ビニル共重合体の分子鎖中にビニル基を有することから重合による架橋が可能であり、熱硬化により硬化物を得ることができる。該硬化物は誘電正接が低く誘電特性に優れるため、例えば、プリント基板材料、半導体封止材料などの電子材用途に用いることができる。すなわち、一実施形態に係る熱硬化性組成物は、電子材用熱硬化性組成物である。 The thermosetting resin or thermosetting composition of the present embodiment can be crosslinked by polymerization because it has a vinyl group in the molecular chain of the vinyl copolymer, and a cured product can be obtained by thermosetting. Since the cured product has a low dielectric loss tangent and excellent dielectric properties, it can be used for electronic materials such as printed circuit board materials and semiconductor sealing materials. That is, the thermosetting composition according to one embodiment is a thermosetting composition for electronic materials.
 プリント基板材料としては、片面基板、両面基板、多層基板、ビルドアップ基板などのリジッドプリント基板材料や、フィルム状ないしシート状のフレキシブルプリント基板材料などが挙げられる。また、誘電正接が低いことから高周波通信機器に用いられる高周波基板材料として好適に用いられる。 Examples of printed circuit board materials include rigid printed circuit board materials such as single-sided boards, double-sided boards, multilayer boards, and build-up boards, as well as film-like and sheet-like flexible printed circuit board materials. In addition, since it has a low dielectric loss tangent, it is suitably used as a high-frequency substrate material for high-frequency communication equipment.
 以下、実施例によってさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。  Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.
 <測定・評価方法>
 [スチレン/ジビニルベンゼンのモル比、ジビニルベンゼン比率]
 実施例1~13および比較例1~8で得た生成物について重水素化クロロホルムに溶解し、核磁気共鳴装置(JEOL製)によりH-NMR測定を行って、スチレンに対応する繰り返し単位とジビニルベンゼンに対応する繰り返し単位のモル比を求め、全繰り返し単位100モル%に対するスチレンに対応する繰り返し単位の含有量(スチレン比率)とジビニルベンゼンに対応する繰り返し単位の含有量(ジビニルベンゼン比率)を算出した。
<Measurement/evaluation method>
[Styrene/divinylbenzene molar ratio, divinylbenzene ratio]
The products obtained in Examples 1 to 13 and Comparative Examples 1 to 8 were dissolved in deuterated chloroform, and subjected to 1 H-NMR measurement using a nuclear magnetic resonance apparatus (manufactured by JEOL). The molar ratio of repeating units corresponding to divinylbenzene is obtained, and the content of repeating units corresponding to styrene (styrene ratio) and the content of repeating units corresponding to divinylbenzene (divinylbenzene ratio) with respect to 100 mol% of all repeating units are calculated. Calculated.
 [数平均分子量、重量平均分子量]
 実施例1~13および比較例1~8で得た生成物をテトラヒドロフランに溶解し、ポリスチレン系ゲルを充填剤とした4本のカラム(Shodex GPCカラム KF-601、KF-602、KF-603、KF-604、昭和電工製)を連結したゲル浸透クロマトグラフィー(GPC)(Prominence、島津製作所製)によりポリスチレン換算の数平均分子量Mn、重量平均分子量Mwを測定した。カラムオーブン温度40℃、THF流量0.6mL/min、試料濃度0.1質量%、試料注入量10μLとし、示差屈折率検出器(Shodex RI-504、昭和電工製)を用いた。
[Number average molecular weight, weight average molecular weight]
The products obtained in Examples 1 to 13 and Comparative Examples 1 to 8 were dissolved in tetrahydrofuran, and four columns (Shodex GPC columns KF-601, KF-602, KF-603, KF-604, manufactured by Showa Denko) was coupled with gel permeation chromatography (GPC) (Prominence, manufactured by Shimadzu Corporation) to measure the number average molecular weight Mn and weight average molecular weight Mw in terms of polystyrene. A column oven temperature of 40° C., a THF flow rate of 0.6 mL/min, a sample concentration of 0.1% by mass, and a sample injection amount of 10 μL were used, and a differential refractive index detector (Shodex RI-504, manufactured by Showa Denko) was used.
 [誘電率、誘電正接]
 実施例1~13および比較例1~8で得た生成物を試料として用いた。試験用単動圧縮成形機(安田精機製作所製)を用いて圧力10Pa、温度220℃で試料1.5gを15分間プレスし、30mm×30mm×厚さ1mmの平板を作成した。得られた平板を裁断して幅2mm、厚さ1mm、長さ30mmの試験片を作成し、空洞共振器法誘電率測定装置(KEYSIGHT製)を使用して、10GHzでの誘電率及び誘電正接を測定した。
[Permittivity, dissipation factor]
The products obtained in Examples 1-13 and Comparative Examples 1-8 were used as samples. Using a test single-acting compression molding machine (manufactured by Yasuda Seiki Seisakusho), 1.5 g of the sample was pressed at a pressure of 10 Pa and a temperature of 220° C. for 15 minutes to prepare a flat plate of 30 mm×30 mm×1 mm thickness. The obtained flat plate was cut into a test piece of width 2 mm, thickness 1 mm, and length 30 mm, and the dielectric constant and dielectric loss tangent at 10 GHz were measured using a cavity resonator method dielectric constant measurement device (manufactured by KEYSIGHT). was measured.
 [熱硬化性]
 実施例1~13および比較例1~8で得た生成物を試料として、示差走査熱量測定装置(リガク製)を用い、昇温速度10℃/分で室温から350℃まで昇温した。発熱ピークの発熱量が20J/g以上のものを「○」(熱硬化性良好)、20J/g未満のものを「×」(熱硬化性不良)とした。
[Thermosetting]
Using the products obtained in Examples 1 to 13 and Comparative Examples 1 to 8 as samples, a differential scanning calorimeter (manufactured by Rigaku) was used to raise the temperature from room temperature to 350° C. at a heating rate of 10° C./min. When the heat generation amount at the exothermic peak was 20 J/g or more, it was evaluated as "○" (good thermosetting), and when it was less than 20 J/g, it was evaluated as "X" (poor thermosetting).
 [ビニル基残存量]
 実施例1~13および比較例1~8で得た生成物と[誘電率、誘電正接]で作製した平板を試料として、フーリエ変換赤外分光光度計:Nicolet6700(Thermo Fisher Scientific製)を使用して、生成物と平板それぞれのビニル基ピーク面積(1620~1640cm-1)と芳香族ピーク面積(1420~1470cm-1)を測定した。測定したピーク面積から以下の〈式A〉によってプレス後の生成物のビニル基反応率を測定した。
〈式A〉: ビニル基反応率(%)={1-(平板のビニル基ピーク面積×生成物の芳香族ピーク面積)/(平板の芳香族ピーク面積×生成物のビニル基ピーク面積)}×100
 ジビニルベンゼン比率とビニル基反応率から以下の〈式B〉によってビニル基残存量を算出した。
〈式B〉: ビニル基残存量(モル%)=ジビニルベンゼン比率(モル%)×(100-ビニル基反応率(%))/100
 一般にビニル基残存量が多いとビニル基の酸化により生成物の耐久性が低下するため、ビニル基残存量が9モル%以上のものを「×」(残存ビニル基多数)、9モル%未満のものを「○」(残存ビニル基少量)とした。
[Vinyl group residual amount]
A Fourier transform infrared spectrophotometer: Nicolet 6700 (manufactured by Thermo Fisher Scientific) was used as a sample, using the products obtained in Examples 1 to 13 and Comparative Examples 1 to 8 and a flat plate prepared with [dielectric constant, dielectric loss tangent]. Then, the vinyl group peak area (1620-1640 cm -1 ) and the aromatic peak area (1420-1470 cm -1 ) of the product and the plate were measured. From the measured peak area, the vinyl group reaction rate of the product after pressing was measured according to the following <Formula A>.
<Formula A>: Vinyl group reaction rate (%) = {1-(vinyl group peak area of plate x aromatic peak area of product) / (aromatic peak area of plate x vinyl group peak area of product)} ×100
The residual vinyl group amount was calculated from the divinylbenzene ratio and the vinyl group reaction rate according to the following <Formula B>.
<Formula B>: Vinyl group residual amount (mol%) = divinylbenzene ratio (mol%) x (100 - vinyl group reaction rate (%)) / 100
In general, when the amount of residual vinyl groups is large, the durability of the product decreases due to oxidation of the vinyl groups. The sample was evaluated as "good" (a small amount of residual vinyl groups).
 (合成例1)化合物1:トリフェニルビニルベンジルホスホニウムクロライドの合成 ビニルベンジルクロライド(商品名:CMS-14、AGCセイミケミカル社製)1.5モル(228.9g)、トリフェニルホスフィン1.8モル(472.1g)、およびジメチルホルムアミド622.4gを2.0Lの反応器内に投入し、窒素条件下70℃で3時間反応させることで白色の固体が析出した。固体をアセトンで十分洗浄した後、92℃で減圧乾燥して化合物1を490g回収した。 (Synthesis Example 1) Compound 1: Synthesis of triphenylvinylbenzylphosphonium chloride Vinylbenzyl chloride (trade name: CMS-14, manufactured by AGC Seimi Chemical Co., Ltd.) 1.5 mol (228.9 g), triphenylphosphine 1.8 mol (472.1 g) and 622.4 g of dimethylformamide were charged into a 2.0 L reactor and reacted at 70° C. under nitrogen conditions for 3 hours to precipitate a white solid. After thoroughly washing the solid with acetone, it was dried under reduced pressure at 92° C. to recover 490 g of compound 1.
 (合成例2)共重合体Aの合成
 スチレン45g、13.8gの化合物1、2,2’-アゾビス(2,4,4-トリメチルペンタン)(商品名:VR-110、富士フィルム和光純薬製)0.44g、およびジメチルホルムアミド137.3gを、500mLの反応器内に投入し、窒素条件下120℃で3.5時間反応させて、共重合体Aをジメチルホルムアミド溶液として得た。
(Synthesis Example 2) Synthesis of copolymer A 45 g of styrene, 13.8 g of compound 1,2,2'-azobis(2,4,4-trimethylpentane) (trade name: VR-110, Fuji Film Wako Pure Chemical) 0.44 g of Co., Ltd.) and 137.3 g of dimethylformamide were charged into a 500 mL reactor and reacted at 120° C. for 3.5 hours under nitrogen conditions to obtain copolymer A as a dimethylformamide solution.
 (合成例3)共重合体Bの合成
 スチレン22.5g、14.9gの化合物1、2,2’-アゾビス(2,4,4-トリメチルペンタン)0.26g、およびジメチルホルムアミド87.4gを、300mLの反応器内に投入し、窒素条件下120℃で3時間反応させて、共重合体Bをジメチルホルムアミド溶液として得た。
(Synthesis Example 3) Synthesis of Copolymer B 22.5 g of styrene, 14.9 g of compound 1, 0.26 g of 2,2′-azobis(2,4,4-trimethylpentane), and 87.4 g of dimethylformamide were mixed. , into a 300 mL reactor and allowed to react at 120° C. for 3 hours under nitrogen conditions to obtain copolymer B as a dimethylformamide solution.
 (合成例4)共重合体Cの合成
 スチレン22.5g、22.4gの化合物1、2,2’-アゾビス(2,4,4-トリメチルペンタン)0.34g、およびジメチルホルムアミド104.8gを、500mLの反応器内に投入し、窒素条件下120℃で3時間反応させて、共重合体Cをジメチルホルムアミド溶液として得た。
(Synthesis Example 4) Synthesis of Copolymer C 22.5 g of styrene, 22.4 g of compound 1, 0.34 g of 2,2′-azobis(2,4,4-trimethylpentane), and 104.8 g of dimethylformamide were mixed. , into a 500 mL reactor and allowed to react at 120° C. for 3 hours under nitrogen conditions to obtain copolymer C as a dimethylformamide solution.
 (合成例5)共重合体Dの合成
 スチレン22.5g、6.9gの化合物1、2,2’-アゾビス(2,4,4-トリメチルペンタン)2.1g、およびジメチルホルムアミド68.6gを、500mLの反応器内に投入し、窒素条件下120℃で2時間反応させて、共重合体Dをジメチルホルムアミド溶液として得た。
(Synthesis Example 5) Synthesis of Copolymer D 22.5 g of styrene, 6.9 g of compound 1, 2,2′-azobis(2,4,4-trimethylpentane) 2.1 g, and 68.6 g of dimethylformamide were mixed. , into a 500 mL reactor and allowed to react at 120° C. for 2 hours under nitrogen conditions to obtain copolymer D as a dimethylformamide solution.
 (合成例6)共重合体Eの合成
 スチレン22.5g、15.0gの化合物1、2,2’-アゾビス(2,4,4-トリメチルペンタン)2.8g、およびジメチルホルムアミド87.4gを、500mLの反応器内に投入し、窒素条件下120℃で1.5時間反応させて、共重合体Eをジメチルホルムアミド溶液として得た。
(Synthesis Example 6) Synthesis of Copolymer E 22.5 g of styrene, 15.0 g of compound 1, 2.8 g of 2,2′-azobis(2,4,4-trimethylpentane), and 87.4 g of dimethylformamide were mixed. , and reacted at 120° C. for 1.5 hours under nitrogen conditions to obtain copolymer E as a dimethylformamide solution.
 (合成例7)共重合体Fの合成
 スチレン525.0g、160.9gの化合物1、ジターシャリーブチルパーオキサイド(商品名:パーブチルD、日油製)1.8g、およびジメチルホルムアミド1600.4gを、3.0Lの反応器内に投入し、窒素条件下132℃で7時間反応させて、共重合体Fをジメチルホルムアミド溶液として得た。
(Synthesis Example 7) Synthesis of Copolymer F 525.0 g of styrene, 160.9 g of compound 1, 1.8 g of ditertiarybutyl peroxide (trade name: Perbutyl D, manufactured by NOF Corporation), and 1600.4 g of dimethylformamide were mixed. , and reacted at 132° C. for 7 hours under nitrogen conditions to obtain a copolymer F as a dimethylformamide solution.
 (合成例8)共重合体Gの合成
 スチレン22.5g、15.0gの化合物1、ジターシャリーブチルパーオキサイド0.12g、およびジメチルホルムアミド87.5gを、500mLの反応器内に投入し、窒素条件下132℃で6時間反応させて、共重合体Gをジメチルホルムアミド溶液として得た。
(Synthesis Example 8) Synthesis of Copolymer G 22.5 g of styrene, 15.0 g of compound 1, 0.12 g of ditertiarybutyl peroxide, and 87.5 g of dimethylformamide were introduced into a 500 mL reactor, followed by nitrogen The reaction was carried out at 132° C. for 6 hours to obtain a copolymer G as a dimethylformamide solution.
 (合成例9)共重合体Hの合成
 スチレン343.6g、342.3gの化合物1、ジターシャリーブチルパーオキサイド1.8g、およびジメチルホルムアミド1600.4gを、3.0Lの反応器内に投入し、窒素条件下132℃で6時間反応させて、共重合体Hをジメチルホルムアミド溶液として得た。
(Synthesis Example 9) Synthesis of Copolymer H 343.6 g of styrene, 342.3 g of compound 1, 1.8 g of ditertiarybutyl peroxide, and 1600.4 g of dimethylformamide were charged into a 3.0 L reactor. , under nitrogen conditions at 132° C. for 6 hours to obtain copolymer H as a dimethylformamide solution.
 (合成例10)共重合体Iの合成
 スチレン525.0g、160.9gの化合物1、ジターシャリーブチルパーオキサイド15.1g、およびジメチルホルムアミド1600.4gを、3.0Lの反応器内に投入し、窒素条件下132℃で3時間反応させて、共重合体Iをジメチルホルムアミド溶液として得た。
(Synthesis Example 10) Synthesis of Copolymer I 525.0 g of styrene, 160.9 g of compound 1, 15.1 g of ditertiarybutyl peroxide, and 1600.4 g of dimethylformamide were charged into a 3.0 L reactor. , under nitrogen conditions at 132° C. for 3 hours to obtain copolymer I as a dimethylformamide solution.
 (合成例11)共重合体Jの合成
 スチレン22.5g、15.0gの化合物1、ジターシャリーブチルパーオキサイド0.46g、およびジメチルホルムアミド87.4gを、500mLの反応器内に投入し、窒素条件下132℃で6時間反応させて、共重合体Jをジメチルホルムアミド溶液として得た。
(Synthesis Example 11) Synthesis of Copolymer J 22.5 g of styrene, 15.0 g of compound 1, 0.46 g of ditertiarybutyl peroxide, and 87.4 g of dimethylformamide were introduced into a 500 mL reactor, followed by nitrogen The reaction was carried out at 132° C. for 6 hours to obtain copolymer J as a dimethylformamide solution.
 (合成例12)共重合体Kの合成
 スチレン45g、13.8gの化合物1、ジターシャリーへキシルパーオキサイド(商品名:パーへキシルD、日油製)0.20g、およびジメチルホルムアミド137.2gを、500mLの反応器内に投入し、窒素条件下122℃で7時間反応させて、共重合体Kをジメチルホルムアミド溶液として得た。
(Synthesis Example 12) Synthesis of Copolymer K 45 g of styrene, 13.8 g of Compound 1, 0.20 g of ditertiary hexyl peroxide (trade name: Perhexyl D, manufactured by NOF Corporation), and 137.2 g of dimethylformamide was charged into a 500 mL reactor and reacted at 122° C. for 7 hours under nitrogen conditions to obtain copolymer K as a dimethylformamide solution.
 (合成例13)共重合体Lの合成
 スチレン45g、13.8gの化合物1、ジターシャリーアミルパーオキサイド(商品名:ルぺロックスDTA、アルケマ吉富製)0.17g、およびジメチルホルムアミド137.2gを、500mLの反応器内に投入し、窒素条件下125℃で6時間反応させて、共重合体Lをジメチルホルムアミド溶液として得た。
(Synthesis Example 13) Synthesis of Copolymer L 45 g of styrene, 13.8 g of Compound 1, 0.17 g of ditertiary amyl peroxide (trade name: Luperox DTA, manufactured by Arkema Yoshitomi), and 137.2 g of dimethylformamide were mixed. , into a 500 mL reactor and allowed to react at 125° C. for 6 hours under nitrogen conditions to obtain copolymer L as a dimethylformamide solution.
 (合成例14)共重合体Mの合成
 スチレン20g、6.1gの化合物1、ジクミルパーオキサイド(ナカライテスク製)0.12g、およびジメチルホルムアミド61.0gを、300mLの反応器内に投入し、窒素条件下125℃で3.5時間反応させて、共重合体Mをジメチルホルムアミド溶液として得た。
(Synthesis Example 14) Synthesis of Copolymer M 20 g of styrene, 6.1 g of compound 1, 0.12 g of dicumyl peroxide (manufactured by Nacalai Tesque), and 61.0 g of dimethylformamide were charged into a 300 mL reactor. , under nitrogen conditions at 125° C. for 3.5 hours to obtain copolymer M as a dimethylformamide solution.
 (比較合成例1)共重合体Nの合成
 スチレン17.4g、2.7gの化合物1、2,2’-アゾビス(2,4,4-トリメチルペンタン)0.16g、およびジメチルホルムアミド46.1gを、300mLの反応器内に投入し、窒素条件下120℃で3時間反応させて、共重合体Nをジメチルホルムアミド溶液として得た。
(Comparative Synthesis Example 1) Synthesis of Copolymer N 17.4 g of styrene, 2.7 g of compound 1, 0.16 g of 2,2′-azobis(2,4,4-trimethylpentane), and 46.1 g of dimethylformamide was charged into a 300 mL reactor and reacted at 120° C. for 3 hours under nitrogen conditions to obtain copolymer N as a dimethylformamide solution.
 (比較合成例2)共重合体Oの合成
 スチレン20g、26.6gの化合物1、2,2’-アゾビス(2,4,4-トリメチルペンタン)0.35g、およびジメチルホルムアミド108.7gを、500mLの反応器内に投入し、窒素条件下120℃で2時間反応させて、共重合体Oをジメチルホルムアミド溶液として得た。
(Comparative Synthesis Example 2) Synthesis of Copolymer O 20 g of styrene, 26.6 g of compound 1, 0.35 g of 2,2'-azobis(2,4,4-trimethylpentane), and 108.7 g of dimethylformamide were It was charged into a 500 mL reactor and reacted at 120° C. for 2 hours under nitrogen conditions to obtain copolymer O as a dimethylformamide solution.
 (比較合成例3)共重合体Pの合成
 スチレン17.0g、2.7gの化合物1、ジターシャリーブチルパーオキサイド0.08g、およびジメチルホルムアミド46.0gを、500mLの反応器内に投入し、窒素条件下132℃で6時間反応させて、共重合体Pをジメチルホルムアミド溶液として得た。
(Comparative Synthesis Example 3) Synthesis of Copolymer P 17.0 g of styrene, 2.7 g of compound 1, 0.08 g of ditertiarybutyl peroxide, and 46.0 g of dimethylformamide were charged into a 500 mL reactor, A reaction was carried out at 132° C. for 6 hours under nitrogen conditions to obtain a copolymer P as a dimethylformamide solution.
 (比較合成例4)共重合体Qの合成
 スチレン552.12g、169.2gの化合物1、アゾビスイソブチロニトリル3.27g、およびジメチルホルムアミド1682.68gを、3.0Lの反応器内に投入し、窒素条件下70℃で9時間反応させた。この反応溶液を減圧濃縮した後、ジクロロメタンに溶解させ、大過剰のイソプロピルアルコール中に再沈殿した。次いで上澄みをデカンテーションし、残った固体を92℃で減圧乾燥することで共重合体Qを285.0g回収した。
(Comparative Synthesis Example 4) Synthesis of Copolymer Q 552.12 g of styrene, 169.2 g of Compound 1, 3.27 g of azobisisobutyronitrile, and 1682.68 g of dimethylformamide were placed in a 3.0 L reactor. It was charged and reacted at 70° C. under nitrogen conditions for 9 hours. This reaction solution was concentrated under reduced pressure, dissolved in dichloromethane, and reprecipitated in a large excess of isopropyl alcohol. Then, the supernatant was decanted, and the remaining solid was dried under reduced pressure at 92° C. to recover 285.0 g of copolymer Q.
 (比較合成例5)共重合体Rの合成
 スチレン110g、62.6gの化合物1、アゾビスイソブチロニトリル0.78g、およびジメチルホルムアミド258.9gを、1.0Lの反応器内に投入し、窒素条件下70℃で9時間反応させて、共重合体Rをジメチルホルムアミド溶液として得た。
(Comparative Synthesis Example 5) Synthesis of Copolymer R 110 g of styrene, 62.6 g of Compound 1, 0.78 g of azobisisobutyronitrile, and 258.9 g of dimethylformamide were charged into a 1.0 L reactor. , under nitrogen conditions at 70° C. for 9 hours to obtain copolymer R as a dimethylformamide solution.
 (比較合成例6)共重合体Sの合成
 スチレン142.7g、21.2gの化合物1、アゾビスイソブチロニトリル0.75g、およびジメチルホルムアミド245.9gを、1.0Lの反応器内に投入し、窒素条件下70℃で9時間反応させた。この反応溶液を減圧濃縮した後、ジクロロメタンに溶解させ、大過剰のイソプロピルアルコール中に再沈殿した。次いで上澄みをデカンテーションし、残った固体を92℃で減圧乾燥することで共重合体Sを102.4g回収した。
(Comparative Synthesis Example 6) Synthesis of Copolymer S 142.7 g of styrene, 21.2 g of Compound 1, 0.75 g of azobisisobutyronitrile, and 245.9 g of dimethylformamide were placed in a 1.0 L reactor. It was charged and reacted at 70° C. under nitrogen conditions for 9 hours. This reaction solution was concentrated under reduced pressure, dissolved in dichloromethane, and reprecipitated in a large excess of isopropyl alcohol. Then, the supernatant was decanted, and the remaining solid was dried under reduced pressure at 92° C. to recover 102.4 g of copolymer S.
 (比較合成例7)共重合体Tの合成
 スチレン55.2g、16.9gの化合物1、アゾビスイソブチロニトリル3.24g、およびジメチルホルムアミド108.17gを、500mLの反応器内に投入し、窒素条件下70℃で5時間反応させて共重合体Tをジメチルホルムアミド溶液として得た。
(Comparative Synthesis Example 7) Synthesis of Copolymer T 55.2 g of styrene, 16.9 g of Compound 1, 3.24 g of azobisisobutyronitrile, and 108.17 g of dimethylformamide were charged into a 500 mL reactor. , under nitrogen conditions at 70° C. for 5 hours to obtain a copolymer T as a dimethylformamide solution.
 (比較合成例8)共重合体Uの合成
 スチレン50.2g、50.0gの化合物1、アゾビスイソブチロニトリル0.45g、およびジメチルホルムアミド186.09gを、500mLの反応器内に投入し、窒素条件下68℃で8時間半反応させて共重合体Uをジメチルホルムアミド溶液として得た。
(Comparative Synthesis Example 8) Synthesis of Copolymer U 50.2 g of styrene, 50.0 g of Compound 1, 0.45 g of azobisisobutyronitrile, and 186.09 g of dimethylformamide were charged into a 500 mL reactor. , under nitrogen conditions at 68° C. for 8 hours and a half to obtain a copolymer U as a dimethylformamide solution.
 (実施例1)
 合成例2で得られた共重合体Aのジメチルホルムアミド溶液50.0g、37質量%ホルマリン8.3g、28質量%水酸化カリウム水溶液10.2g、およびテトラヒドロフラン71.8gを500mLの反応器内に投入し、室温で3時間反応させた。反応溶液をメタノールに再沈殿し、ろ過にて固体を取り出した後、ジクロロメタンに溶解させ、蒸留水で有機層を洗浄し、メタノール/水=7/3に再沈殿した。次いでろ過にて固体を取り出した後、92℃で減圧乾燥することで生成物1を回収した。生成物1のMnは25600、Mwは71300、スチレン比率は92.9モル%、ジビニルベンゼン比率は7.1モル%であった。
(Example 1)
50.0 g of the dimethylformamide solution of copolymer A obtained in Synthesis Example 2, 8.3 g of 37% by mass formalin, 10.2 g of 28% by mass potassium hydroxide aqueous solution, and 71.8 g of tetrahydrofuran were placed in a 500 mL reactor. It was put in and reacted at room temperature for 3 hours. The reaction solution was reprecipitated in methanol, the solid was taken out by filtration, dissolved in dichloromethane, the organic layer was washed with distilled water, and reprecipitated in methanol/water=7/3. Next, after removing the solid by filtration, the product 1 was recovered by drying under reduced pressure at 92°C. Product 1 had an Mn of 25,600, an Mw of 71,300, a styrene ratio of 92.9 mol%, and a divinylbenzene ratio of 7.1 mol%.
 (実施例2)
 合成例3で得られた共重合体Bのジメチルホルムアミド溶液120.0g、37質量%ホルマリン32.0g、28質量%水酸化カリウム水溶液39.5g、およびテトラヒドロフラン197.3gを1.0Lの反応器内に投入し、室温で4時間反応させた。反応溶液をメタノールに再沈殿し、ろ過にて固体を取り出した後、ジクロロメタンに溶解させ、蒸留水で有機層を洗浄し、メタノール/水=7/3に再沈殿した。次いでろ過にて固体を取り出した後、92℃で減圧乾燥することで生成物2を回収した。生成物2のMnは21800、Mwは47700、スチレン比率は84.8モル%、ジビニルベンゼン比率は15.2モル%であった。
(Example 2)
120.0 g of the dimethylformamide solution of copolymer B obtained in Synthesis Example 3, 32.0 g of 37% by mass formalin, 39.5 g of 28% by mass potassium hydroxide aqueous solution, and 197.3 g of tetrahydrofuran were placed in a 1.0 L reactor. and reacted at room temperature for 4 hours. The reaction solution was reprecipitated in methanol, the solid was taken out by filtration, dissolved in dichloromethane, the organic layer was washed with distilled water, and reprecipitated in methanol/water=7/3. Next, after removing the solid by filtration, the product 2 was recovered by drying under reduced pressure at 92°C. Product 2 had an Mn of 21800, an Mw of 47700, a styrene ratio of 84.8 mol % and a divinylbenzene ratio of 15.2 mol %.
 (実施例3)
 合成例4で得られた共重合体Cのジメチルホルムアミド溶液150.0g、37質量%ホルマリン50.5g、28質量%水酸化カリウム水溶液62.3g、およびテトラヒドロフラン254.4gを1.0Lの反応器内に投入し、室温で4時間反応させた。反応溶液をメタノールに再沈殿し、ろ過にて固体を取り出した後、ジクロロメタンに溶解させ、蒸留水で有機層を洗浄し、メタノール/水=7/3に再沈殿した。次いでろ過にて固体を取り出した後、92℃で減圧乾燥することで生成物3を回収した。生成物3のMnは21600、Mwは55500、スチレン比率は77.8モル%、ジビニルベンゼン比率は22.2モル%であった。
(Example 3)
150.0 g of the dimethylformamide solution of copolymer C obtained in Synthesis Example 4, 50.5 g of 37% by mass formalin, 62.3 g of 28% by mass potassium hydroxide aqueous solution, and 254.4 g of tetrahydrofuran were placed in a 1.0 L reactor. and reacted at room temperature for 4 hours. The reaction solution was reprecipitated in methanol, the solid was taken out by filtration, dissolved in dichloromethane, the organic layer was washed with distilled water, and reprecipitated in methanol/water=7/3. Next, after removing the solid by filtration, the product 3 was recovered by drying under reduced pressure at 92°C. Product 3 had an Mn of 21,600, an Mw of 55,500, a styrene ratio of 77.8 mol %, and a divinylbenzene ratio of 22.2 mol %.
 (実施例4)
 合成例5で得られた共重合体Dのジメチルホルムアミド溶液98.0g、37質量%ホルマリン15.6g、28質量%水酸化カリウム水溶液19.2g、およびテトラヒドロフラン159.8gを500mLの反応器内に投入し、室温で4時間反応させた。反応溶液をメタノールに再沈殿し、ろ過にて固体を取り出した後、ジクロロメタンに溶解させ、蒸留水で有機層を洗浄し、メタノール/水=7/3に再沈殿した。次いでろ過にて固体を取り出した後、92℃で減圧乾燥することで生成物4を回収した。生成物4のMnは7800、Mwは24200、スチレン比率は92.1モル%、ジビニルベンゼン比率は7.9モル%であった。
(Example 4)
98.0 g of the dimethylformamide solution of copolymer D obtained in Synthesis Example 5, 15.6 g of 37% by mass formalin, 19.2 g of 28% by mass potassium hydroxide aqueous solution, and 159.8 g of tetrahydrofuran were placed in a 500 mL reactor. It was put in and reacted at room temperature for 4 hours. The reaction solution was reprecipitated in methanol, the solid was taken out by filtration, dissolved in dichloromethane, the organic layer was washed with distilled water, and reprecipitated in methanol/water=7/3. Next, after removing the solid by filtration, the product 4 was recovered by drying under reduced pressure at 92°C. Product 4 had an Mn of 7800, an Mw of 24200, a styrene ratio of 92.1 mol% and a divinylbenzene ratio of 7.9 mol%.
 (実施例5)
 合成例6で得られた共重合体Eのジメチルホルムアミド溶液121.0g、37質量%ホルマリン33.5g、28質量%水酸化カリウム水溶液41.3g、およびテトラヒドロフラン204.0gを1.0Lの反応器内に投入し、室温で4時間反応させた。反応溶液をメタノールに再沈殿し、ろ過にて固体を取り出した後、ジクロロメタンに溶解させ、蒸留水で有機層を洗浄し、メタノール/水=7/3に再沈殿した。次いでろ過にて固体を取り出した後、92℃で減圧乾燥することで生成物5を回収した。生成物5のMnは7100、Mwは19900、スチレン比率は83.9モル%、ジビニルベンゼン比率は16.1モル%であった。
(Example 5)
121.0 g of the dimethylformamide solution of copolymer E obtained in Synthesis Example 6, 33.5 g of 37% by mass formalin, 41.3 g of 28% by mass aqueous potassium hydroxide solution, and 204.0 g of tetrahydrofuran were placed in a 1.0 L reactor. and reacted at room temperature for 4 hours. The reaction solution was reprecipitated in methanol, the solid was taken out by filtration, dissolved in dichloromethane, the organic layer was washed with distilled water, and reprecipitated in methanol/water=7/3. Next, after removing the solid by filtration, the product 5 was recovered by drying under reduced pressure at 92°C. Product 5 had an Mn of 7100, an Mw of 19900, a styrene ratio of 83.9 mol% and a divinylbenzene ratio of 16.1 mol%.
 (実施例6)
 合成例7で得られた共重合体Fのジメチルホルムアミド溶液1076.4g、37質量%ホルマリン191.5g、28質量%水酸化カリウム水溶液236.4g、およびテトラヒドロフラン1214.8gを3.0Lの反応器内に投入し、室温で4時間反応させた。反応溶液にジクロロメタンを加えた後メタノールに再沈殿し、ろ過にて固体を取り出した後、ジクロロメタンに溶解させ、蒸留水で有機層を洗浄し、メタノール/水=7/3に再沈殿した。次いでろ過にて固体を取り出した後、92℃で減圧乾燥することで生成物6を回収した。生成物6のMnは40000、Mwは88000、スチレン比率は91.1モル%、ジビニルベンゼン比率は8.9モル%であった。
(Example 6)
1076.4 g of the dimethylformamide solution of Copolymer F obtained in Synthesis Example 7, 191.5 g of 37% by mass formalin, 236.4 g of 28% by mass potassium hydroxide aqueous solution, and 1214.8 g of tetrahydrofuran were placed in a 3.0 L reactor. and reacted at room temperature for 4 hours. After adding dichloromethane to the reaction solution, the solid was reprecipitated in methanol, filtered to remove the solid, dissolved in dichloromethane, washed with distilled water, and reprecipitated in methanol/water=7/3. Next, after removing the solid by filtration, the product 6 was recovered by drying under reduced pressure at 92°C. The product 6 had an Mn of 40,000, an Mw of 88,000, a styrene ratio of 91.1 mol%, and a divinylbenzene ratio of 8.9 mol%.
 (実施例7)
 合成例8で得られた共重合体Gのジメチルホルムアミド溶液118.1g、37質量%ホルマリン26.6g、28質量%水酸化カリウム水溶液32.7g、およびテトラヒドロフラン123.2gを500mLの反応器内に投入し、室温で4時間反応させた。反応溶液をメタノールに再沈殿し、ろ過にて固体を取り出した後、ジクロロメタンに溶解させ、蒸留水で有機層を洗浄し、メタノール/水=7/3に再沈殿した。次いでろ過にて固体を取り出した後、92℃で減圧乾燥することで生成物7を回収した。生成物7のMnは35000、Mwは65400、スチレン比率は81.1モル%、ジビニルベンゼン比率は18.9モル%であった。
(Example 7)
118.1 g of the dimethylformamide solution of copolymer G obtained in Synthesis Example 8, 26.6 g of 37% by mass formalin, 32.7 g of 28% by mass potassium hydroxide aqueous solution, and 123.2 g of tetrahydrofuran were placed in a 500 mL reactor. It was put in and reacted at room temperature for 4 hours. The reaction solution was reprecipitated in methanol, the solid was taken out by filtration, dissolved in dichloromethane, the organic layer was washed with distilled water, and reprecipitated in methanol/water=7/3. Next, after removing the solid by filtration, the product 7 was recovered by drying under reduced pressure at 92°C. Product 7 had an Mn of 35000, an Mw of 65400, a styrene ratio of 81.1 mol % and a divinylbenzene ratio of 18.9 mol %.
 (実施例8)
 合成例9で得られた共重合体Hのジメチルホルムアミド溶液1400.0g、37質量%ホルマリン329.0g、28質量%水酸化カリウム水溶液406.1g、およびテトラヒドロフラン1000.0gを5.0Lの反応器内に投入し、室温で4時間反応させた。反応溶液にジクロロメタンを加えた後メタノールに再沈殿し、ろ過にて固体を取り出した後、ジクロロメタンに溶解させ、蒸留水で有機層を洗浄し、メタノール/水=7/3に再沈殿した。次いでろ過にて固体を取り出した後、92℃で減圧乾燥することで生成物8を回収した。生成物8のMnは39000、Mwは91000、スチレン比率は79.2モル%、ジビニルベンゼン比率は20.8モル%であった。
(Example 8)
1400.0 g of the dimethylformamide solution of copolymer H obtained in Synthesis Example 9, 329.0 g of 37% by mass formalin, 406.1 g of 28% by mass aqueous potassium hydroxide solution, and 1000.0 g of tetrahydrofuran were placed in a 5.0 L reactor. and reacted at room temperature for 4 hours. After adding dichloromethane to the reaction solution, the solid was reprecipitated in methanol, filtered to remove the solid, dissolved in dichloromethane, washed with distilled water, and reprecipitated in methanol/water=7/3. Next, after removing the solid by filtration, the product 8 was recovered by drying under reduced pressure at 92°C. The product 8 had an Mn of 39000, an Mw of 91000, a styrene ratio of 79.2 mol% and a divinylbenzene ratio of 20.8 mol%.
 (実施例9)
 合成例10で得られた共重合体Iのジメチルホルムアミド溶液1080.0g、37質量%ホルマリン191.4g、28質量%水酸化カリウム水溶液256.4g、およびテトラヒドロフラン1213.0gを3.0Lの反応器内に投入し、室温で4時間反応させた。反応溶液にジクロロメタンを加えた後メタノールに再沈殿し、ろ過にて固体を取り出した後、ジクロロメタンに溶解させ、蒸留水で有機層を洗浄し、メタノール/水=7/3に再沈殿した。次いでろ過にて固体を取り出した後、92℃で減圧乾燥することで生成物9を回収した。生成物9のMnは17000、Mwは47000、スチレン比率は92.5モル%、ジビニルベンゼン比率は7.5モル%であった。
(Example 9)
1080.0 g of the dimethylformamide solution of copolymer I obtained in Synthesis Example 10, 191.4 g of 37% by mass formalin, 256.4 g of 28% by mass potassium hydroxide aqueous solution, and 1213.0 g of tetrahydrofuran were placed in a 3.0 L reactor. and reacted at room temperature for 4 hours. After adding dichloromethane to the reaction solution, the solid was reprecipitated in methanol, filtered to remove the solid, dissolved in dichloromethane, washed with distilled water, and reprecipitated in methanol/water=7/3. Next, after removing the solid by filtration, the product 9 was recovered by drying under reduced pressure at 92°C. The product 9 had an Mn of 17,000, an Mw of 47,000, a styrene ratio of 92.5 mol%, and a divinylbenzene ratio of 7.5 mol%.
 (実施例10)
 合成例11で得られた共重合体Jのジメチルホルムアミド溶液124.9g、37質量%ホルマリン28.2g、28質量%水酸化カリウム水溶液34.4g、およびテトラヒドロフラン139.4gを500mLの反応器内に投入し、室温で4時間反応させた。反応溶液をメタノールに再沈殿し、ろ過にて固体を取り出した後、ジクロロメタンに溶解させ、蒸留水で有機層を洗浄し、メタノール/水=7/3に再沈殿した。次いでろ過にて固体を取り出した後、92℃で減圧乾燥することで生成物10を回収した。生成物10のMnは18300、Mwは45100、スチレン比率は81.8モル%、ジビニルベンゼン比率は18.2モル%であった。
(Example 10)
124.9 g of the dimethylformamide solution of copolymer J obtained in Synthesis Example 11, 28.2 g of 37% by mass formalin, 34.4 g of 28% by mass potassium hydroxide aqueous solution, and 139.4 g of tetrahydrofuran were placed in a 500 mL reactor. It was put in and reacted at room temperature for 4 hours. The reaction solution was reprecipitated in methanol, the solid was taken out by filtration, dissolved in dichloromethane, the organic layer was washed with distilled water, and reprecipitated in methanol/water=7/3. Next, after removing the solid by filtration, the product 10 was recovered by drying under reduced pressure at 92°C. Product 10 had an Mn of 18,300, an Mw of 45,100, a styrene ratio of 81.8 mol%, and a divinylbenzene ratio of 18.2 mol%.
 (実施例11)
 合成例12で得られた共重合体Kのジメチルホルムアミド溶液58.0g、37質量%ホルマリン4.8gおよび28質量%水酸化カリウム水溶液6.0gを500mLの反応器内に投入し、室温で4時間反応させた。反応溶液をメタノールに再沈殿し、ろ過にて固体を取り出した後、ジクロロメタンに溶解させ、蒸留水で有機層を洗浄し、メタノール/水=7/3に再沈殿した。次いでろ過にて固体を取り出した後、92℃で減圧乾燥することで生成物11を回収した。生成物11のMnは36000、Mwは64000、スチレン比率は92.2モル%、ジビニルベンゼン比率は7.8モル%であった。
(Example 11)
58.0 g of the dimethylformamide solution of the copolymer K obtained in Synthesis Example 12, 4.8 g of 37% by mass formalin and 6.0 g of 28% by mass potassium hydroxide aqueous solution were charged into a 500 mL reactor and stirred at room temperature for 4 hours. reacted over time. The reaction solution was reprecipitated in methanol, the solid was taken out by filtration, dissolved in dichloromethane, the organic layer was washed with distilled water, and reprecipitated in methanol/water=7/3. Next, after removing the solid by filtration, the product 11 was recovered by drying under reduced pressure at 92°C. Product 11 had an Mn of 36,000, an Mw of 64,000, a styrene ratio of 92.2 mol%, and a divinylbenzene ratio of 7.8 mol%.
 (実施例12)
 合成例13で得られた共重合体Lのジメチルホルムアミド溶液130.0g、37質量%ホルマリン20.7g、28質量%水酸化カリウム水溶液25.5gおよびテトラヒドロフラン223.9gを1.0Lの反応器内に投入し、室温で4時間反応させた。反応溶液をメタノールに再沈殿し、ろ過にて固体を取り出した後、ジクロロメタンに溶解させ、蒸留水で有機層を洗浄し、メタノール/水=7/3に再沈殿した。次いでろ過にて固体を取り出した後、92℃で減圧乾燥することで生成物12を回収した。生成物12のMnは24800、Mwは69000、スチレン比率は92.4モル%、ジビニルベンゼン比率は7.6モル%であった。
(Example 12)
130.0 g of the dimethylformamide solution of copolymer L obtained in Synthesis Example 13, 20.7 g of 37% by mass formalin, 25.5 g of 28% by mass potassium hydroxide aqueous solution and 223.9 g of tetrahydrofuran were placed in a 1.0 L reactor. and reacted at room temperature for 4 hours. The reaction solution was reprecipitated in methanol, the solid was taken out by filtration, dissolved in dichloromethane, the organic layer was washed with distilled water, and reprecipitated in methanol/water=7/3. Next, after removing the solid by filtration, the product 12 was recovered by drying under reduced pressure at 92°C. Product 12 had an Mn of 24,800, an Mw of 69,000, a styrene ratio of 92.4 mol%, and a divinylbenzene ratio of 7.6 mol%.
 (実施例13)
 合成例14で得られた共重合体Mのジメチルホルムアミド溶液87.1g、37質量%ホルマリン13.5g、28質量%水酸化カリウム水溶液16.7gおよびテトラヒドロフラン130.8gを500mLの反応器内に投入し、室温で4時間反応させた。反応溶液をメタノールに再沈殿し、ろ過にて固体を取り出した後、ジクロロメタンに溶解させ、蒸留水で有機層を洗浄し、メタノール/水=7/3に再沈殿した。次いでろ過にて固体を取り出した後、92℃で減圧乾燥することで生成物13を回収した。生成物13のMnは16800、Mwは41800、スチレン比率は91.2モル%、ジビニルベンゼン比率は8.8モル%であった。
(Example 13)
87.1 g of the dimethylformamide solution of copolymer M obtained in Synthesis Example 14, 13.5 g of 37% by mass formalin, 16.7 g of 28% by mass potassium hydroxide aqueous solution and 130.8 g of tetrahydrofuran were charged into a 500 mL reactor. and reacted at room temperature for 4 hours. The reaction solution was reprecipitated in methanol, the solid was taken out by filtration, dissolved in dichloromethane, the organic layer was washed with distilled water, and reprecipitated in methanol/water=7/3. Next, after removing the solid by filtration, the product 13 was recovered by drying under reduced pressure at 92°C. Product 13 had an Mn of 16800, an Mw of 41800, a styrene ratio of 91.2 mol% and a divinylbenzene ratio of 8.8 mol%.
 (比較例1)
 比較合成例1で得られた共重合体Nのジメチルホルムアミド溶液66.2g、37質量%ホルマリン5.5g、28質量%水酸化カリウム水溶液7.7gおよびテトラヒドロフラン103.2gを500mLの反応器内に投入し、室温で4時間反応させた。反応溶液をメタノールに再沈殿し、ろ過にて固体を取り出した後、ジクロロメタンに溶解させ、蒸留水で有機層を洗浄し、メタノール/水=7/3に再沈殿した。次いでろ過にて固体を取り出した後、92℃で減圧乾燥することで生成物14を回収した。生成物14のMnは22000、Mwは47500、スチレン比率は95.5モル%、ジビニルベンゼン比率は4.5モル%であった。
(Comparative example 1)
66.2 g of the dimethylformamide solution of copolymer N obtained in Comparative Synthesis Example 1, 5.5 g of 37% by mass formalin, 7.7 g of 28% by mass potassium hydroxide aqueous solution and 103.2 g of tetrahydrofuran were placed in a 500 mL reactor. It was put in and reacted at room temperature for 4 hours. The reaction solution was reprecipitated in methanol, the solid was taken out by filtration, dissolved in dichloromethane, the organic layer was washed with distilled water, and reprecipitated in methanol/water=7/3. Next, after removing the solid by filtration, the product 14 was recovered by drying under reduced pressure at 92°C. The product 14 had an Mn of 22000, an Mw of 47500, a styrene ratio of 95.5 mol% and a divinylbenzene ratio of 4.5 mol%.
 (比較例2)
 比較合成例2で得られた共重合体Oのジメチルホルムアミド溶液151.0g、37質量%ホルマリン59.8g、28質量%水酸化カリウム水溶液73.7gおよびテトラヒドロフラン269.4gを1.0Lの反応器内に投入し、室温で5時間反応させた。反応溶液をメタノールに再沈殿し、ろ過にて固体を取り出した後、ジクロロメタンに溶解させ、蒸留水で有機層を洗浄し、メタノール/水=7/3に再沈殿した。次いでろ過にて固体を取り出した後、92℃で減圧乾燥することで生成物15を回収した。生成物15のMnは12600、Mwは52200、スチレン比率は71.4モル%、ジビニルベンゼン比率は28.6モル%であった。
(Comparative example 2)
151.0 g of the dimethylformamide solution of copolymer O obtained in Comparative Synthesis Example 2, 59.8 g of 37% by mass formalin, 73.7 g of 28% by mass potassium hydroxide aqueous solution and 269.4 g of tetrahydrofuran were placed in a 1.0 L reactor. and reacted at room temperature for 5 hours. The reaction solution was reprecipitated in methanol, the solid was taken out by filtration, dissolved in dichloromethane, the organic layer was washed with distilled water, and reprecipitated in methanol/water=7/3. Next, after removing the solid by filtration, the product 15 was recovered by drying under reduced pressure at 92°C. Product 15 had an Mn of 12600, an Mw of 52200, a styrene ratio of 71.4 mol% and a divinylbenzene ratio of 28.6 mol%.
 (比較例3)
 比較合成例3で得られた共重合体Pのジメチルホルムアミド溶液65.7g、37質量%ホルマリン5.4g、28質量%水酸化カリウム水溶液7.1gおよびテトラヒドロフラン72.6gを500mLの反応器内に投入し、室温で5時間反応させた。反応溶液をメタノールに再沈殿し、ろ過にて固体を取り出した後、ジクロロメタンに溶解させ、蒸留水で有機層を洗浄し、メタノール/水=7/3に再沈殿した。次いでろ過にて固体を取り出した後、92℃で減圧乾燥することで生成物16を回収した。生成物16のMnは19700、Mwは52000、スチレン比率は95.4モル%、ジビニルベンゼン比率は4.6モル%であった。
(Comparative Example 3)
65.7 g of the dimethylformamide solution of copolymer P obtained in Comparative Synthesis Example 3, 5.4 g of 37% by mass formalin, 7.1 g of 28% by mass potassium hydroxide aqueous solution and 72.6 g of tetrahydrofuran were placed in a 500 mL reactor. It was put in and reacted at room temperature for 5 hours. The reaction solution was reprecipitated in methanol, the solid was taken out by filtration, dissolved in dichloromethane, the organic layer was washed with distilled water, and reprecipitated in methanol/water=7/3. Next, after removing the solid by filtration, the product 16 was recovered by drying under reduced pressure at 92°C. Product 16 had an Mn of 19700, an Mw of 52000, a styrene ratio of 95.4 mol% and a divinylbenzene ratio of 4.6 mol%.
 (比較例4)
 比較合成例4で得られた285.0gの共重合体Q、37質量%ホルマリン169.83g、28質量%水酸化カリウム水溶液209.66g、およびテトラヒドロフラン665.0gを、3Lの反応器内に投入し、室温で4時間反応させた。反応溶液を大過剰のメタノールに再沈殿し、ろ過にて固体を取り出した後、ジクロロメタンに溶解させ、蒸留水で有機層を洗浄し、大過剰のメタノール/水=7/3に再沈殿した。次いでろ過にて固体を取り出した後、92℃で減圧乾燥することで生成物17を回収した。生成物17のMnは24700、Mwは39800、スチレン比率は92.1モル%、ジビニルベンゼン比率は7.9モル%であった。
(Comparative Example 4)
285.0 g of copolymer Q obtained in Comparative Synthesis Example 4, 169.83 g of 37% by mass formalin, 209.66 g of 28% by mass potassium hydroxide aqueous solution, and 665.0 g of tetrahydrofuran were charged into a 3 L reactor. and reacted at room temperature for 4 hours. The reaction solution was reprecipitated in a large excess of methanol, the solid was filtered out, dissolved in dichloromethane, the organic layer was washed with distilled water, and reprecipitated in a large excess of methanol/water=7/3. Next, after removing the solid by filtration, the product 17 was recovered by drying under reduced pressure at 92°C. Product 17 had an Mn of 24700, an Mw of 39800, a styrene ratio of 92.1 mol% and a divinylbenzene ratio of 7.9 mol%.
 (比較例5)
 比較合成例5で得られた共重合体Rのジメチルホルムアミド溶液20g、37質量%ホルマリン3.8g、28質量%水酸化カリウム水溶液9.4g、およびジメチルホルムアミド24gを、500mLの反応器内に投入し、室温で1時間反応させた。析出した固体をジクロロメタンに溶解させ、イソプロピルアルコールに再沈殿し、ろ過にて固体を取り出した。再度ジクロロメタンに溶解させ、蒸留水で有機層を洗浄しメタノール/水=7/3に再沈殿した。次いでろ過にて固体を取り出した後、92℃で減圧乾燥することで生成物18を回収した。生成物18のMnは26600、Mwは48900、スチレン比率は85.3モル%、ジビニルベンゼン比率は14.7モル%であった。
(Comparative Example 5)
20 g of the dimethylformamide solution of copolymer R obtained in Comparative Synthesis Example 5, 3.8 g of 37% by mass formalin, 9.4 g of 28% by mass potassium hydroxide aqueous solution, and 24 g of dimethylformamide were charged into a 500 mL reactor. and reacted at room temperature for 1 hour. The precipitated solid was dissolved in dichloromethane, reprecipitated in isopropyl alcohol, and filtered to remove the solid. It was dissolved again in dichloromethane, and the organic layer was washed with distilled water and reprecipitated in methanol/water=7/3. Next, after removing the solid by filtration, the product 18 was recovered by drying under reduced pressure at 92°C. Product 18 had an Mn of 26,600, an Mw of 48,900, a styrene ratio of 85.3 mol%, and a divinylbenzene ratio of 14.7 mol%.
 (比較例6)
 比較合成例6で得られた6.00gの共重合体S、37質量%ホルマリン5.47g、28質量%水酸化カリウム水溶液6.00g、およびテトラヒドロフラン150gを、500mLの反応器内に投入し、室温で4時間反応させた。反応溶液をメタノールに再沈殿し、ろ過にて固体を取り出した後、92℃で減圧乾燥することで生成物19を回収した。生成物19のMnは24300、Mwは39200、スチレン比率は95.7モル%、ジビニルベンゼン比率は4.3モル%であった。
(Comparative Example 6)
6.00 g of copolymer S obtained in Comparative Synthesis Example 6, 5.47 g of 37% by mass formalin, 6.00 g of 28% by mass potassium hydroxide aqueous solution, and 150 g of tetrahydrofuran were charged into a 500 mL reactor, The reaction was allowed to proceed at room temperature for 4 hours. The reaction solution was reprecipitated in methanol, the solid was taken out by filtration, and the product 19 was recovered by drying under reduced pressure at 92°C. Product 19 had an Mn of 24,300, an Mw of 39,200, a styrene ratio of 95.7 mol %, and a divinylbenzene ratio of 4.3 mol %.
 (比較例7)
 比較合成例7で得られた共重合体Tのジメチルホルムアミド溶液29.7g、37質量%ホルマリン6.1g、28質量%水酸化カリウム水溶液7.6g、およびテトラヒドロフラン70gを、300mLの反応器内に投入し、室温で2時間半反応させた。反応溶液をメタノールに再沈殿し、ろ過にて固体を取り出した後、ジクロロメタンに溶解させ、蒸留水で有機層を洗浄し、メタノール/水=7/3に再沈殿した。次いでろ過にて固体を取り出した後、92℃で減圧乾燥することで生成物20を回収した。生成物20のMnは3400、Mwは8400、スチレン比率は91.9モル%、ジビニルベンゼン比率は8.1モル%であった。
(Comparative Example 7)
29.7 g of the dimethylformamide solution of copolymer T obtained in Comparative Synthesis Example 7, 6.1 g of 37% by mass formalin, 7.6 g of 28% by mass potassium hydroxide aqueous solution, and 70 g of tetrahydrofuran were placed in a 300 mL reactor. It was put in and reacted at room temperature for 2.5 hours. The reaction solution was reprecipitated in methanol, the solid was taken out by filtration, dissolved in dichloromethane, the organic layer was washed with distilled water, and reprecipitated in methanol/water=7/3. Next, after removing the solid by filtration, the product 20 was recovered by drying under reduced pressure at 92°C. Product 20 had an Mn of 3400, an Mw of 8400, a styrene ratio of 91.9 mol% and a divinylbenzene ratio of 8.1 mol%.
 (比較例8)
 比較合成例8で得られた共重合体Uのジメチルホルムアミド溶液280.0g、37質量%ホルマリン48.5g、28質量%水酸化カリウム水溶液59.5g、およびテトラヒドロフラン93.8gを1Lの反応器内に投入し、室温で7時間反応させた。反応溶液にジクロロメタンを加えた後メタノールに再沈殿し、ろ過にて固体を取り出した後、ジクロロメタンに溶解させ、蒸留水で有機層を洗浄し、メタノール/水=7/3に再沈殿した。次いでろ過にて固体を取り出した後、92℃で減圧乾燥することで生成物21を回収した。生成物21のMnは24200、Mwは43300、スチレン比率は75.0モル%、ジビニルベンゼン比率は25.0モル%であった。
(Comparative Example 8)
280.0 g of the dimethylformamide solution of copolymer U obtained in Comparative Synthesis Example 8, 48.5 g of 37% by mass formalin, 59.5 g of 28% by mass potassium hydroxide aqueous solution, and 93.8 g of tetrahydrofuran were placed in a 1 L reactor. and reacted at room temperature for 7 hours. After adding dichloromethane to the reaction solution, the solid was reprecipitated in methanol, filtered to remove the solid, dissolved in dichloromethane, washed with distilled water, and reprecipitated in methanol/water=7/3. Next, after removing the solid by filtration, the product 21 was recovered by drying under reduced pressure at 92°C. Product 21 had an Mn of 24200, an Mw of 43300, a styrene ratio of 75.0 mol% and a divinylbenzene ratio of 25.0 mol%.
 実施例1~13および比較例1~8で得られた生成物について、誘電率、誘電正接、熱硬化性およびビニル基残存量を評価した。結果を下記表1~5に示す。 The products obtained in Examples 1 to 13 and Comparative Examples 1 to 8 were evaluated for dielectric constant, dielectric loss tangent, thermosetting property, and residual vinyl group amount. The results are shown in Tables 1-5 below.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表4,5に示すように、比較例1,3および比較例6では、ジビニルベンゼン比率が低く、熱硬化性が不十分であり、誘電率・誘電正接評価用の試験片を作製できなかった。そのため、誘電率および誘電正接は測定しておらず、ビニル基残存量についても評価していない。 As shown in Tables 4 and 5, in Comparative Examples 1 and 3 and Comparative Example 6, the ratio of divinylbenzene was low, the thermosetting property was insufficient, and test pieces for dielectric constant/dielectric loss tangent evaluation could not be produced. . Therefore, the dielectric constant and dielectric loss tangent were not measured, and the residual vinyl group amount was not evaluated.
 比較例2では、ジビニルベンゼン比率が高く、そのため未反応のビニル基残存量に劣っていた。 In Comparative Example 2, the ratio of divinylbenzene was high, so the amount of residual unreacted vinyl groups was inferior.
 比較例4,5および比較例7,8では、共重合体を合成する際にアゾビスイソブチロニトリルを重合開始剤として使用したため、生成物中のシアノ基の存在により誘電正接に劣っていた。 In Comparative Examples 4 and 5 and Comparative Examples 7 and 8, since azobisisobutyronitrile was used as a polymerization initiator when synthesizing the copolymer, the dielectric loss tangent was inferior due to the presence of cyano groups in the product. .
 これに対し、実施例1~13の生成物であると、ジビニルベンゼン比率が規定範囲内にあるため、熱硬化性に優れるとともに、比較例2に比べてビニル基残存量が低いものであった。また、実施例1~13の生成物は、上記式(1)または式(2)の重合開始剤由来の末端構造を持つ直鎖状のビニル共重合体であり、末端にシアノ基がないため、比較例4,5および比較例7,8の生成物に比べて誘電正接が低く、誘電特性に優れていた。また、実施例1~13の生成物では、熱可塑性樹脂や架橋剤を併用せずとも自立する程の十分なシートを成形することができ、成形性に優れていた。 On the other hand, the products of Examples 1 to 13 had a divinylbenzene ratio within the specified range, so that they had excellent thermosetting properties and had a lower residual vinyl group amount than Comparative Example 2. . In addition, the products of Examples 1 to 13 are linear vinyl copolymers having a terminal structure derived from the polymerization initiator of the above formula (1) or formula (2), and there is no cyano group at the terminal. , Comparative Examples 4 and 5 and Comparative Examples 7 and 8, the dielectric loss tangent was low and the dielectric properties were excellent. In addition, the products of Examples 1 to 13 were excellent in formability, as they could be formed into sheets sufficient to stand on their own without the combined use of a thermoplastic resin and a cross-linking agent.
 式(1)の重合開始剤を用いた実施例1~5と式(2)の重合開始剤を用いた実施例6~13とを対比したところ、実施例1~5の方がより誘電正接が低い傾向を示した。これは、式(2)の重合開始剤を用いた場合、末端にエーテル結合が導入されるのに対し、式(1)ではヘテロ原子が導入されないためと考えられる。 When comparing Examples 1 to 5 using the polymerization initiator of formula (1) and Examples 6 to 13 using the polymerization initiator of formula (2), Examples 1 to 5 have a higher dielectric loss tangent tended to be low. This is probably because the polymerization initiator of formula (2) introduces an ether bond at the terminal, whereas the heteroatom is not introduced in formula (1).
 なお、明細書に記載の種々の数値範囲は、それぞれそれらの上限値と下限値を任意に組み合わせることができ、それら全ての組み合わせが好ましい数値範囲として本明細書に記載されているものとする。また、「X~Y」との数値範囲の記載は、X以上Y以下を意味する。 It should be noted that the various numerical ranges described in the specification can be arbitrarily combined with their upper and lower limits, and all combinations thereof are described in this specification as preferred numerical ranges. Further, the description of the numerical range "X to Y" means X or more and Y or less.
 以上、本発明のいくつかの実施形態を説明したが、これら実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその省略、置き換え、変更などは、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although several embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. These embodiments, their omissions, replacements, modifications, etc., are included in the invention described in the scope of claims and equivalents thereof, as well as being included in the scope and gist of the invention.

Claims (7)

  1.  モノビニル芳香族化合物に対応する繰り返し単位およびジビニル芳香族化合物に対応する繰り返し単位を有し、前記ジビニル芳香族化合物に対応する繰り返し単位の含有量が5.0~25.0モル%である、直鎖状のビニル共重合体であって、その末端に、一般式(1):R-N=N-Rで表される重合開始剤由来の構造、または一般式(2):R-O-O-Rで表される重合開始剤由来の構造の少なくとも一方を有し、一般式(1)および(2)中のR、R、RおよびRは、それぞれ独立に一価の飽和炭化水素基または一価の芳香族炭化水素基を表す、熱硬化性樹脂。 It has a repeating unit corresponding to a monovinyl aromatic compound and a repeating unit corresponding to a divinyl aromatic compound, and the content of the repeating unit corresponding to the divinyl aromatic compound is 5.0 to 25.0 mol%. A chain-like vinyl copolymer having a structure derived from a polymerization initiator represented by general formula (1): R 1 —N=N—R 2 or general formula (2): R 3 at its terminal having at least one structure derived from a polymerization initiator represented by —O—O—R 4 , and R 1 , R 2 , R 3 and R 4 in general formulas (1) and (2) are each independent A thermosetting resin in which represents a monovalent saturated hydrocarbon group or a monovalent aromatic hydrocarbon group.
  2.  前記一般式(1)で表される重合開始剤または前記一般式(2)で表される重合開始剤の少なくとも一方を用いてビニルベンジルホスホニウム塩をモノビニル芳香族化合物と共重合させて得られる共重合体と、ホルムアルデヒドとを反応させて得られる構造を有する、請求項1に記載の熱硬化性樹脂。 A copolymer obtained by copolymerizing a vinylbenzylphosphonium salt with a monovinyl aromatic compound using at least one of the polymerization initiator represented by the general formula (1) and the polymerization initiator represented by the general formula (2) 2. The thermosetting resin according to claim 1, which has a structure obtained by reacting a polymer with formaldehyde.
  3.  前記モノビニル芳香族化合物に対応する繰り返し単位および前記ジビニル芳香族化合物に対応する繰り返し単位を有するランダム共重合体である、請求項1または2に記載の熱硬化性樹脂。 The thermosetting resin according to claim 1 or 2, which is a random copolymer having repeating units corresponding to the monovinyl aromatic compound and repeating units corresponding to the divinyl aromatic compound.
  4.  数平均分子量Mnおよび重量平均分子量Mwがそれぞれ3千以上10万以下である、請求項1~3のいずれか1項に記載の熱硬化性樹脂。 The thermosetting resin according to any one of claims 1 to 3, wherein the number average molecular weight Mn and the weight average molecular weight Mw are each 3,000 or more and 100,000 or less.
  5.  請求項1~4のいずれか1項に記載の熱硬化性樹脂を硬化してなる硬化物。 A cured product obtained by curing the thermosetting resin according to any one of claims 1 to 4.
  6.  請求項1~4のいずれか1項に記載の熱硬化性樹脂を含む熱硬化性組成物。 A thermosetting composition containing the thermosetting resin according to any one of claims 1 to 4.
  7.  プリント基板材料である請求項6に記載の熱硬化性組成物。

     
    7. The thermosetting composition according to claim 6, which is a printed circuit board material.

PCT/JP2022/038299 2021-10-20 2022-10-14 Thermosetting resin and cured product thereof WO2023068174A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280059685.XA CN117897418A (en) 2021-10-20 2022-10-14 Thermosetting resin and cured product thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-171837 2021-10-20
JP2021171837A JP7017662B1 (en) 2021-10-20 2021-10-20 Thermosetting resin and its cured product

Publications (1)

Publication Number Publication Date
WO2023068174A1 true WO2023068174A1 (en) 2023-04-27

Family

ID=80844057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038299 WO2023068174A1 (en) 2021-10-20 2022-10-14 Thermosetting resin and cured product thereof

Country Status (4)

Country Link
JP (1) JP7017662B1 (en)
CN (1) CN117897418A (en)
TW (1) TW202317649A (en)
WO (1) WO2023068174A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7440685B1 (en) 2023-03-27 2024-02-28 第一工業製薬株式会社 Thermosetting resin, its cured product and thermosetting composition
JP7440684B1 (en) 2023-03-27 2024-02-28 第一工業製薬株式会社 Thermosetting resin, its cured product and thermosetting composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58215404A (en) * 1982-05-28 1983-12-14 ザ・グツドイヤ−・タイヤ・アンド・ラバ−・カンパニ− Manufacture of side group unsaturation- containing polymer
JPH03103864A (en) * 1989-09-19 1991-04-30 Canon Inc Toner for developing positive chargeable electrostatic charge image
JP2002249531A (en) * 2001-02-27 2002-09-06 Hitachi Ltd Low dielectric loss tangent resin composition, curable film, cured product, electrical part using the same, and its manufacturing method
JP2019178310A (en) * 2018-03-30 2019-10-17 日鉄ケミカル&マテリアル株式会社 Curable resin composition, cured article thereof, curable composite material, metal foil with resin, and resin material for circuit board material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3103864B2 (en) 1994-04-25 2000-10-30 富士写真フイルム株式会社 Magnetic recording media

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58215404A (en) * 1982-05-28 1983-12-14 ザ・グツドイヤ−・タイヤ・アンド・ラバ−・カンパニ− Manufacture of side group unsaturation- containing polymer
JPH03103864A (en) * 1989-09-19 1991-04-30 Canon Inc Toner for developing positive chargeable electrostatic charge image
JP2002249531A (en) * 2001-02-27 2002-09-06 Hitachi Ltd Low dielectric loss tangent resin composition, curable film, cured product, electrical part using the same, and its manufacturing method
JP2019178310A (en) * 2018-03-30 2019-10-17 日鉄ケミカル&マテリアル株式会社 Curable resin composition, cured article thereof, curable composite material, metal foil with resin, and resin material for circuit board material

Also Published As

Publication number Publication date
CN117897418A (en) 2024-04-16
JP2023061730A (en) 2023-05-02
TW202317649A (en) 2023-05-01
JP7017662B1 (en) 2022-02-08

Similar Documents

Publication Publication Date Title
WO2023068174A1 (en) Thermosetting resin and cured product thereof
US8784682B2 (en) Thermosetting composition and printed circuit board using the same
US7375155B2 (en) Low dielectric loss tangent resin composition, curable film and cured product, electrical part using the same and method for production thereof
WO2022065269A1 (en) Thermosetting resin and cured object obtained therefrom
TW201441277A (en) Polyphenylene ether oligomer and article employing the same
JP2019182989A (en) Modified polyphenylene ether resin-based high molecular copolymer compound, terminal-modified polymer compound obtained by using said high molecular copolymer compound, and resin composition containing these compounds
JP2021063182A (en) Polymer compound, and resin composition containing the compound
JP7440684B1 (en) Thermosetting resin, its cured product and thermosetting composition
JP7440685B1 (en) Thermosetting resin, its cured product and thermosetting composition
TW202030235A (en) Random copolymer compound, terminal-modified polymer compound and resin composition containing these compounds
WO2023286713A1 (en) Novel polymer, resin composition including same, and molded body thereof
JP7325382B2 (en) Curable polymer compound and resin composition containing the compound
WO2019203112A1 (en) Random copolymer compound, terminal-modified polymer compound, and resin composition including said compounds
JP7336056B1 (en) Curable polymer compound and resin composition containing the compound
WO2024101056A1 (en) Resin composition, and prepreg, resin-equipped film, resin-equipped metal foil, metal-clad laminated plate, and wiring board using said resin composition
TWI822176B (en) Novel (meth)acrylamide-based polymer, resin composition containing the same, and molded article thereof
WO2023210338A1 (en) Curable polymer, curable composition, prepreg, layered product, metal-clad layered board, and wiring board
KR20230154174A (en) Resin composition containing a curable polymer compound
JP2022030396A (en) Curable polymer compound, and resin composition containing the compound
JP2021193166A (en) Thermosetting polymer compound, and resin composition containing the compound
JP2023069669A (en) Resin composition including curable compound
JP2023056332A (en) Curable polymer compound, and resin composition comprising the same
JP2024002759A (en) Thermosetting resin composition and molding thereof
JP2021075664A (en) Low dielectric loss tangent resin composition
JP2021105070A (en) Random copolymer compound, terminal-modified polymer compound and resin composition containing these compounds

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22883478

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280059685.X

Country of ref document: CN