WO2023065602A1 - 功率模块及电机控制器 - Google Patents

功率模块及电机控制器 Download PDF

Info

Publication number
WO2023065602A1
WO2023065602A1 PCT/CN2022/083780 CN2022083780W WO2023065602A1 WO 2023065602 A1 WO2023065602 A1 WO 2023065602A1 CN 2022083780 W CN2022083780 W CN 2022083780W WO 2023065602 A1 WO2023065602 A1 WO 2023065602A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
conductive layer
conductive
power
terminal
Prior art date
Application number
PCT/CN2022/083780
Other languages
English (en)
French (fr)
Inventor
曹玉昭
张太之
何友东
李剑垒
时尚起
莫祖秀
Original Assignee
苏州汇川联合动力***有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州汇川联合动力***有限公司 filed Critical 苏州汇川联合动力***有限公司
Publication of WO2023065602A1 publication Critical patent/WO2023065602A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • H01L23/49844Geometry or layout for devices being provided for in H01L29/00
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • H01L2224/40139Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate with an intermediate bond, e.g. continuous strap daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/842Applying energy for connecting
    • H01L2224/84201Compression bonding
    • H01L2224/84205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/842Applying energy for connecting
    • H01L2224/8421Applying energy for connecting with energy being in the form of electromagnetic radiation
    • H01L2224/84214Applying energy for connecting with energy being in the form of electromagnetic radiation using a laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/84801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/8484Sintering

Definitions

  • the present application relates to the technical field of power electronic devices, in particular to a power module and a motor controller.
  • a power module there may be multiple chips connected in parallel to form a bridge arm switch, which is then arranged in series with another bridge arm switch to form a semiconductor device package with a half-bridge/full-bridge function. Due to the different layouts of multiple parallel power devices inside the module, there will be a problem of unbalanced current flowing through each chip, which will easily reduce the reliability of the power module.
  • the main purpose of this application is to propose a power module and a motor controller, aiming at realizing the current sharing characteristics of each power device of the power module and enhancing the reliability of the power module.
  • the power module includes:
  • the insulating substrate has a first surface and a second surface oppositely disposed, and a first conductive layer is provided on the first surface of the insulating substrate;
  • a plurality of power devices are arranged on the first surface of the insulating substrate along the first direction, and the input electrodes of some of the power devices are connected to the first conductive layer, and the output electrodes of the rest of the power devices an electrode is connected to the first conductive layer;
  • the conductive sheet is connected to the corresponding input electrode or output electrode of the power device along the first direction;
  • the DC terminal is connected to the first conductive layer, and inputs DC power to the power device;
  • the AC terminal is connected to the first conductive layer, and outputs AC power through the power device.
  • the first conductive layer includes a first sub-conductive layer and a second sub-conductive layer
  • the conductive sheet includes a first conductive sheet and a second conductive sheet
  • the input electrodes of a part of the power device connected to the first sub-conductive layer, the output electrodes of the part of the power devices are connected to the first conductive sheet; the input electrodes of the rest of the power devices are connected to the second conductive sheet, the The output electrodes of the remaining power devices described above are connected to the second sub-conductive layer.
  • the first conductive sheet is connected to the second sub-conductive layer.
  • the first conductive sheet is connected to the AC end.
  • the second sub-conductive layer is connected to the AC end.
  • the first conductive layer further includes a third sub-conductive layer, the DC terminal is connected to the third sub-conductive layer, and the DC terminal is connected to the second conductive sheet.
  • the first conductive layer further includes a third sub-conductive layer, the direct current terminal is connected to the third sub-conductive layer, and the third sub-conductive layer is connected to the second conductive sheet.
  • the power module includes two first sub-conductive layers and one second sub-conductive layer, wherein, along the second direction of the insulating substrate, the second sub-conductive layer is located between the two between the first sub-conductive layers.
  • the DC terminal includes a DC positive terminal and a DC negative terminal, the DC positive terminal is connected to the second sub-conductive layer, and the DC negative terminal is connected to the first sub-conductive layer.
  • the second sub-conductive layer is provided with grooves opened along the first direction.
  • the second sub-conductive layer has a connection portion connected to the first conductive sheet, and the first conductive layer is connected to the connection portion.
  • the present application also proposes a motor controller, which includes the above-mentioned power module.
  • this application by setting the first conductive sheet, the conductive layer and the third sub-conductive layer, the electrical connection between the first power devices arranged in parallel and the DC positive terminal and the AC output terminal is realized respectively, and by setting the second conductive The sheet, the second conductive layer region and the third sub-conductive layer are used to realize the electrical connection between a plurality of parallel-connected second power devices and the AC output terminal and the DC negative terminal respectively.
  • this application can balance the parasitic parameters of parallel devices, especially the parasitic inductance and loop resistance, improve the current sharing characteristics of the devices, protect the power devices near the DC input terminals, and reduce the damage caused by overloading risk of damage, enhancing the reliability of the power module.
  • This application can also solve the inconsistency between parasitic stray inductance and loop resistance parameters of power device tubes near and far from the DC input terminal. , causing the power device tube close to the DC terminal to withstand a large current and cause serious heating, resulting in low reliability of the power module or failure due to overheating.
  • FIG. 1 is a schematic structural diagram of an embodiment of a power module of the present application
  • FIG. 2 is a schematic cross-sectional structure diagram of an embodiment of the power module of the present application.
  • FIG. 3 is a schematic cross-sectional structure diagram of another embodiment of the power module of the present application.
  • FIG. 4 is a schematic structural diagram of another embodiment of the power module of the present application.
  • FIG. 5 is a schematic cross-sectional structure diagram of another embodiment of the power module of the present application.
  • Figure 6(a) is a schematic diagram of the half-bridge topology realized by using IGBT power switch tubes in the half-bridge switch of the power module of this application;
  • Figure 6(b) is a schematic diagram of the half-bridge topology realized by using SiC power switch tubes in the half-bridge switch of the power module of the present application;
  • Fig. 6(c) is a schematic diagram of a topological equivalent circuit structure of an embodiment of implementing the half-bridge switch of the power module of the present application using an IGBT power switch tube;
  • FIG. 6( d ) is a schematic diagram of a topological equivalent circuit structure of an embodiment of implementing a power module half-bridge switch using a SiC power switch tube according to the present application.
  • label name label name 100 insulating substrate DC+, DC+1, DC+2 DC positive terminal 103 circuit wiring layer DC- DC negative terminal DC-2 first external connection 104 solder AC AC output terminal IC1, IC2 power component 123 main connection 10
  • the directional indications are only used to explain the position in a certain posture (as shown in the attached figure). If the specific posture changes, the directional indication will also change accordingly.
  • the present application proposes a power module, wherein the power module can be applied to motor controllers with motors such as inverter power supplies, frequency converters, refrigeration equipment, metallurgical machinery equipment, and electric traction equipment.
  • motors such as inverter power supplies, frequency converters, refrigeration equipment, metallurgical machinery equipment, and electric traction equipment.
  • the power devices IC1 and IC2 of the upper bridge arm and the lower bridge arm are connected by bonding wires, metal strips or copper sheets. Due to the different layouts of the power devices IC1 and IC2 connected in parallel in the module, the current direction of the first conductive layer of the input pole and the first conductive layer of the output pole of most upper-arm parallel power devices IC1 and IC2 is vertical. The current direction of the first conductive layer at the output pole of the bridge arm is perpendicular to the first conductive layer at the input pole of the lower bridge arm.
  • the parasitic stray inductance and loop resistance parameters of the power devices IC1 and IC2 close to and far from the DC input terminals in multiple parallel chips are inconsistent.
  • the power module includes:
  • An insulating substrate 100 has a first surface and a second surface oppositely disposed, and a first conductive layer is provided on the first surface of the insulating substrate 100;
  • a plurality of power devices IC1, IC2, the plurality of power devices IC1, IC2 are arranged on the first surface of the insulating substrate 100 along the first direction, and the input electrodes of a part of the power devices IC1, IC2 are connected to the first The conductive layer is connected, and the output electrodes of the remaining power devices IC1 and IC2 are connected to the first conductive layer;
  • the conductive sheet is connected to the corresponding input electrodes or output electrodes of the power devices IC1 and IC2 along the first direction;
  • DC terminals DC+, DC-, the DC terminals DC+, DC- are connected to the first conductive layer, and input DC power to the power devices IC1 and IC2;
  • An AC terminal AC the AC terminal AC is connected to the first conductive layer, and outputs AC power through the power devices IC1 and IC2.
  • the insulating substrate 100 is used as the mounting carrier of the power devices IC1 and IC2, and the circuit wiring layer 103 is arranged on the insulating substrate 100.
  • the circuit wiring layer 103 forms corresponding lines and wiring on the insulating substrate 100 according to the circuit design of the power module.
  • the number and area of the first conductive layer area can be set according to the number of power devices IC1 and IC2 integrated in the power module. After the power devices IC1 and IC2 are set on each first conductive layer area, electrical connection can be realized through the conductive sheet .
  • the first direction may be a direction extending from the first side 100 a to the second side 100 b of the insulating substrate 100 , and the first side 100 a and the second side 100 b may specifically be two ends in the width direction.
  • the shape and area thickness of the two first conductive layers on the thermally conductive insulating layer 102 can be set to be the same, and the power device can be connected between the first conductive layer by a conductive sheet.
  • IC1 and IC2 are connected in series and connected to the conductive sheet, so as to ensure that the parasitic parameters between power devices IC1 and IC2 (such as the parasitic inductance Ls shown in Figure 6(c) and Figure 6(d)) are consistent.
  • the first conductive layer can realize that the input electrodes of each power device IC1, IC2 are arranged in parallel to form the first conductive layer of the input electrodes of the power devices IC1, IC2, and the first conductive layer can also realize the input of each second power device IC2.
  • the electrodes are arranged in parallel to form the first conductive layer of the input electrode of the second power device IC2.
  • the conductive sheet can be realized by any one of bonding wire, metal strip or copper sheet, and the size can be adapted to the power devices IC1 and IC2.
  • the material and size of the conductive sheet can be set to be the same or different. Electrical parameters such as resistance and inductance can be set to be the same.
  • the conductive sheet includes a first conductive sheet 10 and a second conductive sheet 20.
  • the first conductive sheet 10 can realize parallel arrangement of the output electrodes of each first power device IC1 to form a conductive layer of the output electrode of the first power device IC1.
  • the conductive sheet 20 can realize the parallel arrangement of the output electrodes of the second power devices IC2 to form a conductive layer of the output electrodes of the second power devices IC2.
  • the power devices IC1 and IC2 in the power module can be patch type or bare die wafers, and the power devices IC1 and IC2 can be welded or bonded in each first conductive layer area by solder 104, conductive glue, sintering, etc. .
  • Each of the power devices IC1 and IC2 may be one or a combination of gallium nitride (GaN) power switch tubes, Si-based power switch tubes or SiC-based power switch tubes, MOS tubes, HEMT tubes, and the like.
  • the number of power devices IC1 and IC2 can be two or more, such as three, four, six, eight, etc., and multiple power devices IC1 and IC2 are arranged in parallel to form a half-bridge switch.
  • Multiple power devices IC1 and IC2 have input electrodes and output electrodes.
  • the input terminals and output terminals of power devices IC1 and IC2 are also different.
  • the input terminals are the drains , the output end is the source; when using IGBT to realize, the input end is the collector, and the output end is the emitter.
  • the input electrodes of each power device IC1, IC2 are soldered in the first conductive layer, and the output electrodes of each power device IC1, IC2 are soldered on the conductive sheet.
  • the DC power supply terminals DC+, DC- are electrically connected to the first conductive layer, that is, they can be electrically connected to the input electrodes of the power devices IC1 and IC2 in the first conductive layer.
  • the current of the DC bus passes through the DC power supply terminals DC+, DC-, the first conductive layer, the input electrodes of the power devices IC1 and IC2, and the power
  • the output electrodes, the conductive sheet, the second conductive layer 120 and the AC output terminal AC of the devices IC1 and IC2 are output to the load.
  • the first conductive layer is used as a conductor, which has a certain internal resistance.
  • the DC power supply will have a certain resistance in the first conductive layer.
  • Multiple power devices IC1 and IC2 are arranged in parallel, so that the power devices IC1 and IC2 are separated from the DC power supply terminals DC+, The closer the DC- is, the smaller the parasitic parameters on the input side (power device IC1, IC2 parasitic inductance Ls and loop resistance parameters, etc.), and vice versa.
  • the conductive sheet also has a certain internal resistance
  • the DC power supply also has a certain resistance on the conductive sheet, so that the closer the power devices IC1 and IC2 are to the AC output terminal AC, the more parasitic parameters on the output side. small, and vice versa.
  • the input path of each power device IC1, IC2 close to the DC input terminal is relatively short, and the output path is long because it is far away from the AC output terminal AC; on the contrary, it is far away from the DC input terminal.
  • the input path of the power devices IC1 and IC2 of the terminal is longer, and the output path is shorter due to the proximity (AC output terminal AC).
  • the length of the current path flowing through each power device IC1 and IC2 can be made the same, ensuring the input of the power devices IC1 and IC2
  • the first conductive layer connected to the electrodes and the conductive sheet connected to the output electrodes of the power devices IC1 and IC2, the direction of the current flowing through them is parallel, which is beneficial to improve the current sharing characteristics of each power device IC1 and IC2, and enhance the power module reliability.
  • the electrical connection between a plurality of power devices IC1 and IC2 arranged in parallel with the DC power supply terminals DC+, DC- and the AC output terminal AC is realized by setting the conductive sheet and the first conductive layer.
  • this application can balance the parasitic parameters of the parallel devices, especially the parasitic inductance and loop resistance, improve the current sharing characteristics of the devices, and can protect the power devices IC1 and IC2 close to the DC input terminals , reduce the risk of device damage due to overload, and enhance the reliability of the power module.
  • This application can also solve the inconsistency of parasitic stray inductance and loop resistance parameters of power devices IC1 and IC2 near and far from the DC input terminal. Due to the small parasitic inductance and low loop resistance, the power devices IC1 and IC2 close to the DC terminals DC+ and DC- bear a large current and cause serious heating, resulting in low reliability of the power module or overheating failure.
  • the first conductive layer includes a first sub-conductive layer 110 and a second sub-conductive layer 120
  • the conductive sheet includes a first conductive sheet 10 and a second conductive sheet 20
  • the input electrodes of the part of the power devices IC1 and IC2 are connected to the first sub-conductive layer 110
  • the output electrodes of the part of the power devices IC1 and IC2 are connected to the first conductive sheet 10
  • the input electrodes of the rest of the power devices IC1 and IC2 are connected to the second conductive sheet 20
  • the output electrodes of the rest of the power devices IC1 and IC2 are connected to the second sub-conductive layer 120 .
  • the first sub-conductive layer 110 can realize the The input electrodes of each first power device IC1 are arranged in parallel to form a conductive layer of the input electrodes of the first power device IC1, and the second conductive layer 120 can realize the parallel arrangement of the input electrodes of each second power device IC2 to form a second power Conductive layer for the input electrode of device IC2.
  • Each first power device IC1 may be one or a combination of gallium nitride (GaN) power switch transistors, Si-based power switch transistors or SiC-based power switch transistors, MOS transistors, HEMT transistors, and the like.
  • the number of first power devices IC1 may be two or more, such as three, four, six, eight, etc., and multiple first power devices IC1 are arranged in parallel to form a half-bridge switch.
  • Each second power device IC2 may be one or a combination of IGBT power switch tubes, Si-based power switch tubes or SiC-based power switch tubes, MOS tubes, HEMT tubes, and the like.
  • the number of the second power device IC2 corresponds to the number of the first power device IC1, that is, when the number of the first power device IC1 is set to two, the second power device IC2 is also set to two, and the number of the first power device IC1 When the number of is set to any number above two, the number of the second power device IC2 is set to be the same as that of the first power device IC1.
  • a plurality of second power devices IC2 are arranged in parallel to form a half-bridge switch.
  • a half-bridge switch tube formed by a plurality of first power devices IC1 connected in parallel may be an upper-bridge switch Q1, and a plurality of second power devices IC2 arranged in parallel forms a lower-bridge switch Q2.
  • a half-bridge switch tube formed by a plurality of first power devices IC1 connected in parallel may be a lower bridge switch Q2, and a plurality of second power devices IC2 connected in parallel forms an upper bridge switch Q1.
  • Multiple power devices have input electrodes and output electrodes.
  • the input electrodes and output terminals of the power device are also different.
  • the input terminal is the drain and the output terminal is the source.
  • the input end is the collector, and the output end is the emitter.
  • the input electrodes of each first power device IC1 are soldered in the first sub-conductive layer 110
  • the output electrodes of each first power device IC1 are soldered on the first conductive sheet 10
  • the input electrodes of each second power device IC2 are soldered in the second sub-conductive layer 120
  • the output electrodes of each second power device IC2 are soldered on the second conductive sheet 20 .
  • the DC positive terminal DC+ is electrically connected to the first sub-conductive layer 110, that is, it can be electrically connected to the input electrode of the first power device IC1 in the first sub-conductive layer 110.
  • the first conductive sheet 10 and the second sub-conductive layer 120 is electrically connected, and the second sub-conductive layer 120 is electrically connected to the AC output terminal AC, so that the output electrode of the first power device IC1 can be connected to the AC output terminal through the first electrical connector, the second sub-conductive layer 120 and the AC output terminal.
  • the second semiconductor is electrically connected to the DC negative terminal DC-, the input electrode of the second power device IC2 in the second sub-conductive layer 120 is connected to the AC output terminal, and the output electrode of the second power device IC2 is connected through the second conductive Slice 20 is connected to the DC negative terminal.
  • the first conductive sheet 10 can realize the parallel arrangement of the output electrodes of each first power device IC1
  • the second conductive sheet 20 can realize the parallel arrangement of the output electrodes of each second power device IC2 to form the output electrodes of the second power device IC2. the conductive layer.
  • the first power device IC1 when the first power device IC1 is turned on, the current of the DC bus passes through the DC positive terminal DC+, the first sub-conductive layer 110, the input electrode of the first power device IC1, the first The output electrodes of the power device IC1 , the first conductive sheet 10 , the second sub-conductive layer 120 and the AC output terminal AC are output to the load.
  • the first sub-conductive layer 110 is used as a conductor, which has a certain internal resistance.
  • the DC power supply will have a certain resistance in the first sub-conductive layer 110.
  • a plurality of first power devices IC1 are arranged in parallel, so that the first power device IC1 is separated from DC.
  • the first conductive sheet 10 as a conductor also has a certain internal resistance
  • the DC power supply also has a certain resistance on the first conductor, so that the first power device IC1 is separated from the second sub-conductive layer 120 (AC The closer the output terminal AC), the smaller the parasitic parameters on the output side, and vice versa.
  • the input path of each first semiconductor close to the DC input terminal is relatively short, and because it is far away from the second sub-conductive layer 120 (AC output terminal AC), so that the output path is longer; on the contrary, the input path of the first power device IC1 away from the DC input terminal is longer, and because it is close to the second sub-conductive layer 120 (AC output terminal AC), the output path shorter.
  • the length of the current path flowing through each first power device IC1 can be made the same, ensuring the first The first sub-conductive layer 110 connected to the input electrode of the power device IC1, and the first conductive sheet 10 connected to the output electrode of the first power device IC1, the direction of the current flowing through the two is in a parallel direction, which is conducive to improving each first power.
  • the current sharing characteristic of the device IC1 enhances the reliability of the power module.
  • the second power device IC2 When the second power device IC2 is turned on, the current is output to DC through the AC output terminal AC, the second sub-conductive layer 120, the input electrode of the second power device IC2, the output electrode of the second power device IC2, and the second conductive sheet 20. Negative terminal DC-.
  • the second sub-conductive layer 120 is used as a conductor, which has a certain internal resistance.
  • the power supply will have a certain resistance in the second sub-conductive layer 120.
  • a plurality of second power devices IC2 are arranged in parallel, so that the second power device IC2 is separated from the AC output. The closer the terminal AC is, the smaller the parasitic parameters on the input side (power device parasitic inductance and loop resistance parameters, etc.), and vice versa.
  • the second conductive sheet 20 as a conductor, also has a certain internal resistance, and the current will also have a certain resistance on the second conductor, so that the closer the second power device IC2 is to the DC negative terminal DC-, the output The parasitic parameters on the side are smaller, and vice versa.
  • the input path of each second power device IC2 close to the AC output terminal AC is relatively short, while the output path is relatively short because it is far away from the DC negative terminal DC-.
  • the input path of the second power device IC2 away from the AC output terminal AC is longer, and the output path is shorter because it is close to the DC negative terminal DC-.
  • the length of the current path flowing through each second power device IC2 can be made the same, ensuring that the second The second sub-conductive layer 120 connected to the input electrode of the power device IC2, and the second conductive sheet 20 connected to the output electrode of the second power device IC2, the direction of the current flowing through the two is in a parallel direction, which is beneficial to improving each second power.
  • the current sharing characteristic of the device IC2 enhances the reliability of the power module.
  • both the first conductive sheet 10 and the AC output terminal AC are electrically connected through the second sub-conductive layer 120, and the first conductive sheet 10 is electrically connected to the output electrode of the first power device IC1.
  • the second sub-conductive layer 120 is connected to the input electrode of the second power device IC2 , therefore, the output electrode of the first power device IC1 and the input electrode of the second power device IC2 can be electrically connected through the first conductive sheet 10 .
  • the AC output terminal AC outputs current when the first power device IC1 is turned on, and receives current when the second power device IC2 is turned on.
  • the conductive layer of the output electrode of the first power device IC1 (the first conductive sheet 10 , second conductive layer) and the conductive layer (second semiconductor layer) of the input electrode of the second power device IC2, the current direction is parallel, which improves the consistency of the parasitic parameters of the power module, improves the current sharing characteristics of the power module, and enhances the power module reliability.
  • the first conductive sheet 10 is connected to the second sub-conductive layer 120 .
  • the first conductive sheet 10 and the second sub-conductive layer 120 can be realized by using any one of bonding wires, metal strips or copper sheets, and the size can be adapted to the power device.
  • the first conductive sheet 10 The material and size of the second conductive sheet 20 can be set to be the same or different, and the electrical parameters such as resistance and inductance of the two can be set to be the same.
  • the first conductive sheet 10 can realize the parallel arrangement of the output electrodes of each first power device IC1
  • the second conductive sheet 20 can realize the parallel arrangement of the output electrodes of each second power device IC2 to form the output electrodes of the second power device IC2. the conductive layer.
  • the first conductive sheet 10 is stacked on the output electrodes of each of the first power devices IC1, and is electrically connected to the output electrodes of each of the first power devices IC1 and the second sub-conductive layer 120; the first conductive The sheet 10 can be used to arrange the output electrodes of the first power devices IC1 in parallel, and the second conductive sheet 20 can be used to arrange the output electrodes of the second power devices IC2 in parallel to form the conductive layer of the output electrodes of the second power device IC2. .
  • the first conductive sheet 10 includes two sections of the first sub-conductive sheet 10, and the two sections of the first sub-conductive sheet 10 are stacked one-to-one on the two groups of the first conductive sheet.
  • the input electrode of the first power device IC1 extends partially into the sub-connection portion 124 to be electrically connected to the second sub-conductive layer 120 through the two sub-connection portions 124 .
  • the first sub-conductive sheet 10 is stacked on each first power device IC1 , that is, covers the top of the first power device IC1 , and the two first sub-conductive sheets 10 have the same shape and size.
  • the two first sub-conductive sheets 10 are implemented with copper sheets, one end of the two first sub-conductive sheets 10 and the second sub-conductive layer 120 can be soldered 104, ultrasonic welding, silver sintering or laser welding or ultrasonic bonding etc. to achieve fixed electrical connection with the second sub-conductive layer 120, and the AC output terminal AC is also fixedly electrically connected to the second sub-conductive layer 120, so that the first sub-conductive sheet 10 can be connected to the second sub-conductive layer 120 through the second sub-conductive layer 120.
  • the AC output terminal AC realizes electrical connection.
  • the current flows from the two DC positive terminals DC+ into the two first sub-conductive layers 110 respectively, and then flows through the input electrodes and output electrodes of the two groups of first power devices IC1 to the two sections.
  • the first sub-conductive sheet 10 the current on the two segments of the first sub-conductive sheet 10 passes through the second sub-conductive layer 120, and then flows into the AC output terminal AC.
  • two groups of parallel current loops are formed, which can reduce the magnitude of the current flowing through each group of first power devices IC1, It can reduce the pressure of relatively large current flowing through each first power device IC1, which is beneficial to improve the withstand voltage capability of the power module.
  • forming two sets of current loops with the same structure and the same position and arranged symmetrically can also improve the current sharing characteristics of each first power device IC1 and enhance the reliability of the power module.
  • the first conductive sheet 10 is connected to the AC terminal AC.
  • the electrical connection between the first conductive sheet 10 and the AC output terminal AC can be indirectly realized through the second sub-conductive layer 120, for example, when the first conductive sheet 10 and the AC output terminal AC are both implemented by copper sheets , both ends connected to the second sub-conductive layer 120 can be electrically connected to the second sub-conductive layer 120 through solder 104, ultrasonic welding, silver sintering or laser welding, etc., in the second sub-conductive layer 120 Under the action of conduction, the electrical connection between the first power device IC1 and the AC output terminal AC is realized.
  • a whole piece of copper sheet can also be punched into the shape of the AC output terminal AC and the two sections of the first sub-conductive sheet 10, and whether to perform bending treatment or Change the thicknesses of the AC output terminal AC and the two sections of the first sub-conductive sheet 10 .
  • two sections of the first sub-conductive sheet 10 are arranged in straight strips, and the common point of the AC output terminal AC and the two sections of the first sub-conductive sheet 10 can be set as a groove, so as to weld the whole to the second sub-conductive layer 120, and the AC output
  • the thickness of the terminal AC can be higher than the height of the two sections of the first sub-conductive sheet 10 to improve the withstand voltage of the AC output terminal AC, and the AC output terminal AC can be bent into a gull-wing shape, which can improve the installation convenience of the power module sex.
  • the AC output terminal AC is integrated with the two sections of the first sub-conductive sheet 10 , and the AC output terminal AC can be fixedly connected to the insulating substrate 100 through the protruding portion 126 of the second conductive layer. And according to the needs of practical applications, it is selected whether to set solder joints on the two sub-connecting parts 124 of the second sub-conductive layer 120. When setting solder joints, the connection between the first power device IC1 and the AC output terminal can be improved through the two sub-connecting parts 124.
  • the AC contact area improves the electrical connection yield between the first power device IC1 and the AC output terminal AC, which can increase the heat dissipation area of the AC output terminal AC, and is beneficial to disperse the AC output terminal AC.
  • the AC output terminal AC is integrated with the first sub-conductive sheet 10 in the two sections, which can also reduce the input of materials, reduce the process flow, and reduce the cost of power devices.
  • the second sub-conductive layer 120 is connected to the AC terminal AC.
  • the AC output terminal AC is disposed on the second side 100b of the insulating substrate 100 and is electrically connected to the second sub-conductive layer 120;
  • the electrical connection between the first conductive sheet 10 and the AC output terminal AC can be indirectly realized through the second sub-conductive layer 120, for example, when the first conductive sheet 10 and the AC output terminal AC are both implemented by copper sheets , both ends connected to the second sub-conductive layer 120 can be electrically connected to the second sub-conductive layer 120 through solder 104, ultrasonic welding, silver sintering or laser welding, etc., in the second sub-conductive layer 120 Under the action of conduction, the electrical connection between the first power device IC1 and the AC output terminal AC is realized.
  • a whole piece of copper sheet can also be punched into the shape of the AC output terminal AC and the two sections of the first sub-conductive sheet 10, and whether to perform bending treatment or Change the thicknesses of the AC output terminal AC and the two sections of the first sub-conductive sheet 10 .
  • two sections of the first sub-conductive sheet 10 are arranged in straight strips, and the common point of the AC output terminal AC and the two sections of the first sub-conductive sheet 10 can be set as a groove, so as to weld the whole to the second sub-conductive layer 120, and the AC output
  • the thickness of the terminal AC can be higher than the height of the two sections of the first sub-conductive sheet 10 to improve the withstand voltage of the AC output terminal AC, and the AC output terminal AC can be bent into a gull-wing shape, which can improve the installation convenience of the power module sex.
  • the first conductive layer further includes a third sub-conductive layer 130, the direct current terminal DC- is connected to the third sub-conductive layer 130, and the direct current terminal DC - connected to the second conductive sheet 20 .
  • the position of the third sub-conductive layer 130 is set corresponding to the position of the second conductive layer region 120, and is electrically connected to the plurality of second power devices IC2 through the second conductive sheet 20, so One end of the first external connection portion DC- 2 is disposed on the third sub-conductive layer 130 , and the other end of the second connection portion extends to a side away from the third sub-conductive layer 130 .
  • the electrical connection between the two second conductive sheets 20 and the first external connection part DC-2 can be indirectly realized through the third sub-conductive layer 130, for example, the second conductive sheet 20 and the first external connection part
  • the ends connected to the third sub-conductive layer 130 can be electrically connected to the third sub-conductive layer 130 through solder 104, ultrasonic welding, silver sintering or laser welding, etc.
  • the electrical connection between the second power device IC2 and the first external connection portion DC- 2 is realized.
  • a whole piece of copper sheet can also be punched into the shape of the first external connection part DC-2 and the two sections of the second conductive sheet 20, and as required Whether to perform bending processing or change the thickness of the AC output terminal AC and the two sections of the second conductive sheet 20 .
  • two sections of second conductive sheet 20 are arranged in straight strips, and the common point between the first external connection part DC-2 and the two sections of second conductive sheet 20 can be set as a groove, which is configured to be welded to the third sub-conductive layer as a whole 130, the thickness of the third sub-conductive layer 130 can be higher than the height of the two sections of the second conductive sheet 20, so as to improve the pressure resistance of the first external connection part DC-2, and the first external connection part DC-2 can be bent Folded into a gull-wing shape to improve the installation convenience of the power module.
  • the first external connection part DC-2 is integrated with the two sections of the second conductive sheet 20, which can also reduce the input of materials, reduce the process flow, and reduce the cost of power devices.
  • the first conductive layer further includes a third sub-conductive layer 130, the direct current terminal DC- is connected to the third sub-conductive layer 130, and the third sub-conductive layer The conductive layer 130 is connected to the second conductive sheet 20 .
  • the second conductive sheet 20 is stacked on each second power device IC2 , that is, covers the top of the second power device IC2 , and the shape and size of the two second conductive sheets 20 are the same.
  • the two second conductive sheets 20 are implemented with copper sheets, one end of the two second conductive sheets 20 connected to the third sub-conductive layer 130 can be connected to the third sub-conductive layer 130 through solder 104, ultrasonic welding, silver sintering or laser welding.
  • the sub-conductive layer 130 implements a fixed electrical connection.
  • the first external connection part DC-2 is also fixed and electrically connected to the third sub-conductive layer 130, so that the second conductive sheet 20 can be electrically connected to the first external connection part DC-2 through the third sub-conductive layer 130 .
  • the current flows from the AC output terminals AC into the two second sub-conductive layers 120 respectively, and then flows through the input electrodes and output electrodes of the two groups of second power devices IC2 to the two second sub-conductive layers.
  • the conductive sheet 20 the current on the two second conductive sheets 20 flows into the direct current negative terminal DC-.
  • two sets of second power devices IC2 and two sections of second conductive sheets 20 two sets of parallel current loops are formed, which can reduce the magnitude of the current flowing through each set of second power devices IC2, It can slow down the pressure of relatively large current flowing through each second power device IC2, which is beneficial to improve the withstand voltage capability of the power module.
  • forming two sets of current loops with the same structure and the same position and symmetrical arrangement can also improve the current sharing characteristics of each second power device IC2 and enhance the reliability of the power module.
  • the power module includes two first sub-conductive layers 110 and one second sub-conductive layer 120, wherein, along the second direction of the insulating substrate 100, the The second sub-conductive layer 120 is located between the two first sub-conductive layers 110 .
  • Two first sub-conductive layers 110 are separately arranged on both sides of the second conductive layer region 120, and the two first sub-conductive layers 110 are respectively electrically connected to the DC positive terminal DC+;
  • the plurality of first power devices IC1 are divided into two groups of first power devices IC1 , and the two groups of first power devices IC1 are respectively arranged in the two first sub-conductive layers 110 .
  • the shapes and sizes of the two first sub-conductive layers 110 are the same, and the shapes and sizes of the two second sub-conductive layers 120 are also the same, and the number of the second sub-conductive layers 120 can also be set to two.
  • the two second sub-conductive layers 120 are arranged side by side at the central position of the insulating substrate 100, and the two first sub-conductive layers 110 are arranged on both sides of the two second sub-conductive layers 120 in the first direction, that is, two The second sub-conductive layers 120 are disposed adjacent to each other, and a first sub-conductive layer 110 is respectively disposed on sides of the two second sub-conductive layers 120 away from each other.
  • Each sub-conductive layer area is arranged in a square shape, between the first sub-conductive layer 110 and the second sub-conductive layer 120, there is a gap between the second sub-conductive layer 120 and the second sub-conductive layer 120, and the two second sub-conductive layers Specifically, the conductive layer 120 can be grooved symmetrically at the middle part of the insulating substrate 100 with the center of the second power device IC2 connected in parallel in the upper and lower rows to form a symmetrical layout structure.
  • the area and height between the first sub-conductive layer 110 and the second sub-conductive layer 120 can be set to be the same, so as to ensure the parasitic parameters between the first power device IC1 disposed on the two first sub-conductive layers 110 The same, and the parasitic parameters between the first power device IC1 disposed on the first sub-conductive layer 110 and the second power device IC2 disposed on the second sub-conductive layer 120 are the same.
  • the number of first power devices IC1 in two groups is set to be the same, and the number of first power devices IC1 in each group can be set to two or more, for example, when one group is set to three, the other group is also set to three.
  • Each group of first power devices IC1 is installed on the corresponding first sub-conductive layer 110 , and the position is arranged symmetrically along the center line parallel to the third side 100 c and the fourth side 100 d along the insulating substrate 100 .
  • Setting the first conductive layer as two first sub-conductive layers 110 is beneficial to disperse the heat dissipation of the first power device IC1 on the insulating substrate 100 of the power module, and can reduce the concentration of heat sources on the insulating substrate 100 .
  • the DC terminals DC+ and DC- include a DC positive terminal DC+ and a DC negative terminal DC-, and the DC positive terminal DC+ is connected to the first sub-conductive layer 110, The DC negative terminal DC ⁇ is connected to the second sub-conductive layer 120 .
  • the DC positive terminal DC+ and the DC negative terminal DC- are both arranged on the first side 100a of the insulating substrate 100, and the DC positive terminal DC+ and the DC negative terminal DC- are respectively connected to the positive pole of the DC bus and the negative pole of the DC bus.
  • the AC output terminal AC can be configured to connect to any end of the stator winding of a single-phase motor, or can be configured to connect to any phase of UVW in the stator winding of a three-phase motor.
  • the DC positive terminal DC+, the DC negative terminal DC-, and the AC input terminal can all be set as copper sheets, and the copper sheets can be configured to support the power module and realize electrical connection to an external DC power supply or load.
  • the power module also has a plastic package configured to encapsulate the insulating substrate 100, one end of the copper sheet is fixed on the first side 100a of the insulating substrate 100, and the other end of the copper sheet extends out of the plastic package of the power module from the first side 100a to form a power module.
  • the pin of the module which can be bent into a gull-wing shape, or not bent, can be connected to the external circuit board in a straight shape.
  • the two first sub-conductive layers 110 are electrically connected to the two DC positive terminals DC+1 in one-to-one correspondence. .
  • the two first sub-conductive layers 110 are separately disposed on both sides of the second conductive layer, specifically, one first sub-conductive layer 110 is disposed close to the third side 100c, and the other first sub-conductive layer 110 is disposed close to the fourth side 100d , when the positive poles of the two DC busbars are implemented with copper sheets, the two copper sheets are arranged on the first side 100a, and are symmetrically arranged at positions corresponding to the two first sub-conductive layers 110, that is, one DC positive terminal DC +1 is disposed on the first side 100a close to the third side 100c, and another DC positive terminal DC+2 is disposed on the first side 100a close to the fourth side 100d.
  • the two positive terminals can be directly fixedly connected to the first conductive layer region 110, that is, the DC positive terminal DC+1 can be directly welded, sintered or ultrasonically bonded to the first sub conductive layer 110, or the DC positive terminal DC+ includes an internal connection part and an external connection part, the internal connection part is arranged adjacent to the first conductive layer region 110, and is directly electrically connected to the first conductive layer region 110, and one end of the external connection part is welded, sintered or ultrasonically bonded on the internal connection part, The other end extends away from the first conductive layer region 110 .
  • the two first conductive layer regions 110 can not only realize the electrical connection between the two DC positive terminals DC+ and the two groups of first power devices IC1, but also play the role of distributing the heat of the DC bus positive terminals, and can When the first DC positive terminal DC+1 vibrates, it can absorb the vibration force, and at the same time, it can increase the contact area between the DC positive terminal DC+ and the first power device IC1, avoiding the direct current positive terminal DC+ and the first sub-conductive layer. Relative movement occurs between 110, and the problem of poor electrical connection occurs.
  • the second sub-conductive layer 120 is provided with grooves opened along the first direction.
  • the second sub-conductive layer 120 further includes: a main connection portion 123, extending along the direction from the third side 100c to the fourth side 100d, and respectively connecting two of the second sub-conductive layers 120;
  • Two sub-connecting parts 124, the two sub-connecting parts 124 are connected to the main connecting part 123, and the two sub-connecting parts 124 are located between the two first sub-conducting layers 110 and the second sub-conducting layer 110 one by one. Between the sides 100b, the two sub-connecting parts 124 are connected to the first conductive sheet 10; and
  • the protruding part 126 is connected to the main connecting part 123 and extends toward the second side 100b, and the AC output terminal AC is mounted on the protruding part 126 .
  • the main connecting portion 123 connects the two second sub-conductive layers 120, the two sub-connecting portions 124 and the protruding portion 126 respectively.
  • the two sub-connecting parts 124 Extend, and extend to one side of the two first sub-conductive layers 110, the two sub-connecting parts 124 are respectively arranged in an L shape corresponding to one of the first sub-conducting layers 110; the protruding part 126 is arranged on the main connecting part 123 away from The two first sub-conductive layers 110 and the protruding portion 126 are used for mounting the AC output terminal AC.
  • the two second sub-conductive layers 120 respectively extend in parallel from the main connection portion 123 to the first side 100 a of the insulating substrate 100 , and the two second sub-conductive layers 120 are mirror images.
  • the two sub-connecting parts 124 extend to the side of the two first sub-conducting layers 110 close to the second side 100b, that is, one sub-connecting part 124 extends to the position of the first sub-conducting layer 110 disposed near the third side 100c, Another sub-connection part 124 extends to the position of the first sub-conductive layer 110 disposed near the fourth side 100d, and the two sub-connection parts 124 and the two first sub-conductive layers 110 are connected between the first side 100a and the second side of the insulating substrate 100.
  • the sides 100b are arranged in parallel, and the two sub-connecting parts 124 are arranged at intervals from the respective corresponding first sub-conductive layers 110 .
  • the first conductive sheet 10 connected to the output electrode of the first power device IC1 can directly extend to the two sub-connection parts 124, that is, the first conductive sheet 10 and the sub-connection part 124 are vertically arranged, under the action of the sub-connection part 124 , can realize the linear connection between the first conductive sheet 10 and the second installation area, which is beneficial to optimize the current loop route and improve the layout convenience of the power module.
  • the protruding part 126 is configured to realize the fixed connection of the AC output terminal AC.
  • the AC output terminal AC can be connected to the AC output terminal AC by means of solder, ultrasonic welding, silver sintering or laser welding.
  • the protruding portion 126 implements a fixed electrical connection.
  • the two second sub-conductive layers 120 are connected in parallel in two rows up and down in the middle, and are arranged symmetrically in the center. A balance gap is opened between the two second sub-conductive layers 120 to form a symmetrical layout structure.
  • the AC output terminal AC is welded on the protruding part 126 to realize a fixed connection with the second sub-conductive layer 120.
  • the second conductive layer not only plays the role of electrical connection, but also plays a role in cooling the AC output terminal AC, and can also be used in AC When the output terminal AC vibrates, it plays a role in absorbing the vibration force, so as to prevent the failure of the connection between the AC output terminal AC and the second sub-conductive layer 120 .
  • the second sub-conductive layer 120 forms two second sub-conductive layers 120 through grooves to extend in parallel from the main connection portion 123 to the first side 100a of the insulating substrate 100, and the two second sub-conductive layers 120 are mirror images.
  • the two sub-connecting parts 124 extend to the side of the two first sub-conducting layers 110 close to the second side 100b, that is, one sub-connecting part 124 extends to the position of the first sub-conducting layer 110 disposed near the third side 100c, Another sub-connection part 124 extends to the position of the first sub-conductive layer 110 disposed near the fourth side 100d, and the two sub-connection parts 124 and the two first sub-conductive layers 110 are connected between the first side 100a and the second side of the insulating substrate 100.
  • the sides 100b are arranged in parallel, and the two sub-connecting parts 124 are arranged at intervals from the respective corresponding first sub-conductive layers 110 .
  • the first conductive sheet 10 connected to the output electrode of the first power device IC1 can directly extend to the two sub-connection parts 124, that is, the first conductive sheet 10 and the sub-connection part 124 are vertically arranged, under the action of the sub-connection part 124 , can realize the linear connection between the first conductive sheet 10 and the second installation area, which is beneficial to optimize the current loop route and improve the layout convenience of the power module.
  • the protruding part 126 is configured to realize the fixed connection of the AC output terminal AC.
  • the AC output terminal AC can be welded by solder 104, ultrasonic welding, silver sintering or laser welding.
  • a fixed electrical connection is realized with the protruding portion 126 .
  • the two second sub-conductive layers 120 are connected in parallel in two rows up and down in the middle, and are arranged symmetrically in the center.
  • a balance gap is opened between the two second sub-conductive layers 120 to form a symmetrical layout structure.
  • the AC output terminal AC is welded on the protruding part 126 to realize a fixed connection with the second sub-conductive layer 120.
  • the second conductive layer not only plays the role of electrical connection, but also plays the role of cooling the AC output terminal AC, and can also be used in AC When the output terminal AC vibrates, it plays a role in absorbing the vibration force, so as to prevent the failure of the connection between the AC output terminal AC and the second sub-conductive layer 120 .
  • the material consumption can be reduced, such as copper sheet, the price of copper sheet is generally high, by using The second sub-conductive layer 120 is provided with grooves, and the saved material can be used for the first conductive sheet 10 or the second conductive sheet 20, thereby further reducing the cost of the power module.
  • the second sub-conductive layer 120 has a protruding portion 126 connected to the first conductive sheet 10 , and the first conductive layer is connected to the protruding portion 126 .
  • the AC output terminal AC may be fixedly connected to the insulating substrate 100 through the protruding portion 126 of the second conductive layer. And according to the needs of practical applications, it is selected whether to set solder joints on the two sub-connecting parts 124 of the second sub-conductive layer 120. When setting solder joints, the connection between the first power device IC1 and the AC output terminal can be improved through the two sub-connecting parts 124.
  • the AC contact area improves the electrical connection yield between the first power device IC1 and the AC output terminal AC, which can increase the heat dissipation area of the AC output terminal AC, and is beneficial to disperse the AC output terminal AC.
  • the AC output terminal AC is integrated with the first sub-conductive sheet 10 in the two sections, which can also reduce the input of materials, reduce the process flow, and reduce the cost of power devices.
  • the DC negative terminal DC- includes a first external connection portion DC-2, and the position of the third sub-conductive layer 130 corresponds to that of the second conductive layer region 120 The position is set and electrically connected to the plurality of second semiconductor switches IC2 through the second conductive sheet 20, and one end of the first external connection part DC-2 is arranged on the third sub-conductive layer 130 , the other end of the second connection part extends to a side away from the third sub-conductive layer 130 .
  • the third sub-conductive layer 130 is configured to realize the fixed connection of the first external connection part DC-2, and realize the electrical connection between the first external connection part DC-2 and the second conductive sheet 20,
  • the first external connection part DC-2 can be connected to the third sub-conductive layer 130 by means of solder 104, ultrasonic welding, silver sintering or laser welding.
  • the sub-conductive layer 130 implements a fixed electrical connection, and the first external connection portion DC- 2 can be bent into a gull-wing shape, so as to improve the installation convenience of the power module.
  • the third sub-conductive layer 130 not only plays the role of electrical connection, but also plays the role of dissipating the heat of the first external connection part DC-2 in the DC negative terminal DC-, and can also connect the third sub-conductive layer 130 with the first external connection.
  • part DC-2 vibrates, it plays the role of absorbing the vibration force, and at the same time, it can also increase the contact area between the first external connection part DC-2, the second conductive sheet 20 and the second semiconductor switch IC2, avoiding the first Relative movement occurs between the external connection portion DC- 2 and the second conductive sheet 20 , resulting in poor electrical connection.
  • the first external connection portion DC- 2 is integrally provided with two sections of the second conductive sheet 20 .
  • the electrical connection between the two second conductive sheets 20 and the first external connection part DC-2 can be indirectly realized through the third conductive layer region 130, for example, the second conductive sheet 20 and the first external connection part
  • the third conductive layer region 130 can be electrically connected to the third conductive layer region 130 through solder 104, ultrasonic welding, silver sintering or laser welding, etc.
  • solder 104 ultrasonic welding, silver sintering or laser welding, etc.
  • a whole piece of copper sheet can also be punched into the shape of the first external connection part DC-2 and the two sections of the second conductive sheet 20, and as required Whether to perform bending processing or change the thickness of the AC output terminal AC and the two sections of the second conductive sheet 20 .
  • the two sections of second conductive sheet 20 are arranged in straight strips, and the common point between the first external connection part DC-2 and the two sections of second conductive sheet 20 can be set as a groove, which is configured to be welded to the third conductive layer area as a whole 130, the thickness of the third conductive layer region 130 can be higher than the height of the two sections of the second conductive sheet 20, so as to improve the withstand voltage of the first external connection part DC-2, and the first external connection part DC-2 can be bent Folded into a gull-wing shape to improve the installation convenience of the power module.
  • the first external connection part DC-2 is integrated with the two sections of the second conductive sheet 20, which can also reduce the input of materials, reduce the process flow, and reduce the cost of power devices.
  • the sizes of the two first sub-conductive layers 110 and the two second sub-conductive layers 120 can be set to be the same, and the materials of the two first conductive sheets 10 and the two second conductive sheets 20 , the size can be set to be the same, so as to ensure that the parasitic parameters of the upper bridge switch Q1 and the lower bridge switch Q2 are the same, so that the current flowing through each first power device IC1 and the current flowing through each second power device IC2 are parallel directions , with the same current magnitude.
  • two sets of parallel current loops are formed by setting two DC positive terminals DC+, two sets of first power devices IC1 and two sections of first sub-conductive sheets 10, two DC negative terminals DC-, two sets of second power devices IC2 and two sections of the second conductive sheet 20 form two sets of parallel current loops to realize the overall current sharing characteristics of the power module, which can protect the power devices near the DC input terminals, reduce the risk of device damage due to overload, and enhance the reliability of the power module. reliability.
  • the power module further includes a plastic package (not shown in the figure), and the plastic package is disposed on the insulating substrate 100 to realize the overall packaging of the power module.
  • the power module may adopt a full-encapsulation package or a half-encapsulation package.
  • this embodiment can choose to use a semi-encapsulated package, and part of the insulating substrate 100 of the power module is exposed outside the plastic package to form a part of the plastic package, and the insulating substrate 100 is exposed to the plastic package of the power module.
  • the surface outside the body can be in contact with a heat dissipation device, such as a liquid cooling heat dissipation device, which is beneficial to increase the heat dissipation area of the power module.
  • the first sub-conductive layer 110 and the second sub-conductive layer 120 can be etched out of the top copper sheet of the ceramic substrate covered with a whole piece of copper on both sides, and then multiple first power devices IC1, multiple A second power device IC2 is welded to the corresponding copper sheet; then a whole piece of copper sheet is stamped into a DC positive terminal DC+, a DC negative terminal DC- and an AC output terminal AC and welded on the first side 100a and the second side of the insulating substrate 100.
  • the present application also proposes a motor controller, which includes the above-mentioned power module.
  • the detailed structure of the power module can refer to the above-mentioned embodiment, and will not be repeated here; it can be understood that since the above-mentioned power module is used in the motor controller of the present application, the embodiment of the motor controller of the present application includes All the technical solutions of all the embodiments of the modules, and the achieved technical effects are also completely the same, and will not be repeated here.
  • the motor controller may include two or three power modules as described above.
  • a single-phase motor controller can be formed, and when set to three, a three-phase motor controller can be formed.
  • a plurality of first power devices IC1 can form a power switch Q1
  • a plurality of second power devices IC2 can form another power switch Q2, and each power switch Q1 is arranged in series with a power switch Q2 to form a half-bridge/full-bridge circuit .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • Inverter Devices (AREA)

Abstract

本申请公开一种功率模块及电机控制器,该功率模块包括:绝缘基板,绝缘基板具有相对设置的第一表面和第二表面,在绝缘基板的第一表面具有第一导电层;多个功率器件,多个功率器件沿第一方向布置于绝缘基板的第一表面,且一部分的功率器件的输入电极与第一导电层连接,其余部分的功率器件的输出电极与第一导电层连接;导电片,导电片沿第一方向与对应的功率器件的输入电极或者输出电极连接;直流端,直流端与第一导电层连接,为功率器件输入直流电;交流端,交流端与第一导电层连接,经功率器件输出交流电。

Description

功率模块及电机控制器
本申请要求于2021年10月18号申请的、申请号为202111212587.9的中国专利申请的优先权,其全部内容通过引用结合于此。
技术领域
本申请涉及功率电子器件技术领域,特别涉及一种功率模块及电机控制器。
背景技术
在功率模块中,可能会存在多芯片并联形成一个桥臂开关,再跟另一个桥臂开关串联设置构成一个半桥/全桥功能的半导体器件的封装。由于多并联的功率器件在模块内部的位置布局不同,这会出现流经每个芯片的电流不均衡的问题,容易降低功率模块的可靠性。
技术问题
本申请的主要目的是提出一种功率模块及电机控制器,旨在实现功率模块的各个功率器件的均流特性,增强功率模块的可靠性。
技术解决方案
为实现上述目的,本申请提出一种功率模块,所述功率模块包括:
绝缘基板,所述绝缘基板具有相对设置的第一表面和第二表面,在所述绝缘基板的第一表面具有第一导电层;
多个功率器件,所述多个功率器件沿第一方向布置于所述绝缘基板的第一表面,且一部分的功率器件的输入电极与所述第一导电层连接,其余部分的功率器件的输出电极与所述第一导电层连接;
导电片,所述导电片沿所述第一方向与对应的所述功率器件的输入电极或者输出电极连接;
直流端,所述直流端与所述第一导电层连接,为所述功率器件输入直流电;
交流端,所述交流端与所述第一导电层连接,经所述功率器件输出交流电。
在一实施方式中,所述第一导电层包括第一子导电层和第二子导电层,所述导电片包括第一导电片和第二导电片,所述的一部分的功率器件的输入电极与所述第一子导电层连接,所述的一部分的功率器件的输出电极与所述第一导电片连接;所述的其余部分的功率器件的输入电极与所述第二导电片连接,所述的其余部分的功率器件的输出电极与所述第二子导电层连接。
在一实施方式中,所述第一导电片与所述第二子导电层连接。
在一实施方式中,所述第一导电片与所述交流端连接。
在一实施方式中,所述第二子导电层与所述交流端连接。
在一实施方式中,所述第一导电层还包括第三子导电层,所述直流端与所述第三子导电层连接,所述直流端与所述第二导电片连接。
在一实施方式中,所述第一导电层还包括第三子导电层,所述直流端与所述第三子导电层连接,所述第三子导电层与所述第二导电片连接。
在一实施方式中,所述功率模块包括两个第一子导电层和一个第二子导电层,其中,沿所述绝缘基板的第二方向,所述第二子导电层位于所述的两个第一子导电层之间。
在一实施方式中,所述直流端包括直流正极端和直流负极端,所述直流正极端与所述第二子导电层连接,所述直流负极端与所述第一子导电层连接。
在一实施方式中,所述第二子导电层设有沿所述第一方向开设的凹槽。
在一实施方式中,所述第二子导电层具有与所述第一导电片连接的连接部,所述第一导电层与所述连接部连接。
本申请还提出一种电机控制器,该电机控制器包括如上所述的功率模块。
有益效果
本申请通过设置第一导电片、导电层及第三子导电层来实现多个并联设置的第一功率器件分别与直流正极端子和交流输出端子之间的电性连接,以及通过设置第二导电片、第二导电层区及第三子导电层来实现多个并联设置的第二功率器件分别与交流输出端子和直流负极端子之间的电性连接。本申请通过设置功率器件的电性连接,可以均衡并联器件的寄生参数,尤其是寄生电感及回路电阻,提高了器件的均流特性,能够保护靠近直流输入端子的功率器件,降低器件因过载而损坏的风险,增强了功率模块的可靠性。本申请还可以解决靠近和远离直流输入端子的功率器件管寄生杂感和回路电阻参数出现不一致,在器件发生过载或者上下桥直通时,由于靠近直流端子的功率器件管因寄生杂感和回路电阻较小,导致靠近直流端子的功率器件管承受电流较大出现发热严重,导致功率模块可靠性较低或过热失效的问题。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请功率模块一实施例的结构示意图;
图2为本申请功率模块一实施例的截面结构示意图;
图3为本申请功率模块另一实施例的截面结构示意图;
图4为本申请功率模块另一实施例的结构示意图;
图5为本申请功率模块又一实施例的截面结构示意图;
图6(a)为本申请功率模块半桥开关采用IGBT功率开关管实现的半桥拓扑结构示意图;
图6(b)为本申请功率模块半桥开关采用SiC功率开关管实现的半桥拓扑结构示意图;
图6(c)为本申请功率模块半桥开关采用IGBT功率开关管实现一实施例的拓扑等效电路结构示意图;
图6(d)为本申请功率模块半桥开关采用SiC功率开关管实现一实施例的拓扑等效电路结构示意图。
附图标号说明:
标号 名称 标号 名称
100 绝缘基板 DC+、DC+1、DC+2 直流正极端子
103 电路布线层 DC- 直流负极端子
DC-2 第一外部连接部 104 焊料
AC 交流输出端子 IC1、IC2 功率器件
123 主连接部 10 第一子导电片
124 子连接部 20 第二导电片
126 突出部 110 第一子导电层
120 第二子导电层 130 第三子导电层
本申请目的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,若本申请实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本申请实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A 和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请提出一种功率模块,其中,功率模块可以应用于逆变电源、变频器、制冷设备、冶金机械设备、电力牵引设备等具有电机的电机控制器中。
在具备多芯片并联的半桥/全桥功能的半导体器件的封装中,上桥臂和下桥臂功率器件IC1、IC2用绑定线、金属带或铜片实现连接。由于多并联的功率器件IC1、IC2在模块内部的位置布局不同,大多数上桥臂并联功率器件IC1、IC2的输入极第一导电层和输出极的第一导电层电流方向为垂直方向,上桥臂输出极的第一导电层和与下桥臂输入极的第一导电层电流方向为垂直方向。这样使得多个并联芯片中靠近和远离直流输入端子的功率器件IC1、IC2管寄生杂感和回路电阻参数出现了不一致,越靠近直流端DC+、DC-的功率器件IC1、IC2管的寄生杂感和回路电阻越小,而使流经各个芯片的电流不均衡。当器件发生过载,或者在上下桥臂直通工况时,靠近直流端DC+、DC-的功率器件IC1、IC2管承受电流较大出现发热严重的问题,容易导致芯片可靠性较低或过热失效。
为了解决上述问题,参照图1至图6(d),在本申请一实施例中,该功率模块包括:
绝缘基板100,所述绝缘基板100具有相对设置的第一表面和第二表面,在所述绝缘基板100的第一表面具有第一导电层;
多个功率器件IC1、IC2,所述的多个功率器件IC1、IC2沿第一方向布置于所述绝缘基板100的第一表面,且一部分的功率器件IC1、IC2的输入电极与所述第一导电层连接,其余部分的功率器件IC1、IC2的输出电极与所述第一导电层连接;
导电片,所述导电片沿所述第一方向与对应的所述功率器件IC1、IC2的输入电极或者输出电极连接;
直流端DC+、DC-,所述直流端DC+、DC-与所述第一导电层连接,为所述功率器件IC1、IC2输入直流电;
交流端AC,所述交流端AC与所述第一导电层连接,经所述功率器件IC1、IC2输出交流电。
本实施例中,绝缘基板100作为功率器件IC1、IC2的安装载体,绝缘基板100上设置有电路布线层103,电路布线层103根据功率模块的电路设计,在绝缘基板100上形成对应的线路以及对应供功率模块中的各功率模块安装的第一导电层。第一导电层区的数量和面积可以根据功率模块中集成的功率器件IC1、IC2的数量进行设置,各个第一导电层区上设置好功率器件IC1、IC2后,可以通过导电片实现电性连接。
第一方向可以为自绝缘基板100的第一侧100a延伸至第二侧100b的方向,第一侧100a和第二侧100b则具体可以是在宽度方向上的两端。在第一导电层区设置为两个时,两个第一导电层的形状、面积在导热绝缘层102上的厚度可以设置为相同,第一导电层二者之间可以通过导电片将功率器件IC1、IC2串联,并与导电片连接,从而保证功率器件IC1、IC2之间的寄生参数(例如图6(c)和图6(d)示出的寄生电感Ls)一致性相同。第一导电层可以实现将各个功率器件IC1、IC2的输入电极并联设置,形成功率器件IC1、IC2的输入电极的第一导电层,第一导电层也可以实现将各个第二功率器件IC2的输入电极并联设置,形成第二功率器件IC2的输入电极的第一导电层。
导电片可以采用绑定线、金属带或铜片中的任意一种来实现,并且尺寸可以与功率器件IC1、IC2适配,导电片的材质、尺寸可选设置为相同或者不同,两者的电阻、电感等电学参数可以设置为相同。导电片包括第一导电片10和第二导电片20,第一导电片10可以实现将各个第一功率器件IC1的输出电极并联设置,形成第一功率器件IC1的输出电极的导电层,第二导电片20则可以实现将各个第二功率器件IC2的输出电极并联设置,形成第二功率器件IC2的输出电极的导电层。
功率模块中的功率器件IC1、IC2可以是贴片式,还可以是裸die晶圆,功率器件IC1、IC2可以通过焊料104、导电胶、烧结等焊接或者粘接于各个第一导电层区内。
各个功率器件IC1、IC2可以是氮化镓(GaN)功率开关管、Si基功率开关管或SiC基功率开关管、MOS管、HEMT管等中的一种或者多种组合。功率器件IC1、IC2的数量可以是两个或者两个以上,例如三个,四个,六个,八个等,多个功率器件IC1、IC2之间并联设置,形成一个半桥开关。
多个功率器件IC1、IC2具有输入电极和输出电极,根据采用的功率管不同,功率器件IC1、IC2的输入端和输出端也不同,例如在采用MOS管来实现时,输入端即为漏极,输出端即为源极;在采用IGBT来实现时,输入端即为集电极,输出端即为发射极。每个功率器件IC1、IC2的输入电极均焊接于第一导电层内,每个功率器件IC1、IC2的输出电极均焊接在导电片上。直流电源端子DC+、DC-与第一导电层电性连接,即可以实现与第一导电层内的功率器件IC1、IC2的输入电极电性连接。
参照图6(c)和6(d),在功率器件IC1、IC2导通时,直流母线的电流经直流电源端子DC+、DC-、第一导电层、功率器件IC1、IC2的输入电极、功率器件IC1、IC2的输出电极、导电片、第二导电层120及交流输出端子AC输出至负载。第一导电层作为导电体,其具有一定内阻,直流电源在第一导电层会存在一定的阻力,多个功率器件IC1、IC2并联设置,使得功率器件IC1、IC2中离直流电源端子DC+、DC-越近,输入侧的寄生参数(功率器件IC1、IC2寄生杂感Ls和回路电阻参数等)则越小,反之则越大。同理,导电片作为导电体,其同样具有一定内阻,直流电源在导电片上也会存在一定的阻力,使得功率器件IC1、IC2中离交流输出端子AC越近,输出侧的寄生参数则越小,反之则越大。如此,在第一导电层、导电片的作用下,每个功率器件IC1、IC2靠近直流输入端子的输入路径较短,而由于远离交流输出端子AC,使得输出路径较长,反之,远离直流输入端子的功率器件IC1、IC2的输入路径较长,而由于靠近(交流输出端子AC),使得输出路径较短。通过设置第一导电层和导电片的位置,以及设置多个功率器件IC1、IC2的排列方式,可以使流经每个功率器件IC1、IC2的电流路径长度相同,保证功率器件IC1、IC2的输入电极连接的第一导电层,与功率器件IC1、IC2的输出电极连接的导电片,两者流经的电流方向为平行方向,有利于提高各个功率器件IC1、IC2的均流特性,增强功率模块的可靠性。
本申请通过设置导电片、第一导电层来实现多个并联设置的功率器件IC1、IC2分别与直流电源端子DC+、DC-和交流输出端子AC之间的电性连接。本申请通过设置功率器件IC1、IC2的电性连接,可以均衡并联器件的寄生参数,尤其是寄生电感及回路电阻,提高了器件的均流特性,能够保护靠近直流输入端子的功率器件IC1、IC2,降低器件因过载而损坏的风险,增强了功率模块的可靠性。本申请还可以解决靠近和远离直流输入端子的功率器件IC1、IC2寄生杂感和回路电阻参数出现不一致,在器件发生过载或者上下桥直通时,由于靠近直流端DC+、DC-的功率器件IC1、IC2因寄生杂感和回路电阻较小,导致靠近直流端DC+、DC-的功率器件IC1、IC2承受电流较大出现发热严重,导致功率模块可靠性较低或过热失效的问题。
参照图1或图5,在一实施例中,所述第一导电层包括第一子导电层110和第二子导电层120,所述导电片包括第一导电片10和第二导电片20,所述的一部分的功率器件IC1、IC2的输入电极与所述第一子导电层110连接,所述的一部分的功率器件IC1、IC2的输出电极与所述第一导电片10连接;所述的其余部分的功率器件IC1、IC2的输入电极与所述第二导电片20连接,所述的其余部分的功率器件IC1、IC2的输出电极与所述第二子导电层120连接。
本实施例中,功率器件IC1、IC2中,一部分的功率器件IC1、IC2构成第一功率器件IC1、其余部分的功率器件IC1、IC2构成第二功率器件IC2;第一子导电层110可以实现将各个第一功率器件IC1的输入电极并联设置,形成第一功率器件IC1的输入电极的导电层,第二导电层120则可以实现将各个第二功率器件IC2的输入电极并联设置,形成第二功率器件IC2的输入电极的导电层。
各个第一功率器件IC1可以是氮化镓(GaN)功率开关管、Si基功率开关管或SiC基功率开关管、MOS管、HEMT管等中的一种或者多种组合。第一功率器件IC1的数量可以是两个或者两个以上,例如三个,四个,六个,八个等,多个第一功率器件IC1之间并联设置,形成一个半桥开关。
各个第二功率器件IC2可以是IGBT功率开关管、Si基功率开关管或SiC基功率开关管、MOS管、HEMT管等中的一种或者多种组合。第二功率器件IC2的数量与第一功率器件IC1的数量对应,也即在第一功率器件IC1的数量设置为两个时,第二功率器件IC2也设置为两个,在第一功率器件IC1的数量设置为两个以上的任意数量时,第二功率器件IC2的数量与第一功率器件IC1设置为相同。多个第二功率器件IC2之间并联设置,形成一个半桥开关。其中,多个第一功率器件IC1并联设置形成的半桥开关管可以为上桥开关Q1,多个第二功率器件IC2并联设置则形成下桥开关Q2。或者,多个第一功率器件IC1并联设置形成的半桥开关管可以为下桥开关Q2,多个第二功率器件IC2并联设置则形成上桥开关Q1。
多个功率器件具有输入电极和输出电极,根据采用的功率管不同,功率器件的输入电极和输出端也不同,例如在采用MOS管来实现时,输入端即为漏极,输出端即为源极;在采用IGBT来实现时,输入端即为集电极,输出端即为发射极。每个第一功率器件IC1的输入电极均焊接于第一子导电层110内,每个第一功率器件IC1的输出电极均焊接在第一导电片10上。同理,每个第二功率器件IC2的输入电极均焊接于第二子导电层120内,每个第二功率器件IC2的输出电极均焊接在第二导电片20上。直流正极端子DC+与第一子导电层110电性连接,即可以实现与第一子导电层110内的第一功率器件IC1的输入电极电性连接,第一导电片10与第二子导电层120电性连接,第二子导电层120又与交流输出端子AC电性连接,即可实现第一功率器件IC1的输出电极经第一电性连接件、第二子导电层120与交流输出端连接;第二半导体与直流负极端子DC-电性连接,第二子导电层120内的第二功率器件IC2的输入电极与交流输出端连接,第二功率器件IC2的输出电极则通过第二导电片20与直流负极端连接。第一导电片10可以实现将各个第一功率器件IC1的输出电极并联设置,第二导电片20则可以实现将各个第二功率器件IC2的输出电极并联设置,形成第二功率器件IC2的输出电极的导电层。
参照图6(c)和6(d),在第一功率器件IC1导通时,直流母线的电流经直流正极端子DC+、第一子导电层110、第一功率器件IC1的输入电极、第一功率器件IC1的输出电极、第一导电片10、第二子导电层120及交流输出端子AC输出至负载。第一子导电层110作为导电体,其具有一定内阻,直流电源在第一子导电层110会存在一定的阻力,多个第一功率器件IC1并联设置,使得第一功率器件IC1中离直流正极端子DC+越近,输入侧的寄生参数(功率器件寄生杂感Ls和回路电阻参数等)则越小,反之则越大。同理,第一导电片10作为导电体,其同样具有一定内阻,直流电源在第一导电体上也会存在一定的阻力,使得第一功率器件IC1中离第二子导电层120(交流输出端子AC)越近,输出侧的寄生参数则越小,反之则越大。如此,在第一子导电层110、第一导电片10和第二子导电层120的作用下,每个第一半导体靠近直流输入端子的输入路径较短,而由于远离第二子导电层120(交流输出端子AC),使得输出路径较长,反之,远离直流输入端子的第一功率器件IC1的输入路径较长,而由于靠近第二子导电层120(交流输出端子AC),使得输出路径较短。通过设置第一子导电层110和第一导电片10的位置,以及设置多个第一功率器件IC1的排列方式,可以使流经每个第一功率器件IC1的电流路径长度相同,保证第一功率器件IC1的输入电极连接的第一子导电层110,与第一功率器件IC1的输出电极连接的第一导电片10,两者流经的电流方向为平行方向,有利于提高各个第一功率器件IC1的均流特性,增强功率模块的可靠性。
在第二功率器件IC2导通时,电流经交流输出端子AC、第二子导电层120、第二功率器件IC2的输入电极、第二功率器件IC2的输出电极、第二导电片20输出至直流负极端子DC-。第二子导电层120作为导电体,其具有一定内阻,电源在第二子导电层120会存在一定的阻力,多个第二功率器件IC2并联设置,使得第二功率器件IC2中离交流输出端子AC越近,输入侧的寄生参数(功率器件寄生杂感和回路电阻参数等)则越小,反之则越大。同理,第二导电片20作为导电体,其同样具有一定内阻,电流在第二导电体上也会存在一定的阻力,使得第二功率器件IC2中离直流负极端子DC-越近,输出侧的寄生参数则越小,反之则越大。如此,在第二子导电层120和第二导电片20的作用下,每个第二功率器件IC2靠近交流输出端子AC的输入路径较短,而由于远离直流负极端子DC-,使得输出路径较长,反之,远离交流输出端子AC的第二功率器件IC2的输入路径较长,而由于靠近直流负极端子DC-,使得输出路径较短。通过设置第二子导电层120和第二导电片20的位置,以及设置多个第二功率器件IC2的排列方式,可以使流经每个第二功率器件IC2的电流路径长度相同,保证第二功率器件IC2的输入电极连接的第二子导电层120,与第二功率器件IC2的输出电极连接的第二导电片20,两者流经的电流方向为平行方向,有利于提高各个第二功率器件IC2的均流特性,增强功率模块的可靠性。
此外,本实施例中,第一导电片10和交流输出端子AC之间均通过第二子导电层120实现电性连接,第一导电片10与第一功率器件IC1的输出电极电性连接,第二子导电层120则与第二功率器件IC2的输入电极连接,因此,第一功率器件IC1的输出电极与第二功率器件IC2的输入电极通过第一导电片10可以实现电性连接。并且,交流输出端子AC在第一功率器件IC1导通时输出电流,在第二功率器件IC2导通时,接入电流,因此,第一功率器件IC1输出电极的导电层(第一导电片10、第二导电层)和第二功率器件IC2输入电极的导电层(第二半导体层)电流方向为平行方向,如此改善了功率模块寄生参数一致性,提高了功率模块的均流特性,增强功率模块的可靠性。
参照图1或图5,在一实施例中,所述第一导电片10与所述第二子导电层120连接。
本实施例中,第一导电片10和第二子导电层120可以采用绑定线、金属带或铜片中的任意一种来实现,并且尺寸可以与功率器件适配,第一导电片10和第二导电片20的材质、尺寸可选设置为相同或者不同,两者的电阻、电感等电学参数可以设置为相同。第一导电片10可以实现将各个第一功率器件IC1的输出电极并联设置,第二导电片20则可以实现将各个第二功率器件IC2的输出电极并联设置,形成第二功率器件IC2的输出电极的导电层。
第一导电片10,叠设于各所述第一功率器件IC1的输出电极上,并电性连接各所述第一功率器件IC1的输出电极与所述第二子导电层120;第一导电片10可以实现将各个第一功率器件IC1的输出电极并联设置,第二导电片20则可以实现将各个第二功率器件IC2的输出电极并联设置,形成第二功率器件IC2的输出电极的导电层。
参照图1或图5,在一实施例中,所述第一导电片10包括两段第一子导电片10,两段所述第一子导电片10一对一叠设于两组所述第一功率器件IC1的输入电极上,并且部分延伸至所述子连接部124内,以通过两个所述子连接部124分别与所述第二子导电层120电性连接。
本实施例中,第一子导电片10叠设在各个第一功率器件IC1上,也即覆盖在第一功率器件IC1的顶部,两个第一子导电片10的形状、尺寸相同。在两个第一子导电片10采用铜片来实现时,两个第一子导电片10与第二子导电层120的一端可以通过焊料104、超声焊接、银烧结或激光焊接或超声键合等方式与第二子导电层120实现固定电性连接,交流输出端子AC也固定电性连接于第二子导电层120,如此,第一子导电片10即可通过第二子导电层120与交流输出端子AC实现电性连接。在两组第一功率器件IC1导通时,电流从两个直流正极端子DC+分别流入两个第一子导电层110,再经两组第一功率器件IC1的输入电极、输出电极,流向两段第一子导电片10,两段第一子导电片10上的电流经第二子导电层120后,汇入至交流输出端子AC。通过设置两个直流正极端子DC+、两组第一功率器件IC1及两段第一子导电片10,形成两组并联的电流回路,可以减小流经每组第一功率器件IC1的电流大小,可以减缓流经各个第一功率器件IC1要承受较大电流的压力,有利于提高功率模块的耐压能力。此外,组成两组结构、位置完全相同且对称设置的电流回路,还可以提高各个第一功率器件IC1的均流特性,增强功率模块的可靠性。
参照图1或图5,在一实施例中,所述第一导电片10与所述交流端AC连接。
本实施例中,第一导电片10和交流输出端子AC之间可以通过第二子导电层120间接的实现电性连接,例如第一导电片10和交流输出端子AC均采用铜片来实现时,两者与第二子导电层120连接的一端均可以通过焊料104、超声焊接、银烧结或激光焊接等方式与第二子导电层120实现固定电性连接,在第二子导电层120的导电作用下,实现第一功率器件IC1与交流输出端子AC的电性连接。两段第一子导电片10与交流输出端子AC之间也可以采用一整块铜片冲压成交流输出端子AC和两段第一子导电片10的形状,并根据需要是否进行折弯处理或者改变交流输出端子AC、两段第一子导电片10的厚度。例如,两段第一子导电片10呈直条设置,交流输出端子AC与两段第一子导电片10公共点可以设置成凹槽,以将整体焊接至第二子导电层120,交流输出端子AC的厚度则可以高于两段第一子导电片10的高度,以提高交流输出端子AC的耐压性,并且交流输出端子AC可以弯折成鸥翼型,可以提高功率模块的安装便利性。此外,交流输出端子AC与两段第一子导电片10一体设置,交流输出端子AC可以通过第二导电层的突出部126固定连接在绝缘基板100上。并且根据实际应用的需求,选择在第二子导电层120的两个子连接部124上是否设置焊点,在设置焊点时,可以通过两个子连接部124提高第一功率器件IC1与交流输出端子AC的接触面积,提高第一功率器件IC1与交流输出端子AC之间的电性连接良率,可以增大交流输出端子AC的散热面积,有利于分散交流输出端子AC。在两个子连接部124不设置焊点,仅通过突出部126与第二子导电层120固定连接时,可以减少焊接点带来的电感、电阻等寄生参数。交流输出端子AC与两段所述第一子导电片10一体设置,还可以减少物料的投入,减少了工艺流程,降低了功率器件的成本。
参照图1或图5,在一实施例中,所述第二子导电层120与所述交流端AC连接。
本实施例中,交流输出端子AC,设置于所述绝缘基板100的第二侧100b,并电性连接所述第二子导电层120;
本实施例中,第一导电片10和交流输出端子AC之间可以通过第二子导电层120间接的实现电性连接,例如第一导电片10和交流输出端子AC均采用铜片来实现时,两者与第二子导电层120连接的一端均可以通过焊料104、超声焊接、银烧结或激光焊接等方式与第二子导电层120实现固定电性连接,在第二子导电层120的导电作用下,实现第一功率器件IC1与交流输出端子AC的电性连接。两段第一子导电片10与交流输出端子AC之间也可以采用一整块铜片冲压成交流输出端子AC和两段第一子导电片10的形状,并根据需要是否进行折弯处理或者改变交流输出端子AC、两段第一子导电片10的厚度。例如,两段第一子导电片10呈直条设置,交流输出端子AC与两段第一子导电片10公共点可以设置成凹槽,以将整体焊接至第二子导电层120,交流输出端子AC的厚度则可以高于两段第一子导电片10的高度,以提高交流输出端子AC的耐压性,并且交流输出端子AC可以弯折成鸥翼型,可以提高功率模块的安装便利性。
参照图1或图5,在一实施例中,所述第一导电层还包括第三子导电层130,所述直流端DC-与所述第三子导电层130连接,所述直流端DC-与所述第二导电片20连接。
所述第三子导电层130的位置对应所述第二导电层区120的位置设置,并通过所述第二导电片20与多个所述多个第二功率器件IC2实现电性连接,所述第一外部连接部DC-2的一端设置于所述第三子导电层130上,所述第二连接部的另一端向背离所述第三子导电层130的一侧延伸。
本实施例中,两个第二导电片20和第一外部连接部DC-2之间可以通过第三子导电层130间接的实现电性连接,例如第二导电片20和第一外部连接部DC-2均采用铜片来实现时,两者与第三子导电层130连接的一端均可以通过焊料104、超声焊接、银烧结或激光焊接等方式与第三子导电层130实现电性连接,在第三子导电层130的导电作用下,实现第二功率器件IC2与第一外部连接部DC-2的电性连接。两段第二导电片20与第一外部连接部DC-2之间也可以采用一整块铜片冲压成第一外部连接部DC-2和两段第二导电片20的形状,并根据需要是否进行折弯处理或者改变交流输出端子AC、两段第二导电片20的厚度。例如,两段第二导电片20呈直条设置,第一外部连接部DC-2与两段第二导电片20公共点可以设置成凹槽,被配置为将整体焊接至第三子导电层130,第三子导电层130的厚度则可以高于两段第二导电片20的高度,以提高第一外部连接部DC-2的耐压性,并且第一外部连接部DC-2可以弯折成鸥翼型,以提高功率模块的安装便利性。第一外部连接部DC-2与两段第二导电片20一体设置,还可以减少物料的投入,减少了工艺流程,降低了功率器件的成本。
参照图1或图5,在一实施例中,所述第一导电层还包括第三子导电层130,所述直流端DC-与所述第三子导电层130连接,所述第三子导电层130与所述第二导电片20连接。
本实施例中,第二导电片20叠设在各个第二功率器件IC2上,也即覆盖在第二功率器件IC2的顶部,两个第二导电片20的形状、尺寸相同。在两个第二导电片20采用铜片来实现时,两个第二导电片20与第三子导电层130连接的一端可以通过焊料104、超声焊接、银烧结或激光焊接等方式与第三子导电层130实现固定电性连接。第一外部连接部DC-2也固定电性连接于第三子导电层130,如此,第二导电片20即可通过第三子导电层130与第一外部连接部DC-2实现电性连接。在两组第二功率器件IC2导通时,电流从交流输出端子AC分别流入两个第二子导电层120,再经两组第二功率器件IC2的输入电极、输出电极,流向两个第二导电片20,两个第二导电片20上的电流汇入至直流负极端子DC-。通过设置两个直流负极端子DC-、两组第二功率器件IC2及两段第二导电片20,形成两组并联的电流回路,可以减小流经每组第二功率器件IC2的电流大小,可以减缓流经各个第二功率器件IC2要承受较大电流的压力,有利于提高功率模块的耐压能力。此外,组成两组结构、位置完全相同且对称设置的电流回路,还可以提高各个第二功率器件IC2的均流特性,增强功率模块的可靠性。
参照图1或图5,在一实施例中,所述功率模块包括两个第一子导电层110和一个第二子导电层120,其中,沿所述绝缘基板100的第二方向,所述第二子导电层120位于所述的两个第一子导电层110之间。
两个第一子导电层110,分设于所述第二导电层区120的两侧,两个所述第一子导电层110分别与所述直流正极端子DC+电性连接;
多个所述第一功率器件IC1分为两组第一功率器件IC1,两组所述第一功率器件IC1分设于两个所述第一子导电层110内。
本实施例中,两个第一子导电层110的形状、尺寸相同,两个第二子导电层120的形状、尺寸也相同,第二子导电层120的数量也可以设置为两个,两个第二子导电层120并排设置于绝缘基板100的中心位置,两个第一子导电层110在第一方向上,分设于两个第二子导电层120的两侧,也即,两个第二子导电层120相邻设置,两个第二子导电层120相互远离的一侧分别设置有一个第一子导电层110。各个子导电层区呈方形设置,第一子导电层110与第二子导电层120之间,第二子导电层120和第二子导电层120之间均设置有间隙,两个第二子导电层120具体可以在绝缘基板100的中间部位以上下两行并联第二功率器件IC2的中心为对称开槽形成对称布局结构。并且,第一子导电层110与第二子导电层120之间的面积、高度可以设置为相同,从而保证设置在两个第一子导电层110上的第一功率器件IC1之间的寄生参数相同,以及,设置在第一子导电层110的第一功率器件IC1与设置在第二子导电层120的第二功率器件IC2之间的寄生参数相同。两组第一功率器件IC1的数量设置为相同,每组第一功率器件IC1的数量可以设置为两个或者两个以上,例如一组设置为三个时,另一组同样设置为三个。每组第一功率器件IC1安装在对应的第一子导电层110上,并且位置设置为沿绝缘基板100以与第三侧100c和第四侧100d平行的中心线对称。将第一导电层设置为两个第一子导电层110,有利于分散第一功率器件IC1在功率模块的绝缘基板100上的散热,可以减小绝缘基板100板上热源集中。
参照图1或图5,在一实施例中,所述直流端DC+、DC-包括直流正极端DC+和直流负极端DC-,所述直流正极端DC+与所述第一子导电层110连接,所述直流负极端DC-与所述第二子导电层120连接。
本实施例中,直流正极端子DC+及直流负极端子DC-均设置于所述绝缘基板100的第一侧100a,直流正极端子DC+及直流负极端子DC-,分别接入直流母线正极和直流母线负极,交流输出端子AC则可以配置为接入单相电机的定子绕组的任意一端,也可以配置为接入三相电机,定子绕组中UVW中的任意一相。在实际应用时,直流正极端子DC+、直流负极端子DC-及交流输入端均可以设置为铜片,该铜片可以配置为支撑功率模块,并且实现于外部直流电源或者负载的电气连接。功率模块还具有被配置为封装绝缘基板100的塑封体,铜片的一端固定在绝缘基板100的第一侧100a,铜片的另一端自第一侧100a延伸出功率模块的塑封外,形成功率模块的引脚,该引脚可以弯折为鸥翼型,或者不进行弯折,以平直型与外部电路板进行连接。
参照图1或图5,在一实施例中,所述直流正极端子DC+为两个,两个所述第一子导电层110与两个所述直流正极端子DC+1一一对应电性连接。
两个第一子导电层110分设于的第二导电层的两侧,具体可以为一个第一子导电层110靠近第三侧100c设置,另一个第一子导电层110靠近第四侧100d设置,两个直流母线正极在采用铜片来实现时,两个铜片设置在第一侧100a,且对称设置在与两个第一子导电层110对应的位置,也即,一个直流正极端子DC+1设置于第一侧100a靠近第三侧100c的位置,另一个直流正极端子DC+2设置于第一侧100a靠近第四侧100d的位置。两个正极端子可以与第一导电层区110直接固定连接,也即直流正极端子DC+1可以直接焊接、烧结或超声键合于第一子导电层110,或者直流正极端子DC+包括一内部连接部和一外部连接部,内部连接部紧邻第一导电层区110设置,直接与第一导电层区110实现的电性连接,外部连接部一端焊接、烧结或超声键合在内部连接部上,另一端向远离第一导电层区110的方向延伸。两个第一导电层区110不仅可以起到实现两个直流正极端子DC+与两组第一功率器件IC1之间电气连接作用,也起到分散直流母线正极端子热量的作用,而且还能够在两个直流正极端子DC+1出现振动时,起到吸收振动力的作用,同时可以增大直流正极端子DC+与第一功率器件IC1之间的接触面积,避免直流正极端子DC+与第一子导电层110之间发生相对运动,而出现电性连接不良的问题。
在一实施例中,所述第二子导电层120设有沿所述第一方向开设的凹槽。
所述第二子导电层120还包括:主连接部123,沿所述第三侧100c至第四侧100d方向延伸设置,且分别连接两个所述第二子导电层120;
两个子连接部124,两个所述子连接部124与所述主连接部123连接,两个所述子连接部124一一对应位于两个所述第一子导电层110与所述第二侧100b之间,两个所述子连接部124与第一导电片10连接;以及
突出部126,连接于所述主连接部123,且朝所述第二侧100b延伸设置,所述交流输出端子AC安装于所述突出部126上。
本实施例中,主连接部123分别连接两个第二子导电层120、两个子连接部124和突出部126,两个子连接部124,自主连接部123分别向两个第一子导电层110延伸,并延伸至两个第一子导电层110的一侧,两个子连接部124分别对应与一个第一子导电层110呈L型设置;突出部126,设置于所述主连接部123背离两个所述第一子导电层110,所述突出部126供所述交流输出端子AC安装。
具体而言,两个第二子导电层120分别自主连接部123向绝缘基板100的第一侧100a平行延伸,两个第二子导电层120呈镜像设置。两个子连接部124延伸至两个第一子导电层110的靠近第二侧100b的一侧,也即一个子连接部124延伸至靠近第三侧100c设置的第一子导电层110的位置,另一个子连接部124延伸至靠近第四侧100d设置的第一子导电层110的位置,两个子连接部124与两个第一子导电层110在绝缘基板100的第一侧100a与第二侧100b之间平行设置,并且两个子连接部124与各自对应的第一子导电层110之间间隔设置。连接第一功率器件IC1输出电极的第一导电片10可以直接延伸至两个子连接部124上,也即第一导电片10与子连接部124之间垂直设置,在子连接部124的作用下,可以实现第一导电片10与第二安装区之间的直线连接,有利于优化电流回路路线,提高功率模块的布局便利性。突出部126被配置为实现交流输出端子AC的固定连接,在交流输出端子AC和突出部126均设置为铜片时,交流输出端子AC可以通过焊料、超声焊接、银烧结或激光焊接等方式与突出部126实现固定电性连接。两个第二子导电层120在中间部位以上下两行并联,且中心对称设置,两个第二子导电层120之间开设有平衡间隙,形成对称布局结构。交流输出端子AC焊接在突出部126,实现与第二子导电层120的固定连接,第二导电层不仅起到电气连接作用,也起到对交流输出端子AC散热的作用,而且还能够在交流输出端子AC出现振动时,起到吸收振动力的作用,避免交流输出端子AC与第二子导电层120的连接失效。
具体而言,第二子导电层120通过凹槽形成两个第二子导电层120分别自主连接部123向绝缘基板100的第一侧100a平行延伸,两个第二子导电层120呈镜像设置。两个子连接部124延伸至两个第一子导电层110的靠近第二侧100b的一侧,也即一个子连接部124延伸至靠近第三侧100c设置的第一子导电层110的位置,另一个子连接部124延伸至靠近第四侧100d设置的第一子导电层110的位置,两个子连接部124与两个第一子导电层110在绝缘基板100的第一侧100a与第二侧100b之间平行设置,并且两个子连接部124与各自对应的第一子导电层110之间间隔设置。连接第一功率器件IC1输出电极的第一导电片10可以直接延伸至两个子连接部124上,也即第一导电片10与子连接部124之间垂直设置,在子连接部124的作用下,可以实现第一导电片10与第二安装区之间的直线连接,有利于优化电流回路路线,提高功率模块的布局便利性。突出部126被配置为实现交流输出端子AC的固定连接,在交流输出端子AC和突出部126均设置为铜片时,交流输出端子AC可以通过焊料104、超声焊接、银烧结或激光焊接等方式与突出部126实现固定电性连接。两个第二子导电层120在中间部位以上下两行并联,且中心对称设置,两个第二子导电层120之间开设有平衡间隙,形成对称布局结构。交流输出端子AC焊接在突出部126,实现与第二子导电层120的固定连接,第二导电层不仅起到电气连接作用,也起到对交流输出端子AC散热的作用,而且还能够在交流输出端子AC出现振动时,起到吸收振动力的作用,避免交流输出端子AC与第二子导电层120的连接失效。
应当理解的是,通过所述第二子导电层120设有沿所述第一方向开设的凹槽,能够减小材料的用料,例如铜片,铜片的价格通常较高,通过在所述第二子导电层120开设凹槽,所节约的材料可以用于第一导电片10或者第二导电片20,从而使功率模块的成本进一步降低。
在一实施例中,所述第二子导电层120具有与所述第一导电片10连接的突出部126,所述第一导电层与所述突出部126连接。
本实施例中,交流输出端AC可以通过第二导电层的突出部126固定连接在绝缘基板100上。并且根据实际应用的需求,选择在第二子导电层120的两个子连接部124上是否设置焊点,在设置焊点时,可以通过两个子连接部124提高第一功率器件IC1与交流输出端子AC的接触面积,提高第一功率器件IC1与交流输出端子AC之间的电性连接良率,可以增大交流输出端子AC的散热面积,有利于分散交流输出端子AC。在两个子连接部124不设置焊点,仅通过突出部126与第二子导电层120固定连接时,可以减少焊接点带来的电感、电阻等寄生参数。交流输出端子AC与两段所述第一子导电片10一体设置置,还可以减少了物料的投入,减少了工艺流程,降低了功率器件的成本。
参照图1或图4,在一实施例中,所述直流负极端子DC-包括第一外部连接部DC-2,所述第三子导电层130的位置对应所述第二导电层区120的位置设置,并通过所述第二导电片20与多个所述多个第二半导体开关IC2实现电性连接,所述第一外部连接部DC-2的一端设置于所述第三子导电层130上,所述第二连接部的另一端向背离所述第三子导电层130的一侧延伸。
本实施例中,第三子导电层130被配置为实现第一外部连接部DC-2的固定连接,并且实现第一外部连接部DC-2和第二导电片20之间的电性连接,在第三子导电层130和第一外部连接部DC-2均采用铜片来实现时,第一外部连接部DC-2可以通过焊料104、超声焊接、银烧结或激光焊接等方式与第三子导电层130实现固定电性连接,并且第一外部连接部DC-2可以弯折成鸥翼型,以提高功率模块的安装便利性。第三子导电层130不仅起到电气连接作用,也起到分散直流负极端子DC-中第一外部连接部DC-2热量的作用,而且还能够在第三子导电层130和第一外部连接部DC-2出现振动时,起到吸收振动力的作用,同时还可以增大第一外部连接部DC-2、第二导电片20与第二半导体开关IC2之间的接触面积,避免第一外部连接部DC-2与第二导电片20之间发生相对运动,而出现电性连接不良的问题。在一实施例中,所述第一外部连接部DC-2与两段所述第二导电片20一体设置。
本实施例中,两个第二导电片20和第一外部连接部DC-2之间可以通过第三导电层区130间接的实现电性连接,例如第二导电片20和第一外部连接部DC-2均采用铜片来实现时,两者与第三导电层区130连接的一端均可以通过焊料104、超声焊接、银烧结或激光焊接等方式与第三导电层区130实现电性连接,在第三导电层区130的导电作用下,实现第二半导体开关IC2与第一外部连接部DC-2的电性连接。两段第二导电片20与第一外部连接部DC-2之间也可以采用一整块铜片冲压成第一外部连接部DC-2和两段第二导电片20的形状,并根据需要是否进行折弯处理或者改变交流输出端子AC、两段第二导电片20的厚度。例如,两段第二导电片20呈直条设置,第一外部连接部DC-2与两段第二导电片20公共点可以设置成凹槽,被配置为将整体焊接至第三导电层区130,第三导电层区130的厚度则可以高于两段第二导电片20的高度,以提高第一外部连接部DC-2的耐压性,并且第一外部连接部DC-2可以弯折成鸥翼型,以提高功率模块的安装便利性。第一外部连接部DC-2与两段第二导电片20一体设置,还可以减少了物料的投入,减少了工艺流程,降低了功率器件的成本。
可以理解的是,上述实施例中,两个第一子导电层110与两个第二子导电层120的尺寸可以设置得相同,两个第一导电片10、两个二导电片20的材质、尺寸可以设置得相同,以保证上桥开关Q1和下桥开关Q2的寄生参数相同,从而使流经各个第一功率器件IC1的电流和流经各个第二功率器件IC2的电流方向为平行方向,电流大小相同。这样,通过设置两个直流正极端子DC+、两组第一功率器件IC1及两段第一子导电片10,形成两组并联的电流回路,两个直流负极端子DC-、两组第二功率器件IC2及两段第二导电片20,形成两组并联的电流回路,实现功率模块整体的均流特性,能够保护靠近直流输入端子的功率器件,降低器件因过载而损坏的风险,增强功率模块的可靠性。
参照图1至图5,在一实施例中,功率模块还包括塑封体(图未示出),塑封体罩设于所述绝缘基板100上,实现对功率模块的整体封装。
本实施例中,功率模块可以采用全包封封装和半包封封装。而在为了提高功率模块的散热效率,本实施例可选采用半包封封装,并且将功率模块的绝缘基板100部分裸露在塑封体外,形成塑封体的一部分,绝缘基板100裸露于功率模块的塑封体之外的表面,可以散热装置,例如液冷散热装置接触,有利于增大功率模块的散热面积。
在制作功率模块时,可以将双面覆盖有整块铜片的陶瓷基板的顶层铜片蚀刻出第一子导电层110、第二子导电层120,再将多个第一功率器件IC1、多个第二功率器件IC2焊接于对应的铜片;然后将一整块铜片冲压成直流正极端子DC+、直流负极端子DC-和交流输出端子AC焊接在绝缘基板100的第一侧100a和第二侧100b,并根据需要是否进行折弯处理或者改变不同厚度或增加铜片,然后与对应的部件相连接;将第一导电片10和第二导电片20焊接在各个第一功率器件IC1,以及各个第二功率器件IC2上,并根据需要是否进行折弯处理或者改变不同厚度或增加铜片,然后与对应的部件相连接;对功率模块进行整体注塑成型。
本申请还提出一种电机控制器,所述电机控制器包括如上所述的功率模块。
该功率模块的详细结构可参照上述实施例,此处不再赘述;可以理解的是,由于在本申请电机控制器中使用了上述功率模块,因此,本申请电机控制器的实施例包括上述功率模块全部实施例的全部技术方案,且所达到的技术效果也完全相同,在此不再赘述。
参照图6(a)~图6(c)电机控制器可以包括两个如上所述的功率模块,也可以包括三个如上所述的功率模块。当设置为两个时,可以形成单相电机控制器,当设置为三个时,可以形成三相电机控制器。多个第一功率器件IC1可以构成一个功率开关Q1,多个第二功率器件IC2可以构成另一个功率开关Q2,每一个功率开关Q1与一个功率开关Q2串联设置,可以组成半桥/全桥电路。通过调整上下桥开关的连接点,来改善芯片并联寄生参数的不一致性,实现多个开关并联设置时电流均衡的目的。
以上所述仅为本申请的可选实施例,并非因此限制本申请的专利范围,凡是在本申请的发明构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (12)

  1. 一种功率模块,其中,所述功率模块包括:
    绝缘基板,所述绝缘基板具有相对设置的第一表面和第二表面,在所述绝缘基板的第一表面具有第一导电层;
    多个功率器件,所述多个功率器件沿第一方向布置于所述绝缘基板的第一表面,且一部分的功率器件的输入电极与所述第一导电层连接,其余部分的功率器件的输出电极与所述第一导电层连接;
    导电片,所述导电片沿所述第一方向与对应的所述功率器件的输入电极或者输出电极连接;
    直流端,所述直流端与所述第一导电层连接,为所述功率器件输入直流电;
    交流端,所述交流端与所述第一导电层连接,经所述功率器件输出交流电。
  2. 如权利要求1所述的功率模块,其中,所述第一导电层包括第一子导电层和第二子导电层,所述导电片包括第一导电片和第二导电片,所述的一部分的功率器件的输入电极与所述第一子导电层连接,所述的一部分的功率器件的输出电极与所述第一导电片连接;所述的其余部分的功率器件的输入电极与所述第二导电片连接,所述的其余部分的功率器件的输出电极与所述第二子导电层连接。
  3. 如权利要求1所述的功率模块,其中,所述第一导电片与所述第二子导电层连接。
  4. 如权利要求3所述的功率模块,其中,所述第一导电片与所述交流端连接。
  5. 如权利要求3所述的功率模块,其中,所述第二子导电层与所述交流端连接。
  6. 如权利要求2至5任一项所述的功率模块,其中,所述第一导电层还包括第三子导电层,所述直流端与所述第三子导电层连接,所述直流端与所述第二导电片连接。
  7. 如权利要求2至5任一项所述的功率模块,其中,所述第一导电层还包括第三子导电层,所述直流端与所述第三子导电层连接,所述第三子导电层与所述第二导电片连接。
  8. 如权利要求1所述的功率模块,其中,所述功率模块包括两个第一子导电层和一个第二子导电层,其中,沿所述绝缘基板的第二方向,所述第二子导电层位于所述的两个第一子导电层之间。
  9. 如权利要求8所述的功率模块,其中,所述直流端包括直流正极端和直流负极端,所述直流正极端与所述第二子导电层连接,所述直流负极端与所述第一子导电层连接。
  10. 如权利要求8所述的功率模块,其中,所述第二子导电层设有沿所述第一方向开设的凹槽。
  11. 如权利要求8所述的功率模块,其中,所述第二子导电层具有与所述第一导电片连接的连接部,所述第一导电层与所述连接部连接。
  12. 一种电机控制器,其中,所述电机控制器包括如权利要求1至11任一项所述的功率模块。
PCT/CN2022/083780 2021-10-18 2022-03-29 功率模块及电机控制器 WO2023065602A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111212587.9A CN113823625A (zh) 2021-10-18 2021-10-18 功率模块及电机控制器
CN202111212587.9 2021-10-18

Publications (1)

Publication Number Publication Date
WO2023065602A1 true WO2023065602A1 (zh) 2023-04-27

Family

ID=78916870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083780 WO2023065602A1 (zh) 2021-10-18 2022-03-29 功率模块及电机控制器

Country Status (2)

Country Link
CN (1) CN113823625A (zh)
WO (1) WO2023065602A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117038627A (zh) * 2023-08-10 2023-11-10 苏州悉智科技有限公司 一种功率模块结构及电子设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113823625A (zh) * 2021-10-18 2021-12-21 苏州汇川联合动力***有限公司 功率模块及电机控制器
CN114765434A (zh) * 2022-04-21 2022-07-19 苏州汇川联合动力***有限公司 功率模块和电机控制器
CN115346948B (zh) * 2022-10-14 2023-04-07 吉光半导体(绍兴)有限公司 一种半桥模块
CN218678872U (zh) * 2022-10-31 2023-03-21 蔚来动力科技(合肥)有限公司 用于电动机的功率模块

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090034306A1 (en) * 2007-07-30 2009-02-05 Hitachi, Ltd. Power Module, Power Converter, and Electric Machine System for Mounting in Vehicle
CN109887899A (zh) * 2019-03-01 2019-06-14 深圳市慧成功率电子有限公司 多路供电布局布线的功率模块及功率模组
CN111540730A (zh) * 2020-04-22 2020-08-14 西安交通大学 基于导电金属夹扣互连的多芯片宽禁带功率模块封装结构
CN112185941A (zh) * 2020-09-28 2021-01-05 深圳市汇川技术股份有限公司 半导体封装件、电机控制器及新能源汽车
CN112687632A (zh) * 2020-12-28 2021-04-20 浙江大学 一种功率模块的结构设计及其实现方法
CN113823625A (zh) * 2021-10-18 2021-12-21 苏州汇川联合动力***有限公司 功率模块及电机控制器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090034306A1 (en) * 2007-07-30 2009-02-05 Hitachi, Ltd. Power Module, Power Converter, and Electric Machine System for Mounting in Vehicle
CN109887899A (zh) * 2019-03-01 2019-06-14 深圳市慧成功率电子有限公司 多路供电布局布线的功率模块及功率模组
CN111540730A (zh) * 2020-04-22 2020-08-14 西安交通大学 基于导电金属夹扣互连的多芯片宽禁带功率模块封装结构
CN112185941A (zh) * 2020-09-28 2021-01-05 深圳市汇川技术股份有限公司 半导体封装件、电机控制器及新能源汽车
CN112687632A (zh) * 2020-12-28 2021-04-20 浙江大学 一种功率模块的结构设计及其实现方法
CN113823625A (zh) * 2021-10-18 2021-12-21 苏州汇川联合动力***有限公司 功率模块及电机控制器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117038627A (zh) * 2023-08-10 2023-11-10 苏州悉智科技有限公司 一种功率模块结构及电子设备
CN117038627B (zh) * 2023-08-10 2024-03-15 苏州悉智科技有限公司 一种功率模块结构及电子设备

Also Published As

Publication number Publication date
CN113823625A (zh) 2021-12-21

Similar Documents

Publication Publication Date Title
WO2023065602A1 (zh) 功率模块及电机控制器
JP7153649B2 (ja) ゲートパスインダクタンスが低いパワー半導体モジュール
KR100430772B1 (ko) 반도체장치
US9704831B2 (en) Power semiconductor module
US8461623B2 (en) Power semiconductor module
JP2020519024A (ja) Dc端子の同軸配列を有するハーフブリッジモジュール
US9468087B1 (en) Power module with improved cooling and method for making
JP3941728B2 (ja) 電力用半導体装置
CN112543994B (zh) 半导体装置
JP4640425B2 (ja) 電力変換装置
JP6603676B2 (ja) ハーフブリッジパワー半導体モジュール及びその製造方法
US8466549B2 (en) Semiconductor device for power conversion
US20220319976A1 (en) Three-level power module
JP2022062235A (ja) パワー・デバイス用のパッケージ構造
JP2021141222A (ja) 半導体モジュール
US12009290B2 (en) Semiconductor module having a multi-branch switch node connector
CN220233181U (zh) 一种功率模块
US11887905B2 (en) Semiconductor device
CN115425007A (zh) 一种芯片连接件及功率模块
CN216389358U (zh) 功率模块及电机控制器
JPH09135155A (ja) 半導体装置
CN116130467B (zh) 一种对称布局的半桥功率模块
JP4640424B2 (ja) 電力変換装置
CN116525603A (zh) 一种三相全桥电路的功率封装模块
CN116633166A (zh) 一种三相桥功率模块电路封装结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882227

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE