WO2023058629A1 - Leveling control device and lamp system - Google Patents

Leveling control device and lamp system Download PDF

Info

Publication number
WO2023058629A1
WO2023058629A1 PCT/JP2022/037057 JP2022037057W WO2023058629A1 WO 2023058629 A1 WO2023058629 A1 WO 2023058629A1 JP 2022037057 W JP2022037057 W JP 2022037057W WO 2023058629 A1 WO2023058629 A1 WO 2023058629A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
control device
leveling
power supply
control signal
Prior art date
Application number
PCT/JP2022/037057
Other languages
French (fr)
Japanese (ja)
Inventor
一弘 鈴木
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Priority to JP2023552885A priority Critical patent/JPWO2023058629A1/ja
Publication of WO2023058629A1 publication Critical patent/WO2023058629A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/06Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle
    • B60Q1/08Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically
    • B60Q1/10Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically due to vehicle inclination, e.g. due to load distribution
    • B60Q1/115Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically due to vehicle inclination, e.g. due to load distribution by electric means

Definitions

  • the present disclosure relates to vehicle lamps.
  • the light distribution pattern of headlamps is stipulated by law so that automobile headlamps do not give glare to surrounding traffic participants.
  • the longitudinal inclination of the vehicle body changes according to the number of passengers and the weight of luggage.
  • the tilt of the optical axis of the headlamp relative to the ground changes, and the irradiation range of the headlamp changes in the vertical direction. If the irradiation range shifts upward, glare may occur, and if the irradiation range shifts downward, the irradiation range in front of the vehicle narrows.
  • a leveling actuator is built into the headlamp to compensate for changes in the optical axis of the headlamp based on changes in the longitudinal tilt of the vehicle body.
  • the conventional auto-leveling was not perfect, and there was room for improvement.
  • the present disclosure has been made in such a situation, and one of its exemplary purposes is to provide a control device and a vehicle lamp capable of achieving an accurate optical axis over a wide range of vehicle body tilt angles.
  • An aspect of the present disclosure relates to a leveling control device that controls an optical axis adjusting actuator provided in a headlamp.
  • the leveling control device includes a computing unit that outputs a control signal that changes according to the control characteristics defined by the polygonal line with respect to the longitudinal tilt of the vehicle body, and an output stage that generates an output voltage according to the control signal. .
  • This leveling control device includes a computing unit that outputs a control signal that changes according to control characteristics defined by a polygonal line for a sensor value that is correlated with the longitudinal tilt of the vehicle body, and an output voltage that corresponds to the control signal. and an output stage for
  • an accurate optical axis can be achieved over a wide range of vehicle body tilt angles.
  • FIG. 1 is a block diagram of a lighting system according to Embodiment 1.
  • FIG. 1 is a block diagram showing the configuration of a leveling control device according to Embodiment 1; FIG. It is a figure explaining a control characteristic.
  • FIG. 4 is a diagram showing an example of a control signal S CTRL ;
  • 5 is a diagram showing a configuration example of an output stage corresponding to the control signal S CTRL of FIG. 4;
  • FIG. FIG. 10 is a diagram showing the relationship between the tilt angle ⁇ and the control signal S CTRL in the comparative technique;
  • FIG. 7(a) is a diagram showing ideal input/output characteristics of an output stage and an example of realistic input/output characteristics, and
  • FIG. 7(b) shows control characteristics of a lamp system according to a comparative technique.
  • FIG. 7C is a diagram showing the control characteristics of the lamp system according to Embodiment 1.
  • FIG. FIG. 8 is a block diagram of a leveling control device according to Embodiment 2;
  • FIG. 11 is a diagram illustrating an example of control characteristics in Embodiment 2;
  • FIG. 10 is a block diagram of a leveling control device according to Embodiment 3;
  • FIG. 11 is a diagram illustrating an example of control characteristics in Embodiment 3;
  • FIG. 11 is a block diagram of a leveling control device according to Embodiment 4;
  • a leveling control device controls an optical axis adjusting actuator provided in a headlamp.
  • the leveling control device includes a computing unit that outputs a control signal that changes according to the control characteristics defined by the polygonal line with respect to the longitudinal tilt of the vehicle body, and an output stage that generates an output voltage according to the control signal. .
  • a leveling control device includes a computing unit that outputs a control signal that changes according to a control characteristic defined by a polygonal line with respect to a sensor value that has a correlation with a tilt in the longitudinal direction of a vehicle body; an output stage that produces an output voltage.
  • control signal may be a pulse signal and the value of the control signal may be the duty cycle of the pulse signal.
  • the output stage may include a filter that smoothes the pulse signal.
  • the computing unit may change the control characteristics according to the temperature.
  • the temperature changes the effect of temperature fluctuation can be canceled if the ideal control characteristics change.
  • a plurality of control characteristics corresponding to a plurality of predetermined temperatures may be defined in the calculation unit.
  • the calculation unit generates a control signal at an arbitrary temperature other than a plurality of predetermined temperatures by interpolating two control signals calculated based on two control characteristics defined for two predetermined temperatures sandwiching the temperature. You may
  • a plurality of control characteristics corresponding to a plurality of predetermined temperatures may be defined in the calculation unit.
  • the calculation unit may generate control characteristics at any temperature other than the plurality of predetermined temperatures by interpolating two control characteristics defined for two predetermined temperatures sandwiching the temperature.
  • the plurality of predetermined temperatures may be normal temperature, maximum temperature, and minimum temperature.
  • the computing unit may change the control characteristics according to the power supply voltage.
  • the influence of the power supply voltage fluctuation can be canceled when the input/output characteristics of the output stage change.
  • the computing unit may have a plurality of control characteristics defined corresponding to a plurality of predetermined power supply voltages.
  • the computing unit converts a control signal at an arbitrary power supply voltage other than a plurality of predetermined power supply voltages into two control signals calculated based on two control characteristics defined for two predetermined power supply voltages sandwiching the power supply voltage. It may be generated by interpolation.
  • a plurality of control characteristics corresponding to a plurality of predetermined power supply voltages may be defined in the computing unit.
  • the calculation unit may generate the control characteristics for any power supply voltage other than the plurality of predetermined power supply voltages by interpolating two control characteristics defined for two predetermined power supply voltages sandwiching the power supply voltage.
  • a lighting system includes a sensor capable of detecting the tilt of a vehicle body, a headlamp including an actuator for adjusting the optical axis, and an output voltage corresponding to the tilt of the vehicle body based on the output of the sensor. and any of the leveling control devices described above that outputs to.
  • the leveling control device may change control characteristics according to temperature.
  • the leveling control device may change control characteristics according to the power supply voltage.
  • a state in which member A is connected to member B refers to a case in which member A and member B are physically directly connected, as well as a case in which member A and member B are electrically connected to each other. It also includes the case of being indirectly connected through other members that do not substantially affect the physical connection state or impair the functions and effects achieved by their combination.
  • the state in which member C is provided between member A and member B refers to the case where member A and member C or member B and member C are directly connected, as well as the case where they are electrically connected. It also includes the case of being indirectly connected through other members that do not substantially affect the physical connection state or impair the functions and effects achieved by their combination.
  • FIG. 1 is a block diagram of a lighting system 100 according to the first embodiment.
  • the lighting system 100 is a headlamp that is mounted on a vehicle and that illuminates a field of view in front of the vehicle.
  • An automobile changes its tilt angle in the front-rear direction according to the weight balance in the front-rear direction.
  • the tilt angle in the longitudinal direction is the rotation of the vehicle body about a horizontal axis extending from side to side, that is, the pitch angle.
  • the lighting system 100 has a function (auto-leveling function) of automatically adjusting the optical axis of the headlamp in the pitch direction according to the tilt angle of the vehicle body.
  • a headlamp body 110 , a sensor 120 and a leveling control device 200 are provided.
  • the headlamp body 110 is provided at a predetermined position in front of the vehicle body.
  • Headlamp 110 includes a lighting unit 112 and a leveling actuator 114 .
  • the lamp unit 112 is a unit in which a light emitting element 116, an optical system 118 such as a mirror or a lens, and a bracket 119 are integrated.
  • the lamp unit 112 is rotatably supported in the pitch direction with respect to the housing of the headlamp main body 110 .
  • the leveling actuator 114 controls the position of the lighting unit 112 in the pitch direction according to the output signal S OUT from the leveling control device 200 .
  • the sensor 120 is provided to detect the longitudinal tilt of the vehicle body.
  • sensor 120 includes a rear ride height sensor located near the rear suspension of the vehicle body to detect sagging behind the vehicle body.
  • the sensor 120 in addition to the rear vehicle height sensor, includes a front vehicle height sensor provided in the vicinity of the front suspension of the vehicle body to detect the forward sagging of the vehicle body.
  • a sensor 120 outputs a sensor signal S SNS based on the output of the vehicle height sensor.
  • the leveling control device 200 automatically controls the leveling of the headlamp 110 according to the sensor signal SSNS generated by the sensor 120 .
  • the leveling control device 200 is installed inside the vehicle, for example, under the driver's seat.
  • a tilt angle ⁇ in the longitudinal direction of the vehicle body is calculated, and a drive signal S OUT for the leveling actuator 114 is generated so that the optical axis of the headlamp 110 has an appropriate angle ⁇ with respect to the calculated tilt angle ⁇ .
  • the leveling control device 200 includes an arithmetic section 210 and an output stage 220 .
  • the calculation unit 210 calculates the tilt angle ⁇ of the vehicle body in the longitudinal direction based on the sensor signal SSNS .
  • the calculation unit 210 holds a control characteristic that defines the correspondence between the vehicle body tilt angle ⁇ and the control signal S CTRL , and generates the control signal S CTRL corresponding to the tilt angle ⁇ according to this control characteristic.
  • Control signal S CTRL is a signal that defines the magnitude of output signal S OUT to be supplied to leveling actuator 114 .
  • the arithmetic unit 210 is composed of, for example, a microcontroller, and its operation and functions are defined by a software program executed by the microcontroller.
  • control signal S CTRL When the leveling control device 200 is arranged in the vehicle interior as described above, it is necessary to transmit the control signal S CTRL to the position of the headlamp 110 away from there. Since the amplitude of is weak, it is difficult to transmit to the headlamp 110 as it is. Therefore, an output stage 220 that amplifies the control signal S CTRL is provided in the subsequent stage of the arithmetic section 210 . Control signal S CTRL amplified by output stage 220 is provided to headlamp 110 as output signal S OUT .
  • the above is the basic configuration of the lamp system 100. Next, a specific configuration of the leveling control device 200 will be described.
  • FIG. 2 is a block diagram showing the configuration of the leveling control device 200 according to the first embodiment.
  • the calculator 210 includes an inclination angle calculator 212 and a control signal generator 214 .
  • the arithmetic unit 210 is implemented by a combination of a microcontroller and a software program. It just shows.
  • the tilt angle calculator 212 calculates the tilt angle ⁇ of the vehicle body based on the sensor signal SSNS .
  • the relationship between the sensor signal SSNS and the actual tilt angle ⁇ differs for each vehicle body on which the lighting system 100 is mounted. Therefore, in the manufacturing process of the vehicle body, the parameters unique to the vehicle body are written in the non-volatile memory of the microcontroller, and the correct input/output characteristics of the tilt angle calculator 212 are defined.
  • a control signal generator 214 generates a control signal S CTRL for the tilt angle ⁇ .
  • the control signal generating section 214 holds the control characteristics defined by the polygonal line with respect to the tilt angle ⁇ in the longitudinal direction of the vehicle body.
  • a control signal S_CTRL is generated to
  • FIG. 3 is a diagram for explaining control characteristics.
  • the horizontal axis indicates the tilt angle ⁇
  • the vertical axis indicates the value v of the control signal S CTRL , normalized by the control range of the actuator, from 0 to 100%.
  • a specific method for holding the control characteristics by the control signal generator 214 is not particularly limited.
  • the control signal generator 214 may hold a plurality of coordinates ( ⁇ , v) of vertices of polygonal lines. That is, a set of ⁇ 1 , ⁇ 2 , ⁇ 3 , . . . and corresponding v, v 2 , v 3 , .
  • FIG. 4 is a diagram showing an example of the control signal S CTRL .
  • the control signal S CTRL is a pulse signal with a constant period Tp (frequency), and its duty cycle represents the value v of the control signal S CTRL . That is, the control signal S CTRL can be a PWM (Pulse Width Modulation) signal.
  • the relationship of equation (3) holds between the pulse width T ON of the control signal S CTRL and the value v of the control signal S CTRL .
  • TON v ⁇ Tp (3)
  • FIG. 5 is a diagram showing a configuration example of the output stage 220 corresponding to the control signal S CTRL of FIG.
  • Output stage 220 includes an inverter circuit 222 and a filter 224 .
  • the inverter circuit 222 is supplied with the power supply voltage VDD .
  • the inverter circuit 222 switches according to the control signal S CTRL which is a PWM signal.
  • Filter 224 is a low-pass filter that smoothes the output signal of inverter circuit 222 to generate output signal SOUT .
  • the voltage level V of the output signal S OUT varies between 0 and V DD in proportion to the value v (ie, duty cycle) of the control signal S CTRL , and equation (4) holds.
  • V v ⁇ V DD (4)
  • the configuration of the lamp system 100 is as described above.
  • the technical significance and advantages of the lamp system 100 according to Embodiment 1 will be clarified by comparison with comparative techniques. Therefore, first, the comparison technique will be described.
  • FIG. 6 is a diagram showing the relationship between the tilt angle ⁇ and the control signal S CTRL in the comparative technique.
  • the input/output characteristics of the output stage 220 that is, the relationship V between the value v of the control signal S_CTRL and the output signal S_OUT is ideally represented by a linear function.
  • the control characteristics of the computing section 210 are defined by one straight line (that is, a linear function) on the premise of ideal input/output characteristics of the output stage 220 .
  • FIG. 7A is a diagram showing an example of ideal input/output characteristics of the output stage 220 and realistic input/output characteristics. Note that this example emphasizes the nonlinearity and may differ from the actual characteristics. For example, when configuring the output stage 220 as shown in FIG. The deviation from the ideal characteristics becomes large. In other words, accurate optical axis control can be achieved only within a narrow range of vehicle body tilt angles.
  • FIG. 7(b) is a diagram showing control characteristics of a lamp system according to a comparative technique. This control characteristic is obtained by combining the realistic input/output characteristic of the output stage 220 shown in FIG.
  • the control characteristic of the lamp system is represented by inputting the tilt angle ⁇ and outputting the control angle ⁇ of the optical axis of the headlamp 110 .
  • the control angle ⁇ of the optical axis does not change linearly with respect to the tilt angle ⁇ , and the optical axis is directed too high with respect to the horizontal, causing glare. There is a problem that the field of view becomes dark due to looking down too much.
  • FIG. 7(c) is a diagram showing control characteristics of the lighting system 100 according to the first embodiment. This control characteristic is obtained by combining the realistic input/output characteristic of the output stage 220 shown in FIG. 7A and the control characteristic of the arithmetic unit 210 according to the first embodiment.
  • the control characteristic of the output stage 220 is defined by the polygonal line, the control angle ⁇ of the optical axis can be changed linearly with respect to the tilt angle ⁇ .
  • the control characteristics in the calculation unit 210 by defining the control characteristics in the calculation unit 210 by the polygonal line, the nonlinearity of the input/output characteristics of the output stage 220 can be compensated for.
  • the relationship between the optical axis and the horizontal can be kept substantially constant. That is, compared with the comparative technology, an accurate optical axis can be realized in a wider range of vehicle body tilt angles.
  • FIG. 8 is a block diagram of a leveling control device 200A according to the second embodiment.
  • the leveling control device 200A includes a temperature sensor 230 in addition to the leveling control device 200 of FIG.
  • a temperature sensor 230 is arranged to detect the temperature of the output stage 220 or its ambient temperature.
  • Temperature sensor 230 can use, for example, a thermistor or a thermocouple.
  • the output of the temperature sensor 230 is digitized.
  • the control signal generator 214A changes the control characteristic according to the temperature TEMP.
  • FIG. 9 is a diagram illustrating an example of control characteristics according to the second embodiment.
  • a plurality of control characteristics are defined corresponding to a plurality of predetermined temperatures.
  • three predetermined temperatures T 2 , T 3 and T 1 respectively
  • room temperature 25° C.
  • maximum temperature 80° C., 110° C. 120° C., etc.
  • minimum temperature ⁇ 30° C.
  • Each control characteristic is defined as a polygonal line as described in the first embodiment.
  • control signal generator 214A generates the control signal S CTRL at any temperature T other than the plurality of predetermined temperatures T 1 , T 2 , and T 3 at two predetermined temperatures T i and T i+1 sandwiching the temperature T. are interpolated to generate two values v 1 , v 2 of the control signal S CTRL which are calculated based on the two control characteristics specified for .
  • control signal generator 214A defines control characteristics at an arbitrary temperature T other than the plurality of predetermined temperatures T 1 , T 2 , and T 3 for two predetermined temperatures sandwiching the temperature T.
  • the two control characteristics may be interpolated and generated. Then, based on the control characteristic generated by interpolation, the value v of the control signal S CTRL corresponding to the current tilt angle ⁇ may be calculated.
  • the above is the configuration of the leveling control device 200A. According to this leveling control device 200A, when the input/output characteristics of the output stage 220 are highly dependent on temperature, the influence of temperature can be reduced to bring the control characteristics closer to the preferable control characteristics.
  • FIG. 10 is a block diagram of a leveling control device 200B according to the third embodiment.
  • the power supply voltage VDD supplied to the output stage 220 is reflected in the control characteristics of the control signal generator 214B. That is, the control signal generator 214B changes the control characteristics based on the power supply voltage VDD of the output stage 220.
  • FIG. 10 is a block diagram of a leveling control device 200B according to the third embodiment.
  • the power supply voltage VDD supplied to the output stage 220 is reflected in the control characteristics of the control signal generator 214B. That is, the control signal generator 214B changes the control characteristics based on the power supply voltage VDD of the output stage 220.
  • FIG. 11 is a diagram illustrating an example of control characteristics according to the third embodiment.
  • a plurality of control characteristics are defined corresponding to a plurality of power supply voltages V DD1 , V DD2 and V DD3 .
  • Each control characteristic is defined as a polygonal line as described in the first embodiment.
  • control signal generator 214B generates the control signal S CTRL at any power supply voltage V DD other than a plurality of power supply voltages V DD1 , V DD2 , and V DD3 at two voltage levels sandwiching the power supply voltage V DD . It interpolates to generate two control signal S CTRL values v 1 and v 2 which are calculated based on the two control characteristics defined for V DDi and V DDi+1 .
  • V DD2 ⁇ V DD ⁇ V DD3
  • the value v3 of the control signal S CTRL corresponding to the current ⁇ is calculated.
  • control signal generation unit 214B generates control characteristics at an arbitrary power supply voltage V DD other than the plurality of predetermined power supply voltages V DD1 , V DD2 , and V DD3 at two predetermined power supply voltages sandwiching the power supply voltage V DD . may be generated by interpolating two control characteristics defined for . Then, based on the control characteristic generated by interpolation, the value v of the control signal S CTRL corresponding to the current tilt angle ⁇ may be calculated.
  • the above is the configuration of the leveling control device 200B. According to this leveling control device 200B, when the input/output characteristics of the output stage 220 are highly dependent on the power supply voltage, the influence of power supply voltage fluctuations can be reduced to bring the control characteristics closer to the preferable control characteristics.
  • FIG. 12 is a block diagram of a leveling control device 200C according to the fourth embodiment.
  • the leveling controller 200C in the leveling controller 200C, both the temperature of the output stage 220 and the power supply voltage VDD supplied to the output stage 220 are reflected in the control characteristics of the control signal generator 214B. That is, the control signal generator 214C changes the control characteristics based on the temperature T of the output stage 220 and the power supply voltage VDD .
  • control signal generation unit 214C defines the control characteristics by polygonal lines for each of M ⁇ N matrix-like combinations of M predetermined temperatures T and N predetermined power supply voltages VDD .
  • the control signal generator 214C calculates the value of the control signal S CTRL corresponding to the current temperature T and power supply voltage VDD by interpolation processing.
  • Sensor 120 may include an acceleration sensor (G sensor). In this case, the sensor 120 may be mounted on the leveling control device 200 instead of on the vehicle side.
  • the calculation unit 210 calculates the tilt (tilt angle) ⁇ in the longitudinal direction of the vehicle body based on the output of the acceleration sensor.
  • the nonlinearity of the input/output characteristics of the output stage 220 is compensated for by defining the control characteristics in the calculation section 210 by a polygonal line. may be caused by the input/output characteristics of the leveling actuator 114 and the mechanism for rotating the lamp unit 112 . Even in this case, the polygonal line may be determined so that the desired relationship between the angle ⁇ of the optical axis, which is the final output, and the tilt angle ⁇ of the vehicle body is satisfied.
  • control signal S CTRL that is the output of the arithmetic unit 210 and the configuration of the output stage 220 are not limited to those described in the embodiments. If the microcontroller that constitutes the arithmetic unit 210 includes a D/A converter, the control signal S CTRL can be a DC analog voltage. In this case, output stage 220 may be configured as a linear amplifier.
  • the present disclosure relates to vehicle lamps.
  • REFERENCE SIGNS LIST 100 lighting system 110 headlamp 112 lighting unit 114 leveling actuator 120 sensor 200 leveling control device 210 calculation unit 212 tilt angle calculation unit 214 control signal generation unit 220 output stage 222 inverter circuit 230 temperature sensor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

The present invention comprises a leveling actuator (114) which is for optical axis adjustment and is provided in a head lamp (110). This leveling control device (200) controls the leveling actuator (114). An operation unit (210) outputs a control signal (SCTRL) that changes according to control characteristics defined by a broken line with respect to a slope (θ) of a vehicle body in the longitudinal direction of the vehicle body. An output stage (220) generates an output voltage (SOUT) in response to the control signal (SCTRL).

Description

レベリング制御装置および灯具システムLeveling controller and lighting system
 本開示は、車両用灯具に関する。 The present disclosure relates to vehicle lamps.
 自動車のヘッドランプが、周囲の交通参加者にグレアを与えないように、ヘッドランプの配光パターンは法規によって規定されている。車体の前後傾斜は、乗車人数や荷物の重量に応じて変化する。これにより、地面とヘッドランプの光軸の傾きが変化し、これによりヘッドランプの照射範囲が上下方向に変化する。照射範囲が上側にずれると、グレアを与えるおそれがあり、照射範囲が下側にずれると、車両前方の照射範囲が狭くなる。 The light distribution pattern of headlamps is stipulated by law so that automobile headlamps do not give glare to surrounding traffic participants. The longitudinal inclination of the vehicle body changes according to the number of passengers and the weight of luggage. As a result, the tilt of the optical axis of the headlamp relative to the ground changes, and the irradiation range of the headlamp changes in the vertical direction. If the irradiation range shifts upward, glare may occur, and if the irradiation range shifts downward, the irradiation range in front of the vehicle narrows.
 車体の前後傾斜の変化にもとづくヘッドランプの光軸の変化を補正するために、ヘッドランプにはレベリングアクチュエータが内蔵される。レベリングアクチュエータを車体の傾斜に応じて自動で制御するオートレベリングと呼ばれる技術がある。オートレベリングは、車体に設けたセンサによって車体の前後方向の傾斜を取得し、その傾斜を打ち消すように、ヘッドランプ内の灯具ユニットの光軸を、アクチュエータによって補正するものである。 A leveling actuator is built into the headlamp to compensate for changes in the optical axis of the headlamp based on changes in the longitudinal tilt of the vehicle body. There is a technology called auto-leveling that automatically controls a leveling actuator according to the inclination of the vehicle body. Auto-leveling uses sensors provided in the vehicle body to acquire the longitudinal tilt of the vehicle body, and corrects the optical axis of the lighting unit in the headlamp using an actuator so as to cancel the tilt.
 従来のオートレベリングも完全ではなく、改良の余地があった。本開示は係る状況においてなされたものであり、その例示的な目的のひとつは、幅広い車体傾斜角において、正確な光軸を実現可能な制御装置および車両用灯具の提供にある。 The conventional auto-leveling was not perfect, and there was room for improvement. The present disclosure has been made in such a situation, and one of its exemplary purposes is to provide a control device and a vehicle lamp capable of achieving an accurate optical axis over a wide range of vehicle body tilt angles.
 本開示のある態様は、ヘッドランプに設けられる光軸調整用のアクチュエータを制御するレベリング制御装置に関する。レベリング制御装置は、車体の前後方向の傾斜に対して、折れ線で規定した制御特性にしたがって変化する制御信号を出力する演算部と、制御信号に応じた出力電圧を生成する出力段と、を備える。 An aspect of the present disclosure relates to a leveling control device that controls an optical axis adjusting actuator provided in a headlamp. The leveling control device includes a computing unit that outputs a control signal that changes according to the control characteristics defined by the polygonal line with respect to the longitudinal tilt of the vehicle body, and an output stage that generates an output voltage according to the control signal. .
 本開示の別の態様もまた、レベリング制御装置である。このレベリング制御装置は、車体の前後方向の傾斜と相関を有するセンサ値に対して、折れ線で規定した制御特性にしたがって変化する制御信号を出力する演算部と、制御信号に応じた出力電圧を生成する出力段と、を備える。 Another aspect of the present disclosure is also a leveling control device. This leveling control device includes a computing unit that outputs a control signal that changes according to control characteristics defined by a polygonal line for a sensor value that is correlated with the longitudinal tilt of the vehicle body, and an output voltage that corresponds to the control signal. and an output stage for
 なお、以上の構成要素を任意に組み合わせたもの、構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本発明あるいは本開示の態様として有効である。さらに、この項目(課題を解決するための手段)の記載は、本発明の欠くべからざるすべての特徴を説明するものではなく、したがって、記載されるこれらの特徴のサブコンビネーションも、本発明たり得る。 Arbitrary combinations of the above constituent elements, and mutually replacing constituent elements and expressions among methods, devices, systems, etc. are also effective as aspects of the present invention or the present disclosure. Furthermore, the description in this section (Summary of the Invention) does not describe all the essential features of the invention, and thus subcombinations of those described features can also be the invention. .
 本開示のある態様によれば、幅広い車体の傾斜角において、正確な光軸を実現できる。 According to an aspect of the present disclosure, an accurate optical axis can be achieved over a wide range of vehicle body tilt angles.
実施形態1に係る灯具システムのブロック図である。1 is a block diagram of a lighting system according to Embodiment 1. FIG. 実施形態1に係るレベリング制御装置の構成を示すブロック図である。1 is a block diagram showing the configuration of a leveling control device according to Embodiment 1; FIG. 制御特性を説明する図である。It is a figure explaining a control characteristic. 制御信号SCTRLの一例を示す図である。FIG. 4 is a diagram showing an example of a control signal S CTRL ; 図4の制御信号SCTRLに対応する出力段の構成例を示す図である。5 is a diagram showing a configuration example of an output stage corresponding to the control signal S CTRL of FIG. 4; FIG. 比較技術における傾斜角θと、制御信号SCTRLの関係を示す図である。FIG. 10 is a diagram showing the relationship between the tilt angle θ and the control signal S CTRL in the comparative technique; 図7(a)は、出力段の理想的な入出力特性と、現実的な入出力特性の一例を示す図であり、図7(b)は、比較技術に係る灯具システムの制御特性を示す図であり、図7(c)は、実施形態1に係る灯具システムの制御特性を示す図である。FIG. 7(a) is a diagram showing ideal input/output characteristics of an output stage and an example of realistic input/output characteristics, and FIG. 7(b) shows control characteristics of a lamp system according to a comparative technique. FIG. 7C is a diagram showing the control characteristics of the lamp system according to Embodiment 1. FIG. 実施形態2に係るレベリング制御装置のブロック図である。FIG. 8 is a block diagram of a leveling control device according to Embodiment 2; 実施形態2における制御特性の一例を説明する図である。FIG. 11 is a diagram illustrating an example of control characteristics in Embodiment 2; FIG. 実施形態3に係るレベリング制御装置のブロック図である。FIG. 10 is a block diagram of a leveling control device according to Embodiment 3; 実施形態3における制御特性の一例を説明する図である。FIG. 11 is a diagram illustrating an example of control characteristics in Embodiment 3; 実施形態4に係るレベリング制御装置のブロック図である。FIG. 11 is a block diagram of a leveling control device according to Embodiment 4;
(実施形態の概要)
 本開示のいくつかの例示的な実施形態の概要を説明する。この概要は、後述する詳細な説明の前置きとして、実施形態の基本的な理解を目的として、1つまたは複数の実施形態のいくつかの概念を簡略化して説明するものであり、発明あるいは開示の広さを限定するものではない。またこの概要は、考えられるすべての実施形態の包括的な概要ではなく、実施形態の欠くべからざる構成要素を限定するものではない。便宜上、「一実施形態」は、本明細書に開示するひとつの実施形態(実施例や変形例)または複数の実施形態(実施例や変形例)を指すものとして用いる場合がある。
(Overview of embodiment)
SUMMARY OF THE INVENTION Several exemplary embodiments of the disclosure are summarized. This summary presents, in simplified form, some concepts of one or more embodiments, as a prelude to the more detailed description that is presented later, and for the purpose of a basic understanding of the embodiments. The size is not limited. Moreover, this summary is not an exhaustive overview of all possible embodiments and is not intended to limit essential elements of an embodiment. For convenience, "one embodiment" may be used to refer to one embodiment (example or variation) or multiple embodiments (examples or variations) disclosed herein.
 一実施形態に係るレベリング制御装置は、ヘッドランプに設けられる光軸調整用のアクチュエータを制御する。レベリング制御装置は、車体の前後方向の傾斜に対して、折れ線で規定した制御特性にしたがって変化する制御信号を出力する演算部と、制御信号に応じた出力電圧を生成する出力段と、を備える。 A leveling control device according to one embodiment controls an optical axis adjusting actuator provided in a headlamp. The leveling control device includes a computing unit that outputs a control signal that changes according to the control characteristics defined by the polygonal line with respect to the longitudinal tilt of the vehicle body, and an output stage that generates an output voltage according to the control signal. .
 一実施形態に係るレベリング制御装置は、車体の前後方向の傾斜と相関を有するセンサ値に対して、折れ線で規定した制御特性にしたがって変化する制御信号を出力する演算部と、制御信号に応じた出力電圧を生成する出力段と、を備える。 A leveling control device according to an embodiment includes a computing unit that outputs a control signal that changes according to a control characteristic defined by a polygonal line with respect to a sensor value that has a correlation with a tilt in the longitudinal direction of a vehicle body; an output stage that produces an output voltage.
 傾斜に対するアクチュエータの実際の変位量は、出力段の入出力特性や、アクチュエータ自体の入出力特性の影響を受ける。したがって、傾斜に対して制御信号を線形に変化させると、傾斜角の一部の範囲では光軸を良好に制御できるが、傾斜角がその範囲から外れると、光軸が最適な値から逸脱する可能性がある。この構成によれば、傾斜を入力、制御信号を出力とする制御特性を折れ線で規定することで、幅広い傾斜角の範囲において、正確な光軸が実現できる。 The actual displacement of the actuator with respect to the tilt is affected by the input/output characteristics of the output stage and the input/output characteristics of the actuator itself. Therefore, varying the control signal linearly with tilt provides good control of the optical axis over some range of tilt angles, but deviates from the optimal value for tilt angles outside that range. there is a possibility. According to this configuration, an accurate optical axis can be realized in a wide range of tilt angles by defining the control characteristics in which the tilt is input and the control signal is output by the polygonal line.
 一実施形態において、制御信号は、パルス信号であり、制御信号の値は、パルス信号のデューティサイクルであってもよい。出力段は、パルス信号を平滑化するフィルタを含んでもよい。 In one embodiment, the control signal may be a pulse signal and the value of the control signal may be the duty cycle of the pulse signal. The output stage may include a filter that smoothes the pulse signal.
 一実施形態において、演算部は、温度に応じて制御特性を変化させてもよい。温度が変化すると、理想的な制御特性が変化する場合に、温度変動の影響をキャンセルできる。 In one embodiment, the computing unit may change the control characteristics according to the temperature. When the temperature changes, the effect of temperature fluctuation can be canceled if the ideal control characteristics change.
 一実施形態において、演算部には、複数の所定温度に対応して複数の制御特性が規定されていてもよい。演算部は、複数の所定温度以外の任意の温度における制御信号を、当該温度を挟む2つの所定温度に対して規定された2つの制御特性にもとづき計算される2つの制御信号を補間して生成してもよい。 In one embodiment, a plurality of control characteristics corresponding to a plurality of predetermined temperatures may be defined in the calculation unit. The calculation unit generates a control signal at an arbitrary temperature other than a plurality of predetermined temperatures by interpolating two control signals calculated based on two control characteristics defined for two predetermined temperatures sandwiching the temperature. You may
 一実施形態において、演算部には、複数の所定温度に対応して複数の制御特性が規定されていてもよい。演算部は、複数の所定温度以外の任意の温度における制御特性を、当該温度を挟む2つの所定温度に対して規定された2つの制御特性を補間して生成してもよい。 In one embodiment, a plurality of control characteristics corresponding to a plurality of predetermined temperatures may be defined in the calculation unit. The calculation unit may generate control characteristics at any temperature other than the plurality of predetermined temperatures by interpolating two control characteristics defined for two predetermined temperatures sandwiching the temperature.
 一実施形態において、複数の所定温度は、常温と、最大温度と、最低温度であってもよい。 In one embodiment, the plurality of predetermined temperatures may be normal temperature, maximum temperature, and minimum temperature.
 一実施形態において、演算部は、電源電圧に応じて制御特性を変化させてもよい。電源電圧が変化すると、出力段の入出力特性が変化する場合に、電源電圧変動の影響をキャンセルできる。 In one embodiment, the computing unit may change the control characteristics according to the power supply voltage. When the power supply voltage changes, the influence of the power supply voltage fluctuation can be canceled when the input/output characteristics of the output stage change.
 一実施形態において、演算部には、複数の所定電源電圧に対応して複数の制御特性が規定されていてもよい。演算部は、複数の所定電源電圧以外の任意の電源電圧における制御信号を、当該電源電圧を挟む2つの所定電源電圧に対して規定された2つの制御特性にもとづき計算される2つの制御信号を補間して生成してもよい。 In one embodiment, the computing unit may have a plurality of control characteristics defined corresponding to a plurality of predetermined power supply voltages. The computing unit converts a control signal at an arbitrary power supply voltage other than a plurality of predetermined power supply voltages into two control signals calculated based on two control characteristics defined for two predetermined power supply voltages sandwiching the power supply voltage. It may be generated by interpolation.
 一実施形態において、演算部には、複数の所定電源電圧に対応して複数の制御特性が規定されてもよい。演算部は、複数の所定電源電圧以外の任意の電源電圧における制御特性を、当該電源電圧を挟む2つの所定電源電圧に対して規定された2つの制御特性を補間して生成してもよい。 In one embodiment, a plurality of control characteristics corresponding to a plurality of predetermined power supply voltages may be defined in the computing unit. The calculation unit may generate the control characteristics for any power supply voltage other than the plurality of predetermined power supply voltages by interpolating two control characteristics defined for two predetermined power supply voltages sandwiching the power supply voltage.
 一実施形態に係る灯具システムは、車体の傾きを検出可能に設けられたセンサと、光軸調整用のアクチュエータを含むヘッドランプと、センサの出力にもとづく車体の傾きに応じた出力電圧を、アクチュエータに出力する上述のいずれかのレベリング制御装置と、を備える。 A lighting system according to one embodiment includes a sensor capable of detecting the tilt of a vehicle body, a headlamp including an actuator for adjusting the optical axis, and an output voltage corresponding to the tilt of the vehicle body based on the output of the sensor. and any of the leveling control devices described above that outputs to.
 一実施形態において、レベリング制御装置は、温度に応じて制御特性を変化させてもよい。 In one embodiment, the leveling control device may change control characteristics according to temperature.
 一実施形態において、レベリング制御装置は、電源電圧に応じて、制御特性を変化させてもよい。 In one embodiment, the leveling control device may change control characteristics according to the power supply voltage.
(実施形態)
 以下、好適な実施の形態について図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、開示を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも開示の本質的なものであるとは限らない。
(embodiment)
Preferred embodiments will be described below with reference to the drawings. The same or equivalent constituent elements, members, and processes shown in each drawing are denoted by the same reference numerals, and duplication of description will be omitted as appropriate. Also, the embodiments are illustrative rather than limiting to the disclosure, and not all features and combinations thereof described in the embodiments are necessarily essential to the disclosure.
 本明細書において、「部材Aが、部材Bと接続された状態」とは、部材Aと部材Bが物理的に直接的に接続される場合のほか、部材Aと部材Bが、それらの電気的な接続状態に実質的な影響を及ぼさない、あるいはそれらの結合により奏される機能や効果を損なわせない、その他の部材を介して間接的に接続される場合も含む。 In this specification, "a state in which member A is connected to member B" refers to a case in which member A and member B are physically directly connected, as well as a case in which member A and member B are electrically connected to each other. It also includes the case of being indirectly connected through other members that do not substantially affect the physical connection state or impair the functions and effects achieved by their combination.
 同様に、「部材Cが、部材Aと部材Bの間に設けられた状態」とは、部材Aと部材C、あるいは部材Bと部材Cが直接的に接続される場合のほか、それらの電気的な接続状態に実質的な影響を及ぼさない、あるいはそれらの結合により奏される機能や効果を損なわせない、その他の部材を介して間接的に接続される場合も含む。 Similarly, "the state in which member C is provided between member A and member B" refers to the case where member A and member C or member B and member C are directly connected, as well as the case where they are electrically connected. It also includes the case of being indirectly connected through other members that do not substantially affect the physical connection state or impair the functions and effects achieved by their combination.
(実施形態1)
 図1は、実施形態1に係る灯具システム100のブロック図である。灯具システム100は、自動車に搭載され、車両前方の視野を照射するヘッドランプである。自動車は、前後の重量バランスに応じて、前後方向の傾斜角が変化する。前後方向の傾斜角は、車体の左右に伸びる水平軸周りの回転、すなわちピッチ角である。灯具システム100は、車体の傾斜角に応じて、ヘッドランプのピッチ方向の光軸を自動調整する機能(オートレベリング機能)を有する。
(Embodiment 1)
FIG. 1 is a block diagram of a lighting system 100 according to the first embodiment. The lighting system 100 is a headlamp that is mounted on a vehicle and that illuminates a field of view in front of the vehicle. An automobile changes its tilt angle in the front-rear direction according to the weight balance in the front-rear direction. The tilt angle in the longitudinal direction is the rotation of the vehicle body about a horizontal axis extending from side to side, that is, the pitch angle. The lighting system 100 has a function (auto-leveling function) of automatically adjusting the optical axis of the headlamp in the pitch direction according to the tilt angle of the vehicle body.
 ヘッドランプ本体110、センサ120およびレベリング制御装置200を備える。ヘッドランプ本体110は、車体前方の決められた位置に設けられる。ヘッドランプ110は、灯具ユニット112およびレベリングアクチュエータ114を含む。灯具ユニット112は、発光素子116や、ミラーあるいはレンズなどの光学系118、ブラケット119が一体化されたユニットである。灯具ユニット112は、ヘッドランプ本体110の筐体に対して、ピッチ方向に回動自在に支持されている。レベリングアクチュエータ114は、レベリング制御装置200からの出力信号SOUTに応じて、灯具ユニット112のピッチ方向の位置を制御する。 A headlamp body 110 , a sensor 120 and a leveling control device 200 are provided. The headlamp body 110 is provided at a predetermined position in front of the vehicle body. Headlamp 110 includes a lighting unit 112 and a leveling actuator 114 . The lamp unit 112 is a unit in which a light emitting element 116, an optical system 118 such as a mirror or a lens, and a bracket 119 are integrated. The lamp unit 112 is rotatably supported in the pitch direction with respect to the housing of the headlamp main body 110 . The leveling actuator 114 controls the position of the lighting unit 112 in the pitch direction according to the output signal S OUT from the leveling control device 200 .
 センサ120は、車体の前後方向の傾斜を検出するために設けられる。一実施例において、センサ120は、車体のリアサスペンションの近傍に設けられ、車体の後方の沈み込みを検出するリア車高センサを含む。別の実施例において、センサ120は、リア車高センサに加えて、車体のフロントサスペンションの近傍に設けられ、車体の前方の沈み込みを検出するフロント車高センサを含む。センサ120は、車高センサの出力にもとづくセンサ信号SSNSを出力する。 The sensor 120 is provided to detect the longitudinal tilt of the vehicle body. In one embodiment, sensor 120 includes a rear ride height sensor located near the rear suspension of the vehicle body to detect sagging behind the vehicle body. In another embodiment, in addition to the rear vehicle height sensor, the sensor 120 includes a front vehicle height sensor provided in the vicinity of the front suspension of the vehicle body to detect the forward sagging of the vehicle body. A sensor 120 outputs a sensor signal S SNS based on the output of the vehicle height sensor.
 レベリング制御装置200は、センサ120が生成するセンサ信号SSNSに応じて、ヘッドランプ110のレベリングを自動制御する。レベリング制御装置200は、車室内、たとえば運転席の足下などに設置される。 The leveling control device 200 automatically controls the leveling of the headlamp 110 according to the sensor signal SSNS generated by the sensor 120 . The leveling control device 200 is installed inside the vehicle, for example, under the driver's seat.
 車体の前後方向の傾斜角θを算出し、算出した傾斜角θに対して、ヘッドランプ110の光軸が適切な角度φになるように、レベリングアクチュエータ114に対する駆動信号SOUTを生成する。 A tilt angle θ in the longitudinal direction of the vehicle body is calculated, and a drive signal S OUT for the leveling actuator 114 is generated so that the optical axis of the headlamp 110 has an appropriate angle φ with respect to the calculated tilt angle θ.
 レベリング制御装置200は、演算部210および出力段220を含む。演算部210は、センサ信号SSNSにもとづいて、車体の前後方向の傾斜角θを算出する。演算部210には、車体の傾斜角θと制御信号SCTRLの対応関係を規定する制御特性が保持されており、この制御特性にしたがって、傾斜角θと対応する制御信号SCTRLを生成する。制御信号SCTRLは、レベリングアクチュエータ114に供給すべき出力信号SOUTの大きさを規定する信号である。 The leveling control device 200 includes an arithmetic section 210 and an output stage 220 . The calculation unit 210 calculates the tilt angle θ of the vehicle body in the longitudinal direction based on the sensor signal SSNS . The calculation unit 210 holds a control characteristic that defines the correspondence between the vehicle body tilt angle θ and the control signal S CTRL , and generates the control signal S CTRL corresponding to the tilt angle θ according to this control characteristic. Control signal S CTRL is a signal that defines the magnitude of output signal S OUT to be supplied to leveling actuator 114 .
 演算部210は、たとえばマイクロコントローラで構成され、その動作および機能は、マイクロコントローラが実行するソフトウェアプログラムによって規定される。 The arithmetic unit 210 is composed of, for example, a microcontroller, and its operation and functions are defined by a software program executed by the microcontroller.
 上述のようにレベリング制御装置200を車室内に配置する場合、そこから離れたヘッドランプ110の位置まで、制御信号SCTRLを伝送する必要があるが、演算部210であるマイクロコントローラが生成できる信号の振幅は微弱であるため、そのままでは、ヘッドランプ110まで伝送することは困難である。そこで演算部210の後段には、制御信号SCTRLを増幅する出力段220が設けられる。出力段220により増幅された制御信号SCTRLが、出力信号SOUTとしてヘッドランプ110に供給される。 When the leveling control device 200 is arranged in the vehicle interior as described above, it is necessary to transmit the control signal S CTRL to the position of the headlamp 110 away from there. Since the amplitude of is weak, it is difficult to transmit to the headlamp 110 as it is. Therefore, an output stage 220 that amplifies the control signal S CTRL is provided in the subsequent stage of the arithmetic section 210 . Control signal S CTRL amplified by output stage 220 is provided to headlamp 110 as output signal S OUT .
 以上が灯具システム100の基本構成である。続いてレベリング制御装置200の具体的な構成を説明する。 The above is the basic configuration of the lamp system 100. Next, a specific configuration of the leveling control device 200 will be described.
 図2は、実施形態1に係るレベリング制御装置200の構成を示すブロック図である。演算部210は、傾斜角算出部212および制御信号生成部214を含む。上述のように演算部210は、マイクロコントローラとソフトウェアプログラムの組み合わせで実装されるため、演算部210内のサブブロック(212,214)は、演算部210によって実現される機能要素、あるいは処理単位を示しているに過ぎない。 FIG. 2 is a block diagram showing the configuration of the leveling control device 200 according to the first embodiment. The calculator 210 includes an inclination angle calculator 212 and a control signal generator 214 . As described above, the arithmetic unit 210 is implemented by a combination of a microcontroller and a software program. It just shows.
 傾斜角算出部212は、センサ信号SSNSにもとづいて、車体の傾斜角θを算出する。センサ信号SSNSと実際の傾斜角θの関係は、灯具システム100が搭載される車体ごとに異なる。したがって車体の製造工程において、マイクロコントローラの不揮発性メモリに、車体に固有のパラメータが書き込まれ、傾斜角算出部212の正しい入出力特性が規定される。 The tilt angle calculator 212 calculates the tilt angle θ of the vehicle body based on the sensor signal SSNS . The relationship between the sensor signal SSNS and the actual tilt angle θ differs for each vehicle body on which the lighting system 100 is mounted. Therefore, in the manufacturing process of the vehicle body, the parameters unique to the vehicle body are written in the non-volatile memory of the microcontroller, and the correct input/output characteristics of the tilt angle calculator 212 are defined.
 制御信号生成部214は、傾斜角θに対する制御信号SCTRLを生成する。制御信号生成部214は、車体の前後方向の傾斜角θに対して、折れ線で規定した制御特性が保持されており、制御信号生成部214は、この制御特性にもとづいて、傾斜角θに対応する制御信号SCTRLを生成する。 A control signal generator 214 generates a control signal S CTRL for the tilt angle θ. The control signal generating section 214 holds the control characteristics defined by the polygonal line with respect to the tilt angle θ in the longitudinal direction of the vehicle body. A control signal S_CTRL is generated to
 図3は、制御特性を説明する図である。横軸は傾斜角θを、縦軸は制御信号SCTRLの値vを、アクチュエータの制御範囲で規格化して0~100%で示したものである。制御信号生成部214が、制御特性を保持する具体的な手法は特に限定されない。たとえば制御信号生成部214は、折れ線の頂点の座標(θ,v)を複数個、保持していてもよい。つまりθ,θ,θ,…と、それに対応するv,v,v…のセットが保持される。傾斜角算出部212が生成したθが、θ<θ<θi+1である場合、そのθに対応する制御信号SCTRLの値vは、式(1)から算出できる。
 v={v×(θi+1-θ)+vi+1×(θ-θ)}/(θi+1-θ)  …(1)
FIG. 3 is a diagram for explaining control characteristics. The horizontal axis indicates the tilt angle θ, and the vertical axis indicates the value v of the control signal S CTRL , normalized by the control range of the actuator, from 0 to 100%. A specific method for holding the control characteristics by the control signal generator 214 is not particularly limited. For example, the control signal generator 214 may hold a plurality of coordinates (θ, v) of vertices of polygonal lines. That is, a set of θ 1 , θ 2 , θ 3 , . . . and corresponding v, v 2 , v 3 , . When θ generated by the tilt angle calculator 212 satisfies θ i <θ<θ i+1 , the value v of the control signal S CTRL corresponding to θ can be calculated from equation (1).
v={v i ×(θ i+1 −θ)+v i+1 ×(θ−θ i )}/(θ i+1 −θ i ) (1)
 あるいは制御信号生成部214は、折れ線を構成する複数の直線それぞれの式を保持していてもよい。具体的には、θ<θ<θi+1の領域の直線は、
 v=aθ+b   …(2)
の形式で表すことができる。したがって、θ<θ<θi+1であるθに対応する制御信号vの値は、式(2)から計算できる。
Alternatively, the control signal generation unit 214 may hold formulas for each of a plurality of straight lines that form the polygonal line. Specifically, the straight line in the region of θ i <θ<θ i+1 is
v=a i θ+b i (2)
can be expressed in the form Therefore, the value of the control signal v corresponding to θ where θ i <θ<θ i+1 can be calculated from equation (2).
 図4は、制御信号SCTRLの一例を示す図である。制御信号SCTRLは、周期Tp(周波数)が一定のパルス信号であり、そのデューティサイクルが、制御信号SCTRLの値vを表す。つまり制御信号SCTRLは、PWM(Pulse Width Modulation)信号でありうる。制御信号SCTRLのパルス幅TONと制御信号SCTRLの値vの間には、式(3)の関係が成り立つ。
 TON=v×Tp   …(3)
FIG. 4 is a diagram showing an example of the control signal S CTRL . The control signal S CTRL is a pulse signal with a constant period Tp (frequency), and its duty cycle represents the value v of the control signal S CTRL . That is, the control signal S CTRL can be a PWM (Pulse Width Modulation) signal. The relationship of equation (3) holds between the pulse width T ON of the control signal S CTRL and the value v of the control signal S CTRL .
TON =v×Tp (3)
 図5は、図4の制御信号SCTRLに対応する出力段220の構成例を示す図である。出力段220は、インバータ回路222と、フィルタ224を含む。インバータ回路222には、電源電圧VDDが供給される。インバータ回路222は、PWM信号である制御信号SCTRLに応じてスイッチングする。フィルタ224はローパスフィルタであり、インバータ回路222の出力信号を平滑化し、出力信号SOUTを生成する。理想的には、出力信号SOUTの電圧レベルVは、0~VDDの間で、制御信号SCTRLの値v(すなわちデューティサイクル)に比例して変化し、式(4)が成り立つ。
 V=v×VDD   …(4)
FIG. 5 is a diagram showing a configuration example of the output stage 220 corresponding to the control signal S CTRL of FIG. Output stage 220 includes an inverter circuit 222 and a filter 224 . The inverter circuit 222 is supplied with the power supply voltage VDD . The inverter circuit 222 switches according to the control signal S CTRL which is a PWM signal. Filter 224 is a low-pass filter that smoothes the output signal of inverter circuit 222 to generate output signal SOUT . Ideally, the voltage level V of the output signal S OUT varies between 0 and V DD in proportion to the value v (ie, duty cycle) of the control signal S CTRL , and equation (4) holds.
V=v×V DD (4)
 以上が灯具システム100の構成である。実施形態1に係る灯具システム100の技術的な意義および利点は、比較技術との対比によって明確となる。そこで先に、比較技術について説明する。 The configuration of the lamp system 100 is as described above. The technical significance and advantages of the lamp system 100 according to Embodiment 1 will be clarified by comparison with comparative techniques. Therefore, first, the comparison technique will be described.
 図6は、比較技術における傾斜角θと、制御信号SCTRLの関係を示す図である。出力段220の入出力特性、すなわち、制御信号SCTRLの値vと、出力信号SOUTの関係Vは理想的には一次関数で表される。比較技術では、出力段220の理想的な入出力特性を前提として、演算部210の制御特性が1本の直線(つまり1次関数)で規定される。 FIG. 6 is a diagram showing the relationship between the tilt angle θ and the control signal S CTRL in the comparative technique. The input/output characteristics of the output stage 220, that is, the relationship V between the value v of the control signal S_CTRL and the output signal S_OUT is ideally represented by a linear function. In the comparison technique, the control characteristics of the computing section 210 are defined by one straight line (that is, a linear function) on the premise of ideal input/output characteristics of the output stage 220 .
 本発明者は比較技術について検討し、以下の問題を認識するに至った。出力段220を、その入出力特性が完全な線形となるように設計,製造することは難しく、現実的には、出力段220の入出力特性は非線形となる。図7(a)は、出力段220の理想的な入出力特性と、現実的な入出力特性の一例を示す図である。なお、この例は、非線形性を強調して示しており、実際の特性とは異なる場合があることに留意されたい。たとえば図5のように、出力段220を構成する場合、デューティサイクルが0%付近の領域(つまり、vが小さい領域)およびデューティサイクルが100%に近い領域(つまり、vが大きい領域)において、理想特性からのずれが大きくなる。つまり、車体傾斜角の狭い範囲でしか、正確な光軸制御を実現できない。 The inventor studied the comparative technology and came to recognize the following problems. It is difficult to design and manufacture the output stage 220 so that its input/output characteristics are completely linear, and in reality, the input/output characteristics of the output stage 220 are non-linear. FIG. 7A is a diagram showing an example of ideal input/output characteristics of the output stage 220 and realistic input/output characteristics. Note that this example emphasizes the nonlinearity and may differ from the actual characteristics. For example, when configuring the output stage 220 as shown in FIG. The deviation from the ideal characteristics becomes large. In other words, accurate optical axis control can be achieved only within a narrow range of vehicle body tilt angles.
 図7(b)は、比較技術に係る灯具システムの制御特性を示す図である。この制御特性は、図7(a)の現実的な出力段220の入出力特性と、比較技術に係る演算部210の制御特性を組み合わせたときのものである。灯具システムの制御特性は、傾斜角θを入力、ヘッドランプ110の光軸の制御角φを出力として表される。比較技術では、傾斜角θに対して、光軸の制御角φが線形に変化せず、光軸が水平に対して上を向きすぎてグレアを与えたり、反対に、光軸が水平に対して下を向きすぎて視野が暗くなるという問題が生じうる。 FIG. 7(b) is a diagram showing control characteristics of a lamp system according to a comparative technique. This control characteristic is obtained by combining the realistic input/output characteristic of the output stage 220 shown in FIG. The control characteristic of the lamp system is represented by inputting the tilt angle θ and outputting the control angle φ of the optical axis of the headlamp 110 . In the comparative technology, the control angle φ of the optical axis does not change linearly with respect to the tilt angle θ, and the optical axis is directed too high with respect to the horizontal, causing glare. There is a problem that the field of view becomes dark due to looking down too much.
 図7(c)は、実施形態1に係る灯具システム100の制御特性を示す図である。この制御特性は、図7(a)の現実的な出力段220の入出力特性と、実施形態1に係る演算部210の制御特性を組み合わせたときのものである。実施形態1では、出力段220の制御特性が、折れ線で規定されるため、傾斜角θに対して光軸の制御角φを線形に変化させることができる。 FIG. 7(c) is a diagram showing control characteristics of the lighting system 100 according to the first embodiment. This control characteristic is obtained by combining the realistic input/output characteristic of the output stage 220 shown in FIG. 7A and the control characteristic of the arithmetic unit 210 according to the first embodiment. In Embodiment 1, since the control characteristic of the output stage 220 is defined by the polygonal line, the control angle φ of the optical axis can be changed linearly with respect to the tilt angle θ.
 つまり実施形態1によれば、演算部210における制御特性を折れ線で規定することにより、出力段220の入出力特性の非線形性を補償することができ、これにより車体の傾斜角θによらずに、光軸と水平との関係を実質的に一定に保つことが可能となる。つまり、比較技術に比べて、車体傾斜角のより広い範囲において、正確な光軸を実現できる。 In other words, according to the first embodiment, by defining the control characteristics in the calculation unit 210 by the polygonal line, the nonlinearity of the input/output characteristics of the output stage 220 can be compensated for. , the relationship between the optical axis and the horizontal can be kept substantially constant. That is, compared with the comparative technology, an accurate optical axis can be realized in a wider range of vehicle body tilt angles.
(実施形態2)
 図8は、実施形態2に係るレベリング制御装置200Aのブロック図である。レベリング制御装置200Aは、図2のレベリング制御装置200に加えて、温度センサ230を備える。温度センサ230は、出力段220の温度またはその周囲温度を検出可能に配置される。温度センサ230はたとえばサーミスタや熱電対を用いることができる。
(Embodiment 2)
FIG. 8 is a block diagram of a leveling control device 200A according to the second embodiment. The leveling control device 200A includes a temperature sensor 230 in addition to the leveling control device 200 of FIG. A temperature sensor 230 is arranged to detect the temperature of the output stage 220 or its ambient temperature. Temperature sensor 230 can use, for example, a thermistor or a thermocouple.
 温度センサ230の出力は、デジタル化される。制御信号生成部214Aは、温度TEMPに応じて、制御特性を変化させる。 The output of the temperature sensor 230 is digitized. The control signal generator 214A changes the control characteristic according to the temperature TEMP.
 図9は、実施形態2における制御特性の一例を説明する図である。実施形態2では、複数の所定温度に対応して複数の制御特性が規定されている。この例では、常温(25℃)、最高温度(80℃、110℃120℃など)、最低温度(-30℃)の3つの所定温度(それぞれ、T,T3,とする)について、制御特性が規定される。各制御特性は、実施形態1で説明したのと同様に折れ線として規定される。 FIG. 9 is a diagram illustrating an example of control characteristics according to the second embodiment. In the second embodiment, a plurality of control characteristics are defined corresponding to a plurality of predetermined temperatures. In this example, three predetermined temperatures (T 2 , T 3 and T 1 respectively) of room temperature (25° C.), maximum temperature (80° C., 110° C. 120° C., etc.), and minimum temperature (−30° C.) , the control characteristics are defined. Each control characteristic is defined as a polygonal line as described in the first embodiment.
 一実施例において、制御信号生成部214Aは、複数の所定温度T,T,T以外の任意の温度Tにおける制御信号SCTRLを、温度Tを挟む2つの所定温度T,Ti+1に対して規定された2つの制御特性にもとづき計算される2つの制御信号SCTRLの値v,vを補間して生成する。 In one embodiment, the control signal generator 214A generates the control signal S CTRL at any temperature T other than the plurality of predetermined temperatures T 1 , T 2 , and T 3 at two predetermined temperatures T i and T i+1 sandwiching the temperature T. are interpolated to generate two values v 1 , v 2 of the control signal S CTRL which are calculated based on the two control characteristics specified for .
 たとえば、T<T<Tである場合、Tに対する制御特性にもとづいて、現在のθに対応する制御信号SCTRLの値vを計算する。同様に、Tに対する制御特性にもとづいて、現在のθに対応する制御信号SCTRLの値vを計算する。 For example, if T 1 <T<T 2 , calculate the value v 1 of the control signal S CTRL corresponding to the current θ based on the control characteristics for T 1 . Similarly, based on the control characteristics for T2 , the value v2 of the control signal S CTRL corresponding to the current θ is calculated.
 そして、最終的な制御信号SCTRLの値vを、
 v={v×(T-T)+v×(T-T)}/(T-T
から計算してもよい。
Then, the value v of the final control signal S CTRL is
v={v 1 ×(T 2 −T)+v 2 ×(T−T 1 )}/(T 2 −T 1 )
can be calculated from
 一実施例において、制御信号生成部214Aは、複数の所定温度T,T,T以外の任意の温度Tにおける制御特性を、当該温度Tを挟む2つの所定温度に対して規定された2つの制御特性を補間して生成してもよい。そして補間によって生成した制御特性にもとづいて、現在の傾斜角θに対応する制御信号SCTRLの値vを計算してもよい。 In one embodiment, the control signal generator 214A defines control characteristics at an arbitrary temperature T other than the plurality of predetermined temperatures T 1 , T 2 , and T 3 for two predetermined temperatures sandwiching the temperature T. The two control characteristics may be interpolated and generated. Then, based on the control characteristic generated by interpolation, the value v of the control signal S CTRL corresponding to the current tilt angle θ may be calculated.
 以上がレベリング制御装置200Aの構成である。このレベリング制御装置200Aによれば、出力段220の入出力特性の、温度依存性が大きい場合に、温度の影響を低減して、好ましい制御特性に近づけることができる。 The above is the configuration of the leveling control device 200A. According to this leveling control device 200A, when the input/output characteristics of the output stage 220 are highly dependent on temperature, the influence of temperature can be reduced to bring the control characteristics closer to the preferable control characteristics.
(実施形態3)
 図10は、実施形態3に係るレベリング制御装置200Bのブロック図である。実施形態3では、レベリング制御装置200Bにおいて、出力段220に供給される電源電圧VDDが、制御信号生成部214Bにおける制御特性に反映される。すなわち制御信号生成部214Bは、出力段220の電源電圧VDDにもとづいて、制御特性を変化させる。
(Embodiment 3)
FIG. 10 is a block diagram of a leveling control device 200B according to the third embodiment. In the third embodiment, in the leveling controller 200B, the power supply voltage VDD supplied to the output stage 220 is reflected in the control characteristics of the control signal generator 214B. That is, the control signal generator 214B changes the control characteristics based on the power supply voltage VDD of the output stage 220. FIG.
 図11は、実施形態3における制御特性の一例を説明する図である。実施形態3では、複数の電源電圧VDD1,VDD2,VDD3に対応して複数の制御特性が規定されている。たとえば電源電圧VDD1=10V,VDD2=13.5V,VDD3=16Vのように規定することができる。各制御特性は、実施形態1で説明したのと同様に折れ線として規定される。 FIG. 11 is a diagram illustrating an example of control characteristics according to the third embodiment. In the third embodiment, a plurality of control characteristics are defined corresponding to a plurality of power supply voltages V DD1 , V DD2 and V DD3 . For example, the power supply voltages can be defined as V DD1 =10V, V DD2 =13.5V, and V DD3 =16V. Each control characteristic is defined as a polygonal line as described in the first embodiment.
 一実施例において、制御信号生成部214Bは、複数の電源電圧VDD1,VDD2,VDD3以外の任意の電源電圧VDDにおける制御信号SCTRLを、当該電源電圧VDDを挟む2つの電圧レベルVDDi,VDDi+1に対して規定された2つの制御特性にもとづき計算される2つの制御信号SCTRLの値v,vを補間して生成する。 In one embodiment, the control signal generator 214B generates the control signal S CTRL at any power supply voltage V DD other than a plurality of power supply voltages V DD1 , V DD2 , and V DD3 at two voltage levels sandwiching the power supply voltage V DD . It interpolates to generate two control signal S CTRL values v 1 and v 2 which are calculated based on the two control characteristics defined for V DDi and V DDi+1 .
 たとえば、VDD2<VDD<VDD3である場合、VDD2に対する制御特性にもとづいて、現在のθに対応する制御信号SCTRLの値vを計算する。同様に、VDD3に対する制御特性にもとづいて、現在のθに対応する制御信号SCTRLの値vを計算する。 For example, if V DD2 <V DD <V DD3 , calculate the value v 2 of the control signal S CTRL corresponding to the current θ based on the control characteristics for V DD2 . Similarly, based on the control characteristics for V DD3 , the value v3 of the control signal S CTRL corresponding to the current θ is calculated.
 そして、最終的な制御信号SCTRLの値vを、
 v={v×(VDD3-VDD)+v×(VDD-VDD2)}/(VDD3-VDD2
から計算してもよい。
Then, the value v of the final control signal S CTRL is
v={v 2 ×(V DD3 −V DD )+v 3 ×(V DD −V DD2 )}/(V DD3 −V DD2 )
can be calculated from
 一実施例において、制御信号生成部214Bは、複数の所定電源電圧VDD1,VDD2,VDD3以外の任意の電源電圧VDDにおける制御特性を、当該電源電圧VDDを挟む2つの所定電源電圧に対して規定された2つの制御特性を補間して生成してもよい。そして補間によって生成した制御特性にもとづいて、現在の傾斜角θに対応する制御信号SCTRLの値vを計算してもよい。 In one embodiment, the control signal generation unit 214B generates control characteristics at an arbitrary power supply voltage V DD other than the plurality of predetermined power supply voltages V DD1 , V DD2 , and V DD3 at two predetermined power supply voltages sandwiching the power supply voltage V DD . may be generated by interpolating two control characteristics defined for . Then, based on the control characteristic generated by interpolation, the value v of the control signal S CTRL corresponding to the current tilt angle θ may be calculated.
 以上がレベリング制御装置200Bの構成である。このレベリング制御装置200Bによれば、出力段220の入出力特性の、電源電圧依存性が大きい場合に、電源電圧変動の影響を低減して、好ましい制御特性に近づけることができる。 The above is the configuration of the leveling control device 200B. According to this leveling control device 200B, when the input/output characteristics of the output stage 220 are highly dependent on the power supply voltage, the influence of power supply voltage fluctuations can be reduced to bring the control characteristics closer to the preferable control characteristics.
(実施形態4)
 図12は、実施形態4に係るレベリング制御装置200Cのブロック図である。実施形態4では、レベリング制御装置200Cにおいて、出力段220の温度と、出力段220に供給される電源電圧VDDの両方が、制御信号生成部214Bにおける制御特性に反映される。すなわち制御信号生成部214Cは、出力段220の温度Tと電源電圧VDDにもとづいて、制御特性を変化させる。
(Embodiment 4)
FIG. 12 is a block diagram of a leveling control device 200C according to the fourth embodiment. In the fourth embodiment, in the leveling controller 200C, both the temperature of the output stage 220 and the power supply voltage VDD supplied to the output stage 220 are reflected in the control characteristics of the control signal generator 214B. That is, the control signal generator 214C changes the control characteristics based on the temperature T of the output stage 220 and the power supply voltage VDD .
 たとえば、制御信号生成部214Cは、複数M個の所定温度Tと複数N個の所定電源電圧VDDのマトリクス的なM×N組み合わせそれぞれに対して、制御特性が折れ線で規定される。制御信号生成部214Cは、現在の温度Tおよび電源電圧VDDに対応する制御信号SCTRLの値を、補間処理によって算出する。 For example, the control signal generation unit 214C defines the control characteristics by polygonal lines for each of M×N matrix-like combinations of M predetermined temperatures T and N predetermined power supply voltages VDD . The control signal generator 214C calculates the value of the control signal S CTRL corresponding to the current temperature T and power supply voltage VDD by interpolation processing.
(変形例)
 上述した実施形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なことが当業者に理解される。以下、こうした変形例について説明する。
(Modification)
Those skilled in the art will understand that the above-described embodiments are examples, and that various modifications can be made to combinations of each component and each processing process. Such modifications will be described below.
(変形例1)
 センサ120は、加速度センサ(Gセンサ)を含んでもよい。この場合において、センサ120は、車両側ではなく、レベリング制御装置200に搭載されてもよい。演算部210は、加速度センサの出力にもとづいて、車体の前後方向の傾き(傾斜角)θを算出する。
(Modification 1)
Sensor 120 may include an acceleration sensor (G sensor). In this case, the sensor 120 may be mounted on the leveling control device 200 instead of on the vehicle side. The calculation unit 210 calculates the tilt (tilt angle) θ in the longitudinal direction of the vehicle body based on the output of the acceleration sensor.
(変形例2)
 実施形態では、演算部210における制御特性を折れ線で規定することにより、出力段220の入出力特性の非線形性を補償したが、灯具システム100における非線形性は出力段220以外の箇所、具体的には、レベリングアクチュエータ114の入出力特性や、灯具ユニット112を回動させる機構に起因する場合もあり得る。この場合であっても、最終的な出力である光軸の角度φと、車体の傾斜角θが所望の関係を満たすように、折れ線を定めればよい。
(Modification 2)
In the embodiment, the nonlinearity of the input/output characteristics of the output stage 220 is compensated for by defining the control characteristics in the calculation section 210 by a polygonal line. may be caused by the input/output characteristics of the leveling actuator 114 and the mechanism for rotating the lamp unit 112 . Even in this case, the polygonal line may be determined so that the desired relationship between the angle φ of the optical axis, which is the final output, and the tilt angle θ of the vehicle body is satisfied.
(変形例3)
 演算部210の出力である制御信号SCTRLの形式および出力段220の構成は、実施形態で説明したそれらに限定されない。演算部210を構成するマイクロコントローラが、D/Aコンバータを含む場合、制御信号SCTRLは直流のアナログ電圧とすることができる。この場合、出力段220は、リニアアンプとして構成すればよい。
(Modification 3)
The format of the control signal S CTRL that is the output of the arithmetic unit 210 and the configuration of the output stage 220 are not limited to those described in the embodiments. If the microcontroller that constitutes the arithmetic unit 210 includes a D/A converter, the control signal S CTRL can be a DC analog voltage. In this case, output stage 220 may be configured as a linear amplifier.
 実施の形態にもとづき、具体的な語句を用いて本開示を説明したが、実施の形態は、本開示の原理、応用を示しているにすぎず、実施の形態には、請求の範囲に規定された本開示の思想を逸脱しない範囲において、多くの変形例や配置の変更が認められる。 Although the present disclosure has been described using specific terms based on the embodiments, the embodiments merely show the principles and applications of the present disclosure, and the embodiments are defined in the scope of claims. Many variations and arrangement changes are permitted without departing from the spirit of the disclosed disclosure.
 本開示は、車両用灯具に関する。 The present disclosure relates to vehicle lamps.
 100 灯具システム
 110 ヘッドランプ
 112 灯具ユニット
 114 レベリングアクチュエータ
 120 センサ
 200 レベリング制御装置
 210 演算部
 212 傾斜角算出部
 214 制御信号生成部
 220 出力段
 222 インバータ回路
 230 温度センサ
REFERENCE SIGNS LIST 100 lighting system 110 headlamp 112 lighting unit 114 leveling actuator 120 sensor 200 leveling control device 210 calculation unit 212 tilt angle calculation unit 214 control signal generation unit 220 output stage 222 inverter circuit 230 temperature sensor

Claims (10)

  1.  ヘッドランプに設けられる光軸調整用のアクチュエータを制御するレベリング制御装置であって、
     車体の前後方向の傾斜に対して、折れ線で規定した制御特性にしたがって変化する制御信号を出力する演算部と、
     前記制御信号に応じた出力電圧を生成する出力段と、
     を備えることを特徴とするレベリング制御装置。
    A leveling control device for controlling an actuator for optical axis adjustment provided in a headlamp,
    a calculation unit that outputs a control signal that changes according to the control characteristics defined by the polygonal line with respect to the tilt of the vehicle body in the longitudinal direction;
    an output stage that generates an output voltage according to the control signal;
    A leveling control device comprising:
  2.  ヘッドランプに設けられる光軸調整用のアクチュエータを制御するレベリング制御装置であって、
     車体の前後方向の傾斜と相関を有するセンサ値に対して、折れ線で規定した制御特性にしたがって変化する制御信号を出力する演算部と、
     前記制御信号に応じた出力電圧を生成する出力段と、
     を備えることを特徴とするレベリング制御装置。
    A leveling control device for controlling an actuator for optical axis adjustment provided in a headlamp,
    A calculation unit that outputs a control signal that changes according to a control characteristic defined by a polygonal line with respect to a sensor value that has a correlation with the tilt in the longitudinal direction of the vehicle body;
    an output stage that generates an output voltage according to the control signal;
    A leveling control device comprising:
  3.  前記制御信号は、パルス信号であり、前記制御信号の値は、前記パルス信号のデューティサイクルであり、
     前記出力段は、前記パルス信号を平滑化するフィルタを含むことを特徴とする請求項1または2に記載のレベリング制御装置。
    wherein the control signal is a pulse signal, the value of the control signal is the duty cycle of the pulse signal;
    3. The leveling control device according to claim 1, wherein said output stage includes a filter for smoothing said pulse signal.
  4.  前記演算部は、温度に応じて前記制御特性を変化させることを特徴とする請求項1から3のいずれかに記載のレベリング制御装置。 4. The leveling control device according to any one of claims 1 to 3, wherein the calculation unit changes the control characteristics according to temperature.
  5.  前記演算部には、複数の所定温度に対応して複数の前記制御特性が規定されており、
     前記演算部は、前記複数の所定温度以外の任意の温度における制御信号を、当該温度を挟む2つの所定温度に対して規定された2つの制御特性にもとづき計算される2つの制御信号を補間して生成することを特徴とする請求項1から3のいずれかに記載のレベリング制御装置。
    a plurality of control characteristics corresponding to a plurality of predetermined temperatures are defined in the computing unit;
    The computing unit interpolates a control signal at an arbitrary temperature other than the plurality of predetermined temperatures into two control signals calculated based on two control characteristics defined for two predetermined temperatures sandwiching the predetermined temperature. 4. The leveling control device according to any one of claims 1 to 3, wherein the leveling control device is generated by
  6.  前記演算部には、複数の所定温度に対応して複数の前記制御特性が規定されており、
     前記演算部は、前記複数の所定温度以外の任意の温度における制御特性を、当該温度を挟む2つの所定温度に対して規定された2つの制御特性を補間して生成することを特徴とする請求項1から3のいずれかに記載のレベリング制御装置。
    a plurality of control characteristics corresponding to a plurality of predetermined temperatures are defined in the computing unit;
    The computing unit generates the control characteristic at any temperature other than the plurality of predetermined temperatures by interpolating two control characteristics defined for two predetermined temperatures sandwiching the temperature. Item 4. A leveling control device according to any one of Items 1 to 3.
  7.  前記演算部は、電源電圧に応じて前記制御特性を変化させることを特徴とする請求項1から5のいずれかに記載のレベリング制御装置。 6. The leveling control device according to any one of claims 1 to 5, wherein the calculation unit changes the control characteristics according to the power supply voltage.
  8.  前記演算部には、複数の所定電源電圧に対応して複数の前記制御特性が規定されており、
     前記演算部は、前記複数の所定電源電圧以外の任意の電源電圧における制御信号を、当該電源電圧を挟む2つの所定電源電圧に対して規定された2つの制御特性にもとづき計算される2つの制御信号を補間して生成することを特徴とする請求項1から5のいずれかに記載のレベリング制御装置。
    a plurality of control characteristics corresponding to a plurality of predetermined power supply voltages are defined in the computing unit;
    The computing unit converts a control signal at an arbitrary power supply voltage other than the plurality of predetermined power supply voltages into two controls calculated based on two control characteristics defined for two predetermined power supply voltages sandwiching the power supply voltage. 6. The leveling control device according to claim 1, wherein the signal is generated by interpolation.
  9.  前記演算部には、複数の所定電源電圧に対応して複数の前記制御特性が規定されており、
     前記演算部は、前記複数の所定電源電圧以外の任意の電源電圧における制御特性を、当該電源電圧を挟む2つの所定電源電圧に対して規定された2つの制御特性を補間して生成することを特徴とする請求項1から5のいずれかに記載のレベリング制御装置。
    a plurality of control characteristics corresponding to a plurality of predetermined power supply voltages are defined in the computing unit;
    The computing unit generates a control characteristic for an arbitrary power supply voltage other than the plurality of predetermined power supply voltages by interpolating two control characteristics defined for two predetermined power supply voltages sandwiching the power supply voltage. 6. A leveling control device according to any one of claims 1 to 5.
  10.  車体の傾きを検出可能に設けられたセンサと、
     光軸調整用のアクチュエータを含むヘッドランプと、
     前記センサの出力にもとづく前記車体の傾きに応じた前記出力電圧を、前記アクチュエータに出力する請求項1から9のいずれかに記載のレベリング制御装置と、
     を備えることを特徴とする灯具システム。
    a sensor capable of detecting the inclination of the vehicle body;
    a headlamp including an actuator for optical axis adjustment;
    The leveling control device according to any one of claims 1 to 9, wherein the output voltage corresponding to the tilt of the vehicle body based on the output of the sensor is output to the actuator;
    A lamp system comprising:
PCT/JP2022/037057 2021-10-04 2022-10-04 Leveling control device and lamp system WO2023058629A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023552885A JPWO2023058629A1 (en) 2021-10-04 2022-10-04

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021163560 2021-10-04
JP2021-163560 2021-10-04

Publications (1)

Publication Number Publication Date
WO2023058629A1 true WO2023058629A1 (en) 2023-04-13

Family

ID=85803469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037057 WO2023058629A1 (en) 2021-10-04 2022-10-04 Leveling control device and lamp system

Country Status (2)

Country Link
JP (1) JPWO2023058629A1 (en)
WO (1) WO2023058629A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10326506A (en) * 1997-05-27 1998-12-08 Koito Mfg Co Ltd Apparatus for controlling irradiation direction of lighting tool
JP2000142213A (en) * 1998-08-31 2000-05-23 Denso Corp Device for automatically adjusting optical axis direction of head lamp for vehicle
JP2001063452A (en) * 1999-08-30 2001-03-13 Koito Mfg Co Ltd Optical axis adjuster for vehicle
JP2006056436A (en) * 2004-08-23 2006-03-02 Koito Mfg Co Ltd Projection direction control device of lighting fixture for vehicle
JP2010143506A (en) * 2008-12-22 2010-07-01 Koito Mfg Co Ltd Auto-leveling system for vehicular lamp
KR20100124942A (en) * 2009-05-20 2010-11-30 한국오므론전장주식회사 Control unit whit short circuit interception function in auto head lamp leveling system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10326506A (en) * 1997-05-27 1998-12-08 Koito Mfg Co Ltd Apparatus for controlling irradiation direction of lighting tool
JP2000142213A (en) * 1998-08-31 2000-05-23 Denso Corp Device for automatically adjusting optical axis direction of head lamp for vehicle
JP2001063452A (en) * 1999-08-30 2001-03-13 Koito Mfg Co Ltd Optical axis adjuster for vehicle
JP2006056436A (en) * 2004-08-23 2006-03-02 Koito Mfg Co Ltd Projection direction control device of lighting fixture for vehicle
JP2010143506A (en) * 2008-12-22 2010-07-01 Koito Mfg Co Ltd Auto-leveling system for vehicular lamp
KR20100124942A (en) * 2009-05-20 2010-11-30 한국오므론전장주식회사 Control unit whit short circuit interception function in auto head lamp leveling system

Also Published As

Publication number Publication date
JPWO2023058629A1 (en) 2023-04-13

Similar Documents

Publication Publication Date Title
JP4170928B2 (en) Vehicle lighting
CN107960069B (en) Lamp for vehicle
US10960810B2 (en) Apparatus and method for controlling ADB-mode vehicle headlamp
WO2017150322A1 (en) Vehicle lamp fixture and lighting circuit for same
US8716935B2 (en) Light irradiation control system for vehicle lamp
WO2021251375A1 (en) Vehicular lamp system, power supply circuit
WO2023058629A1 (en) Leveling control device and lamp system
US20110291709A1 (en) Apparatus and method for generating ramp waveform
JP2018102053A (en) Converter controller and vehicular lighting fixture
JP2006206045A (en) Lighting and/or signaling assembly for vehicle with improved actuator switch
JP4633636B2 (en) Apparatus for controlling irradiation direction of vehicular lamp and initialization method thereof
US20130256507A1 (en) Photodetector circuit
JP2006056436A (en) Projection direction control device of lighting fixture for vehicle
JP3935316B2 (en) Method and apparatus for controlling the reflectivity level of an electrochromic element of a vehicle
WO2020250933A1 (en) Vehicle lamp
JP5286566B2 (en) Capacitance type distance sensor and vehicle height measuring device equipped with capacitance sensor
WO2023090328A1 (en) Lamp system
JP4932336B2 (en) Scanner device
JP2020016720A (en) Optical scan device
WO2023058628A1 (en) Leveling control device and lamp system
JP4375102B2 (en) Auto levelizer for vehicles
WO2021187287A1 (en) Class d amplifier
JP4797418B2 (en) Light emitting element driving device
JPS59118544A (en) Optical axis adjuster for head light of vehicle
Zhou et al. An Automatic Leveling System for Automotive Headlight Based on the Suspension Height Measurement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22878498

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023552885

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE