WO2023058628A1 - Leveling control device and lamp system - Google Patents

Leveling control device and lamp system Download PDF

Info

Publication number
WO2023058628A1
WO2023058628A1 PCT/JP2022/037056 JP2022037056W WO2023058628A1 WO 2023058628 A1 WO2023058628 A1 WO 2023058628A1 JP 2022037056 W JP2022037056 W JP 2022037056W WO 2023058628 A1 WO2023058628 A1 WO 2023058628A1
Authority
WO
WIPO (PCT)
Prior art keywords
control device
vehicle
leveling control
vehicle body
output
Prior art date
Application number
PCT/JP2022/037056
Other languages
French (fr)
Japanese (ja)
Inventor
勇一 中澤
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Priority to JP2023552884A priority Critical patent/JPWO2023058628A1/ja
Publication of WO2023058628A1 publication Critical patent/WO2023058628A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/06Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle
    • B60Q1/08Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically
    • B60Q1/10Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically due to vehicle inclination, e.g. due to load distribution
    • B60Q1/115Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically due to vehicle inclination, e.g. due to load distribution by electric means

Definitions

  • the present disclosure relates to vehicle lamps.
  • the light distribution pattern of headlamps is stipulated by law so that automobile headlamps do not give glare to surrounding traffic participants.
  • the longitudinal inclination of the vehicle body changes according to the number of passengers and the weight of luggage.
  • the tilt of the optical axis of the headlamp relative to the ground changes, and the irradiation range of the headlamp changes in the vertical direction. If the irradiation range shifts upward, glare may occur, and if the irradiation range shifts downward, the irradiation range in front of the vehicle narrows.
  • a leveling actuator is built into the headlamp to compensate for changes in the optical axis of the headlamp based on changes in the longitudinal tilt of the vehicle body.
  • the first method is to provide a rear vehicle height sensor near the rear suspension and calculate the pitch angle based on its output signal.
  • a front vehicle height sensor is provided near the front suspension, and the pitch angle is determined based on both the output signal of the rear vehicle height sensor and the output signal of the front vehicle height sensor. It is calculated.
  • Another third method calculates the direction of gravity using an acceleration sensor, and calculates the pitch angle based on the relationship between the direction of the vehicle body and the direction of gravity.
  • the first method based on the rear vehicle height sensor can keep costs down.
  • the inventor has recognized that the accuracy of the pitch angle estimated by the first method may be low.
  • the present disclosure has been made in such a situation, and one of its exemplary purposes is to provide a leveling control device capable of accurately calculating the pitch angle.
  • An aspect of the present disclosure relates to a leveling control device that controls an optical axis adjusting actuator provided in a headlamp.
  • the leveling control device includes an arithmetic unit that receives an output from a vehicle height sensor provided at the rear of the vehicle body and calculates a longitudinal tilt of the vehicle body from a sensor value based on the output.
  • the relationship between the sensor value and the inclination is defined by a polygonal line, and the polygonal line can be corrected based on information unique to the vehicle body on which the leveling control device is actually mounted.
  • the pitch angle can be calculated with high accuracy.
  • FIG. 1 is a block diagram of a lighting system according to an embodiment
  • FIG. 1 is a block diagram showing the configuration of a leveling control device according to an embodiment
  • FIG. FIG. 4 is a diagram showing a basic relationship between a sensor value dHr based on the output of a rear vehicle height sensor and an inclination angle (pitch angle) ⁇
  • FIG. 5 is a diagram showing an example of the relationship between the sensor value dHr and the pitch angle ⁇ under a plurality of loading conditions when the vehicle mass is maximum and when the vehicle mass is minimum. It is a figure which shows the relationship between loading conditions and an optical axis in a comparative technique. It is a figure explaining the control line and its correction in the leveling control device concerning an embodiment. It is a figure which shows the relationship between loading conditions and an optical axis in embodiment.
  • a leveling control device controls an optical axis adjusting actuator provided in a headlamp.
  • the leveling control device includes an arithmetic unit that receives an output from a vehicle height sensor provided at the rear of the vehicle body and calculates a longitudinal tilt of the vehicle body from a sensor value based on the output.
  • the relationship between the sensor value and the inclination is defined by a polygonal line, and the polygonal line can be corrected based on information unique to the vehicle body on which the leveling control device is actually mounted.
  • the same car model may be deployed in multiple grades, and the same leveling control device may be shared across all grades.
  • the relationship between the output of the rear vehicle height sensor and the pitch angle may differ.
  • the polygonal line can be corrected for each grade, and a more accurate pitch angle can be calculated from the output of the rear vehicle height sensor.
  • the information may be vehicle mass.
  • the polygonal line may include a first linear portion and a second linear portion, and the second linear portion may be translated based on the information.
  • the computing unit determines first coordinates through which the second straight line portion corresponding to the first value of the information should pass, and second coordinates through which the second straight line portion corresponding to the second value of the information should pass. You can remember.
  • the calculation unit may calculate third coordinates through which the second straight line portion of the corrected polygonal line should pass through by interpolation or extrapolation from the first coordinates and the second coordinates.
  • the first and second values may be maximum and minimum values.
  • a lighting system includes a vehicle height sensor provided at the rear of a vehicle body, a headlamp including an actuator for optical axis adjustment, and a sensor value based on the output of the vehicle height sensor. Any one of the leveling control devices described above may be provided, which calculates a tilt and outputs an output signal corresponding to the tilt to the actuator.
  • a state in which member A is connected to member B refers to a case in which member A and member B are physically directly connected, as well as a case in which member A and member B are electrically connected to each other. It also includes the case of being indirectly connected through other members that do not substantially affect the physical connection state or impair the functions and effects achieved by their combination.
  • the state in which member C is provided between member A and member B refers to the case where member A and member C or member B and member C are directly connected, as well as the case where they are electrically connected. It also includes the case of being indirectly connected through other members that do not substantially affect the physical connection state or impair the functions and effects achieved by their combination.
  • FIG. 1 is a block diagram of a lighting system 100 according to an embodiment.
  • the lighting system 100 is a headlamp that is mounted on a vehicle and that illuminates a field of view in front of the vehicle.
  • the tilt angle ⁇ in the front-rear direction changes according to the front-rear weight balance.
  • the tilt angle ⁇ in the front-rear direction is the rotation of the vehicle body about a horizontal axis extending in the left-right direction, that is, the pitch angle.
  • the lighting system 100 has a function (auto-leveling function) of automatically adjusting the optical axis of the headlamp in the pitch direction according to the pitch angle ⁇ of the vehicle body.
  • the lighting system 100 includes a headlamp body 110 , a rear vehicle height sensor 120 and a leveling control device 200 .
  • the headlamp body 110 is provided at a predetermined position in front of the vehicle body.
  • Headlamp 110 includes a lighting unit 112 and a leveling actuator 114 .
  • the lamp unit 112 is a unit in which a light emitting element 116, an optical system 118 such as a mirror or a lens, and a bracket 119 are integrated.
  • the lamp unit 112 is rotatably supported in the pitch direction with respect to the housing of the headlamp main body 110 .
  • the leveling actuator 114 controls the position of the lighting unit 112 in the pitch direction according to the output signal S OUT from the leveling control device 200 .
  • the rear vehicle height sensor 120 is provided near the rear suspension of the vehicle body and detects the vehicle height Hr behind the vehicle body.
  • the rear vehicle height sensor 120 outputs a sensor signal SSNS indicating the vehicle height Hr or the amount of depression dHr from the reference position.
  • the sensor signal S SNS is an analog voltage signal.
  • the leveling control device 200 automatically controls the leveling of the headlamps 110 according to the sensor signal SSNS generated by the rear vehicle height sensor 120 .
  • the leveling control device 200 is installed inside the vehicle, for example, under the driver's seat.
  • the leveling control device 200 calculates the pitch angle ⁇ , and adjusts the leveling actuator 114 so that the optical axis of the headlamp 110 is at an appropriate angle ⁇ with respect to the calculated pitch angle ⁇ . Generate drive signal S OUT .
  • the leveling control device 200 includes an arithmetic section 210 and an output stage 220 .
  • the calculation unit 210 calculates the pitch angle ⁇ based on the sensor signal SSNS .
  • the calculation unit 210 holds control characteristics that define the correspondence between the pitch angle ⁇ of the vehicle body and the control signal S CTRL , and generates the control signal S CTRL corresponding to the pitch angle ⁇ according to the control characteristics.
  • Control signal S CTRL is a signal that defines the magnitude of output signal S OUT to be supplied to leveling actuator 114 .
  • the arithmetic unit 210 is composed of, for example, a microcontroller, and its operation and functions are defined by a software program executed by the microcontroller.
  • control signal S CTRL When the leveling control device 200 is arranged in the vehicle interior as described above, it is necessary to transmit the control signal S CTRL to the position of the headlamp 110 away from there. Since the amplitude of is weak, it is difficult to transmit to the headlamp 110 as it is. Therefore, an output stage 220 that amplifies the control signal S CTRL is provided in the subsequent stage of the arithmetic section 210 . Control signal S CTRL amplified by output stage 220 is provided to headlamp 110 as output signal S OUT .
  • the above is the basic configuration of the lamp system 100. Next, a specific configuration of the leveling control device 200 will be described.
  • FIG. 2 is a block diagram showing the configuration of the leveling control device 200 according to the embodiment.
  • Operation unit 210 includes pitch angle calculation unit 212 , control signal generation unit 214 and nonvolatile memory 216 .
  • the arithmetic unit 210 is implemented by a combination of a microcontroller and a software program. It just shows.
  • the non-volatile memory 216 stores a software program executed by the calculation unit 210 .
  • the pitch angle calculator 212 calculates the pitch angle ⁇ of the vehicle body based on the sensor signal SSNS .
  • the relationship between the sensor signal SSNS generated by the rear vehicle height sensor 120 and the pitch angle ⁇ is determined by the dimensions of the vehicle body on which the lighting system 100 is mounted and the product number of the sensor.
  • the basic relationship is determined in the design process of the leveling control device 200 based on information provided by the automobile manufacturer, and is written in the software program executed by the calculation unit 210 in the manufacturing process of the leveling control device 200. .
  • FIG. 3 is a diagram showing the basic relationship between the sensor value dHr based on the output of the rear vehicle height sensor 120 and the tilt angle (pitch angle) ⁇ .
  • the pitch angle calculation unit 212 of the calculation unit 210 there are two relationship (control lines) between the sensor value (here, the sinking amount dHr) based on the output of the rear vehicle height sensor 120 and the inclination angle (pitch angle) ⁇ . It is defined by a polygonal line including straight lines.
  • the sensor value dHr here represents the amount of depression from the reference vehicle height, with the reference vehicle height being 0.
  • the sensor value dHr takes a negative value in the sinking direction. Note that the method of obtaining the sensor value is not limited to this, and the rear vehicle height Hr itself may be used as the sensor value.
  • the lighting system 100 is mounted on vehicle models having the same basic dimensions of the vehicle body.
  • one car model has multiple grades with different options and specifications.
  • FIG. 4 is a diagram showing an example of the relationship between the sensor value dHr and the pitch angle ⁇ under a plurality of loading conditions when the vehicle mass is maximum and when the vehicle mass is minimum. Loading conditions to be considered are set out in Annex 5 of UN-REG48.
  • Cases 1 to 6 here are as follows. Case 1 is a state in which one person is in the driver's seat. In case 2, in addition to case 1, one passenger sits in the passenger seat. In case 3, in addition to case 2, all the seats in the last row are taken. Case 4 is in a state in which all seats are seated. In case 5, in addition to case 4, the maximum load is placed on the trunk. In case 6, in addition to case 1, the maximum load is placed on the trunk.
  • the sensor value of 0 on the horizontal axis and the pitch angle of 0 on the vertical axis in FIG. 4 are based on Case 1.
  • Case 3 and case 4 are identical.
  • the relationship between the amount of subduction dHr and the pitch angle ⁇ differs greatly between cases 5 and 6 when the vehicle mass is maximum and when it is minimum.
  • FIG. 5 is a diagram showing the relationship (simulation result) between loading conditions and optical axes in a comparative technique.
  • the same control line is used for maximum mass and minimum mass, so certification regulations can be cleared under all loading conditions (Cases 1 to 6), but under some loading conditions (Cases 3, 4, and 5) , the optical axis angle ⁇ decreases to -1.9%. This means that the area ahead of the vehicle becomes dark.
  • information unique to the vehicle body is written into the non-volatile memory 216 of the leveling control device 200 at the stage when the vehicle mass is determined in the manufacturing process of the vehicle body.
  • This unique information may be data that directly indicates the vehicle mass, or information that indirectly indicates the vehicle mass.
  • the polygonal line defined by the pitch angle calculator 212 is corrected based on the unique information written in the nonvolatile memory 216, that is, the vehicle mass.
  • FIG. 6 is a diagram for explaining control lines and correction thereof in the leveling control device 200 according to the embodiment. Similar to FIG. 4, FIG. 6 shows the correct relationship between the sensor value dHr and the pitch angle ⁇ in Cases 1-6. In this embodiment, based on the plots (squares) of multiple loading conditions (cases 1 to 6) when the vehicle mass is the minimum CMmin, specifically, the first control line A second A control line (II) is defined.
  • the first control line (I) and the second control line (II) each include a first linear portion LNa and a second linear portion LNb with different slopes.
  • the first linear portion LNa covers the area corresponding to Cases 1 to 4
  • the second linear portion LNb covers the area corresponding to Cases 5 and 6.
  • the first control line (I) and the second control line (II) have a common first linear portion LNa.
  • the slope of the second straight portion LNb of the first control line (I) and the slope of the second straight portion LNb of the second control line (II) are the same, points) are different.
  • CMmin ⁇ C ⁇ CMmax For the actual vehicle mass CM (CMmin ⁇ C ⁇ CMmax), a control line (III) having the same slope as the first control line (I) and the second control line (II) is defined,
  • the pitch angle ⁇ is calculated according to the control line (III). That is, the second linear portion LNb is translated according to the actual vehicle mass CM.
  • the pitch angle calculator 212 defines the position of the second straight line portion corresponding to the maximum value CMmax of the vehicle mass CM, in other words, the first coordinate Pmax through which the second straight line portion should pass. Similarly, the pitch angle calculator 212 records the position of the second straight line portion corresponding to the minimum value CMmin of the vehicle mass CM, in other words, the second coordinate Pmin through which the second straight line portion should pass.
  • These coordinates Pmax and Pmin may be the coordinates of the intersection of the first straight line portion and the second straight line portion. Alternatively, these coordinates Pmax, Pmin may be y-intercepts.
  • the pitch angle calculator 212 calculates a third coordinate P that internally divides the two coordinates Pmax and Pmin based on the actual vehicle mass CM specific to the vehicle body.
  • P ⁇ Pmax ⁇ (CM - CMmin) + Pmin ⁇ (CMmax - CM) ⁇ / (CMmax - CM, min)
  • the pitch angle calculator 212 determines a second straight line segment that passes through the third coordinate P and that fits the actual vehicle mass CM.
  • FIG. 7 is a diagram showing the relationship (simulation result) between loading conditions and optical axes in the embodiment.
  • the optical axis is lowered to about -1.9%, and there is a problem that the field of view becomes dark.
  • the optical axis is stabilized at about -1% regardless of the loading conditions, and it can be said that the darkening of the field of view can be prevented. I understand.
  • the configuration and operation of the leveling control device 200 are as described above. According to this leveling control device 200, an optimum control line can be provided for a plurality of grades having different vehicle masses. This can prevent the optical axis (%) from becoming too low and the field of view becoming dark.
  • the vehicle mass CM may be ranked in n stages, and coordinates P1 to Pn along which the second straight line portion LNb should pass may be determined for a plurality of vehicle mass ranks CM1 to CMn.
  • the second straight line portion LNb of the actual control line (III) may be determined so as to pass through the coordinate Px corresponding to the rank CMx containing the actual vehicle mass CM among the plurality of vehicle mass ranks CM1 to CMn. good.
  • the correction of the control line defined by the polygonal line is not limited to the translation of one of the two straight line segments.
  • the slope of the second linear portion may be changed based on information specific to the actual vehicle.
  • the first straight portion may be translated and/or tilted.
  • Modification 3 In the embodiment, the vehicle mass is explained as information specific to each grade, but there are other factors besides the vehicle mass that cause the relationship between the sensor value of the rear vehicle height sensor 120 and the pitch angle ⁇ to differ. If so, the control line should be modified based on parameters related to that factor.
  • the present disclosure relates to vehicle lamps.
  • REFERENCE SIGNS LIST 100 lighting system 110 headlamp 112 lighting unit 114 leveling actuator 120 rear vehicle height sensor 200 leveling control device 210 calculation unit 212 pitch angle calculation unit 214 control signal generation unit 216 nonvolatile memory 220 output stage

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

Provided is a head lamp including an actuator for adjusting an optical axis. A leveling control device (200) controls an actuator on the basis of output of a rear vehicle height sensor. A calculation unit (210) receives the output (SSNS) of the rear vehicle height sensor (120) and calculates an inclination of a vehicle body in a front-and-rear direction from a sensor value based on the output (SSNS). A relationship between the sensor value and an inclination angle (θ) is defined as a polygonal line in the calculation unit (210). The polygonal line can be corrected on the basis of information specific to the vehicle body to which the leveling control device (200) is mounted.

Description

レベリング制御装置および灯具システムLeveling controller and lighting system
 本開示は、車両用灯具に関する。 The present disclosure relates to vehicle lamps.
 自動車のヘッドランプが、周囲の交通参加者にグレアを与えないように、ヘッドランプの配光パターンは法規によって規定されている。車体の前後傾斜は、乗車人数や荷物の重量に応じて変化する。これにより、地面とヘッドランプの光軸の傾きが変化し、これによりヘッドランプの照射範囲が上下方向に変化する。照射範囲が上側にずれると、グレアを与えるおそれがあり、照射範囲が下側にずれると、車両前方の照射範囲が狭くなる。 The light distribution pattern of headlamps is stipulated by law so that automobile headlamps do not give glare to surrounding traffic participants. The longitudinal inclination of the vehicle body changes according to the number of passengers and the weight of luggage. As a result, the tilt of the optical axis of the headlamp relative to the ground changes, and the irradiation range of the headlamp changes in the vertical direction. If the irradiation range shifts upward, glare may occur, and if the irradiation range shifts downward, the irradiation range in front of the vehicle narrows.
 車体の前後傾斜の変化にもとづくヘッドランプの光軸の変化を補正するために、ヘッドランプにはレベリングアクチュエータが内蔵される。レベリングアクチュエータを車体の傾斜に応じて自動で制御するオートレベリングと呼ばれる技術がある。オートレベリングは、車体に設けたセンサによって車体の前後方向の傾斜(ピッチ角ともいう)を取得し、その傾斜を打ち消すように、ヘッドランプ内の灯具ユニットの光軸を、アクチュエータによって補正するものである。 A leveling actuator is built into the headlamp to compensate for changes in the optical axis of the headlamp based on changes in the longitudinal tilt of the vehicle body. There is a technology called auto-leveling that automatically controls a leveling actuator according to the inclination of the vehicle body. Auto-leveling uses sensors installed in the vehicle body to acquire the vehicle's longitudinal tilt (also known as pitch angle), and corrects the optical axis of the lighting unit in the headlamp using an actuator so as to cancel the tilt. be.
 車体の前後方向の傾斜(ピッチ角)をセンシングする方式はいくつか提案されている。第1の方式は、リアサスペンションの近傍にリア車高センサを設け、その出力信号にもとづいて、ピッチ角を算出するものである。 Several methods have been proposed for sensing the longitudinal tilt (pitch angle) of the vehicle body. The first method is to provide a rear vehicle height sensor near the rear suspension and calculate the pitch angle based on its output signal.
 第2の方式は、リア車高センサに加えて、フロントサスペンションの近傍にフロント車高センサを設け、リア車高センサの出力信号とフロント車高センサの出力信号の両方にもとづいて、ピッチ角を算出するものである。 In the second method, in addition to the rear vehicle height sensor, a front vehicle height sensor is provided near the front suspension, and the pitch angle is determined based on both the output signal of the rear vehicle height sensor and the output signal of the front vehicle height sensor. It is calculated.
 さらに別の第3の方式は、加速度センサによって重力方向を算出し、車体の方向と重力方向の関係にもとづいて、ピッチ角を算出するものである。 Another third method calculates the direction of gravity using an acceleration sensor, and calculates the pitch angle based on the relationship between the direction of the vehicle body and the direction of gravity.
 これらのうち、リア車高センサにもとづく第1方式は、コストを抑えることができる。その一方で、本発明者は、第1方式で推定されるピッチ角の精度が低い場合があることを認識した。 Of these, the first method based on the rear vehicle height sensor can keep costs down. On the other hand, the inventor has recognized that the accuracy of the pitch angle estimated by the first method may be low.
 本開示は係る状況においてなされたものであり、その例示的な目的のひとつは、ピッチ角を正確に計算可能なレベリング制御装置の提供にある。 The present disclosure has been made in such a situation, and one of its exemplary purposes is to provide a leveling control device capable of accurately calculating the pitch angle.
 本開示のある態様は、ヘッドランプに設けられる光軸調整用のアクチュエータを制御するレベリング制御装置に関する。レベリング制御装置は、車体の後部に設けられた車高センサの出力を受け、前記出力にもとづくセンサ値から車体の前後方向の傾斜を算出する演算部を備える。演算部には、センサ値と傾斜の関係が折れ線で規定されており、折れ線は、レベリング制御装置が実際に搭載された車体に固有の情報にもとづいて修正可能である。 An aspect of the present disclosure relates to a leveling control device that controls an optical axis adjusting actuator provided in a headlamp. The leveling control device includes an arithmetic unit that receives an output from a vehicle height sensor provided at the rear of the vehicle body and calculates a longitudinal tilt of the vehicle body from a sensor value based on the output. In the calculation unit, the relationship between the sensor value and the inclination is defined by a polygonal line, and the polygonal line can be corrected based on information unique to the vehicle body on which the leveling control device is actually mounted.
 なお、以上の構成要素を任意に組み合わせたもの、構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本発明あるいは本開示の態様として有効である。さらに、この項目(課題を解決するための手段)の記載は、本発明の欠くべからざるすべての特徴を説明するものではなく、したがって、記載されるこれらの特徴のサブコンビネーションも、本発明たり得る。 Arbitrary combinations of the above constituent elements, and mutually replacing constituent elements and expressions among methods, devices, systems, etc. are also effective as aspects of the present invention or the present disclosure. Furthermore, the description in this section (Summary of the Invention) does not describe all the essential features of the invention, and thus subcombinations of those described features can also be the invention. .
 本開示のある態様によれば、ピッチ角を精度良く計算できる。 According to one aspect of the present disclosure, the pitch angle can be calculated with high accuracy.
実施形態に係る灯具システムのブロック図である。1 is a block diagram of a lighting system according to an embodiment; FIG. 実施形態に係るレベリング制御装置の構成を示すブロック図である。1 is a block diagram showing the configuration of a leveling control device according to an embodiment; FIG. リア車高センサの出力にもとづくセンサ値dHrと、傾斜角(ピッチ角)θの基本的な関係を示す図である。FIG. 4 is a diagram showing a basic relationship between a sensor value dHr based on the output of a rear vehicle height sensor and an inclination angle (pitch angle) θ; 車両質量が最大であるときと、車両質量が最小であるときそれぞれの、複数の積載条件におけるセンサ値dHrとピッチ角θの関係の一例を示す図である。FIG. 5 is a diagram showing an example of the relationship between the sensor value dHr and the pitch angle θ under a plurality of loading conditions when the vehicle mass is maximum and when the vehicle mass is minimum. 比較技術における、積載条件と光軸の関係を示す図である。It is a figure which shows the relationship between loading conditions and an optical axis in a comparative technique. 実施形態に係るレベリング制御装置における制御線とその修正を説明する図である。It is a figure explaining the control line and its correction in the leveling control device concerning an embodiment. 実施形態における、積載条件と光軸の関係を示す図である。It is a figure which shows the relationship between loading conditions and an optical axis in embodiment.
(実施形態の概要)
 本開示のいくつかの例示的な実施形態の概要を説明する。この概要は、後述する詳細な説明の前置きとして、実施形態の基本的な理解を目的として、1つまたは複数の実施形態のいくつかの概念を簡略化して説明するものであり、発明あるいは開示の広さを限定するものではない。またこの概要は、考えられるすべての実施形態の包括的な概要ではなく、実施形態の欠くべからざる構成要素を限定するものではない。便宜上、「一実施形態」は、本明細書に開示するひとつの実施形態(実施例や変形例)または複数の実施形態(実施例や変形例)を指すものとして用いる場合がある。
(Overview of embodiment)
SUMMARY OF THE INVENTION Several exemplary embodiments of the disclosure are summarized. This summary presents, in simplified form, some concepts of one or more embodiments, as a prelude to the more detailed description that is presented later, and for the purpose of a basic understanding of the embodiments. The size is not limited. Moreover, this summary is not an exhaustive overview of all possible embodiments and is not intended to limit essential elements of an embodiment. For convenience, "one embodiment" may be used to refer to one embodiment (example or variation) or multiple embodiments (examples or variations) disclosed herein.
 一実施形態に係るレベリング制御装置は、ヘッドランプに設けられる光軸調整用のアクチュエータを制御する。レベリング制御装置は、車体の後部に設けられた車高センサの出力を受け、当該出力にもとづくセンサ値から車体の前後方向の傾斜を算出する演算部を備える。演算部には、センサ値と傾斜の関係が折れ線で規定されており、折れ線は、レベリング制御装置が実際に搭載された車体に固有の情報にもとづいて修正可能である。 A leveling control device according to one embodiment controls an optical axis adjusting actuator provided in a headlamp. The leveling control device includes an arithmetic unit that receives an output from a vehicle height sensor provided at the rear of the vehicle body and calculates a longitudinal tilt of the vehicle body from a sensor value based on the output. In the calculation unit, the relationship between the sensor value and the inclination is defined by a polygonal line, and the polygonal line can be corrected based on information unique to the vehicle body on which the leveling control device is actually mounted.
 同一車種が、複数のグレードで展開され、同じレベリング制御装置を全グレードで共通化される場合がある。この場合に、グレードごとに車体質量や前後の重量バランスなどが異なると、リア車高センサの出力とピッチ角の関係が異なる場合が生じうる。上記構成によれば、グレードごとに折れ線を修正することができ、リア車高センサの出力から、より正確なピッチ角を算出することが可能なる。 The same car model may be deployed in multiple grades, and the same leveling control device may be shared across all grades. In this case, if the vehicle body mass, the front-rear weight balance, etc. differ for each grade, the relationship between the output of the rear vehicle height sensor and the pitch angle may differ. According to the above configuration, the polygonal line can be corrected for each grade, and a more accurate pitch angle can be calculated from the output of the rear vehicle height sensor.
 一実施形態において、情報は、車両質量であってもよい。 In one embodiment, the information may be vehicle mass.
 一実施形態において、折れ線は、第1直線部分と第2直線部分を含み、第2直線部分が情報にもとづいて平行移動してもよい。 In one embodiment, the polygonal line may include a first linear portion and a second linear portion, and the second linear portion may be translated based on the information.
 一実施形態において、演算部は、情報の第1値に対応する第2直線部分が通過すべき第1座標と、情報の第2値に対応する第2直線部分が通過すべき第2座標を記憶してもよい。演算部は、第1座標と第2座標から内挿または外挿により、修正後の折れ線の第2直線部分が通過すべき第3座標を計算してもよい。第1値と第2値は、最大値と最小値であってもよい。 In one embodiment, the computing unit determines first coordinates through which the second straight line portion corresponding to the first value of the information should pass, and second coordinates through which the second straight line portion corresponding to the second value of the information should pass. You can remember. The calculation unit may calculate third coordinates through which the second straight line portion of the corrected polygonal line should pass through by interpolation or extrapolation from the first coordinates and the second coordinates. The first and second values may be maximum and minimum values.
 一実施形態に係る灯具システムは、車体の後部に設けられた車高センサと、光軸調整用のアクチュエータを含むヘッドランプと、車高センサの出力にもとづくセンサ値にもとづいて車体の前後方向の傾斜を算出し、当該傾斜に応じた出力信号をアクチュエータに出力する上述のいずれかのレベリング制御装置と、を備えてもよい。 A lighting system according to one embodiment includes a vehicle height sensor provided at the rear of a vehicle body, a headlamp including an actuator for optical axis adjustment, and a sensor value based on the output of the vehicle height sensor. Any one of the leveling control devices described above may be provided, which calculates a tilt and outputs an output signal corresponding to the tilt to the actuator.
(実施形態)
 以下、好適な実施の形態について図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、開示を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも開示の本質的なものであるとは限らない。
(embodiment)
Preferred embodiments will be described below with reference to the drawings. The same or equivalent constituent elements, members, and processes shown in each drawing are denoted by the same reference numerals, and duplication of description will be omitted as appropriate. Also, the embodiments are illustrative rather than limiting to the disclosure, and not all features and combinations thereof described in the embodiments are necessarily essential to the disclosure.
 本明細書において、「部材Aが、部材Bと接続された状態」とは、部材Aと部材Bが物理的に直接的に接続される場合のほか、部材Aと部材Bが、それらの電気的な接続状態に実質的な影響を及ぼさない、あるいはそれらの結合により奏される機能や効果を損なわせない、その他の部材を介して間接的に接続される場合も含む。 In this specification, "a state in which member A is connected to member B" refers to a case in which member A and member B are physically directly connected, as well as a case in which member A and member B are electrically connected to each other. It also includes the case of being indirectly connected through other members that do not substantially affect the physical connection state or impair the functions and effects achieved by their combination.
 同様に、「部材Cが、部材Aと部材Bの間に設けられた状態」とは、部材Aと部材C、あるいは部材Bと部材Cが直接的に接続される場合のほか、それらの電気的な接続状態に実質的な影響を及ぼさない、あるいはそれらの結合により奏される機能や効果を損なわせない、その他の部材を介して間接的に接続される場合も含む。 Similarly, "the state in which member C is provided between member A and member B" refers to the case where member A and member C or member B and member C are directly connected, as well as the case where they are electrically connected. It also includes the case of being indirectly connected through other members that do not substantially affect the physical connection state or impair the functions and effects achieved by their combination.
(実施形態)
 図1は、実施形態に係る灯具システム100のブロック図である。灯具システム100は、自動車に搭載され、車両前方の視野を照射するヘッドランプである。自動車は、前後の重量バランスに応じて、前後方向の傾斜角θが変化する。前後方向の傾斜角θは、車体の左右に伸びる水平軸周りの回転、すなわちピッチ角である。灯具システム100は、車体のピッチ角θに応じて、ヘッドランプのピッチ方向の光軸を自動調整する機能(オートレベリング機能)を有する。
(embodiment)
FIG. 1 is a block diagram of a lighting system 100 according to an embodiment. The lighting system 100 is a headlamp that is mounted on a vehicle and that illuminates a field of view in front of the vehicle. In the automobile, the tilt angle θ in the front-rear direction changes according to the front-rear weight balance. The tilt angle θ in the front-rear direction is the rotation of the vehicle body about a horizontal axis extending in the left-right direction, that is, the pitch angle. The lighting system 100 has a function (auto-leveling function) of automatically adjusting the optical axis of the headlamp in the pitch direction according to the pitch angle θ of the vehicle body.
 灯具システム100は、ヘッドランプ本体110、リア車高センサ120およびレベリング制御装置200を備える。ヘッドランプ本体110は、車体前方の決められた位置に設けられる。ヘッドランプ110は、灯具ユニット112およびレベリングアクチュエータ114を含む。灯具ユニット112は、発光素子116や、ミラーあるいはレンズなどの光学系118、ブラケット119が一体化されたユニットである。灯具ユニット112は、ヘッドランプ本体110の筐体に対して、ピッチ方向に回動自在に支持されている。レベリングアクチュエータ114は、レベリング制御装置200からの出力信号SOUTに応じて、灯具ユニット112のピッチ方向の位置を制御する。 The lighting system 100 includes a headlamp body 110 , a rear vehicle height sensor 120 and a leveling control device 200 . The headlamp body 110 is provided at a predetermined position in front of the vehicle body. Headlamp 110 includes a lighting unit 112 and a leveling actuator 114 . The lamp unit 112 is a unit in which a light emitting element 116, an optical system 118 such as a mirror or a lens, and a bracket 119 are integrated. The lamp unit 112 is rotatably supported in the pitch direction with respect to the housing of the headlamp main body 110 . The leveling actuator 114 controls the position of the lighting unit 112 in the pitch direction according to the output signal S OUT from the leveling control device 200 .
 リア車高センサ120は、車体のリアサスペンションの近傍に設けられ、車体の後方の車高Hrを検出する。リア車高センサ120は、車高Hrもしくは基準位置からの沈み込み量dHrを示すセンサ信号SSNSを出力する。センサ信号SSNSはアナログ電圧信号である。 The rear vehicle height sensor 120 is provided near the rear suspension of the vehicle body and detects the vehicle height Hr behind the vehicle body. The rear vehicle height sensor 120 outputs a sensor signal SSNS indicating the vehicle height Hr or the amount of depression dHr from the reference position. The sensor signal S SNS is an analog voltage signal.
 レベリング制御装置200は、リア車高センサ120が生成するセンサ信号SSNSに応じて、ヘッドランプ110のレベリングを自動制御する。レベリング制御装置200は、車室内、たとえば運転席の足下などに設置される。 The leveling control device 200 automatically controls the leveling of the headlamps 110 according to the sensor signal SSNS generated by the rear vehicle height sensor 120 . The leveling control device 200 is installed inside the vehicle, for example, under the driver's seat.
 レベリング制御装置200は、センサ信号SSNSにもとづいて、ピッチ角θを算出し、算出したピッチ角θに対して、ヘッドランプ110の光軸が適切な角度φになるように、レベリングアクチュエータ114に対する駆動信号SOUTを生成する。 Based on the sensor signal SSNS , the leveling control device 200 calculates the pitch angle θ, and adjusts the leveling actuator 114 so that the optical axis of the headlamp 110 is at an appropriate angle φ with respect to the calculated pitch angle θ. Generate drive signal S OUT .
 レベリング制御装置200は、演算部210および出力段220を含む。演算部210は、センサ信号SSNSにもとづいて、ピッチ角θを算出する。演算部210には、車体のピッチ角θと制御信号SCTRLの対応関係を規定する制御特性が保持されており、この制御特性にしたがって、ピッチ角θと対応する制御信号SCTRLを生成する。制御信号SCTRLは、レベリングアクチュエータ114に供給すべき出力信号SOUTの大きさを規定する信号である。 The leveling control device 200 includes an arithmetic section 210 and an output stage 220 . The calculation unit 210 calculates the pitch angle θ based on the sensor signal SSNS . The calculation unit 210 holds control characteristics that define the correspondence between the pitch angle θ of the vehicle body and the control signal S CTRL , and generates the control signal S CTRL corresponding to the pitch angle θ according to the control characteristics. Control signal S CTRL is a signal that defines the magnitude of output signal S OUT to be supplied to leveling actuator 114 .
 演算部210は、たとえばマイクロコントローラで構成され、その動作および機能は、マイクロコントローラが実行するソフトウェアプログラムによって規定される。 The arithmetic unit 210 is composed of, for example, a microcontroller, and its operation and functions are defined by a software program executed by the microcontroller.
 上述のようにレベリング制御装置200を車室内に配置する場合、そこから離れたヘッドランプ110の位置まで、制御信号SCTRLを伝送する必要があるが、演算部210であるマイクロコントローラが生成できる信号の振幅は微弱であるため、そのままでは、ヘッドランプ110まで伝送することは困難である。そこで演算部210の後段には、制御信号SCTRLを増幅する出力段220が設けられる。出力段220により増幅された制御信号SCTRLが、出力信号SOUTとしてヘッドランプ110に供給される。 When the leveling control device 200 is arranged in the vehicle interior as described above, it is necessary to transmit the control signal S CTRL to the position of the headlamp 110 away from there. Since the amplitude of is weak, it is difficult to transmit to the headlamp 110 as it is. Therefore, an output stage 220 that amplifies the control signal S CTRL is provided in the subsequent stage of the arithmetic section 210 . Control signal S CTRL amplified by output stage 220 is provided to headlamp 110 as output signal S OUT .
 以上が灯具システム100の基本構成である。続いてレベリング制御装置200の具体的な構成を説明する。 The above is the basic configuration of the lamp system 100. Next, a specific configuration of the leveling control device 200 will be described.
 図2は、実施形態に係るレベリング制御装置200の構成を示すブロック図である。演算部210は、ピッチ角算出部212、制御信号生成部214および不揮発性メモリ216を含む。上述のように演算部210は、マイクロコントローラとソフトウェアプログラムの組み合わせで実装されるため、演算部210内のサブブロック(212,214)は、演算部210によって実現される機能要素、あるいは処理単位を示しているに過ぎない。不揮発性メモリ216には、演算部210が実行するソフトウェアプログラムが格納される。 FIG. 2 is a block diagram showing the configuration of the leveling control device 200 according to the embodiment. Operation unit 210 includes pitch angle calculation unit 212 , control signal generation unit 214 and nonvolatile memory 216 . As described above, the arithmetic unit 210 is implemented by a combination of a microcontroller and a software program. It just shows. The non-volatile memory 216 stores a software program executed by the calculation unit 210 .
 ピッチ角算出部212は、センサ信号SSNSにもとづいて、車体のピッチ角θを算出する。リア車高センサ120が生成するセンサ信号SSNSとピッチ角θの関係は、灯具システム100が搭載される車体の寸法やセンサの品番によって決まる。基本となる関係は、レベリング制御装置200の設計工程において、自動車メーカからの情報の提供にもとづいて定められ、レベリング制御装置200の製造工程において、演算部210が実行するソフトウェアプログラムに書き込まれている。 The pitch angle calculator 212 calculates the pitch angle θ of the vehicle body based on the sensor signal SSNS . The relationship between the sensor signal SSNS generated by the rear vehicle height sensor 120 and the pitch angle θ is determined by the dimensions of the vehicle body on which the lighting system 100 is mounted and the product number of the sensor. The basic relationship is determined in the design process of the leveling control device 200 based on information provided by the automobile manufacturer, and is written in the software program executed by the calculation unit 210 in the manufacturing process of the leveling control device 200. .
 図3は、リア車高センサ120の出力にもとづくセンサ値dHrと、傾斜角(ピッチ角)θの基本的な関係を示す図である。演算部210のピッチ角算出部212には、リア車高センサ120の出力にもとづくセンサ値(ここでは沈み込み量dHr)と、傾斜角(ピッチ角)θの関係(制御線)が2本の直線を含む折れ線で規定されている。ここでのセンサ値dHrは、基準となる車高を0ととり、基準車高からの沈み込み量を表すものとする。センサ値dHrは、沈みこむ方向を負にとっている。なお、センサ値のとりかたはこれに限定されず、リア車高Hrそのものをセンサ値としてもよい。 FIG. 3 is a diagram showing the basic relationship between the sensor value dHr based on the output of the rear vehicle height sensor 120 and the tilt angle (pitch angle) θ. In the pitch angle calculation unit 212 of the calculation unit 210, there are two relationship (control lines) between the sensor value (here, the sinking amount dHr) based on the output of the rear vehicle height sensor 120 and the inclination angle (pitch angle) θ. It is defined by a polygonal line including straight lines. The sensor value dHr here represents the amount of depression from the reference vehicle height, with the reference vehicle height being 0. The sensor value dHr takes a negative value in the sinking direction. Note that the method of obtaining the sensor value is not limited to this, and the rear vehicle height Hr itself may be used as the sensor value.
 灯具システム100は、車体の基本的な寸法が同一である車種に搭載される。一般に、あるひとつの車種は、オプションの有無や仕様が違なる複数のグレードが展開される。つまり同じ車種の複数のグレードには、基本的な車体寸法は同じであるが、車両質量が異なるものが存在する。 The lighting system 100 is mounted on vehicle models having the same basic dimensions of the vehicle body. In general, one car model has multiple grades with different options and specifications. In other words, there are multiple grades of the same car model that have the same basic body dimensions but differ in vehicle mass.
 本発明者は、ある2つの車体について、車体寸法が同じであり、リアの沈み込み量dHrが同じであっても、車両質量が異なると、ピッチ角θが異なることを認識するに至った。図4は、車両質量が最大であるときと、車両質量が最小であるときそれぞれの、複数の積載条件におけるセンサ値dHrとピッチ角θの関係の一例を示す図である。考慮すべき積載条件は、UN-REG48の附則5に定められている。 The inventor of the present invention has come to recognize that the pitch angle θ differs if the vehicle mass is different, even if the vehicle body dimensions are the same and the rear sinking amount dHr is the same for two certain two vehicle bodies. FIG. 4 is a diagram showing an example of the relationship between the sensor value dHr and the pitch angle θ under a plurality of loading conditions when the vehicle mass is maximum and when the vehicle mass is minimum. Loading conditions to be considered are set out in Annex 5 of UN-REG48.
 ここでのケース1~6は、以下の通りである。
 ケース1は、運転席に1名乗車した状態である。
 ケース2は、ケース1に加えて、助手席に1名乗車した状態である。
 ケース3は、ケース2に加えて、最後列の全シートに乗車した状態である。
 ケース4は、全シートに乗車した状態である。
 ケース5は、ケース4に加えて、トランクに最大荷重を載せた状態である。
 ケース6は、ケース1に加えて、トランクに最大荷重を載せた状態である。
Cases 1 to 6 here are as follows.
Case 1 is a state in which one person is in the driver's seat.
In case 2, in addition to case 1, one passenger sits in the passenger seat.
In case 3, in addition to case 2, all the seats in the last row are taken.
Case 4 is in a state in which all seats are seated.
In case 5, in addition to case 4, the maximum load is placed on the trunk.
In case 6, in addition to case 1, the maximum load is placed on the trunk.
 図4の横軸のセンサ値の0と、縦軸のピッチ角の0は、ケース1を基準にとっている。2列シートの車両の場合、ケース3とケース4は同一である。図4に示すように、車両質量が最大のときと最小のときとでは、ケース5とケース6において、沈み込み量dHrとピッチ角θの関係が大きく異なっている。 The sensor value of 0 on the horizontal axis and the pitch angle of 0 on the vertical axis in FIG. 4 are based on Case 1. In the case of a vehicle with two rows of seats, case 3 and case 4 are identical. As shown in FIG. 4, the relationship between the amount of subduction dHr and the pitch angle θ differs greatly between cases 5 and 6 when the vehicle mass is maximum and when it is minimum.
 いま、比較技術として、車体質量にかかわらず、図4に実線で示す制御線によって、センサ値(沈み込み量)dHrからピッチ角θを計算することを考える。図5は、比較技術における、積載条件と光軸の関係(シミュレーション結果)を示す図である。比較技術では、最大質量と最小質量とで同じ制御線を用いるため、すべての積載条件(ケース1~6)で認証規定はクリアできるが、一部の積載条件(ケース3,4,5)において、光軸角度φが-1.9%まで下がっている。これは車両前方が暗くなることを意味する。 Now, as a comparative technique, consider calculating the pitch angle θ from the sensor value (sinking amount) dHr using the control line indicated by the solid line in FIG. 4 regardless of the vehicle body mass. FIG. 5 is a diagram showing the relationship (simulation result) between loading conditions and optical axes in a comparative technique. In the comparative technology, the same control line is used for maximum mass and minimum mass, so certification regulations can be cleared under all loading conditions (Cases 1 to 6), but under some loading conditions (Cases 3, 4, and 5) , the optical axis angle φ decreases to -1.9%. This means that the area ahead of the vehicle becomes dark.
 以上の認識にもとづき、本実施形態では、車体の製造工程において車両質量が決定した段階で、レベリング制御装置200の不揮発性メモリ216に、車体に固有の情報が書き込まれる。この固有の情報は、車両質量を直接的に示すデータであってもよいし、車両質量を間接的に示す情報であってもよい。 Based on the above recognition, in the present embodiment, information unique to the vehicle body is written into the non-volatile memory 216 of the leveling control device 200 at the stage when the vehicle mass is determined in the manufacturing process of the vehicle body. This unique information may be data that directly indicates the vehicle mass, or information that indirectly indicates the vehicle mass.
 ピッチ角算出部212に規定される折れ線は、不揮発性メモリ216に書き込まれた固有情報、すなわち車両質量にもとづいて修正される。 The polygonal line defined by the pitch angle calculator 212 is corrected based on the unique information written in the nonvolatile memory 216, that is, the vehicle mass.
 図6は、実施形態に係るレベリング制御装置200における制御線とその修正を説明する図である。図6には、図4と同様に、ケース1~6におけるセンサ値dHrとピッチ角θの正しい関係が示されている。本実施形態では、車両質量が最小CMminであるときの複数の積載条件(ケース1~6)のプロット(四角)にもとづいて、具体的にはそれらのプロットを通過するように、第1制御線(I)が規定され、車両質量が最大CMmaxであるときの複数の積載条件(ケース1~6)のプロット(三角)にもとづいて、具体的にはそれらのプロットを通過するように、第2制御線(II)が規定される。 FIG. 6 is a diagram for explaining control lines and correction thereof in the leveling control device 200 according to the embodiment. Similar to FIG. 4, FIG. 6 shows the correct relationship between the sensor value dHr and the pitch angle θ in Cases 1-6. In this embodiment, based on the plots (squares) of multiple loading conditions (cases 1 to 6) when the vehicle mass is the minimum CMmin, specifically, the first control line A second A control line (II) is defined.
 第1制御線(I)と第2制御線(II)はそれぞれ、傾きが異なる第1直線部分LNaと第2直線部分LNbを含んでいる。第1直線部分LNaは、ケース1~ケース4に対応する領域をカバーしており、第2直線部分LNbは、ケース5,6に対応する領域をカバーしている。 The first control line (I) and the second control line (II) each include a first linear portion LNa and a second linear portion LNb with different slopes. The first linear portion LNa covers the area corresponding to Cases 1 to 4, and the second linear portion LNb covers the area corresponding to Cases 5 and 6. FIG.
 第1制御線(I)と第2制御線(II)は、第1直線部分LNaは共通である。一方、第1制御線(I)の第2直線部分LNbの傾きと第2制御線(II)の第2直線部分LNbの傾きは同じであるが、第1直線部分LNaとの交点(つまり折れ点)の位置が異なっている。 The first control line (I) and the second control line (II) have a common first linear portion LNa. On the other hand, although the slope of the second straight portion LNb of the first control line (I) and the slope of the second straight portion LNb of the second control line (II) are the same, points) are different.
 実際の車両質量CM(CMmin<C<CMmax)に対しては、第1制御線(I)と第2制御線(II)の間に、それらと傾きを同じくする制御線(III)を定め、制御線(III)にしたがって、ピッチ角θが算出される。つまり、実際の車両質量CMに応じて、第2直線部分LNbが平行移動する。 For the actual vehicle mass CM (CMmin<C<CMmax), a control line (III) having the same slope as the first control line (I) and the second control line (II) is defined, The pitch angle θ is calculated according to the control line (III). That is, the second linear portion LNb is translated according to the actual vehicle mass CM.
 ピッチ角算出部212には、車両質量CMの最大値CMmaxに対応する第2直線部分の位置、言い換えると第2直線部分が通過すべき第1座標Pmaxが規定される。同様にピッチ角算出部212には、車両質量CMの最小値CMminに対応する第2直線部分の位置、言い換えると第2直線部分が通過すべき第2座標Pminと、が記録されている。これらの座標Pmax,Pminは、第1直線部分と第2直線部分の交点座標であってもよい。あるいはこれらの座標Pmax,Pminは、y切片であってもよい。 The pitch angle calculator 212 defines the position of the second straight line portion corresponding to the maximum value CMmax of the vehicle mass CM, in other words, the first coordinate Pmax through which the second straight line portion should pass. Similarly, the pitch angle calculator 212 records the position of the second straight line portion corresponding to the minimum value CMmin of the vehicle mass CM, in other words, the second coordinate Pmin through which the second straight line portion should pass. These coordinates Pmax and Pmin may be the coordinates of the intersection of the first straight line portion and the second straight line portion. Alternatively, these coordinates Pmax, Pmin may be y-intercepts.
 ピッチ角算出部212は、車体に固有の実際の車両質量CMにもとづいて、2つの座標Pmax,Pminを内分する第3座標Pを算出する。
 P={Pmax・(CM-CMmin)+Pmin・(CMmax-CM)}/(CMmax-CM,min)
The pitch angle calculator 212 calculates a third coordinate P that internally divides the two coordinates Pmax and Pmin based on the actual vehicle mass CM specific to the vehicle body.
P = {Pmax · (CM - CMmin) + Pmin · (CMmax - CM)} / (CMmax - CM, min)
 そしてピッチ角算出部212は、第3座標Pを通過するように、実際の車両質量CMに適合する第2直線部分を決定する。 Then, the pitch angle calculator 212 determines a second straight line segment that passes through the third coordinate P and that fits the actual vehicle mass CM.
 図7は、実施形態における、積載条件と光軸の関係(シミュレーション結果)を示す図である。比較技術では図5に示したように、光軸は-1.9%程度まで低くなっており、視野が暗くなるという問題があった。これに対して本実施形態によれば、図7に示すように、光軸は、積載条件にかかわらずおおよそ-1%に安定化されており、視野が暗くなるのが防止できていることが分かる。 FIG. 7 is a diagram showing the relationship (simulation result) between loading conditions and optical axes in the embodiment. In the comparative technique, as shown in FIG. 5, the optical axis is lowered to about -1.9%, and there is a problem that the field of view becomes dark. On the other hand, according to the present embodiment, as shown in FIG. 7, the optical axis is stabilized at about -1% regardless of the loading conditions, and it can be said that the darkening of the field of view can be prevented. I understand.
 以上がレベリング制御装置200の構成および動作である。このレベリング制御装置200によれば、車両質量が異なる複数のグレードに対して、最適な制御線を提供できる。これにより、光軸(%)が低くなりすぎて視野が暗くなるのを防止できる。 The configuration and operation of the leveling control device 200 are as described above. According to this leveling control device 200, an optimum control line can be provided for a plurality of grades having different vehicle masses. This can prevent the optical axis (%) from becoming too low and the field of view becoming dark.
(変形例)
 上述した実施形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なことが当業者に理解される。以下、こうした変形例について説明する。
(Modification)
Those skilled in the art will understand that the above-described embodiments are examples, and that various modifications can be made to combinations of each component and each processing process. Such modifications will be described below.
(変形例1)
 図6においては最大車両質量CMmaxと最小車両質量CMminに対して、2つの座標Pmax,Pminを定めておき、実際の車両質量CMに対する制御線の第2直線部分LNbが通るべき座標Pを算出したがその限りでない。
(Modification 1)
In FIG. 6, two coordinates Pmax and Pmin are determined for the maximum vehicle mass CMmax and the minimum vehicle mass CMmin, and the coordinate P through which the second straight portion LNb of the control line for the actual vehicle mass CM should pass was calculated. is not limited to that.
 たとえば、車両質量CMをn段階でランク分けし、複数の車両質量のランクCM1~CMnに対して、第2直線部分LNbが通るべき座標P1~Pnを定めておいてもよい。また複数の車両質量のランクCM1~CMnのうち、実際の車両質量CMが含まれるランクCMxに対応する座標Pxを通るように、実際の制御線(III)の第2直線部分LNbを決めてもよい。 For example, the vehicle mass CM may be ranked in n stages, and coordinates P1 to Pn along which the second straight line portion LNb should pass may be determined for a plurality of vehicle mass ranks CM1 to CMn. Alternatively, the second straight line portion LNb of the actual control line (III) may be determined so as to pass through the coordinate Px corresponding to the rank CMx containing the actual vehicle mass CM among the plurality of vehicle mass ranks CM1 to CMn. good.
(変形例2)
 また、折れ線で規定される制御線の修正は、2つの直線部分の一方の平行移動に限定されない。たとえば、第2直線部分の傾きを、実際の車両に固有の情報にもとづいて変化させてもよい。また第2直線部分の修正に加えて、またはそれに代えて、第1直線部分を平行移動してもよいし、および/または傾きを変化させてもよい。
(Modification 2)
Also, the correction of the control line defined by the polygonal line is not limited to the translation of one of the two straight line segments. For example, the slope of the second linear portion may be changed based on information specific to the actual vehicle. Also, in addition to or in lieu of modifying the second straight portion, the first straight portion may be translated and/or tilted.
(変形例3)
 実施形態では、グレードごとに固有の情報として、車両質量を説明したがその限りでなく、車両質量以外にも、リア車高センサ120のセンサ値とピッチ角θの関係を異ならしめる要因が存在する場合、その要因に関連するパラメータもとづいて、制御線を修正するようにすればよい。
(Modification 3)
In the embodiment, the vehicle mass is explained as information specific to each grade, but there are other factors besides the vehicle mass that cause the relationship between the sensor value of the rear vehicle height sensor 120 and the pitch angle θ to differ. If so, the control line should be modified based on parameters related to that factor.
 実施の形態にもとづき、具体的な語句を用いて本開示を説明したが、実施の形態は、本開示の原理、応用を示しているにすぎず、実施の形態には、請求の範囲に規定された本開示の思想を逸脱しない範囲において、多くの変形例や配置の変更が認められる。 Although the present disclosure has been described using specific terms based on the embodiments, the embodiments merely show the principles and applications of the present disclosure, and the embodiments are defined in the scope of claims. Many variations and arrangement changes are permitted without departing from the spirit of the disclosed disclosure.
 本開示は、車両用灯具に関する。 The present disclosure relates to vehicle lamps.
 100 灯具システム
 110 ヘッドランプ
 112 灯具ユニット
 114 レベリングアクチュエータ
 120 リア車高センサ
 200 レベリング制御装置
 210 演算部
 212 ピッチ角算出部
 214 制御信号生成部
 216 不揮発性メモリ
 220 出力段
REFERENCE SIGNS LIST 100 lighting system 110 headlamp 112 lighting unit 114 leveling actuator 120 rear vehicle height sensor 200 leveling control device 210 calculation unit 212 pitch angle calculation unit 214 control signal generation unit 216 nonvolatile memory 220 output stage

Claims (5)

  1.  ヘッドランプに設けられる光軸調整用のアクチュエータを制御するレベリング制御装置であって、
     車体の後部に設けられた車高センサの出力を受け、当該出力にもとづくセンサ値から前記車体の前後方向の傾斜を算出する演算部を備え、
     前記演算部には、前記センサ値と前記傾斜の関係が折れ線で規定されており、前記レベリング制御装置が実際に搭載された前記車体に固有の情報にもとづいて前記折れ線が修正可能であることを特徴とするレベリング制御装置。
    A leveling control device for controlling an actuator for optical axis adjustment provided in a headlamp,
    a calculation unit that receives an output from a vehicle height sensor provided at the rear of the vehicle body and calculates a longitudinal inclination of the vehicle body from a sensor value based on the output;
    In the computing unit, the relationship between the sensor value and the inclination is defined by a polygonal line, and the polygonal line can be corrected based on information unique to the vehicle body on which the leveling control device is actually mounted. A leveling control device characterized by:
  2.  前記情報は、車両質量であることを特徴とする請求項1に記載のレベリング制御装置。 The leveling control device according to claim 1, wherein the information is vehicle mass.
  3.  前記折れ線は、第1直線部分と第2直線部分を含み、前記第2直線部分が前記情報にもとづいて平行移動することを特徴とする請求項1または2に記載のレベリング制御装置。 The leveling control device according to claim 1 or 2, wherein the polygonal line includes a first straight line portion and a second straight line portion, and the second straight line portion moves in parallel based on the information.
  4.  前記演算部は、前記情報の第1値に対応する前記第2直線部分が通過すべき第1座標と、前記情報の第2値に対応する前記第2直線部分が通過すべき第2座標を記憶しており、前記第1座標と前記第2座標から内挿または外挿により、修正後の折れ線の前記第2直線部分が通過すべき第3座標を計算することを特徴とする請求項3に記載のレベリング制御装置。 The calculation unit calculates first coordinates through which the second straight line portion corresponding to the first value of the information should pass, and second coordinates through which the second straight line portion corresponding to the second value of the information should pass. 3. A third coordinate through which the second straight line portion of the corrected polygonal line should pass is calculated by interpolation or extrapolation from the first coordinate and the second coordinate. The leveling control device according to .
  5.  車体の後部に設けられた車高センサと、
     光軸調整用のアクチュエータを含むヘッドランプと、
     前記車高センサの出力にもとづくセンサ値にもとづいて、前記車体の前後方向の傾斜を算出し、当該傾斜に応じた出力信号を、前記アクチュエータに出力する請求項1から4のいずれかに記載のレベリング制御装置と、
     を備えることを特徴とする灯具システム。
    a vehicle height sensor provided at the rear of the vehicle body;
    a headlamp including an actuator for optical axis adjustment;
    5. The system according to any one of claims 1 to 4, wherein a tilt in the longitudinal direction of the vehicle body is calculated based on a sensor value based on an output of the vehicle height sensor, and an output signal corresponding to the tilt is output to the actuator. a leveling controller;
    A lamp system comprising:
PCT/JP2022/037056 2021-10-06 2022-10-04 Leveling control device and lamp system WO2023058628A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023552884A JPWO2023058628A1 (en) 2021-10-06 2022-10-04

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-164975 2021-10-06
JP2021164975 2021-10-06

Publications (1)

Publication Number Publication Date
WO2023058628A1 true WO2023058628A1 (en) 2023-04-13

Family

ID=85803461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037056 WO2023058628A1 (en) 2021-10-06 2022-10-04 Leveling control device and lamp system

Country Status (2)

Country Link
JP (1) JPWO2023058628A1 (en)
WO (1) WO2023058628A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000142213A (en) * 1998-08-31 2000-05-23 Denso Corp Device for automatically adjusting optical axis direction of head lamp for vehicle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000142213A (en) * 1998-08-31 2000-05-23 Denso Corp Device for automatically adjusting optical axis direction of head lamp for vehicle

Also Published As

Publication number Publication date
JPWO2023058628A1 (en) 2023-04-13

Similar Documents

Publication Publication Date Title
JP7500145B2 (en) Vehicle lighting device control device
US10988075B2 (en) Headlamp and method for operating same comprising a position and acceleration sensor and a control unit arranged in or directly on the headlamp
US8838343B2 (en) Vehicle lamp controller, vehicle lamp system, and vehicle lamp control method
US7552001B2 (en) Irradiation direction controller and leveling angle setting method of vehicle lamp
JP5761982B2 (en) Control device for vehicular lamp
US9067533B2 (en) Vehicle lamp control device and vehicle lamp system
JP5749081B2 (en) Vehicle lamp control device and vehicle lamp system
US20140156150A1 (en) Control apparatus of vehicular lamp, vehicular lamp system, and control method for vehicular lamp
JP7250983B2 (en) Vehicle lamp control device
CN106660478B (en) Motor vehicle
WO2023058628A1 (en) Leveling control device and lamp system
JP6445308B2 (en) Control device for vehicular lamp
JP4633636B2 (en) Apparatus for controlling irradiation direction of vehicular lamp and initialization method thereof
AU2008245165B2 (en) Apparatus for automatically adjusting optical-axes direction of headlights of a vehicle
US20190193623A1 (en) Control device for vehicle lamp
JP2018535145A (en) Vehicle lighting assembly
JP2010241328A (en) Vehicle height sensor, and device and method for adjusting projection direction of lighting fixture for vehicle
USRE49609E1 (en) Vehicle lamp controller, vehicle lamp system, and vehicle lamp control method
JP2012106545A (en) Control device for vehicle lamp, vehicle lamp system, and method of controlling vehicle lamp
JP5392222B2 (en) Headlight optical axis adjustment device
JP2009161125A (en) Optical axis adjusting device of vehicle headlamp

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22878497

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023552884

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE