WO2023065212A1 - 一种小区测量方法、装置和*** - Google Patents

一种小区测量方法、装置和*** Download PDF

Info

Publication number
WO2023065212A1
WO2023065212A1 PCT/CN2021/125271 CN2021125271W WO2023065212A1 WO 2023065212 A1 WO2023065212 A1 WO 2023065212A1 CN 2021125271 W CN2021125271 W CN 2021125271W WO 2023065212 A1 WO2023065212 A1 WO 2023065212A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
cell
terminal device
measured
configuration information
Prior art date
Application number
PCT/CN2021/125271
Other languages
English (en)
French (fr)
Inventor
韩霜
孔令帅
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/125271 priority Critical patent/WO2023065212A1/zh
Priority to CN202180101840.5A priority patent/CN117941406A/zh
Publication of WO2023065212A1 publication Critical patent/WO2023065212A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the embodiments of the present application relate to the field of wireless communication, and in particular, to a cell measurement method, device and system.
  • NR voice bearer voice over NR, VONR
  • SA new radio
  • NR voice bearer voice over NR, VONR
  • EPS Fallback evolved packet system fallback
  • the network side sends LTE measurement configuration information to the terminal device, and the terminal device performs signal measurement according to the received measurement configuration information , and evaluate the obtained LTE cell measurement results. If the measurement results of LTE cells continue to meet the measurement reporting conditions within a certain period of time, the terminal device will report the measurement report to the network side, and then trigger the network side to initiate handover/redirection process, thereby falling back to the LTE network.
  • the terminal device takes a long time from the start of signal measurement to the reporting of the measurement report, the delay of the EPS Fallback process will increase, and even if the measurement result does not meet the reporting conditions and the terminal device does not report the measurement report, it will cause the network side to fail to initiate a handover /redirection, so that the voice service cannot run normally during this period, which will bring bad feeling and experience to the user.
  • Embodiments of the present application provide a cell measurement method, device, and system, which are used to solve the problem that the current cell measurement solution may not be able to report the measurement report in time.
  • a method for measuring a cell is provided, and a communication device executing the method may be a terminal device or a module applied to the terminal device, such as a chip.
  • the following description is made by taking the execution subject as a terminal device as an example.
  • the terminal device receives a first message from the network, the first message includes measurement configuration information of the cell to be measured; when the service state is a pre-configured service state, the terminal device sends a measurement report to the network; where the measurement report is based on the measurement
  • the configuration information and the historical measurement results of the cell to be measured are determined.
  • the terminal device can determine the measurement report in combination with the historical measurement results of the cell to be measured, which reduces the time for the terminal device to perform cell measurement and makes the terminal device faster
  • the measurement report can be sent quickly, which can trigger the network device to initiate handover/redirection more quickly, reducing the time delay for the terminal device to fall back to the LTE network to establish a voice service, and can give users a better experience.
  • the measurement report is determined according to the first measurement result and the historical measurement result; wherein, the first measurement result is determined in the measurement task that takes the cell to be measured as the first priority In this case, it is obtained by measuring the cell to be measured according to the measurement configuration information.
  • the cell measurement method provided by the embodiment of the present application, it is possible to balance the current measurement results of the rapid measurement of the cell to be measured and the historical measurement results of the cell to be measured, and jointly determine the measurement report, so as to reduce the time for measuring the cell. , improving the accuracy of the cell signal energy reflected in the measurement report, and avoiding the situation that the terminal equipment generates the measurement report incorrectly due to fast fading.
  • the measurement configuration information includes filtering parameters; the measurement report is determined according to the second measurement result, where the second measurement result is a combination of the first measurement result and the historical measurement results using the filtering parameters Results are filtered to obtain the measurement results.
  • the first measurement result and the historical measurement results can be filtered according to the filtering parameters to obtain the second measurement result, and then the measurement report can be determined according to the second measurement result, so as to reduce the number of cells used for measuring On the basis of the time, the accuracy of the cell signal energy reflected in the measurement report is improved, and the situation that the terminal equipment generates the measurement report incorrectly caused by the fast fading situation is avoided.
  • a method for measuring a cell is provided, and a communication device executing the method may be a terminal device or a module applied in the terminal device, such as a chip.
  • the following description is made by taking the execution subject as a terminal device as an example.
  • the terminal device receives a first message from the network, and the first message includes measurement configuration information of the cell to be measured; when the service state is a pre-configured service state, the terminal device sends a measurement report to the network; wherein, the measurement report is based on the first Determined by a measurement result, the first measurement result is obtained by measuring the cell to be measured according to the measurement configuration information when the cell to be measured is taken as the first priority measurement task.
  • the terminal device can take the cell to be measured as the first priority measurement task to perform rapid measurement of the cell to be measured, which reduces the time for the terminal device to perform cell measurement, and enables the terminal device to more quickly
  • Sending measurement reports can trigger network devices to initiate handover/redirection more quickly, reducing the delay for terminal devices to fall back to the LTE network to establish voice services, and to provide users with a better experience.
  • a method for measuring a cell is provided, and the communication device executing the method may be a terminal device or a module applied to the terminal device, such as a chip.
  • the execution subject as a terminal device as an example.
  • the terminal device receives a first message from the network, the first message includes measurement configuration information of the cell to be measured; when the service state is a pre-configured service state, the terminal device sends a measurement report to the network, and the measurement report is based on the first measurement
  • the result and the value of the target parameter are determined; wherein, the first measurement result is obtained by measuring the cell to be measured according to the measurement configuration information; the value of the target parameter is determined according to the service state, and the target parameter is used to determine the sending condition of the measurement report.
  • the target parameters used to determine the sending conditions of the measurement report can be determined according to the service status of the terminal equipment.
  • the sending conditions of the measurement report can be adjusted according to the service status of the terminal equipment to avoid
  • the terminal device can send the measurement report faster, which in turn can trigger the network device to initiate handover/restart more quickly Orientation reduces the delay for terminal devices to fall back to the LTE network to establish voice services, which can give users a better experience.
  • the value of the target parameter comes from the first value or the second value; wherein, the first value is determined by the terminal device according to the service status; the second value is carried in the measurement configuration information .
  • the method before the terminal device receives the first message from the network, the method further includes: the terminal device sends a second message to the network, and the second message is used to indicate the service status;
  • the binary value is determined by the network according to the service state and carried in the measurement configuration information.
  • the network device can adjust the measurement configuration information according to the service status of the terminal device and then send it to the terminal device, so as to avoid the failure of the terminal device to send the measurement in time because the sending condition is not suitable for the service status of the terminal device. Reports the situation where it is not even possible to send a measurement report.
  • the value of the target parameter is the smaller value of the first value and the second value. Based on this solution, a smaller value can be selected from the first value and the second value as the value of the target parameter, thereby reducing the time for the terminal device to evaluate the measurement result, or making the conditions for the terminal device to send a measurement report more relaxed, and promoting The network device controls the terminal device to fall back to the LTE network more quickly.
  • the first measurement result is obtained by measuring the cell to be measured according to the measurement configuration information when the cell to be measured is taken as the first priority measurement task.
  • the time for terminal equipment to measure signals and the time for terminal equipment to evaluate measurement results and determine measurement reports can be reduced, thereby triggering network equipment to initiate handover/redirection more quickly, reducing the time for terminal equipment to fall back to
  • the delay in establishing voice services on the LTE network can give users a better experience.
  • the measurement report is determined according to the first measurement result, the historical measurement results of the cell to be measured, and the value of the target parameter.
  • the measurement configuration information includes filtering parameters; the measurement report is determined according to the value of the target parameter and the second measurement result, wherein the second measurement result is the first Measurement results obtained after filtering the measurement results and historical measurement results.
  • the target parameter includes at least one of a reporting threshold and a trigger time. Based on this solution, at least one of the reporting threshold and the triggering time can be adjusted according to the service status of the terminal equipment, thereby adjusting the conditions for the terminal equipment to report the measurement report.
  • the pre-configured service state includes the evolved packet system fallback EPS Fallback state. Based on the cell measurement method provided by the embodiment of the present application, it can be applied to the EPS Fallback scenario to solve the problem that the current cell measurement method may cause an increase in the delay of the EPS Fallback process.
  • a method for measuring a cell is provided, and the communication device executing the method may be a network device or a module applied in the network device, such as a chip.
  • the following description is made by taking the execution subject as a network device as an example.
  • the network device receives a third message from the terminal device, where the third message is used to indicate that the service state of the terminal device is the EPS Fallback state of the evolved packet system; the network device sends a first message to the terminal device, and the first message includes measurement configuration information;
  • the measurement configuration information is determined according to the service state of the terminal equipment.
  • the network device can determine that the terminal device is in the EPS Fallback state, and determine the measurement configuration information according to the service state of the terminal device, so that the measurement configuration information can be more suitable for the service state of the terminal device, avoiding the occurrence of The case where the measurement configuration information is not suitable for the current service status of the terminal equipment.
  • the method further includes: receiving a measurement report from the terminal device, where the measurement report is determined by the terminal device according to the first measurement result; wherein the first measurement result is determined by the terminal device according to The measurement configuration information is obtained by measuring the cell to be measured.
  • a communication device for implementing the above method.
  • the communication device includes a corresponding module, unit, or means (means) for implementing the above method, and the module, unit, or means may be implemented by hardware, software, or by executing corresponding software on hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device includes: a receiving module and a sending module; the receiving module is configured to receive a first message from the network, where the first message includes measurement configuration information of a cell to be measured.
  • the sending module is configured to send a measurement report to the network when the service state is a pre-configured service state; wherein, the measurement report is determined according to the measurement configuration information and the historical measurement results of the cell to be measured.
  • the measurement report is determined according to the first measurement result and the historical measurement result; wherein, the first measurement result is determined in the measurement task that takes the cell to be measured as the first priority In this case, it is obtained by measuring the cell to be measured according to the measurement configuration information.
  • the measurement configuration information includes filtering parameters; the measurement report is determined according to the second measurement result, where the second measurement result is a combination of the first measurement result and the historical measurement results using the filtering parameters Results are filtered to obtain the measurement results.
  • a communication device for implementing the above method.
  • the communication device includes a corresponding module, unit, or means (means) for implementing the above method, and the module, unit, or means may be implemented by hardware, software, or by executing corresponding software on hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device includes: a receiving module and a sending module; the receiving module is configured to receive a first message from the network, where the first message includes measurement configuration information of a cell to be measured.
  • a sending module configured to send a measurement report to the network when the service state is a pre-configured service state; wherein, the measurement report is determined according to a first measurement result, and the first measurement result is when the cell to be measured is used as the first In the case of a priority measurement task, it is obtained by measuring the cell to be measured according to the measurement configuration information.
  • a communication device for implementing the above method.
  • the communication device includes a corresponding module, unit, or means (means) for implementing the above method, and the module, unit, or means may be implemented by hardware, software, or by executing corresponding software on hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device includes: a receiving module and a sending module; the receiving module is configured to receive a first message from the network, where the first message includes measurement configuration information of a cell to be measured.
  • a sending module configured to send a measurement report to the network when the service state is a preconfigured service state, the measurement report is determined according to the first measurement result and the value of the target parameter; wherein the first measurement result is based on the measurement configuration
  • the information is obtained by measuring the cell to be measured; the value of the target parameter is determined according to the service status, and the target parameter is used to determine the sending condition of the measurement report.
  • the value of the target parameter comes from the first value or the second value; wherein, the first value is determined by the communication device according to the service status; the second value is carried in the measurement configuration information .
  • the sending module is further configured to send a second message to the network, and the second message is used to indicate the service state; the second value is determined by the network according to the service state and carried in the measurement configuration in the information.
  • the value of the target parameter is the smaller value of the first value and the second value.
  • the first measurement result is obtained by measuring the cell to be measured according to the measurement configuration information when the cell to be measured is taken as the first priority measurement task.
  • the measurement report is determined according to the first measurement result, the historical measurement results of the cell to be measured, and the value of the target parameter.
  • the measurement configuration information includes filtering parameters; the measurement report is determined according to the value of the target parameter and the second measurement result, where the second measurement result is the first Measurement results obtained after filtering the measurement results and historical measurement results.
  • the target parameter includes at least one of a reporting threshold and a trigger time.
  • the preconfigured service state includes the evolved packet system fallback EPS Fallback state.
  • a communication device for implementing the above method.
  • the communication device includes a corresponding module, unit, or means (means) for implementing the above method, and the module, unit, or means may be implemented by hardware, software, or by executing corresponding software on hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device includes: a receiving module and a sending module; the receiving module is configured to receive a third message from the terminal device, and the third message is used to indicate the service status of the terminal device Fall back to the EPS Fallback state for the evolved packet system.
  • a sending module configured to send a first message to the terminal device, where the first message includes measurement configuration information; the measurement configuration information is determined according to the service status of the terminal device.
  • the receiving module is further configured to receive a measurement report from the terminal device, where the measurement report is determined by the terminal device according to the first measurement result; where the first measurement result is It is obtained by measuring the cell to be measured according to the measurement configuration information.
  • the technical effect brought by any possible design in the fifth aspect to the eighth aspect can refer to the technical effect brought by the different designs in the first aspect to the fourth aspect above, and will not be repeated here.
  • a communication device includes a processor, configured to support the communication device to implement the functions involved in any one of the first aspect, the second aspect, or the third aspect above.
  • the communication device further includes a memory, and the memory is used for storing necessary program instructions and data of the communication device.
  • the device may consist of a chip, or may include chips and other discrete components.
  • a communication device in a tenth aspect, includes a processor, configured to support the communication device to realize the functions involved in any one of the above fourth aspects.
  • the communication device further includes a memory, and the memory is used for storing necessary program instructions and data of the communication device.
  • the device may consist of a chip, or may include chips and other discrete components.
  • a communication device including: a processor and a memory; the memory is used to store computer-executable instructions, and when the communication device is running, the processor executes the computer-executable instructions stored in the memory, so that The communication device executes the cell measurement method described in any one of the first aspect, the second aspect, or the third aspect above.
  • a communication device including: a processor and a memory; the memory is used to store computer-executable instructions, and when the communication device is running, the processor executes the computer-executable instructions stored in the memory, so that The communication device executes the cell measurement method according to any one of the fourth aspect above.
  • a communication device including: a processor; the processor is configured to be coupled with a memory, and after reading instructions in the memory, execute the above-mentioned first aspect and the above-mentioned second aspect according to the instructions , or the cell measurement method described in any one of the third aspect above.
  • a communication device including: a processor; the processor is configured to be coupled with a memory, and after reading the instructions in the memory, execute according to the instructions as described in any one of the fourth aspect above.
  • a communication device including: a processor, a memory, and a transceiver; the memory is used to store computer-executable instructions, the processor is used to execute the instructions stored in the memory, and the transceiver is used for the communication device and communicate with other devices in the communication network; when the communication device is running, the processor executes the computer-executable instructions stored in the memory, and the transceiver communicates with other devices in the communication network, so that the communication device performs the above-mentioned
  • a communication device including: a processor, a memory, and a transceiver; the memory is used to store computer-executable instructions, the processor is used to execute the instructions stored in the memory, and the transceiver is used for the communication device and communicate with other devices in the communication network; when the communication device is running, the processor executes the computer-executable instructions stored in the memory, and the transceiver communicates with other devices in the communication network, so that the communication device performs the above-mentioned The cell measurement method described in any one of the four aspects.
  • the memories can be integrated with the processors, or the memories can be separated from the processors ;
  • the memory may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • a computer-readable storage medium stores instructions, which when executed by a computer cause the computer to perform the above-mentioned first aspect, the above-mentioned second aspect, or the above-mentioned third aspect.
  • the cell measurement method according to any one of the aspects.
  • a computer-readable storage medium stores instructions, which when executed by a computer cause the computer to perform the cell measurement method described in any one of the above-mentioned fourth aspects .
  • a computer program product containing instructions, which, when run on a computer, enable the computer to execute any of the above-mentioned first aspect, the above-mentioned second aspect, or the above-mentioned third aspect. cell measurement method.
  • a computer program product including instructions, which, when run on a computer, enable the computer to execute the cell measurement method described in any one of the above fourth aspects.
  • a twenty-first aspect provides a communication system, which includes a terminal device performing the method described in the first aspect, the second aspect, or the third aspect, and a network device performing the method described in the fourth aspect above.
  • a communication device including: an interface circuit and a processing circuit.
  • Interface circuitry may include input circuitry and output circuitry.
  • the processing circuit is used to receive signals through the input circuit and transmit signals through the output circuit, so that any one of the first aspect to the third aspect, and the method in any possible implementation manner of the first aspect to the second aspect are realized.
  • the wireless communication device may be a chip
  • the input circuit may be an input pin
  • the output circuit may be an output pin
  • the processing circuit may be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example but not limited to, the receiver
  • the output signal of the output circuit may be, for example but not limited to, output to the transmitter and transmitted by the transmitter
  • the circuit may be the same circuit, which is used as an input circuit and an output circuit respectively at different times.
  • the embodiment of the present application does not limit the specific implementation manners of the processor and various circuits.
  • the wireless communication device may be a wireless communication device, that is, a computer device supporting a wireless communication function.
  • the wireless communication device may be a terminal such as a smart phone, or a wireless access network device such as a base station.
  • a system chip can also be called a system on chip (system on chip, SoC), or simply a SoC chip.
  • Communication chips may include baseband processing chips and radio frequency processing chips. Baseband processing chips are also sometimes referred to as modems or baseband chips.
  • RF processing chips are sometimes also referred to as RF transceivers or RF chips. In physical implementation, part or all of the chips in the communication chip can be integrated inside the SoC chip.
  • the baseband processing chip is integrated in the SoC chip, and the radio frequency processing chip is not integrated with the SoC chip.
  • the interface circuit may be a radio frequency processing chip in the wireless communication device, and the processing circuit may be a baseband processing chip in the wireless communication device.
  • the wireless communication device may be a part of a wireless communication device, such as an integrated circuit product such as a system chip or a communication chip.
  • the interface circuit may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • a processor may also be embodied as processing circuitry or logic circuitry.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a network device and a terminal device provided by an embodiment of the present application
  • FIG. 3 is another schematic structural diagram of a terminal device provided in an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a cell measurement method provided in an embodiment of the present application.
  • FIG. 5 is a schematic flow chart of another cell measurement method provided in an embodiment of the present application.
  • FIG. 6 is a schematic flow chart for determining a second measurement result provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of another cell measurement method provided in the embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a method for determining the value of a target parameter provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of another method for determining the value of a target parameter provided by the embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a method for determining a reporting threshold provided by an embodiment of the present application.
  • FIG. 11 is a schematic flowchart of a method for determining trigger time provided by an embodiment of the present application.
  • FIG. 12 is a schematic flowchart of another cell measurement method provided by the embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the terminal device When VONR has not been formally deployed and the NR SA network cannot completely provide voice services for terminal devices, if the terminal device needs to establish a voice service (such as initiating or receiving a voice call) in the NR network, the terminal device needs to pass EPS Fallback The method falls back to the LTE network, and the voice service is provided through the VOLTE technology in the LTE network. When the voice service ends, the terminal equipment returns to the NR network.
  • a voice service such as initiating or receiving a voice call
  • the terminal device In the EPS Fallback scenario, the terminal device usually falls back to the LTE network through handover/redirection.
  • triggering handover/redirection requires terminal equipment to perform cell measurements, including the following steps 1-step 5:
  • Step 1 The network device sends measurement configuration information to the terminal device.
  • the terminal device receives the measurement configuration information from the network device.
  • the network device sends pre-configured measurement configuration information (MeasConfig) to the terminal device through a radio resource control (radio resource control, RRC) reconfiguration (RRC reconfiguration) message.
  • RRC radio resource control
  • the measurement configuration information can be carried in In the RRC reconfiguration message.
  • the measurement configuration information includes at least one of the following items: frequency point/cell information to be measured, reporting condition information and other information.
  • the frequency point/cell information to be measured is used to indicate the cell information to be measured.
  • the frequency point/cell information to be measured may only include the frequency point information to be measured.
  • the terminal device may determine the cell corresponding to the frequency point information to be measured as the cell to be measured.
  • the frequency point/cell information to be measured may include the frequency point information to be measured and the cell information to be measured corresponding to the frequency point to be measured.
  • the terminal device may determine the cell to be measured according to the cell information to be measured district.
  • the information about the cell to be measured may be identification information of the cell to be measured.
  • the reporting condition information is used to indicate the reporting condition of the measurement report, or in other words, the reporting condition information is used to indicate the condition for the terminal device to send the measurement report to the network device.
  • Step 2 The terminal device measures the signal energy of the cell to be measured according to the measurement configuration information, and determines the measurement result of the cell to be measured.
  • the terminal device after determining the cell to be measured according to the measurement configuration information, performs signal measurement on the cell to be measured to obtain signal energy of the cell to be measured, and then determines the measurement result of the cell to be measured.
  • the signal of the cell to be measured measured by the terminal device may be a reference signal of the cell to be measured.
  • the reference signal may be a cell reference signal (CRS) of the cell to be measured.
  • CRS cell reference signal
  • the reference signal may be a synchronization signal block (synchronization signal block, SSB) of the cell to be measured.
  • SSB synchronization signal block
  • CSI-RS channel state information reference signal
  • the signal energy of the cell measured by the terminal device includes but is not limited to at least one of the following: a reference signal receiving power (reference signal receiving power, RSRP) value; a reference signal receiving quality (reference signal receiving quality, RSRQ) value; Signal to interference plus noise ratio (SINR) value, received signal strength indication (RSSI).
  • RSRP reference signal receiving power
  • RSRQ reference signal receiving quality
  • SINR Signal to interference plus noise ratio
  • RSSI received signal strength indication
  • the following uses a specific example to introduce how the terminal device performs signal measurement of the cell to be measured and determines the measurement result of the cell to be measured:
  • the measurement configuration information indicates that the cells to be measured include cell A and cell B.
  • the terminal device starts a physical (PHY) layer to measure the signal energy of cell A according to the measurement configuration information, and the PHY layer of the terminal device sends the signal energy of cell A to the RRC layer of the terminal device.
  • the RRC layer of the terminal device determines the measurement result of the cell A according to the signal energy of the cell A.
  • the terminal device starts the PHY layer to measure the signal energy of cell B according to the measurement configuration information, and the PHY layer of the terminal device sends the signal energy of cell B to the RRC layer of the terminal device.
  • the RRC layer of the terminal device determines the measurement result of the cell B according to the signal energy of the cell B.
  • the terminal device may directly use the cell signal energy obtained by current measurement as the measurement result of the cell this time. And if the terminal device is not measuring the cell for the first time, optionally, the terminal device can also filter the measurement result of the previous measurement of the cell (also called the historical measurement result of the cell) and the signal energy of the cell obtained by this measurement. To obtain the current measurement result, in this implementation manner, the measurement configuration information further includes filtering parameters used for filtering processing.
  • the measurement result of the cell determined by the terminal device satisfies the following formula 1:
  • Y n is the measurement result of the cell
  • Y n-1 is the measurement result of the cell (historical measurement result of the cell) determined when the terminal device performs cell measurement last time
  • X is the signal energy of the cell measured by the terminal device this time
  • a is a filtering parameter
  • its value is a constant. Exemplarily, the value of a is 0.5.
  • the specific implementation manner for the terminal device to determine the historical measurement result of the cell is similar to the method for the terminal device to determine the current measurement result of the cell, and will not be repeated in this application.
  • Step 3 The terminal device determines a measurement report (MeasReport) according to the measurement result.
  • step 2 the terminal device determines the measurement results of each cell.
  • step 3 the terminal device (or the RRC layer of the terminal device) needs to evaluate the measurement results of each cell according to the reporting condition information in the measurement configuration information, and determine the cell Whether the measurement result meets the reporting condition, if so, the terminal device generates a measurement report and sends the measurement report to the network device.
  • determining that the measurement result meets the reporting condition is determining that the measurement result meets one of the measurement events that need to be reported, and the generated measurement report is used to report the corresponding measurement event to the network device.
  • the measurement events that need to be reported include one or more of the following:
  • A1 The measurement result of the Serving Cell is higher than the reporting threshold 1.
  • A2 The measurement result of the serving cell is lower than the reporting threshold 2.
  • A3 The measurement result of the neighboring cell is higher than the measurement result of the serving cell + offset value (offset).
  • A4 The measurement result of the neighboring cell is higher than the reporting threshold 3.
  • A5 The measurement result of the serving cell is lower than the reporting threshold 4, and the measurement result of the neighboring cell is higher than the reporting threshold 5.
  • A6 The measurement result of the neighboring cell is higher than the measurement result of the secondary cell (Scell) + offset value (offset).
  • the serving cell is the cell currently accessed by the terminal device.
  • the neighboring cell is a neighboring cell of the serving cell of the terminal device.
  • the different-system cell is a cell whose communication system is different from that of the serving cell of the terminal device.
  • the terminal device can determine whether the cell measurement result satisfies a measurement event that needs to be reported according to the measurement result of the cell and the measurement configuration information. If a measurement event that needs to be reported is satisfied, the terminal device generates a measurement report corresponding to the event.
  • events that need to be reported may also include other types of events, which is not limited in this application.
  • the terminal device may determine the measurement event to be reported and generate a corresponding measurement report according to the measurement identification list (MeasIdList) in the measurement configuration information sent by the network device.
  • the MeasIdList includes one or more measurement identifiers (MeasId), and each MeasId is used to associate the corresponding frequency point/cell information with the measurement event that needs to be reported.
  • the measurement report generated by the terminal device includes the MeasId corresponding to the measurement event that the measurement result satisfies, so that the network device can determine the measurement event corresponding to the measurement report according to the MeasId included in the received measurement report.
  • the terminal device determines the measurement report based on the measurement results: Assume that in the measurement configuration information, MeasId1 included in the MeasIdList is associated with frequency point A and the B1 event in the above measurement events, and the reporting condition information in the measurement configuration information includes Report threshold and trigger time (time to trigger, TTT). Wherein, the reporting threshold is a fixed threshold for evaluating whether the measurement result meets the reporting condition, and TTT is a timer for evaluating whether the measurement result meets the reporting condition.
  • the terminal device After receiving the measurement configuration information, the terminal device starts to perform signal measurement on the inter-system cell A corresponding to frequency point A and obtains the measurement result of cell A.
  • the terminal device determines that the measurement result of cell A is higher than the reporting threshold included in the measurement configuration information . If the terminal device determines that the measurement result of cell A is higher than the reporting threshold included in the measurement configuration information , the terminal device starts the TTT timer. If the measurement result of cell A obtained by the terminal device continues to meet the reporting threshold during the running of the TTT timer, the terminal device determines that the measurement result of cell A meets the reporting conditions of the measurement report, and the terminal device generates a report with B1 The measurement report corresponding to the event.
  • the measurement report may include MeasId1 and information of the cell A, so that the network device determines that the measurement result of the cell A satisfies the measurement event B1 according to the received measurement report.
  • the measurement report generated by the terminal device usually only includes one measurement event that needs to be reported. When there are multiple measurement events that need to be reported, and the terminal device determines that the current measurement result satisfies multiple measurement events that need to be reported, the terminal device generates a corresponding measurement report for each measurement event that needs to be reported, and reports to Network devices send these measurement reports.
  • Step 4 The terminal device sends a measurement report to the network device.
  • the network device receives the measurement report from the terminal device.
  • Step 5 After receiving the measurement report, the network device triggers a corresponding handover/redirection process.
  • the current cell measurement scheme may cause the terminal device in the EPS Fallback scenario to fail to report the measurement report in time.
  • the network side does not distinguish the purpose of handover/redirection, and once the measurement configuration information is configured, it will not change in real time according to the actual service type of the terminal device.
  • the measurement configuration information obtained by the terminal device is not suitable for its own service type, the terminal device will still strictly follow the measurement configuration information issued by the network side to perform measurement and evaluate the measurement results.
  • the reporting conditions are strict, which may cause the measurement results to fail to meet the reporting conditions, and thus cause the terminal device to fail to send the measurement report.
  • this application provides a cell measurement method, which is used to solve the problem that the terminal equipment cannot report the measurement report in time in the current EPS Fallback scenario.
  • the embodiments of the present application may be applicable to the LTE system or the NR system, and may also be applicable to other future-oriented new systems, etc., which are not specifically limited in the embodiments of the present application. Also, the term “system” and “network” may be used interchangeably.
  • the communication system 10 includes a network device 20 and one or more terminal devices 30 connected to the network device 20 .
  • the terminal device 30 is connected to the network device 20 in a wireless manner.
  • different terminal devices 30 may communicate with each other.
  • the terminal device 30 may be fixed or mobile.
  • FIG. 1 is only a schematic diagram, although not shown, the communication system 10 may also include other network devices, such as the communication system 10 may also include core network devices, wireless relay devices and wireless backhaul devices One or more of them are not specifically limited here.
  • the network device may be connected to the core network device in a wireless or wired manner.
  • the core network device and the network device 20 can be independent and different physical devices, or the functions of the core network device and the logical functions of the network device 20 can be integrated on the same physical device, or a physical device can integrate some
  • the functions of the core network device and the functions of some network devices 20 are not specifically limited in this embodiment of the present application.
  • the network device 20 sends a first message to the terminal device 30, and the first message includes the measurement configuration of the cell to be measured information
  • the terminal device 30 receives the first message from the network device 20 .
  • the service state of the terminal device 30 is a preconfigured service state
  • the terminal device 30 sends a measurement report to the network device 20; wherein the measurement report is determined according to the measurement configuration information and the historical measurement results of the cell to be measured.
  • the network device 20 sends a first message to the terminal device 30, and the first message includes the measurement configuration of the cell to be measured information
  • the terminal device 30 receives the first message from the network device.
  • the service state of the terminal device 30 is a preconfigured service state
  • the terminal device 30 sends a measurement report to the network device 20; wherein, the measurement report is determined according to the first measurement result, and the first measurement result is to be measured
  • the cell is the measurement task with the first priority, it is obtained by measuring the cell to be measured according to the measurement configuration information.
  • the network device 20 sends a first message to the terminal device 30, and the first message includes the measurement configuration of the cell to be measured information
  • the terminal device 30 receives the first message from the network device 20 .
  • the service state of the terminal device 30 is a preconfigured service state
  • the terminal device 30 sends a measurement report to the network device 20, and the measurement report is determined according to the first measurement result and the value of the target parameter; wherein, the first measurement result It is obtained by measuring the cell to be measured according to the measurement configuration information; the value of the target parameter is determined according to the service status of the terminal device 30, and the target parameter is used to determine the sending condition of the measurement report.
  • the network device 20 in the embodiment of the present application is a device for connecting the terminal device 30 to a wireless network, and may be a base station (base station), an evolved base station (evolved NodeB, eNodeB), a sending and receiving point (transmission reception point, TRP), next generation base station (next generation NodeB, gNB) in 5G mobile communication system, base station in future mobile communication system or access in wireless-fidelity (wireless-fidelity, Wi-Fi) system A node, etc.; it may also be a module or unit that completes some functions of the base station, for example, it may be a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU).
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the network device.
  • network equipment refers to wireless access network equipment.
  • the terminal device 30 in this embodiment of the present application may be a device for implementing a wireless communication function, such as a terminal or a chip that may be used in a terminal.
  • the terminal may also be called user equipment (user equipment, UE), mobile station, mobile terminal, and so on.
  • Terminals can be mobile phones, tablet computers, computers with wireless transceiver functions, virtual reality terminal equipment, augmented reality terminal equipment, wireless terminals in industrial control, wireless terminals in unmanned driving, wireless terminals in remote surgery, and wireless terminals in smart grids.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the terminal device.
  • the network device 20 and terminal device 30 in the embodiment of the present application can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on airplanes, balloons and artificial on the satellite.
  • the embodiments of the present application do not limit the application scenarios of the network device 20 and the terminal device 30 .
  • the communication between the network device 20 and the terminal device 30 in this embodiment of the present application may be performed through the licensed spectrum, the communication may be performed through the unlicensed spectrum, or the communication may be performed through the licensed spectrum and the unlicensed spectrum at the same time.
  • the communication between the network device 20 and the terminal device 30 may be performed through a frequency spectrum below 6 gigahertz (GHz), or may be performed through a frequency spectrum above 6 GHz, or may be performed using a frequency spectrum below 6 GHz and a frequency spectrum above 6 GHz at the same time.
  • GHz gigahertz
  • the embodiment of the present application does not limit the frequency spectrum resource used between the network device 20 and the terminal device 30 .
  • the network device 20 and the terminal device 30 in the embodiment of the present application may also be referred to as communication devices, which may be a general-purpose device or a dedicated device, which is not specifically limited in the embodiment of the present application.
  • FIG. 2 it is a schematic structural diagram of a network device 20 and a terminal device 30 provided in this embodiment of the present application.
  • the terminal device 30 includes at least one processor 301 and at least one transceiver 303 .
  • the terminal device 30 may further include at least one memory 302 , at least one output device 304 or at least one input device 305 .
  • a communication link may include a pathway for passing information between the aforementioned components.
  • Processor 301 may be a general-purpose central processing unit (central processing unit, CPU), or other general-purpose processors, digital signal processors (digital signal processor, DSP), application specific integrated circuits (application specific integrated circuits, ASICs), on-site Programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor can be a microprocessor, or any conventional processor.
  • the processor 301 may also include multiple CPUs, and the processor 301 may be a single-core processor or a multi-core processor.
  • a processor here may refer to one or more devices, circuits, or processing cores for processing data.
  • the memory 302 may be a device having a storage function.
  • it may be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (random access memory, RAM) or other types of memory that can store information and instructions
  • Dynamic storage devices can also be programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically erasable programmable read-only memory (electrically erasable programmable read-only memory , EEPROM), compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other A magnetic storage device, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer, without limitation.
  • the memory 302 may exist independently and be
  • the memory 302 is used to store computer-executed instructions for implementing the solutions of the present application, and the execution is controlled by the processor 301 .
  • the processor 301 is configured to execute computer-executed instructions stored in the memory 302, so as to implement the cell measurement method described in the embodiment of the present application.
  • the processor 301 may also perform processing-related functions in the cell measurement method provided in the following embodiments of the present application, and the transceiver 303 is responsible for communicating with other devices or communication networks.
  • the embodiment of the application does not specifically limit this.
  • the computer-executed instructions in the embodiments of the present application may also be referred to as application program codes or computer program codes, which are not specifically limited in the embodiments of the present application.
  • the transceiver 303 can use any transceiver-like device for communicating with other devices or communication networks, such as Ethernet, radio access network (radio access network, RAN), or wireless local area networks (wireless local area networks, WLAN) wait.
  • the transceiver 303 includes a transmitter (transmitter, Tx) and a receiver (receiver, Rx).
  • Output device 304 is in communication with processor 301 and can display information in a variety of ways.
  • the output device 304 can be a liquid crystal display (liquid crystal display, LCD), a light emitting diode (light emitting diode, LED) display device, a cathode ray tube (cathode ray tube, CRT) display device, or a projector (projector) wait.
  • the input device 305 communicates with the processor 301 and can accept user input in various ways.
  • the input device 305 may be a mouse, a keyboard, a touch screen device, or a sensing device, among others.
  • the network device 20 includes at least one processor 201 , at least one transceiver 203 and at least one network interface 204 .
  • the network device 20 may further include at least one memory 202 .
  • the processor 201, the memory 202, the transceiver 203 and the network interface 204 are connected through communication lines.
  • the network interface 204 is used to connect to the core network equipment through a link (such as an S1 interface), or to connect to a network interface (not shown in FIG. 2 ) of other network equipment through a wired or wireless link (such as an X2 interface).
  • the embodiment of the application does not specifically limit this.
  • the processor 201, the memory 202, and the transceiver 203 reference may be made to the description of the processor 301, the memory 302, and the transceiver 303 in the terminal device 30, and details are not repeated here.
  • FIG. 3 shows a specific structural form of the terminal device 30 provided in the embodiment of the present application.
  • the functions of the processor 301 in FIG. 2 may be implemented by the processor 110 in FIG. 3 .
  • the functions of the transceiver 303 in FIG. 2 can be realized by the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160 and the like in FIG. 3 .
  • the mobile communication module 150 can provide solutions including wireless communication technologies such as LTE, NR or future mobile communication applied on the terminal device 30 .
  • the wireless communication module 160 can provide WLAN (such as Wi-Fi network), Bluetooth (blue tooth, BT), global navigation satellite system (global navigation satellite system, GNSS), frequency modulation (frequency modulation, FM) applied on the terminal device 30. ), near field communication (near field communication, NFC), infrared and other wireless communication technology solutions.
  • the antenna 1 of the terminal device 30 is coupled to the mobile communication module 150, and the antenna 2 is coupled to the wireless communication module 160, so that the terminal device 30 can communicate with the network and other devices through wireless communication technology.
  • the function of the memory 302 in FIG. 2 may be implemented by the internal memory 121 in FIG. 3 or an external memory connected to the external memory interface 120 .
  • the functions of the output device 304 in FIG. 2 can be implemented by the display screen 194 in FIG. 3 .
  • the function of the input device 305 in FIG. 2 can be realized by a mouse, a keyboard, a touch screen device or the sensor module 180 in FIG. 13 .
  • the terminal device 30 may further include an audio module 170 , a camera 193 , a button 190 , a SIM card interface 195 , a USB interface 130 , a charging management module 140 , a power management module 141 and a battery 142 one or more of the .
  • the structure shown in FIG. 3 does not constitute a specific limitation on the terminal device 30 .
  • the terminal device 30 may include more or fewer components than shown in the figure, or combine certain components, or separate certain components, or arrange different components.
  • the illustrated components can be realized in hardware, software or a combination of software and hardware.
  • the cell measurement method includes S401-S402:
  • the network device sends a first message to the terminal device.
  • the terminal device receives the first message from the network device, where the first message includes measurement configuration information of a cell to be measured.
  • the terminal device sends a measurement report to the network device, and correspondingly, the network device receives the measurement report from the terminal device.
  • the measurement report is determined according to the measurement configuration information and the historical measurement results of the cell to be measured.
  • the measurement configuration information includes at least one of the following information: frequency point/cell information to be measured, reporting condition information and other information.
  • frequency point/cell information to be measured includes at least one of the following information: frequency point/cell information to be measured, reporting condition information and other information.
  • the reporting condition information includes at least one of the following: information such as a reporting threshold and TTT.
  • information such as a reporting threshold and TTT.
  • the cell to be measured indicated by the frequency point/cell information to be measured is an LTE cell.
  • the network device may determine the frequency point/cell information to be measured through the preconfigured neighbor cell list and the cell currently accessed by the terminal device.
  • the reporting condition information may be pre-configured in the network device.
  • the first message may be an RRC reconfiguration message.
  • the measurement configuration information may be carried in the RRC reconfiguration message.
  • the core network device may send an indication message to the network device, where the indication message is used to instruct the network device to send the first message to the terminal device.
  • the core network device determines that the NR network connected to the terminal device cannot provide voice services for the terminal device, that is, determines that the terminal device is in the EPS Fallback state, and sends a message to the network device connected to the terminal device An indication message notifying the terminal equipment that it is in the EPS Fallback state, and the network equipment sends the first message to the terminal equipment after receiving the indication message.
  • the terminal device After receiving the measurement configuration information from the network device, the terminal device determines the cell to be measured according to the frequency point/cell information to be measured in the measurement configuration information. For details, refer to the above introduction, which will not be repeated here.
  • the terminal device can determine its own service status. If the terminal device determines that its own service status is a pre-configured service status, the terminal device can determine the history of the cell to be measured from the locally stored historical measurement results of the cell. measurement results. After the terminal device determines the historical measurement results of the cell to be measured, it evaluates the historical measurement results of the cell to be measured according to the measurement configuration information, and determines whether the historical measurement results of the cell to be measured meet the sending conditions of the measurement report. If the sending conditions are met, the terminal device generates Corresponding measurement report, and send the measurement report to the network device.
  • the terminal device can determine the measurement report in combination with the historical measurement results of the cell to be measured, which reduces the time for the terminal device to perform cell measurement and makes the terminal device faster
  • the measurement report can be sent quickly, which can trigger the network device to initiate handover/redirection more quickly, reducing the time delay for the terminal device to fall back to the LTE network to establish a voice service, and can give users a better experience.
  • the sending condition of the measurement report may also be referred to as the reporting condition of the measurement report, which will be described in a unified manner here and will not be repeated hereafter.
  • the historical measurement result of the cell to be measured may be the measurement result determined by the terminal device in the previous signal measurement of the cell.
  • one or more types of preconfigured service states can be configured according to actual needs, which is not limited in the embodiment of the present application.
  • the pre-configured service state includes the EPS Fallback state.
  • the terminal device determines whether the historical measurement results of the cell to be measured meet the reporting conditions may be: the terminal device determines whether the historical measurement results of the cell to be measured meet the measurement events that need to be reported.
  • the terminal device may determine the measurement events that need to be reported according to the MeasIdList information in the measurement configuration information.
  • the measurement events that need to be reported may include measurement event B1 or measurement event B2.
  • the terminal device may evaluate the historical measurement results of the cell to be measured according to the measurement configuration information as follows: the terminal device evaluates the historical measurement results of the cell to be measured according to the reporting condition information in the measurement configuration information to evaluate. Different from the existing solution, the terminal device can only start the TTT timer and evaluate and obtain it during the running of the TTT timer after the terminal device obtains the current measurement result of the cell to be measured and determines that the current measurement result of the cell to be measured meets the reporting threshold. Whether the measurement results of the cell to be measured can continue to meet the reporting threshold. In this implementation, if the terminal device determines that the historical measurement results of the cell to be measured meet the reporting threshold, it can start the TTT timer, so as to start evaluating the measurement results as soon as possible, and then determine the measurement Report.
  • the terminal device measures the cell to be measured according to the measurement configuration information, and obtains the locally stored historical measurement results of the cell to be measured , if the historical measurement results of the cell to be measured meet the reporting threshold, start the TTT timer. If the measurement results of the cell to be measured obtained by the terminal device continue to meet the reporting threshold during the running of the TTT timer, the terminal device can determine that the measurement result of the cell to be measured meets the reporting conditions, and generate a corresponding report after the TTT timer expires. The measurement report is sent to the network device.
  • the terminal device will not generate the corresponding measurement report to avoid that if the current signal quality of the cell to be measured is poor, As a result, the service transmission quality of the terminal equipment is reduced after the terminal equipment is handed over to the cell to be measured.
  • the terminal device determines that the historical measurement results of the cell to be measured meet the reporting conditions, and generates a corresponding measurement report after the TTT timer expires and send it to the network device.
  • the measurement report generated by the terminal device may include the information of the cell to be measured whose historical measurement results meet the reporting conditions and the MeasId information associated with the cell to be measured, so that after receiving the measurement report, the network device can Initiate the handover/redirection process for the information of the cell to be measured included in , for details, refer to the introduction above, and will not repeat them here.
  • the measurement report may also include historical measurement results of the cell to be measured.
  • the network device may initiate a handover/redirection process according to the measurement report.
  • the actions of the terminal device in the above steps S401 to S402 can be executed by the processor 301 in the terminal device 30 shown in FIG. 2 calling the application program code stored in the memory 302 to instruct the terminal device to execute;
  • the actions of the network device 20 shown in FIG. 2 can be invoked by the processor 201 stored in the memory 202 to instruct the network device to perform the actions.
  • This embodiment does not impose any limitation on this.
  • the cell measurement method includes S501-S502:
  • the network device sends a first message to the terminal device.
  • the terminal device receives the first message from the network device, where the first message includes measurement configuration information of a cell to be measured.
  • the terminal device sends a measurement report to the network device, and correspondingly, the network device receives the measurement report from the terminal device.
  • the measurement report is determined according to the first measurement result.
  • the first measurement result is obtained by the terminal device measuring the cell to be measured according to the measurement configuration information when the cell to be measured is taken as the first priority measurement task.
  • the terminal device After receiving the measurement configuration information from the network device, the terminal device determines the cell to be measured according to the frequency point/cell information to be measured in the measurement configuration information. For details, refer to the above introduction, which will not be repeated here.
  • the PHY layer of the terminal equipment may have multiple measurement tasks, and the PHY layer of the terminal equipment will process them sequentially according to the order in which the measurement tasks are received, and the PHY layer of the terminal equipment Layers process measurement tasks according to a certain rhythm (or cycle).
  • the PHY layer of the terminal device measures the signal energy of cell A at 200ms, and the next measurement task is cell B, the PHY layer will not immediately measure cell B, but will signal cell B again at 400ms. Measurement.
  • the terminal device can take the cell to be measured as the first priority measurement task, and give priority to the cell to be measured Perform signal measurement, and determine the measured signal energy of the cell to be measured as the first measurement result of the cell to be measured.
  • This process can also be referred to as fast measurement of the cell to be measured by the terminal device.
  • the measurement task of the cell to be measured as the first priority can be understood as that the terminal device immediately processes the measurement task of the cell to be measured regardless of whether the terminal device has unprocessed measurement tasks.
  • the signal energy of the cell obtained by the terminal device from measuring the signal of the cell may be at least one of the RSRP value, the RSRQ value, and the SINR value of the cell.
  • the signal energy of the cell may also be other parameters used to characterize the signal quality, which is not limited in this application.
  • the terminal device processes the measurement tasks sequentially, which may increase the time for measuring the cell to be measured.
  • the terminal device can take the cell to be measured as the first priority
  • the measurement task of the cell to be measured can be quickly measured, which reduces the time for the terminal device to perform cell measurement, enables the terminal device to send the measurement report faster, and then triggers the network device to initiate handover/redirection more quickly, reducing the fallback of the terminal device
  • the delay in establishing voice services on the LTE network can give users a better experience.
  • the specific implementation of the terminal device obtaining the first measurement result of the cell to be measured may be: the RRC layer of the terminal device notifies the PHY layer of the terminal device of the information of the cell to be measured, And notify the PHY layer that the cell to be measured is the first priority measurement task. After receiving the notification information, the PHY layer of the terminal device will immediately perform signal measurement on the cell to be measured, and after obtaining the signal energy of the cell to be measured, immediately send it to RRC layer. The RRC layer determines the obtained signal energy of the cell to be measured as the first measurement result of the cell to be measured.
  • the network device may initiate a handover/redirection process according to the measurement report.
  • the actions of the terminal device in the above steps S501 to S502 can be executed by the processor 301 in the terminal device 30 shown in FIG. 2 calling the application program code stored in the memory 302 to instruct the terminal device to execute;
  • the actions of the network device 20 shown in FIG. 2 can be invoked by the processor 201 stored in the memory 202 to instruct the network device to perform the actions.
  • This embodiment does not impose any limitation on this.
  • the cell measurement method shown in FIG. 4 may be combined with the cell measurement method shown in FIG. 5 .
  • the combined cell measurement method includes the following steps:
  • Step 1 The network device sends a first message to the terminal device.
  • the terminal device receives the first message from the network device.
  • the first message includes measurement configuration information of the cell to be measured.
  • Step 2 When the service state is a preconfigured service state, the terminal device sends a measurement report to the network device, and correspondingly, the network device receives the measurement report from the terminal device.
  • the measurement report is determined according to the first measurement result and the historical measurement results of the cell to be measured; the first measurement result is the cell to be measured according to the measurement configuration information when the cell to be measured is taken as the first priority measurement task obtained by measuring.
  • step 1 refer to the introduction to S401 above for details, and details will not be repeated here.
  • step 2 after the terminal device determines that the service state of the terminal device is the pre-configured service state, how the terminal device determines the historical measurement results of the cell to be measured can refer to the introduction of S402 above, and will not be repeated here.
  • the terminal device determines the first measurement result of the cell to be measured reference may be made to the introduction to S502 above, which will not be repeated here.
  • the terminal device After the terminal device determines the first measurement result and historical measurement results of the cell to be measured, it can determine the second measurement result of the cell to be measured according to pre-configured rules, the first measurement result and historical measurement results of the cell to be measured, and The second measurement result of the cell is evaluated to determine whether the sending condition of the measurement report is met, and if the sending condition is met, the terminal device generates a measurement report and sends it to the network device.
  • the cell signal energy measured by the terminal device may be smaller than the actual signal energy of the cell. If the terminal device reports a measurement report because the signal energy of the cell measured by the terminal device is smaller than the actual signal energy of the cell, the network device will switch the terminal device to a cell with poor signal quality, thereby reducing the service transmission quality of the terminal device . Based on the cell measurement method provided by the embodiment of the present application, it is possible to balance the current measurement results of the rapid measurement of the cell to be measured and the historical measurement results of the cell to be measured, and jointly determine the measurement report, so as to reduce the time for measuring the cell. , improving the accuracy of the cell signal energy reflected in the measurement report, and avoiding the situation that the terminal equipment generates the measurement report incorrectly due to fast fading.
  • the measurement configuration information includes filtering parameters.
  • the terminal device may filter the first measurement result of the cell to be measured and the historical measurement results according to the filtering parameters to obtain the second measurement result of the cell to be measured, evaluate and process the second measurement result of the cell to be measured, and determine a measurement report.
  • FIG. 6 it is a specific flow chart of the implementation in the EPS Fallback scenario. As shown in Figure 6, S601-S605 are included.
  • the terminal device initiates a voice call, and the terminal device has locally stored the historical measurement result ResultOld of the cell to be measured.
  • the terminal device receives measurement configuration information from the network device.
  • the terminal device recognizes that its current service state is the EPS Fallback state, and notifies the physical layer to perform fast measurement.
  • the physical layer quickly reports the measured measurement result of the cell to be measured, that is, the first measurement result ResultNew.
  • the RRC layer of the terminal device applies the filtering parameters in the measurement configuration information to perform filtering processing on ResultOld and ResultNew to obtain a final measurement result, that is, the second measurement result ResultEnd.
  • the RRC layer of the terminal device uses ResultEnd to perform subsequent evaluation and determine the measurement report.
  • the terminal device may determine the second measurement result of the cell to be measured according to the following formula:
  • Y n is the second measurement result of the sub-district to be measured
  • Y n-1 is the historical measurement result of the sub-district to be measured
  • X is the first measurement result of the sub-district to be measured
  • a is a filtering parameter
  • the value is a constant, exemplary , the value of a can be 0.5.
  • the terminal device may calculate the first measurement result and historical measurement results of the cell to be measured according to preconfigured calculation rules and/or calculation parameters to obtain the second measurement result of the cell to be measured, and Perform evaluation processing on the second measurement result of the cell to be measured, and determine a measurement report.
  • step 2 how the terminal device determines the measurement report according to the second measurement result of the cell to be measured can refer to the introduction of S402 above, and details are not repeated here.
  • the network device may initiate a handover/redirection process according to the measurement report.
  • the cell measurement method includes S701-S702:
  • the network device sends a first message to the terminal device.
  • the terminal device receives the first message from the network device, where the first message includes measurement configuration information of a cell to be measured.
  • the terminal device sends a measurement report to the network device, and correspondingly, the network device receives the measurement report from the terminal device.
  • the measurement report is determined according to the first measurement result and the value of the target parameter; the first measurement result is obtained by measuring the cell to be measured according to the measurement configuration information; the value of the target parameter is determined according to the service state, and the target parameter is used for Determines the sending conditions for measurement reports.
  • the measurement configuration information used to determine the sending conditions of the measurement report is pre-configured in the network device and cannot be adjusted in real time according to the service status of the terminal device. Based on the cell measurement method provided in the embodiment of the present application, it can According to the service state of the terminal device, determine the target parameters used to determine the sending condition of the measurement report. In other words, the sending condition of the measurement report can be adjusted according to the service state of the terminal device, so as to avoid problems caused by sending conditions that are not suitable for the service state of the terminal device.
  • the terminal device can send the measurement report faster, which in turn can trigger the network device to initiate handover/redirection more quickly, reducing the fallback of the terminal device to the LTE network to establish voice Service delay can give users a better experience.
  • the actions of the terminal device in the above steps S701 to S702 can be executed by the processor 301 in the terminal device 30 shown in FIG. 2 calling the application code stored in the memory 302 to instruct the terminal device to execute;
  • the actions of the network device 20 shown in FIG. 2 can be invoked by the processor 201 stored in the memory 202 to instruct the network device to perform the actions.
  • This embodiment does not impose any limitation on this.
  • Scenario 1 The value of the target parameter is determined by the network device.
  • the cell measurement method in Scenario 1 is introduced below with reference to FIG. 8 . As shown in Figure 8, this solution includes S801-S805.
  • the terminal device determines that its own service state is a preconfigured service state.
  • the terminal device sends the second message to the network device, and correspondingly, the network device receives the second message from the terminal device.
  • the second message is used to indicate the current service state of the terminal device.
  • the second message may be an existing signaling message exchanged between the terminal device and the network device, for example, the second message may be user equipment assistance information (UE assistance information).
  • the second message may also be a newly added signaling message, which is not limited in this embodiment of the present application.
  • the network device determines the value of the target parameter according to the service state of the terminal device.
  • the target parameter may include at least one of a reporting threshold and a TTT.
  • the following specifically introduces the manner in which the network device determines the value of the target parameter according to the service status of the terminal device in the embodiment of the present application.
  • the network device may determine the value of the target parameter corresponding to the service state of the terminal device among one or more pre-configured target parameter values according to the service state of the terminal device.
  • the target parameter is the reporting threshold
  • the value of the reporting threshold pre-configured by the network device may be 1 or 2, wherein the value 1 corresponds to service state A, and the value 2 corresponds to service state B.
  • the network device receives the second message sent by the terminal device indicating that the terminal device is currently in service state A, and the network device determines that the value of the reporting threshold is 1 according to the second message.
  • the network device may determine the value of the target parameter according to the service state of the terminal device and a pre-configured rule.
  • the pre-configured rule may be: for the target parameter x, in scenario a, the value of the target parameter x corresponding to business state A is 1, and the value of target parameter x corresponding to business state B is 2. In scenario b, the value of the target parameter x corresponding to business state A is 2, and the value of target parameter x corresponding to business state B is 1.
  • the network device sends the value of the target parameter to the terminal device, and correspondingly, the terminal device receives the value of the target parameter from the network device.
  • the network device may carry the value of the target parameter in the measurement configuration information and send it to the terminal device.
  • the network device adjusts the value of the corresponding target parameter in the measurement configuration information according to the service state of the terminal device, so that the measurement configuration information is more suitable for the service state of the terminal device, and then the measurement configuration The information is sent to the end device.
  • the terminal device evaluates the first measurement result of the cell to be measured according to the value of the target parameter, and determines whether the first measurement result of the cell to be measured meets the sending condition of the measurement report. If the sending condition is met, the terminal device generates a measurement report and sends it to network equipment.
  • the terminal device determines the measurement report according to the first measurement result of the cell to be measured, reference may be made to the introduction to S402 above, and details are not repeated here.
  • the network device can adjust the measurement configuration information according to the service status of the terminal device and then send it to the terminal device, so as to avoid the terminal device from failing because the sending condition of the measurement report is not suitable for the service status of the terminal device. Timely delivery of measurement reports or even cases where delivery of measurement reports is not possible.
  • Scenario 2 The value of the target parameter is determined by the terminal device.
  • the cell measurement method in Scenario 2 is introduced below in combination with FIG. 9 . As shown in Figure 9, this solution includes S901-S904.
  • the network device sends measurement configuration information to the terminal device, and correspondingly, the terminal device receives the measurement configuration information from the network device.
  • the measurement configuration information includes the second value of the target parameter.
  • the network device may carry the second value of the target parameter in the measurement configuration information and send it to the terminal device.
  • the terminal device may determine the second value of the target parameter according to the measurement configuration information sent by the network device.
  • the terminal device determines that its own service state is a preconfigured service state, and the terminal device may determine the first value of the target parameter according to its own service state.
  • the terminal device may, according to the service status of the terminal device, select the first value of one or more pre-configured target parameters. In a value, determine the first value of the target parameter corresponding to the service state of the terminal device.
  • the target parameter is the reporting threshold
  • the value (or the first value) of the network device pre-configured reporting threshold can be 1 or 2, wherein the first value 1 corresponds to service state A, and the first value 2 corresponds to service state B .
  • the terminal device determines that its own service state is service state A, it determines that the first value of the reporting threshold is 1 according to the correspondence between the service state and the first value.
  • the terminal device may determine the value of the target parameter according to the service status of the terminal device and pre-configured rules.
  • the pre-configured rule may be: for the target parameter x, in scenario a, the first value of the target parameter x corresponding to business state A is 1, and the first value of target parameter x corresponding to business state B is 2. In scenario b, the first value of the target parameter x corresponding to business state A is 2, and the first value of target parameter x corresponding to business state B is 1.
  • the terminal device determines the value of the target parameter from the first value of the target parameter and the second value of the target parameter according to a preconfigured rule.
  • the terminal device evaluates the first measurement result of the cell to be measured according to the value of the target parameter, and determines whether the first measurement result of the cell to be measured meets the sending condition of the measurement report. If the sending condition is met, the terminal device generates a measurement report and sends it to network equipment.
  • the preconfigured rules may correspond to the preconfigured service states according to actual requirements.
  • the rule for determining the value of the target parameter corresponding to the EPS Fallback service state may be: the smaller value of the first value and the second value is the value of the target parameter.
  • a smaller value can be selected from the first value and the second value as the value of the target parameter, thereby reducing the time for the terminal device to evaluate the measurement result, or making the conditions for the terminal device to send a measurement report more relaxed, and promoting The network device controls the terminal device to fall back to the LTE network more quickly.
  • the pre-configured service state is the EPS Fallback service state and the target parameter is the reporting threshold or TTT to introduce the method for the terminal device to determine the value of the target parameter.
  • the target parameter is the reporting threshold (Thresh parameter).
  • the process of calculating the value of the target parameter ThreshEnd by the terminal device is shown in FIG. 10 .
  • ThreshNet is the reporting threshold included in the measurement configuration information sent by the network device to the terminal device, and its value is -80dBm.
  • the second value of the target parameter is -80dBm.
  • ThreshPrivate is the reporting threshold corresponding to the EPS Fallback service status preconfigured by the terminal device, and the value is -100dBm.
  • the first value of the target parameter is -100dBm.
  • the terminal device determines its own business status.
  • the terminal device directly assigns the value of ThreshNet to ThreshEnd. If the terminal device determines that it is in the EPS Fallback service state, the terminal device compares the size of ThreshNet and ThreshPrivate. If ThreshNet is less than or equal to ThreshPrivate, assign the value of ThreshNet to ThreshEnd, and if ThreshNet is greater than ThreshPrivate, assign the value of ThreshPrivate to ThreshEnd. After the terminal device goes through the process shown in Figure 10, the ThreshEnd is finally calculated to be -100dBm.
  • the terminal device can evaluate whether the first measurement result of the cell to be measured meets the reporting condition through the ThreshEnd. Specifically, after the terminal device obtains the signal energy of the cell to be measured, if ThreshEnd is satisfied, in other words greater than -100dBm, the terminal device starts the TTT timer. If the signal energy of the cell to be measured obtained by the terminal device during the timer operation is greater than -100dBm, the terminal device will report the measurement report to the network device after the timer expires. Based on this solution, the terminal device can evaluate the measurement results of the cell with a lower reporting threshold. As long as the signal energy of the cell to be measured can meet the lower reporting threshold, the terminal device can trigger the evaluation and reporting process, thereby prompting the network device to control faster. End devices fall back to the LTE network.
  • the target parameter is the trigger time (TTT parameter).
  • TTTNet is the trigger time included in the measurement configuration information sent by the network device to the terminal device, and the value is 320ms.
  • the second value of the target parameter is 320ms.
  • TTTPrivate is the trigger time corresponding to the EPS Fallback service state pre-configured by the terminal device, and the value is 10ms.
  • the first value of the target parameter is 10ms.
  • the terminal device determines its own service state. If it is not in the EPS Fallback service state, the terminal device directly assigns the value of TTTNet to TTTEnd.
  • the terminal device compares the size of TTTNet and TTTPrivate. If TTTNet is less than or equal to TTTPrivate, assign the value of TTTNet to TTTEnd; if TTTNet is greater than TTTPrivate, assign the value of TTTPrivate to TTTEnd. After the terminal device goes through the process shown in Figure 11, the TTTEnd is finally calculated to be 10ms.
  • the terminal device may evaluate whether the first measurement result of the cell to be measured meets the reporting condition through TTTEnd. Specifically, after the terminal device obtains the signal energy of the cell to be measured, if the reporting threshold is satisfied, the terminal device starts the TTTEnd timer, and if the signal energy of the cell to be measured obtained by the terminal device during the 10ms of timer operation is greater than the reporting threshold , the terminal device reports a measurement report to the network device after the timer expires. Based on this solution, if the signal energy of the cell to be measured meets the reporting threshold, the terminal device can trigger the evaluation and reporting process after a short period of time, thereby prompting the network device to control the terminal device to fall back to the LTE network faster.
  • the second value of the target parameter in scenario 2 may be determined by the network device according to the service state of the terminal device.
  • the value of the target parameter determined by the network device in scenario one may be the second value of the target parameter in scenario two.
  • the terminal device before the network device sends the measurement configuration information to the terminal device (before S701), if the terminal device determines that its own service state is a pre-configured service state, the terminal device sends the first message indicating the current service state of the terminal device to the network device. The second message. After receiving the second message, the network device determines the second value of the target parameter according to the service status of the terminal device and sends it to the terminal device in the measurement configuration information. For details, refer to the introduction to scenario 1 above. This will not be repeated here. Then the terminal device further determines the value of the target parameter according to the first value and the second value of the target parameter. For details, refer to the introduction to Scenario 2 above, and details will not be repeated here.
  • the terminal device can further determine the target parameters used to determine the sending conditions of the measurement report according to the measurement configuration information sent by the network device and adjusted according to the service status of the terminal device, and the obtained value of the target parameter can make the network device faster The local control terminal equipment falls back to the LTE network.
  • the cell measurement method shown in FIG. 5 may be combined with the cell measurement method shown in FIG. 7 .
  • the terminal device may determine the measurement report according to the first measurement result of the cell to be measured and the value of the target parameter.
  • the first measurement result is obtained by the terminal device taking the cell to be measured as the first priority task to measure.
  • the value of the target parameter is determined according to the service status of the terminal equipment, and for specific implementation, refer to the description of the cell measurement method shown in FIG. 7 above.
  • the terminal device may determine the measurement report according to the first measurement result of the cell to be measured, the historical measurement results of the cell to be measured, and the value of the target parameter.
  • the terminal device may filter the first measurement result of the cell to be measured and the historical measurement results of the cell to be measured according to the filtering parameters in the measurement configuration information to obtain the second measurement result of the cell to be measured, and then according to the target The value of the parameter and the second measurement result determine a measurement report.
  • the terminal device may filter the first measurement result of the cell to be measured and the historical measurement results of the cell to be measured according to the filtering parameters in the measurement configuration information to obtain the second measurement result of the cell to be measured, and then according to the target The value of the parameter and the second measurement result determine a measurement report.
  • the time for terminal equipment to measure signals and the time for terminal equipment to evaluate measurement results and determine measurement reports can be reduced, thereby triggering network equipment to initiate handover/redirection more quickly, reducing the time for terminal equipment to fall back to
  • the delay in establishing voice services on the LTE network can give users a better experience.
  • the cell measurement method includes S1201-S1202:
  • the terminal device sends a third message to the network device, and correspondingly, the network device receives the third message from the terminal device.
  • the third message is used to indicate that the service state of the terminal device is the EPS Fallback state.
  • the network device sends a first message to the terminal device, and correspondingly, the terminal device receives the first message from the network device.
  • the first message includes measurement configuration information, and the measurement configuration information is determined by the network device according to the service state of the terminal device.
  • the terminal device After the terminal device determines that it is in the EPS Fallback state, it sends a third message indicating that the service state of the terminal device is the EPS Fallback state to the network device. After receiving the third message from the terminal device, the network device may determine according to the third message that the terminal device is currently in the EPS Fallback state. For details, reference may be made to the introduction of S802 above, which will not be repeated here.
  • the network device determines measurement configuration information according to the service status of the terminal device, and sends the determined measurement configuration information to the terminal device in a first message.
  • the network device may adjust the reporting condition information in the measurement configuration information according to the service state of the terminal device. For details, reference may be made to the introduction of S803 above, which will not be repeated here.
  • the network device can determine that the terminal device is in the EPS Fallback state, and determine the measurement configuration information according to the service state of the terminal device, so that the measurement configuration information can be more suitable for the service state of the terminal device, avoiding the occurrence of The case where the measurement configuration information is not suitable for the current service status of the terminal equipment.
  • the cell measurement method also includes:
  • the terminal device sends a measurement report to the network device, and correspondingly, the network device receives the measurement report from the terminal device.
  • the measurement report is determined by the terminal device according to the first measurement result
  • the first measurement result is obtained by the terminal device by measuring the cell to be measured according to the measurement configuration information.
  • the actions of the terminal device in the above steps S1201 to S1202 can be executed by the processor 301 in the terminal device 30 shown in FIG. 2 calling the application program code stored in the memory 302 to instruct the terminal device to execute;
  • the actions of the network device 20 shown in FIG. 2 can be invoked by the processor 201 stored in the memory 202 to instruct the network device to perform the actions.
  • This embodiment does not impose any limitation on this.
  • the methods and/or steps implemented by the terminal equipment may also be implemented by components (such as chips or circuits) that can be used for the terminal equipment; the methods and/or steps implemented by the network equipment, It can also be implemented by components (such as chips or circuits) that can be used in network equipment.
  • the embodiment of the present application further provides a communication device, and the communication device is used to implement the above-mentioned various methods.
  • the communication device may be the terminal device in the above method embodiment, or a device including the above terminal device, or a component that can be used in the terminal device; or, the communication device may be the network device in the above method embodiment, or include the above A device for a network device, or a component that can be used for a network device.
  • the communication device includes hardware structures and/or software modules corresponding to each function.
  • the embodiment of the present application may divide the functional modules of the communication device according to the above method embodiments.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 13 shows a schematic structural diagram of a communication device 130 .
  • the communication device 130 includes a receiving module 1301 and a sending module 1302 .
  • the receiving module 1301 can also be referred to as a receiving unit to implement a receiving function, for example, it can be a receiving circuit, a receiver, a receiver or a communication interface.
  • the sending module 1302 can also be referred to as a sending unit to implement a sending function, for example, it can be a sending circuit, a transmitter, a transmitter or a communication interface.
  • the receiving module 1301 and the sending module 1302 in the embodiment of the present application may also be collectively referred to as a transceiver module, which is not specifically limited in the embodiment of the present application.
  • the receiving module 1301 is configured to receive a first message from the network, and the first message includes measurement configuration information of the cell to be measured.
  • the sending module 1302 is configured to send a measurement report to the network when the service state is a preconfigured service state; wherein, the measurement report is determined according to measurement configuration information and historical measurement results of the cell to be measured.
  • the measurement report is determined according to the first measurement result and historical measurement results; where the first measurement result is the cell to be measured according to the measurement configuration information when the cell to be measured is taken as the first priority measurement task obtained by measuring.
  • the measurement configuration information includes filtering parameters; the measurement report is determined according to the second measurement result, where the second measurement result is a measurement result obtained by filtering the first measurement result and the historical measurement results by using the filtering parameters.
  • the pre-configured service status includes the EPS Fallback status of the evolved packet system.
  • the receiving module 1301 is configured to receive a first message from the network, where the first message includes measurement configuration information of a cell to be measured.
  • the sending module 1302 is configured to send a measurement report to the network when the service state is a preconfigured service state; wherein, the measurement report is determined according to the first measurement result, and the first measurement result is when the cell to be measured is used as the first In the case of a measurement task with a priority, it is obtained by performing measurement on the cell to be measured according to the measurement configuration information.
  • the pre-configured service status includes the EPS Fallback status of the evolved packet system.
  • the receiving module 1301 is configured to receive a first message from the network, where the first message includes measurement configuration information of a cell to be measured.
  • the sending module 1302 is configured to send a measurement report to the network when the service state is a preconfigured service state, the measurement report is determined according to the first measurement result and the value of the target parameter; wherein the first measurement result is based on the measurement
  • the configuration information is obtained by measuring the cell to be measured; the value of the target parameter is determined according to the service status, and the target parameter is used to determine the sending condition of the measurement report.
  • the value of the target parameter comes from a first value or a second value; wherein, the first value is determined by the communication device according to a service state; and the second value is carried in the measurement configuration information.
  • the sending module 1302 is further configured to send a second message to the network, the second message is used to indicate the service state; the second value is determined by the network according to the service state and carried in the measurement configuration information.
  • the value of the target parameter is the smaller value of the first value and the second value.
  • the first measurement result is obtained by measuring the cell to be measured according to the measurement configuration information when the cell to be measured is taken as the first priority measurement task.
  • the measurement report is determined according to the first measurement result, the historical measurement results of the cell to be measured, and the value of the target parameter.
  • the measurement configuration information includes filtering parameters; the measurement report is determined according to the value of the target parameter and the second measurement result, wherein the second measurement result is obtained by filtering the first measurement result and the historical measurement result by using the filtering parameter measurement results.
  • the target parameter includes at least one of a reporting threshold and a triggering time.
  • the pre-configured service status includes the EPS Fallback status of the evolved packet system.
  • the communication device 130 is presented in the form of dividing various functional modules in an integrated manner.
  • a “module” here may refer to a specific ASIC, a circuit, a processor and a memory executing one or more software or firmware programs, an integrated logic circuit, and/or other devices that can provide the functions described above.
  • the communication device 130 can take the form of the terminal device 30 shown in FIG. 2 .
  • the processor 301 in the terminal device 30 shown in FIG. 2 can call the computer-executed instructions stored in the memory 302, so that the terminal device 30 executes the cell measurement method in the above method embodiment.
  • the functions/implementation process of the receiving module 1301 and the sending module 1302 in FIG. 13 can be implemented by the processor 301 in the terminal device 30 shown in FIG. 2 invoking computer-executed instructions stored in the memory 302 .
  • the functions/implementation process of the receiving module 1301 and the sending module 1302 in FIG. 13 may be implemented by the transceiver 303 in the terminal device 30 shown in FIG. 2 .
  • the communication device 130 provided in this embodiment can execute the above-mentioned cell measurement method, the technical effect it can obtain can refer to the above-mentioned method embodiment, which will not be repeated here.
  • the receiving module 1301 is configured to receive a third message from the terminal device, and the third message is used to indicate that the service state of the terminal device is The evolved packet system falls back to the EPS Fallback state.
  • the sending module 1302 is configured to send a first message to the terminal device, where the first message includes measurement configuration information; the measurement configuration information is determined according to the service state of the terminal device.
  • the receiving module 1301 is also configured to receive a measurement report from the terminal device, the measurement report is determined by the terminal device according to the first measurement result; wherein, the first measurement result is that the terminal device measures the cell to be measured according to the measurement configuration information owned.
  • the communication device 130 is presented in the form of dividing various functional modules in an integrated manner.
  • a “module” here may refer to a specific ASIC, a circuit, a processor and a memory executing one or more software or firmware programs, an integrated logic circuit, and/or other devices that can provide the functions described above.
  • the communication device 130 can take the form of the network device 20 shown in FIG. 2 .
  • the processor 201 in the network device 20 shown in FIG. 2 may invoke the computer-executed instructions stored in the memory 202, so that the network device 20 executes the cell measurement method in the foregoing method embodiments.
  • the functions/implementation process of the receiving module 1301 and the sending module 1302 in FIG. 12 can be implemented by the processor 201 in the network device 20 shown in FIG. 2 invoking computer-executed instructions stored in the memory 202 .
  • the functions/implementation process of the receiving module 1301 and the sending module 1302 in FIG. 13 may be implemented by the transceiver 203 in the network device 20 shown in FIG. 2 .
  • the communication device 130 provided in this embodiment can execute the above-mentioned cell measurement method, the technical effect it can obtain can refer to the above-mentioned method embodiment, which will not be repeated here.
  • one or more of the above modules or units may be implemented by software, hardware or a combination of both.
  • the software exists in the form of computer program instructions and is stored in the memory, and the processor can be used to execute the program instructions and realize the above method flow.
  • the processor can be built into a SoC (system on a chip) or ASIC, or it can be an independent semiconductor chip.
  • the core of the processor is used to execute software instructions for calculation or processing, and can further include necessary hardware accelerators, such as field programmable gate array (field programmable gate array, FPGA), PLD (programmable logic device) , or a logic circuit that implements a dedicated logic operation.
  • the hardware can be CPU, microprocessor, digital signal processing (digital signal processing, DSP) chip, microcontroller unit (microcontroller unit, MCU), artificial intelligence processor, ASIC, Any one or any combination of SoC, FPGA, PLD, dedicated digital circuit, hardware accelerator or non-integrated discrete device, which can run necessary software or not depend on software to execute the above method flow.
  • DSP digital signal processing
  • MCU microcontroller unit
  • ASIC artificial intelligence processor
  • an embodiment of the present application further provides a chip system, including: at least one processor and an interface, the at least one processor is coupled to the memory through the interface, and when the at least one processor executes the computer program or instruction in the memory When, the method in any one of the above method embodiments is executed.
  • the communication device further includes a memory.
  • the system-on-a-chip may consist of a chip, or may include a chip and other discrete devices, which is not specifically limited in this embodiment of the present application.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • a software program it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server, or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or may be a data storage device including one or more servers, data centers, etc. that can be integrated with the medium.
  • the available medium may be a magnetic medium (such as a floppy disk, a hard disk, or a magnetic tape), an optical medium (such as a DVD), or a semiconductor medium (such as a solid state disk (solid state disk, SSD)), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种小区测量方法、装置及***,用于解决目前的小区测量方案可能无法及时上报测量报告的问题。方法包括:接收来自网络的第一消息,第一消息包括待测量小区的测量配置信息;在业务状态为预配置的业务状态的情况下,向网络发送测量报告;其中,测量报告是根据测量配置信息和待测量小区的历史测量结果确定的。基于本申请实施例提供的小区测量方法,可以结合待测量小区的历史测量结果确定测量报告,减少终端设备进行小区测量的时间,使终端设备更快速地发送测量报告,进而更快速地触发网络设备发起切换/重定向,给用户更好的体验。本申请适用于无线通信领域。

Description

一种小区测量方法、装置和*** 技术领域
本申请实施例涉及无线通信领域,尤其涉及一种小区测量方法、装置和***。
背景技术
在新无线电(new radio,NR)独立(stand alone,SA)网络建设初期,NR语音承载(voice over NR,VONR)还没有正式部署,在NR网络中终端设备不能正常运行语音业务。因此,若终端设备在NR网络中需要建立语音业务(例如发起或者接收语音呼叫),终端设备需要通过演进的分组***回落(evolved packet system fallback,EPS Fallback)的方式回落到长期演进(long term evolution,LTE)网络,由LTE语音承载(voice over lte,VOLTE)来提供语音业务,当语音业务结束后,终端设备再返回到NR网络。
在现有的EPS Fallback技术中,通常采用切换/重定向的方式回落到LTE网络,其大致流程为:网络侧向终端设备下发LTE测量配置信息,终端设备根据接收的测量配置信息进行信号测量,并对获取的LTE小区测量结果进行评估,若有LTE小区的测量结果在一定时间段内持续满足测量上报条件,终端设备才会上报测量报告给网络侧,进而触发网络侧发起切换/重定向流程,从而回落到LTE网络。可见,若终端设备从开始测量信号到上报测量报告的时间较长,会导致EPS Fallback流程时延增加,甚至若测量结果不能满足上报条件而终端设备不上报测量报告,会导致网络侧无法发起切换/重定向,从而导致在此期间语音业务不能正常运行,进而会给用户带来不好的感受和体验。
发明内容
本申请实施例提供一种小区测量方法、装置和***,用于解决目前的小区测量方案可能无法及时上报测量报告的问题。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供了一种小区测量方法,执行该方法的通信装置可以为终端设备也可以为应用于终端设备中的模块,例如芯片。下面以执行主体为终端设备为例进行描述。终端设备接收来自网络的第一消息,第一消息包括待测量小区的测量配置信息;在业务状态为预配置的业务状态的情况下,终端设备向网络发送测量报告;其中,测量报告是根据测量配置信息和待测量小区的历史测量结果确定的。
基于本申请实施例提供的小区测量方法,终端设备在收到测量配置信息后,可以结合待测量小区的历史测量结果确定测量报告,减少了终端设备进行小区测量的时间,可以使终端设备更快速地发送测量报告,进而可以更快速地触发网络设备发起切换/重定向,减少了终端设备回落到LTE网络建立语音业务的时延,可以给用户更好的体验。
结合上述第一方面,在一种可能的设计中,测量报告是根据第一测量结果和历史测量结果确定的;其中,第一测量结果是在将待测量小区作为第一优先级的测量任务的情况下,根据测量配置信息对待测量小区进行测量得到的。
基于本申请实施例提供的小区测量方法,可以平衡当前对待测量小区进行快速测量得到的测量结果和待测量小区的历史测量结果,共同确定测量报告,实现在减少用于测量小区的时间的基础上,提高测量报告所反映的小区信号能量的准确度,避免因快衰落的情况引起的终端设备错误生成测量报告的情况。
结合上述第一方面,在一种可能的设计中,测量配置信息包括滤波参数;测量报告是根据第二测量结果确定的,其中,第二测量结果为采用滤波参数对第一测量结果和历史测量结果进行滤波后得到的测量结果。基于本申请实施例提供的小区测量方法,可以根据滤波参数对第一测量结果和历史测量结果进行滤波后得到第二测量结果,再根据第二测量结果确定测量报告,实现在减少用于测量小区的时间的基础上,提高测量报告所反映的小区信号能量的准确度,避免因快衰落的情况引起的终端设备错误生成测量报告的情况。
第二方面,提供了一种小区测量方法,执行该方法的通信装置可以为终端设备也可以为应用于终端设备中的模块,例如芯片。下面以执行主体为终端设备为例进行描述。终端设备接收来自网络的第一消息,第一消息包括待测量小区的测量配置信息;在业务状态为预配置的业务状态的情况下,终端设备向网络发送测量报告;其中,测量报告是根据第一测量结果确定的,第一测量结果是在将待测量小区作为第一优先级的测量任务的情况下,根据测量配置信息对待测量小区进行测量得到的。
基于本申请实施例提供的小区测量方法,终端设备可以将待测量小区作为第一优先级的测量任务对待测量小区进行快速测量,减少了终端设备进行小区测量的时间,可以使终端设备更快速地发送测量报告,进而可以更快速地触发网络设备发起切换/重定向,减少了终端设备回落到LTE网络建立语音业务的时延,可以给用户更好的体验。
第三方面,提供了一种小区测量方法,执行该方法的通信装置可以为终端设备也可以为应用于终端设备中的模块,例如芯片。下面以执行主体为终端设备为例进行描述。终端设备接收来自网络的第一消息,第一消息包括待测量小区的测量配置信息;在业务状态为预配置的业务状态的情况下,终端设备向网络发送测量报告,测量报告是根据第一测量结果和目标参数的值确定的;其中,第一测量结果是根据测量配置信息对待测量小区进行测量得到的;目标参数的值是根据业务状态确定的,目标参数用于确定测量报告的发送条件。
基于本申请实施例提供的小区测量方法,可以根据终端设备的业务状态,确定用于确定测量报告的发送条件的目标参数,换言之,测量报告的发送条件可以根据终端设备的业务状态进行调整,避免出现因为发送条件不适合终端设备的业务状态导致终端设备不能及时发送测量报告甚至无法发送测量报告的情况,可以使终端设备更快速地发送测量报告,进而可以更快速地触发网络设备发起切换/重定向,减少了终端设备回落到LTE网络建立语音业务的时延,可以给用户更好的体验。
结合上述第三方面,在一种可能的设计中,目标参数的值来自第一数值或第二数值;其中,第一数值是终端设备根据业务状态确定的;第二数值携带在测量配置信息中。
结合上述第三方面,在一种可能的设计中,在终端设备接收来自网络的第一消息 之前,该方法还包括:终端设备向网络发送第二消息,第二消息用于指示业务状态;第二数值是网络根据业务状态确定并携带在测量配置信息中的。基于本申请实施例提供的小区测量方法,可以使网络设备根据终端设备的业务状态调整测量配置信息再发送给终端设备,避免出现因为发送条件不适合终端设备的业务状态导致终端设备不能及时发送测量报告甚至无法发送测量报告的情况。
结合上述第三方面,在一种可能的设计中,目标参数的值为第一数值和第二数值中的较小值。基于本方案,可以从第一数值和第二数值中选择较小的数值作为目标参数的值,从而减少终端设备用于评估测量结果的时间,或者使终端设备发送测量报告的条件更宽松,促使网络设备更快地控制终端设备回落到LTE网络。
结合上述第三方面,在一种可能的设计中,第一测量结果是在将待测量小区作为第一优先级的测量任务的情况下,根据测量配置信息对待测量小区进行测量得到的。
基于本方案,可以减少终端设备用于信号测量的时间以及减少终端设备用于评估测量结果和确定测量报告的时间,进而可以更快速地触发网络设备发起切换/重定向,减少了终端设备回落到LTE网络建立语音业务的时延,可以给用户更好的体验。
结合上述第三方面,在一种可能的设计中,测量报告是根据第一测量结果、待测量小区的历史测量结果和目标参数的值确定的。
结合上述第三方面,在一种可能的设计中,测量配置信息包括滤波参数;测量报告是根据目标参数的值和第二测量结果确定的,其中,第二测量结果为采用滤波参数对第一测量结果和历史测量结果进行滤波后得到的测量结果。
结合上述第三方面,在一种可能的设计中,目标参数包括上报门限和触发时间中的至少一项。基于本方案,可以根据终端设备的业务状态调整上报门限和触发时间中的至少一项,从而调整终端设备上报测量报告的条件。
结合上述第一方面、第二方面或第三方面,在一种可能的设计中,预配置的业务状态包括演进的分组***回落EPS Fallback状态。基于本申请实施例提供的小区测量方法,可以应用于EPS Fallback场景中来解决目前的小区测量方法可能导致EPS Fallback流程时延增加的问题。
第四方面,提供了一种小区测量方法,执行该方法的通信装置可以为网络设备也可以为应用于网络设备中的模块,例如芯片。下面以执行主体为网络设备为例进行描述。网络设备接收来自终端设备的第三消息,第三消息用于指示终端设备的业务状态为演进的分组***回落EPS Fallback状态;网络设备向终端设备发送第一消息,第一消息包括测量配置信息;测量配置信息是根据终端设备的业务状态确定的。基于本申请实施例提供的小区测量方法,可以使网络设备确定终端设备处于EPS Fallback状态,并根据终端设备的业务状态确定测量配置信息,可以使测量配置信息更适合终端设备的业务状态,避免出现测量配置信息不适合终端设备当前业务状态的情况。
结合上述第四方面,在一种可能的设计中,该方法还包括:接收来自终端设备的测量报告,测量报告是终端设备根据第一测量结果确定的;其中,第一测量结果是终端设备根据测量配置信息对待测量小区进行测量得到的。
第五方面,提供了一种通信装置用于实现上述方法。该通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现, 软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
结合上述第五方面,在一种可能的设计中,该通信装置包括:接收模块和发送模块;接收模块,用于接收来自网络的第一消息,第一消息包括待测量小区的测量配置信息。发送模块,用于在业务状态为预配置的业务状态的情况下,向网络发送测量报告;其中,测量报告是根据测量配置信息和待测量小区的历史测量结果确定的。
结合上述第五方面,在一种可能的设计中,测量报告是根据第一测量结果和历史测量结果确定的;其中,第一测量结果是在将待测量小区作为第一优先级的测量任务的情况下,根据测量配置信息对待测量小区进行测量得到的。
结合上述第五方面,在一种可能的设计中,测量配置信息包括滤波参数;测量报告是根据第二测量结果确定的,其中,第二测量结果为采用滤波参数对第一测量结果和历史测量结果进行滤波后得到的测量结果。
第六方面,提供了一种通信装置用于实现上述方法。该通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
结合上述第六方面,在一种可能的设计中,该通信装置包括:接收模块和发送模块;接收模块,用于接收来自网络的第一消息,第一消息包括待测量小区的测量配置信息。发送模块,用于在业务状态为预配置的业务状态的情况下,向网络发送测量报告;其中,测量报告是根据第一测量结果确定的,第一测量结果是在将待测量小区作为第一优先级的测量任务的情况下,根据测量配置信息对待测量小区进行测量得到的。
第七方面,提供了一种通信装置用于实现上述方法。该通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
结合上述第七方面,在一种可能的设计中,该通信装置包括:接收模块和发送模块;接收模块,用于接收来自网络的第一消息,第一消息包括待测量小区的测量配置信息。发送模块,用于在业务状态为预配置的业务状态的情况下,向网络发送测量报告,测量报告是根据第一测量结果和目标参数的值确定的;其中,第一测量结果是根据测量配置信息对待测量小区进行测量得到的;目标参数的值是根据业务状态确定的,目标参数用于确定测量报告的发送条件。
结合上述第七方面,在一种可能的设计中,目标参数的值来自第一数值或第二数值;其中,第一数值是通信装置根据业务状态确定的;第二数值携带在测量配置信息中。
结合上述第七方面,在一种可能的设计中,发送模块,还用于向网络发送第二消息,第二消息用于指示业务状态;第二数值是网络根据业务状态确定并携带在测量配置信息中的。
结合上述第七方面,在一种可能的设计中,目标参数的值为第一数值和第二数值中的较小值。
结合上述第七方面,在一种可能的设计中,第一测量结果是在将待测量小区作为第一优先级的测量任务的情况下,根据测量配置信息对待测量小区进行测量得到的。
结合上述第七方面,在一种可能的设计中,测量报告是根据第一测量结果、待测量小区的历史测量结果和目标参数的值确定的。
结合上述第七方面,在一种可能的设计中,测量配置信息包括滤波参数;测量报告是根据目标参数的值和第二测量结果确定的,其中,第二测量结果为采用滤波参数对第一测量结果和历史测量结果进行滤波后得到的测量结果。
结合上述第七方面,在一种可能的设计中,目标参数包括上报门限和触发时间中的至少一项。
结合上述第五方面、第六方面或第七方面,在一种可能的设计中,预配置的业务状态包括演进的分组***回落EPS Fallback状态。
第八方面,提供了一种通信装置用于实现上述方法。该通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
结合上述第八方面,在一种可能的设计中,该通信装置包括:接收模块和发送模块;接收模块,用于接收来自终端设备的第三消息,第三消息用于指示终端设备的业务状态为演进的分组***回落EPS Fallback状态。发送模块,用于向终端设备发送第一消息,第一消息包括测量配置信息;测量配置信息是根据终端设备的业务状态确定的。
结合上述第八方面,在一种可能的设计中,接收模块,还用于接收来自终端设备的测量报告,测量报告是终端设备根据第一测量结果确定的;其中,第一测量结果是终端设备根据测量配置信息对待测量小区进行测量得到的。
其中,第五方面至第八方面中任一种可能的设计所带来的技术效果可参见上述第一方面至第四方面中不同设计所带来的技术效果,此处不再赘述。
第九方面,提供了一种通信装置,该通信装置包括处理器,用于支持通信装置实现上述第一方面、上述第二方面、或者上述第三方面中任一项所涉及的功能。在一种可能的设计中,该通信装置还包括存储器,该存储器,用于保存通信装置必要的程序指令和数据。该装置可以由芯片构成,也可以包含芯片和其他分立器件。
第十方面,提供了一种通信装置,该通信装置包括处理器,用于支持通信装置实现上述第四方面中任一项所涉及的功能。在一种可能的设计中,该通信装置还包括存储器,该存储器,用于保存通信装置必要的程序指令和数据。该装置可以由芯片构成,也可以包含芯片和其他分立器件。
第十一方面,提供了一种通信装置,包括:处理器和存储器;该存储器用于存储计算机执行指令,当该通信装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该通信装置执行如上述第一方面、上述第二方面、或者上述第三方面中任一项所述的小区测量方法。
第十二方面,提供了一种通信装置,包括:处理器和存储器;该存储器用于存储计算机执行指令,当该通信装置运行时,该处理器执行该存储器存储的该计算机执行 指令,以使该通信装置执行如上述第四方面中任一项所述的小区测量方法。
第十三方面,提供了一种通信装置,包括:处理器;所述处理器用于与存储器耦合,并读取存储器中的指令之后,根据所述指令执行如上述第一方面、上述第二方面、或者上述第三方面中任一项所述的小区测量方法。
第十四方面,提供了一种通信装置,包括:处理器;所述处理器用于与存储器耦合,并读取存储器中的指令之后,根据所述指令执行如上述第四方面中任一项所述的小区测量方法。
第十五方面,提供了一种通信装置,包括:处理器、存储器以及收发器;该存储器用于存储计算机执行指令,该处理器用于执行该存储器存储的指令,该收发器用于该通信装置与通信网络中的其他设备进行通信;当该通信装置运行时,该处理器执行该存储器存储的计算机执行指令,该收发器与通信网络中的其他设备进行通信,以使该通信装置执行如上述第一方面、上述第二方面、或者上述第三方面中任一项所述的小区测量方法。
第十六方面,提供了一种通信装置,包括:处理器、存储器以及收发器;该存储器用于存储计算机执行指令,该处理器用于执行该存储器存储的指令,该收发器用于该通信装置与通信网络中的其他设备进行通信;当该通信装置运行时,该处理器执行该存储器存储的计算机执行指令,该收发器与通信网络中的其他设备进行通信,以使该通信装置执行如上述第四方面中任一项所述的小区测量方法。
在以上第九至第十六方面中,可选的,处理器为一个或多个,存储器为一个或多个;可选的,存储器可以与处理器集成在一起,或者存储器与处理器分离设置;可选的,存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。
第十七方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其被计算机执行时使得计算机执行如上述第一方面、上述第二方面、或者上述第三方面中任一项所述的小区测量方法。
第十八方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其被计算机执行时使得计算机执行如上述第四方面中任一项所述的小区测量方法。
第十九方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行如上述第一方面、上述第二方面、或者上述第三方面中任一项所述的小区测量方法。
第二十方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行如上述第四方面中任一项所述的小区测量方法。
第二十一方面,提供了一种通信***,其包括执行上述第一方面、第二方面或者第三方面所述的方法的终端设备,以及执行上述第四方面所述的方法的网络设备。
第二十二方面,提供了一种通信装置,包括:接口电路和处理电路。接口电路可以包括输入电路和输出电路。处理电路用于通过输入电路接收信号,并通过输出电路发射信号,使得第一方面至第三方面任一方面,以及第一方面至第二方面中任一种可能实现方式中的方法被实现。
在具体实现过程中,无线通信装置可以为芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
在一种实现方式中,无线通信装置可以是无线通信设备,即支持无线通信功能的计算机设备。具体地,无线通信设备可以是诸如智能手机这样的终端,也可以是诸如基站这样的无线接入网设备。***芯片也可称为片上***(system on chip,SoC),或简称为SoC芯片。通信芯片可包括基带处理芯片和射频处理芯片。基带处理芯片有时也被称为调制解调器(modem)或基带芯片。射频处理芯片有时也被称为射频收发机(transceiver)或射频芯片。在物理实现中,通信芯片中的部分芯片或者全部芯片可集成在SoC芯片内部。例如,基带处理芯片集成在SoC芯片中,射频处理芯片不与SoC芯片集成。接口电路可以为无线通信设备中的射频处理芯片,处理电路可以为无线通信设备中的基带处理芯片。
在又一种实现方式中,无线通信装置可以是无线通信设备中的部分器件,如***芯片或通信芯片等集成电路产品。接口电路可以为该芯片或芯片***上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。处理器也可以体现为处理电路或逻辑电路。
附图说明
图1为本申请实施例提供的一种通信***的结构示意图;
图2为本申请实施例提供的网络设备和终端设备的结构示意图;
图3为本申请实施例提供的终端设备的另一种结构示意图;
图4为本申请实施例提供的一种小区测量方法的流程示意图;
图5为本申请实施例提供的另一种小区测量方法的流程示意图;
图6为本申请实施例提供的一种确定第二测量结果的流程示意图;
图7为本申请实施例提供的又一种小区测量方法的流程示意图;
图8为本申请实施例提供的一种确定目标参数的值的方法的流程示意图;
图9为本申请实施例提供的另一种确定目标参数的值的方法的流程示意图;
图10为本申请实施例提供的一种确定上报门限的方法的流程示意图;
图11为本申请实施例提供的一种确定触发时间的方法的流程示意图;
图12为本申请实施例提供的又一种小区测量方法的流程示意图;
图13为本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
在本申请的描述中,除非另有说明,“/”表示“或”的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,“至少一个”是指一个或多个,“多个”是指两个或两个以上。“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在VONR还没有正式部署,无法完全由NR SA网络为终端设备提供语音业务的情况下,若终端设备在NR网络中需要建立语音业务(例如发起或者接收语音呼叫),终端设备需要通过EPS Fallback的方式回落到LTE网络,通过LTE网络中的VOLTE技术来提供语音业务,当语音业务结束后,终端设备再返回到NR网络。
在EPS Fallback场景中,终端设备通常采用切换/重定向的方式回落到LTE网络。目前,触发切换/重定向需要终端设备进行小区测量,包括以下步骤1-步骤5:
步骤1、网络设备向终端设备发送测量配置信息。相应的,终端设备接收来自网络设备的测量配置信息。
一种可能的实现方式中,网络设备通过无线资源控制(radio resource control,RRC)重配置(RRC reconfiguration)消息向终端设备发送预配置的测量配置信息(MeasConfig),换言之,测量配置信息可以携带在RRC重配置消息中。
测量配置信息包括以下至少一项:待测量的频点/小区信息、上报条件信息等信息。
其中,待测量的频点/小区信息用于指示待测量的小区信息。待测量的频点/小区信息可以仅包括待测量的频点信息,在该情况下,终端设备收到测量配置信息后,可以将待测量的频点信息对应的小区确定为待测量小区。或者,待测量的频点/小区信息可以包括待测量的频点信息以及与待测量的频点对应的待测量的小区信息,在该情况下,终端设备可以根据待测量的小区信息确定待测量小区。示例性的,待测量的小区信息可以为待测量的小区的标识信息。
上报条件信息用于指示测量报告的上报条件,或者说,上报条件信息用于指示终端设备向网络设备发送测量报告的条件。
步骤2、终端设备根据测量配置信息测量待测量小区的信号能量,确定待测量小区的测量结果。
具体地,终端设备根据测量配置信息确定待测量小区后,对待测量小区进行信号测量,得到待测量小区的信号能量,进而确定待测量小区的测量结果。其中,终端设备测量的待测量小区的信号,可以为待测量小区的参考信号。
示例性的,在待测量小区为LTE小区的情况下,该参考信号可以为待测量小区参考信号(cell reference signal,CRS)。
示例性的,在待测量小区为第5代移动通信技术(5th generation mobile communication technology,5G)小区的情况下,该参考信号可以为待测量小区的同步信号块(synchronization signal block,SSB),待测量小区的信道状态信息参考信号(channel state information reference signal,CSI-RS)等。
示例性的,终端设备测量得到的小区的信号能量包括但不限于以下至少一项:参考信号接收功率(reference signal receiving power,RSRP)值;参考信号接收质量(reference signal receiving quality,RSRQ)值;信号与干扰加噪声比(signal to interference plus noise ratio,SINR)值,接收信号强度指示(received signal strength  indication,RSSI)。
以下以一个具体示例对终端设备如何对待测量小区进行信号测量和确定待测量小区的测量结果进行介绍:
假设测量配置信息指示待测量小区包括小区A和小区B。
终端设备根据测量配置信息启动物理(physical,PHY)层测量小区A的信号能量,终端设备的PHY层向终端设备的RRC层发送小区A的信号能量。终端设备的RRC层根据小区A的信号能量确定小区A的测量结果。
终端设备根据测量配置信息启动PHY层测量小区B的信号能量,终端设备的PHY层向终端设备的RRC层发送小区B的信号能量。终端设备的RRC层根据小区B的信号能量确定小区B的测量结果。
需要说明的是,终端设备根据本次对小区测量得到的信号能量确定测量结果时,可选的,终端设备可以直接将当前测量得到的小区信号能量作为本次小区的测量结果。而如果终端设备并非首次对小区进行测量,可选的,终端设备还可以将前一次测量小区的测量结果(也可以称为小区的历史测量结果)与本次测量得到的小区信号能量进行滤波处理得到本次的测量结果,该实现方式中,测量配置信息还包括用于滤波处理的滤波参数。
示例性的,在终端设备将前一次对小区的测量结果与本次测量得到的小区信号能量进行滤波处理得到本次的测量结果的方式中,终端设备确定的小区的测量结果满足以下公式1:
Y n=(1-a)×Y n-1+a×X          公式1
其中,Y n为小区的测量结果;Y n-1为终端设备前一次进行小区测量时确定的小区的测量结果(小区的历史测量结果),X为终端设备本次测量的小区的信号能量,a为滤波参数,取值为常数,示例性的,a的取值为0.5。
其中,终端设备确定小区的历史测量结果的具体实现方式与终端设备确定小区本次的测量结果的方法类似,本申请不再赘述。
步骤3、终端设备根据测量结果,确定测量报告(MeasReport)。
在步骤2中,终端设备确定了各个小区的测量结果,在步骤3中,终端设备(或者说终端设备的RRC层)需要根据测量配置信息中的上报条件信息评估各个小区的测量结果,确定小区的测量结果是否满足上报条件,若满足,则终端设备生成测量报告并向网络设备发送该测量报告。
一种可能的实现方式中,确定测量结果满足上报条件为确定测量结果满足需要上报的测量事件中的一种,生成的测量报告用于向网络设备报告对应的测量事件。
一种示例,需要上报的测量事件包括以下一项或多项:
A1:服务小区(Serving Cell)测量结果高于上报门限1。
A2:服务小区测量结果低于上报门限2。
A3:邻区测量结果高于服务小区测量结果+偏移值(offset)。
A4:邻区测量结果高于上报门限3。
A5:服务小区测量结果低于上报门限4,并且邻区测量结果高于上报门限5。
A6:邻区测量结果高于辅小区(secondary cell,Scell)的测量结果+偏移值(offset)。
B1:异***小区测量结果高于上报门限6。
B2:异***小区测量结果高于上报门限7,服务小区测量结果低于上报门限8。
上述测量事件中,服务小区为终端设备当前接入的小区。邻区为终端设备的服务小区的邻小区。异***小区为所属通信***与终端设备的服务小区所属通信***不同的小区。
终端设备可以根据小区的测量结果以及测量配置信息确定小区测量结果是否满足需要上报的测量事件,若满足某一需要上报的测量事件,则终端设备生成与该事件对应的测量报告。
可以理解的是,需要上报的事件还可以包括其他类型的事件,本申请对此不做限定。
需要说明的是,终端设备可以根据网络设备发送的测量配置信息中的测量标识列表(MeasIdList),确定需要上报的测量事件以及生成对应的测量报告。其中,MeasIdList包括一个或多个测量标识(MeasId),每个MeasId用于关联对应的频点/小区信息与需要上报的测量事件。相对应的,终端设备生成的测量报告中包括与测量结果满足的测量事件对应的MeasId,以使网络设备可以根据接收的测量报告中包括的MeasId确定测量报告对应的测量事件。
以下以一个示例对终端设备如何根据测量结果确定测量报告进行说明:假设测量配置信息中,MeasIdList包括的MeasId1关联了频点A和上述测量事件中的B1事件,测量配置信息中的上报条件信息包括上报门限和触发时间(time to trigger,TTT)。其中,上报门限为用于评估测量结果是否满足上报条件的固定阈值,TTT为用于评估测量结果是否满足上报条件的定时器。终端设备收到测量配置信息后,开始对频点A对应的异***小区A进行信号测量并获取小区A的测量结果,若终端设备确定小区A的测量结果高于测量配置信息中包括的上报门限,终端设备启动TTT定时器,若TTT定时器运行期间,终端设备获取的小区A的测量结果持续满足上报门限,则终端设备确定小区A的测量结果满足测量报告的上报条件,终端设备生成与B1事件对应的测量报告。其中,测量报告可以包括MeasId1以及小区A的信息,以使网络设备根据接收的测量报告确定小区A的测量结果满足测量事件B1。
需要说明的是,终端设备生成的测量报告中通常只包括一个需要上报的测量事件。在需要上报的测量事件包括多个,且终端设备确定当前的测量结果同时满足多个需要上报的测量事件的情况下,终端设备为每一个需要上报的测量事件生成对应的测量报告,并逐一向网络设备发送这些测量报告。
步骤4、终端设备向网络设备发送测量报告。相应的,网络设备接收来自终端设备的测量报告。
步骤5、网络设备收到测量报告后,触发相应的切换/重定向流程。
基于上述对于现有技术中小区测量方案的描述可知,如果终端设备进行信号测量和评估测量结果所用的时间较长,不能及时上报测量报告,会导致EPS Fallback流程时延增加,进而导致终端设备建立语音业务的时延增加。甚至若测量结果不能满足上报条件,终端设备无法上报测量报告,而网络侧接收不到测量报告就无法发起切换/重定向,导致EPS Fallback失败,终端设备无法建立语音业务。可见,终端设备能否 及时上报测量报告,会影响到EPS Fallback流程,进而影响终端设备的语音业务以及用户的体验。
而目前的小区测量方案,可能会导致EPS Fallback场景中终端设备无法及时上报测量报告。示例性的,目前的方案中,网络侧并不区分切换/重定向的目的,测量配置信息一旦完成配置后则不会根据终端设备实际的业务类型实时改变。在终端设备获取到的测量配置信息并不适合自身的业务类型的情况下,终端设备仍然会严格按照网侧下发的测量配置信息进行测量并对测量结果进行评估,若测量配置信息里包括的上报条件较严格,可能导致测量结果无法满足上报条件,进而导致终端设备无法发送测量报告。
基于目前的小区测量方案的缺点,本申请提供了一种小区测量方法,用于解决目前EPS Fallback场景中终端设备无法及时上报测量报告的问题。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请实施例可以适用于LTE***或NR***,也可以适用于其他面向未来的新***等,本申请实施例对此不作具体限定。此外,术语“***”可以和“网络”相互替换。
如图1所示,为本申请实施例提供的一种通信***10。该通信***10包括网络设备20,以及与该网络设备20连接的一个或多个终端设备30。其中,终端设备30通过无线的方式与网络设备20相连。可选的,不同的终端设备30之间可以相互通信。终端设备30可以是固定位置的,也可以是可移动的。
需要说明的是,图1仅是示意图,虽然未示出,但是该通信***10中还可以包括其它网络设备,如该通信***10还可以包括核心网设备、无线中继设备和无线回传设备中的一个或多个,在此不做具体限定。其中,网络设备可以通过无线或有线方式与核心网设备连接。核心网设备与网络设备20可以是独立的不同的物理设备,也可以是将核心网设备的功能与网络设备20的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的网络设备20的功能,本申请实施例对此不做具体限定。
以图1所示的网络设备20与任一终端设备30进行交互为例,一种可能的实现方式中,网络设备20向终端设备30发送第一消息,第一消息包括待测量小区的测量配置信息,终端设备30接收来自网络设备20的第一消息。在终端设备30的业务状态为预配置的业务状态的情况下,终端设备30向网络设备20发送测量报告;其中,测量报告是根据测量配置信息和待测量小区的历史测量结果确定的。其中,该方案的具体实现以及技术效果将在后续方法实施例中详细描述,在此不予赘述。
以图1所示的网络设备20与任一终端设备30进行交互为例,一种可能的实现方式中,网络设备20向终端设备30发送第一消息,第一消息包括待测量小区的测量配置信息,终端设备30接收来自网络设备的第一消息。在终端设备30的业务状态为预配置的业务状态的情况下,终端设备30向网络设备20发送测量报告;其中,测量报告是根据第一测量结果确定的,第一测量结果是在将待测量小区作为第一优先级的测量任务的情况下,根据测量配置信息对待测量小区进行测量得到的。其中,该方案的具体实现以及技术效果将在后续方法实施例中详细描述,在此不予赘述。
以图1所示的网络设备20与任一终端设备30进行交互为例,一种可能的实现方 式中,网络设备20向终端设备30发送第一消息,第一消息包括待测量小区的测量配置信息,终端设备30接收来自网络设备20的第一消息。在终端设备30的业务状态为预配置的业务状态的情况下,终端设备30向网络设备20发送测量报告,测量报告是根据第一测量结果和目标参数的值确定的;其中,第一测量结果是根据测量配置信息对待测量小区进行测量得到的;目标参数的值是根据终端设备30的业务状态确定的,目标参数用于确定测量报告的发送条件。其中,该方案的具体实现以及技术效果将在后续方法实施例中详细描述,在此不予赘述。
可选的,本申请实施例中的网络设备20,是一种将终端设备30接入到无线网络的设备,可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、5G移动通信***中的下一代基站(next generation NodeB,gNB)、未来移动通信***中的基站或无线保真(wireless-fidelity,Wi-Fi)***中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。在本申请中,如果无特殊说明,网络设备均指无线接入网设备。
可选的,本申请实施例中的终端设备30,可以是用于实现无线通信功能的设备,例如终端或者可用于终端中的芯片等。终端也可以称为用户设备(user equipment,UE)、移动台、移动终端等。终端可以是手机、平板电脑、带无线收发功能的电脑、虚拟现实终端设备、增强现实终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程手术中的无线终端、智能电网中的无线终端、运输安全中的无线终端、智慧城市中的无线终端、智慧家庭中的无线终端等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
可选的,本申请实施例中的网络设备20和终端设备30可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对网络设备20和终端设备30的应用场景不做限定。
可选的,本申请实施例中的网络设备20和终端设备30之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信。网络设备20和终端设备30之间可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对网络设备20和终端设备30之间所使用的频谱资源不做限定。
可选的,本申请实施例中的网络设备20与终端设备30也可以称之为通信装置,其可以是一个通用设备或者是一个专用设备,本申请实施例对此不作具体限定。
可选的,如图2所示,为本申请实施例提供的网络设备20和终端设备30的结构示意图。
其中,终端设备30包括至少一个处理器301和至少一个收发器303。可选的,终端设备30还可以包括至少一个存储器302、至少一个输出设备304或至少一个输入设备305。
处理器301、存储器302和收发器303通过通信线路相连接。通信线路可包括一 通路,在上述组件之间传送信息。
处理器301可以是通用中央处理单元(central processing unit,CPU),还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。在具体实现中,作为一种实施例,处理器301也可以包括多个CPU,并且处理器301可以是单核处理器或多核处理器。这里的处理器可以指一个或多个设备、电路或用于处理数据的处理核。
存储器302可以是具有存储功能的装置。例如可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器302可以是独立存在,通过通信线路与处理器301相连接。存储器302也可以和处理器301集成在一起。
其中,存储器302用于存储执行本申请方案的计算机执行指令,并由处理器301来控制执行。具体的,处理器301用于执行存储器302中存储的计算机执行指令,从而实现本申请实施例中所述的小区测量方法。
或者,可选的,本申请实施例中,也可以是处理器301执行本申请下述实施例提供的小区测量方法中的处理相关的功能,收发器303负责与其他设备或通信网络通信,本申请实施例对此不作具体限定。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码或者计算机程序代码,本申请实施例对此不作具体限定。
收发器303可以使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网、无线接入网(radio access network,RAN)、或者无线局域网(wireless local area networks,WLAN)等。收发器303包括发射机(transmitter,Tx)和接收机(receiver,Rx)。
输出设备304和处理器301通信,可以以多种方式来显示信息。例如,输出设备304可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。
输入设备305和处理器301通信,可以以多种方式接受用户的输入。例如,输入设备305可以是鼠标、键盘、触摸屏设备或传感设备等。
网络设备20包括至少一个处理器201、至少一个收发器203和至少一个网络接口204。可选的,网络设备20还可以包括至少一个存储器202。其中,处理器201、存储 器202、收发器203和网络接口204通过通信线路相连接。网络接口204用于通过链路(例如S1接口)与核心网设备连接,或者通过有线或无线链路(例如X2接口)与其它网络设备的网络接口进行连接(图2中未示出),本申请实施例对此不作具体限定。另外,处理器201、存储器202和收发器203的相关描述可参考终端设备30中处理器301、存储器302和收发器303的描述,在此不再赘述。
结合图2所示的终端设备30的结构示意图,示例性的,图3为本申请实施例提供的终端设备30的一种具体结构形式。
其中,在一些实施例中,图2中的处理器301的功能可以通过图3中的处理器110实现。
在一些实施例中,图2中的收发器303的功能可以通过图3中的天线1,天线2,移动通信模块150,无线通信模块160等实现。移动通信模块150可以提供应用在终端设备30上的包括LTE、NR或者未来移动通信等无线通信技术的解决方案。无线通信模块160可以提供应用在终端设备30上的包括WLAN(如Wi-Fi网络),蓝牙(blue tooth,BT),全球导航卫星***(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信(near field communication,NFC),红外等无线通信技术的解决方案。在一些实施例中,终端设备30的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得终端设备30可以通过无线通信技术与网络以及其他设备通信。
在一些实施例中,图2中的存储器302的功能可以通过图3中的内部存储器121或者外部存储器接口120连接的外部存储器等实现。
在一些实施例中,图2中的输出设备304的功能可以通过图3中的显示屏194实现。
在一些实施例中,图2中的输入设备305的功能可以通过鼠标、键盘、触摸屏设备或图13中的传感器模块180来实现。
在一些实施例中,如图3所示,该终端设备30还可以包括音频模块170、摄像头193、按键190、SIM卡接口195、USB接口130、充电管理模块140、电源管理模块141和电池142中的一个或多个。
可以理解的是,图3所示的结构并不构成对终端设备30的具体限定。比如,在本申请另一些实施例中,终端设备30可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
下面将结合图1至图3,以图1所示的网络设备20与任一终端设备30进行交互为例,对本申请实施例提供的小区测量方法进行展开说明。
如图4所示,为本申请实施例提供的一种小区测量方法,该小区测量方法包括S401-S402:
S401、网络设备向终端设备发送第一消息,相对应的,终端设备接收来自网络设备的第一消息,第一消息包括待测量小区的测量配置信息。
S402、在业务状态为预配置的业务状态的情况下,终端设备向网络设备发送测量报告,相对应的,网络设备接收来自终端设备的测量报告。其中,测量报告是根据测 量配置信息和待测量小区的历史测量结果确定的。
对于S401,本申请实施例中,测量配置信息包括以下至少一项信息:待测量的频点/小区信息和上报条件信息等信息。具体可参考上文介绍,在此不再赘述。
可选的,本申请实施例中,上报条件信息包括以下至少一项:上报门限和TTT等信息。具体可参考上文介绍,在此不再赘述。
需要说明的是,在本申请实施例应用于EPS Fallback场景的情况下,为了终端设备可以回落到LTE网络,待测量的频点/小区信息指示的待测量小区为LTE小区。
一种可能的实现方式中,网络设备可以通过预配置的邻区列表和终端设备当前接入的小区,确定待测量的频点/小区信息。
一种可能的实现方式中,上报条件信息可以是预配置在网络设备中的。
本申请实施例中,第一消息可以为RRC重配置消息,换言之,测量配置信息可以是携带在RRC重配置消息中的。
可选的,本申请实施例中,在S401之前,核心网设备可以向网络设备发送指示消息,该指示消息用于指示网络设备向终端设备发送第一消息。示例性的,若终端设备需要建立语音业务,核心网设备确定终端设备接入的NR网络无法为终端设备提供语音业务,即确定终端设备处于EPS Fallback状态,并向与终端设备连接的网络设备发送通知终端设备处于EPS Fallback状态的指示消息,网络设备收到该指示消息后,向终端设备发送第一消息。
对于S402,终端设备在接收到来自网络设备的测量配置信息后,根据测量配置信息中的待测量的频点/小区信息确定待测量小区,具体可参考上文介绍,在此不再赘述。
本申请实施例中,终端设备可以确定自身的业务状态,若终端设备确定自身的业务状态为预配置的业务状态,终端设备可以在本地存储的小区的历史测量结果中,确定待测量小区的历史测量结果。终端设备确定待测量小区的历史测量结果后,根据测量配置信息对待测量小区的历史测量结果进行评估,确定待测量小区的历史测量结果是否满足测量报告的发送条件,如果满足发送条件,终端设备生成对应的测量报告,并向网络设备发送测量报告。
基于本申请实施例提供的小区测量方法,终端设备在收到测量配置信息后,可以结合待测量小区的历史测量结果确定测量报告,减少了终端设备进行小区测量的时间,可以使终端设备更快速地发送测量报告,进而可以更快速地触发网络设备发起切换/重定向,减少了终端设备回落到LTE网络建立语音业务的时延,可以给用户更好的体验。
需要说明的是,本申请实施例中,测量报告的发送条件也可以称为测量报告的上报条件,在此统一说明,以后不再赘述。
本申请实施例中,待测量小区的历史测量结果可以为终端设备前一次对小区进行信号测量所确定的测量结果,具体可参考上文介绍,在此不再赘述。
本申请实施例中,预配置的业务状态可以根据实际需求配置一种或多种,本申请实施例对此不做限制。可选的,在本申请实施例提供的小区测量方法应用于EPS Fallback场景的情况下,预配置的业务状态包括EPS Fallback状态。
一种可能的实现方式中,本申请实施例中,终端设备确定待测量小区的历史测量 结果是否满足上报条件可以为:终端设备确定待测量小区的历史测量结果是否满足需要上报的测量事件。其中,可选的,终端设备可以根据测量配置信息中的MeasIdList信息,确定需要上报的测量事件。具体可参考上文介绍,在此不再赘述。示例性的,在EPS Fallback场景中,为了回落到LTE网络,需要上报的测量事件可以包括测量事件B1或测量事件B2。
一种可能的实现方式中,本申请实施例中,终端设备根据测量配置信息对待测量小区的历史测量结果进行评估可以为:终端设备根据测量配置信息中的上报条件信息对待测量小区的历史测量结果进行评估。不同于现有方案中,在终端设备获取待测量小区本次的测量结果并确定待测量小区本次的测量结果满足上报门限之后,终端设备才能启动TTT定时器并在TTT定时器运行期间评估获取的待测量小区的测量结果能否持续满足上报门限,该实现方式中,若终端设备确定待测量小区的历史测量结果满足上报门限便可以启动TTT定时器,实现尽快启动评估测量结果,进而确定测量报告。
该实现方式有多种不同的情况,以下以具体的示例进行解释:若上报条件为满足测量事件B1,终端设备根据测量配置信息测量待测量小区,并获取本地存储的待测量小区的历史测量结果,如果待测量小区的历史测量结果满足上报门限,则启动TTT定时器。如果在TTT定时器运行期间,终端设备获取到的待测量小区本次的测量结果持续满足上报门限,则终端设备可以确定该待测量小区的测量结果满足上报条件,在TTT定时器超时后生成对应的测量报告并发送给网络设备。若在TTT定时器运行期间,终端设备获取到的待测量小区本次的测量结果不能满足上报门限,则终端设备不会生成对应的测量报告,以避免若待测量小区当前的信号质量较差,从而导致终端设备切换至该待测量小区后降低了终端设备的业务传输质量。
或者,如果在TTT定时器运行期间,终端设备没有获取到待测量小区本次的测量结果,则终端设备确定待测量小区的历史测量结果满足上报条件,在TTT定时器超时后生成对应的测量报告并发送给网络设备。
本申请实施例中,终端设备生成的测量报告可以包括历史测量结果满足上报条件的待测量小区的信息以及与待测量小区关联的MeasId信息,以使网络设备收到测量报告后,可以根据测量报告中包括的待测量小区的信息,发起切换/重定向流程,具体可参考上文介绍,在此不再赘述。可选的,测量报告还可以包括待测量小区的历史测量结果。
可选的,本申请实施例中,网络设备在接收到来自终端设备的测量报告后,网络设备可以根据测量报告发起切换/重定向流程。
其中,上述步骤S401至S402中终端设备的动作可以由图2所示的终端设备30中的处理器301调用存储器302中存储的应用程序代码以指令终端设备执行;上述步骤S401至S402中网络设备的动作可以由图2所示的网络设备20中的处理器201调用存储器202中存储的应用程序代码以指令网络设备执行。本实施例对此不作任何限制。
如图5所示,为本申请实施例提供的另一种小区测量方法,该小区测量方法包括S501-S502:
S501、网络设备向终端设备发送第一消息,相对应的,终端设备接收来自网络设备的第一消息,第一消息包括待测量小区的测量配置信息。
S502、在业务状态为预配置的业务状态的情况下,终端设备向网络设备发送测量报告,相对应的,网络设备接收来自终端设备的测量报告。其中,测量报告是根据第一测量结果确定的,第一测量结果是终端设备在将待测量小区作为第一优先级的测量任务的情况下,根据测量配置信息对待测量小区进行测量得到的。
对于S501,具体可参考上文对S401的介绍,在此不再赘述。
对于S502,终端设备在接收到来自网络设备的测量配置信息后,根据测量配置信息中的待测量的频点/小区信息确定待测量小区,具体可参考上文介绍,在此不再赘述。
上文介绍的目前终端设备对小区进行信号测量的方案中,终端设备的PHY层可能有多个测量任务,终端设备的PHY层会按照收到测量任务的时间顺序依次处理,且终端设备的PHY层是按照一定的节奏(或者说周期)处理测量任务的。示例性的,若终端设备的PHY层在200ms时测量得到小区A的信号能量,下一个测量任务是小区B,PHY层不会立即测量小区B,而是会在400ms时再对小区B进行信号测量。
为了减少测量待测量小区的时间,本申请实施例中,若终端设备确定自身的业务状态为预配置的业务状态,终端设备可以将待测量小区作为第一优先级的测量任务,优先对待测量小区进行信号测量,并将测量得到的待测量小区的信号能量确定为待测量小区的第一测量结果。该过程也可以称为终端设备对待测量小区进行快速测量。其中,待测量小区作为第一优先级的测量任务可以理解为无论终端设备是否还有测量任务未处理,终端设备均立即处理待测量小区的测量任务。
本申请实施例中,终端设备对小区进行信号测量得到的小区的信号能量,可以为小区的RSRP值,RSRQ值,SINR值中的至少一个。或者,小区的信号能量还可以为其他用于表征信号质量的参数,本申请对此不做限定。
不同于目前的方案中,终端设备按照顺序依次处理测量任务,可能增加用于测量待测量小区的时间,基于本申请实施例提供的小区测量方法,终端设备可以将待测量小区作为第一优先级的测量任务对待测量小区进行快速测量,减少了终端设备进行小区测量的时间,可以使终端设备更快速地发送测量报告,进而可以更快速地触发网络设备发起切换/重定向,减少了终端设备回落到LTE网络建立语音业务的时延,可以给用户更好的体验。
一种可能的实现方式中,本申请实施例中,终端设备获取待测量小区的第一测量结果的具体实现可以为:终端设备的RRC层将待测量小区的信息通知给终端设备的PHY层,并通知PHY层待测量小区为第一优先级的测量任务,终端设备的PHY层收到通知信息后,立即对待测量小区进行信号测量,并在得到待测量小区的信号能量后,立即发送给RRC层。RRC层将得到的待测量小区的信号能量,确定为待测量小区的第一测量结果。
S502中,终端设备如何根据待测量小区的第一测量结果确定测量报告可以参考上文对S402的介绍,在此不再赘述。
可选的,本申请实施例中,网络设备在接收到来自终端设备的测量报告后,网络设备可以根据测量报告发起切换/重定向流程。
其中,上述步骤S501至S502中终端设备的动作可以由图2所示的终端设备30中的处理器301调用存储器302中存储的应用程序代码以指令终端设备执行;上述步 骤S501至S502中网络设备的动作可以由图2所示的网络设备20中的处理器201调用存储器202中存储的应用程序代码以指令网络设备执行。本实施例对此不作任何限制。
一种可能的实现方式中,图4所示的小区测量方法可以与图5所示的小区测量方法结合。该结合后的小区测量方法包括以下步骤:
步骤1:网络设备向终端设备发送第一消息,相对应的,终端设备接收来自网络设备的第一消息,第一消息包括待测量小区的测量配置信息。
步骤2:在业务状态为预配置的业务状态的情况下,终端设备向网络设备发送测量报告,相对应的,网络设备接收来自终端设备的测量报告。
其中,测量报告是根据第一测量结果和待测量小区的历史测量结果确定的;第一测量结果是在将待测量小区作为第一优先级的测量任务的情况下,根据测量配置信息对待测量小区进行测量得到的。
对于步骤1,具体可参考上文对S401的介绍,在此不再赘述。
对于步骤2,终端设备确定终端设备的业务状态为预配置的业务状态后,终端设备如何确定待测量小区的历史测量结果具体可参考上文对S402的介绍,在此不再赘述。终端设备如何确定待测量小区的第一测量结果具体可参考上文对S502的介绍,在此不再赘述。
终端设备确定待测量小区的第一测量结果和历史测量结果后,可以根据预配置的规则、待测量小区的第一测量结果和历史测量结果,确定待测量小区的第二测量结果,并对待测量小区的第二测量结果进行评估处理,确定是否满足测量报告的发送条件,若满足发送条件,终端设备生成测量报告并发送给网络设备。
由于小区的无线信号容易受到其他信号的干扰,而产生快衰落等情况,因此终端设备测量到的小区信号能量可能小于小区的实际信号能量。若因为终端设备测量到的小区信号能量小于小区的实际信号能量而导致终端设备上报测量报告,将会导致网络设备将终端设备切换到信号质量较差的小区,从而降低了终端设备的业务传输质量。基于本申请实施例提供的小区测量方法,可以平衡当前对待测量小区进行快速测量得到的测量结果和待测量小区的历史测量结果,共同确定测量报告,实现在减少用于测量小区的时间的基础上,提高测量报告所反映的小区信号能量的准确度,避免因快衰落的情况引起的终端设备错误生成测量报告的情况。
一种可能的实现方式中,测量配置信息中包括滤波参数。终端设备可以根据滤波参数,对待测量小区的第一测量结果和历史测量结果进行滤波处理,得到待测量小区的第二测量结果,并对待测量小区的第二测量结果进行评估处理,确定测量报告。
示例性的,如图6所示,为EPS Fallback场景中,该实现方式的具体流程图。如图6所示,包括S601-S605。
S601、终端设备发起语音通话,终端设备本地已经存储待测量小区的历史测量结果ResultOld。
S602、终端设备接收来自网络设备的测量配置信息。终端设备识别自身当前的业务状态为EPS Fallback状态,通知物理层执行快速测量。
S603、物理层快速上报测到的待测量小区的测量结果,即第一测量结果ResultNew。
S604、终端设备的RRC层应用测量配置信息中的滤波参数对ResultOld与 ResultNew进行滤波处理,得到最终的测量结果,即第二测量结果ResultEnd。
S605、终端设备的RRC层应用ResultEnd进行后续的评估与确定测量报告。
示例性的,终端设备可以根据以下公式确定待测量小区的第二测量结果:
Y n=(1-a)×Y n-1+a×X               公式2
其中,Y n为待测量小区的第二测量结果;Y n-1为待测量小区的历史测量结果,X为待测量小区的第一测量结果,a为滤波参数,取值为常数,示例性的,a的取值可以为0.5。
另一种可能的实现方式中,终端设备可以根据预配置的计算规则和/或计算参数,对待测量小区的第一测量结果和历史测量结果进行计算,得到待测量小区的第二测量结果,并对待测量小区的第二测量结果进行评估处理,确定测量报告。
步骤2中,终端设备如何根据待测量小区的第二测量结果确定测量报告可以参考上文对S402的介绍,在此不再赘述。
可选的,本申请实施例中,网络设备在接收到来自终端设备的测量报告后,网络设备可以根据测量报告发起切换/重定向流程。
如图7所示,为本申请实施例提供的另一种小区测量方法,该小区测量方法包括S701-S702:
S701、网络设备向终端设备发送第一消息,相对应的,终端设备接收来自网络设备的第一消息,第一消息包括待测量小区的测量配置信息。
S702、在业务状态为预配置的业务状态的情况下,终端设备向网络设备发送测量报告,相对应的,网络设备接收来自终端设备的测量报告。其中,测量报告是根据第一测量结果和目标参数的值确定的;第一测量结果是根据测量配置信息对待测量小区进行测量得到的;目标参数的值是根据业务状态确定的,目标参数用于确定测量报告的发送条件。
不同于目前的小区测量方案中,用于确定测量报告的发送条件的测量配置信息预配置在网络设备中,无法根据终端设备的业务状态实时调整,基于本申请实施例提供的小区测量方法,可以根据终端设备的业务状态,确定用于确定测量报告的发送条件的目标参数,换言之,测量报告的发送条件可以根据终端设备的业务状态进行调整,避免出现因为发送条件不适合终端设备的业务状态导致终端设备不能及时发送测量报告甚至无法发送测量报告的情况,可以使终端设备更快速地发送测量报告,进而可以更快速地触发网络设备发起切换/重定向,减少了终端设备回落到LTE网络建立语音业务的时延,可以给用户更好的体验。
其中,上述步骤S701至S702中终端设备的动作可以由图2所示的终端设备30中的处理器301调用存储器302中存储的应用程序代码以指令终端设备执行;上述步骤S701至S702中网络设备的动作可以由图2所示的网络设备20中的处理器201调用存储器202中存储的应用程序代码以指令网络设备执行。本实施例对此不作任何限制。
为了更清楚地对图7所示的小区测量方法进行说明,以下分为多个场景展开介绍图7所示的小区测量方法:
场景一:目标参数的值是网络设备确定的。以下结合图8,对场景一中的小区测量方法进行展开介绍。如图8所示,该方案包括S801-S805。
S801、终端设备确定自身的业务状态为预配置的业务状态。
S802、终端设备向网络设备发送第二消息,相对应的,网络设备接收来自终端设备的第二消息。其中,第二消息用于指示终端设备当前的业务状态。
本申请实施例中,第二消息可以为现有的终端设备与网络设备之间交互的信令消息,例如第二消息可以为用户设备辅助信息(UE assistance information)。或者,第二消息也可以为新增的信令消息,本申请实施例对此不做限定。
S803、网络设备根据终端设备的业务状态确定目标参数的值。
可选的,本申请实施例中,目标参数可以包括上报门限和TTT中的至少一项。
以下具体介绍本申请实施例中,网络设备根据终端设备的业务状态确定目标参数的值的方式。
一种可能的实现方式中,网络设备可以根据终端设备的业务状态,在预配置的一个或多个目标参数的值中,确定与终端设备的业务状态对应的目标参数的值。例如,目标参数为上报门限,网络设备预配置上报门限的数值可以为1或2,其中,数值1与业务状态A对应,数值2与业务状态B对应。网络设备接收到终端设备发送的指示终端设备当前处于业务状态A的第二消息,网络设备根据该第二消息,确定上报门限的值为1。
另一种可能的实现方式中,网络设备可以根据终端设备的业务状态以及预配置的规则,确定目标参数的值。示例性的,预配置的规则可以为:对于目标参数x,场景a下,业务状态A对应的目标参数x的值为1,业务状态B对应的目标参数x的值为2。场景b下,业务状态A对应的目标参数x的值为2,业务状态B对应的目标参数x的值为1。
S804、网络设备向终端设备发送目标参数的值,相对应的,终端设备接收来自网络设备的目标参数的值。
本申请实施例中,网络设备可以将目标参数的值携带在测量配置信息中发送给终端设备。换言之,网络设备收到终端设备发送的第二消息后,根据终端设备的业务状态调整测量配置信息中对应的目标参数的数值,使测量配置信息更适用于终端设备的业务状态,再将测量配置信息发送给终端设备。
S805、终端设备根据目标参数的值,对待测量小区的第一测量结果进行评估,确定待测量小区的第一测量结果是否满足测量报告的发送条件,若满足发送条件,终端设备生成测量报告并发送给网络设备。终端设备如何根据待测量小区的第一测量结果确定测量报告可以参考上文对S402的介绍,在此不再赘述。
基于本申请实施例提供的小区测量方法,可以使网络设备根据终端设备的业务状态调整测量配置信息再发送给终端设备,避免出现因为测量报告的发送条件不适合终端设备的业务状态导致终端设备不能及时发送测量报告甚至无法发送测量报告的情况。
场景二:目标参数的值是终端设备确定的。以下结合图9,对场景二中的小区测量方法进行展开介绍。如图9所示,该方案包括S901-S904。
S901、网络设备向终端设备发送测量配置信息,相对应的,终端设备接收到来自网络设备的测量配置信息。其中,测量配置信息包括目标参数的第二数值。
本申请实施例中,网络设备可以将目标参数的第二数值携带在测量配置信息中发 送给终端设备。换言之,终端设备可以根据网络设备发送的测量配置信息确定目标参数的第二数值。
S902、终端设备确定自身的业务状态为预配置的业务状态,终端设备可以根据自身的业务状态,确定目标参数的第一数值。
对于终端设备确定目标参数的第一数值的具体实现,本申请实施例中,一种可能的实现方式中,终端设备可以根据终端设备的业务状态,在预配置的一个或多个目标参数的第一数值中,确定与终端设备的业务状态对应的目标参数的第一数值。例如,目标参数为上报门限,网络设备预配置上报门限的数值(或者说第一数值)可以为1或2,其中,第一数值1与业务状态A对应,第一数值2与业务状态B对应。终端设备确定自身的业务状态为业务状态A后,根据业务状态与第一数值的对应关系,确定上报门限的第一数值为1。
另一种可能的实现方式中,终端设备可以根据终端设备的业务状态以及预配置的规则,确定目标参数的值。示例性的,预配置的规则可以为:对于目标参数x,场景a下,业务状态A对应的目标参数x的第一数值为1,业务状态B对应的目标参数x的第一数值为2。场景b下,业务状态A对应的目标参数x的第一数值为2,业务状态B对应的目标参数x的第一数值为1。
S903、终端设备根据预配置的规则,在目标参数的第一数值和目标参数的第二数值中确定出目标参数的值。
S904、终端设备根据目标参数的值,对待测量小区的第一测量结果进行评估,确定待测量小区的第一测量结果是否满足测量报告的发送条件,若满足发送条件,终端设备生成测量报告并发送给网络设备。
S903中,预配置的规则可以根据实际需求,与预配置的业务状态相对应。示例性的,根据上文介绍可知,在终端处于EPS Fallback业务状态的情况下,为了使尽快终端设备回落LTE网络,需要减少终端设备用于评估测量结果的时间,和/或需要降低终端设备发送测量报告的条件。因此,与EPS Fallback业务状态对应的用于确定目标参数的值的规则可以为:第一数值和第二数值中较小的数值为目标参数的值。
基于本方案,可以从第一数值和第二数值中选择较小的数值作为目标参数的值,从而减少终端设备用于评估测量结果的时间,或者使终端设备发送测量报告的条件更宽松,促使网络设备更快地控制终端设备回落到LTE网络。
为了便于理解,以下以预配置的业务状态为EPS Fallback业务状态,目标参数为上报门限或者TTT的示例,对终端设备确定目标参数的值的方式进行介绍。
示例一:目标参数为上报门限(Thresh参数)。终端设备计算目标参数ThreshEnd的值的流程如图10所示。图10中,ThreshNet为网络设备发送给终端设备的测量配置信息中包括的上报门限,数值为-80dBm,换言之,目标参数的第二数值为-80dBm。ThreshPrivate为终端设备预配置的与EPS Fallback业务状态对应的上报门限,数值为-100dBm,换言之,目标参数的第一数值为-100dBm。终端设备确定自身的业务状态,若自身不处于EPS Fallback业务状态,则终端设备直接将ThreshNet的数值赋值给ThreshEnd。若终端设备确定自身处于EPS Fallback业务状态,则终端设备比较ThreshNet和ThreshPrivate的大小。若ThreshNet小于等于ThreshPrivate,则将ThreshNet 的数值赋值给ThreshEnd,若ThreshNet大于ThreshPrivate,则将ThreshPrivate的数值赋值给ThreshEnd。终端设备经过如图10所示的流程后,最终计算得到ThreshEnd为-100dBm。
终端设备确定ThreshEnd为-100dBm后,可以通过ThreshEnd评估待测量小区的第一测量结果是否满足上报条件。具体地,终端设备获取到待测量小区的信号能量后,如果满足ThreshEnd,换言之大于-100dBm,终端设备启动TTT定时器,若定时器运行期间终端设备获取到的该待测量小区的信号能量均大于-100dBm,则终端设备在定时器超时后上报测量报告给网络设备。基于本方案,终端设备可以以较低的上报门限评估小区的测量结果,只要待测量小区的信号能量可以满足较低的上报门限终端设备就可以触发评估上报流程,从而促使网络设备更快地控制终端设备回落到LTE网络。
示例二:目标参数为触发时间(TTT参数)。终端设备计算目标参数TTTEnd的值的流程如图11所示。图11中,TTTNet为网络设备发送给终端设备的测量配置信息中包括的触发时间,数值为320ms,换言之,目标参数的第二数值为320ms。TTTPrivate为终端设备预配置的与EPS Fallback业务状态对应的触发时间,数值为10ms,换言之,目标参数的第一数值为10ms。终端设备确定自身的业务状态,若自身不处于EPS Fallback业务状态,则终端设备直接将TTTNet的数值赋值给TTTEnd。若终端设备确定自身处于EPS Fallback业务状态,则终端设备比较TTTNet和TTTPrivate的大小。若TTTNet小于等于TTTPrivate,则将TTTNet的数值赋值给TTTEnd,若TTTNet大于TTTPrivate,则将TTTPrivate的数值赋值给TTTEnd。终端设备经过如图11所示的流程后,最终计算得到TTTEnd为10ms。
终端设备确定TTTEnd为10ms后,可以通过TTTEnd评估待测量小区的第一测量结果是否满足上报条件。具体地,终端设备获取到待测量小区的信号能量后,如果满足上报门限,终端设备启动TTTEnd定时器,若定时器运行的10ms期间终端设备获取到的该待测量小区的信号能量均大于上报门限,则终端设备在定时器超时后上报测量报告给网络设备。基于本方案,若待测量小区的信号能量满足上报门限,终端设备在较短时长后,就可以触发评估上报流程,从而促使网络设备更快地控制终端设备回落到LTE网络。
可以理解的是,本申请实施例中,如上述示例一所示的实施例或上述示例二所示的实施例可以独立应用,也可以结合应用,本申请实施例对此不做限制。
一种可能的实现方式中,场景二中目标参数的第二数值,可以是网络设备根据终端设备的业务状态确定的。换言之,场景一中网络设备确定的目标参数的值,可以为场景二中目标参数的第二数值。该方案中,在网络设备向终端设备发送测量配置信息之前(在S701之前),若终端设备确定自身的业务状态为预配置的业务状态,终端设备向网络设备发送指示终端设备当前业务状态的第二消息,网络设备收到该第二消息后,根据终端设备的业务状态确定目标参数的第二数值并携带在测量配置信息中发送给终端设备,具体可参考上文对场景一的介绍,在此不再赘述。之后终端设备根据目标参数的第一数值和第二数值,进一步确定目标参数的值。具体可参考上文对场景二的介绍,在此不再赘述。
基于本方案,终端设备可以根据网络设备发送的根据终端设备的业务状态调整的 测量配置信息,进一步地确定用于确定测量报告发送条件的目标参数,得到的目标参数的值可以促使网络设备更快地控制终端设备回落到LTE网络。
可选的,本申请实施例中,图5所示的小区测量方法可以与图7所示的小区测量方法结合。
一种可能的实现方式中,在终端设备确定自身的业务状态为预配置的业务状态情况下,终端设备可以根据待测量小区的第一测量结果和目标参数的值确定测量报告。其中,第一测量结果是终端设备将待测量小区作为第一优先级任务进行测量得到的。具体实现可参考上文对图5所示的小区测量方法的说明。目标参数的值是根据终端设备的业务状态确定的,具体实现可参考上文对图7所示的小区测量方法的说明。
进一步地,在终端设备确定自身的业务状态为预配置的业务状态情况下,终端设备可以根据待测量小区的第一测量结果、待测量小区的历史测量结果和目标参数的值确定测量报告。示例性的,终端设备可以根据测量配置信息中的滤波参数,将待测量小区的第一测量结果和待测量小区的历史测量结果进行滤波处理,得到待测量小区的第二测量结果,再根据目标参数的值和第二测量结果确定测量报告。具体实现可参考上文对图4所示的小区测量方法的说明。
基于本方案,可以减少终端设备用于信号测量的时间以及减少终端设备用于评估测量结果和确定测量报告的时间,进而可以更快速地触发网络设备发起切换/重定向,减少了终端设备回落到LTE网络建立语音业务的时延,可以给用户更好的体验。
如图12所示,为本申请实施例提供的又一种小区测量方法,该小区测量方法包括S1201-S1202:
S1201、终端设备向网络设备发送第三消息,相对应的,网络设备接收来自终端设备的第三消息。其中,第三消息用于指示终端设备的业务状态为EPS Fallback状态。
S1202、网络设备向终端设备发送第一消息,相对应的,终端设备接收来自网络设备的第一消息。其中,第一消息包括测量配置信息,测量配置信息是网络设备根据终端设备的业务状态确定的。
对于S1201,终端设备确定自身处于EPS Fallback状态后,向网络设备发送指示终端设备的业务状态为EPS Fallback状态的第三消息。网络设备接收来自终端设备的第三消息后,可以根据第三消息确定终端设备当前处于EPS Fallback状态。具体可以参考上文对S802的介绍,在此不再赘述。
对于S1202,网络设备根据终端设备的业务状态确定测量配置信息,并将确定的测量配置信息携带在第一消息中发送给终端设备。示例性的,网络设备可以根据终端设备的业务状态调整测量配置信息中的上报条件信息。具体可以参考上文对S803的介绍,在此不再赘述。
基于本申请实施例提供的小区测量方法,可以使网络设备确定终端设备处于EPS Fallback状态,并根据终端设备的业务状态确定测量配置信息,可以使测量配置信息更适合终端设备的业务状态,避免出现测量配置信息不适合终端设备当前业务状态的情况。
可选的,该小区测量方法还包括:
终端设备向网络设备发送测量报告,相对应的,网络设备接收来自终端设备的测 量报告。其中,测量报告是终端设备根据第一测量结果确定的,第一测量结果是终端设备根据测量配置信息对待测量小区进行测量得到的。终端设备获取第一测量结果和根据第一测量结果确定测量报告的具体实现可参考上文对各个方法实施例的介绍,在此不再赘述。
其中,上述步骤S1201至S1202中终端设备的动作可以由图2所示的终端设备30中的处理器301调用存储器302中存储的应用程序代码以指令终端设备执行;上述步骤S1201至S1202中网络设备的动作可以由图2所示的网络设备20中的处理器201调用存储器202中存储的应用程序代码以指令网络设备执行。本实施例对此不作任何限制。
可以理解的是,以上各个实施例中,由终端设备实现的方法和/或步骤,也可以由可用于终端设备的部件(例如芯片或者电路)实现;由网络设备实现的方法和/或步骤,也可以由可用于网络设备的部件(例如芯片或者电路)实现。
上述主要从各个设备之间交互的角度对本申请实施例提供的方案进行了介绍。相应的,本申请实施例还提供了通信装置,该通信装置用于实现上述各种方法。该通信装置可以为上述方法实施例中的终端设备,或者包含上述终端设备的装置,或者为可用于终端设备的部件;或者,该通信装置可以为上述方法实施例中的网络设备,或者包含上述网络设备的装置,或者为可用于网络设备的部件。可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法实施例中对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图13示出了一种通信装置130的结构示意图。该通信装置130包括接收模块1301和发送模块1302。所述接收模块1301,也可以称为接收单元用以实现接收功能,例如可以是接收电路,接收机,接收器或者通信接口。所述发送模块1302,也可以称为发送单元用以实现发送功能,例如可以是发送电路,发送机,发送器或者通信接口。此外,本申请实施例中的接收模块1301和发送模块1302也可以合一称之为收发模块,本申请实施例对此不做具体限定。
以通信装置为上述方法实施例中的终端设备为例,一种可能的实现方式中,接收模块1301,用于接收来自网络的第一消息,第一消息包括待测量小区的测量配置信息。发送模块1302,用于在业务状态为预配置的业务状态的情况下,向网络发送测量报告;其中,测量报告是根据测量配置信息和待测量小区的历史测量结果确定的。
可选的,测量报告是根据第一测量结果和历史测量结果确定的;其中,第一测量 结果是在将待测量小区作为第一优先级的测量任务的情况下,根据测量配置信息对待测量小区进行测量得到的。
可选的,测量配置信息包括滤波参数;测量报告是根据第二测量结果确定的,其中,第二测量结果为采用滤波参数对第一测量结果和历史测量结果进行滤波后得到的测量结果。
可选的,预配置的业务状态包括演进的分组***回落EPS Fallback状态。
另一种可能的实现方式中,接收模块1301,用于接收来自网络的第一消息,第一消息包括待测量小区的测量配置信息。发送模块1302,用于在业务状态为预配置的业务状态的情况下,向网络发送测量报告;其中,测量报告是根据第一测量结果确定的,第一测量结果是在将待测量小区作为第一优先级的测量任务的情况下,根据测量配置信息对待测量小区进行测量得到的。
可选的,预配置的业务状态包括演进的分组***回落EPS Fallback状态。
又一种可能的实现方式中,接收模块1301,用于接收来自网络的第一消息,第一消息包括待测量小区的测量配置信息。发送模块1302,用于在业务状态为预配置的业务状态的情况下,向网络发送测量报告,测量报告是根据第一测量结果和目标参数的值确定的;其中,第一测量结果是根据测量配置信息对待测量小区进行测量得到的;目标参数的值是根据业务状态确定的,目标参数用于确定测量报告的发送条件。
可选的,目标参数的值来自第一数值或第二数值;其中,第一数值是通信装置根据业务状态确定的;第二数值携带在测量配置信息中。
可选的,发送模块1302,还用于向网络发送第二消息,第二消息用于指示业务状态;第二数值是网络根据业务状态确定并携带在测量配置信息中的。
可选的,目标参数的值为第一数值和第二数值中的较小值。
可选的,第一测量结果是在将待测量小区作为第一优先级的测量任务的情况下,根据测量配置信息对待测量小区进行测量得到的。
可选的,测量报告是根据第一测量结果、待测量小区的历史测量结果和目标参数的值确定的。
可选的,测量配置信息包括滤波参数;测量报告是根据目标参数的值和第二测量结果确定的,其中,第二测量结果为采用滤波参数对第一测量结果和历史测量结果进行滤波后得到的测量结果。
可选的,目标参数包括上报门限和触发时间中的至少一项。
可选的,预配置的业务状态包括演进的分组***回落EPS Fallback状态。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该通信装置130以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
在一个简单的实施例中,本领域的技术人员可以想到该通信装置130可以采用图2所示的终端设备30的形式。
比如,图2所示的终端设备30中的处理器301可以通过调用存储器302中存储的 计算机执行指令,使得终端设备30执行上述方法实施例中的小区测量方法。具体的,图13中的接收模块1301和发送模块1302的功能/实现过程可以通过图2所示的终端设备30中的处理器301调用存储器302中存储的计算机执行指令来实现。或者,图13中的接收模块1301和发送模块1302的功能/实现过程可以通过图2所示的终端设备30中的收发器303来实现。
由于本实施例提供的通信装置130可执行上述小区测量方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
以通信装置为上述方法实施例中的网络设备为例,一种可能的实现方式中,接收模块1301,用于接收来自终端设备的第三消息,第三消息用于指示终端设备的业务状态为演进的分组***回落EPS Fallback状态。发送模块1302,用于向终端设备发送第一消息,第一消息包括测量配置信息;测量配置信息是根据终端设备的业务状态确定的。
可选的,接收模块1301,还用于接收来自终端设备的测量报告,测量报告是终端设备根据第一测量结果确定的;其中,第一测量结果是终端设备根据测量配置信息对待测量小区进行测量得到的。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该通信装置130以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
在一个简单的实施例中,本领域的技术人员可以想到该通信装置130可以采用图2所示的网络设备20的形式。
比如,图2所示的网络设备20中的处理器201可以通过调用存储器202中存储的计算机执行指令,使得网络设备20执行上述方法实施例中的小区测量方法。具体的,图12中的接收模块1301和发送模块1302的功能/实现过程可以通过图2所示的网络设备20中的处理器201调用存储器202中存储的计算机执行指令来实现。或者,图13中的接收模块1301和发送模块1302的功能/实现过程可以通过图2所示的网络设备20中的收发器203来实现。
由于本实施例提供的通信装置130可执行上述小区测量方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
需要说明的是,以上模块或单元的一个或多个可以软件、硬件或二者结合来实现。当以上任一模块或单元以软件实现的时候,所述软件以计算机程序指令的方式存在,并被存储在存储器中,处理器可以用于执行所述程序指令并实现以上方法流程。该处理器可以内置于SoC(片上***)或ASIC,也可是一个独立的半导体芯片。该处理器内处理用于执行软件指令以进行运算或处理的核外,还可进一步包括必要的硬件加速器,如现场可编程门阵列(field programmable gate array,FPGA)、PLD(可编程逻辑器件)、或者实现专用逻辑运算的逻辑电路。
当以上模块或单元以硬件实现的时候,该硬件可以是CPU、微处理器、数字信号处理(digital signal processing,DSP)芯片、微控制单元(microcontroller unit,MCU)、 人工智能处理器、ASIC、SoC、FPGA、PLD、专用数字电路、硬件加速器或非集成的分立器件中的任一个或任一组合,其可以运行必要的软件或不依赖于软件以执行以上方法流程。
可选的,本申请实施例还提供了一种芯片***,包括:至少一个处理器和接口,该至少一个处理器通过接口与存储器耦合,当该至少一个处理器执行存储器中的计算机程序或指令时,使得上述任一方法实施例中的方法被执行。在一种可能的实现方式中,该通信装置还包括存储器。可选的,该芯片***可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (38)

  1. 一种小区测量方法,其特征在于,所述方法包括:
    接收来自网络的第一消息,所述第一消息包括待测量小区的测量配置信息;
    在业务状态为预配置的业务状态的情况下,向所述网络发送测量报告;
    其中,所述测量报告是根据所述测量配置信息和所述待测量小区的历史测量结果确定的。
  2. 根据权利要求1所述的方法,其特征在于,所述测量报告是根据第一测量结果和所述历史测量结果确定的;
    其中,所述第一测量结果是在将所述待测量小区作为第一优先级的测量任务的情况下,根据所述测量配置信息对所述待测量小区进行测量得到的。
  3. 根据权利要求2所述的方法,其特征在于,所述测量配置信息包括滤波参数;所述测量报告是根据第二测量结果确定的,其中,所述第二测量结果为采用所述滤波参数对所述第一测量结果和所述历史测量结果进行滤波后得到的测量结果。
  4. 一种小区测量方法,其特征在于,所述方法包括:
    接收来自网络的第一消息,所述第一消息包括待测量小区的测量配置信息;
    在业务状态为预配置的业务状态的情况下,向所述网络发送测量报告;
    其中,所述测量报告是根据第一测量结果确定的,所述第一测量结果是在将所述待测量小区作为第一优先级的测量任务的情况下,根据所述测量配置信息对所述待测量小区进行测量得到的。
  5. 一种小区测量方法,其特征在于,所述方法包括:
    接收来自网络的第一消息,所述第一消息包括待测量小区的测量配置信息;
    在业务状态为预配置的业务状态的情况下,向所述网络发送测量报告,所述测量报告是根据第一测量结果和目标参数的值确定的;
    其中,所述第一测量结果是根据所述测量配置信息对所述待测量小区进行测量得到的;所述目标参数的值是根据所述业务状态确定的,所述目标参数用于确定所述测量报告的发送条件。
  6. 根据权利要求5所述的方法,其特征在于,所述目标参数的值来自第一数值或第二数值;其中,所述第一数值是终端设备根据所述业务状态确定的;所述第二数值携带在所述测量配置信息中。
  7. 根据权利要求6所述的方法,其特征在于,在所述接收来自网络的第一消息之前,所述方法还包括:
    向所述网络发送第二消息,所述第二消息用于指示所述业务状态;
    所述第二数值是所述网络根据所述业务状态确定并携带在所述测量配置信息中的。
  8. 根据权利要求6或7所述的方法,其特征在于,所述目标参数的值为所述第一数值和所述第二数值中的较小值。
  9. 根据权利要求5-8任一项所述的方法,其特征在于,所述第一测量结果是在将所述待测量小区作为第一优先级的测量任务的情况下,根据所述测量配置信息对所述待测量小区进行测量得到的。
  10. 根据权利要求5-9任一项所述的方法,其特征在于,所述测量报告是根据所述 第一测量结果、所述待测量小区的历史测量结果和所述目标参数的值确定的。
  11. 根据权利要求10所述的方法,其特征在于,所述测量配置信息包括所述滤波参数;
    所述测量报告是根据所述目标参数的值和第二测量结果确定的,其中,所述第二测量结果为采用所述滤波参数对所述第一测量结果和所述历史测量结果进行滤波后得到的测量结果。
  12. 根据权利要求5-11任一项所述的方法,其特征在于,所述目标参数包括上报门限和触发时间中的至少一项。
  13. 根据权利要求1-12任一项所述的方法,其特征在于,所述预配置的业务状态包括演进的分组***回落EPS Fallback状态。
  14. 一种小区测量方法,其特征在于,所述方法包括:
    接收来自终端设备的第三消息,所述第三消息用于指示所述终端设备的业务状态为演进的分组***回落EPS Fallback状态;
    向所述终端设备发送第一消息,所述第一消息包括测量配置信息;所述测量配置信息是根据所述终端设备的业务状态确定的。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    接收来自所述终端设备的测量报告,所述测量报告是所述终端设备根据第一测量结果确定的;其中,所述第一测量结果是所述终端设备根据所述测量配置信息对待测量小区进行测量得到的。
  16. 一种通信装置,其特征在于,所述通信装置包括:接收模块和发送模块;
    所述接收模块,用于接收来自网络的第一消息,所述第一消息包括待测量小区的测量配置信息;
    所述发送模块,用于在业务状态为预配置的业务状态的情况下,向所述网络发送测量报告;其中,所述测量报告是根据所述测量配置信息和所述待测量小区的历史测量结果确定的。
  17. 根据权利要求16所述的通信装置,其特征在于,所述测量报告是根据第一测量结果和所述历史测量结果确定的;其中,所述第一测量结果是在将所述待测量小区作为第一优先级的测量任务的情况下,根据所述测量配置信息对所述待测量小区进行测量得到的。
  18. 根据权利要求17所述的通信装置,其特征在于,所述测量配置信息包括滤波参数;所述测量报告是根据第二测量结果确定的,其中,所述第二测量结果为采用所述滤波参数对所述第一测量结果和所述历史测量结果进行滤波后得到的测量结果。
  19. 一种通信装置,其特征在于,所述通信装置包括:接收模块和发送模块;
    所述接收模块,用于接收来自网络的第一消息,所述第一消息包括待测量小区的测量配置信息;
    所述发送模块,用于在业务状态为预配置的业务状态的情况下,向所述网络发送测量报告;其中,所述测量报告是根据第一测量结果确定的,所述第一测量结果是在将所述待测量小区作为第一优先级的测量任务的情况下,根据所述测量配置信息对所述待测量小区进行测量得到的。
  20. 一种通信装置,其特征在于,所述通信装置包括:接收模块和发送模块;
    所述接收模块,用于接收来自网络的第一消息,所述第一消息包括待测量小区的测量配置信息;
    所述发送模块,用于在业务状态为预配置的业务状态的情况下,向所述网络发送测量报告,所述测量报告是根据第一测量结果和目标参数的值确定的;其中,所述第一测量结果是根据所述测量配置信息对所述待测量小区进行测量得到的;所述目标参数的值是根据所述业务状态确定的,所述目标参数用于确定所述测量报告的发送条件。
  21. 根据权利要求20所述的通信装置,其特征在于,所述目标参数的值来自第一数值或第二数值;其中,所述第一数值是所述通信装置根据所述业务状态确定的;所述第二数值携带在所述测量配置信息中。
  22. 根据权利要求21所述的通信装置,其特征在于,所述发送模块,还用于在所述接收来自网络的第一消息之前向所述网络发送第二消息,所述第二消息用于指示所述业务状态;
    所述第二数值是所述网络根据所述业务状态确定并携带在所述测量配置信息中的。
  23. 根据权利要求21或22所述的通信装置,其特征在于,所述目标参数的值为所述第一数值和所述第二数值中的较小值。
  24. 根据权利要求20-23任一项所述的通信装置,其特征在于,所述第一测量结果是在将所述待测量小区作为第一优先级的测量任务的情况下,根据所述测量配置信息对所述待测量小区进行测量得到的。
  25. 根据权利要求20-24任一项所述的通信装置,其特征在于,所述测量报告是根据所述第一测量结果、所述待测量小区的历史测量结果和所述目标参数的值确定的。
  26. 根据权利要求25所述的通信装置,其特征在于,所述测量配置信息包括所述滤波参数;
    所述测量报告是根据所述目标参数的值和第二测量结果确定的,其中,所述第二测量结果为采用所述滤波参数对所述第一测量结果和所述历史测量结果进行滤波后得到的测量结果。
  27. 根据权利要求20-26任一项所述的通信装置,其特征在于,所述目标参数包括上报门限和触发时间中的至少一项。
  28. 根据权利要求16-27任一项所述的通信装置,其特征在于,所述预配置的业务状态包括演进的分组***回落EPS Fallback状态。
  29. 一种通信装置,其特征在于,所述通信装置包括:接收模块和发送模块;
    所述接收模块,用于接收来自终端设备的第三消息,所述第三消息用于指示所述终端设备的业务状态为演进的分组***回落EPS Fallback状态;
    所述发送模块,用于向所述终端设备发送第一消息,所述第一消息包括测量配置信息;所述测量配置信息是根据所述终端设备的业务状态确定的。
  30. 根据权利要求29所述的通信装置,其特征在于,所述接收模块,还用于接收来自所述终端设备的测量报告,所述测量报告是所述终端设备根据第一测量结果确定的;其中,所述第一测量结果是所述终端设备根据所述测量配置信息对待测量小区进行测量得到的。
  31. 一种通信装置,其特征在于,包括:处理器、存储器以及收发器,所述存储器用于存储计算机执行指令,所述处理器用于执行所述存储器存储的所述指令;所述收发器用于所述通信装置与通信网络中的其他设备进行通信;当所述通信装置运行时,所述处理器运行所述指令,所述收发器与通信网络中的其他设备进行通信,使得所述通信装置执行上述权利要求1-3、4或5-13中任一项所述的方法。
  32. 一种通信装置,其特征在于,包括:处理器、存储器以及收发器,所述存储器用于存储计算机执行指令,所述处理器用于执行所述存储器存储的所述指令;所述收发器用于所述通信装置与通信网络中的其他设备进行通信;当所述通信装置运行时,所述处理器运行所述指令,所述收发器与通信网络中的其他设备进行通信,使得所述通信装置执行上述权利要求14-15中任一项所述的方法。
  33. 一种计算机可读存储介质,其特征在于,其上存储有计算机指令,当所述计算机指令被计算机执行时使得所述计算机执行权利要求1-3、4或5-13中任一项所述的方法。
  34. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,当所述计算机程序被计算机执行时使得所述计算机执行权利要求14-15中任一项所述的方法。
  35. 一种计算机程序产品,其特征在于,包括:指令,当所述计算机程序产品在计算机上运行时,使得计算机执行权利要求1-3、4或5-13中任一项所述的方法。
  36. 一种计算机程序产品,其特征在于,包括:指令,当所述计算机程序产品在计算机上运行时,使得计算机执行权利要求14-15中任一项所述的方法。
  37. 一种通信***,其特征在于,所述通信***包括终端设备和网络设备;所述终端设备,用于执行权利要求1-3、4或5-13中任一项所述的方法;所述网络设备,用于执行权利要求14-15中任一项所述的方法。
  38. 一种通信装置,其特征在于,包括:
    处理电路和接口电路;其中,
    所述接口电路用于与所述无线通信装置外部的存储器耦合,并为所述处理电路访问所述存储器提供通信接口;
    所述处理电路用于执行所述存储器中的程序指令,以实现如权利要求1-3、4、5-13或14-15中的任一所述方法。
PCT/CN2021/125271 2021-10-21 2021-10-21 一种小区测量方法、装置和*** WO2023065212A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/125271 WO2023065212A1 (zh) 2021-10-21 2021-10-21 一种小区测量方法、装置和***
CN202180101840.5A CN117941406A (zh) 2021-10-21 2021-10-21 一种小区测量方法、装置和***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/125271 WO2023065212A1 (zh) 2021-10-21 2021-10-21 一种小区测量方法、装置和***

Publications (1)

Publication Number Publication Date
WO2023065212A1 true WO2023065212A1 (zh) 2023-04-27

Family

ID=86058662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125271 WO2023065212A1 (zh) 2021-10-21 2021-10-21 一种小区测量方法、装置和***

Country Status (2)

Country Link
CN (1) CN117941406A (zh)
WO (1) WO2023065212A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117016010A (zh) * 2023-05-22 2023-11-07 北京小米移动软件有限公司 一种波束测量结果上报方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101925087A (zh) * 2009-06-11 2010-12-22 中兴通讯股份有限公司 一种封闭用户组小区的测量上报方法及相应的用户设备
CN110521157A (zh) * 2017-05-12 2019-11-29 华为技术有限公司 一种辅小区配置方法、基站及终端设备
WO2020159330A1 (en) * 2019-02-01 2020-08-06 Samsung Electronics Co., Ltd. Method and apparatus for performing early frequency measurement and fast reporting by terminal in disconnected state in next generation mobile communication system
CN111937428A (zh) * 2018-03-28 2020-11-13 三星电子株式会社 用于无线通信***中的测量的装置和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101925087A (zh) * 2009-06-11 2010-12-22 中兴通讯股份有限公司 一种封闭用户组小区的测量上报方法及相应的用户设备
CN110521157A (zh) * 2017-05-12 2019-11-29 华为技术有限公司 一种辅小区配置方法、基站及终端设备
CN111937428A (zh) * 2018-03-28 2020-11-13 三星电子株式会社 用于无线通信***中的测量的装置和方法
WO2020159330A1 (en) * 2019-02-01 2020-08-06 Samsung Electronics Co., Ltd. Method and apparatus for performing early frequency measurement and fast reporting by terminal in disconnected state in next generation mobile communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VIVO, CHINA TELECOM, CMCC, CHINA UNICOM: "Reduce the blind redirection for EPS Fallback", 3GPP TSG RAN WG2 #115-E, R2-2108670, 6 August 2021 (2021-08-06), XP052035005 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117016010A (zh) * 2023-05-22 2023-11-07 北京小米移动软件有限公司 一种波束测量结果上报方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN117941406A (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
CN112584425B (zh) 一种测量能力上报的网络***、电子设备及芯片***
US20220167222A1 (en) Ssb measurement method and apparatus
WO2018228468A1 (zh) 一种无线链路监控方法和装置
CN113132899B (zh) 通信方法、装置及***
JP7485850B2 (ja) 通信方法、装置、およびシステム
US20220394526A1 (en) Communication method and apparatus
CN112235837B (zh) 一种切换方法以及通信装置
WO2022077387A1 (zh) 一种通信方法及通信装置
WO2021218820A1 (zh) 测量方法、装置及***
US20220385428A1 (en) Signal quality information obtaining method, device, and system
WO2023065212A1 (zh) 一种小区测量方法、装置和***
WO2022141219A1 (zh) 一种定位方法及相关装置
CN112399497A (zh) 通信方法和通信装置
WO2022141130A1 (zh) 小区测量方法及通信装置
US20240015615A1 (en) Mechanisms for layer 1 (l1) measurements on neighbor cell
WO2022032690A1 (zh) 通信方法、装置及***
WO2021031004A1 (zh) 载波测量方法和装置
WO2023065924A1 (zh) 测量方法、测量配置方法以及相关通信装置
WO2023000820A1 (zh) 小区选择方法、装置及***
CN115604820B (zh) 用于定位的方法及装置
WO2023193251A1 (zh) 下行定位方法、装置、设备及存储介质
WO2024148617A1 (zh) 用于无线通信的方法、终端设备及网络设备
WO2024130602A1 (zh) 通信方法、装置、设备、存储介质、芯片、产品及程序
WO2024061077A1 (zh) 一种通信方法及装置
WO2023193252A1 (zh) 上行定位方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21960962

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180101840.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE