WO2023062307A1 - Flasque pour machine électrique tournante - Google Patents

Flasque pour machine électrique tournante Download PDF

Info

Publication number
WO2023062307A1
WO2023062307A1 PCT/FR2022/051899 FR2022051899W WO2023062307A1 WO 2023062307 A1 WO2023062307 A1 WO 2023062307A1 FR 2022051899 W FR2022051899 W FR 2022051899W WO 2023062307 A1 WO2023062307 A1 WO 2023062307A1
Authority
WO
WIPO (PCT)
Prior art keywords
flange
fin
rotor
openings
axis
Prior art date
Application number
PCT/FR2022/051899
Other languages
English (en)
Inventor
Hussain Nouri
Original Assignee
Nidec Psa Emotors
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Psa Emotors filed Critical Nidec Psa Emotors
Publication of WO2023062307A1 publication Critical patent/WO2023062307A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/08Arrangements for cooling or ventilating by gaseous cooling medium circulating wholly within the machine casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to rotating electrical machines, and more particularly those cooled by a circulation of a cooling fluid, in particular air, circulating at least partially by the rotor of the machine.
  • the invention relates more particularly to synchronous or asynchronous alternating current machines. It relates in particular to traction or propulsion machines for electric (Battery Electric Vehicle) and/or hybrid (Hybrid Electric Vehicle - Plug-in Hybrid Electric Vehicle) motor vehicles, such as individual cars, vans, trucks or buses.
  • the invention also applies to rotating electrical machines for industrial and/or energy production applications, in particular naval, aeronautical or wind turbine applications.
  • Such electric machines often have localized high temperature zones close to the winding heads of the stator and in the rotor of the electric machine.
  • the coil heads being in contact with the cooling fluid, the quality of their cooling depends on the internal forced convection in the electrical machine.
  • Application EP 2 873 137 describes a fan comprising blades extending in openings. The blades are attached to the fan disc.
  • the invention aims to meet this need and it achieves, according to one of its aspects, thanks to an electrical machine rotor flange rotating around an axis of rotation X, the flange comprising an inner face turned towards a mass rotor, an outer face opposite the inner face, a radially outer edge extending between the inner face and the outer face and a central bore, the flange comprising:
  • the flange according to the invention promotes the circulation and mixing of the air at the level of the winding heads of the stator and/or inside the rotor. This improvement in air circulation improves the cooling of the electrical machine during its operation. In particular, the temperature at the stator coil heads, rotor magnets and/or phase connector can be reduced more effectively.
  • the flange according to the invention makes it possible to improve the cooling of electrical conductors of the electrical machine, which are in particular made of copper, and thus to reduce the losses by Joules effect.
  • the flange according to the invention makes it possible to reduce the temperature of the electrical machine and in particular the temperature of the ends of the stator coils.
  • a single fin can extend through an opening.
  • several fins for example two, can extend through the same opening.
  • the flange may also include fins which do not extend through an opening.
  • the flange may also include openings in which no fin extends at least partially.
  • the flange can have as many fins as there are poles of the machine.
  • the flange may comprise six fins.
  • the flange can have as many openings as there are poles of the machine.
  • the flange may comprise fewer openings than poles of the machine, the number of openings possibly being in particular equal to half the number of poles.
  • the flange may have 3 or 6 openings.
  • the flange may comprise 6 openings and 6 fins, each extending at least partially into an opening.
  • the flange may have 3 openings and 6 fins, three of the fins extending at least partially into an opening and the other three fins not extending into any opening.
  • the opening or openings can be arranged radially between the edge and the central bore of the flange.
  • the flange can be manufactured by machining or by molding, in particular by foundry.
  • the fins can all extend over the outer face.
  • the inner face which is in contact with the rotor mass, can be substantially smooth. The inner face can thus be firmly attached to the rotor mass.
  • the fin(s) can be formed as a single piece with the flange. They may not be reported on the flange.
  • the flange is thus facilitated.
  • it can be molded in one piece by foundry.
  • At least one fin may be substantially planar in shape, and may extend along a master plane.
  • substantially planar fins facilitates their manufacture.
  • the flat fins make it possible to have the same flow of cooling fluid, in particular of air, whatever the direction of rotation of the machine.
  • a single type of fin can therefore be used for the entire flange.
  • the manufacture of the flange is thus more economical.
  • at least one fin may comprise a curved portion, in particular in the axial direction.
  • the latter can be curved around an axis of curvature oriented perpendicular to a radial plane containing the axis of rotation X of the electric machine.
  • Such a curvature of the fin makes it possible to modify the direction of the flow of the cooling fluid by a certain angle in order to direct the flow towards the axial channels of the rotor mass.
  • At least one fin may include a straight portion and a curved portion.
  • at least one fin comprises two non-aligned rectilinear portions. The two rectilinear portions forming between them an angle 0 which can be between 90° and 180°, better still between 100° and 170°, better still between 110° and 160°, better still between 120° and 150°, for example of the order of 135°.
  • the master plane of the vane can include the axis of rotation X of the machine.
  • the fins can be of substantially parallelepiped shape.
  • at least one fin can be L-shaped. In this case, it can comprise two parallelepipedal parts arranged perpendicularly. The two parts can extend in a plane including the axis of rotation X of the machine.
  • Each fin may comprise a part which extends over the external face of the flange and a part which extends into the opening.
  • a fin may comprise two substantially parallel faces oriented radially.
  • the term “thickness of the fin” designates the dimension of the fin measured in the circumferential direction.
  • the term “height of the fin” designates the dimension of the fin measured in the radial direction.
  • the term “width of the fin” designates the dimension of the fin measured in the axial direction.
  • the thickness of the flange corresponds to the distance, measured in the axial direction, between the internal face and the external face.
  • the flange may have a thickness comprised between 5 and 30 mm, better still between 7 and 20 mm, better still between 10 and 15 mm, for example of the order of 13 mm.
  • the flange may have a diameter of between 50 and 300 mm, better still between 75 and 200 mm, better still between 100 and 150 mm, for example of the order of 136 mm.
  • the width of the fin in particular the width of the part of the fin which extends into the opening, may be greater than the thickness of the flange.
  • the fins can thus protrude from the flange, including at the level of the openings.
  • the width of the fins may be less than the thickness of the flange.
  • width of a part of a fin which extends over the outer face of the flange designates the width of the part of the fin which extends from the flange. This width does not include the thickness of the flange.
  • the width of a portion of a fin which extends over the outer face of the flange may be between 1 and 15 mm, better still between 2 and 10 mm, better still between 3 and 8 mm, for example of the order of 5mm.
  • the width of a portion of a fin which extends over the outer face of the flange may be between 0 and 20% of the diameter of the flange, better still between 1 and 15%, better still between 3 and 10%, for example the order of 3.7% of the diameter of the flange.
  • the width of a portion of a fin which extends over the outer face of the flange may be between 3 and 300% of the thickness of the flange, better between 10 and 200%, better between 15 and 100%, better between 20 and 75%, better still between 30 and 50%, for example of the order of 38% of the thickness of the flange.
  • the height of a fin can be between 10 and 35% of the diameter of the flange, better still between 15 and 30%, better still between 18 and 27%, for example of the order of 25% of the diameter of the flange.
  • the height of a fin can be between 10 and 60 mm, better between 20 and 50 mm, better between 30 and 40 mm, for example of the order of 35 mm.
  • the height of the part of the fin which extends into the opening may be between 1 and 15 mm, better still between 3 and 10 mm, better still between 5 and 8 mm, for example of the order of 7 mm.
  • the height of the part of the fin which extends into the opening may be greater than 30% of the height of the opening measured in the radial direction, better still greater than 50%, better still greater than 70%, for example the order of 100%.
  • the fin In the case where the height of the part of the fin which extends into the opening is of the order of 100% of the height of the opening measured in the radial direction, the fin completely crosses the opening. .
  • the thickness of a fin can be between 0 and 20% of the diameter of the flange, better still between 1 and 15%, better still between 3 and 10%, for example of the order of 3.7% of the diameter of the flange.
  • the thickness of a fin can be between 1 and 15 mm, better between 2 and 10 mm, better between 3 and 8 mm, for example of the order of 5 mm.
  • the thickness of a fin may be less than the width of the opening, measured in the circumferential direction, through which it extends. This makes it possible to leave space in the openings, in particular on either side of the fin, to allow the flow of the cooling fluid.
  • the two parallelepipedal parts can have different heights and/or widths.
  • Each fin may comprise a lower face and an upper face which both extend in planes perpendicular to the flange.
  • the lower face is closer to the axis of rotation X of the electrical machine than the upper face.
  • the underside of a fin may be located at a distance from the axis of rotation X of the machine of at least 20%, better still at least 30%, better still at least 40%, for example l order of 45% of the diameter of the flange.
  • the underside of a fin may be located at a distance from the axis of rotation X of the machine of at most 70%, better still at most 60%, better still at most 50%, for example l order of 45% of the diameter of the flange.
  • the underside of a fin can be located at a distance from the axis of rotation X between 30 and 90 mm, better between 40 and 80 mm, better between 50 and 70 mm, for example of the order of 60 mm .
  • the upper face of a fin can be located at a distance from the axis of rotation X of the machine of at least 60%, better still at least 70%, better still at least 80%, for example l 82% of the diameter of the flange.
  • the upper face of a fin may be located at a distance from the axis of rotation X of the machine of at most 100%, better still at most 90%, better still at most 85%, for example l 82% of the diameter of the flange.
  • the upper face of a fin can be located at a distance from the axis of rotation X of between 70 and 135 mm, better still between 80 and 125 mm, better still between 100 and 115 mm, for example of the order of 112 mm .
  • At least one fin can extend along a master plane perpendicular to the inner and outer faces of the flange. At least one fin can extend along a master plane inclined with respect to the axis of rotation X of the electric machine.
  • a fin extending along a master plane perpendicular to the inner and outer faces makes it possible to form a turbulent flow on one of its faces.
  • a fin extending along a master plane inclined with respect to the axis of rotation X of the electric machine makes it possible to ensure that the flow of the cooling fluid better matches the shape of the fin. This limits turbulence on the upper surface of the fin, which reduces aerodynamic losses.
  • a fin can be inclined at an angle relative to the inner and outer faces of the flange comprised between 0 and 90°, better still between 10 and 80°, better still between 20 and 70°, better still between 30 and 60°, for example l order of 45°.
  • At least one fin may extend along a master plane inclined with respect to a radial plane containing the axis of rotation of the machine.
  • Such inclinations of the fins make it possible to optimize the flow of air for a given operating point.
  • the fins can be tilted so that the flow is optimized for the rotational speed at which the electrical machine in operation is the hottest.
  • At least one third of the fins can extend along a master plane perpendicular to the inner and outer faces of the flange, better still at least half, better still at least two thirds, better all the fins can extend along a master plane perpendicular to the inner and outer faces of the flange.
  • At least one third of the fins can extend along a master plane inclined with respect to the axis of rotation of the machine, better still at least half, better still at least two thirds, better still all the fins can extend along a master plane inclined with respect to the axis of rotation of the machine.
  • At least one third of the fins can extend along a master plane inclined with respect to a radial plane, better at least half, better at least two thirds, better all the fins can extend along a master plane inclined with respect to to a radial plane.
  • All the inclined fins can have the same inclination.
  • at least two fins can have different inclinations.
  • 2, 3, 4, 5 fins can have different inclinations.
  • all the fins can have different inclinations.
  • the flange according to the invention may comprise at least two openings, in particular at least two openings uniformly distributed around the central bore.
  • the flange may comprise six uniformly distributed openings and the angle between the middles of two consecutive openings may be of the order of 60°. In another particular embodiment, the flange may comprise three uniformly distributed openings and the angle between the middles of two consecutive openings may be of the order of 120°.
  • Each opening may have a height, measured in the radial direction, of between 5 and 25 mm, better still between 10 and 20 mm, better still between 12 and 15 mm, for example of the order of 13 mm.
  • Each opening may have a width, measured in the circumferential direction, of between 3 and 45 mm, better still between 5 and 40 mm, better still between 7 and 35 for example of the order of 11 mm or 30 mm.
  • the flange may comprise at least two openings of substantially identical shape.
  • Each opening can be the image of another opening by an angle rotation between 30° and 180°.
  • the flange may comprise at least two openings of different shapes.
  • the openings can have an oblong, rectangular or even oval shape.
  • the flange may include at least one fin extending over the entire height of the opening in the radial direction, the fin dividing in particular the opening into two sub-openings which may be substantially identical.
  • the fin can thus pass right through an opening. Such an arrangement improves the mechanical holding of the flange.
  • the inner face of the flange may comprise at least one radial groove extending radially from the edge in the direction of the central bore of the flange.
  • Such radial grooves allow the coolant to exit the flange and be directed towards the coil heads in order to cool them.
  • At least one groove, better at least half of the grooves, better all the grooves can be located substantially at the same circumferential position as the opening or openings, in particular the same circumferential position as the center of the openings.
  • at least one groove, better at least half of the grooves, better all the grooves can be located at circumferential positions distinct from the openings.
  • the presence of a radial groove allows the cooling fluid to circulate efficiently beyond the radius of the flange and thus improves the cooling of the coil heads.
  • the grooves force the flow in radial directions using the centrifugation created by the rotation of the flange.
  • a vortex may be created.
  • the cooling fluid which is in the groove can be sucked by centrifugal effect and can be projected radially on the coil heads to cool them.
  • the cooling fluid can be supplied to the grooves through the openings in the flange.
  • the cooling fluid can be supplied to the grooves via axial channels formed in the rotor mass.
  • the flow rate of coolant escaping from the grooves and/or the local or global characteristics of the cooling may depend on the rotational speed of the machine and the dimensions of the grooves.
  • the grooves arranged on the inner face can be against the rotor, in particular against the rotor mass.
  • At least one groove may extend along a rectilinear elongation axis L. All the grooves can extend along a straight elongation axis L. The axis or axes of elongation L can be radial.
  • the length of the radial grooves may be less than the distance, measured radially, between the edge and the outside diameter of the central bore.
  • the cross section of the groove may be constant over at least one third of the length, better over at least half the length, better over at least two thirds of the length, better over its entire length.
  • the cross section of the groove may not be constant.
  • the groove may widen towards the edge. In this case, the closer you get to the edge of the flange, the more the cross section of the groove increases.
  • Such a groove shape allows, by venturi effect, that the speed of the cooling fluid at the outlet of the groove is lower than at the inlet. Such a shape allows a more global and homogeneous cooling.
  • the groove can converge in the direction of the edge. In this case, the closer you get to the edge of the flange, the more the cross section of the groove narrows.
  • the speed of the cooling fluid at the outlet is greater than at the inlet. This makes it possible to create localized rotating cooling, in particular close to the coil heads.
  • the outer face can have the same number of grooves as openings.
  • At least one groove can open into an opening.
  • all the grooves can open into an opening.
  • An aperture may be in fluid communication with only one groove.
  • an aperture may be in fluid communication with multiple grooves.
  • the groove(s) can be oriented along an axis of symmetry of the opening into which they open.
  • the groove(s) may be remote from the opening(s).
  • the groove or grooves may not be in fluid communication with the openings of the flange which carries them.
  • the grooves may be in fluid communication with the openings of a flange disposed at another end of the rotor.
  • the invention also relates to an electric machine rotor, comprising a rotor mass and at least one flange as defined above.
  • the subject of the invention is a rotor comprising a rotor mass and two flanges as defined previously, each disposed at one end of the rotor mass.
  • the invention also relates, according to another of its aspects, to a rotor of an electrical machine rotating around an axis of rotation X, the rotor comprising a rotor mass and at least one flange as defined above, the mass rotor comprising at least one housing intended to receive a magnet, the housing comprising at least one recess, at least one recess of one of the housings being at least partially superimposed on at least one opening of the flange when the rotor is observed according to axis of rotation X of the machine.
  • the openings can be superimposed on recesses made in the rotor mass and arranged elsewhere than in the housings of the magnets, for example recesses dedicated specifically to the circulation of the cooling fluid.
  • the openings In cross section, the openings have an extent substantially equal to the extent of the housing to which they are partially superimposed.
  • the rotor can comprise a first and a second flange as described above.
  • the two flanges can be angularly offset by an angle P relative to each other around the axis of rotation.
  • the angle P can be equal to the angle between two poles of the electrical machine.
  • the angle P can be between 50 and 80°, better still between 45 and 75°, between 40 and 70°, for example of the order of 60°.
  • the rotor can be configured to provide cross circulation of the cooling fluid within the rotor mass.
  • the fluid can circulate in the recesses of the rotor mass which are angularly offset around the axis of rotation, the recesses in which the fluid circulates towards the rear preferably alternating with those in which the fluid circulates towards the front, the recesses being preferably parallel and associated with respective poles of the rotor.
  • the machine may comprise a cooling fluid supply to the flanges, the fluid supplying the first flange circulating from the latter through the rotor mass via at least one recess towards the second flange, and the fluid supplying the second flange flowing from the latter to the first flange by at least one recess of the rotor mass.
  • the first and second flanges are identical and angularly offset so as to supply different recesses, the recesses traversed by the fluid circulating from the first flange to the second flange being for example made within the odd poles, and those traversed by the fluid in the opposite direction, being for example located within the even poles.
  • the inner face of the first flange and the inner face of the second flange may each comprise at least one groove extending radially from the edge in the direction of the central bore of the flanges, at least one groove of the first flange being at least partially superimposed on at least one opening of the second flange when the rotor is observed along the axis of rotation X of the machine.
  • the cooling fluid enters the rotor through the openings of the first flange and exits through the grooves of the second flange. It is thus possible to impose a direction on the flow of cooling fluid.
  • the grooves preferably open opposite the coil heads of the stator, in order to allow the projected fluid to cool them.
  • the cooling fluid that supplies the second flange joins the first flange by flowing through the recesses and then is ejected from the first flange via one of the grooves to cool the coil heads.
  • the cooling fluid which supplies the first flange joins the second flange by flowing through the recesses and then is ejected from the second flange via one of the grooves to cool the coil heads.
  • the cooling fluid can be a gas, for example air.
  • the invention also relates to an electric machine comprising a stator and a rotor as defined above.
  • the stator may comprise a stator mass comprising notches provided between teeth, each notch receiving one or more winding conductors.
  • the machine can be used as a motor or as a generator.
  • the machine can be reluctance. It can constitute a synchronous motor or, as a variant, a synchronous generator. As a further variant, it constitutes an asynchronous machine.
  • the maximum speed of rotation of the machine can be high, being for example greater than 10,000 rpm, better still greater than 12,000 rpm, being for example of the order of 14,000 rpm to 15,000 rpm. min, or even 20,000 rpm or 24,000 rpm or 25,000 rpm.
  • the maximum speed of rotation of the machine may be less than 100,000 rpm, or even 60,000 rpm, or even even less than 40,000 rpm, better still less than 30,000 rpm.
  • the invention may be particularly suitable for high-powered machines.
  • the machine may comprise a single inner rotor or, as a variant, an inner rotor and an outer rotor, arranged radially on either side of the stator and coupled in rotation.
  • the machine can be inserted alone into a casing or inserted into a gearbox casing. In this case, it is inserted into a casing which also houses a gearbox.
  • the housing is, for example, water-cooled.
  • the notches can be at least partially closed.
  • a partially closed notch makes it possible to create an opening at the level of the air gap, which can be used, for example, for the installation of electrical conductors for filling the notch.
  • a partially closed notch is in particular made between two teeth which each have pole shoes at their free end, which close the notch at least in part.
  • the notches can be completely closed.
  • “fully closed notch” is meant notches which are not open radially towards the air gap.
  • At least one notch, or even each notch can be continuously closed on the air gap side by a bridge of material coming in one piece with the teeth defining the notch. All the notches can be closed on the air gap side by bridges of material closing the notches. The material bridges may be integral with the teeth defining the notch. The stator mass then has no cutout between the teeth and the bridges of material closing the slots, and the notches are then continuously closed on the side of the air gap by the bridges of material coming from a single piece with the teeth defining the notch.
  • the notches can also be closed on the side opposite the air gap by an added yoke or in one piece with the teeth. The notches are then not open radially outwards.
  • the stator mass may have no cutout between the teeth and the yoke.
  • each of the notches has a continuously closed contour.
  • continuously closed is meant that the notches have a continuous closed contour when viewed in cross section, taken perpendicular to the axis of rotation of the machine. You can go all the way around the notch without encountering a cutout in the stator mass.
  • the stator may comprise coils arranged in a distributed manner in the slots, having in particular electrical conductors arranged in a row in the slots.
  • distributed we mean that at least one of the coils passes successively through two non-adjacent slots.
  • the electrical conductors may not be arranged in the notches loosely but in an orderly manner. They are stacked in the slots in a non-random manner, being for example arranged in rows of aligned electrical conductors.
  • the stack of electrical conductors is for example a stack according to a hexagonal network in the case of electrical conductors of circular cross-section.
  • the stator may include electrical conductors housed in the slots. Electrical conductors at least, see a majority of electrical conductors, can be pin-shaped, U-shaped or I-shaped.
  • the pin can be U-shaped ("U-pin” in English) or straight, being in form of I (“I-pin” in English).
  • the electrical conductors can thus form a distributed winding.
  • the winding may not be concentrated or tooth wound.
  • the stator has a concentrated winding.
  • the stator may include teeth and coils disposed on the teeth.
  • the stator can thus be wound on teeth, in other words with undistributed winding.
  • the stator teeth may include pole shoes.
  • the stator teeth are devoid of pole shoes.
  • the stator may include an outer carcass surrounding the yoke.
  • the teeth of the stator can be made with a stack of magnetic laminations, each covered with an insulating resin, in order to limit the losses by induced currents.
  • FIG la figure la is a perspective view of the outer face of a flange according to the invention.
  • Figure 1b is a perspective view of the inner face of the flange of Figure la,
  • figure le is a cross-sectional diagram of an electrical machine comprising two flanges as illustrated in figures la and 1b,
  • FIG 2a Figure 2a is a view similar to Figure la of an alternative embodiment
  • Figure 2b is a view similar to Figure 1b of an alternative embodiment
  • figure 2c is a view similar to figure le of an alternative embodiment
  • Figure 3a is a view similar to Figure la of an alternative embodiment
  • Figure 3b is a view similar to Figure 1b of an alternative embodiment
  • Figure 4 is a front view of a rotor plate attached to the inner face of the flange of Figures 3a and 3b,
  • Figure 5 is a schematic partial profile view of a rotor comprising the flange of Figure 3 a
  • Figure 6 is a front view of the outer face of a flange according to another embodiment of the invention
  • FIG 7 is a view similar to Figure la of an alternative embodiment
  • FIG 8 is a view similar to Figure la of an alternative embodiment
  • figure 9a is a diagram seen in profile of a fin of a flange according to the invention.
  • Figure 9b is a view similar to Figure 9a of an alternative embodiment, and
  • Figure 9c is a view similar to Figure 9a of an alternative embodiment, and
  • Figure 9d is a view similar to Figure 9a of an alternative embodiment.
  • the flange has a central bore 13, an inner face 11, an outer face 12 and a radially outer edge 17 extending between the inner face 11 and the outer face 12.
  • the flange 10 has openings 14, for example it has six openings 14. In the illustrated embodiment, the openings 14 are all identical and are evenly distributed around the central bore 13.
  • the flange 10 On its outer face 12, the flange 10 comprises fins 15 extending partially into the openings 14. Each fin 15 comprises a part 15a which extends into the opening 14 and a part 15b which extends from the outer face 12. The fins 15 do not extend completely through the openings 14. In the example illustrated, the fins 15 have a thickness of the order of 5 mm, a width of the order of 5 mm and a height of the order of 20 mm.
  • the flange 10 has grooves 16 on its inner face 11. The grooves 16 are arranged at the same circumferential position as the fins 15 have on the outer face 12. The grooves 16 extend from the edge 17 from the flange to the periphery of the openings 14 so that they open there and that fluid communication between them is ensured.
  • the grooves 16 extend along a rectilinear elongation axis L.
  • the grooves 16 are for example of cross-section of constant shape over their entire height, in particular of rectangular shape.
  • Figure le illustrates an electric machine 1 arranged in a casing 6 comprising a rotor 2 and an external stator 3.
  • the stator 3 makes it possible to generate a rotating magnetic field for driving the rotor 2 in rotation, within the framework of a synchronous motor , and in the case of an alternator, the rotation of the rotor induces an electromotive force in the electrical conductors of the stator 3.
  • the rotor 1 represented in figure 1e comprises a magnetic rotor mass 4 extending axially along the axis of rotation X of the rotor, this rotor mass being formed by a stack of magnetic rotor laminations stacked along the axis X, the laminations being for example identical and superimposed exactly.
  • the magnetic laminations are preferably made of magnetic steel. All grades of magnetic steel can be used.
  • the rotor mass 4 has a central opening for mounting on a shaft 5.
  • the shaft can, in the example considered, be made of a non-magnetic material, for example non-magnetic stainless steel or aluminum, or on the contrary be magnetic.
  • the rotor 1 comprises two flanges 10, as described above, each disposed at one end of the rotor mass 4.
  • the use of such flanges in an electric machine allows cooling, in particular cooling by air, effective.
  • the rotor mass and in particular the rotor laminations, comprises housings intended to receive permanent magnets.
  • Recesses 41 in which the cooling fluid can circulate are made in the rotor mass 4.
  • the recesses 41 can be arranged in the housings of the permanent magnets.
  • the recesses 41 can be axial channels arranged elsewhere than in the housings of the permanent magnets.
  • the recesses 41 are at least partially superimposed on the openings 14 of the flange when the rotor is observed along the axis of rotation X of the electric machine.
  • the cooling fluid can enter the rotor mass through the openings 14.
  • the circulation of the cooling fluid in the electric machine 1 has been illustrated in FIG. particular by the parts 15a of the fins which extend in the openings 14, through the openings 14 towards the recesses 41 made in the rotor mass 4.
  • the cooling fluid can thus cool the heart of the rotor mass 4.
  • the outlets of the grooves 16 are oriented towards the ends of the coils 30 of the stator. Part of the cooling fluid contained in the casing can be directed by centrifugal force into the grooves 16 then towards the coil heads 30 to cool them.
  • a flange 10 according to another embodiment of the invention.
  • the flange has three openings 14.
  • the flange has on its outer face 12 three fins 15 which partially extend into the openings 14 and three fins 15' which do not extend into an opening.
  • the flange On its inner face 11, the flange has three grooves 16 arranged at the same circumferential positions as the fins 15' which do not extend into an opening.
  • the grooves 16 extend from the edge 17 of the flange and do not open into the openings 14.
  • the grooves 16 extend along a straight elongation axis L.
  • FIG 2c There is illustrated in Figure 2c the circulation of the cooling fluid in an electrical machine comprising a first flange 10a and a second flange 10b according to the variant embodiment of Figures 2a and 2b.
  • the two flanges 10a and 10b can be angularly offset by an angle P of the order of 60° relative to each other around the axis of rotation.
  • the flanges 10a and 10b are placed against the rotor mass so that the grooves 16 and the openings 14 face the recesses 41 formed in the rotor mass when the rotor is observed along the axis of rotation X of the electric machine.
  • the first 10a and second 10b flanges are identical and angularly offset so as to supply different recesses 41.
  • the cooling fluid which supplies the second flange 10b joins the first flange 10a by flowing through the openings 14 of the first flange then through the recesses 41 then is ejected from the first flange 10a via the grooves 16 to cool the coil heads 30.
  • the cooling fluid which supplies the first flange 10a joins the second flange 10b by flowing through the openings 14 of the second flange, then through the recesses 41 then is ejected of the second flange via the grooves 16 to cool the coil heads 30.
  • the direction of circulation of the cooling fluid in the rotor is thus imposed.
  • FIG. 3a, 3b, 3c and 3d another embodiment of the invention.
  • the fins 15 all pass through one of the openings 14.
  • Each fin 15 divides the opening 14 through which it extends into two symmetrical sub-openings 14a and 14b.
  • FIG. 4 There is illustrated in Figure 4 a sheet 42 of the rotor mass.
  • the sheet 42 has housings 43 for magnets 44.
  • the magnets 44 do not occupy all the space of the housings 43 so that recesses 41 are made in the housings.
  • the flange 10 is placed against the plate 42 of the rotor mass in such a way that the openings 14 are partially superimposed on the recesses 41 formed in the housings 43 of the magnets.
  • the cooling fluid which is directed towards the openings 14 can thus flow in the recesses 41 to reach the opposite flange and cool the heart of the rotor mass.
  • FIG. 5 An example of an electric machine rotor comprising a flange 10 according to Figures 3a or 3b.
  • the fins 15 have a height L of the order of 25 mm.
  • Figures 6 to 8 illustrate alternative embodiments in which the flange 10 comprises six openings 14 and six fins 15 on its outer face 12. Each fin 15 comprises a part 15a which extends into one of the openings 14 and a part 15b which extends from the outer face 12 of the flange 10.
  • the part 15b of the fin which extends from the outer face 12 of the flange 10 does not extend to the edge 17 of the flange.
  • the height ha of the part 15b of the fin 15 which extends from the outer face 12, measured in the radial direction, is less than the radial distance between the edge 17 of the flange and the peripheral edge 140 of the opening 14 closest to the edge.
  • the width of the part 15b of the fin 15 which extends from the outer face 12, measured in the axial direction, is of the order of 5 mm.
  • the part 15b of the fin which extends from the outer face 12 of the flange 10 extends from the edge 17 of the flange 10 to the periphery of an opening 14.
  • the height ha of the part 15b of the fin 15 which extends from the outer face 12, measured in the radial direction, is substantially equal to the radial distance between the edge 17 of the flange and the peripheral edge 140 of the opening. 14 closest to the slice.
  • the height ha of the part 15b of the fin 15 which extends from the outer face 12, measured in the radial direction is of the order of 46.4 cm.
  • the width of the part 15b of the fin 15 which extends from the outer face 12, measured in the axial direction, is of the order of 5 mm.
  • the part 15b of the fin which extends from the outer face 12 of the flange 10 does not extend to the edge 17 of the flange.
  • the height ha of the part 15b of the fin 15 which extends from the outer face 12, measured in the radial direction, is less than the radial distance between the edge 17 of the flange and the peripheral edge 140 of the opening 14 closest to the slice.
  • the width la of the part 15b of the fin 15 which extends from the outer face 12, measured in the axial direction, is of the order of 10 mm.
  • the master plane of the fin 15 is substantially perpendicular to the outer face 12 of the flange.
  • the flow of cooling fluid is shown schematically by the arrows 150.
  • the fin 15 is placed at the entrance to a recess 41 forming a channel in the rotor mass. Part of the cooling fluid is oriented towards the recess 4L It can be seen that the flow of cooling fluid is turbulent on one of the faces of the fin, for example on the upper face 151.
  • the directing plane P of the fin 15 is inclined with respect to the axis of rotation X.
  • the cooling fluid 150 is directed towards the recess 41 creating a channel in the rotor mass. It can be seen that there is no turbulence near the fin 15.
  • the directing plane of the fin 15 is inclined at an angle a with respect to the axis of rotation X and the fin 15 comprises a rectilinear portion 152 and a curved portion 153 around an axis of curvature oriented perpendicular to a radial plane containing the axis of rotation X of the electrical machine.
  • Such a shape of fin 15 makes it possible to further improve the quantity of cooling fluid which is oriented in the recess 41.
  • the fin has two straight portions 154, 155.
  • the two rectilinear portions 154, 155 form between them an angle 0 of the order of 135°.
  • the invention is not limited to what has just been described.
  • the flange may have a different number of openings. It may also include fins and/or openings of different sizes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

