WO2023054628A1 - Laminate manufacturing method - Google Patents

Laminate manufacturing method Download PDF

Info

Publication number
WO2023054628A1
WO2023054628A1 PCT/JP2022/036551 JP2022036551W WO2023054628A1 WO 2023054628 A1 WO2023054628 A1 WO 2023054628A1 JP 2022036551 W JP2022036551 W JP 2022036551W WO 2023054628 A1 WO2023054628 A1 WO 2023054628A1
Authority
WO
WIPO (PCT)
Prior art keywords
support
coating
functional layer
roll
laminate
Prior art date
Application number
PCT/JP2022/036551
Other languages
French (fr)
Japanese (ja)
Inventor
茂寿 川邉
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2023551870A priority Critical patent/JPWO2023054628A1/ja
Publication of WO2023054628A1 publication Critical patent/WO2023054628A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate

Definitions

  • the present invention relates to a method for manufacturing a laminate.
  • the thickness of the coating film obtained by the extrusion coating method depends on the dimensional accuracy and smoothness of the components of the device such as the die coater and the backup roll, the rotation accuracy of the roll, the transport state of the support, and the distance between the support and the die coater. Accuracy is greatly affected. Therefore, in order to form a uniform coating film, it is necessary to improve the dimensional accuracy of the constituent elements of the die coater and the backup roll, and to improve the stability of transport of the support by the backup roll.
  • a method for improving the transport stability of the support a method is known in which grooves are provided in the transport rolls and backup rolls to allow air entrained on the back surface of the support to escape into the grooves, thereby stabilizing the transport.
  • a back wrap roll provided with a plurality of grooves with a width of 500 to 1000 ⁇ m (for example, Patent Document 1), or suppress wrinkles.
  • a backup roll provided with a plurality of inclined grooves having a width of 50 to 200 ⁇ m (see Patent Document 2).
  • the support is pressed against the backup roll with a conveying tension applied. Therefore, when the width of the groove is large as in Patent Document 1, the support is likely to be deformed so as to be recessed along the groove. . This deformation is likely to occur particularly when the support is thin or soft. As a result, in the width direction of the support, the distance between the lip tip of the coating die and the support (coating gap) differs between the protrusions and recesses of the grooves of the roll. coating unevenness) may occur.
  • Such coating unevenness, scratches during transport, transfer failure, and defects due to deterioration of the winding shape cause deterioration of the optical properties of optical films used in displays, for example, and it is desirable that they can be suppressed.
  • the present invention has been made in view of the above circumstances, and provides a laminate capable of forming a functional layer in which defects such as coating unevenness are suppressed without impairing transport stability even with a thin support.
  • the object is to provide a manufacturing method.
  • the present invention relates to a method for manufacturing a laminate.
  • T tension
  • embrace angle
  • the present invention it is possible to provide a method for producing a laminate that can form a functional layer in which defects such as coating unevenness are suppressed without impairing transport stability even if the support is thin.
  • FIG. 1 is a schematic cross-sectional view showing an outline of a coating method using a coating die.
  • FIG. 2 is a schematic diagram showing the state of the support on the roll surface of FIG.
  • FIG. 3 is a schematic diagram of a laminate manufacturing apparatus according to the present embodiment.
  • FIG. 4 is a schematic cross-sectional view showing the configuration of the laminate in this embodiment.
  • FIG. 5 is a schematic cross-sectional view showing the configuration of the display device according to this embodiment.
  • a method for producing a laminate according to the present embodiment is a method for producing a laminate having a support and a functional layer.
  • the functional layer is preferably an optical functional layer and can be peeled off from the support and used as an optical film.
  • a method for producing such a laminate includes a step of coating and forming a functional layer on a support.
  • the coating liquid is a resin solution
  • the method for producing a laminate comprises: 1) a step of coating a resin solution for forming a functional layer on a support (coating step); A step of forming a layer (drying step) is included.
  • Coating step A resin solution for forming a functional layer is coated on a support.
  • the support may be anything as long as it can support the functional layer, such as a resin film.
  • resin films include polyester films (e.g., polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), etc.), Thermoplastic resin films such as cycloolefin resin films (COP), acrylic resin films, and cellulose resin films (such as triacetyl cellulose films (TAC)) are included.
  • polyester films such as PET films, cycloolefin resin films, and acrylic resin films are preferable, and polyester films such as PET films are more preferable, from the viewpoint of versatility and easy satisfaction of Young's modulus E described later.
  • the Young's modulus E of the resin film is not particularly limited, it is preferably more than 3000 MPa and 5200 MPa or less, more preferably 4000 to 5000 MPa. This is because the amount of deformation ⁇ of the support in the depth direction of the grooves of the backup roll is set within the range described later.
  • Young's modulus E can be measured according to JIS K7127:1999. For example, using Tensilon RTC-1225A manufactured by Orientec Co., Ltd., the distance between chucks is set to 50 mm, and it can be obtained from the stress-strain curve until it breaks while being pulled. The measurement can be performed under conditions of 23° C., 55% RH, and a tensile speed of 50 mm/min.
  • the Young's modulus E can be adjusted depending on the type of resin film and the presence or absence of cooling treatment. From the viewpoint of satisfying the above Young's modulus E, it is preferable that the cooling treatment is not performed.
  • the thickness t of the support is not particularly limited, but is, for example, 100 ⁇ m or less, preferably 50 ⁇ m or less.
  • the present invention is particularly effective because the support easily deforms in the depth direction of the grooves of the roll, as will be described later.
  • it may be less than 50 ⁇ m in some cases.
  • the lower limit of the thickness t of the support is not particularly limited, it is, for example, 15 ⁇ m, preferably 20 ⁇ m.
  • the support preferably further includes a release layer on its surface.
  • the release layer may contain a known releasing agent or release agent. Examples of release agents include silicone release agents and non-silicone release agents.
  • the thickness of the release layer may be such that it exhibits releasability, and is preferably 0.1 to 1.0 ⁇ m, for example.
  • the method of applying the resin solution is preferably a method using a coating die from the viewpoint of forming a thin and uniform coating film.
  • FIG. 1 is a schematic cross-sectional view showing an outline of a coating method using a coating die.
  • FIG. 2 is a schematic diagram showing the state of the support on the roll surface of FIG.
  • a resin solution is discharged from a coating die 222 arranged opposite to the roll 221 while supporting and conveying the support 110 with a roll 221 (backup roll). to apply.
  • a roll provided with a plurality of grooves in the circumferential direction is used from the viewpoint of suppressing protruding to the back surface of the support 110 by burying the foreign matters adhered to the back surface of the support 110 in the grooves.
  • the width W of the groove of the roll 221 is large from the viewpoint of preventing even a large foreign matter or the like adhering to the back surface of the support 110 from being buried in the groove and protruding to the back surface of the support 110 (Fig. 2).
  • the support 110 is pressed against the roll 221 by a force (see the white arrow in FIG. 2) corresponding to the tension T and the embrace angle ⁇ , if the groove width W of the roll 221 is large, the support 110 is It is easy to deform so as to be recessed in the depth direction of the groove (see FIG. 2).
  • the distance between the lip tip of the coating die 222 and the support 110 differs between the protrusions and recesses of the grooves of the roll 221, so that the coating thickness is easily changed.
  • Coating thickness unevenness stress-like coating unevenness
  • the support 110 tends to slip easily on the surface of the roll 221, and the transport tends to be unstable.
  • the coating thickness is too uniform, the laminates are too closely adhered to each other during winding, which makes it difficult for the entrained air to escape, thereby easily causing winding misalignment.
  • streak-like coating unevenness is suppressed while suppressing transport instability and winding misalignment; (Hereinafter, it is also simply referred to as “the stress ⁇ generated in the support” or “the force that the support receives when it is pressed against the roll”) is preferably made moderately small.
  • Equation 3 When the deformation amount ⁇ of the support is less than 20 ⁇ m, variations in the coating gap can be reduced, so streaky coating film unevenness can be suppressed. On the other hand, when the deformation amount ⁇ of the support is 0.5 ⁇ m or more, the support is properly gripped by the rolls, so that the transport stability is less likely to be impaired. In addition, since the coating film can be provided with a thickness deviation that does not affect the optical properties, the laminates do not adhere too closely to each other during winding, and winding misalignment can be suppressed.
  • the amount of deformation ⁇ of the support although depending on the width of the groove, preferably satisfies, for example, 0.7 ⁇ 9.0, and satisfies 1.2 ⁇ 6.0. is more preferred.
  • the deformation amount ⁇ of the support can be measured with a laser displacement meter (for example, LJ-X8000 manufactured by Keyence Corporation). Specifically, from the measurement data obtained by the laser displacement meter, the distance between the highest point and the lowest point of the support surface in the depth direction of the groove of the roll is obtained for each groove, and the average value is calculated. It can be the amount of deformation ⁇ of the support (see FIG. 2).
  • the deformation amount ⁇ of the support can be adjusted by the thickness t, Young's modulus E, stress ⁇ , and tension T of the support.
  • the thickness t of the support greatly influences the deformation amount ⁇ of the support (it is inversely proportional to the cube of the thickness t). Therefore, when the thickness t of the support is reduced, the deformation amount ⁇ of the support increases. Further, when the Young's modulus E of the support is lowered, the deformation amount ⁇ is increased. On the other hand, when the stress ⁇ and the tension T are decreased, the deformation amount ⁇ is decreased.
  • Equation 2 When the stress ⁇ generated in the support is larger than 0.1 N/mm, the support is properly gripped by the rolls, so that the transport stability can be improved. On the other hand, when the stress ⁇ generated in the support is less than 0.75 N/mm, the coating gap does not differ excessively between the protrusions and the recesses of the grooves, so streak-like coating unevenness can be suppressed. From the same point of view, the stress ⁇ generated in the support more preferably satisfies 0.2 ⁇ 0.7, and more preferably satisfies 0.2 ⁇ 0.6. The stress ⁇ generated in the support can be calculated by applying the tension T and the embrace angle ⁇ to Equation 2 above.
  • the stress ⁇ generated in the support can be adjusted by the tension T and the embrace angle ⁇ .
  • the tension T can be set to, for example, 0.1 to 0.7 N/mm
  • the embrace angle ⁇ can be set to, for example, 0 to 90°.
  • the width W of the roll is larger than 200 ⁇ m, the foreign matters and the like adhering to the back surface of the support can be sufficiently buried in the groove, so that the transfer failure is unlikely to occur. Since the amount of deformation ⁇ does not become too large, streak-like coating unevenness is less likely to occur.
  • the width W of the groove is preferably 210 to 700 ⁇ m, for example.
  • the width W of the groove can be defined as the distance (average value) between the highest portion and the adjacent highest portion in the depth direction of the groove (see FIG. 2).
  • the coating thickness ( ⁇ m) of the resin solution is not particularly limited, it is preferably 30 to 200 ⁇ m, for example.
  • the coating gap G is usually about twice the coating thickness, so it is 60 to 400 ⁇ m. When the coating gap G is 60 ⁇ m or more, it is easier to suppress the transport stability and winding displacement, and when it is 400 ⁇ m or less, it is easier to suppress streak-like coating unevenness.
  • the drying method is not particularly limited, and may be heat drying or non-heat drying.
  • the heating temperature is preferably 60 to 140°C, more preferably 80 to 120°C. When the heating temperature is within the above range, the solvent can be removed in a short time.
  • the heating temperature can be specified as the temperature of the heating atmosphere.
  • the laminate according to the present embodiment is preferably strip-shaped, it is preferable to further perform the step of 3) winding the strip-shaped laminate into a roll to form a roll.
  • the length of the strip-shaped laminate is not particularly limited, but can be, for example, about 100 to 10,000 m.
  • the width of the strip-shaped laminate is preferably 1 m or more, more preferably 1.3 to 4 m.
  • the coating formation of the functional layer is performed so as to satisfy the above formulas 1-3.
  • streak-like coating unevenness can be suppressed without causing deterioration in transport stability or winding displacement even when the thickness of the support is thin.
  • a thin functional layer having desired optical properties can be obtained.
  • a resin solution includes a thermoplastic resin and a solvent.
  • thermoplastic resin The thermoplastic resin contained in the resin solution is not particularly limited, but from the viewpoint of use as an optical film, a thermoplastic resin having translucency is preferable.
  • examples of such resins include (meth)acrylic resins, cycloolefinic resins and cellulose esters.
  • a (meth)acrylic resin is a polymer containing at least a structural unit derived from methyl methacrylate.
  • the polymer may further contain a structural unit other than the structural unit derived from methyl methacrylate.
  • other structural units include maleimides such as phenylmaleimide; (meth)acrylic acid alkyl esters such as adamantyl acrylate; and (meth)acrylic acid cycloalkyl esters such as 2-ethylhexyl acrylate.
  • (meth)acrylic resins include polymethyl methacrylate and copolymers of methyl methacrylate/phenylmaleimide/acrylic acid alkyl ester.
  • the weight average molecular weight Mw of the (meth)acrylic resin is preferably 1 million or more, more preferably 1.5 million to 3 million.
  • Mw can be measured in terms of polystyrene by gel permeation chromatography (GPC).
  • the cycloolefin-based resin may be a (co)polymer of a norbol-based monomer having a polar group.
  • a norbol monomer having a polar group is represented by the following formula (1).
  • At least one of R 1 to R 4 in formula (1) is preferably a polar group, more preferably an alkoxycarbonyl group having 1 to 10 carbon atoms.
  • a cycloolefin-based resin having a structural unit derived from a norbornene-based monomer having a polar group is not only easily dissolved in a solvent, but also can increase the glass transition temperature of the resulting film.
  • R 1 to R 4 are preferably hydrogen atoms or hydrocarbon groups.
  • the hydrocarbon group is a hydrocarbon group having 1 to 10 carbon atoms, preferably 1 to 4 carbon atoms, more preferably 1 or 2 carbon atoms, examples of which include alkyl groups and aryl groups.
  • R 1 in Formula ( 1 ) may be a polar group, and R 2 , R 3 and R 4 may each be a hydrogen atom or a hydrocarbon group; and R 2 and R 4 may each be a hydrogen atom or a hydrocarbon group.
  • the cycloolefin-based resin may further contain a structural unit derived from another monomer copolymerizable with the norbornene-based monomer having a polar group.
  • examples of other copolymerizable monomers include norbornene-based monomers having no polar group, and cycloolefin-based monomers having no norbornene skeleton such as cyclobutene and cyclopentene.
  • the Mw of the cycloolefin resin is not particularly limited, it is preferably, for example, 100,000 to 300,000, more preferably 120,000 to 200,000. Mw can be measured in a manner similar to that described above.
  • the cellulose ester is preferably cellulose triacetate (TAC).
  • a thin functional layer containing a (meth)acrylic resin or a cycloolefin resin has no stiffness and tends to cause entrapment of air during lamination. Especially effective.
  • the resin content is preferably 60% by mass or more, more preferably 70% by mass or more, relative to the solid content of the resin solution.
  • the resin solution may further contain other components than those mentioned above, if necessary.
  • other components include rubber particles and matting agents (fine particles).
  • a rubber particle is a particle comprising a rubber-like polymer.
  • the rubber-like polymer is a soft crosslinked polymer having a glass transition temperature of 20° C. or lower, preferably 0° C. or lower, more preferably ⁇ 10° C. or lower.
  • crosslinked polymers include butadiene crosslinked polymers, (meth)acrylic crosslinked polymers, and organosiloxane crosslinked polymers.
  • a (meth)acrylic crosslinked polymer is preferable from the viewpoint of having a small difference in refractive index from that of a (meth)acrylic resin and less likely to impair the transparency of the functional layer. coalescence) is more preferred.
  • the acrylic rubber-like polymer (a) is a crosslinked polymer containing structural units derived from an acrylic acid ester as its main component.
  • the acrylic rubber-like polymer (a) comprises a structural unit derived from an acrylic acid ester, a structural unit derived from another monomer copolymerizable therewith, and two or more radically polymerizable groups in one molecule ( It is preferably a crosslinked polymer containing a structural unit derived from a polyfunctional monomer having a non-conjugated reactive double bond.
  • the acrylate ester is preferably an acrylate alkyl ester having an alkyl group of 1 to 12 carbon atoms, such as methyl acrylate, ethyl acrylate, n-propyl acrylate and n-butyl acrylate.
  • the content of structural units derived from acrylic acid ester is preferably 40 to 90% by mass, more preferably 50 to 80% by mass, based on the total structural units. When the acrylic acid ester content is within the above range, it is easy to impart sufficient toughness to the protective film.
  • copolymerizable monomers are those other than polyfunctional monomers among monomers copolymerizable with acrylic acid esters.
  • Examples of copolymerizable monomers include methacrylic acid esters such as methyl methacrylate; styrenes such as styrene and methylstyrene.
  • the content of structural units derived from other copolymerizable monomers is preferably 5 to 55% by mass, more preferably 10 to 45% by mass, based on the total structural units.
  • polyfunctional monomers examples include ethylene glycol di(meth)acrylate, diethylene glycol (meth)acrylate, and polyethylene glycol di(meth)acrylate.
  • the content of structural units derived from polyfunctional monomers is preferably 0.05 to 10% by mass, more preferably 0.1 to 5% by mass, based on the total structural units.
  • the degree of cross-linking of the obtained acrylic rubber-like polymer (a) tends to be increased, so that the hardness and rigidity of the obtained functional layer are impaired. If the content is not too large and 10% by mass or less, the toughness of the functional layer is less likely to be impaired.
  • the particles containing the acrylic rubber-like polymer (a) may be particles composed of the acrylic rubber-like polymer (a); Particles composed of an acrylic graft copolymer obtained by polymerizing a mixture of monomers such as at least one stage, i.e., a core portion containing an acrylic rubber-like polymer (a) and a shell portion covering it It may be a core-shell type particle having
  • the shell part may contain a methacrylic polymer (b) graft-bonded to the acrylic rubber-like polymer (a) and containing a structural unit derived from a methacrylic acid ester as a main component.
  • the methacrylic acid ester constituting the methacrylic polymer (b) is preferably a methacrylic acid alkyl ester having an alkyl group of 1 to 12 carbon atoms, such as methyl methacrylate.
  • the average particle size of the rubber particles is preferably 100-400 nm, more preferably 150-300 nm. When the average particle size of the rubber particles is within the above range, the stress relieving action can be easily obtained without impairing the transparency of the functional layer.
  • the average particle size of the rubber particles can be specified as the dispersed particle size measured by a zeta potential/particle size measuring system (ELSZ-2000ZS manufactured by Otsuka Electronics Co., Ltd.).
  • the content of the rubber particles is not particularly limited, but is preferably 5 to 50% by mass, more preferably 5 to 40% by mass, more preferably 7 to 30% by mass, based on the resin component in the resin solution. It is even more preferable to have
  • matting agent A matting agent may be added from the viewpoint of imparting slipperiness to the film.
  • matting agents include inorganic fine particles such as silica particles.
  • solvent used for the resin solution is not particularly limited as long as it can dissolve the thermoplastic resin well.
  • solvents include alcohols such as methanol and ethanol; ketones such as methyl ethyl ketone, methyl isobutyl ketone and acetone; esters such as ethyl acetate and methyl acetate; (Specifically, propylene glycol monomethyl ether (PGME), etc.), propylene glycol monoalkyl ether ester (propylene glycol monomethyl ether acetate), toluene, benzene, cyclohexane, and other hydrocarbons, for example, (meth)acrylic.
  • PGME propylene glycol monomethyl ether
  • toluene benzene, cyclohexane, and other hydrocarbons
  • (meth)acrylic preferably contains ketones from the viewpoint
  • the resin concentration of the resin solution is preferably 1.0 to 20% by mass, for example, from the viewpoint of facilitating adjustment of the viscosity within the range described later.
  • the method for manufacturing a laminate according to the present embodiment can be performed, for example, by the manufacturing apparatus shown in FIG.
  • FIG. 3 is a schematic diagram of a manufacturing apparatus 200 for carrying out the method of manufacturing a laminate according to this embodiment.
  • the manufacturing apparatus 200 has a supply section 210 , a coating section 220 , a drying section 230 and a winding section 240 .
  • a and b indicate transport rolls that transport the support 110 .
  • the supply unit 210 has a feeding device (not shown) that feeds out the roll 301 of the strip-shaped support 110 wound around the winding core.
  • the coating unit 220 is a coating device for performing the coating process, and includes a roll 221 (backup roll) having a plurality of grooves in the circumferential direction, a coating die 222 arranged to face the roll 221, and the coating die 222. It includes a decompression chamber 223 located upstream.
  • the applicator 220 can adjust the width W of the groove, the tension T, and the holding angle ⁇ so as to satisfy the formulas 1 to 3 above.
  • a control unit controls the coating unit 220, and the coating unit 220 spreads the resin solution from the coating die 222 onto the support 110 supported by the rolls 221 so as to satisfy the above formulas 1 to 3. is ejected and applied.
  • the decompression chamber 223 is a mechanism for stabilizing a bead (collection of coating liquid) formed between the resin solution from the coating die 222 and the support 110 during coating, and the degree of decompression can be adjusted. there is The decompression chamber 223 is in a state without air leakage, and the gap with the backup roll is adjusted to be narrow, so that a stable bead of coating liquid can be formed.
  • the drying section 230 is a drying device for performing the above drying process, and dries the coating film applied to the support 110 .
  • the drying section 230 may be configured to apply hot air, for example, or may be a heating furnace whose atmospheric temperature is adjusted.
  • the winding unit 240 winds up the support 110 (laminate 100 ) on which the functional layer 120 is formed to obtain a roll 241 .
  • Laminate A laminate 100 obtained by the laminate manufacturing method according to the present embodiment includes a support 110 and a functional layer 120 (see FIG. 4).
  • the functional layer 120 is preferably an optical functional layer as described above.
  • the optical functional layer can be used as an optical film after being peeled off from the support.
  • Examples of the optical film include a polarizer protective film (including a retardation film) laminated with a polarizer and an impact resistant film laminated with a cover glass.
  • the functional layer preferably has an in-plane retardation Ro measured at a measurement wavelength of 550 nm under an environment of 23° C. and 55% RH of 0 to 10 nm. , 0 to 5 nm.
  • the thickness direction retardation Rt of the functional layer is preferably ⁇ 20 to 20 nm, more preferably ⁇ 10 to 10 nm.
  • Ro and Rt are defined by the following formulas, respectively.
  • Formula (2a): Ro (nx-ny) x d
  • Formula (2b): Rt ((nx + ny) / 2-nz) x d
  • nx represents the refractive index in the in-plane slow axis direction (the direction in which the refractive index is maximized) of the functional layer
  • ny represents the refractive index in the direction orthogonal to the in-plane slow axis of the functional layer
  • nz represents the refractive index in the thickness direction of the functional layer
  • d represents the thickness (nm) of the functional layer.
  • the in-plane slow axis of the functional layer can be confirmed by an automatic birefringence meter AxoScan (Axo Scan Mueller Matrix Polarimeter: manufactured by Axometrics).
  • Ro and Rt can be measured by the following methods. 1) The functional layer is conditioned at 23°C and 55% RH for 24 hours. The average refractive index of this film is measured with an Abbe refractometer, and the thickness d is measured with a commercially available micrometer. 2) The retardation Ro and Rt of the film after humidity control at a measurement wavelength of 550 nm were measured at 23 ° C. and 55% RH using an automatic birefringence meter Axo Scan (Axo Scan Mueller Matrix Polarimeter: manufactured by Axometrics). Measure under environmental conditions.
  • Axo Scan Axo Scan Mueller Matrix Polarimeter: manufactured by Axometrics
  • the thickness of the functional layer is not particularly limited, it is usually thinner than the support, for example, 0.1 to 35 ⁇ m, preferably 1 to 15 ⁇ m, from the viewpoint of thinning the polarizing plate.
  • the laminate according to the present embodiment may further have another layer arranged between the support and the functional layer, if necessary.
  • Display Device A display device includes a display element and a polarizing plate.
  • the display element can be an organic EL element or a liquid crystal element (liquid crystal cell).
  • the polarizing plate is arranged at least on the viewing side of the display element.
  • the display device may further include other members such as a cover glass and an impact-resistant film as necessary.
  • the functional layer (optical functional layer) obtained by the above manufacturing method can be used as a protective film or impact-resistant film for the polarizing plate.
  • FIG. 5 is a schematic cross-sectional view showing the configuration of the organic EL display device 300 according to this embodiment.
  • the organic EL display device 300 has an organic EL element 310 (display element), a polarizing plate 320 (circularly polarizing plate), and a cover glass unit 330 .
  • the organic EL element 310 has a metal electrode 312 (cathode), a light emitting layer 313, a transparent electrode (anode such as ITO) 314 and a sealing layer 315 in this order on a transparent substrate 311 such as a glass plate or a transparent film.
  • a metal electrode 312 cathode
  • a light emitting layer 313, a transparent electrode (anode such as ITO) 314 and a sealing layer 315 in this order on a transparent substrate 311 such as a glass plate or a transparent film.
  • the polarizing plate 320 may be a circularly polarizing plate arranged on the viewing side of the organic EL element 310 .
  • a polarizing plate 320 includes a polarizer 321 , a protective film 322 arranged on the viewing side thereof, and a protective film 323 arranged between the polarizer 321 and the organic EL element 310 .
  • the polarizer 321 can be, for example, a polyvinyl alcohol-based polarizing film.
  • the protective film 323 is preferably a ⁇ /4 film, and the angle formed by the transmission axis (or absorption axis) of the polarizer 321 and the in-plane slow axis of the protective film 323 is 45 ⁇ 15°. are glued together.
  • Protective film 322 may be a known polarizer protective film.
  • Such a circularly polarizing plate 320 can suppress reflection of external light incident from the outside of the organic EL display device 300 due to indoor lighting or the like.
  • the cover glass unit 330 is arranged on the viewing side of the polarizing plate 320 and includes a cover glass 331 , an adhesive layer 332 and an impact resistant film 333 .
  • the cover glass 331 is arranged on the most visible side of the organic EL display device 300 .
  • the thickness of the cover glass 331 can be, for example, 30-50 ⁇ m.
  • An impact resistant film 333 is placed between the polarizer 320 and the cover glass 331 .
  • the cover glass unit 330 can be obtained by bonding the functional layer 120 of the laminate 100 and the cover glass 331 via the adhesive layer 332 and peeling off the support 110 of the laminate 100 .
  • one or more of the protective films 323 and 322 and the impact-resistant film 333 of the polarizing plate 320 can be the functional layer 120 obtained by the manufacturing method described above.
  • the functional layer 120 is free from failures due to unstable transportation and winding misalignment, and streak-like coating unevenness is suppressed. Therefore, by using the functional layer 120 for the protective film 323, the display characteristics are deteriorated due to the failure or streak-like coating unevenness (for example, streak-like retardation unevenness on the screen of the display device, such as black display). visible light leakage due to external light reflection) can be highly suppressed.
  • the functional layer 120 of the laminate 100 is used as an optical film of an organic EL display device in the above embodiment, it may be used as an optical film (protective film, etc.) of a liquid crystal display device.
  • Glass-transition temperature The glass transition temperature (Tg) of the resin was measured according to JIS K 7121-2012 using DSC (Differential Scanning Colorimetry).
  • the weight average molecular weight (Mw) of the resin was measured using gel permeation chromatography (manufactured by Tosoh Corporation HLC8220GPC) and a column (manufactured by Tosoh Corporation TSK-GEL G6000HXL-G5000HXL-G5000HXL-G4000HXL-G3000HXL in series). 20 mg ⁇ 0.5 mg of sample was dissolved in 10 ml of tetrahydrofuran and filtered through a 0.45 mm filter. 100 ml of this solution was injected into a column (temperature: 40°C), measured at a detector RI temperature of 40°C, and the value converted to styrene was used.
  • ⁇ Test 3-1 to 3-7> A laminate was obtained in the same manner as Test 1-4, except that the type of support and coating conditions (tension T, embrace angle ⁇ ) were changed as shown in Table 2.
  • Transfer position in the width direction is stable, no wrinkles
  • Transfer position shift in the width direction and wrinkles occur very slightly, but there is no problem with coating quality
  • Transfer position shift in the width direction or wrinkles , but there is no problem with the coating quality.
  • x Dislocation in the conveying position in the width direction and wrinkles occur, and there is a problem with the coating quality.
  • Table 2 shows the manufacturing conditions and evaluation results of Tests 1-1 to 1-6, 2-1 to 2-11 and 3-1 to 3-7.
  • Tests 1-2 to 1-5, 2-3, 2-6 to 2-10 and 3-1 to 3-5 (Examples) satisfying all formulas 1 to 3 were It can be seen that all of the coating unevenness, transportability, transfer failure, and winding shape are good.
  • the deformation amount ⁇ of the support is smaller than 0.5 ⁇ m (even if ⁇ is in the range of 0.1 to 0.75 N/mm), the air does not escape during winding, resulting in a bamboo shoot-like winding misalignment. occurs, and the winding shape deteriorates (see Tests 2-1, 2-2, 3-6 and 3-7); It can be seen that winding misalignment is less likely to occur and the winding shape is good (see Tests 2-3 to 2-11).
  • the deformation amount ⁇ of the support is larger than 20 ⁇ m, streak-like coating unevenness occurs (see Test 2-10); (See tests 2-3 to 2-10).
  • the width W of the groove is 200 ⁇ m (even if ⁇ is in the range of 0.1 to 0.75 N/mm), foreign matter adhering to the back surface lifts the support, causing a transfer failure. is 1050 ⁇ m, streak-like coating unevenness occurs (Tests 2-4, 2-5 and 2-10); It can be seen that the coating unevenness can be suppressed (see Tests 2-2, 2-3, 2-6 to 2-10).
  • the present invention it is possible to provide a method for producing a laminate that can form a functional layer in which defects such as coating unevenness are suppressed without impairing transport stability even if the support is thin.
  • REFERENCE SIGNS LIST 100 laminate 110 support 120 functional layer 200 manufacturing apparatus 210 supply unit 220 application unit 230 drying unit 240 winding unit 300 organic EL display device 310 organic EL element 320 polarizing plate 330 cover glass unit 331 cover glass 332 adhesive layer 333 resistance impact film

Landscapes

  • Laminated Bodies (AREA)

Abstract

This laminate manufacturing method involves coating and forming a functional layer on a support body transported at a tension T (N) and a holding angle θ (°) by means of a roll having a plurality of grooves with the width W (μm) of expression 1 in the circumferential direction, wherein the coating and forming is performed such that a stress σ (N/mm) generated when the support body is pressed against the roll and a deformation amount δ (μm) of the support body in the depth direction of the grooves satisfy expressions 2 and 3. Expression 1: 200<W<1000. Expression 2: 0.1<σ<0.75, σ=2×T×cos(θ/2). Expression 3: 0.5≤δ<20.

Description

積層体の製造方法Laminate manufacturing method
 本発明は、積層体の製造方法に関する。 The present invention relates to a method for manufacturing a laminate.
 支持体に塗布液を塗布する方法として、バックアップロールで支持体を支持及び搬送しながら、該バックアップロールに対向して配置されたエクストルージョンダイから塗布液を吐出するエクストルージョン塗布方法が知られている。 As a method for applying a coating liquid to a support, there is known an extrusion coating method in which a support is supported and conveyed by a backup roll and the coating liquid is ejected from an extrusion die arranged facing the backup roll. there is
 エクストルージョン塗布方法で得られる塗膜の厚みには、ダイコータやバックアップロールなどの装置の構成要素の寸法精度や平滑度、ロールの回転精度、支持体の搬送状態、該支持体とダイコータとの間隔精度などが大きく影響する。そのため、均一な塗膜を形成するには、ダイコータやバックアップロールの構成要素の寸法精度を高めることや、バックアップロールによる支持体の搬送安定性を高めることが必要となる。 The thickness of the coating film obtained by the extrusion coating method depends on the dimensional accuracy and smoothness of the components of the device such as the die coater and the backup roll, the rotation accuracy of the roll, the transport state of the support, and the distance between the support and the die coater. Accuracy is greatly affected. Therefore, in order to form a uniform coating film, it is necessary to improve the dimensional accuracy of the constituent elements of the die coater and the backup roll, and to improve the stability of transport of the support by the backup roll.
 支持体の搬送安定性を高める方法として、搬送ロールやバックアップロールに溝を設けて、支持体の裏面の同伴エアを溝に逃がし、搬送を安定化させる方法が知られている。例えば、支持体とバックアップロールの間に巻き込まれるエア層による塗布不良を抑制するために、幅500~1000μmの溝を複数設けたバックラップロールを用いることや(例えば特許文献1)、シワを抑制するために、幅50~200μmの傾斜した溝を複数設けたバックアップロールを用いること等が提案されている(特許文献2参照)。 As a method for improving the transport stability of the support, a method is known in which grooves are provided in the transport rolls and backup rolls to allow air entrained on the back surface of the support to escape into the grooves, thereby stabilizing the transport. For example, in order to suppress poor coating due to the air layer caught between the support and the backup roll, use a back wrap roll provided with a plurality of grooves with a width of 500 to 1000 μm (for example, Patent Document 1), or suppress wrinkles. For this purpose, it has been proposed to use a backup roll provided with a plurality of inclined grooves having a width of 50 to 200 μm (see Patent Document 2).
特開2000-225368号公報JP-A-2000-225368 特開2015-221415号公報JP 2015-221415 A
 これらの塗布方法では、支持体は、搬送張力がかかった状態でバックアップロールに押し付けられるため、特許文献1のように溝の幅が大きい場合、溝に沿って支持体が凹むように変形しやすい。この変形は、特に支持体の厚みが薄い場合や柔らかい場合に生じやすい。それにより、支持体の幅方向において、塗布ダイのリップ先端と支持体との間隔(塗布ギャップ)がロールの溝の凸部と凹部とで異なるため、ロールの溝と同じピッチの塗布ムラ(スジ状の塗布ムラ)が発生することがあった。 In these coating methods, the support is pressed against the backup roll with a conveying tension applied. Therefore, when the width of the groove is large as in Patent Document 1, the support is likely to be deformed so as to be recessed along the groove. . This deformation is likely to occur particularly when the support is thin or soft. As a result, in the width direction of the support, the distance between the lip tip of the coating die and the support (coating gap) differs between the protrusions and recesses of the grooves of the roll. coating unevenness) may occur.
 一方、特許文献2のように溝の幅が小さい場合、バックアップロール上で支持体が滑りやすく(グリップされにくく)、支持体の搬送が不安定になりやすい。また、塗布厚みが均一になりすぎても、巻き取り時に同伴エアが抜けにくいため巻きズレが発生し、巻き形状が低下することがある。また、支持体の裏面に付着した異物がロールに付着して支持体が浮き上がることにより、ロールの回転周期に応じた転写故障が発生することもある。 On the other hand, when the width of the groove is small as in Patent Document 2, the support tends to slip easily (hardly be gripped) on the backup roll, and the transfer of the support tends to be unstable. Also, even if the coating thickness is too uniform, it is difficult for entrained air to escape during winding, which may cause winding misalignment and deteriorate the winding shape. In addition, foreign matter adhering to the back surface of the support adheres to the roll and lifts the support, which may cause a transfer failure depending on the rotation cycle of the roll.
 このような塗布ムラや、搬送時の傷や転写故障、巻き形状の低下による欠陥は、例えばディスプレイに使用される光学フィルムにおいては光学特性を低下させる原因となるため、抑制できることが望まれる。 Such coating unevenness, scratches during transport, transfer failure, and defects due to deterioration of the winding shape cause deterioration of the optical properties of optical films used in displays, for example, and it is desirable that they can be suppressed.
 本発明は、上記事情に鑑みてなされたものであり、厚みが薄い支持体であっても、搬送安定性を損なうことなく、塗布ムラ等の欠陥が抑制された機能層を形成できる積層体の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a laminate capable of forming a functional layer in which defects such as coating unevenness are suppressed without impairing transport stability even with a thin support. The object is to provide a manufacturing method.
 本発明は、積層体の製造方法に関する。 The present invention relates to a method for manufacturing a laminate.
 [1] 周方向に式1の幅W(μm)の溝を複数有するロールで張力T(N)、抱き角θ(°)で搬送される支持体上に機能層を塗布形成する積層体の製造方法において、前記塗布形成は、前記支持体が前記ロールに押し付けられて生じる応力σ(N/mm)、前記溝の深さ方向での前記支持体の変形量δ(μm)が式2、3を満たすように行う、積層体の製造方法。
 式1:200<W<1000
 式2:0.1<σ<0.75、σ=2×T×cos(θ/2)
 式3:0.5≦δ<20
 [2] 前記支持体の厚みは、50μm以下である、[1]に記載の積層体の製造方法。
 [3] 前記支持体のヤング率Eは、3000MPa超5200MPa以下である、[1]または[2]に記載の積層体の製造方法。
 [4] 前記支持体は、熱可塑性樹脂フィルムである、[1]~[3]のいずれかに記載の積層体の製造方法。
 [5] 前記熱可塑性樹脂フィルムは、ポリエステルフィルムである、[4]に記載の積層体の製造方法。
 [6] 前記機能層は、前記支持体上に剥離可能に形成された光学機能層である、[1]~[5]のいずれかに記載の積層体の製造方法。
 [7] 前記機能層は、シクロオレフィン系樹脂又は(メタ)アクリル系樹脂を含む、[1]~[6]のいずれかに記載の積層体の製造方法。
[1] Laminate in which a functional layer is formed by coating on a support that is transported at a tension T (N) and an embrace angle θ (°) with a roll having a plurality of grooves with a width W (μm) of formula 1 in the circumferential direction. In the manufacturing method, in the coating formation, the stress σ (N/mm) generated when the support is pressed against the roll, and the deformation amount δ (μm) of the support in the depth direction of the groove are expressed by formula 2, 3. A method for manufacturing a laminate, which is performed so as to satisfy 3.
Formula 1: 200<W<1000
Formula 2: 0.1<σ<0.75, σ=2×T×cos(θ/2)
Formula 3: 0.5≦δ<20
[2] The method for producing a laminate according to [1], wherein the support has a thickness of 50 μm or less.
[3] The method for producing a laminate according to [1] or [2], wherein the support has a Young's modulus E of more than 3000 MPa and not more than 5200 MPa.
[4] The method for producing a laminate according to any one of [1] to [3], wherein the support is a thermoplastic resin film.
[5] The method for producing a laminate according to [4], wherein the thermoplastic resin film is a polyester film.
[6] The method for producing a laminate according to any one of [1] to [5], wherein the functional layer is an optical functional layer detachably formed on the support.
[7] The method for producing a laminate according to any one of [1] to [6], wherein the functional layer contains a cycloolefin resin or (meth)acrylic resin.
 本発明によれば、厚みが薄い支持体であっても、搬送安定性を損なうことなく、塗布ムラ等の欠陥が抑制された機能層を形成できる積層体の製造方法を提供することができる。 According to the present invention, it is possible to provide a method for producing a laminate that can form a functional layer in which defects such as coating unevenness are suppressed without impairing transport stability even if the support is thin.
図1は、塗布ダイによる塗布方法の概略を示す断面模式図である。FIG. 1 is a schematic cross-sectional view showing an outline of a coating method using a coating die. 図2は、図1のロール表面での支持体の状態を示す模式図である。FIG. 2 is a schematic diagram showing the state of the support on the roll surface of FIG. 図3は、本実施の形態における積層体の製造装置の模式図である。FIG. 3 is a schematic diagram of a laminate manufacturing apparatus according to the present embodiment. 図4は、本実施の形態における積層体の構成を示す断面模式図である。FIG. 4 is a schematic cross-sectional view showing the configuration of the laminate in this embodiment. 図5は、本実施の形態における表示装置の構成を示す断面模式図である。FIG. 5 is a schematic cross-sectional view showing the configuration of the display device according to this embodiment.
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 1.積層体の製造方法
 本実施の形態に係る積層体の製造方法は、支持体及び機能層を有する積層体を製造する方法である。機能層は、好ましくは光学機能層であり、支持体から剥離して光学フィルムとして使用することができる。
1. Method for Producing Laminate A method for producing a laminate according to the present embodiment is a method for producing a laminate having a support and a functional layer. The functional layer is preferably an optical functional layer and can be peeled off from the support and used as an optical film.
 そのような積層体の製造方法は、支持体上に機能層を塗布形成する工程を含む。例えば塗布液が樹脂溶液である場合、積層体の製造方法は、1)支持体上に、機能層を形成するための樹脂溶液を塗布する工程(塗布工程)、及び塗膜を乾燥させて機能層を形成する工程(乾燥工程)を含む。 A method for producing such a laminate includes a step of coating and forming a functional layer on a support. For example, when the coating liquid is a resin solution, the method for producing a laminate comprises: 1) a step of coating a resin solution for forming a functional layer on a support (coating step); A step of forming a layer (drying step) is included.
 1)塗布工程
 支持体上に、機能層を形成するための樹脂溶液を塗布する。
1) Coating step A resin solution for forming a functional layer is coated on a support.
 支持体は、機能層を支持可能なものであればよく、例えば樹脂フィルムである。樹脂フィルムの例には、ポリエステルフィルム(例えば、ポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタレート(PTT)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)など)、シクロオレフィン系樹脂フィルム(COP)、アクリル系樹脂フィルム、セルロース系樹脂フィルム(トリアセチルセルロースフィルム(TAC)など)などの熱可塑性樹脂フィルムが含まれる。中でも、汎用性があり、後述するヤング率Eを満たしやすい観点から、PETフィルムなどのポリエステルフィルム、シクロオレフィン系樹脂フィルム、アクリル系樹脂フィルムが好ましく、PETフィルムなどのポリエステルフィルムがより好ましい。 The support may be anything as long as it can support the functional layer, such as a resin film. Examples of resin films include polyester films (e.g., polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), etc.), Thermoplastic resin films such as cycloolefin resin films (COP), acrylic resin films, and cellulose resin films (such as triacetyl cellulose films (TAC)) are included. Among them, polyester films such as PET films, cycloolefin resin films, and acrylic resin films are preferable, and polyester films such as PET films are more preferable, from the viewpoint of versatility and easy satisfaction of Young's modulus E described later.
 樹脂フィルムのヤング率Eは、特に制限されないが、3000MPa超5200MPa以下であることが好ましく、4000~5000MPaであることがより好ましい。バックアップロールの溝の深さ方向での支持体の変形量δを後述する範囲にするためである。 Although the Young's modulus E of the resin film is not particularly limited, it is preferably more than 3000 MPa and 5200 MPa or less, more preferably 4000 to 5000 MPa. This is because the amount of deformation δ of the support in the depth direction of the grooves of the backup roll is set within the range described later.
 ヤング率Eは、JIS K7127:1999に準拠して測定することができる。例えば、オリエンテック社製テンシロンRTC-1225Aを用いて、チャック間距離を50mmとし、引っ張りながら破断するまでの応力-ひずみ曲線から求めることができる。測定は、23℃、55%RH下、引張速度50mm/分の条件で行うことができる。 Young's modulus E can be measured according to JIS K7127:1999. For example, using Tensilon RTC-1225A manufactured by Orientec Co., Ltd., the distance between chucks is set to 50 mm, and it can be obtained from the stress-strain curve until it breaks while being pulled. The measurement can be performed under conditions of 23° C., 55% RH, and a tensile speed of 50 mm/min.
 ヤング率Eは、樹脂フィルムの種類や冷却処理の有無によって調整されうる。上記ヤング率Eを満たす観点では、冷却処理がされていないことが好ましい。 The Young's modulus E can be adjusted depending on the type of resin film and the presence or absence of cooling treatment. From the viewpoint of satisfying the above Young's modulus E, it is preferable that the cooling treatment is not performed.
 支持体の厚みtは、特に制限されないが、例えば100μm以下、好ましくは50μm以下である。特に支持体の厚みtが50μm以下であると、後述するように、ロールの溝の深さ方向に変形しやすいため、本発明が特に有効となる。なお、場合によっては50μm未満であってもよい。支持体の厚みtの下限値は、特に制限されないが、例えば15μm、好ましくは20μmである。 The thickness t of the support is not particularly limited, but is, for example, 100 µm or less, preferably 50 µm or less. In particular, when the thickness t of the support is 50 μm or less, the present invention is particularly effective because the support easily deforms in the depth direction of the grooves of the roll, as will be described later. In addition, it may be less than 50 μm in some cases. Although the lower limit of the thickness t of the support is not particularly limited, it is, for example, 15 μm, preferably 20 μm.
 支持体は、その表面に離型層をさらに含むことが好ましい。離型層は、公知の剥離剤又は離型剤を含みうる。剥離剤の例には、シリコーン系剥離剤及び非シリコーン系剥離剤が含まれる。離型層の厚みは、剥離性を発現する程度であればよく、例えば0.1~1.0μmであることが好ましい。 The support preferably further includes a release layer on its surface. The release layer may contain a known releasing agent or release agent. Examples of release agents include silicone release agents and non-silicone release agents. The thickness of the release layer may be such that it exhibits releasability, and is preferably 0.1 to 1.0 μm, for example.
 樹脂溶液の塗布方法は、薄くかつ均一な厚みの塗膜を形成しうる観点から、塗布ダイによる塗布方法であることが好ましい。 The method of applying the resin solution is preferably a method using a coating die from the viewpoint of forming a thin and uniform coating film.
 図1は、塗布ダイによる塗布方法の概略を示す断面模式図である。図2は、図1のロール表面での支持体の状態を示す模式図である。 FIG. 1 is a schematic cross-sectional view showing an outline of a coating method using a coating die. FIG. 2 is a schematic diagram showing the state of the support on the roll surface of FIG.
 図1に示されるように、塗布ダイによる塗布では、支持体110をロール221(バックアップロール)で支持及び搬送しながら、当該ロール221に対向して配置された塗布ダイ222から樹脂溶液を吐出させて塗布する。そして、支持体110の裏面に付着した異物等を溝に埋没させて、支持体110の裏面へ突出するのを抑制する観点から、周方向に複数の溝が設けられたロールを使用する。 As shown in FIG. 1, in coating with a coating die, a resin solution is discharged from a coating die 222 arranged opposite to the roll 221 while supporting and conveying the support 110 with a roll 221 (backup roll). to apply. A roll provided with a plurality of grooves in the circumferential direction is used from the viewpoint of suppressing protruding to the back surface of the support 110 by burying the foreign matters adhered to the back surface of the support 110 in the grooves.
 ところで、支持体110の裏面に付着した大きな異物等でも、溝に埋没させて、支持体110の裏面へ突出するのを抑制する観点では、ロール221の溝の幅Wは大きいことが好ましい(図2参照)。しかしながら、支持体110は、張力T及び抱き角θに応じた力(図2の白抜き矢印参照)でロール221に押し付けられるため、ロール221の溝の幅Wが大きいと、支持体110が、溝の深さ方向に凹むように変形しやすい(図2参照)。それにより、支持体110の幅方向において、塗布ダイ222のリップ先端と支持体110との間隔(塗布ギャップ)が、ロール221の溝の凸部と凹部とで異なるため、塗布厚みも変わりやすく、ロール221の溝と同じピッチの塗布厚みムラ(スジ状の塗布ムラ)を生じやすい。一方で、上記のような変形を全く生じないと、支持体110がロール221の表面で滑りやすく、搬送が不安定となりやすい。また、塗布厚みが均一すぎることにより、巻き取り時に積層体同士が密着しすぎて、同伴エアが抜けにくく、巻きズレを生じやすい。 By the way, it is preferable that the width W of the groove of the roll 221 is large from the viewpoint of preventing even a large foreign matter or the like adhering to the back surface of the support 110 from being buried in the groove and protruding to the back surface of the support 110 (Fig. 2). However, since the support 110 is pressed against the roll 221 by a force (see the white arrow in FIG. 2) corresponding to the tension T and the embrace angle θ, if the groove width W of the roll 221 is large, the support 110 is It is easy to deform so as to be recessed in the depth direction of the groove (see FIG. 2). As a result, in the width direction of the support 110, the distance between the lip tip of the coating die 222 and the support 110 (coating gap) differs between the protrusions and recesses of the grooves of the roll 221, so that the coating thickness is easily changed. Coating thickness unevenness (streak-like coating unevenness) having the same pitch as the grooves of the roll 221 tends to occur. On the other hand, if the deformation as described above does not occur at all, the support 110 tends to slip easily on the surface of the roll 221, and the transport tends to be unstable. In addition, when the coating thickness is too uniform, the laminates are too closely adhered to each other during winding, which makes it difficult for the entrained air to escape, thereby easily causing winding misalignment.
 そこで、本発明では、搬送の不安定や巻きズレを抑制しつつ、スジ状の塗布ムラを抑制すること;そのためには、支持体の変形量δ及び支持体がロールに押し付けられて生じる応力σ(以下、単に「支持体に生じる応力σ」又は「支持体がロールに押し付けられて受ける力」ともいう)を適度に小さくすることが好ましい。 Therefore, in the present invention, streak-like coating unevenness is suppressed while suppressing transport instability and winding misalignment; (Hereinafter, it is also simply referred to as “the stress σ generated in the support” or “the force that the support receives when it is pressed against the roll”) is preferably made moderately small.
 すなわち、本発明では、ロールの溝の幅をW(μm)、支持体の単位幅当たりの張力をT(N/mm)、抱き角をθ(°)とした時、支持体がロールに押し付けられて生じる応力σ(N/mm)及び溝の深さ方向での支持体の変形量δ(μm)が、それぞれ式2及び3を満たすように上記塗布形成を行うことが好ましい。
 式1:200<W<1000
 式2:0.1<σ<0.75、σ=2×T×cos(θ/2)
 式3:0.5≦δ<20
That is, in the present invention, when the groove width of the roll is W (μm), the tension per unit width of the support is T (N/mm), and the embrace angle is θ (°), the support is pressed against the roll. It is preferable that the above-described coating formation is performed so that the stress σ (N/mm) generated by the deformation and the amount of deformation δ (μm) of the support in the depth direction of the grooves satisfy Equations 2 and 3, respectively.
Formula 1: 200<W<1000
Formula 2: 0.1<σ<0.75, σ=2×T×cos(θ/2)
Formula 3: 0.5≦δ<20
 式3について:
 支持体の変形量δが20μm未満であると、塗布ギャップのバラツキを小さくできるため、スジ状の塗膜ムラを抑制できる。一方、支持体の変形量δが0.5μm以上であると、支持体がロールに適度にグリップされるため、搬送安定性が損なわれにくい。また、塗膜に、光学特性に影響がない程度の厚み偏差を付与できるため、巻き取り時に積層体同士が密着しすぎず、巻きズレを抑制できる。同様の観点から、支持体の変形量δは、溝の幅にもよるが、例えば0.7≦δ≦9.0を満たすことがより好ましく、1.2≦δ≦6.0を満たすことがさらに好ましい。支持体の変形量δは、レーザ変位計(例えば(株)キーエンス製LJ-X8000)で測定することができる。具体的には、レーザ変位計で得られた測定データから、各溝ごとに、ロールの溝の深さ方向における支持体表面の最高点と最低点の間の距離を求め、それらの平均値を支持体の変形量δとすることができる(図2参照)。
Regarding Equation 3:
When the deformation amount δ of the support is less than 20 μm, variations in the coating gap can be reduced, so streaky coating film unevenness can be suppressed. On the other hand, when the deformation amount δ of the support is 0.5 μm or more, the support is properly gripped by the rolls, so that the transport stability is less likely to be impaired. In addition, since the coating film can be provided with a thickness deviation that does not affect the optical properties, the laminates do not adhere too closely to each other during winding, and winding misalignment can be suppressed. From the same point of view, the amount of deformation δ of the support, although depending on the width of the groove, preferably satisfies, for example, 0.7≦δ≦9.0, and satisfies 1.2≦δ≦6.0. is more preferred. The deformation amount δ of the support can be measured with a laser displacement meter (for example, LJ-X8000 manufactured by Keyence Corporation). Specifically, from the measurement data obtained by the laser displacement meter, the distance between the highest point and the lowest point of the support surface in the depth direction of the groove of the roll is obtained for each groove, and the average value is calculated. It can be the amount of deformation δ of the support (see FIG. 2).
 支持体の変形量δは、支持体の厚みtやヤング率E、応力σ、張力Tによって調整されうる。特に支持体の厚みtは、支持体の変形量δへの影響が大きい(厚みtの3乗に反比例する)。そのため、支持体の厚みtを小さくすると、支持体の変形量δは大きくなる。また、支持体のヤング率Eを低くすると、変形量δは大きくなる。一方、応力σや張力Tを小さくすると、変形量δは小さくなる。 The deformation amount δ of the support can be adjusted by the thickness t, Young's modulus E, stress σ, and tension T of the support. In particular, the thickness t of the support greatly influences the deformation amount δ of the support (it is inversely proportional to the cube of the thickness t). Therefore, when the thickness t of the support is reduced, the deformation amount δ of the support increases. Further, when the Young's modulus E of the support is lowered, the deformation amount δ is increased. On the other hand, when the stress σ and the tension T are decreased, the deformation amount δ is decreased.
 式2について:
 支持体に生じる応力σが0.1N/mmよりも大きいと、支持体がロールに適度にグリップされるため、搬送安定性を高めることができる。一方、支持体に生じる応力σが0.75N/mmよりも小さいと、溝の凸部と凹部とで塗布ギャップが過度には違わないため、スジ状の塗布ムラを抑制できる。同様の観点から、支持体に生じる応力σは、0.2≦σ≦0.7を満たすことがより好ましく、0.2≦σ≦0.6を満たすことがさらに好ましい。支持体に生じる応力σは、張力T及び抱き角θを上記式2に当てはめて算出することができる。
Regarding Equation 2:
When the stress σ generated in the support is larger than 0.1 N/mm, the support is properly gripped by the rolls, so that the transport stability can be improved. On the other hand, when the stress σ generated in the support is less than 0.75 N/mm, the coating gap does not differ excessively between the protrusions and the recesses of the grooves, so streak-like coating unevenness can be suppressed. From the same point of view, the stress σ generated in the support more preferably satisfies 0.2≦σ≦0.7, and more preferably satisfies 0.2≦σ≦0.6. The stress σ generated in the support can be calculated by applying the tension T and the embrace angle θ to Equation 2 above.
 支持体に生じる応力σは、張力T及び抱き角θによって調整されうる。例えば、張力Tは小さくし、抱き角θは大きくすると、応力σは小さくなる。σを上記範囲に調整する観点では、張力Tは、例えば0.1~0.7N/mmとし、抱き角θは、例えば0~90°としうる。 The stress σ generated in the support can be adjusted by the tension T and the embrace angle θ. For example, when the tension T is decreased and the embrace angle θ is increased, the stress σ is decreased. From the viewpoint of adjusting σ within the above range, the tension T can be set to, for example, 0.1 to 0.7 N/mm, and the embrace angle θ can be set to, for example, 0 to 90°.
 式1について:
 ロールの溝の幅Wが200μmよりも大きいと、支持体の裏面に付着した異物等を十分に溝内に埋没させることができるため、転写故障を生じにくく、1000μm未満であると、支持体の変形量δが大きくなりすぎないため、スジ状の塗布ムラを生じにくい。同様の観点から、溝の幅Wは、例えば210~700μmであることが好ましい。溝の幅Wは、溝の深さ方向のうち最も高い部分とその隣の最も高い部分との距離(平均値)としうる(図2参照)。
Regarding Equation 1:
When the groove width W of the roll is larger than 200 μm, the foreign matters and the like adhering to the back surface of the support can be sufficiently buried in the groove, so that the transfer failure is unlikely to occur. Since the amount of deformation δ does not become too large, streak-like coating unevenness is less likely to occur. From the same point of view, the width W of the groove is preferably 210 to 700 μm, for example. The width W of the groove can be defined as the distance (average value) between the highest portion and the adjacent highest portion in the depth direction of the groove (see FIG. 2).
 樹脂溶液の塗布厚み(μm)は、特に制限されないが、例えば30~200μmであることが好ましい。塗布ギャップGは、通常、塗布厚みの約2倍となるため、60~400μmとなる。塗布ギャップGが60μm以上であると、搬送安定性や巻きズレを一層抑制しやすく、400μm以下であると、スジ状の塗布ムラを一層抑制しやすい。 Although the coating thickness (μm) of the resin solution is not particularly limited, it is preferably 30 to 200 μm, for example. The coating gap G is usually about twice the coating thickness, so it is 60 to 400 μm. When the coating gap G is 60 μm or more, it is easier to suppress the transport stability and winding displacement, and when it is 400 μm or less, it is easier to suppress streak-like coating unevenness.
 2)乾燥工程
 次いで、支持体に塗布した樹脂溶液から溶媒を除去して(乾燥させて)、機能層を形成する。
2) Drying Step Next, the solvent is removed (dried) from the resin solution applied to the support to form the functional layer.
 乾燥方法は、特に制限されず、加熱乾燥であってもよいし、非加熱乾燥であってもよい。加熱乾燥の場合、加熱温度は、60~140℃であることが好ましく、80~120℃であることがより好ましい。加熱温度が上記範囲内であると、短時間で溶媒を除去できる。加熱温度は、加熱雰囲気の温度として特定することができる。 The drying method is not particularly limited, and may be heat drying or non-heat drying. In the case of heat drying, the heating temperature is preferably 60 to 140°C, more preferably 80 to 120°C. When the heating temperature is within the above range, the solvent can be removed in a short time. The heating temperature can be specified as the temperature of the heating atmosphere.
 本実施の形態に係る積層体は、好ましくは帯状であることから、3)帯状の積層体をロール状に巻き取り、ロール体とする工程をさらに行うことが好ましい。 Since the laminate according to the present embodiment is preferably strip-shaped, it is preferable to further perform the step of 3) winding the strip-shaped laminate into a roll to form a roll.
 3)巻き取り工程
 得られた帯状の積層体を、その幅方向に直交する方向にロール状に巻き取り、ロール体とする。
3) Winding step The obtained strip-shaped laminate is wound into a roll in a direction orthogonal to the width direction to obtain a roll.
 帯状の積層体の長さは、特に制限されないが、例えば100~10000m程度でありうる。また、帯状の積層体の幅は、1m以上であることが好ましく、1.3~4mであることがより好ましい。 The length of the strip-shaped laminate is not particularly limited, but can be, for example, about 100 to 10,000 m. The width of the strip-shaped laminate is preferably 1 m or more, more preferably 1.3 to 4 m.
 本実施の形態では、機能層の塗布形成を上記式1~3を満たすように行う。それにより、厚みが薄い支持体であっても、搬送安定性の低下や巻きズレを生じることなく、スジ状の塗布ムラを抑制できる。それにより、所望の光学特性を備えた薄膜の機能層を得ることができる。 In the present embodiment, the coating formation of the functional layer is performed so as to satisfy the above formulas 1-3. As a result, streak-like coating unevenness can be suppressed without causing deterioration in transport stability or winding displacement even when the thickness of the support is thin. Thereby, a thin functional layer having desired optical properties can be obtained.
 樹脂溶液について:
 樹脂溶液は、熱可塑性樹脂及び溶媒を含む。
About the resin solution:
A resin solution includes a thermoplastic resin and a solvent.
 (熱可塑性樹脂)
 樹脂溶液に含まれる熱可塑性樹脂は、特に制限されないが、光学フィルムとして用いる観点では、透光性を有する熱可塑性樹脂が好ましい。そのような樹脂の例には、(メタ)アクリル系樹脂、シクロオレフィン系樹脂及びセルロースエステルが含まれる。
(Thermoplastic resin)
The thermoplastic resin contained in the resin solution is not particularly limited, but from the viewpoint of use as an optical film, a thermoplastic resin having translucency is preferable. Examples of such resins include (meth)acrylic resins, cycloolefinic resins and cellulose esters.
 (メタ)アクリル系樹脂は、少なくともメタクリル酸メチルに由来する構造単位を含む重合体である。当該重合体は、メタクリル酸メチルに由来する構造単位以外の他の構造単位をさらに含んでもよい。他の構造単位の例には、フェニルマレイミドなどのマレイミド類;アクリル酸アダマンチルなどの(メタ)アクリル酸アルキルエステル;アクリル酸2-エチルヘキシルなどの(メタ)アクリル酸シクロアルキルエステルなどが含まれる。 A (meth)acrylic resin is a polymer containing at least a structural unit derived from methyl methacrylate. The polymer may further contain a structural unit other than the structural unit derived from methyl methacrylate. Examples of other structural units include maleimides such as phenylmaleimide; (meth)acrylic acid alkyl esters such as adamantyl acrylate; and (meth)acrylic acid cycloalkyl esters such as 2-ethylhexyl acrylate.
 (メタ)アクリル系樹脂の例には、ポリメタクリル酸メチルや、メタクリル酸メチル・フェニルマレイミド・アクリル酸アルキルエステルの共重合体などが含まれる。 Examples of (meth)acrylic resins include polymethyl methacrylate and copolymers of methyl methacrylate/phenylmaleimide/acrylic acid alkyl ester.
 (メタ)アクリル系樹脂の重量平均分子量Mwは、好ましくは100万以上、より好ましくは150万~300万である。(メタ)アクリル系樹脂のMwが一定以上であると、機能層の機械的強度を高めうる。Mwは、ゲルパーミエーションクロマトグラフィー(GPC)によりポリスチレン換算にて測定することができる。 The weight average molecular weight Mw of the (meth)acrylic resin is preferably 1 million or more, more preferably 1.5 million to 3 million. When the (meth)acrylic resin has a certain Mw or more, the mechanical strength of the functional layer can be increased. Mw can be measured in terms of polystyrene by gel permeation chromatography (GPC).
 シクロオレフィン系樹脂は、極性基を有するノルボル系単量体の(共)重合体でありうる。極性基を有するノルボル系単量体は、下記式(1)で表される。
Figure JPOXMLDOC01-appb-C000001
The cycloolefin-based resin may be a (co)polymer of a norbol-based monomer having a polar group. A norbol monomer having a polar group is represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000001
 式(1)のR~Rのうち少なくとも一つは、極性基であることが好ましく、炭素原子数1~10のアルコキシカルボニル基であることがより好ましい。極性基を有するノルボルネン系単量体に由来する構造単位を有するシクロオレフィン系樹脂は、溶媒に溶解させやすいだけでなく、得られるフィルムのガラス転移温度を高めうる。 At least one of R 1 to R 4 in formula (1) is preferably a polar group, more preferably an alkoxycarbonyl group having 1 to 10 carbon atoms. A cycloolefin-based resin having a structural unit derived from a norbornene-based monomer having a polar group is not only easily dissolved in a solvent, but also can increase the glass transition temperature of the resulting film.
 R~Rのうち残りは、それぞれ水素原子又は炭化水素基であることが好ましい。炭化水素基は、炭素原子数が1~10、好ましくは1~4、より好ましくは1又は2の炭化水素基であり、その例には、アルキル基、アリール基が含まれる。 The rest of R 1 to R 4 are preferably hydrogen atoms or hydrocarbon groups. The hydrocarbon group is a hydrocarbon group having 1 to 10 carbon atoms, preferably 1 to 4 carbon atoms, more preferably 1 or 2 carbon atoms, examples of which include alkyl groups and aryl groups.
 例えば、式(1)のRが極性基であり、R、R及びRが、それぞれ水素原子又は炭化水素基であってもよいし;R及びRが、それぞれ極性基であり、R及びRは、それぞれ水素原子又は炭化水素基であってもよい。p及びmは、それぞれ0~3の整数である。m+pは、好ましくは0~4、より好ましくは0~2であり、さらに好ましくはm=1、p=0である。 For example, R 1 in Formula ( 1 ) may be a polar group, and R 2 , R 3 and R 4 may each be a hydrogen atom or a hydrocarbon group; and R 2 and R 4 may each be a hydrogen atom or a hydrocarbon group. p and m are each an integer from 0 to 3; m+p is preferably 0 to 4, more preferably 0 to 2, more preferably m=1 and p=0.
 シクロオレフィン系樹脂は、極性基を有するノルボルネン系単量体と共重合可能な他の単量体に由来する構造単位をさらに含んでいてもよい。共重合可能な他の単量体の例には、極性基を有しないノルボルネン系単量体や、シクロブテン、シクロペンテンなどのノルボルネン骨格を有しないシクロオレフィン系単量体が含まれる。 The cycloolefin-based resin may further contain a structural unit derived from another monomer copolymerizable with the norbornene-based monomer having a polar group. Examples of other copolymerizable monomers include norbornene-based monomers having no polar group, and cycloolefin-based monomers having no norbornene skeleton such as cyclobutene and cyclopentene.
 シクロオレフィン系樹脂のMwは、特に制限されないが、例えば10万~30万であることが好ましく、12万~20万であることがより好ましい。Mwは、上記と同様の方法で測定されうる。 Although the Mw of the cycloolefin resin is not particularly limited, it is preferably, for example, 100,000 to 300,000, more preferably 120,000 to 200,000. Mw can be measured in a manner similar to that described above.
 セルロースエステルは、セルローストリアセテート(TAC)であることが好ましい。 The cellulose ester is preferably cellulose triacetate (TAC).
 これらの中でも、(メタ)アクリル系樹脂又はシクロオレフィン系樹脂を含む薄膜の機能層は、コシがなく、貼合時の空気の噛み込みを生じやすいことから、本発明の積層体の製造方法が特に有効となる。 Among these, a thin functional layer containing a (meth)acrylic resin or a cycloolefin resin has no stiffness and tends to cause entrapment of air during lamination. Especially effective.
 樹脂の含有量は、樹脂溶液の固形分に対して60質量%以上であることが好ましく、70質量%以上であることがより好ましい。 The resin content is preferably 60% by mass or more, more preferably 70% by mass or more, relative to the solid content of the resin solution.
 (他の成分)
 樹脂溶液は、必要に応じて上記以外の他の成分をさらに含んでもよい。他の成分の例には、ゴム粒子やマット剤(微粒子)などが含まれる。
(other ingredients)
The resin solution may further contain other components than those mentioned above, if necessary. Examples of other components include rubber particles and matting agents (fine particles).
 (ゴム粒子)
 ゴム粒子は、ゴム状重合体を含む粒子である。ゴム状重合体は、ガラス転移温度が20℃以下、好ましくは0℃以下、より好ましくは-10℃以下の軟質な架橋重合体である。そのような架橋重合体の例には、ブタジエン系架橋重合体、(メタ)アクリル系架橋重合体、及びオルガノシロキサン系架橋重合体が含まれる。中でも、(メタ)アクリル系樹脂との屈折率差が小さく、機能層の透明性が損なわれにくい観点では、(メタ)アクリル系架橋重合体が好ましく、アクリル系架橋重合体(アクリル系ゴム状重合体)がより好ましい。
(rubber particles)
A rubber particle is a particle comprising a rubber-like polymer. The rubber-like polymer is a soft crosslinked polymer having a glass transition temperature of 20° C. or lower, preferably 0° C. or lower, more preferably −10° C. or lower. Examples of such crosslinked polymers include butadiene crosslinked polymers, (meth)acrylic crosslinked polymers, and organosiloxane crosslinked polymers. Among them, a (meth)acrylic crosslinked polymer is preferable from the viewpoint of having a small difference in refractive index from that of a (meth)acrylic resin and less likely to impair the transparency of the functional layer. coalescence) is more preferred.
 アクリル系ゴム状重合体(a)は、アクリル酸エステルに由来する構造単位を主成分として含む架橋重合体である。アクリル系ゴム状重合体(a)は、アクリル酸エステルに由来する構造単位と、それと共重合可能な他の単量体に由来する構造単位と、1分子中に2以上のラジカル重合性基(非共役な反応性二重結合)を有する多官能性単量体に由来する構造単位とを含む架橋重合体であることが好ましい。 The acrylic rubber-like polymer (a) is a crosslinked polymer containing structural units derived from an acrylic acid ester as its main component. The acrylic rubber-like polymer (a) comprises a structural unit derived from an acrylic acid ester, a structural unit derived from another monomer copolymerizable therewith, and two or more radically polymerizable groups in one molecule ( It is preferably a crosslinked polymer containing a structural unit derived from a polyfunctional monomer having a non-conjugated reactive double bond.
 アクリル酸エステルは、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸n-ブチルなどのアルキル基の炭素原子数1~12のアクリル酸アルキルエステルであることが好ましい。アクリル酸エステルに由来する構造単位の含有量は、全構造単位に対して40~90質量%であることが好ましく、50~80質量%であることがより好ましい。アクリル酸エステルの含有量が上記範囲内であると、保護フィルムに十分な靱性を付与しやすい。  The acrylate ester is preferably an acrylate alkyl ester having an alkyl group of 1 to 12 carbon atoms, such as methyl acrylate, ethyl acrylate, n-propyl acrylate and n-butyl acrylate. The content of structural units derived from acrylic acid ester is preferably 40 to 90% by mass, more preferably 50 to 80% by mass, based on the total structural units. When the acrylic acid ester content is within the above range, it is easy to impart sufficient toughness to the protective film. 
 共重合可能な他の単量体は、アクリル酸エステルと共重合可能な単量体のうち、多官能性単量体以外のものである。共重合可能な単量体の例には、メタクリル酸メチルなどのメタクリル酸エステル;スチレン、メチルスチレンなどのスチレン類が含まれる。共重合可能な他の単量体に由来する構造単位の含有量は、全構造単位に対して5~55質量%であることが好ましく、10~45質量%であることがより好ましい。 Other copolymerizable monomers are those other than polyfunctional monomers among monomers copolymerizable with acrylic acid esters. Examples of copolymerizable monomers include methacrylic acid esters such as methyl methacrylate; styrenes such as styrene and methylstyrene. The content of structural units derived from other copolymerizable monomers is preferably 5 to 55% by mass, more preferably 10 to 45% by mass, based on the total structural units.
 多官能性単量体の例には、エチレングリコールジ(メタ)アクリレート、ジエチレングリコール(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレートが含まれる。多官能性単量体に由来する構造単位の含有量は、全構造単位に対して0.05~10質量%であることが好ましく、0.1~5質量%であることがより好ましい。多官能性単量体の含有量が0.05質量%以上であると、得られるアクリル系ゴム状重合体(a)の架橋度を高めやすいため、得られる機能層の硬度、剛性が損なわれすぎず、10質量%以下であると、機能層の靱性が損なわれにくい。 Examples of polyfunctional monomers include ethylene glycol di(meth)acrylate, diethylene glycol (meth)acrylate, and polyethylene glycol di(meth)acrylate. The content of structural units derived from polyfunctional monomers is preferably 0.05 to 10% by mass, more preferably 0.1 to 5% by mass, based on the total structural units. When the content of the polyfunctional monomer is 0.05% by mass or more, the degree of cross-linking of the obtained acrylic rubber-like polymer (a) tends to be increased, so that the hardness and rigidity of the obtained functional layer are impaired. If the content is not too large and 10% by mass or less, the toughness of the functional layer is less likely to be impaired.
 アクリル系ゴム状重合体(a)を含む粒子は、アクリル系ゴム状重合体(a)からなる粒子であってもよいし;アクリル系ゴム状重合体(a)の存在下で、メタクリル酸エステルなどの単量体の混合物を、少なくとも1段以上重合して得られるアクリル系グラフト共重合体からなる粒子、すなわち、アクリル系ゴム状重合体(a)を含むコア部と、それを覆うシェル部とを有するコアシェル型の粒子であってもよい。 The particles containing the acrylic rubber-like polymer (a) may be particles composed of the acrylic rubber-like polymer (a); Particles composed of an acrylic graft copolymer obtained by polymerizing a mixture of monomers such as at least one stage, i.e., a core portion containing an acrylic rubber-like polymer (a) and a shell portion covering it It may be a core-shell type particle having
 シェル部は、アクリル系ゴム状重合体(a)にグラフト結合した、メタクリル酸エステルに由来する構造単位を主成分として含むメタクリル系重合体(b)を含みうる。メタクリル系重合体(b)を構成するメタクリル酸エステルは、メタクリル酸メチルなどのアルキル基の炭素原子数1~12のメタクリル酸アルキルエステルであることが好ましい。 The shell part may contain a methacrylic polymer (b) graft-bonded to the acrylic rubber-like polymer (a) and containing a structural unit derived from a methacrylic acid ester as a main component. The methacrylic acid ester constituting the methacrylic polymer (b) is preferably a methacrylic acid alkyl ester having an alkyl group of 1 to 12 carbon atoms, such as methyl methacrylate.
 ゴム粒子の平均粒子径は、100~400nmであることが好ましく、150~300nmであることがより好ましい。ゴム粒子の平均粒子径が上記範囲内であると、機能層の透明性を損なうことなく、応力緩和作用が得られやすい。ゴム粒子の平均粒子径は、ゼータ電位・粒径測定システム(大塚電子株式会社製 ELSZ-2000ZS)で測定される分散粒径として特定することができる。 The average particle size of the rubber particles is preferably 100-400 nm, more preferably 150-300 nm. When the average particle size of the rubber particles is within the above range, the stress relieving action can be easily obtained without impairing the transparency of the functional layer. The average particle size of the rubber particles can be specified as the dispersed particle size measured by a zeta potential/particle size measuring system (ELSZ-2000ZS manufactured by Otsuka Electronics Co., Ltd.).
 ゴム粒子の含有量は、特に限定されないが、樹脂溶液中の樹脂成分に対して5~50質量%であることが好ましく、5~40質量%であることがより好ましく、7~30質量%であることがさらに好ましい。 The content of the rubber particles is not particularly limited, but is preferably 5 to 50% by mass, more preferably 5 to 40% by mass, more preferably 7 to 30% by mass, based on the resin component in the resin solution. It is even more preferable to have
 (マット剤)
 マット剤は、フィルムに滑り性を付与する観点で、添加されうる。マット剤の例には、シリカ粒子などの無機微粒子などが含まれる。
(Matting agent)
A matting agent may be added from the viewpoint of imparting slipperiness to the film. Examples of matting agents include inorganic fine particles such as silica particles.
 (溶媒)
 樹脂溶液に用いられる溶媒は、熱可塑性樹脂を良好に溶解できるものであればよく、特に制限されない。溶媒の例には、メタノール、エタノールなどのアルコール類、メチルエチルケトン、メチルイソブチルケトン、アセトンなどのケトン類、酢酸エチル、酢酸メチルなどのエステル類、グリコールエーテル類(プロピレングリコールモノ(C1~C4)アルキルエーテル(具体的にはプロピレングリコールモノメチルエーテル(PGME)等)、プロピレングリコールモノアルキルエーテルエステル(プロピレングリコールモノメチルエーテルアセテート)、トルエン、ベンゼン、シクロヘキサン等の炭化水素類が含まれる。例えば、(メタ)アクリル系樹脂を用いる場合、溶解性や乾燥性の観点から、ケトン類を含むことが好ましく、平面性の観点から、アルコール類をさらに含むことが好ましい。
(solvent)
The solvent used for the resin solution is not particularly limited as long as it can dissolve the thermoplastic resin well. Examples of solvents include alcohols such as methanol and ethanol; ketones such as methyl ethyl ketone, methyl isobutyl ketone and acetone; esters such as ethyl acetate and methyl acetate; (Specifically, propylene glycol monomethyl ether (PGME), etc.), propylene glycol monoalkyl ether ester (propylene glycol monomethyl ether acetate), toluene, benzene, cyclohexane, and other hydrocarbons, for example, (meth)acrylic. When a resin is used, it preferably contains ketones from the viewpoint of solubility and drying properties, and preferably further contains alcohols from the viewpoint of planarity.
 樹脂溶液の樹脂濃度は、粘度を後述する範囲に調整しやすくする観点から、例えば1.0~20質量%であることが好ましい。 The resin concentration of the resin solution is preferably 1.0 to 20% by mass, for example, from the viewpoint of facilitating adjustment of the viscosity within the range described later.
 製造装置について:
 本実施の形態に係る積層体の製造方法は、例えば図3に示される製造装置によって行うことができる。
About manufacturing equipment:
The method for manufacturing a laminate according to the present embodiment can be performed, for example, by the manufacturing apparatus shown in FIG.
 図3は、本実施の形態に係る積層体の製造方法を実施するための製造装置200の模式図である。製造装置200は、供給部210、塗布部220、乾燥部230、及び巻き取り部240を有する。aおよびbは、支持体110を搬送する搬送ロールを示す。 FIG. 3 is a schematic diagram of a manufacturing apparatus 200 for carrying out the method of manufacturing a laminate according to this embodiment. The manufacturing apparatus 200 has a supply section 210 , a coating section 220 , a drying section 230 and a winding section 240 . a and b indicate transport rolls that transport the support 110 .
 供給部210は、巻き芯に巻かれた帯状の支持体110のロール体301を繰り出す繰り出し装置(不図示)を有する。 The supply unit 210 has a feeding device (not shown) that feeds out the roll 301 of the strip-shaped support 110 wound around the winding core.
 塗布部220は、上記塗布工程を行うための塗布装置であり、周方向に複数の溝を有するロール221(バックアップロール)、ロール221と対向して配置された塗布ダイ222、及び塗布ダイ222の上流側に配置された減圧室223を含む。当該塗布部220は、上記式1~3を満たすように、溝の幅W、張力T及び抱き角θが調整できるようになっている。そして、制御部(不図示)が塗布部220を制御して、塗布部220は、上記式1~3を満たすように、ロール221で支持された支持体110上に、塗布ダイ222から樹脂溶液を吐出して、塗布する。 The coating unit 220 is a coating device for performing the coating process, and includes a roll 221 (backup roll) having a plurality of grooves in the circumferential direction, a coating die 222 arranged to face the roll 221, and the coating die 222. It includes a decompression chamber 223 located upstream. The applicator 220 can adjust the width W of the groove, the tension T, and the holding angle θ so as to satisfy the formulas 1 to 3 above. Then, a control unit (not shown) controls the coating unit 220, and the coating unit 220 spreads the resin solution from the coating die 222 onto the support 110 supported by the rolls 221 so as to satisfy the above formulas 1 to 3. is ejected and applied.
 減圧室223は、塗布時に塗布ダイ222からの樹脂溶液と支持体110との間に形成されるビード(塗布液の溜まり)を安定化するための機構であり、減圧度を調整可能となっている。減圧室223は、空気漏れがない状態になっており、かつ、バックアップロールとの間隙も狭く調整され、安定した塗布液のビードを形成できるようになっている。 The decompression chamber 223 is a mechanism for stabilizing a bead (collection of coating liquid) formed between the resin solution from the coating die 222 and the support 110 during coating, and the degree of decompression can be adjusted. there is The decompression chamber 223 is in a state without air leakage, and the gap with the backup roll is adjusted to be narrow, so that a stable bead of coating liquid can be formed.
 乾燥部230は、上記乾燥工程を行うための乾燥装置であり、支持体110に塗布された塗膜を乾燥させる。乾燥部230は、例えば熱風を当てるように構成されたものでもよいし、雰囲気温度が調整された加熱炉などであってもよい。 The drying section 230 is a drying device for performing the above drying process, and dries the coating film applied to the support 110 . The drying section 230 may be configured to apply hot air, for example, or may be a heating furnace whose atmospheric temperature is adjusted.
 巻き取り部240は、機能層120が形成された支持体110(積層体100)を巻き取り、ロール体241を得る。 The winding unit 240 winds up the support 110 (laminate 100 ) on which the functional layer 120 is formed to obtain a roll 241 .
 2.積層体
 本実施の形態に係る積層体の製造方法により得られる積層体100は、支持体110と、機能層120とを含む(図4参照)。
2. Laminate A laminate 100 obtained by the laminate manufacturing method according to the present embodiment includes a support 110 and a functional layer 120 (see FIG. 4).
 機能層120は、上記の通り、光学機能層であることが好ましい。光学機能層は、支持体から剥離された後、光学フィルムとして用いられうる。光学フィルムの例には、偏光子と貼り合わされる偏光子保護フィルム(位相差フィルムを含む)やカバーガラスと貼合される耐衝撃フィルムが含まれる。 The functional layer 120 is preferably an optical functional layer as described above. The optical functional layer can be used as an optical film after being peeled off from the support. Examples of the optical film include a polarizer protective film (including a retardation film) laminated with a polarizer and an impact resistant film laminated with a cover glass.
 (位相差Ro及びRt)
 機能層は、例えばIPSモード用の位相差フィルムとして用いる観点では、測定波長550nm、23℃55%RHの環境下で測定される面内方向の位相差Roは、0~10nmであることが好ましく、0~5nmであることがより好ましい。機能層の厚み方向の位相差Rtは、-20~20nmであることが好ましく、-10~10nmであることがより好ましい。
(Phase difference Ro and Rt)
From the viewpoint of use as a retardation film for IPS mode, for example, the functional layer preferably has an in-plane retardation Ro measured at a measurement wavelength of 550 nm under an environment of 23° C. and 55% RH of 0 to 10 nm. , 0 to 5 nm. The thickness direction retardation Rt of the functional layer is preferably −20 to 20 nm, more preferably −10 to 10 nm.
 Ro及びRtは、それぞれ下記式で定義される。
 式(2a):Ro=(nx-ny)×d
 式(2b):Rt=((nx+ny)/2-nz)×d
 (式中、
 nxは、機能層の面内遅相軸方向(屈折率が最大となる方向)の屈折率を表し、
 nyは、機能層の面内遅相軸に直交する方向の屈折率を表し、
 nzは、機能層の厚み方向の屈折率を表し、
 dは、機能層の厚み(nm)を表す。)
Ro and Rt are defined by the following formulas, respectively.
Formula (2a): Ro = (nx-ny) x d
Formula (2b): Rt = ((nx + ny) / 2-nz) x d
(In the formula,
nx represents the refractive index in the in-plane slow axis direction (the direction in which the refractive index is maximized) of the functional layer,
ny represents the refractive index in the direction orthogonal to the in-plane slow axis of the functional layer,
nz represents the refractive index in the thickness direction of the functional layer,
d represents the thickness (nm) of the functional layer. )
 機能層の面内遅相軸は、自動複屈折率計アクソスキャン(Axo Scan Mueller Matrix Polarimeter:アクソメトリックス社製)により確認することができる。 The in-plane slow axis of the functional layer can be confirmed by an automatic birefringence meter AxoScan (Axo Scan Mueller Matrix Polarimeter: manufactured by Axometrics).
 Ro及びRtは、以下の方法で測定することができる。
 1)機能層を23℃55%RHの環境下で24時間調湿する。このフィルムの平均屈折率をアッベ屈折計で測定し、厚みdを市販のマイクロメーターを用いて測定する。
 2)調湿後のフィルムの、測定波長550nmにおけるリターデーションRo及びRtを、それぞれ自動複屈折率計アクソスキャン(Axo Scan Mueller Matrix Polarimeter:アクソメトリックス社製)を用いて、23℃55%RHの環境下で測定する。
Ro and Rt can be measured by the following methods.
1) The functional layer is conditioned at 23°C and 55% RH for 24 hours. The average refractive index of this film is measured with an Abbe refractometer, and the thickness d is measured with a commercially available micrometer.
2) The retardation Ro and Rt of the film after humidity control at a measurement wavelength of 550 nm were measured at 23 ° C. and 55% RH using an automatic birefringence meter Axo Scan (Axo Scan Mueller Matrix Polarimeter: manufactured by Axometrics). Measure under environmental conditions.
 (厚み)
 機能層の厚みは、特に制限されないが、偏光板の薄型化を実現する観点では、通常、支持体の厚みよりも薄く、例えば0.1~35μm、好ましくは1~15μmである。
(thickness)
Although the thickness of the functional layer is not particularly limited, it is usually thinner than the support, for example, 0.1 to 35 μm, preferably 1 to 15 μm, from the viewpoint of thinning the polarizing plate.
 本実施の形態に係る積層体は、必要に応じて支持体と機能層との間に配置された他の層をさらに有してもよい。 The laminate according to the present embodiment may further have another layer arranged between the support and the functional layer, if necessary.
 3.表示装置
 本実施の形態に係る表示装置は、表示素子及び偏光板を含む。
3. Display Device A display device according to the present embodiment includes a display element and a polarizing plate.
 表示素子は、有機EL素子や液晶素子(液晶セル)でありうる。偏光板は、表示素子の少なくとも視認側に配置される。表示装置は、必要に応じてカバーガラスや耐衝撃フィルム等の他の部材をさらに含んでもよい。 The display element can be an organic EL element or a liquid crystal element (liquid crystal cell). The polarizing plate is arranged at least on the viewing side of the display element. The display device may further include other members such as a cover glass and an impact-resistant film as necessary.
 そして、偏光板の保護フィルムや耐衝撃フィルムとして、上記製造方法で得られる機能層(光学機能層)を用いることができる。 Then, the functional layer (optical functional layer) obtained by the above manufacturing method can be used as a protective film or impact-resistant film for the polarizing plate.
 図5は、本実施の形態に係る有機EL表示装置300の構成を示す断面模式図である。有機EL表示装置300は、有機EL素子310(表示素子)、偏光板320(円偏光板)、及びカバーガラスユニット330を有する。 FIG. 5 is a schematic cross-sectional view showing the configuration of the organic EL display device 300 according to this embodiment. The organic EL display device 300 has an organic EL element 310 (display element), a polarizing plate 320 (circularly polarizing plate), and a cover glass unit 330 .
 (有機EL素子)
 有機EL素子310は、ガラス板や透明フィルムなどの透明基板311上に、金属電極312(陰極)、発光層313、透明電極(ITO等の陽極)314及び封止層315を、この順に有する。そして、金属電極312と透明電極314との間に電圧を印加することにより、発光層313に正孔と電子とが注入され、これら正孔と電子との再結合によって生じるエネルギーが蛍光物質を励起し、励起された蛍光物質が基底状態に戻るときに光を放射して、発光する。
(Organic EL element)
The organic EL element 310 has a metal electrode 312 (cathode), a light emitting layer 313, a transparent electrode (anode such as ITO) 314 and a sealing layer 315 in this order on a transparent substrate 311 such as a glass plate or a transparent film. By applying a voltage between the metal electrode 312 and the transparent electrode 314, holes and electrons are injected into the light-emitting layer 313, and the energy generated by the recombination of these holes and electrons excites the fluorescent material. , and emits light when the excited fluorescent substance returns to the ground state, resulting in luminescence.
 (偏光板)
 偏光板320は、有機EL素子310の視認側の面に配置された円偏光板でありうる。そのような偏光板320は、偏光子321、その視認側に配置された保護フィルム322、及び偏光子321と有機EL素子310の間に配置された保護フィルム323を含む。
(Polarizer)
The polarizing plate 320 may be a circularly polarizing plate arranged on the viewing side of the organic EL element 310 . Such a polarizing plate 320 includes a polarizer 321 , a protective film 322 arranged on the viewing side thereof, and a protective film 323 arranged between the polarizer 321 and the organic EL element 310 .
 偏光子321は、例えばポリビニルアルコール系偏光フィルムでありうる。保護フィルム323は、λ/4フィルムであることが好ましく、偏光子321の透過軸(又は吸収軸)と保護フィルム323の面内遅相軸とのなす角度は、45±15°となるように貼り合わされている。保護フィルム322は、公知の偏光子保護フィルムでありうる。このような円偏光板320は、室内照明などにより有機EL表示装置300の外部から入射した外光の映り込みを抑制しうる。 The polarizer 321 can be, for example, a polyvinyl alcohol-based polarizing film. The protective film 323 is preferably a λ/4 film, and the angle formed by the transmission axis (or absorption axis) of the polarizer 321 and the in-plane slow axis of the protective film 323 is 45±15°. are glued together. Protective film 322 may be a known polarizer protective film. Such a circularly polarizing plate 320 can suppress reflection of external light incident from the outside of the organic EL display device 300 due to indoor lighting or the like.
 (カバーガラスユニット)
 カバーガラスユニット330は、偏光板320の視認側に配置され、カバーガラス331、粘着剤層332及び耐衝撃フィルム333を含む。
(cover glass unit)
The cover glass unit 330 is arranged on the viewing side of the polarizing plate 320 and includes a cover glass 331 , an adhesive layer 332 and an impact resistant film 333 .
 カバーガラス331は、有機EL表示装置300の最も視認側に配置される。カバーガラス331の厚みは、例えば30~50μmでありうる。耐衝撃フィルム333は、偏光板320とカバーガラス331の間に配置される。 The cover glass 331 is arranged on the most visible side of the organic EL display device 300 . The thickness of the cover glass 331 can be, for example, 30-50 μm. An impact resistant film 333 is placed between the polarizer 320 and the cover glass 331 .
 カバーガラスユニット330は、積層体100の機能層120と、カバーガラス331とを粘着剤層332を介して貼り合わせ、かつ積層体100の支持体110を剥離して得ることができる。 The cover glass unit 330 can be obtained by bonding the functional layer 120 of the laminate 100 and the cover glass 331 via the adhesive layer 332 and peeling off the support 110 of the laminate 100 .
 本実施の形態では、偏光板320の保護フィルム323、322、及び耐衝撃フィルム333のうちいずれか一以上を、上記製造方法で得られる機能層120としうる。機能層120は、上記の通り、搬送の不安定や巻きズレに伴う故障がなく、スジ状の塗布ムラが抑制されている。そのため、当該機能層120を保護フィルム323に用いることで、当該故障やスジ状の塗布ムラに起因する表示特性の低下(例えば表示装置の画面上にスジ状の位相差ムラ、例えば黒表示させたときの外光反射による光漏れが視認される等)を高度に抑制することができる。 In the present embodiment, one or more of the protective films 323 and 322 and the impact-resistant film 333 of the polarizing plate 320 can be the functional layer 120 obtained by the manufacturing method described above. As described above, the functional layer 120 is free from failures due to unstable transportation and winding misalignment, and streak-like coating unevenness is suppressed. Therefore, by using the functional layer 120 for the protective film 323, the display characteristics are deteriorated due to the failure or streak-like coating unevenness (for example, streak-like retardation unevenness on the screen of the display device, such as black display). visible light leakage due to external light reflection) can be highly suppressed.
 (変形例)
 なお、上記実施形態では、積層体100の機能層120を、有機EL表示装置の光学フィルムとして用いる例を示したが、液晶表示装置の光学フィルム(保護フィルム等)として用いてもよい。
(Modification)
Although the functional layer 120 of the laminate 100 is used as an optical film of an organic EL display device in the above embodiment, it may be used as an optical film (protective film, etc.) of a liquid crystal display device.
 以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 The present invention will be specifically described below with reference to examples, but the present invention is not limited to these.
 1.積層体の材料
 1-1.支持体
 下記支持体1~11を準備した。支持体のヤング率Eは、以下の方法で測定した。
Figure JPOXMLDOC01-appb-T000002
1. Material of Laminate 1-1. Supports Supports 1 to 11 below were prepared. The Young's modulus E of the support was measured by the following method.
Figure JPOXMLDOC01-appb-T000002
 (ヤング率E)
 JIS K7127:1999に準拠して、オリエンテック社製テンシロンRTC-1225Aを用いて、チャック間距離を50mmとし、引っ張りながら破断するまでの応力-ひずみ曲線を得た。応力-ひずみ曲線は、縦軸が応力(MPa)、横軸が引張破断伸び(%)で表される。応力-ひずみ曲線の測定は、23℃、55%RH下、引張速度50mm/分の条件で行った。
(Young's modulus E)
In accordance with JIS K7127:1999, using Tensilon RTC-1225A manufactured by Orientec Co., Ltd., the distance between chucks was set to 50 mm, and a stress-strain curve was obtained until rupture while being pulled. The stress-strain curve is represented by stress (MPa) on the vertical axis and tensile elongation at break (%) on the horizontal axis. The stress-strain curve was measured under conditions of 23° C., 55% RH, and a tensile speed of 50 mm/min.
 1-2.樹脂溶液
 (1)材料の準備
 <樹脂>
 (メタ)アクリル系樹脂:メタクリル酸メチル(MMA)/フェニルマレイミド(PMI)/アクリル酸メチル(MA)共重合体(85/10/5質量比)、Mw:200万、Tg:122℃
 樹脂のガラス転移温度及び重量平均分子量は、以下の方法で測定した。
1-2. Resin solution (1) Preparation of materials <Resin>
(Meth)acrylic resin: methyl methacrylate (MMA)/phenylmaleimide (PMI)/methyl acrylate (MA) copolymer (85/10/5 mass ratio), Mw: 2 million, Tg: 122°C
The glass transition temperature and weight average molecular weight of the resin were measured by the following methods.
 (ガラス転移温度)
 樹脂のガラス転移温度(Tg)は、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS K 7121-2012に準拠して測定した。
(Glass-transition temperature)
The glass transition temperature (Tg) of the resin was measured according to JIS K 7121-2012 using DSC (Differential Scanning Colorimetry).
 (重量平均分子量)
 樹脂の重量平均分子量(Mw)は、ゲル浸透クロマトグラフィー(東ソー社製 HLC8220GPC)、カラム(東ソー社製 TSK-GEL G6000HXL-G5000HXL-G5000HXL-G4000HXL-G3000HXL 直列)を用いて測定した。試料20mg±0.5mgをテトラヒドロフラン10mlに溶解し、0.45mmのフィルターで濾過した。この溶液をカラム(温度40℃)に100ml注入し、検出器RI温度40℃で測定し、スチレン換算した値を用いた。
(Weight average molecular weight)
The weight average molecular weight (Mw) of the resin was measured using gel permeation chromatography (manufactured by Tosoh Corporation HLC8220GPC) and a column (manufactured by Tosoh Corporation TSK-GEL G6000HXL-G5000HXL-G5000HXL-G4000HXL-G3000HXL in series). 20 mg±0.5 mg of sample was dissolved in 10 ml of tetrahydrofuran and filtered through a 0.45 mm filter. 100 ml of this solution was injected into a column (temperature: 40°C), measured at a detector RI temperature of 40°C, and the value converted to styrene was used.
 (2)樹脂溶液の調製
 下記成分を混合して、樹脂溶液を得た。
  メチルエチルケトン:900質量部
 (メタ)アクリル系樹脂(MMA/PMI/MA共重合体):100質量部
(2) Preparation of resin solution A resin solution was obtained by mixing the following components.
Methyl ethyl ketone: 900 parts by mass (meth) acrylic resin (MMA/PMI/MA copolymer): 100 parts by mass
 2.積層体の作製及び評価
 <試験1―1~1-6>
 支持体4(幅1350mm、厚み38μm)を、幅500μmの溝を複数有するバックアップロールで張力T(N)及び抱き角θ(°)で搬送しながら、上記調製した樹脂溶液を、スロットダイにより支持体に塗布した後、80℃で乾燥させた。それにより、支持体上に、厚み14μmの機能層を有する積層体を得た。応力σの調整は、張力T及びバックアップロールの抱き角θにより調整した。
2. Preparation and Evaluation of Laminates <Tests 1-1 to 1-6>
The support 4 (width 1350 mm, thickness 38 μm) is transported by a backup roll having a plurality of grooves with a width of 500 μm under a tension T (N) and an embrace angle θ (°), and the prepared resin solution is supported by a slot die. After application to the body, it was dried at 80°C. As a result, a laminate having a functional layer with a thickness of 14 μm on the support was obtained. The stress σ was adjusted by the tension T and the embracing angle θ of the backup roll.
 <試験2-1~2-11>
 支持体の厚みt(μm)及びバックアップロールの溝の幅W(μm)を変えて、支持体の変形量δを表2に示されるように変更した以外は試験1-4と同様にして、積層体を得た。
<Test 2-1 to 2-11>
In the same manner as Test 1-4, except that the thickness t (μm) of the support and the width W (μm) of the groove of the backup roll were changed to change the amount of deformation δ of the support as shown in Table 2. A laminate was obtained.
 <試験3-1~3-7>
 支持体の種類及び塗布条件(張力T、抱き角θ)を表2に示されるように変更した以外は試験1-4と同様にして、積層体を得た。
<Test 3-1 to 3-7>
A laminate was obtained in the same manner as Test 1-4, except that the type of support and coating conditions (tension T, embrace angle θ) were changed as shown in Table 2.
 <評価>
 得られた積層体について、(1)スジ状の塗布ムラ、(2)搬送安定性、(3)転写故障及び(4)巻き形状を、以下の方法で評価した。
<Evaluation>
The resulting laminate was evaluated for (1) streak-like coating unevenness, (2) transport stability, (3) transfer failure, and (4) winding shape by the following methods.
 (1)スジ状の塗布ムラ
 積層体の幅方向における機能層の厚みの分布を、レーザ変位計(キーエンス製LJ-X8000)で測定した。そして、以下の基準で評価した。
 ◎:塗布ムラなし
 ○:ロールの溝に沿ったスジ状の塗布ムラ(正常部に対する厚みの比率が3%以上5%未満)又は塗布不安定によるムラ(支持体の変形に伴い、塗布が不安定になることによるムラ)がごく僅かに発生するが、実用上問題ないレベル
 △:ロールの溝に沿った上記スジ状の塗布ムラや上記塗布不安定によるムラが僅かに発生し、歩留まりがやや低下するが、実用上問題ないレベル
 ×:ロールの溝に沿ったスジ状の塗布ムラ(正常部に対する厚みの比率が5%以上)や上記塗布不安定によるムラが発生し、実用上問題となるレベル
 △以上であれば許容範囲とした。
(1) Streak-like Coating Unevenness The thickness distribution of the functional layer in the width direction of the laminate was measured with a laser displacement meter (LJ-X8000 manufactured by Keyence). And it evaluated by the following references|standards.
◎: No coating unevenness ○: Streak-like coating unevenness along the grooves of the roll (ratio of thickness to normal part is 3% or more and less than 5%) or uneven coating due to unstable coating (improper coating due to deformation of the support) (Unevenness due to stabilization) occurs very slightly, but there is no problem in practical use. Decrease, but practically no problem level ×: Streak-like coating unevenness along the groove of the roll (ratio of thickness to normal part is 5% or more) and uneven coating due to the above coating instability, which is a practical problem If the level was △ or higher, it was considered to be within the acceptable range.
 (2)搬送安定性
 樹脂溶液を塗布する前の支持体の搬送時の搬送位置のズレの有無を、キーエンス製超高速・高精度寸法測定器LS-9000により測定した。また、シワの有無を、支持体に蛍光灯等の直線状のライトを当てたときの反射状態を目視観察して測定した。このシワは、支持体の剛性に対して張力が強いことにより生じる搬送方向のツレ状のシワを意味する。そして、以下の基準に基づき、搬送安定性を評価した。
 ◎:幅方向の搬送位置は安定で、シワの発生なし
 ○:幅方向の搬送位置のズレやシワがごく僅かに発生するが、塗布品質に問題ない
 △:幅方向の搬送位置のズレやシワが僅かに発生するが、塗布品質に問題ない
 ×:幅方向の搬送位置のズレやシワが発生し、塗布品質に問題あり
 △以上であれば許容範囲とした。
(2) Conveyance Stability Presence or absence of misalignment of the conveyance position during conveyance of the support before coating with the resin solution was measured using an ultra-high-speed, high-precision dimension measuring instrument LS-9000 manufactured by Keyence. In addition, the presence or absence of wrinkles was determined by visually observing the reflection state when a linear light such as a fluorescent lamp was applied to the support. This wrinkle means a wrinkle-like wrinkle in the conveying direction caused by a strong tension against the rigidity of the support. Then, transport stability was evaluated based on the following criteria.
◎: Transfer position in the width direction is stable, no wrinkles ○: Transfer position shift in the width direction and wrinkles occur very slightly, but there is no problem with coating quality △: Transfer position shift in the width direction or wrinkles , but there is no problem with the coating quality. x: Dislocation in the conveying position in the width direction and wrinkles occur, and there is a problem with the coating quality.
 (3)転写故障
 塗布直後の塗膜を目視で観察し、転写故障の発生位置を記録した。そして、塗膜を乾燥し、巻き取った後、ロール体を巻きほぐしてサンプリングし、上記スジ状の塗布ムラと同じ測定方法で転写故障を測定した。そして、以下の基準に基づき、転写故障を評価した。
 ◎:異物付着があっても、転写故障は発生しない
 ○:積層体の長さ方向において周期的に機能層の厚みが5%未満で薄くなる転写故障が発生するが、塗布品質に問題なし
 ×:積層体の長さ方向において周期的に機能層の厚みが5%以上薄くなる転写故障が発生し、塗布品質に問題あり
 ○以上であれば許容範囲とした。
(3) Transfer Failure The coating film immediately after application was visually observed, and the locations of transfer failures were recorded. Then, after the coating film was dried and wound up, the roll body was unwound and sampled, and the transfer failure was measured by the same measurement method as the streak-like coating unevenness. Then, transfer failure was evaluated based on the following criteria.
◎: Transfer failure does not occur even if foreign matter adheres ○: Transfer failure occurs periodically in the longitudinal direction of the laminate when the thickness of the functional layer is less than 5%, but there is no problem with coating quality × : There is a problem in coating quality due to a transfer failure in which the thickness of the functional layer is periodically reduced by 5% or more in the longitudinal direction of the laminate.
 (4)巻き形状
 積層体を、4000m巻き取った時のロール体の表面の凹凸(幅方向の凹凸)を、レーザ変位計(株)キーエンス製LJ-X8000で測定した。凹凸が1mm以上の場合を、変形ありと判断した。
 ◎:1000m以上の巻き取りで、巻き形状に変形なし
 ○:1000m以上の巻き取りで、巻き形状の変形が若干発生するが、問題ないレベル
 △:1000m未満の巻き取りで、巻き形状の変形が若干発生するが、問題ないレベル
 ×:1000m未満の巻き取りで、巻き形状の変形が発生し、それ以上の巻き取りが不可能
 △以上であれば許容範囲とした。
(4) Winding shape The unevenness of the surface of the roll body (unevenness in the width direction) when the laminate was wound up to 4000 m was measured with a laser displacement meter LJ-X8000 manufactured by Keyence Corporation. When the unevenness was 1 mm or more, it was determined that there was deformation.
◎: No deformation in the winding shape with winding of 1000 m or more ○: Some deformation of the winding shape occurs with winding of 1000 m or more, but there is no problem level △: No deformation of the winding shape with winding of less than 1000 m Slightly generated, but no problem level ×: When winding less than 1000 m, the shape of the winding is deformed and further winding is impossible.
 (5)光学特性
 試験1-1、1-2および1-3において、幅方向に対して45°の方向(斜め方向)に斜め延伸して、それぞれλ/4フィルム(位相差フィルム)1、2および3を得た。得られた位相差フィルムを用いて、特開2018-180163号公報の段落0253~0256と同様にして円偏光板を作製し、同公報の段落0269および0270と同様にして有機ELディスプレイを作製した。なお、位相差フィルムは、有機EL素子と円偏光板の間(本願明細書の図5では保護フィルム323に相当)に配置した。そして、有機ELディスプレイを黒表示させたときの外光反射による光漏れ(スジ状の塗布ムラなどに起因する位相差ムラ)を評価した。
(5) Optical properties In tests 1-1, 1-2 and 1-3, diagonally stretched in a direction (diagonal direction) of 45 ° with respect to the width direction, respectively, λ / 4 film (retardation film) 1, 2 and 3 were obtained. Using the obtained retardation film, to prepare a circularly polarizing plate in the same manner as in paragraphs 0253 to 0256 of JP-A-2018-180163, an organic EL display was prepared in the same manner as in paragraphs 0269 and 0270 of the same publication. . The retardation film was arranged between the organic EL element and the circularly polarizing plate (corresponding to the protective film 323 in FIG. 5 of the specification of the present application). Then, light leakage (retardation unevenness caused by streak-like coating unevenness) due to reflection of external light when the organic EL display was displayed in black was evaluated.
 試験1-1~1-6、2-1~2-11及び3-1~3-7の製造条件及び評価結果を、表2に示す。 Table 2 shows the manufacturing conditions and evaluation results of Tests 1-1 to 1-6, 2-1 to 2-11 and 3-1 to 3-7.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2に示されるように、式1~3を全て満たす試験1-2~1-5、2-3、2-6~2-10及び3-1~3-5(実施例)は、スジ状の塗布ムラ、搬送性、転写故障及び巻き形状のいずれも良好であることがわかる。 As shown in Table 2, Tests 1-2 to 1-5, 2-3, 2-6 to 2-10 and 3-1 to 3-5 (Examples) satisfying all formulas 1 to 3 were It can be seen that all of the coating unevenness, transportability, transfer failure, and winding shape are good.
 具体的には、支持体に生じる応力σが0.1N/mm未満又は0.75N/mm超であると、搬送が安定せず、スジ状の塗布ムラを生じるのに対し(試験1-1及び1-6参照);σが0.1~0.75N/mmの範囲であると、搬送が安定し、スジ状の塗布ムラも抑制できることがわかる(試験1-2~1-5参照)。 Specifically, when the stress σ generated in the support is less than 0.1 N/mm or more than 0.75 N/mm, the transport is not stable and streak-like coating unevenness occurs (Test 1-1 and 1-6); When σ is in the range of 0.1 to 0.75 N/mm, it can be seen that the transportation is stable and streak-like coating unevenness can be suppressed (see Tests 1-2 to 1-5). .
 また、(σが0.1~0.75N/mmの範囲であっても)支持体の変形量δが0.5μmよりも小さい場合、巻き取りでエアが抜けずにタケノコ状の巻きズレが発生し、巻き形状が低下し(試験2-1、2-2、3-6及び3-7参照);変形量δが0.5μm以上であると、エアが適度に抜けるため、タケノコ状の巻きズレが発生しにくく、巻き形状が良好となることがわかる(試験2-3~2-11参照)。
 また、支持体の変形量δが20μmよりも大きい場合、スジ状の塗布ムラが生じるのに対し(試験2-10参照);変形量δが20μm以下であると、スジ状の塗布ムラを抑制できることがわかる(試験2-3~2-10参照)。
In addition, when the deformation amount δ of the support is smaller than 0.5 μm (even if σ is in the range of 0.1 to 0.75 N/mm), the air does not escape during winding, resulting in a bamboo shoot-like winding misalignment. occurs, and the winding shape deteriorates (see Tests 2-1, 2-2, 3-6 and 3-7); It can be seen that winding misalignment is less likely to occur and the winding shape is good (see Tests 2-3 to 2-11).
In addition, when the deformation amount δ of the support is larger than 20 μm, streak-like coating unevenness occurs (see Test 2-10); (See tests 2-3 to 2-10).
 また、(σが0.1~0.75N/mmの範囲であっても)溝の幅Wが200μmであると、裏面に付着した異物により支持体が浮き上がり、転写故障が発生し、幅Wが1050μmであると、スジ状の塗布ムラが発生するのに対し(試験2-4、2-5及び2-10);溝の幅Wが200μm超1000μm未満であると、転写故障やスジ状の塗布ムラを抑制できることがわかる(試験2-2、2-3、2-6~2-10参照)。 Further, if the width W of the groove is 200 μm (even if σ is in the range of 0.1 to 0.75 N/mm), foreign matter adhering to the back surface lifts the support, causing a transfer failure. is 1050 μm, streak-like coating unevenness occurs (Tests 2-4, 2-5 and 2-10); It can be seen that the coating unevenness can be suppressed (see Tests 2-2, 2-3, 2-6 to 2-10).
 さらに、支持体のヤング率Eが3000MPa超であると、スジ状の塗布ムラを一層抑制でき、5200MPa以下であると、搬送安定性の低下や巻きズレに伴う巻き形状の低下を一層抑制できることがわかる(試験3-1~3-5参照)。特に、試験3-1と比べて、試験3-2~3-4は、支持体のヤング率Eに対して張力が大きすぎないため、ツレ状のシワが生じにくく、搬送安定性がより向上することがわかる。 Furthermore, when the Young's modulus E of the support is more than 3000 MPa, streak-like coating unevenness can be further suppressed. I understand (see tests 3-1 to 3-5). In particular, in Tests 3-2 to 3-4, compared to Test 3-1, the tension is not too large with respect to the Young's modulus E of the support, so wrinkles are less likely to occur, and the transport stability is further improved. I know you do.
 さらに、表示特性の評価では、位相差フィルム2および3(実施例)を用いた表示装置では、光漏れ(位相差ムラ)は見られなかったが、位相差フィルム1(比較例)で得られた積層体を用いた表示装置では、光漏れが確認された。 Furthermore, in the evaluation of the display characteristics, no light leakage (retardation unevenness) was observed in the display devices using the retardation films 2 and 3 (Example), but the retardation film 1 (Comparative Example) showed no light leakage. Light leakage was confirmed in the display device using the laminated body.
 本出願は、2021年10月1日出願の特願2021-162940に基づく優先権を主張する。当該出願明細書に記載された内容は、すべて本願明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2021-162940 filed on October 1, 2021. All contents described in the specification of the application are incorporated herein by reference.
 本発明によれば、厚みが薄い支持体であっても、搬送安定性を損なうことなく、塗布ムラ等の欠陥が抑制された機能層を形成できる積層体の製造方法を提供することができる。 According to the present invention, it is possible to provide a method for producing a laminate that can form a functional layer in which defects such as coating unevenness are suppressed without impairing transport stability even if the support is thin.
 100 積層体
 110 支持体
 120 機能層
 200 製造装置
 210 供給部
 220 塗布部
 230 乾燥部
 240 巻き取り部
 300 有機EL表示装置
 310 有機EL素子
 320 偏光板
 330 カバーガラスユニット
 331 カバーガラス
 332 粘着剤層
 333 耐衝撃フィルム
REFERENCE SIGNS LIST 100 laminate 110 support 120 functional layer 200 manufacturing apparatus 210 supply unit 220 application unit 230 drying unit 240 winding unit 300 organic EL display device 310 organic EL element 320 polarizing plate 330 cover glass unit 331 cover glass 332 adhesive layer 333 resistance impact film

Claims (7)

  1.  周方向に式1の幅W(μm)の溝を複数有するロールで張力T(N)、抱き角θ(°)で搬送される支持体上に機能層を塗布形成する積層体の製造方法において、
     前記塗布形成は、前記支持体が前記ロールに押し付けられて生じる応力σ(N/mm)、前記溝の深さ方向での前記支持体の変形量δ(μm)が式2、3を満たすように行う、
     積層体の製造方法。
     式1:200<W<1000
     式2:0.1<σ<0.75、σ=2×T×cos(θ/2)
     式3:0.5≦δ<20
    In a method for manufacturing a laminate in which a functional layer is coated and formed on a support that is conveyed at a tension T (N) and an embrace angle θ (°) with a roll having a plurality of grooves having a width W (μm) of formula 1 in the circumferential direction ,
    The coating is formed so that the stress σ (N/mm) generated when the support is pressed against the roll and the deformation amount δ (μm) of the support in the depth direction of the grooves satisfy Equations 2 and 3. go to
    A method for manufacturing a laminate.
    Formula 1: 200<W<1000
    Formula 2: 0.1<σ<0.75, σ=2×T×cos(θ/2)
    Formula 3: 0.5≦δ<20
  2.  前記支持体の厚みは、50μm以下である、
     請求項1に記載の積層体の製造方法。
    The thickness of the support is 50 μm or less.
    The manufacturing method of the laminated body of Claim 1.
  3.  前記支持体のヤング率Eは、3000MPa超5200MPa以下である、
     請求項1または2に記載の積層体の製造方法。
    Young's modulus E of the support is more than 3000 MPa and 5200 MPa or less.
    The method for manufacturing the laminate according to claim 1 or 2.
  4.  前記支持体は、熱可塑性樹脂フィルムである、
     請求項1に記載の積層体の製造方法。
    The support is a thermoplastic resin film,
    The manufacturing method of the laminated body of Claim 1.
  5.  前記熱可塑性樹脂フィルムは、ポリエステルフィルムである、
     請求項4に記載の積層体の製造方法。
    The thermoplastic resin film is a polyester film,
    The method for manufacturing the laminate according to claim 4.
  6.  前記機能層は、前記支持体上に剥離可能に形成された光学機能層である、
     請求項1に記載の積層体の製造方法。
    wherein the functional layer is an optical functional layer detachably formed on the support;
    The manufacturing method of the laminated body of Claim 1.
  7.  前記機能層は、シクロオレフィン系樹脂又は(メタ)アクリル系樹脂を含む、
     請求項1に記載の積層体の製造方法。
    The functional layer contains a cycloolefin resin or (meth)acrylic resin,
    The manufacturing method of the laminated body of Claim 1.
PCT/JP2022/036551 2021-10-01 2022-09-29 Laminate manufacturing method WO2023054628A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023551870A JPWO2023054628A1 (en) 2021-10-01 2022-09-29

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-162940 2021-10-01
JP2021162940 2021-10-01

Publications (1)

Publication Number Publication Date
WO2023054628A1 true WO2023054628A1 (en) 2023-04-06

Family

ID=85782896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036551 WO2023054628A1 (en) 2021-10-01 2022-09-29 Laminate manufacturing method

Country Status (2)

Country Link
JP (1) JPWO2023054628A1 (en)
WO (1) WO2023054628A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07185436A (en) * 1993-12-27 1995-07-25 Dainippon Printing Co Ltd Duplex coating device and grooved roller used on same device
JP2001310151A (en) * 2000-05-01 2001-11-06 Yokoyama Seisakusho:Kk Slit coater
JP2005046805A (en) * 2003-07-31 2005-02-24 Toppan Printing Co Ltd Coating device and functional film for optical use produced by using it
JP2005270880A (en) * 2004-03-25 2005-10-06 Fuji Photo Film Co Ltd Coating apparatus and coating method
JP2011215231A (en) * 2010-03-31 2011-10-27 Konica Minolta Opto Inc Optical film and method for producing the same
JP2017029917A (en) * 2015-07-31 2017-02-09 日本ゼオン株式会社 Coating apparatus, coating film manufacturing method, and coating film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07185436A (en) * 1993-12-27 1995-07-25 Dainippon Printing Co Ltd Duplex coating device and grooved roller used on same device
JP2001310151A (en) * 2000-05-01 2001-11-06 Yokoyama Seisakusho:Kk Slit coater
JP2005046805A (en) * 2003-07-31 2005-02-24 Toppan Printing Co Ltd Coating device and functional film for optical use produced by using it
JP2005270880A (en) * 2004-03-25 2005-10-06 Fuji Photo Film Co Ltd Coating apparatus and coating method
JP2011215231A (en) * 2010-03-31 2011-10-27 Konica Minolta Opto Inc Optical film and method for producing the same
JP2017029917A (en) * 2015-07-31 2017-02-09 日本ゼオン株式会社 Coating apparatus, coating film manufacturing method, and coating film

Also Published As

Publication number Publication date
JPWO2023054628A1 (en) 2023-04-06

Similar Documents

Publication Publication Date Title
US9937689B2 (en) Polarizing film, method for manufacture thereof, optical film, and image display device
JP5313297B2 (en) Active energy ray-curable adhesive composition, polarizing plate, optical film, and image display device
JP6000103B2 (en) Manufacturing method of polarizing plate
US10935710B2 (en) Optical film, polarizing plate, image display device, method for producing optical film, and method for producing polarizing plate
US9453952B2 (en) Polarizing plate and image display device
WO2012169629A1 (en) Releasable multilayer film, releasable multilayer film roll, method for producing releasable multilayer film, method for producing releasable multilayer film roll, film, optical film, polarizing plate, method for producing polarizing plate, and liquid crystal display device
TWI725980B (en) Optical film and manufacturing method thereof
WO2007037317A1 (en) Optically functional film, phase difference film, composition for formation of optically functional layer, and method for manufacture of optically functional film
WO2015156250A1 (en) Liquid crystal display device
JP2019159200A (en) Method of manufacturing optical laminate and method of manufacturing optical laminate with adhesive layers
JP2019159199A (en) Method of manufacturing optical laminate with adhesive layers
WO2023054628A1 (en) Laminate manufacturing method
TWI809198B (en) Liquid crystal layer laminate
JP6718685B2 (en) Photocurable adhesive, polarizing plate using the same, laminated optical member and liquid crystal display device
JP2017122886A (en) Optical film, polarizing plate and liquid crystal display device
WO2023037715A1 (en) Method for manufacturing laminate
JP7169159B2 (en) Liquid crystal layer laminate
JP6298248B2 (en) Active energy ray-curable adhesive composition, polarizing plate, optical film, and image display device
JP7388443B2 (en) Laminate, method for manufacturing a laminate, method for manufacturing a polarizing plate
JP2019159198A (en) Method of manufacturing optical laminate and method of manufacturing optical laminate with adhesive layers
JP2019159197A (en) Method of manufacturing optical laminate and method of manufacturing optical laminate with adhesive layers
JP7176829B2 (en) Polarizing film, optical film, and image display device
KR102440161B1 (en) Optical film, polarizing plate, and organic el display device
JP7179802B2 (en) Polarizing film, optical film, and image display device
WO2022163131A1 (en) Film, film roll, and method for producing film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876491

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551870

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE