WO2023067736A1 - SiC単結晶基板及びその製造方法 - Google Patents

SiC単結晶基板及びその製造方法 Download PDF

Info

Publication number
WO2023067736A1
WO2023067736A1 PCT/JP2021/038798 JP2021038798W WO2023067736A1 WO 2023067736 A1 WO2023067736 A1 WO 2023067736A1 JP 2021038798 W JP2021038798 W JP 2021038798W WO 2023067736 A1 WO2023067736 A1 WO 2023067736A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
sic single
sic
crystal substrate
point
Prior art date
Application number
PCT/JP2021/038798
Other languages
English (en)
French (fr)
Inventor
史恭 野崎
潔 松島
潤 吉川
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2022513335A priority Critical patent/JP7339434B1/ja
Priority to CN202180099091.7A priority patent/CN117425752A/zh
Priority to PCT/JP2021/038798 priority patent/WO2023067736A1/ja
Publication of WO2023067736A1 publication Critical patent/WO2023067736A1/ja
Priority to US18/410,216 priority patent/US20240141544A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy

Definitions

  • the present invention relates to a SiC single crystal substrate and its manufacturing method.
  • SiC silicon carbide
  • SiC power devices power semiconductor devices using SiC materials
  • SiC power devices are superior to those using Si semiconductors in terms of miniaturization, low power consumption, and high efficiency, so they are expected to be used in various applications.
  • SiC power devices converters, inverters, on-board chargers, etc. for electric vehicles (EV) and plug-in hybrid vehicles (PHEV) can be made smaller and more efficient.
  • EV electric vehicles
  • PHEV plug-in hybrid vehicles
  • Patent Document 1 Japanese Patent No. 3248071 discloses that a composite obtained by providing a SiC polycrystal on a SiC single crystal is heat-treated to cause a solid phase transformation of the SiC polycrystal. It is disclosed that a SiC single crystal with few micropipes can be obtained by this.
  • Patent Document 2 Japanese Patent No. 4069508 discloses a method for producing a SiC single crystal with closed micropipes, characterized by embedding the SiC single crystal in SiC powder and heat-treating it. .
  • Patent Literature 1 does not address the reduction of defects other than micropipes, and also has the problem that the substrate tends to warp.
  • Patent Document 2 deals with reduction of micropipes, there is a problem that dislocations other than micropipes cannot be reduced. Therefore, it is desired to reduce the defects in the SiC wafer, especially the basal plane dislocations called device killer defects.
  • the present inventors recently discovered that by heat-treating a SiC single crystal as a seed crystal and a SiC powder layer in contact with each other and with a small temperature gradient, the basal plane dislocation density is low and warp is reduced. It was found that a SiC single crystal substrate with a small amount can be manufactured.
  • an object of the present invention is to provide a SiC single crystal substrate with a low basal plane dislocation density and a small amount of warpage, and a method for manufacturing the same.
  • a SiC single crystal as a seed crystal and a SiC powder layer in contact with each other in a container; a step of placing the container in an effective heating zone within a firing furnace, the temperature range being controlled within ⁇ 50° C. of a set temperature, and performing heat treatment, thereby growing a SiC single crystal on the seed crystal;
  • a method for manufacturing a SiC single crystal substrate comprising:
  • a SiC single crystal having a basal plane dislocation density of 0 to 1.0 ⁇ 10 2 cm ⁇ 2 on at least one surface and a substrate warp amount of 0 to 40 ⁇ m a substrate,
  • the amount of warp is obtained by drawing two straight lines X and Y perpendicular to each other that pass through a point G, which is the center of gravity of the SiC single crystal substrate, in a plan view figure when the surface of the SiC single crystal substrate is viewed in plan.
  • the SiC single crystal substrate Among the line segments extended perpendicular to the line segment AB from any point on the curve AB between the point A and the point B on the surface, the distance of the line segment is the longest A point P on the curve AB is determined, (ii) the distance between the line segment AB and the point P is set as a warpage amount ⁇ , and (iii) the distance between the points C and D on the surface of the SiC single crystal substrate is Among the line segments extended perpendicular to the line segment CD from an arbitrary point on the curve CD between iv) A SiC single crystal substrate defined as an arithmetic mean value of (v) the warpage amounts ⁇ and ⁇ , where ⁇ is the distance between the line segment CD and the point R.
  • FIG. 4 is a schematic cross-sectional view showing one mode of arrangement of a SiC powder layer and seed crystals in a container;
  • FIG. 4 is a schematic cross-sectional view showing another form of arrangement of SiC powder layers and seed crystals in a container;
  • FIG. 4 is a schematic cross-sectional view showing another form of arrangement of SiC powder layers and seed crystals in a container;
  • FIG. 4 is a schematic cross-sectional view showing another form of arrangement of SiC powder layers and seed crystals in a container;
  • FIG. 4 is a schematic cross-sectional view showing one mode of arrangement of a SiC powder layer, seed crystals, and a dense body in a container;
  • FIG. 4 is a schematic cross-sectional view showing one mode of arrangement of a SiC powder layer, seed crystals, and a dense body in a container;
  • FIG. 4 is a schematic cross-sectional view showing another form of arrangement of a SiC powder layer, seed crystals, and a dense body in a container;
  • FIG. 4 is a schematic cross-sectional view showing another form of arrangement of a SiC powder layer, seed crystals, and a dense body in a container;
  • FIG. 4 is a schematic cross-sectional view showing another form of arrangement of a SiC powder layer, seed crystals, and a dense body in a container;
  • FIG. 4 is a schematic cross-sectional view showing another form of arrangement of a SiC powder layer, seed crystals, and a dense body in a container;
  • 2 is a top view of SiC single crystal substrate 10 for explaining a method for measuring the amount of warpage of SiC single crystal substrate 10.
  • FIG. 2 is a schematic cross-sectional view of SiC single crystal substrate 10 for explaining a method for measuring the amount of warpage of SiC single crystal substrate 10;
  • FIG. 2 is a schematic cross-sectional view of SiC single crystal substrate 10 for explaining a method for measuring the amount of warpage of SiC single crystal substrate 10;
  • the present invention relates to a method for manufacturing a SiC single crystal substrate.
  • a SiC single crystal as a seed crystal and a SiC powder layer are arranged in a container while being in contact with each other.
  • the container is placed in an effective heating zone within the firing furnace, the temperature being controlled within ⁇ 50° C. of the set temperature, and heat treatment is performed, thereby growing a SiC single crystal on the seed crystal.
  • SiC single crystal as the seed crystal and the SiC powder layer in contact with each other and with a small temperature gradient, SiC with a low basal plane dislocation density and a small amount of warpage can be obtained.
  • Single crystal substrates can be produced.
  • the method for manufacturing a SiC single crystal substrate includes (1) arranging a seed crystal and a SiC powder layer, and (2) performing heat treatment to grow a SiC single crystal.
  • a SiC single crystal as a seed crystal and a SiC powder layer are arranged in a container while being in contact with each other.
  • the seed crystal is typically composed of a SiC single crystal and has a crystal growth surface.
  • the polymorph (polytype), off-angle and polarity of the SiC single crystal are not particularly limited, but the polymorph is preferably 4H, 6H or 3C.
  • a SiC single crystal formed on a Si substrate may be used as the seed crystal.
  • the crystal growth plane on the SiC single crystal as the seed crystal may be the Si plane, the C plane, or both the Si plane and the C plane.
  • a SiC powder layer typically refers to SiC powder spread in layers in a container. Also, this SiC powder layer is typically composed of SiC powder.
  • the SiC powder may be either ⁇ -SiC or ⁇ -SiC.
  • the particle size and purity of the SiC powder are not particularly limited, and any commercially available powder can be used. However, in order to produce a SiC single crystal substrate of high purity, it is desirable that the SiC powder also be of high purity.
  • the SiC powder layer may contain additives in addition to the SiC powder.
  • the arrangement positions of the seed crystal 4 and the SiC powder layer 6 are not particularly limited as long as they are in contact with each other. That is, as shown in FIG. 1, the seed crystal 4 may be arranged on the inner bottom surface of the container 2, and the SiC powder layer 6 may be arranged thereon. Alternatively, as shown in FIG. A seed crystal 4 may be embedded in the layer 6 . Alternatively, the seed crystal 4 may be placed on the upper surface of the SiC powder layer 6 arranged on the inner bottom surface of the container 2 as shown in FIG. In any case, it is preferred that the seed crystal 4 is in contact with the SiC powder layer 6 only on one side thereof.
  • a plurality of seed crystals 4 may be arranged in one container 2 as long as the seed crystals 4 and the SiC powder layer 6 are in contact with each other. Furthermore, as long as the seed crystal 4 and the SiC powder layer 6 are in contact with each other as shown in FIG. A lateral space may be provided in the .
  • the dense body 8 may be arranged on the bottom and/or top surface of the SiC powder layer 6 (excluding the surface that contacts the seed crystal 4). By arranging the dense body 8 in this way, it is possible to prevent impurities from entering from the inner bottom surface of the container 2 and/or the container lid 2b, and it is possible to grow a SiC single crystal of higher purity.
  • the dense body 8 may be arranged on the upper surface of the SiC powder layer 6 as shown in FIG. If the seed crystal 4 is not placed on the inner bottom surface of the container 2, a dense body 8 may be placed between the SiC powder layer 6 and the inner bottom surface of the container 2 as shown in FIG. When the seed crystal 4 is embedded in the SiC powder layer 6, as shown in FIG. 8 may be placed.
  • a dense body 8 may be arranged around the outer edge of the SiC powder layer 6 .
  • a dense body 8 may be arranged between the outer peripheral portion of the SiC powder layer 6 and the inner wall of the container 2 . At this time, it is preferable that the dense body 8 is in contact with at least the outer peripheral portion of the SiC powder layer 6 .
  • FIG. 8 shows that the dense body 8 is in contact with at least the outer peripheral portion of the SiC powder layer 6 .
  • the dense body 8 is arranged on the bottom surface and/or the top surface of the SiC powder layer 6 (excluding the surface in contact with the seed crystal 4), and the outer peripheral edge of the SiC powder layer 6 It is preferable that the dense body 8 is arranged in the .
  • the dense body 8 is preferably a solid with a relative density of 90% or higher, more preferably 95% or higher, and even more preferably 99% or higher.
  • the relative density can be determined, for example, by dividing the bulk density of a dense body measured by the Archimedes method by the theoretical density of the dense body and multiplying the value by 100.
  • the dense body 8 is not particularly limited as long as it does not sublime or melt and does not react with SiC at the firing temperature for the heat treatment described below. Examples of materials for such a dense body 8 include carbides such as TiC, TaC, NbC and WC, and polycrystalline nitrides such as Si 3 N 4 and TiN.
  • the shape of the dense body 8 is not particularly limited, it is preferably layered.
  • the material of the container 2 is not particularly limited as long as it does not sublime or melt at the firing temperature during the heat treatment described later, but a graphite or SiC container is desirable.
  • the inner wall and the outer wall of the container 2 may be coated. Examples of coating materials include SiC, TiC, TaC, NbC, WC, and the like.
  • the shape of the container 2 is not particularly limited. Preferably, a lid 2b is provided.
  • heat treatment is performed by placing the container in an effective heating zone controlled within a temperature range of ⁇ 50° C. set temperature in the firing furnace, thereby growing a SiC single crystal on the seed crystal. .
  • the heat treatment can be performed in a state where the temperature gradient is small.
  • the "effective heating zone” is defined by JIS B 6905:1995 as "the charge zone in the heat treatment apparatus capable of keeping the metal product within the allowable temperature range according to the purpose of the heat treatment”.
  • the temperature range of the effective heating zone is within ⁇ 50°C of the set temperature, preferably within ⁇ 20°C of the set temperature, and more preferably within ⁇ 10°C of the set temperature. As the temperature range is narrower, the heat treatment can be performed with a smaller temperature gradient, which makes it possible to grow a SiC single crystal of higher quality (that is, with a lower dislocation density and a smaller amount of warpage). .
  • the firing furnace used for heat treatment is not particularly limited as long as SiC crystal growth occurs on the seed crystal, and known firing furnaces such as resistance furnaces, arc furnaces and induction furnaces may be used.
  • the atmosphere in the firing furnace during firing is preferably vacuum, nitrogen, inert gas, or a mixed atmosphere of nitrogen and inert gas.
  • the heat treatment may be performed under normal pressure or under pressure such as hot pressing.
  • the heat treatment temperature is preferably 1700 to 2700°C, more preferably 2000 to 2600°C, still more preferably 2200 to 2500°C.
  • the holding time at the temperature within the above range is not particularly limited, and the longer the holding time, the thicker the SiC single crystal can be grown. Therefore, the holding time can be set according to the desired thickness. .
  • a SiC single crystal substrate can be obtained by performing chemical mechanical polishing (CMP) finishing after polishing using diamond abrasive grains.
  • a SiC single crystal substrate having a low basal plane dislocation density and a small amount of warpage can be manufactured.
  • the basal plane dislocation density of at least one surface of the SiC single crystal substrate is preferably 0 to 1.0 ⁇ 10 2 cm ⁇ 2 , more preferably 0 to 5.0 ⁇ 10 1 cm ⁇ 2 , still more preferably 0 to 1.0 ⁇ 10 1 cm ⁇ 2 . 1.0 ⁇ 10 1 cm ⁇ 2 .
  • the amount of warpage of the SiC single crystal substrate is preferably 0 to 40 ⁇ m, more preferably 0 to 30 ⁇ m, still more preferably 0 to 20 ⁇ m.
  • warp amount refers to a point G Draw two straight lines X and Y that are perpendicular to each other through
  • a line segment extending from an arbitrary point on the curve AB between points A and B on the surface of the SiC single crystal substrate so as to be perpendicular to the line segment AB, this A point P is determined on the curve AB such that the distance of the line segment is the longest
  • the distance between the line segment AB and the point P is the amount of warpage ⁇
  • the point C on the surface of the SiC single crystal substrate and Among the line segments extending perpendicular to the line segment CD from any point on the curve CD between the point D, the point R on the curve CD that has the longest distance from this line segment is When (iv) the distance between the line segment CD and the point R is the amount of warp ⁇ , (v) the arithmetic mean value of the amounts of warp ⁇ and
  • the SiC single crystal substrate is preferably oriented in the c-axis direction and the a-axis direction.
  • the SiC single crystal substrate may be a SiC single crystal or a mosaic crystal as long as it is oriented in the biaxial directions of the c-axis and the a-axis.
  • Mosaic crystals are aggregates of crystals that do not have distinct grain boundaries but have slightly different crystal orientations in one or both of the c-axis and a-axis.
  • the orientation evaluation method is not particularly limited, but for example, a known analysis method such as an EBSD (Electron Back Scatter Diffraction Patterns) method or an X-ray pole figure can be used.
  • inverse pole figure mapping of the surface (plate surface) of the SiC single crystal substrate or a cross section perpendicular to the plate surface is measured.
  • (C) the tilt angle from the first axis is distributed within ⁇ 10°;
  • (D) the tilt angle from the second axis is ⁇ 10 It can be defined that it is oriented in two axes, the substantially normal direction and the substantially plate surface direction, when it satisfies the four conditions that the distribution is within 100°.
  • the film is oriented along two axes, the c-axis and the a-axis.
  • the substantially in-plane direction of the plate may be oriented in a specific direction (for example, the a-axis) orthogonal to the c-axis.
  • the SiC single crystal substrate may be oriented in two axes, ie, the substantially normal direction and the substantially in-plane direction, but the substantially normal direction is preferably oriented along the c-axis.
  • the smaller the tilt angle distribution in the substantially normal direction and/or the substantially in-plane direction the smaller the mosaic property of the SiC single crystal substrate. Therefore, from the viewpoint of the crystallinity of the SiC single crystal substrate, the tilt angle distribution is preferably small both in the normal direction and in the plate surface direction.
  • Example 1 Production of SiC single crystal A commercially available SiC single crystal substrate (4H—SiC, diameter 100 mm (4 inches), off angle 4°, thickness 0.35 mm) to be used as a seed crystal is filled in a carbon container. It was embedded in commercially available ⁇ -SiC powder (volume-based D50 particle size: 2.3 ⁇ m). The container is placed in an effective heating zone of a resistance furnace (firing furnace) controlled within a set temperature range of ⁇ 50°C, and heat-treated at 2450°C for 10 hours in an argon atmosphere to form SiC on the seed crystal. A single crystal was grown.
  • a resistance furnace firing furnace
  • SiC single crystal substrate 3-1 Measurement of substrate warpage
  • LT-9010M manufactured by Keyence Corporation
  • amount was measured.
  • FIG. 10 in a plan view figure when the surface of SiC single crystal substrate 10 (SiC single crystal 30) is viewed in plan, two straight lines X that pass through point G, which is the center of gravity of the plan view figure, are perpendicular to each other. and Y were drawn, and two points A and B on the straight line X, each 45 mm away from the point G, and two points C and D, each 45 mm away from the point G on the straight line Y, were determined. Subsequently, as shown in FIG.
  • the line AB becomes perpendicular to line segment AB.
  • a point P on the curve AB that has the longest distance of the line segment is determined (for example, in FIG. 11, points P, O, etc. are arbitrary points on the curve AB
  • the longest line segment among the line segments extended from each point so as to be perpendicular to the line segment AB is the line segment extended from the point P).
  • the distance between the line segment AB and the point P was defined as the amount of warpage ⁇ . Further, as shown in FIG.
  • a point R on the curve CD that maximizes the distance of the line segment is determined (for example, in FIG. 12, the point R, the point O, etc. are arbitrary points on the curve CD
  • the longest line segment among the line segments extended from each point so as to be perpendicular to the line segment CD is the line segment extended from the point R).
  • the distance between the line segment CD and the point R was defined as the amount of warpage ⁇ .
  • the average value of these warp amounts ⁇ and ⁇ was taken as the warp amount of the SiC single crystal substrate. The results were as shown in Table 1.
  • the total number of basal plane dislocations was measured by photographing 100 fields of view of 2.8 mm long ⁇ 3.6 mm wide at a magnification of 20 for an arbitrary portion of the sample surface.
  • the basal plane dislocation density was calculated by dividing by 10.1 cm 2 , which is the total area of the visual field. The results were as shown in Table 1.
  • Example 2 In the above (1), a commercially available SiC single crystal substrate as a seed crystal is placed on a commercially available ⁇ -SiC powder filled in a carbon container so that only the Si surface of the seed crystal is in contact with the powder. A SiC single crystal substrate was produced and evaluated in the same manner as in Example 1, except that the above was performed. Table 1 shows the amount of warpage and basal plane dislocation density of the obtained substrate.
  • Example 3 In the above (1), a commercially available SiC single crystal substrate as a seed crystal is placed on the bottom of a carbon container so that the Si surface of the substrate faces upward, and commercially available ⁇ -SiC powder is filled from above. A SiC single crystal substrate was produced and evaluated in the same manner as in Example 1, except that the above was performed. Table 1 shows the amount of warpage and basal plane dislocation density of the obtained substrate.
  • Example 4 In the above (1), (i) a commercially available SiC single crystal substrate as a seed crystal is placed on the bottom of a carbon container so that the Si surface of the substrate faces upward, and commercially available ⁇ -SiC is placed on the bottom of the container.
  • a SiC single crystal substrate was fabricated in the same manner as in Example 1 except that the powder was filled and (ii) a TaC polycrystalline dense body (relative density of 90% or more) was further placed on the upper surface of the ⁇ -SiC powder layer. Production and evaluation were performed. Table 1 shows the amount of warpage and basal plane dislocation density of the obtained substrate.
  • a TaC polycrystalline dense body (relative density of 90% or more) is placed at the bottom of a carbon container, and (ii) commercially available ⁇ -SiC powder is filled from above, Furthermore, a SiC single crystal substrate in the same manner as in Example 1 except that a commercially available SiC single crystal substrate as a seed crystal was placed on the ⁇ -SiC powder layer so that only the Si surface of the substrate was in contact with the powder. was produced and evaluated. Table 1 shows the amount of warpage and basal plane dislocation density of the obtained substrate.
  • Example 6 In the above (1), (i) a TaC polycrystalline dense body (relative density of 90% or more) is placed on the bottom of a carbon container, (ii) after filling commercially available ⁇ -SiC powder from above, except that a commercially available SiC single crystal substrate serving as a seed crystal was embedded inside, and (iii) a TaC polycrystalline dense body (relative density of 90% or more) was further placed on the ⁇ -SiC powder. A SiC single crystal substrate was produced and evaluated in the same manner as in Example 1. Table 1 shows the amount of warpage and basal plane dislocation density of the obtained substrate.
  • Example 7 In the above (1), the ring-shaped TaC polycrystalline dense body (relative density of 90% or more) is arranged along the inner wall of the carbon container (i.e., the SiC powder layer has a relative density of 90% at the outer edge of the container.
  • SiC single crystal substrates were produced and evaluated in the same manner as in Example 1, except that the above dense bodies were arranged. Table 1 shows the amount of warpage and basal plane dislocation density of the obtained substrate.
  • Example 8 In the above (1), the SiC single crystal substrate was fabricated in the same manner as in Example 2, except that the ring-shaped TaC polycrystalline dense body (relative density of 90% or more) was arranged along the inner wall of the carbon container. Production and evaluation were performed. Table 1 shows the amount of warpage and basal plane dislocation density of the obtained substrate.
  • Example 9 the SiC single crystal substrate was fabricated in the same manner as in Example 3, except that the ring-shaped TaC polycrystalline dense body (relative density of 90% or more) was arranged along the inner wall of the carbon container. Production and evaluation were performed. Table 1 shows the amount of warpage and basal plane dislocation density of the obtained substrate.
  • the SiC single crystal substrate was fabricated in the same manner as in Example 4, except that the ring-shaped TaC polycrystalline dense body (relative density of 90% or more) was arranged along the inner wall of the carbon container. Production and evaluation were performed. Table 1 shows the amount of warpage and basal plane dislocation density of the obtained substrate.
  • Example 11 the SiC single crystal substrate was fabricated in the same manner as in Example 5, except that the ring-shaped TaC polycrystalline dense body (relative density of 90% or more) was arranged along the inner wall of the carbon container. Production and evaluation were performed. Table 1 shows the amount of warpage and basal plane dislocation density of the obtained substrate.
  • Example 12 A SiC single crystal substrate was fabricated in the same manner as in Example 6, except that in (1) above, a ring-shaped TaC polycrystalline dense body (with a relative density of 90% or more) was arranged along the inner wall of the carbon container. Production and evaluation were performed. Table 1 shows the amount of warpage and basal plane dislocation density of the obtained substrate.
  • Example 13 (Comparison) In the above (1), a ⁇ -SiC polycrystalline plate produced by a thermal CVD method is used instead of the ⁇ -SiC powder, and the ⁇ -SiC polycrystalline plate and the Si surface of a commercially available SiC single crystal substrate serving as a seed crystal.
  • a SiC single crystal substrate was produced and evaluated in the same manner as in Example 1, except that it was placed in a carbon container and heat-treated while in contact with each other. Table 1 shows the amount of warpage and basal plane dislocation density of the obtained substrate.
  • Example 14 (comparative) In the above (1), a commercially available SiC single crystal substrate as a seed crystal is placed on a commercially available ⁇ -SiC powder filled in a carbon container, and a carbon-made seed crystal is placed on the ⁇ -SiC powder so that the seed crystal does not come into contact with the ⁇ -SiC powder.
  • Example 15 (comparative) A SiC single crystal substrate was polished and evaluated in the same manner as in Example 1, except that the SiC single crystal was produced as follows. Table 1 shows the amount of warpage and basal plane dislocation density of the obtained substrate.
  • the SiC single crystal as the seed crystal and the SiC powder layer are brought into contact with each other, and the heat treatment is performed in a state where the temperature gradient is small (that is, the effective heating controlled within the set temperature ⁇ 50 ° C.
  • the temperature gradient is small (that is, the effective heating controlled within the set temperature ⁇ 50 ° C.)
  • SiC single crystal substrates with a low basal plane dislocation density can be obtained by heat treatment in the tropics).
  • the SiC single crystal substrate has a small amount of thermal stress, a SiC single crystal substrate with a small amount of warpage can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

基底面転位密度が低く、かつ、反り量が小さいSiC単結晶基板の製造方法が提供される。この製造方法は、種結晶としてのSiC単結晶と、SiC粉末層とを互いに接触した状態で容器内に配置する工程と、容器を焼成炉内の、設定温度±50℃以内の温度域に制御された有効加熱帯に配置して熱処理を行い、それにより種結晶上にSiC単結晶を成長させる工程とを含む。

Description

SiC単結晶基板及びその製造方法
 本発明は、SiC単結晶基板及びその製造方法に関する。
 SiC(炭化珪素)が、大電圧及び大電力を低損失で制御できるワイドバンドギャップ材料として注目を集めている。特に近年、SiC材料を用いたパワー半導体デバイス(SiCパワーデバイス)は、Si半導体を用いたものよりも、小型化、低消費電力化及び高効率化に優れるため、様々な用途における利用が期待されている。例えば、SiCパワーデバイスを採用することで、電気自動車(EV)やプラグインハイブリッド車(PHEV)向けのコンバータ、インバータ、車載充電器等を小型化して効率を高めることができる。
 一方、SiCパワーデバイスを高耐圧用途で利用するには、大電流に対応するためにSiCウエハー内の欠陥、特にデバイスキラー欠陥とよばれる基底面転位を極限まで低減し、デバイス特性の低下を抑制することが望まれる。市販されているSiCウエハーは一般的に昇華再結晶法で作製されているが、ウエハー内の欠陥を更に低減する方法として、RAF(Repeated A-Face)法や溶液成長法等が知られている。しかしながら、RAF法は大口径化が困難でコストが高く、溶液成長法は結晶内にインクルージョンが発生しやすい等の問題がある。
 欠陥を低減する他の製法例として、特許文献1(特許第3248071号公報)には、SiC単結晶上にSiC多結晶体を設けた複合体を熱処理し、SiC多結晶体を固相変態させることでマイクロパイプの少ないSiC単結晶が得られることが開示されている。また、特許文献2(特許第4069508号公報)には、SiC単結晶をSiC粉末に埋設して熱処理することを特徴とする、マイクロパイプが閉塞されたSiC単結晶の製造方法が開示されている。
特許第3248071号公報 特許第4069508号公報
 上述のように、SiC単結晶基板の欠陥(転位)を低減する様々な方法が検討されてはいるものの、更なる改善が求められている。例えば、特許文献1に開示される製法は、マイクロパイプ以外の欠陥の低減に対処するものではなく、また、基板に反りが発生しやすいという問題がある。また、特許文献2は、マイクロパイプの低減に対処しているものの、マイクロパイプ以外の転位は低減できていないという問題がある。そこで、SiCウエハー内の欠陥、特にデバイスキラー欠陥とよばれる基底面転位を低減することが望まれる。
 本発明者らは、今般、種結晶としてのSiC単結晶とSiC粉末層とを、互いに接触した状態、かつ、温度勾配が小さい状態で熱処理することにより、基底面転位密度が低く、かつ、反り量が小さいSiC単結晶基板を製造できるとの知見を得た。
 したがって、本発明の目的は、基底面転位密度が低く、かつ、反り量が小さいSiC単結晶基板及びその製造方法を提供することにある。
 本発明の一態様によれば、種結晶としてのSiC単結晶と、SiC粉末層とを互いに接触した状態で容器内に配置する工程と、
 前記容器を焼成炉内の、設定温度±50℃以内の温度域に制御された有効加熱帯に配置して熱処理を行い、それにより前記種結晶上にSiC単結晶を成長させる工程と、
を含む、SiC単結晶基板の製造方法が提供される。
 本発明の他の一態様によれば、少なくとも一方の表面の基底面転位密度が0~1.0×10cm-2であり、かつ、基板の反り量が0~40μmであるSiC単結晶基板であって、
 前記反り量は、前記SiC単結晶基板の表面を平面視したときの平面視図形において、前記平面視図形の重心である点Gを通り互いに直交する2つの直線X及びYを引き、前記直線X上で前記点Gからそれぞれ45mm離れた2点A及びBと、前記直線Y上で前記点Gからそれぞれ45mm離れた2点C及びDとを定めた場合、(i)前記SiC単結晶基板の表面における前記点Aと前記点Bとの間の曲線AB上の任意の点から線分ABに対して垂直になるように延ばした線分のうち、該線分の距離が最長となるような前記曲線AB上の点Pを定め、(ii)前記線分ABと前記点Pとの距離を反り量αとし、(iii)前記SiC単結晶基板の表面における前記点Cと前記点Dとの間の曲線CD上の任意の点から線分CDに対して垂直になるように延ばした線分のうち、該線分の距離が最長となるような前記曲線CD上の点Rを定め、(iv)前記線分CDと前記点Rとの距離を反り量βとしたとき、(v)前記反り量α及びβの算術平均値として定義される、SiC単結晶基板が提供される。
容器内におけるSiC粉末層及び種結晶の配置の一形態を示す模式断面図である。 容器内におけるSiC粉末層及び種結晶の配置の他の一形態を示す模式断面図である。 容器内におけるSiC粉末層及び種結晶の配置の他の一形態を示す模式断面図である。 容器内におけるSiC粉末層及び種結晶の配置の他の一形態を示す模式断面図である。 容器内におけるSiC粉末層、種結晶及び緻密体の配置の一形態を示す模式断面図である。 容器内におけるSiC粉末層、種結晶及び緻密体の配置の他の一形態を示す模式断面図である。 容器内におけるSiC粉末層、種結晶及び緻密体の配置の他の一形態を示す模式断面図である。 容器内におけるSiC粉末層、種結晶及び緻密体の配置の他の一形態を示す模式断面図である。 容器内におけるSiC粉末層、種結晶及び緻密体の配置の他の一形態を示す模式断面図である。 SiC単結晶基板10の反り量の測定方法を説明するためのSiC単結晶基板10の上面図である。 SiC単結晶基板10の反り量の測定方法を説明するためのSiC単結晶基板10の模式断面図である。 SiC単結晶基板10の反り量の測定方法を説明するためのSiC単結晶基板10の模式断面図である。
 SiC単結晶基板の製造方法
 本発明は、SiC単結晶基板の製造方法に関する。この製造方法においては、まず、種結晶としてのSiC単結晶と、SiC粉末層とを互いに接触した状態で容器内に配置する。次に、容器を焼成炉内の、設定温度±50℃以内の温度域に制御された有効加熱帯に配置して熱処理を行い、それにより種結晶上にSiC単結晶を成長させる。このように、種結晶としてのSiC単結晶とSiC粉末層とを、互いに接触した状態、かつ、温度勾配が小さい状態で熱処理することにより、基底面転位密度が低く、かつ、反り量が小さいSiC単結晶基板を製造することができる。
 前述したとおり、SiCパワーデバイスを高耐圧用途で利用するには、大電流に対応するためにSiCウエハー内の欠陥、特にデバイスキラー欠陥とよばれる基底面転位を極限まで低減し、デバイス特性の低下を抑制することが望まれる。また、それに加え基板の反りも抑制することが望まれる。しかしながら、従来の方法では基底面転位密度が低く、かつ、反り量が小さいSiC単結晶基板を製造することは困難であった。この点、本発明によれば、かかる問題を好都合に解消できる。そのメカニズムは必ずしも定かではないが、以下のようなものと考えられる。すなわち、特許文献1に開示されるような従来の製法では、基板の熱膨張差によって反りが発生する問題があったが、本発明の製造方法では温度勾配が小さい状態で熱処理を行うため、基板の熱膨張差が生じにくく、それ故基板の反りが生じにくくなるものと考えられる。また、特許文献2では、SiC単結晶上に新たにSiC単結晶を成長させてはいないため、マイクロパイプ以外の転位は低減できないが、本発明の製造方法では種結晶としてのSiC単結晶とSiC粉末層とを互いに接触した状態で熱処理して新たにSiC単結晶を成長させるため、マイクロパイプ以外の転位(特に基底面転位)をも低減することができる。
 上述のとおり、SiC単結晶基板の製造方法は、(1)種結晶とSiC粉末層を配置し、(2)熱処理を行ってSiC単結晶を成長させることを含む。
(1)種結晶とSiC粉末層の配置
 まず、種結晶としてのSiC単結晶と、SiC粉末層とを互いに接触した状態で容器内に配置する。種結晶は、典型的にはSiC単結晶で構成されており、結晶成長面を有する。SiC単結晶の多形(ポリタイプ)、オフ角、及び極性は特に限定されるものではないが、多形は4H、6H又は3Cが好ましい。また、種結晶として、Si基板上に成膜されたSiC単結晶を用いてもよい。種結晶としてのSiC単結晶上の結晶成長面は、Si面でもC面でもよく、Si面及びC面の両面でもよい。
 SiC粉末層は、典型的には容器内に層状に敷き詰められたSiC粉末のことをいう。また、このSiC粉末層は、典型的にはSiC粉末で構成されている。SiC粉末は、α-SiC、β-SiCのいずれでもよい。SiC粉末の粒度及び純度については特に限定は無く、任意の市販されている粉末を用いることができる。ただし、高純度なSiC単結晶基板を作製するためには、SiC粉末も高純度のものであることが望ましい。なお、SiC粉末層は、SiC粉末の他に添加物を含んでいてもよい。
 図1~4に示されるように、種結晶4とSiC粉末層6とが互いに接してさえいれば、それらの配置位置に特に限定されない。すなわち、図1に示されるように容器2の内底面に種結晶4を配置し、その上にSiC粉末層6を配置してもよいし、図2に示されるように容器2内のSiC粉末層6中に種結晶4を埋設してもよい。あるいは、図3に示されるように容器2の内底面に配置したSiC粉末層6の上面に種結晶4を載置してもよい。いずれにしても、種結晶4が、その一方の面でのみ、SiC粉末層6と接触しているのが好ましい。また、種結晶4とSiC粉末層6が接触している限り、1つの容器2内に複数の種結晶4を配置してもよい。さらに、図4に示されるように種結晶4とSiC粉末層6とが接しているかぎり、種結晶4及びSiC粉末層6の側面(外周縁)と容器2の内壁とが非接触となるように側方空間を設けてもよい。
 図5~7に示されるように、SiC粉末層6の底面及び/又は上面(但し、種結晶4と接触する面を除く)に緻密体8が配置されてもよい。このように緻密体8を配置することで、容器2の内底面及び/又は容器蓋2bからの不純物の侵入を防ぐことができ、より高純度なSiC単結晶を成長させることができる。例えば、SiC粉末層6の上面に種結晶4が配置されない場合、図5に示されるようにSiC粉末層6の上面に緻密体8が配置されてもよい。容器2の内底面に種結晶4が配置されない場合、図6に示されるようにSiC粉末層6と容器2の内底面との間に緻密体8が配置されてもよい。SiC粉末層6中に種結晶4が埋設される場合、図7に示されるように、SiC粉末層6の上面、及び/又はSiC粉末層6と容器2の内底面との間に、緻密体8が配置されてもよい。
 図8及び9に示されるように、SiC粉末層6の外周縁に緻密体8が配置されていてもよい。このように緻密体8を配置することで、容器2の側面からの不純物の侵入を防ぐことができ、より高純度なSiC単結晶を成長させることができる。例えば、図8に示されるように、SiC粉末層6の外周部と容器2の内壁との間に、緻密体8が配置されてもよい。このとき、少なくともSiC粉末層6の外周部に緻密体8が接しているのが好ましい。特に、図9に示されるように、SiC粉末層6の底面及び/又は上面(但し、種結晶4と接触する面を除く)に緻密体8が配置され、かつ、SiC粉末層6の外周縁に緻密体8が配置されるのが好ましい。
 緻密体8は、相対密度が90%以上の固体であるのが好ましいが、より好ましくは95%以上、さらに好ましくは99%以上である。相対密度が高いほど、効果的に不純物の侵入を防ぐことができる。相対密度は、例えば、アルキメデス法により緻密体を実測したかさ密度を、緻密体の理論密度で除した値に、100を乗じることにより算出することにより決定できる。緻密体8は、後述する熱処理を行う際の焼成温度において、昇華及び融解せず、かつ、SiCと反応しないものあれば特に限定されない。そのような緻密体8の材質の例としては、TiC、TaC、NbC及びWC等の炭化物やSi及びTiN等の窒化物の多結晶体が挙げられる。緻密体8の形状は特に限定されないが、層状であるのが好ましい。
 容器2の材質は、後述する熱処理を行う際の焼成温度において、昇華及び融解しないものであれば特に限定されないが、黒鉛製やSiC製の容器が望ましい。また、容器2の内壁や外壁にコーティングが施されていてもよい。コーティング材料の例としては、SiC、TiC、TaC、NbC、WC等が挙げられる。また、容器2の形状は特に限定されないが、種結晶4及びSiC粉末層6を収容可能な内部空間を備え、上部開放された容器本体2aと、容器本体2aの上部開放部に嵌合する容器蓋2bとを備えるのが好ましい。
(2)熱処理(単結晶の成長)
 上記(1)の後、容器を焼成炉内の、設定温度±50℃以内の温度域に制御された有効加熱帯に配置して熱処理を行い、それにより種結晶上にSiC単結晶を成長させる。こうすることで、温度勾配が小さい状態で熱処理を行うことができる。ここで、「有効加熱帯」とはJIS B 6905:1995により定義される「熱処理の目的に応じて、金属製品を温度許容範囲内に保持できる熱処理装置における装入領域」のことをいう。上記有効加熱帯の温度域は、設定温度±50℃以内であり、好ましくは設定温度±20℃以内、より好ましくは設定温度±10℃以内である。このように温度域が狭いほど、温度勾配がより小さい状態で熱処理を行うことができ、より品質の良い(すなわち、転位密度が低く反り量が小さい)SiC単結晶を成長させることが可能となる。
 熱処理に用いられる焼成炉は、種結晶上でSiCの結晶成長が生じるかぎり特に限定されず、抵抗炉、アーク炉及び誘導炉等の公知の焼成炉でもよい。焼成時における焼成炉内の雰囲気は、真空、窒素、不活性ガス、又は窒素と不活性ガスの混合雰囲気であるのが好ましい。また、熱処理は常圧下で行ってもよく、ホットプレスのように加圧下で行ってもよい。熱処理温度は、好ましくは1700~2700℃、より好ましくは2000~2600℃、さらに好ましくは2200~2500℃である。また、上記範囲内の温度での保持時間は特に限定されず、長時間保持するほどSiC単結晶をより厚く成長させることができるため、所望の厚さに合わせて保持時間を設定することができる。
(3)研磨
 こうして種結晶上にSiC単結晶を成長させた後、SiC単結晶の表面を研磨するのが好ましい。例えば、ダイヤモンド砥粒を用いて研磨加工した後、化学機械研磨(CMP)仕上げをすることで、SiC単結晶基板を得ることができる。
 SiC単結晶基板
 上述した製造方法により、基底面転位密度が低く、かつ、反り量が小さいSiC単結晶基板を製造することができる。SiC単結晶基板の少なくとも一方の表面の基底面転位密度は、好ましくは0~1.0×10cm-2、より好ましくは0~5.0×10cm-2、さらに好ましくは0~1.0×10cm-2である。また、SiC単結晶基板の反り量は、好ましくは0~40μm、より好ましくは0~30μm、さらに好ましくは0~20μmである。
 ここで、本願明細書において、「反り量」とは、図10~12に示すように、SiC単結晶基板の表面を平面視したときの平面視図形において、平面視図形の重心である点Gを通り互いに直交する2つの直線X及びYを引き、直線X上で点Gからそれぞれ45mm離れた2点A及びBと、直線Y上で点Gからそれぞれ45mm離れた2点C及びDとを定めた場合、(i)SiC単結晶基板の表面における点Aと点Bとの間の曲線AB上の任意の点から線分ABに対して垂直になるように延ばした線分のうち、この線分の距離が最長となるような曲線AB上の点Pを定め、(ii)線分ABと点Pとの距離を反り量αとし、(iii)SiC単結晶基板の表面における点Cと点Dとの間の曲線CD上の任意の点から線分CDに対して垂直になるように延ばした線分のうち、この線分の距離が最長となるような曲線CD上の点Rを定め、(iv)線分CDと点Rとの距離を反り量βとしたとき、(v)反り量α及びβの算術平均値として定義される。
 SiC単結晶基板は、c軸方向及びa軸方向に配向しているのが好ましい。SiC単結晶基板は、c軸及びa軸の二軸方向に配向している限り、SiC単結晶であってもよいし、モザイク結晶であってもよい。モザイク結晶とは、明瞭な粒界は有しないが、結晶の配向方位がc軸及びa軸の一方又は両方がわずかに異なる結晶の集まりになっているものをいう。配向の評価方法は、特に限定されるものではないが、例えばEBSD(Electron Back Scatter Diffraction Patterns)法やX線極点図等の公知の分析手法を用いることができる。例えば、EBSD法を用いる場合、SiC単結晶基板の表面(板面)又は板面と直交する断面の逆極点図マッピングを測定する。得られた逆極点図マッピングにおいて、(A)板面の略法線方向の特定方位(第1軸)に配向していること、(B)第1軸に直交する、略板面内方向の特定方位(第2軸)に配向していること、(C)第1軸からの傾斜角度が±10°以内に分布していること、及び(D)第2軸からの傾斜角度が±10°以内に分布していること、という4つの条件を満たすときに略法線方向と略板面方向の2軸に配向していると定義できる。言い換えると、上記4つの条件を満たしている場合に、c軸及びa軸の2軸に配向していると判断する。例えば板面の略法線方向がc軸に配向している場合、略板面内方向がc軸と直交する特定方位(例えばa軸)に配向していればよい。SiC単結晶基板は、略法線方向と略板面内方向の2軸に配向していればよいが、略法線方向がc軸に配向していることが好ましい。略法線方向及び/又は略板面内方向の傾斜角度分布は小さい方がSiC単結晶基板のモザイク性が小さくなり、ゼロに近づくほど単結晶に近くなる。このため、SiC単結晶基板の結晶性の観点では、傾斜角度分布は略法線方向及び略板面方向共に小さい方が好ましく、例えば±5°以下がより好ましく、±3°以下がさらに好ましい。
 本発明を以下の例によってさらに具体的に説明する。なお、以下の例は本発明を何ら限定するものではない。
 例1
(1)SiC単結晶の作製
 種結晶となる市販のSiC単結晶基板(4H-SiC、直径100mm(4インチ)、オフ角4°、厚さ0.35mm)を、カーボン製の容器内に充填した市販のβ-SiC粉末(体積基準D50粒径:2.3μm)に埋設した。容器を抵抗炉(焼成炉)の、設定温度±50℃以内の温度域に制御された有効加熱帯に配置し、アルゴン雰囲気中で2450℃にて10時間熱処理することで、種結晶上にSiC単結晶を成長させた。
(2)研磨
 得られたSiC単結晶の表面(Si面及びC面)を、ダイヤモンド砥粒を用いて研磨加工した後、化学機械研磨(CMP)仕上げをしてSiC単結晶基板を得た。
(3)SiC単結晶基板の評価
(3-1)基板の反り測定
 得られたSiC単結晶基板の研磨面に対し、高精度レーザ測定器(株式会社キーエンス製 LT-9010M)を用いて、反り量を測定した。図10に示すように、SiC単結晶基板10の表面(SiC単結晶30)を平面視したときの平面視図形において、その平面視図形の重心である点Gを通り互いに直交する2つの直線X及びYを引き、直線X上で点Gからそれぞれ45mm離れた2点A及びBと、直線Y上で点Gからそれぞれ45mm離れた2点C及びDとを定めた。続いて、図11に示すように、SiC単結晶基板10の表面(SiC単結晶30)における点Aと点Bとの間の曲線AB上の任意の点から線分ABに対して垂直になるように延ばした線分のうち、その線分の距離が最長となるような曲線AB上の点Pを定めた(例えば、図11において、曲線AB上の任意の点として点Pや点O等があるが、それぞれの点から線分ABに対して垂直になるように延ばした線分のうち最長の線分となるのは点Pから伸ばした線分となる)。そして、線分ABと点Pとの距離を反り量αとした。また、図12に示すように、SiC単結晶基板10の表面(SiC単結晶30)における点Cと点Dとの間の曲線CD上の任意の点から線分CDに対して垂直になるように延ばした線分のうち、その線分の距離が最長となるような曲線CD上の点Rを定めた(例えば、図12において、曲線CD上の任意の点として点Rや点O等があるが、それぞれの点から線分CDに対して垂直になるように延ばした線分のうち最長の線分となるのは点Rから伸ばした線分となる)。そして、線分CDと点Rとの距離を反り量βとした。これらの反り量α及びβの平均値をSiC単結晶基板の反り量とした。結果は表1に示されるとおりであった。
(3-2)基底面転位密度の評価
 ニッケル製の坩堝に、上記(2)で得られたSiC単結晶基板をKOH結晶と共に入れた。この坩堝を電気炉で、500℃で10分間、エッチング処理した。エッチング処理後のサンプル(SiC単結晶基板)を洗浄し、その表面を光学顕微鏡にて観察し、ピットの形状から各種欠陥の種類を判断した。このうち、基底面転位の数を測定し、基底面転位数(個)を観察領域の面積(cm)で除することで、基底面転位密度(cm-2)を計算した。具体的には、サンプル表面の任意の箇所の部位について、縦2.8mm×横3.6mmの視野を倍率20倍で100視野分撮影して基底面転位の総数を測定し、この総数を100視野分の総面積である10.1cmで除することにより基底面転位密度を算出した。結果は表1に示されるとおりであった。
 例2
 上記(1)において、種結晶となる市販のSiC単結晶基板を、カーボン製の容器内に充填した市販のβ-SiC粉末上に、種結晶のSi面のみが粉末と接触するように載置したこと以外は、例1と同様にしてSiC単結晶基板の作製及び評価を行った。得られた基板の反り量及び基底面転位密度は表1に示されるとおりであった。
 例3
 上記(1)において、種結晶となる市販のSiC単結晶基板を、基板のSi面が上向きとなるように、カーボン製の容器の底に配置し、その上から市販のβ-SiC粉末を充填したこと以外は、例1と同様にしてSiC単結晶基板の作製及び評価を行った。得られた基板の反り量及び基底面転位密度は表1に示されるとおりであった。
 例4
 上記(1)において、(i)種結晶となる市販のSiC単結晶基板を、基板のSi面が上向きとなるように、カーボン製の容器の底に配置し、その上から市販のβ-SiC粉末を充填したこと、及び(ii)さらにβ-SiC粉末層の上面にTaC多結晶緻密体(相対密度90%以上)を載置したこと以外は、例1と同様にしてSiC単結晶基板の作製及び評価を行った。得られた基板の反り量及び基底面転位密度は表1に示されるとおりであった。
 例5
 上記(1)において、(i)TaC多結晶緻密体(相対密度90%以上)をカーボン製の容器の底に配置したこと、及び(ii)その上から市販のβ-SiC粉末を充填し、さらにβ-SiC粉末層の上に種結晶となる市販のSiC単結晶基板を、基板のSi面のみが粉末と接触するように載置したこと以外は、例1と同様にしてSiC単結晶基板の作製及び評価を行った。得られた基板の反り量及び基底面転位密度は表1に示されるとおりであった。
 例6
 上記(1)において、(i)TaC多結晶緻密体(相対密度90%以上)をカーボン製の容器の底に配置したこと、(ii)その上から市販のβ-SiC粉末を充填後、その中に種結晶となる市販のSiC単結晶基板を埋設したこと、及び(iii)さらにβ-SiC粉末の上にTaC多結晶緻密体(相対密度90%以上)を載置したこと以外は、例1と同様にしてSiC単結晶基板の作製及び評価を行った。得られた基板の反り量及び基底面転位密度は表1に示されるとおりであった。
 例7
 上記(1)において、リング状のTaC多結晶緻密体(相対密度90%以上)を、カーボン製の容器の内壁に沿うように配置したこと(すなわちSiC粉末層の外周縁に相対密度が90%以上の緻密体を配置したこと)以外は、例1と同様にしてSiC単結晶基板の作製及び評価を行った。得られた基板の反り量及び基底面転位密度は表1に示されるとおりであった。
 例8
 上記(1)において、リング状のTaC多結晶緻密体(相対密度90%以上)を、カーボン製の容器の内壁に沿うように配置したこと以外は、例2と同様にしてSiC単結晶基板の作製及び評価を行った。得られた基板の反り量及び基底面転位密度は表1に示されるとおりであった。
 例9
 上記(1)において、リング状のTaC多結晶緻密体(相対密度90%以上)を、カーボン製の容器の内壁に沿うように配置したこと以外は、例3と同様にしてSiC単結晶基板の作製及び評価を行った。得られた基板の反り量及び基底面転位密度は表1に示されるとおりであった。
 例10
 上記(1)において、リング状のTaC多結晶緻密体(相対密度90%以上)を、カーボン製の容器の内壁に沿うように配置したこと以外は、例4と同様にしてSiC単結晶基板の作製及び評価を行った。得られた基板の反り量及び基底面転位密度は表1に示されるとおりであった。
 例11
 上記(1)において、リング状のTaC多結晶緻密体(相対密度90%以上)を、カーボン製の容器の内壁に沿うように配置したこと以外は、例5と同様にしてSiC単結晶基板の作製及び評価を行った。得られた基板の反り量及び基底面転位密度は表1に示されるとおりであった。
 例12
 上記(1)において、リング状のTaC多結晶緻密体(相対密度90%以上)を、カーボン製の容器の内壁に沿うように配置したこと以外は、例6と同様にしてSiC単結晶基板の作製及び評価を行った。得られた基板の反り量及び基底面転位密度は表1に示されるとおりであった。
 例13(比較)
 上記(1)において、β-SiC粉末の代わりに熱CVD法で作製したβ-SiC多結晶板を用い、β-SiC多結晶板と、種結晶となる市販のSiC単結晶基板のSi面とを接触させた状態でカーボン製の容器に配置して熱処理したこと以外は、例1と同様にしてSiC単結晶基板の作製及び評価を行った。得られた基板の反り量及び基底面転位密度は表1に示されるとおりであった。
 例14(比較)
 上記(1)において、種結晶となる市販のSiC単結晶基板を、カーボン製の容器内に充填した市販のβ-SiC粉末上に、種結晶がβ-SiC粉末と接触しないようにカーボン製のスペーサー(厚さ2mm)を介して配置したこと以外は、例1と同様に熱処理を行い、SiC単結晶基板の作製を試みた。しかし、種結晶上にSiC単結晶が成長しなかったため、反り測定及び基底面転位密度の評価は実施しなかった。
 例15(比較)
 SiC単結晶の作製を以下のように行ったこと以外は、例1と同様に、SiC単結晶基板を研磨し、評価を行った。得られた基板の反り量及び基底面転位密度は表1に示されるとおりであった。
(SiC単結晶の作製)
 上記(1)において、種結晶となる市販のSiC単結晶基板を、カーボン製の容器内に充填した市販のβ-SiC粉末に埋設した。この容器を抵抗炉の有効加熱帯の外に配置し、設定温度±50℃を超えるような温度勾配が大きい状態で、アルゴン雰囲気中で2450℃にて10時間熱処理することで、種結晶上にSiC単結晶を成長させた。
Figure JPOXMLDOC01-appb-T000001
 例1~12より、種結晶としてのSiC単結晶とSiC粉末層とを互いに接触させ、温度勾配が小さい状態で熱処理を行う(すなわち、設定温度±50℃以内の温度域に制御された有効加熱帯にて熱処理を行う)と、原因は不明であるが、基底面転位密度の低いSiC単結晶基板が得られることが分かった。また、このSiC単結晶基板は熱応力が小さい状態であるため、反り量の小さいSiC単結晶基板が得られることが分かった。一方、例13~15(比較)より、SiC粉末の代わりにSiC多結晶板を使用したり、温度勾配が大きい状態で熱処理すると、基板の反り量が増加し、基底面転位密度も高くなることが分かった。また、SiC単結晶とSiC粉末が接触していない状態で熱処理すると、SiC単結晶が成長しないことが分かった。

Claims (10)

  1.  種結晶としてのSiC単結晶と、SiC粉末層とを互いに接触した状態で容器内に配置する工程と、
     前記容器を焼成炉内の、設定温度±50℃以内の温度域に制御された有効加熱帯に配置して熱処理を行い、それにより前記種結晶上にSiC単結晶を成長させる工程と、
    を含む、SiC単結晶基板の製造方法。
  2.  前記種結晶が、その一方の面でのみ、前記SiC粉末層と接触している、請求項1に記載のSiC単結晶基板の製造方法。
  3.  前記温度域が設定温度±20℃以内である、請求項1又は2に記載のSiC単結晶基板の製造方法。
  4.  前記温度域が設定温度±10℃以内である、請求項1~3のいずれか一項に記載のSiC単結晶基板の製造方法。
  5.  前記SiC粉末層の底面及び/又は上面(但し、前記種結晶と接触する面を除く)に、相対密度が90%以上の緻密体が配置される、請求項1~4のいずれか一項に記載のSiC単結晶基板の製造方法。
  6.  前記SiC粉末層の外周縁に、相対密度が90%以上の緻密体が配置される、請求項1~5のいずれか一項に記載のSiC単結晶基板の製造方法。
  7.  前記SiC粉末層の底面及び/又は上面(但し、前記種結晶と接触する面を除く)に、相対密度が90%以上の緻密体が配置され、かつ、前記SiC粉末層の外周縁に、相対密度が90%以上の緻密体が配置される、請求項1~4のいずれか一項に記載のSiC単結晶基板の製造方法。
  8.  前記緻密体の相対密度が95%以上である、請求項5~7のいずれか一項に記載のSiC単結晶基板の製造方法。
  9.  前記緻密体の相対密度が99%以上である、請求項5~8のいずれか一項に記載のSiC単結晶基板の製造方法。
  10.  少なくとも一方の表面の基底面転位密度が0~1.0×10cm-2であり、かつ、基板の反り量が0~40μmであるSiC単結晶基板であって、
     前記反り量は、前記SiC単結晶基板の表面を平面視したときの平面視図形において、前記平面視図形の重心である点Gを通り互いに直交する2つの直線X及びYを引き、前記直線X上で前記点Gからそれぞれ45mm離れた2点A及びBと、前記直線Y上で前記点Gからそれぞれ45mm離れた2点C及びDとを定めた場合、(i)前記SiC単結晶基板の表面における前記点Aと前記点Bとの間の曲線AB上の任意の点から線分ABに対して垂直になるように延ばした線分のうち、該線分の距離が最長となるような前記曲線AB上の点Pを定め、(ii)前記線分ABと前記点Pとの距離を反り量αとし、(iii)前記SiC単結晶基板の表面における前記点Cと前記点Dとの間の曲線CD上の任意の点から線分CDに対して垂直になるように延ばした線分のうち、該線分の距離が最長となるような前記曲線CD上の点Rを定め、(iv)前記線分CDと前記点Rとの距離を反り量βとしたとき、(v)前記反り量α及びβの算術平均値として定義される、SiC単結晶基板。
PCT/JP2021/038798 2021-10-20 2021-10-20 SiC単結晶基板及びその製造方法 WO2023067736A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022513335A JP7339434B1 (ja) 2021-10-20 2021-10-20 SiC単結晶基板及びその製造方法
CN202180099091.7A CN117425752A (zh) 2021-10-20 2021-10-20 SiC单晶基板及其制造方法
PCT/JP2021/038798 WO2023067736A1 (ja) 2021-10-20 2021-10-20 SiC単結晶基板及びその製造方法
US18/410,216 US20240141544A1 (en) 2021-10-20 2024-01-11 SiC SINGLE CRYSTAL SUBSTRATE AND PRODUCTION METHOD THEREFOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/038798 WO2023067736A1 (ja) 2021-10-20 2021-10-20 SiC単結晶基板及びその製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/410,216 Continuation US20240141544A1 (en) 2021-10-20 2024-01-11 SiC SINGLE CRYSTAL SUBSTRATE AND PRODUCTION METHOD THEREFOR

Publications (1)

Publication Number Publication Date
WO2023067736A1 true WO2023067736A1 (ja) 2023-04-27

Family

ID=86058059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038798 WO2023067736A1 (ja) 2021-10-20 2021-10-20 SiC単結晶基板及びその製造方法

Country Status (4)

Country Link
US (1) US20240141544A1 (ja)
JP (1) JP7339434B1 (ja)
CN (1) CN117425752A (ja)
WO (1) WO2023067736A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3248071B2 (ja) 1998-10-08 2002-01-21 日本ピラー工業株式会社 単結晶SiC
JP4069508B2 (ja) 1998-07-21 2008-04-02 株式会社デンソー 炭化珪素単結晶の製造方法
JP2010280546A (ja) * 2009-06-05 2010-12-16 Bridgestone Corp 炭化珪素単結晶の製造方法
WO2020184059A1 (ja) * 2019-03-11 2020-09-17 日本碍子株式会社 SiC複合基板及び半導体デバイス
WO2021060368A1 (ja) * 2019-09-27 2021-04-01 学校法人関西学院 SiC単結晶の製造方法、SiC単結晶の製造装置及びSiC単結晶ウェハ
WO2021100564A1 (ja) * 2019-11-20 2021-05-27 日本碍子株式会社 SiC基板及びその製法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4069508B2 (ja) 1998-07-21 2008-04-02 株式会社デンソー 炭化珪素単結晶の製造方法
JP3248071B2 (ja) 1998-10-08 2002-01-21 日本ピラー工業株式会社 単結晶SiC
JP2010280546A (ja) * 2009-06-05 2010-12-16 Bridgestone Corp 炭化珪素単結晶の製造方法
WO2020184059A1 (ja) * 2019-03-11 2020-09-17 日本碍子株式会社 SiC複合基板及び半導体デバイス
WO2021060368A1 (ja) * 2019-09-27 2021-04-01 学校法人関西学院 SiC単結晶の製造方法、SiC単結晶の製造装置及びSiC単結晶ウェハ
WO2021100564A1 (ja) * 2019-11-20 2021-05-27 日本碍子株式会社 SiC基板及びその製法

Also Published As

Publication number Publication date
CN117425752A (zh) 2024-01-19
US20240141544A1 (en) 2024-05-02
JP7339434B1 (ja) 2023-09-05
JPWO2023067736A1 (ja) 2023-04-27

Similar Documents

Publication Publication Date Title
US11761117B2 (en) SiC single crystal sublimation growth apparatus
EP1259662B1 (en) Method and apparatus for growing low defect density silicon carbide and resulting material
TWI725816B (zh) 用於碳化矽錠之粉末以及使用其製備碳化矽錠之方法
TWI750634B (zh) 碳化矽晶圓、碳化矽晶錠、碳化矽晶錠製造方法以及碳化矽晶圓製造方法
KR101530057B1 (ko) 탄화규소 단결정 기판 및 그 제조 방법
EP2385159B1 (en) Method for producing sic epitaxial substrate
US7316747B2 (en) Seeded single crystal silicon carbide growth and resulting crystals
TWI820738B (zh) 使用得自聚合物之高純度碳化矽之氣相沉積設備與技術
US6863728B2 (en) Apparatus for growing low defect density silicon carbide
KR100773624B1 (ko) 탄화 규소 단결정으로 이루어지는 종결정 및 그를 이용한잉곳의 제조 방법
WO2015182246A1 (ja) 炭化珪素インゴットの製造方法、炭化珪素種基板および炭化珪素基板
JPH09268096A (ja) 単結晶の製造方法及び種結晶
JP7161784B2 (ja) 炭化珪素インゴット、ウエハ及びその製造方法
WO2023067736A1 (ja) SiC単結晶基板及びその製造方法
CN115613137A (zh) 一种过滤层的制备方法及晶体生长装置
TW202210667A (zh) 碳化矽錠的製造方法、碳化矽晶圓的製造方法、碳化矽錠以及碳化矽錠製造裝置
CN113322520A (zh) 晶片及其制造方法
WO2017043215A1 (ja) SiC単結晶の製造方法
WO2023054264A1 (ja) 炭化ケイ素単結晶ウエハ及び炭化ケイ素単結晶インゴット
KR20200018037A (ko) 탄화규소 단결정 잉곳 성장 장치
WO2023054263A1 (ja) 炭化ケイ素単結晶ウエハ、炭化ケイ素単結晶インゴット及び炭化ケイ素単結晶の製造方法
EP4105367A1 (en) Silicon carbide wafer and semiconductor device
KR20190134325A (ko) 실리콘계 용융 조성물 및 이를 이용하는 실리콘카바이드 단결정의 제조 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022513335

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21961389

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180099091.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021961389

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021961389

Country of ref document: EP

Effective date: 20240521