Flasque (10) de rotor de machine électrique tournante autour d'un axe de rotation X, comportant une face intérieure (11) tournée vers une masse rotorique (4), une face extérieure (12) opposée à la face intérieure, une tranche (17) radialement extérieure s'étendant entre la face intérieure et la face extérieure et un alésage central (13), le flasque comportant : - une ou plusieurs ouvertures (14) traversantes entre la face intérieure et la face extérieure, et - au moins une ailette (15) s'étendant au moins partiellement dans l'ouverture.

Description

Description
Titre : Flasque pour machine électrique tournante
La présente invention revendique la priorité de la demande française 2110789 déposée le 12 octobre 2021 dont le contenu (texte, dessins et revendications) est ici incorporé par référence.
Domaine technique
La présente invention concerne les machines électriques tournantes, et plus particulièrement celles refroidies par une circulation d’un fluide de refroidissement, notamment de l’air, circulant au moins partiellement par le rotor de la machine.
L’invention porte plus particulièrement sur les machines synchrones ou asynchrones, à courant alternatif. Elle concerne notamment les machines de traction ou de propulsion de véhicules automobiles électriques (Battery Electric Vehicle) et/ou hybrides (Hybrid Electric Vehicle - Plug-in Hybrid Electric Vehicle), telles que voitures individuelles, camionnettes, camions ou bus. L’invention s’applique également à des machines électriques tournantes pour des applications industrielles et/ou de production d’énergie, notamment navales, aéronautiques ou éoliennes.
Technique antérieure
Il est connu de refroidir les têtes de bobines du stator au cours du fonctionnement d’une machine électrique tournante par un fluide, notamment par un gaz, en particulier par de l’air circulant dans la machine électrique.
De telles machines électriques présentent souvent des zones de hautes températures localisées proche des têtes de bobines du stator et dans le rotor de la machine électrique. Les têtes de bobines étant en contact avec le fluide de refroidissement, la qualité de leur refroidissement dépend de la convection forcée interne dans la machine électrique.
Les demandes WO 2021/115806, EP 2 918 000, FR 2 988 236, FR 2 984 625, FR 2 984 630, FR 2 988 238, FR 2 988 237, FR 2 984 626, FR 2 995 171, EP 2 109 207, US 2011/0181138, EP 2 605 380, US 2020/0321830, FR 2 887 698, CN 207459903, US 2018/0337569, KR 1020180094446 et CN 210517922 divulguent des flasques pour des machines électriques tournantes. Les flasques comportent des ouvertures et des ailettes qui s’étendent à distance des ouvertures.
La demande EP 2 873 137 décrit un ventilateur comportant des pales s’étendant dans des ouvertures. Les pales sont rapportées sur le disque du ventilateur.
Il existe un besoin pour encore améliorer le refroidissement des machines électriques tournantes refroidies par une circulation de fluide de refroidissement, en particulier d’air.
Exposé de l’invention
L’invention vise à répondre à ce besoin et elle parvient, selon l’une de ses aspects, grâce à un flasque de rotor de machine électrique tournante autour d'un axe de rotation X, le flasque comportant une face intérieure tournée vers une masse rotorique, une face extérieure opposée à la face intérieure, une tranche radialement extérieure s'étendant entre la face intérieure et la face extérieure et un alésage central, le flasque comportant :
- une ou plusieurs ouvertures traversantes entre la face intérieure et la face extérieure, et
- au moins une ailette s’étendant au moins partiellement dans l’ouverture.
Le flasque selon l’invention, et en particulier les ailettes du flasque, favorise la circulation et le brassage de l’air au niveau des têtes de bobines du stator et/ou à l’intérieur du rotor. Cette amélioration de la circulation de l’air permet d’améliorer le refroidissement de la machine électrique lors de son fonctionnement. En particulier, la température au niveau des têtes de bobine du stator, des aimants du rotor et/ou du connecteur de phase peut être réduite plus efficacement.
Par ailleurs, le flasque selon l’invention permet d’améliorer le refroidissement de conducteurs électriques de la machine électrique, qui sont notamment fait en cuivre, et ainsi de réduire les pertes par effet Joules.
De plus, le flasque selon l’invention permet de réduire la température de la machine électrique et en particulier la température des têtes de bobines du stator.
Une seule ailette peut s’étendre à travers une ouverture. En variante plusieurs ailettes, par exemple deux, peuvent s’étendre à travers une même ouverture.
Le flasque peut également comporter des ailettes qui ne s’étendent pas au travers d’une ouverture. Le flasque peut également comporter des ouvertures dans lesquelles aucune ailette ne s’étend au moins partiellement.
Le flasque peut comporter autant d’ailettes que de pôles de la machine. Par exemple, le flasque peut comporter six ailettes.
Le flasque peut comporter autant d’ouvertures que de pôles de la machine. En variante, le flasque peut comporter moins d’ouvertures que de pôles de la machine, le nombre d’ouvertures pouvant notamment être égal à la moitié du nombre de pôles. Par exemple, le flasque peut comporter 3 ou 6 ouvertures.
Dans un mode de réalisation particulier, le flasque peut comporter 6 ouvertures et 6 ailettes, chacune s’étendant au moins partiellement dans une ouverture. Dans un autre mode de réalisation, le flasque peut comporter 3 ouvertures et 6 ailettes, trois des ailettes s’étendant au moins partiellement dans une ouverture et les trois autres ailettes ne s’étendant dans aucune ouverture.
La ou les ouvertures peuvent être disposées radialement entre la tranche et l’alésage central du flasque.
Le flasque peut être fabriqué par usinage ou par moulage, notamment par fonderie.
Ailettes
Les ailettes peuvent toutes s’étendre sur la face extérieure. La face intérieure, qui est en contact avec la masse rotorique, peut être sensiblement lisse. La face intérieure peut ainsi être bien accolée à la masse rotorique.
La ou les ailettes peuvent être formées d’un seul tenant avec le flasque. Elles peuvent ne pas être rapportées sur le flasque.
La fabrication du flasque est ainsi facilitée. En particulier, il peut être moulé d’un seul tenant par fonderie.
Au moins une ailette peut être de forme sensiblement plane, et elle peut s’étendre selon un plan directeur.
L’utilisation d’ailettes sensiblement planes permet de faciliter leur fabrication. De plus, les ailettes planes permettent d’avoir le même écoulement de fluide de refroidissement, notamment d’air, quel que soit le sens de rotation de la machine. Un seul type d’ailette peut donc être utilisé pour tout le flasque. La fabrication du flasque est ainsi plus économique. En variante, au moins une ailette peut comporter une portion courbée, notamment dans la direction axiale. Cette dernière peut être courbée autour d’un axe de courbure orienté perpendiculairement à un plan radial contenant l’axe de rotation X de la machine électrique. Une telle courbure de l’ailette permet de modifier la direction du flux du fluide de refroidissement d’un certain angle afin d’orienter le flux vers des canaux axiaux de la masse rotorique.
Au moins une ailette peut comporter une portion rectiligne et une portion courbée. En variante, au moins une ailette comporte deux portions rectilignes non alignées. Les deux portions rectilignes formant entre elles un angle 0 pouvant être compris entre 90° et 180°, mieux entre 100° et 170°, mieux entre 110° et 160°, mieux entre 120° et 150°, par exemple de l’ordre de 135°.
Le plan directeur de l’ailette peut comprendre l’axe de rotation X de la machine.
Les ailettes peuvent être de forme sensiblement parallélépipédique. En variante, au moins une ailette peut être en forme de L. Dans ce cas, elle peut comporter deux parties parallélépipédiques disposées perpendiculairement. Les deux parties peuvent s’étendre dans un plan comprenant l’axe de rotation X de la machine. Chaque ailette peut comporter une partie qui s’étend sur la face extérieure du flasque et une partie qui s’étend dans l’ouverture.
Une ailette peut comporter deux faces sensiblement parallèles orientées radialement.
On désigne par « épaisseur de l’ailette » la dimension de l’ailette mesurée dans la direction circonférentielle. On désigne par « hauteur de l’ailette » la dimension de l’ailette mesurée dans la direction radiale. On désigne par « largeur de l’ailette » la dimension de l’ailette mesurée dans la direction axiale.
L’épaisseur du flasque correspond à la distance, mesurée selon la direction axiale, entre la face intérieure et la face extérieure.
Le flasque peut avoir une épaisseur comprise entre 5 et 30 mm, mieux entre 7 et 20 mm, mieux entre 10 et 15 mm, par exemple de l’ordre de 13 mm.
Le flasque peut avoir un diamètre compris entre 50 et 300 mm, mieux entre 75 et 200 mm, mieux entre 100 et 150 mm, par exemple de l’ordre de 136 mm.
La largeur de l’ailette, en particulier la largeur de la partie de l’ailette qui s’étend dans l’ouverture, peut être supérieure à l’épaisseur du flasque. Les ailettes peuvent ainsi dépasser du flasque, y compris au niveau des ouvertures. Ces dépassements permettent la formation de turbulences du fluide de refroidissement au niveau des ailettes et améliore ainsi le refroidissement.
En variante, la largeur des ailettes peut être inférieure à l’épaisseur du flasque.
On désigne par « largeur d’une partie d’une ailette qui s’étend sur la face extérieure du flasque » la largeur de la partie de l’ailette qui s’étend depuis le flasque. Cette largeur ne comprend pas l’épaisseur du flasque.
La largeur d’une partie d’une ailette qui s’étend sur la face extérieure du flasque peut être comprise entre 1 et 15 mm, mieux entre 2 et 10 mm, mieux entre 3 et 8 mm, par exemple de l’ordre de 5 mm.
La largeur d’une partie d’une ailette qui s’étend sur la face extérieure du flasque peut être comprise entre 0 et 20% du diamètre du flasque, mieux entre 1 et 15%, mieux entre 3 et 10%, par exemple de l’ordre de 3,7% du diamètre du flasque.
La largeur d’une partie d’une ailette qui s’étend sur la face extérieure du flasque peut être comprise entre 3 et 300% de l’épaisseur du flasque, mieux entre 10 et 200%, mieux entre 15 et 100%, mieux entre 20 et 75%, mieux entre 30 et 50%, par exemple de l’ordre de 38% de l’épaisseur du flasque.
La hauteur d’une ailette peut être comprise entre 10 et 35% du diamètre du flasque, mieux entre 15 et 30%, mieux entre 18 et 27%, par exemple de l’ordre de 25% du diamètre du flasque.
La hauteur d’une ailette peut être comprise entre 10 et 60 mm, mieux entre 20 et 50 mm, mieux entre 30 et 40 mm, par exemple de l’ordre de 35 mm.
La hauteur de la partie de l’ailette qui s’étend dans l’ouverture peut être comprise entre 1 et 15 mm, mieux entre 3 et 10 mm, mieux entre 5 et 8 mm, par exemple de l’ordre de 7 mm.
La hauteur de la partie de l’ailette qui s’étend dans l’ouverture peut être supérieure à 30% de la hauteur de l’ouverture mesurée dans la direction radiale, mieux supérieure à 50%, mieux supérieure 70%, par exemple de l’ordre de 100%.
Dans le cas où la hauteur de la partie de l’ailette qui s’étend dans l’ouverture est de l’ordre de 100% de la hauteur de l’ouverture mesurée dans la direction radiale, l’ailette traverse totalement l’ouverture. L’épaisseur d’une ailete peut être comprise entre 0 et 20% du diamètre du flasque, mieux entre 1 et 15%, mieux entre 3 et 10%, par exemple de l’ordre de 3,7% du diamètre du flasque.
L’épaisseur d’une ailette peut être comprise entre 1 et 15 mm, mieux entre 2 et 10 mm, mieux entre 3 et 8 mm, par exemple de l’ordre de 5 mm.
L’épaisseur d’une ailette peut être inférieure à la largeur de l’ouverture, mesurée dans la direction circonférentielle, au travers de laquelle elle s’étend. Ceci permet de laisser de l’espace dans les ouvertures, notamment de part et d’autre de l’ailete, pour permettre l’écoulement du fluide de refroidissement.
Dans le cas d’une ailette en forme de L, les deux parties parallélépipédiques peuvent avoir des hauteurs et/ou des largeurs différentes.
Chaque ailette peut comporter une face inférieure et une face supérieure qui s’étendent toutes deux dans des plans perpendiculaires au flasque. La face inférieure est plus proche de l’axe de rotation X de la machine électrique que la face supérieure.
La face inférieure d’une ailete peut être située à une distance de l’axe de rotation X de la machine d’au moins 20%, mieux d’au moins 30%, mieux d’au moins 40%, par exemple de l’ordre de 45% du diamètre du flasque.
La face inférieure d’une ailete peut être située à une distance de l’axe de rotation X de la machine d’au plus 70%, mieux d’au plus 60%, mieux d’au plus 50%, par exemple de l’ordre de 45% du diamètre du flasque.
La face inférieure d’une ailete peut être située à une distance de l’axe de rotation X comprise entre 30 et 90 mm, mieux entre 40 et 80 mm, mieux entre 50 et 70 mm, par exemple de l’ordre de 60 mm.
La face supérieure d’une ailette peut être située à une distance de l’axe de rotation X de la machine d’au moins 60%, mieux d’au moins 70%, mieux d’au moins 80%, par exemple de l’ordre de 82% du diamètre du flasque.
La face supérieure d’une ailette peut être située à une distance de l’axe de rotation X de la machine d’au plus 100%, mieux d’au plus 90%, mieux d’au plus 85%, par exemple de l’ordre de 82% du diamètre du flasque.
La face supérieure d’une ailette peut être située à une distance de l’axe de rotation X comprise entre 70 et 135 mm, mieux entre 80 et 125 mm, mieux entre 100 et 115 mm, par exemple de l’ordre de 112 mm. Au moins une ailette peut s’étendre selon un plan directeur perpendiculaire aux faces intérieure et extérieure du flasque. Au moins une ailette peut s’étendre selon un plan directeur incliné par rapport à l’axe de rotation X de la machine électrique.
Une ailette s’étendant selon un plan directeur perpendiculaire aux faces intérieure et extérieure permet de former un écoulement turbulent sur une de ses faces.
Une ailette s’étendant selon un plan directeur incliné par rapport à l’axe de rotation X de la machine électrique permet de faire en sorte que l’écoulement du fluide de refroidissement épouse mieux la forme de l’ailette. On limite ainsi les turbulences sur l’extrados de l’ailette ce qui permet de réduire les pertes aérodynamiques.
Une ailette peut être inclinée d’un angle par rapport aux faces intérieure et extérieure du flasque compris entre 0 et 90°, mieux entre 10 et 80°, mieux entre 20 et 70°, mieux entre 30 et 60°, par exemple de l’ordre de 45°.
Au moins une ailette peut s’étendre selon un plan directeur incliné par rapport à un plan radial contenant l’axe de rotation de la machine.
De telles inclinaisons d’ailettes permettent d’optimiser l’écoulement de l’air pour un point de fonctionnement donné. Par exemple, on peut incliner les ailettes de sorte que l’écoulement soit optimisé pour la vitesse de rotation à laquelle la machine électrique en fonctionnement est la plus chaude.
Au moins un tiers des ailettes peut s’étendre selon un plan directeur perpendiculaire aux faces intérieure et extérieure du flasque, mieux au moins la moitié, mieux au moins les deux tiers, mieux toutes les ailettes peuvent s’étendre selon un plan directeur perpendiculaire aux faces intérieure et extérieure du flasque.
Au moins un tiers des ailettes peut s’étendre selon un plan directeur incliné par rapport à l’axe de rotation de la machine, mieux au moins la moitié, mieux au moins les deux tiers, mieux toutes les ailettes peuvent s’étendre selon un plan directeur incliné par rapport à l’axe de rotation de la machine.
Au moins un tiers des ailettes peut s’étendre selon un plan directeur incliné par rapport à un plan radial, mieux au moins la moitié, mieux au moins les deux tiers, mieux toutes les ailettes peuvent s’étendre selon un plan directeur incliné par rapport à un plan radial.
Toutes les ailettes inclinées peuvent présenter la même inclinaison. En variante, au moins deux ailettes peuvent présenter des inclinaisons différentes. Par exemple 2, 3, 4, 5 ailettes peuvent présenter des inclinaisons différentes. Dans un autre mode de réalisation, toutes les ailettes peuvent présenter des inclinaisons différentes.
On peut incliner uniquement le bord d’attaque d’une ailette. Ainsi, seul le bord d’attaque de la ou les ailettes peut être incliné par rapport à l’axe de rotation de la machine et/ou par rapport à un plan radial.
Ouvertures
Le flasque selon l’invention peut comporter au moins deux ouvertures, notamment au moins deux ouvertures uniformément réparties autour de l’alésage central.
Dans un mode de réalisation particulier, le flasque peut comporter six ouvertures uniformément réparties et l’angle entre les milieux de deux ouvertures consécutives peut être de l’ordre de 60°. Dans un autre mode de réalisation particulier, le flasque peut comporter trois ouvertures uniformément réparties et l’angle entre les milieux de deux ouvertures consécutives peut être de l’ordre de 120°.
Chaque ouverture peut avoir une hauteur, mesurée dans la direction radiale, comprise entre 5 et 25 mm, mieux entre 10 et 20 mm, mieux entre 12 et 15 mm par exemple de l’ordre de 13 mm.
Chaque ouverture peut avoir une largeur, mesurée dans la direction circonférentielle, comprise entre 3 et 45 mm, mieux entre 5 et 40 mm, mieux entre 7 et 35 par exemple de l’ordre de 11 mm ou de 30 mm.
Le flasque peut comporter au moins deux ouvertures de forme sensiblement identiques.
Chaque ouverture peut être l’image d’une autre ouverture par une rotation d’angle comprise entre 30° et 180°.
Dans une variante de réalisation, le flasque peut comporter au moins deux ouvertures de formes différentes.
Les ouvertures peuvent avoir une forme oblongue, rectangulaire ou encore ovale.
Le flasque peut comporter au moins une ailette s’étendant sur toute la hauteur de l’ouverture dans la direction radiale, l’ailette divisant notamment l’ouverture en deux sous- ouvertures qui peuvent être sensiblement identiques.
L’ailette peut ainsi traverser de part en part une ouverture. Une telle disposition améliore le maintien mécanique du flasque. Rainures radiales
La face intérieure du flasque peut comporter au moins une rainure radiale s’étendant radialement depuis la tranche en direction de l’alésage central du flasque.
De telles rainures radiales permettent au fluide de refroidissement de sortir du flasque et d’être orienté vers les têtes de bobines afin de les refroidir.
Au moins une rainure, mieux au moins la moitié des rainures, mieux toutes les rainures, peuvent être situées sensiblement à la même position circonférentielle que la ou les ouvertures, en particulier la même position circonférentielle que le centre des ouvertures. En variante au moins une rainure, mieux au moins la moitié des rainures, mieux toutes les rainures, peuvent être situées à des positions circonférentielles distinctes des ouvertures.
La présence d’une rainure radiale permet de faire circuler le fluide de refroidissement efficacement au-delà du rayon du flasque et améliore ainsi le refroidissement des têtes de bobines. Les rainures forcent l’écoulement dans des directions radiales en utilisant la centrifugation créée par la rotation du flasque.
Lors de la mise en rotation du flasque et de la machine, un vortex peut se créer. Par exemple, le fluide de refroidissement qui se trouve dans la rainure peut être aspiré par effet centrifuge et peut être projeté radialement sur les têtes de bobines pour les refroidir.
L’alimentation des rainures en fluide de refroidissement peut se faire par les ouvertures du flasque. En variante, l’alimentation des rainures en fluide de refroidissement peut se faire par des canaux axiaux ménagés dans la masse rotorique.
Le débit en fluide de refroidissement s’échappant des rainures et/ou les caractéristiques locales ou globales du refroidissement peuvent dépendre de la vitesse de rotation de la machine et des dimensions des rainures.
Les rainures disposées sur la face intérieure peuvent être contre le rotor, notamment contre la masse rotorique.
Au moins une rainure peut s’étendre selon un axe d’élongation L rectiligne. Toutes les rainures peuvent s’étendre selon un axe d’élongation L rectiligne. L’axe ou les axes d’élongation L peuvent être radiaux.
La longueur des rainures radiales peut être inférieure à la distance, mesurée radialement, entre la tranche et le diamètre extérieur de l’alésage central. La section transversale de la rainure peut être constante sur au moins un tiers de la longueur, mieux sur au moins la moitié de la longueur, mieux sur au moins les deux tiers de la longueur, mieux sur toute sa longueur.
En variante, la section transversale de la rainure peut ne pas être constante.
Par exemple, la rainure peut s’évaser en direction de la tranche. Dans ce cas, plus on se rapproche de la tranche du flasque, plus la section transversale de la rainure s’agrandie. Une telle forme de rainure permet, par effet venturi, que la vitesse du fluide de refroidissement en sortie de rainure soit plus faible qu’en entrée. Une telle forme permet un refroidissement plus global et homogène.
En variante, la rainure peut converger en direction de la tranche. Dans ce cas, plus on se rapproche de la tranche du flasque, plus la section transversale de la rainure se rétrécie. Avec une telle forme de rainure, la vitesse du fluide de refroidissement en sortie est plus importante qu’en entrée. Cela permet de créer un refroidissement tournant localisé, en particulier proche des têtes de bobines.
La face extérieure peut comporter le même nombre de rainure que d’ouverture.
Au moins une rainure peut déboucher dans une ouverture.
Dans un mode de réalisation particulier, toutes les rainures peuvent déboucher dans une ouverture. Une ouverture peut être en communication fluidique avec une rainure uniquement. En variante, une ouverture peut être en communication fluidique avec plusieurs rainures.
La ou les rainures peuvent être orientées selon un axe de symétrie de l’ouverture dans laquelle elles débouchent.
La ou les rainures peuvent être distantes de la ou des ouvertures.
La ou les rainures peuvent ne pas être en communication fluidique avec les ouvertures du flasque qui les porte. Les rainures peuvent être en communication fluidique avec les ouvertures d’un flasque disposé à une autre extrémité du rotor.
Rotor
L’invention a également pour objet un rotor de machine électrique, comportant une masse rotorique et au moins un flasque tel que défini ci-dessus. Dans un mode de réalisation, l’invention a pour objet un rotor comportant une masse rotorique et deux flasques tel que définis précédemment, chacun disposé à une extrémité de la masse rotorique.
L’invention a également pour objet, selon un autre de ses aspects, un rotor de machine électrique tournante autour d’un axe de rotation X, le rotor comportant une masse rotorique et au moins un flasque tel que défini ci-dessus, la masse rotorique comportant au moins un logement destiné à recevoir un aimant, le logement comportant au moins un évidement, au moins un évidement d’un des logements étant au moins partiellement superposé à au moins une ouverture du flasque lorsqu’on observe le rotor selon l’axe de rotation X de la machine.
En variante, les ouvertures peuvent être superposées à des évidements ménagés dans la masse rotorique et disposés ailleurs que dans les logements des aimants, par exemple des évidements dédiés spécifiquement à la circulation du fluide de refroidissement.
En section transversale, les ouvertures ont une étendue sensiblement égale à l’étendue du logement auquel elles sont partiellement superposées.
Le rotor peut comporter un premier et un deuxième flasque tel que décrit ci- dessus. Les deux flasques peuvent être décalés angulairement d’un angle P l’un par rapport à l’autre autour de l’axe de rotation.
L’angle P peut être égal à l’angle entre deux pôles de la machine électrique. L’angle P peut être compris entre 50 et 80 °, mieux entre 45 et 75 °, entre 40 et 70 °, par exemple de l’ordre de 60°.
Le rotor peut être configuré pour assurer une circulation croisée du fluide de refroidissement au sein de la masse rotorique.
En particulier, le fluide peut circuler dans les évidements de la masse rotorique qui sont décalés angulairement autour de l’axe de rotation, les évidements dans lesquels le fluide circule vers l’arrière alternant de préférence avec ceux dans lesquels le fluide circule vers l’avant, les évidements étant de préférence parallèles et associés à des pôles respectifs du rotor.
La machine peut comporter une alimentation en fluide de refroidissement des flasques, le fluide alimentant le premier flasque circulant depuis ce dernier à travers la masse rotorique par au moins un évidement vers le deuxième flasque, et le fluide alimentant le deuxième flasque circulant depuis ce dernier vers le premier flasque par au moins un évidement de la masse rotorique.
De préférence, les premier et deuxième flasques sont identiques et décalés angulairement de manière à alimenter des évidements différents, les évidements parcourus par le fluide circulant du premier flasque vers le deuxième flasque étant par exemple réalisés au sein des pôles impairs, et ceux parcourus par le fluide en sens inverse, étant par exemple situés au sein des pôles pairs.
La face intérieure du premier flasque et la face intérieure du deuxième flasque peuvent chacune comporter au moins une rainure s’étendant radialement depuis la tranche en direction de l’alésage central des flasques, au moins une rainure du premier flasque étant au moins partiellement superposée à au moins une ouverture du deuxième flasque lorsqu’on observe le rotor selon l’axe de rotation X de la machine.
Le fluide de refroidissement entre dans le rotor par les ouvertures du premier flasque et ressort par les rainures du deuxième flasque. On peut ainsi imposer une direction au flux de fluide de refroidissement.
Les rainures débouchent de préférence en regard de têtes de bobines du stator, afin de permettre au fluide projeté de les refroidir. Le fluide de refroidissement qui alimente le deuxième flasque rejoint le premier flasque en s’écoulant à travers les évidements puis est éjecté du premier flasque via une des rainures pour aller refroidir les têtes de bobines. De même, le fluide de refroidissement qui alimente le premier flasque rejoint le deuxième flasque en s’écoulant à travers les évidements puis est éjecté du deuxième flasque via une des rainures pour aller refroidir les têtes de bobines.
Le fluide de refroidissement peut être un gaz, par exemple de l'air.
Machine électrique
L’invention porte également sur une machine électrique comportant un stator et un rotor tel que défini plus haut.
Le stator peut comporter une masse statorique comportant des encoches ménagées entre des dents, chaque encoche recevant un ou plusieurs conducteurs de bobinage. La machine peut être utilisée comme moteur ou comme générateur. La machine peut être à réluctance. Elle peut constituer un moteur synchrone ou en variante un générateur synchrone. En variante encore, elle constitue une machine asynchrone.
La vitesse maximale de rotation de la machine peut être élevée, étant par exemple supérieure à 10 000 tr/min, mieux supérieure à 12 000 tr/min, étant par exemple de l’ordre de 14 000 tr/min à 15 000 tr/min, voire même de 20 000 tr/min ou de 24 000 tr/min ou de 25 000 tr/min. La vitesse maximale de rotation de la machine peut être inférieure à 100 000 tr/min, voire à 60 000 tr/min, voire encore inférieure à 40 000 tr/min, mieux inférieure à 30 000 tr/min.
L’invention peut convenir tout particulièrement pour des machines de forte puissance.
La machine peut comporter un seul rotor intérieur ou, en variante, un rotor intérieur et un rotor extérieur, disposés radialement de part et d’autre du stator et accouplés en rotation.
La machine peut être insérée seule dans un carter ou insérée dans un carter de boite de vitesse. Dans ce cas, elle est insérée dans un carter qui loge également une boîte de vitesse. Le carter est par exemple refroidi à l’eau.
Les encoches peuvent être au moins partiellement fermées. Une encoche partiellement fermée permet de ménager une ouverture au niveau de l’entrefer, qui peut servir par exemple à la mise en place des conducteurs électriques pour le remplissage de l’encoche. Une encoche partiellement fermée est notamment ménagée entre deux dents qui comportent chacune des épanouissements polaires au niveau de leur extrémité libre, lesquels viennent fermer l’encoche au moins en partie.
En variante, les encoches peuvent être entièrement fermées. Par « encoche entièrement fermée », on désigne des encoches qui ne sont pas ouvertes radialement vers l’entrefer.
Dans un mode de réalisation, au moins une encoche, voire chaque encoche, peut être continûment fermée du côté de l’entrefer par un pont de matière venu d’un seul tenant avec les dents définissant l’encoche. Toutes les encoches peuvent être fermées du côté de l’entrefer par des ponts de matière fermant les encoches. Les ponts de matière peuvent être venus d’un seul tenant avec les dents définissant l’encoche. La masse statorique est alors dépourvue de découpe entre les dents et les ponts de matière fermant les encoches, et les encoches sont alors continûment fermées du côté de l’entrefer par les ponts de matière venus d’un seul tenant avec les dents définissant l’encoche.
En outre, les encoches peuvent également être fermées du côté opposé à l’entrefer par une culasse rapportée ou d’un seul tenant avec les dents. Les encoches ne sont alors pas ouvertes radialement vers l’extérieur. La masse statorique peut être dépourvue de découpe entre les dents et la culasse.
Dans un mode de réalisation, chacune des encoches est de contour continûment fermé. Par « continûment fermé », on entend que les encoches présentent un contour fermé continu lorsqu’elles sont observées en section transversale, prise perpendiculairement à l’axe de rotation de la machine. On peut faire le tour complet de l’encoche sans rencontrer de découpe dans la masse statorique.
Le stator peut comporter des bobines disposées de manière répartie dans les encoches, ayant notamment des conducteurs électriques disposés de manière rangée dans les encoches. Par « réparti », on entend qu’au moins l’une des bobines passe successivement dans deux encoches non adjacentes.
Les conducteurs électriques peuvent ne pas être disposés dans les encoches en vrac mais de manière ordonnée. Ils sont empilés dans les encoches de manière non aléatoire, étant par exemple disposés en rangées de conducteurs électriques alignés. L’empilement des conducteurs électriques est par exemple un empilement selon un réseau hexagonal dans le cas de conducteurs électriques de section transversale circulaire.
Le stator peut comporter des conducteurs électriques logés dans les encoches. Des conducteurs électriques au moins, voir une majorité des conducteurs électriques, peuvent être en forme d'épingles, de U ou de I. L’épingle peut être en forme de U (« U-pin » en anglais) ou droite, étant en forme de I (« I-pin » en anglais).
Les conducteurs électriques peuvent ainsi former un bobinage distribué. Le bobinage peut ne pas être concentré ou bobiné sur dent.
Dans une variante de réalisation, le stator est à bobinage concentré. Le stator peut comporter des dents et des bobines disposées sur les dents. Le stator peut ainsi être bobiné sur dents, autrement dit à bobinage non réparti.
Les dents du stator peuvent comporter des épanouissements polaires. En variante, les dents du stator sont dépourvues d’épanouissements polaires.
Le stator peut comporter une carcasse extérieure entourant la culasse. Les dents du stator peuvent être réalisées avec un empilage de tôles magnétiques, recouvertes chacune d’une résine isolante, afin de limiter les pertes par courants induits.
Procédé de fabrication
Procédé de fabrication d’un flasque tel que défini plus haut, le ou les flasques pouvant être réalisé par fonderie et/ou usinage.
Brève description des dessins
L’invention pourra être mieux comprise à la lecture de la description qui va suivre, d’exemples de mise en œuvre non limitatifs de celle-ci, et à l’examen du dessin annexé, sur lequel :
[Fig la] la figure la est une vue en perspective de la face extérieure d’un flasque conforme à l’invention,
[Fig 1b] la figure 1b est une vue en perspective de la face intérieure du flasque de la figure la,
[Fig le] la figure le est un schéma en coupe d’une machine électrique comportant deux flasques tels qu’illustrés aux figures la et 1b,
[Fig 2a] la figure 2a est une vue analogue à la figure la d’une variante de réalisation,
[Fig 2b] la figure 2b est une vue analogue à la figure 1b d’une variante de réalisation,
[Fig 2c] la figure 2c est une vue analogue à la figure le d’une variante de réalisation,
[Fig 3 a] la figure 3a est une vue analogue à la figure la d’une variante de réalisation,
[Fig 3b] la figure 3b est une vue analogue à la figure 1b d’une variante de réalisation,
[Fig 4] la figure 4 est une vue de face d’une tôle rotorique accolée à la face intérieur du flasque des figures 3a et 3b,
[Fig 5] la figure 5 est une vue schématique et partielle de profil d’un rotor comportant le flasque de la figure 3 a, [Fig 6] la figure 6 est une vue de face de la face extérieure d’un flasque selon un autre mode de réalisation de l’invention,
[Fig 7] la figure 7 est une vue analogue à la figure la d’une variante de réalisation,
[Fig 8] la figure 8 est une vue analogue à la figure la d’une variante de réalisation,
[Fig 9a] la figure 9a est un schéma vu de profil d’une ailette d’un flasque selon l’invention,
[Fig 9b] la figure 9b est une vue analogue à la figure 9a d’une variante de réalisation, et
[Fig 9c] la figure 9c est une vue analogue à la figure 9a d’une variante de réalisation, et
[Fig 9d] la figure 9d est une vue analogue à la figure 9a d’une variante de réalisation.
Description détaillée
Sur les figures et dans la suite de la description, les mêmes références représentent des éléments identiques ou similaires.
On a illustré aux figures la, 1b et le un flasque 10 conforme à l’invention. Le flasque comporte un alésage central 13, une face intérieure 11, une face extérieure 12 et une tranche 17 radialement extérieure s'étendant entre la face intérieure 11 et la face extérieure 12.
Le flasque 10 comporte des ouvertures 14, par exemple il comporte six ouvertures 14. Dans le mode réalisation illustré, les ouvertures 14 sont toutes identiques et sont uniformément réparties autour de l’alésage central 13.
Sur sa face extérieure 12, le flasque 10 comporte des ailettes 15 s’étendant partiellement dans les ouvertures 14. Chaque ailette 15 comporte une partie 15a qui s’étend dans l’ouverture 14 et une partie 15b qui s’étend depuis la face extérieure 12. Les ailettes 15 ne s’étendent pas totalement au travers des ouvertures 14. Sur l’exemple illustré, les ailettes 15 ont une épaisseur de l’ordre de 5 mm, une largeur de l’ordre de 5 mm et une hauteur de l’ordre de 20 mm. Dans cette variante de réalisation, le flasque 10 comporte sur sa face intérieure 11 des rainures 16. Les rainures 16 sont disposées à la même position circonférentielle que les ailettes 15 présentent sur la face extérieure 12. Les rainures 16 s’étendent depuis la tranche 17 du flasque jusqu’à la périphérie des ouvertures 14 de sorte qu’elles y débouchent et qu’une communication fluidique entre elles est assurée. Les rainures 16 s’étendent selon un axe d’élongation L rectiligne. Les rainures 16 sont par exemple de section transversale de forme constante sur toute leur hauteur, notamment de forme rectangulaire.
La figure le illustre une machine électrique 1 disposée dans un carter 6 comportant un rotor 2 et un stator extérieur 3. Le stator 3 permet de générer un champ magnétique tournant d’entraînement du rotor 2 en rotation, dans le cadre d’un moteur synchrone, et dans le cas d’un alternateur, la rotation du rotor induit une force électromotrice dans les conducteurs électriques du stator 3.
Le rotor 1 représenté à la figure le comporte une masse magnétique rotorique 4 s’étendant axialement selon l’axe de rotation X du rotor, cette masse rotorique étant formée par un paquet de tôles rotoriques magnétiques empilées selon l’axe X, les tôles étant par exemple identiques et superposées exactement. Les tôles magnétiques sont de préférence en acier magnétique. Toutes les nuances d’acier magnétique peuvent être utilisées.
La masse rotorique 4 comporte une ouverture centrale pour le montage sur un arbre 5. L’arbre peut, dans l’exemple considéré, être réalisé dans un matériau amagnétique, par exemple en inox amagnétique ou en aluminium, ou au contraire être magnétique.
Conformément à l’invention, le rotor 1 comporte deux flasques 10, tels que décrits ci-dessus, chacun disposé à une extrémité de la masse rotorique 4. L’utilisation de tels flasques dans une machine électrique permet un refroidissement, notamment un refroidissement par air, efficace.
La masse rotorique, et en particulier les tôles rotoriques, comporte des logements destinés à recevoir des aimants permanents.
Des évidements 41 dans lesquels peut circuler le fluide de refroidissement sont ménagés dans la masse rotorique 4. Les évidements 41 peuvent être disposés dans les logements des aimants permanents. En variante, les évidements 41 peuvent être des canaux axiaux disposés ailleurs que dans les logements des aimants permanents. Les évidements 41 sont au moins partiellement superposés aux ouvertures 14 du flasque lorsqu’on observe le rotor selon l’axe de rotation X de la machine électrique. Ainsi, le fluide de refroidissement peut entrer dans la masse rotorique par les ouvertures 14.
On a illustré à la figure le la circulation du fluide de refroidissement dans la machine électrique 1. Lorsque la machine 1 est en marche, une partie du fluide de refroidissement qui est contenu dans le carter 6 est brassée et orientée par les ailettes 15, en particulier par les parties 15a des ailettes qui s’étendent dans les ouvertures 14, au travers des ouvertures 14 vers les évidements 41 ménagés dans la masse rotorique 4. Le fluide de refroidissement peut ainsi refroidir le cœur de la masse rotorique 4.
Comme illustré à la figure le, les sorties des rainures 16 sont orientées vers des têtes de bobines 30 du stator. Une partie du fluide de refroidissement contenu dans le carter peut être orientée par force centrifuge dans les rainures 16 puis vers les têtes de bobines 30 pour les refroidir.
On a illustré aux figures 2a, 2b et 2c un flasque 10 selon une autre variante de réalisation de l’invention. Dans cette variante, le flasque comporte trois ouvertures 14. Le flasque comporte sur sa face extérieure 12 trois ailettes 15 qui s’étendent partiellement dans les ouvertures 14 et trois ailettes 15’ qui ne s’étendent pas dans une ouverture. Sur sa face intérieure 11, le flasque comporte trois rainures 16 disposées aux mêmes positions circonférentielles que les ailettes 15’ qui ne s’étendent pas dans une ouverture. Dans ce mode de réalisation, les rainures 16 s’étendent depuis la tranche 17 du flasque et ne débouchent pas dans les ouvertures 14. Les rainures 16 s’étendent selon un axe d’élongation L rectiligne.
On a illustré à la figure 2c la circulation du fluide de refroidissement dans une machine électrique comportant un premier flasque 10a et un deuxième flasque 10b selon la variante de réalisation des figures 2a et 2b. Les deux flasques 10a et 10b peuvent être décalés angulairement d’un angle P de l’ordre de 60 ° l’un par rapport à l’autre autour de l’axe de rotation.
Les flasques 10a et 10b sont disposés contre la masse rotorique de sorte que les rainures 16 et les ouvertures 14 sont en regard des évidements 41 ménagés dans la masse rotorique lorsqu’on observe le rotor selon l’axe de rotation X de la machine électrique. Les premier 10a et deuxième 10b flasques sont identiques et décalés angulairement de manière à alimenter des évidements 41 différents. Lorsque la machine est en marche, le fluide de refroidissement qui alimente le deuxième flasque 10b rejoint le premier flasque 10a en s’écoulant à travers les ouvertures 14 du premier flasque puis à travers les évidements 41 puis est éjecté du premier flasque 10a via les rainures 16 pour aller refroidir les têtes de bobines 30. De même, le fluide de refroidissement qui alimente le premier flasque 10a rejoint le deuxième flasque 10b en s’écoulant à travers les ouvertures 14 du deuxième flasque, puis à travers les évidements 41 puis est éjecté du deuxième flasque via les rainures 16 pour aller refroidir les têtes de bobines 30. Le sens de circulation du fluide de refroidissement dans le rotor est ainsi imposé.
On a illustré aux figures 3a, 3b, 3c et 3d une autre variante de réalisation de l’invention. Dans cette variante, les ailettes 15 traversent toutes l’une des ouvertures 14. Chaque ailette 15 divise l’ouverture 14 au travers de laquelle elle s’étend en deux sous- ouvertures 14a et 14b symétriques.
On a illustré à la figure 4 une tôle 42 de la masse rotorique. La tôle 42 comporte des logements 43 pour des aimants 44. Les aimants 44 n’occupent pas tout l’espace des logements 43 de sorte que des évidements 41 sont ménagés dans les logements.
Le flasque 10 est disposé contre la tôle 42 de la masse rotorique de telle sorte que les ouvertures 14 sont partiellement superposées aux évidements 41 ménagé dans la les logements 43 des aimants.
Le fluide de refroidissement qui est orienté vers les ouvertures 14 peut ainsi s’écouler dans les évidements 41 pour rejoindre le flasque opposé et refroidir le cœur de la masse rotorique.
On a illustré à la figure 5 un exemple de rotor de machine électrique comportant un flasque 10 selon les figures 3a ou 3b.
Dans cette variante, les ailettes 15 ont une hauteur L de l’ordre de 25 mm. On a illustré aux figures 6 à 8 des variantes de réalisation dans lesquelles le flasque 10 comporte six ouvertures 14 et six ailettes 15 sur sa face extérieure 12. Chaque ailette 15 comporte une partie 15a qui s’étend dans une des ouvertures 14 et une partie 15b qui s’étend depuis la face extérieure 12 du flasque 10.
Dans le mode de réalisation de la figure 6, la partie 15b de l’ailette qui s’étend depuis la face extérieure 12 du flasque 10 ne s’étend pas jusqu’à la tranche 17 du flasque. La hauteur ha de la partie 15b de l’ailette 15 qui s’étend depuis la face extérieure 12, mesurée dans la direction radiale, est inférieure à la distance radiale entre la tranche 17 du flasque et le bord 140 périphérique de l’ouverture 14 le plus proche de la tranche.
La largeur de la partie 15b de l’ailette 15 qui s’étend depuis la face extérieure 12, mesurée dans la direction axiale, est de l’ordre de 5 mm.
Dans le mode de réalisation de la figure 7, la partie 15b de l’ailette qui s’étend depuis la face extérieure 12 du flasque 10 s’étend depuis la tranche 17 du flasque 10 jusqu’à la périphérie d’une ouverture 14. La hauteur ha de la partie 15b de l’ailette 15 qui s’étend depuis la face extérieure 12, mesurée dans la direction radiale, est sensiblement égale à la distance radiale entre la tranche 17 du flasque et le bord 140 périphérique de l’ouverture 14 le plus proche de la tranche. La hauteur ha de la partie 15b de l’ailette 15 qui s’étend depuis la face extérieure 12, mesurée dans la direction radiale, est de l’ordre de 46,4 cm.
La largeur de la partie 15b de l’ailette 15 qui s’étend depuis la face extérieure 12, mesurée dans la direction axiale, est de l’ordre de 5 mm.
Dans le mode de réalisation de la figure 8, la partie 15b de l’ailette qui s’étend depuis la face extérieure 12 du flasque 10 ne s’étend pas jusqu’à la tranche 17 du flasque. La hauteur ha de la partie 15b de l’ailette 15 qui s’étend depuis la face extérieure 12, mesurée dans la direction radiale, est inférieure à la distance radiale entre la tranche 17 du flasque et le bord 140 périphérique de l’ouverture 14 le plus proche de la tranche.
La largeur la de la partie 15b de l’ailette 15 qui s’étend depuis la face extérieure 12, mesurée dans la direction axiale, est de l’ordre de 10 mm.
On a illustré aux figures 9a, 9b et 9c, les différentes possibilités d’orientations des ailettes 15 par rapport à l’axe d’orientation X de la machine électrique.
Dans l’exemple de la figure 9a, le plan directeur de l’ailette 15 est sensiblement perpendiculaire à la face extérieure 12 du flasque. L’écoulement de fluide de refroidissement est schématisé par les flèches 150. L’ailette 15 est disposée à l’entrée d’un évidement 41 ménageant un canal dans la masse rotorique. Une partie du fluide de refroidissement est orienté vers l’évidement 4L On constate que l’écoulement de fluide de refroidissement est turbulent sur l’une des faces de l’ailette, par exemple sur la face supérieure 151.
Dans l’exemple de la figure 9b, le plan P directeur de l’ailette 15 est incliné par rapport à l’axe de rotation X. Le fluide de refroidissement 150 est orienté vers l’évidement 41 ménageant un canal dans la masse rotorique. On constate qu’il n’y a pas de turbulences à proximité de l’ailette 15. Dans l’exemple de la figure 9c, le plan directeur de l’ailette 15 est incliné d’un angle a par rapport à l’axe de rotation X et l’ailette 15 comporte une portion rectiligne 152 et une portion courbée 153 autour d’un axe de courbure orienté perpendiculairement à un plan radial contenant l’axe de rotation X de la machine électrique. Une telle forme d’ailette 15 permet d’améliorer encore plus la quantité de fluide de refroidissement qui est orienté dans l’évidement 41.
Dans l’exemple de la figure 9d, l’ailette comporte deux portions 154, 155 rectilignes. Les deux portions rectilignes 154, 155 forment entre elles un angle 0 de l’ordre de 135°. L’invention n’est pas limitée à ce qui vient d’être décrit. Par exemple le flasque peut comporter un nombre différent d’ouvertures. Il peut également comporter des ailettes et/ou des ouvertures de tailles différentes.

Claims

22 Revendications
1. Flasque (10) de rotor de machine électrique tournante autour d'un axe de rotation X, comportant une face intérieure (11) tournée vers une masse rotorique (4), une face extérieure (12) opposée à la face intérieure, une tranche (17) radialement extérieure s'étendant entre la face intérieure et la face extérieure et un alésage central (13), le flasque comportant :
- une ou plusieurs ouvertures (14) traversantes entre la face intérieure et la face extérieure, et
- au moins une ailette (15) s’étendant au moins partiellement dans l’ouverture, la face intérieure (11) comportant au moins une rainure radiale (16) s’étendant radialement depuis la tranche (17) en direction de l’alésage central (13) du flasque (10).
2. Flasque (10) de rotor de machine électrique tournante autour d'un axe de rotation X, comportant une face intérieure (11) tournée vers une masse rotorique (4), une face extérieure (12) opposée à la face intérieure, une tranche (17) radialement extérieure s'étendant entre la face intérieure et la face extérieure et un alésage central (13), le flasque comportant :
- une ou plusieurs ouvertures (14) traversantes entre la face intérieure et la face extérieure, et
- au moins une ailette (15) s’étendant au moins partiellement dans l’ouverture, au moins une ailette étant en forme de L.
3. Flasque selon l’une des deux revendications précédentes, la ou les ailettes (15) étant formées d’un seul tenant avec le flasque (10).
4. Flasque selon l’une des trois revendications précédentes, au moins une ailette (15) peut être de forme sensiblement plane, et s’étendant selon un plan directeur.
5. Flasque selon la revendication précédente, le plan directeur de l’ailette (15) comprenant l’axe de rotation X de la machine.
6. Flasque selon l’une quelconque des revendications précédentes, au moins une ailette (15) s’étendant selon un plan directeur perpendiculaire aux faces intérieure (11) et extérieure (12) du flasque (10) et/ou au moins une ailette (15) s’étendant selon un plan directeur incliné par rapport à l’axe de rotation X de la machine électrique.
7. Flasque selon l’une quelconque des revendications précédentes, au moins une ailette (15) s’étendant selon un plan directeur incliné par rapport à un plan radial contenant l’axe de rotation de la machine.
8. Flasque selon l’une quelconque des revendications précédentes, comportant au moins deux ouvertures (14) uniformément réparties autour de l’alésage central (13).
9. Flasque selon l’une quelconque des revendications précédentes, comportant au moins deux ouvertures (14) de forme sensiblement identique.
10. Flasque selon l’une quelconque des revendications précédentes, comportant au moins une ailette (15) s’étendant sur toute la hauteur de l’ouverture (14) dans la direction radiale, l’ailette divisant notamment l’ouverture en deux sous-ouvertures (14a, 14b) qui peuvent être sensiblement identiques.
11. Flasque selon l’une quelconque des revendications 2 à 10, la face intérieure (11) comportant au moins une rainure radiale (16) s’étendant radialement depuis la tranche (17) en direction de l’alésage central (13) du flasque (10).
12. Flasque selon la revendication précédente, au moins une rainure (16) débouchant dans une ouverture (14).
13. Flasque selon la revendication 10, la ou les rainures (16) étant distantes de la ou des ouvertures (14).
14. Rotor de machine électrique tournante autour d’un axe de rotation X, le rotor comportant une masse rotorique (4) et au moins un flasque (10) selon l’une quelconque des revendications précédentes, la masse rotorique comportant au moins un logement (43) destiné à recevoir un aimant (44), le logement comportant au moins évidement (41), au moins un évidement d’un des logements étant au moins partiellement superposé à au moins une ouverture (14) du flasque lorsqu’on observe le rotor selon l’axe de rotation X de la machine électrique.
15. Rotor selon la revendication précédente, le rotor comportant un premier et un deuxième flasque (10a, 10b) selon l’une quelconque des revendications 1 à 12, les deux flasques étant décalés angulairement d’un angle P l’un par rapport à l’autre autour de l’axe X de rotation.
16. Rotor selon la revendication précédente, la face intérieure (12) du premier flasque (10a) et la face intérieure (12) du deuxième flasque (10b) comportant chacune au moins une rainure (16) s’étendant radialement depuis la tranche (17) en direction de l’alésage central (13) des flasques, au moins une rainure du premier flasque étant au moins partiellement superposée à au moins une ouverture (14) du deuxième flasque lorsqu’on observe le rotor selon l’axe de rotation X de la machine électrique.
PCT/FR2022/051899 2021-10-12 2022-10-07 Flasque pour machine électrique tournante WO2023062307A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2110789 2021-10-12
FR2110789A FR3128078A1 (fr) 2021-10-12 2021-10-12 Flasque pour machine électrique tournante

Publications (1)

Publication Number Publication Date
WO2023062307A1 true WO2023062307A1 (fr) 2023-04-20

Family

ID=79831413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2022/051899 WO2023062307A1 (fr) 2021-10-12 2022-10-07 Flasque pour machine électrique tournante

Country Status (2)

Country Link
FR (1) FR3128078A1 (fr)
WO (1) WO2023062307A1 (fr)

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2110789A5 (fr) 1970-10-30 1972-06-02 Samas
FR2887698A1 (fr) 2005-06-28 2006-12-29 Valeo Equip Electr Moteur Rotor a poles saillants comportant des flasques de maintien comportant des surfaces de contact avec des chignons des bobinages
EP2109207A2 (fr) 2008-04-09 2009-10-14 Liebherr-Werk Biberach GmbH Machine électrique refroidi par un liquide et procédé correspondant
US20110181138A1 (en) 2010-01-26 2011-07-28 Hironori Matsumoto Totally enclosed motor
EP2605380A2 (fr) 2011-12-15 2013-06-19 Hitachi Ltd. Machine électrique rotative, véhicule ferroviaire et véhicule électrique équipé de celui-ci
FR2984626A1 (fr) 2011-12-20 2013-06-21 Valeo Equip Electr Moteur Rotor a poles saillants comportant un dispositif d'isolation de bobinages et dispositif d'isolation de bobinages associe
FR2984630A1 (fr) 2011-12-20 2013-06-21 Valeo Equip Electr Moteur Rotor a poles saillants comportant des flasques de maintien des chignons de bobinages et flasques de maintien associes
FR2984625A1 (fr) 2011-12-20 2013-06-21 Valeo Equip Electr Moteur Rotor a poles saillants comportant des flasques de maintien des chignons de bobinages et flasques de maintien associes
FR2988238A1 (fr) 2012-03-16 2013-09-20 Valeo Equip Electr Moteur Ensemble de flasques de rotor de machine electrique tournante comportant des pales axiales de ventilation favorisant un flux d'air axial a l'interieur du rotor et rotor de machine electrique associe
FR2988236A1 (fr) 2012-03-16 2013-09-20 Valeo Equip Electr Moteur Ensemble de flasques de rotor de machine electrique tournante comportant des orifices asymetriques favorisant un flux d'air axial a l'interieur du rotor et rotor de machine electrique tournante associe
FR2988237A1 (fr) 2012-03-16 2013-09-20 Valeo Equip Electr Moteur Ensemble de flasques de rotor de machine electrique tournante munis de pions de centrage et d'evacuation de la chaleur favorisant le refroidissement du rotor et rotor de machine tournante associe
FR2995171A1 (fr) 2012-09-03 2014-03-07 Valeo Equip Electr Moteur Flasque de rotor de machine electrique tournante comportant des pales internes de ventilation et rotor de machine electrique associe
EP2873137A2 (fr) 2012-08-31 2015-05-20 Siemens Aktiengesellschaft Rotor de machine électrique et machine électrique
EP2918000A2 (fr) 2012-11-07 2015-09-16 Continental Automotive GmbH Machine électrique à refroidissement à air intérieur
US20160344249A1 (en) * 2015-05-19 2016-11-24 Honda Motor Co., Ltd. Axial-gap motor-generator
US20180115221A1 (en) * 2016-10-21 2018-04-26 Honda Motor Co., Ltd. Rotary electric machine and method of manufacturing the same
CN207459903U (zh) 2017-11-03 2018-06-05 长城汽车股份有限公司 电机及其转子平衡板
KR20180094446A (ko) 2017-02-15 2018-08-23 엘지전자 주식회사 모터
DE102017202752A1 (de) * 2017-02-21 2018-08-23 Continental Automotive Gmbh Rotor für eine elektrische Maschine
US20180337569A1 (en) 2015-11-12 2018-11-22 Lg Innotek Co., Ltd. Rotor assembly and motor including same
CN210053258U (zh) * 2019-08-28 2020-02-11 重庆多耐达汽车零部件有限公司 散热风机转子
CN210517922U (zh) 2019-11-26 2020-05-12 苏州苏梯驱动技术有限公司 一种电机转子端板
FR3094154A1 (fr) * 2019-03-22 2020-09-25 IFP Energies Nouvelles Rotor de machine électrique avec moyen de ventilation axialo-centrifuge
US20200321830A1 (en) 2017-03-21 2020-10-08 Mitsubishi Electric Corporation Motor and blower
WO2021115806A1 (fr) 2019-12-13 2021-06-17 Vitesco Technologies GmbH Roue à aubes pour rotor, et machine électrique

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2110789A5 (fr) 1970-10-30 1972-06-02 Samas
FR2887698A1 (fr) 2005-06-28 2006-12-29 Valeo Equip Electr Moteur Rotor a poles saillants comportant des flasques de maintien comportant des surfaces de contact avec des chignons des bobinages
EP2109207A2 (fr) 2008-04-09 2009-10-14 Liebherr-Werk Biberach GmbH Machine électrique refroidi par un liquide et procédé correspondant
US20110181138A1 (en) 2010-01-26 2011-07-28 Hironori Matsumoto Totally enclosed motor
EP2605380A2 (fr) 2011-12-15 2013-06-19 Hitachi Ltd. Machine électrique rotative, véhicule ferroviaire et véhicule électrique équipé de celui-ci
FR2984626A1 (fr) 2011-12-20 2013-06-21 Valeo Equip Electr Moteur Rotor a poles saillants comportant un dispositif d'isolation de bobinages et dispositif d'isolation de bobinages associe
FR2984630A1 (fr) 2011-12-20 2013-06-21 Valeo Equip Electr Moteur Rotor a poles saillants comportant des flasques de maintien des chignons de bobinages et flasques de maintien associes
FR2984625A1 (fr) 2011-12-20 2013-06-21 Valeo Equip Electr Moteur Rotor a poles saillants comportant des flasques de maintien des chignons de bobinages et flasques de maintien associes
FR2988238A1 (fr) 2012-03-16 2013-09-20 Valeo Equip Electr Moteur Ensemble de flasques de rotor de machine electrique tournante comportant des pales axiales de ventilation favorisant un flux d'air axial a l'interieur du rotor et rotor de machine electrique associe
FR2988236A1 (fr) 2012-03-16 2013-09-20 Valeo Equip Electr Moteur Ensemble de flasques de rotor de machine electrique tournante comportant des orifices asymetriques favorisant un flux d'air axial a l'interieur du rotor et rotor de machine electrique tournante associe
FR2988237A1 (fr) 2012-03-16 2013-09-20 Valeo Equip Electr Moteur Ensemble de flasques de rotor de machine electrique tournante munis de pions de centrage et d'evacuation de la chaleur favorisant le refroidissement du rotor et rotor de machine tournante associe
EP2873137A2 (fr) 2012-08-31 2015-05-20 Siemens Aktiengesellschaft Rotor de machine électrique et machine électrique
FR2995171A1 (fr) 2012-09-03 2014-03-07 Valeo Equip Electr Moteur Flasque de rotor de machine electrique tournante comportant des pales internes de ventilation et rotor de machine electrique associe
EP2918000A2 (fr) 2012-11-07 2015-09-16 Continental Automotive GmbH Machine électrique à refroidissement à air intérieur
US20160344249A1 (en) * 2015-05-19 2016-11-24 Honda Motor Co., Ltd. Axial-gap motor-generator
US20180337569A1 (en) 2015-11-12 2018-11-22 Lg Innotek Co., Ltd. Rotor assembly and motor including same
US20180115221A1 (en) * 2016-10-21 2018-04-26 Honda Motor Co., Ltd. Rotary electric machine and method of manufacturing the same
KR20180094446A (ko) 2017-02-15 2018-08-23 엘지전자 주식회사 모터
DE102017202752A1 (de) * 2017-02-21 2018-08-23 Continental Automotive Gmbh Rotor für eine elektrische Maschine
US20200321830A1 (en) 2017-03-21 2020-10-08 Mitsubishi Electric Corporation Motor and blower
CN207459903U (zh) 2017-11-03 2018-06-05 长城汽车股份有限公司 电机及其转子平衡板
FR3094154A1 (fr) * 2019-03-22 2020-09-25 IFP Energies Nouvelles Rotor de machine électrique avec moyen de ventilation axialo-centrifuge
CN210053258U (zh) * 2019-08-28 2020-02-11 重庆多耐达汽车零部件有限公司 散热风机转子
CN210517922U (zh) 2019-11-26 2020-05-12 苏州苏梯驱动技术有限公司 一种电机转子端板
WO2021115806A1 (fr) 2019-12-13 2021-06-17 Vitesco Technologies GmbH Roue à aubes pour rotor, et machine électrique

Also Published As

Publication number Publication date
FR3128078A1 (fr) 2023-04-14

Similar Documents

Publication Publication Date Title
EP2311172B1 (fr) Machine electrique tournante
EP2274816B1 (fr) Machine electrique a double ventilation separee
FR2819350A1 (fr) Machine tournante perfectionnee pour vehicules automobiles
EP1293026B1 (fr) Ventilateur pour machine electrique tournante
FR3056352B1 (fr) Helice double flux pour machine electrique
EP3387738A1 (fr) Machine électrique tournante
FR2865080A1 (fr) Ralentisseur electromagnetique radial simple comportant des moyens pour assurer une ventilation
FR2855672A1 (fr) Dispositif de ventilation, notamment pour alternateur de vehicule automobile
EP4059122A1 (fr) Machine a refroidissement par liquide
FR2917252A1 (fr) Alternateur pour vehicules automobiles.
EP3235110B1 (fr) Machine electrique refroidie par turbine
EP3317954B1 (fr) Machine electrique tournante a turbine a depression augmentee
WO2023062307A1 (fr) Flasque pour machine électrique tournante
EP2826132B1 (fr) Ensemble de flasques munis de pions de centrage et de conducteur de chaleur favorisant le refroidissement
WO2022112704A1 (fr) Flasque et rotor de machine électrique tournante
EP4016816A1 (fr) Ensemble comportant une machine électrique, un onduleur et un interconnecteur
EP3795838A1 (fr) Ventilateur de rotor amélioré
FR3093391A1 (fr) Machine électrique tournante ayant un circuit de refroidissement des aimants par l’arbre
WO2024084158A1 (fr) Flasque de rotor de machine électrique
FR3083032A1 (fr) Boitier de machine electrique tournante
FR3056353A1 (fr) Rotor ventile
EP3326271B1 (fr) Machine electrique tournante a refroidissement ameliore
WO2022112702A1 (fr) Flasque et rotor de machine électrique tournante
WO2022112703A1 (fr) Flasque et rotor de machine électrique tournante
FR3083021A1 (fr) Machine electrique comprenant un conduit de refroidissement ayant un orifice de sortie situe dans une dent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22814484

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022814484

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022814484

Country of ref document: EP

Effective date: 20240513