WO2023054531A1 - Shower plate - Google Patents

Shower plate Download PDF

Info

Publication number
WO2023054531A1
WO2023054531A1 PCT/JP2022/036301 JP2022036301W WO2023054531A1 WO 2023054531 A1 WO2023054531 A1 WO 2023054531A1 JP 2022036301 W JP2022036301 W JP 2022036301W WO 2023054531 A1 WO2023054531 A1 WO 2023054531A1
Authority
WO
WIPO (PCT)
Prior art keywords
shower plate
inner space
introduction holes
plate according
base
Prior art date
Application number
PCT/JP2022/036301
Other languages
French (fr)
Japanese (ja)
Inventor
猛 宗石
大貴 渡邉
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2023054531A1 publication Critical patent/WO2023054531A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Definitions

  • the disclosed embodiments relate to shower plates.
  • a shower head that ejects process gas onto a substrate such as a semiconductor wafer has been used.
  • a shower plate includes, for example, a disk-shaped substrate made of ceramics and having a space inside, and a plurality of ejection holes that are open on one surface of the substrate and eject gas introduced into the space inside the substrate. is known (see Patent Document 1).
  • a shower plate includes a base, partition walls, supply ports, and a plurality of ejection holes.
  • the substrate is a plate-like substrate made of ceramics and having a space inside.
  • the partition separates the space of the substrate into an inner space and a channel located around the inner space.
  • the supply port supplies gas to the channel.
  • a plurality of ejection holes communicate with the inner space and open to one surface of the substrate to eject gas.
  • the partition wall has a plurality of introduction holes for communicating the inner space and the channel and for introducing the gas flowing through the channel into the inner space.
  • FIG. 1 is a schematic perspective view of a shower plate according to the first embodiment.
  • FIG. FIG. 2 is a schematic side cross-sectional view of the shower plate according to the first embodiment.
  • FIG. 3 is a schematic cross-sectional plan view of the shower plate according to the first embodiment.
  • FIG. 4 is a schematic cross-sectional plan view of a shower plate according to Modification 1 of the first embodiment.
  • FIG. 5 is a schematic cross-sectional plan view of a shower plate according to Modification 2 of the first embodiment.
  • FIG. 6 is a schematic side sectional view of the shower plate according to the second embodiment.
  • FIG. 7 is a schematic cross-sectional plan view of the shower plate according to the second embodiment.
  • each embodiment can be appropriately combined within a range that does not contradict the processing content.
  • the same parts are denoted by the same reference numerals, and overlapping descriptions are omitted.
  • FIG. 1 is a schematic perspective view of a shower plate 1 according to the first embodiment.
  • FIG. 2 is a schematic side sectional view of the shower plate 1 according to the first embodiment.
  • FIG. 3 is a schematic cross-sectional plan view of the shower plate 1 according to the first embodiment. 3 shows a schematic cross-sectional view taken along line III-III in FIG.
  • a shower plate 1 according to the first embodiment shown in FIG. 1 ejects process gas onto a substrate such as a semiconductor wafer in, for example, a semiconductor manufacturing process.
  • the shower plate 1 is mounted, for example, in a substrate processing apparatus that performs plasma processing or the like on substrates.
  • the shower plate 1 has a base 10.
  • the substrate 10 has, for example, a disk shape with a thickness in the vertical direction.
  • the base 10 has an upper surface 101 and a lower surface 102 which are circular in plan view, and a side surface 103 connecting the upper surface 101 and the lower surface 102 .
  • the upper surface 101 and the lower surface 102 of the substrate 10 are substantially parallel.
  • the lower surface 102 of the substrate 10 faces the substrate supported by the substrate support.
  • the substrate 10 is made of ceramics, for example, and has insulating properties. Ceramics constituting the substrate 10 are, for example, aluminum nitride (AlN), aluminum oxide (Al 2 O 3 , alumina), yttrium oxide (Y 2 O 3 , yttria), silicon carbide (SiC), silicon nitride (Si 3 N 4 ), etc. as a main component.
  • the main component is, for example, a material that accounts for 50% by mass or more or 80% by mass or more of the material.
  • the shape of the substrate 10 is arbitrary.
  • the substrate 10 has a disk shape, but it is not limited to this, and may have an elliptical plate shape, a rectangular plate shape, a trapezoidal plate shape, or the like.
  • a space 11 is provided inside the base 10 .
  • a partition wall 20 is located in the space 11 of the base body 10 and separates the space 11 of the base body 10 into an inner space 111 and a flow path 112 positioned around the inner space 111 .
  • the shower plate 1 has a supply port 12 and a plurality of ejection holes 13 .
  • the supply port 12 is positioned on the side surface 103 of the substrate 10, communicates with the flow path 112, and is connected to a process gas supply source via a gas supply pipe (not shown) or the like.
  • the supply port 12 is a through hole penetrating the side surface 103 of the substrate 10 and the outer surface of the channel 112 in the radial direction of the substrate 10 .
  • a process gas supplied from a process gas supply source is introduced into the supply port 12 through a gas supply pipe.
  • the supply port 12 supplies the introduced process gas to the flow path 112 .
  • the supply port 12 does not necessarily have to be positioned on the side surface 103 of the substrate 10, and may be positioned on the upper surface 101 or the lower surface 102 of the substrate 10, for example. Moreover, the number of supply ports 12 is arbitrary, and one supply port 12 may be provided in the base 10 , or a plurality of supply ports 12 may be provided in the base 10 . For example, in FIGS. 2 and 3, two supply ports 12 located on side surfaces 103 of substrate 10 are shown.
  • a plurality of ejection holes 13 communicate with the inner space 111 and open to the lower surface 102 of the substrate 10 to eject process gas.
  • the plurality of ejection holes 13 are through holes penetrating the bottom surface of the inner space 111 and the bottom surface 102 of the base 10 . It should be noted that the plurality of ejection holes 13 do not necessarily need to be positioned on the lower surface 102 of the base 10, and may be positioned on the upper surface 101 of the base 10, for example.
  • the partition wall 20 has a plurality of introduction holes 21 that communicate the inner space 111 and the flow path 112 and introduce the process gas flowing through the flow path 112 into the inner space 111 .
  • the partition wall 20 separates the space 11 in the base body 10 into the inner space 111 and the flow channel 112 , and the inner space 111 and the flow channel 112 are separated by a plurality of partition walls 20 . are communicated by the introduction hole 21 of the That is, the partition wall 20 introduces the process gas from the flow path 112 into the inner space 111 through the plurality of introduction holes 21 while generating a pressure difference between the inner space 111 and the flow path 112 .
  • the diffusion of the process gas introduced into the inner space 111 is promoted as compared with the case where the space 11 in the base body 10 does not have the partition wall 20. uneven distribution of the process gas is less likely to occur. Specifically, when the process gas is introduced from the supply port 12 into the channel 112 , the pressure of the process gas in the channel 112 is increased by the partition wall 20 , so that the process gas is introduced from the channel 112 through the plurality of introduction holes 21 . , the flow velocity of the process gas introduced into the inner space 111 increases. Further, since the partition wall 20 has a plurality of introduction holes 21, the process gas is introduced into the inner space 111 from a plurality of directions.
  • the action of the partition wall 20 and the plurality of introduction holes 21 stirs the process gas in the inner space 111, and as a result, the process gas becomes more homogeneous in the inner space 111 where the plurality of ejection holes 13 are located. Therefore, according to the shower plate 1 of this embodiment, the uniformity of the process gas jetted from the plurality of jet holes 13 can be improved.
  • the partition 20 has an annular shape, and the plurality of introduction holes 21 are arranged side by side at intervals in the circumferential direction of the partition 20 . Specifically, the plurality of introduction holes 21 are positioned at regular intervals in the circumferential direction of the partition wall 20 .
  • the plurality of introduction holes 21 are inclined with respect to the radial direction of the partition wall 20 .
  • the plurality of introduction holes 21 are arranged in a direction toward an inner wall surface of the partition wall 20 facing the inner space 111 (that is, a direction approaching a tangent to the inner wall surface of the partition wall 20) with respect to the radial direction of the partition wall 20. leaning
  • the process gas introduced into the inner space 111 diffuses to the vicinity of the inner wall surface of the partition wall 20 , so that a swirl flow of the process gas can be generated along the inner wall surface of the partition wall 20 . Therefore, according to the shower plate 1 of the present embodiment, the process gas introduced into the inner space 111 can be agitated by the swirling flow, and the uniformity of the process gas ejected from the plurality of ejection holes 13 can be improved. can be improved.
  • the plurality of introduction holes 21 are located at positions that do not intersect the virtual line L extending along the central axis of the supply port 12 on the outer surface of the partition wall 20 facing the flow path 112 .
  • the plurality of introduction holes 21 are located at positions displaced in the circumferential direction of the partition 20 from positions intersecting the imaginary line L extending along the central axis of the supply port 12 on the outer surface of the partition 20 facing the flow path 112 . located in
  • the distance between the supply port 12 and the plurality of introduction holes 21 is greater than, for example, when the plurality of introduction holes 21 are located at positions that intersect the virtual line L, so that the flow path from the supply port 12 is increased.
  • the process gas supplied to 112 can be temporarily retained within the flow path 112 .
  • the pressure difference between the inner space 111 and the flow path 112 increases, and the process gas is introduced into the inner space 111 from the flow path 112 through the plurality of introduction holes 21. Diffusion of the process gas to be applied is promoted more. Therefore, according to the shower plate 1 according to the present embodiment, it is possible to further suppress uneven distribution of the process gas in the inner space 111 where the plurality of ejection holes 13 are located. The uniformity of the process gas can be further improved.
  • each of the plurality of ejection holes 13 is smaller than the cross-sectional area of each of the plurality of introduction holes 21 .
  • the cross-sectional area of each of the plurality of introduction holes 21 is smaller than the cross-sectional area of the supply port 12 .
  • the supply port 12, each of the plurality of introduction holes 21, and each of the plurality of ejection holes 13 are aligned in the flow direction of the process gas. The cross-sectional area becomes smaller in each order.
  • the holes through which the process gas passes can be narrowed in stages along the flow direction of the process gas. Therefore, according to the shower plate 1 of the present embodiment, the flow velocity of the process gas from the supply port 12 to the plurality of ejection holes 13 via the plurality of introduction holes 21 can be gradually increased. Process gas can be smoothly ejected from the ejection holes 13 .
  • the sum of the cross-sectional areas of the multiple ejection holes 13 is smaller than the sum of the cross-sectional areas of the multiple introduction holes 21 .
  • the total cross-sectional area of the plurality of introduction holes 21 is smaller than the total cross-sectional area of the supply port 12 .
  • the supply port 12, the plurality of introduction holes 21, and the plurality of ejection holes 13 are the total sum of the cross-sectional areas in the order of the supply port 12, the plurality of introduction holes 21, and the plurality of ejection holes 13 in the flow direction of the process gas. becomes smaller.
  • the holes through which the process gas passes can be narrowed in stages along the flow direction of the process gas. Therefore, according to the shower plate 1 of the present embodiment, the flow velocity of the process gas from the supply port 12 to the plurality of ejection holes 13 via the plurality of introduction holes 21 can be gradually increased. Process gas can be smoothly ejected from the ejection holes 13 .
  • the total number of the plurality of ejection holes 13 is greater than the total number of the plurality of introduction holes 21 . Also, the total number of the plurality of introduction holes 21 is greater than the total number of supply ports. In other words, the supply port 12, the plurality of introduction holes 21, and the plurality of ejection holes 13 increase in the order of the supply port 12, the plurality of introduction holes 21, and the plurality of ejection holes 13 in the flow direction of the process gas. .
  • the shower plate 1 of the present embodiment the flow velocity of the process gas from the supply port 12 to the plurality of ejection holes 13 via the plurality of introduction holes 21 can be gradually increased. Process gas can be smoothly ejected from the ejection holes 13 .
  • shower plate 1 is formed by stacking a plurality of ceramic green sheets. Specifically, a plurality of ceramic green sheets forming the substrate 10 are prepared. Here, a plurality of ceramic green sheets having different shapes are prepared to form the spaces 11, the supply ports 12, the ejection holes 13, and the partition walls 20. FIG. Then, a plurality of prepared ceramic green sheets are laminated.
  • the laminate of ceramic green sheets is degreased and fired.
  • the firing temperature is, for example, 1100° C. or higher and 1850° C. or lower. Thereby, the shower plate 1 is obtained.
  • FIG. 4 is a schematic cross-sectional plan view of the shower plate 1 according to Modification 1 of the first embodiment.
  • the plurality of introduction holes 21A have a tapered shape whose width decreases from the flow path 112 toward the inner space 111.
  • the plurality of introduction holes 21A have a tapered shape whose width decreases from the flow path 112 toward the inner space 111.
  • FIG. 5 is a schematic cross-sectional plan view of a shower plate 1 according to Modification 2 of the first embodiment.
  • the supply port 12A is inclined in the same direction as the plurality of introduction holes 21A. That is, the plurality of introduction holes 21A are inclined with respect to the radial direction of the partition wall 20 in a direction toward the inner wall surface of the partition wall 20 facing the inner space 111 (that is, in a direction approaching a tangent to the inner wall surface of the partition wall 20). . Therefore, the supply port 12A is arranged in a direction toward the inner wall surface of the substrate 10 facing the channel 112 (that is, a tangent to the inner wall surface of the substrate 10) with respect to the radial direction of the partition wall 20 (that is, the radial direction of the substrate 10). direction).
  • the flow direction of the process gas at the supply port 12A coincides with the flow direction of the process gas at the plurality of introduction holes 21A. It can flow smoothly into the hole 21A.
  • the plurality of introduction holes 21A do not cross the virtual line L extending along the central axis of the supply port 12A on the outer surface of the partition wall 20 facing the flow path 112. not located. Therefore, the process gas supplied from the supply port 12 ⁇ /b>A to the channel 112 can be temporarily retained in the channel 112 .
  • the supply port 12A may have a tapered shape in which the width decreases from the outside of the substrate 10 toward the channel 112 .
  • FIG. 6 is a schematic side sectional view of the shower plate 1 according to the second embodiment.
  • FIG. 7 is a schematic cross-sectional plan view of the shower plate 1 according to the second embodiment. 7 shows a schematic cross-sectional view taken along line VII--VII in FIG.
  • the shower plate 1 As shown in FIG. 6, the shower plate 1 according to this embodiment has a heating element 30 and an electrode 40 inside the base 10 .
  • the heating element 30 is positioned so as to overlap at least the inner space 111 in the thickness direction of the base 10 .
  • the heating element 30 is positioned overlapping the inner space 111 and the partition wall 20 in the thickness direction of the base 10 .
  • the heating element 30 may be positioned so as to overlap the inner space 111 , the partition wall 20 and the flow path 112 in the thickness direction of the base 10 .
  • the heating element 30 is positioned between the upper surface 101 of the base 10 and the inner space 111 .
  • the heating element 30 may be positioned between the lower surface 102 of the base 10 and the inner space 111 .
  • the heating element 30 generates heat by Joule heat generated by power supplied from a heater power supply (not shown).
  • the heating element 30 extends in layers along the upper surface 101 of the substrate 10 .
  • the heating element 30 has, for example, a disc shape in plan view.
  • the heating element 30 is made of, for example, metals such as nickel (Ni), tungsten (W), molybdenum (Mo) and platinum (Pt), or alloys containing at least one of the above metals.
  • the process gas can be heated in the inner space 111 by positioning the heating element 30 so as to overlap at least the inner space 111 in the thickness direction of the substrate 10 .
  • the base 10 when the heating element 30 overlaps at least the inner space 111 in the thickness direction of the base 10, the base 10 is arranged in the thickness direction of the base 10 so as to support the inner space 111, as shown in FIGS. There may be a plurality of struts 14 extending to the .
  • the heat of the heating element 30 is transmitted to the inner space 111 via the plurality of pillars 14, so that the process gas in the inner space 111 can be heated more efficiently. can.
  • the electrode 40 is positioned closer to the lower surface 102 of the base 10 than the inner space 111 is.
  • the electrode 40 is, for example, an electrode for plasma generation, and spreads in layers along the lower surface 102 of the substrate 10 .
  • the electrode 40 has, for example, a disk shape in a plan view, and has a plurality of through holes corresponding to the positions of the plurality of ejection holes 13 respectively.
  • the electrode 40 is made of, for example, metals such as nickel (Ni), tungsten (W), titanium (Ti), molybdenum (Mo) and platinum (Pt), or alloys containing at least one of the above metals.
  • a ceramic green sheet forming the base 10, a metal sheet forming the heating element 30, and a metal sheet forming the electrode 40 are prepared.
  • a plurality of ceramic green sheets having different shapes are prepared in order to form the spaces 11, the supply ports 12, the ejection holes 13, the partition walls 20, and the struts .
  • the prepared sheets are laminated.
  • the laminate of ceramic green sheets and metal sheets is degreased and fired.
  • the firing temperature is, for example, 1100° C. or higher and 1850° C. or lower.
  • the shower plate (eg, shower plate 1) according to the embodiment includes a substrate (eg, substrate 10), a partition wall (eg, partition wall 20), and supply ports (eg, supply ports 12 and 12A). , and a plurality of ejection holes (for example, ejection holes 13).
  • the substrate is a plate-like substrate made of ceramics and having a space (for example, space 11) inside.
  • the partition separates the space of the substrate into an inner space (eg, inner space 111) and a channel (eg, channel 112) located around the inner space.
  • the supply port supplies gas (eg, process gas) to the channel.
  • a plurality of ejection holes communicate with the inner space and open to one surface (for example, the lower surface 102) of the substrate to eject gas.
  • the partition wall has a plurality of introduction holes (for example, introduction holes 21 and 21A) for communicating the inner space and the channel and for introducing the gas flowing through the channel into the inner space.
  • the partition according to the embodiment may be annular, and the plurality of introduction holes may be arranged side by side at intervals in the circumferential direction of the partition.
  • the gas can be evenly introduced into the inner space along the circumferential direction of the partition wall.
  • the plurality of introduction holes according to the embodiment may be inclined with respect to the radial direction of the partition wall.
  • the shower plate according to the embodiment it is possible to further improve the uniformity of the gas ejected from the plurality of ejection holes.
  • the supply port according to the embodiment may be located on the side surface (for example, side surface 103) of the substrate and may be inclined in the same direction as the plurality of introduction holes.
  • the process gas supplied from the supply port to the channel can smoothly flow to the plurality of introduction holes.
  • the plurality of introduction holes according to the embodiment may have a tapered shape in which the width decreases from the flow path toward the inner space.
  • the shower plate according to the embodiment it is possible to further improve the uniformity of the gas ejected from the plurality of ejection holes.
  • the plurality of introduction holes according to the embodiment may be located at positions that do not intersect the virtual line extending along the central axis of the supply port on the outer wall surface of the partition facing the channel.
  • the shower plate according to the embodiment it is possible to further improve the uniformity of the gas ejected from the plurality of ejection holes.
  • the cross-sectional area of each of the plurality of ejection holes according to the embodiment may be smaller than the cross-sectional area of each of the plurality of introduction holes.
  • the cross-sectional area of each of the plurality of introduction holes may be smaller than the cross-sectional area of the supply port.
  • the sum of the cross-sectional areas of the plurality of ejection holes may be smaller than the sum of the cross-sectional areas of the plurality of introduction holes.
  • the sum of the cross-sectional areas of the plurality of introduction holes may be smaller than the sum of the cross-sectional areas of the supply ports.
  • the total number of the plurality of ejection holes may be greater than the total number of the plurality of introduction holes.
  • the total number of the plurality of introduction holes may be greater than the total number of supply ports.
  • the supply port according to the embodiment may have a tapered shape in which the width decreases from the outside of the base toward the channel.
  • the shower plate according to the embodiment may further include a heating element (for example, heating element 30) located inside the base so as to overlap at least the inner space in the thickness direction of the base.
  • a heating element for example, heating element 30 located inside the base so as to overlap at least the inner space in the thickness direction of the base.
  • the base according to the embodiment may have a plurality of struts (for example, struts 14) that support the inner space.
  • struts 14 for example, struts 14
  • the shower plate according to the embodiment may further include an electrode (for example, electrode 40) located inside the base at a position closer to one surface of the base than the inner space.
  • an electrode for example, electrode 40 located inside the base at a position closer to one surface of the base than the inner space.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

Provided is a shower plate including a substrate, a partition, a supply port, and a plurality of jetting holes. The substrate is formed of ceramic and is a plate-like substrate having a space in the interior thereof. The partition separates the space of the substrate into an inner space and a flow channel positioned in the periphery of the inner space. The supply port supplies the flow channel with a gas. The plurality of jetting holes are in communication with the inner space so as to open in one surface of the substrate, and the gas is jetted therefrom. Also, the partition has a plurality of introduction holes that communicate the inner space and the flow channel and from which the gas flowing in the flow channel is introduced into the inner space.

Description

シャワープレートshower plate
 開示の実施形態は、シャワープレートに関する。 The disclosed embodiments relate to shower plates.
 従来、例えば半導体の製造工程において半導体ウエハ等の基板に対してプロセスガスを噴出するシャワーヘッドが用いられている。このようなシャワープレートとしては、例えば、セラミックスからなり、内部に空間を有する円板状の基体と、基体の一面に開口し、基体内の空間に導入されるガスを噴出する複数の噴出孔とを有するシャワープレートが知られている(特許文献1参照)。 Conventionally, for example, in a semiconductor manufacturing process, a shower head that ejects process gas onto a substrate such as a semiconductor wafer has been used. Such a shower plate includes, for example, a disk-shaped substrate made of ceramics and having a space inside, and a plurality of ejection holes that are open on one surface of the substrate and eject gas introduced into the space inside the substrate. is known (see Patent Document 1).
特許第5826353号公報Japanese Patent No. 5826353
 実施形態の一態様によるシャワープレートは、基体と、隔壁と、供給口と、複数の噴出孔とを備える。基体は、セラミックスからなり、内部に空間を有する板状の基体である。隔壁は、基体の空間を内側空間と内側空間の周囲に位置する流路とに隔てる。供給口は、流路にガスを供給する。複数の噴出孔は、内側空間に連通して基体の一面に開口し、ガスを噴出する。そして、隔壁は、内側空間と流路とを連通し、流路を流れるガスを内側空間に導入する複数の導入孔を有する。 A shower plate according to one aspect of the embodiment includes a base, partition walls, supply ports, and a plurality of ejection holes. The substrate is a plate-like substrate made of ceramics and having a space inside. The partition separates the space of the substrate into an inner space and a channel located around the inner space. The supply port supplies gas to the channel. A plurality of ejection holes communicate with the inner space and open to one surface of the substrate to eject gas. The partition wall has a plurality of introduction holes for communicating the inner space and the channel and for introducing the gas flowing through the channel into the inner space.
図1は、第1実施形態に係るシャワープレートの模式的な斜視図である。FIG. 1 is a schematic perspective view of a shower plate according to the first embodiment. FIG. 図2は、第1実施形態に係るシャワープレートの模式的な側断面図である。FIG. 2 is a schematic side cross-sectional view of the shower plate according to the first embodiment. 図3は、第1実施形態に係るシャワープレートの模式的な平断面図である。FIG. 3 is a schematic cross-sectional plan view of the shower plate according to the first embodiment. 図4は、第1実施形態の変形例1に係るシャワープレートの模式的な平断面図である。FIG. 4 is a schematic cross-sectional plan view of a shower plate according to Modification 1 of the first embodiment. 図5は、第1実施形態の変形例2に係るシャワープレートの模式的な平断面図である。FIG. 5 is a schematic cross-sectional plan view of a shower plate according to Modification 2 of the first embodiment. 図6は、第2実施形態に係るシャワープレートの模式的な側断面図である。FIG. 6 is a schematic side sectional view of the shower plate according to the second embodiment. 図7は、第2実施形態に係るシャワープレートの模式的な平断面図である。FIG. 7 is a schematic cross-sectional plan view of the shower plate according to the second embodiment.
 以下、添付図面を参照して、本願の開示するシャワープレートの実施形態について説明する。なお、以下に示す実施形態により本開示が限定されるものではない。また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率などは、現実と異なる場合があることに留意する必要がある。さらに、図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。 Embodiments of the shower plate disclosed in the present application will be described below with reference to the accompanying drawings. It should be noted that the present disclosure is not limited by the embodiments shown below. Also, it should be noted that the drawings are schematic, and the relationship of dimensions of each element, the ratio of each element, and the like may differ from reality. Furthermore, even between the drawings, there are cases where portions having different dimensional relationships and ratios are included.
 また、以下に示す実施形態では、「一定」、「直交」、「垂直」あるいは「平行」といった表現が用いられる場合があるが、これらの表現は、厳密に「一定」、「直交」、「垂直」あるいは「平行」であることを要しない。すなわち、上記した各表現は、たとえば製造精度、設置精度などのずれを許容するものとする。 Further, in the embodiments described below, expressions such as "constant", "perpendicular", "perpendicular" or "parallel" may be used, but these expressions are strictly "constant", "perpendicular", " It does not have to be "perpendicular" or "parallel". That is, each of the expressions described above allows deviations in, for example, manufacturing accuracy and installation accuracy.
 また、各実施形態は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。また、以下の各実施形態において同一の部位には同一の符号を付し、重複する説明は省略される。 In addition, each embodiment can be appropriately combined within a range that does not contradict the processing content. Also, in each of the following embodiments, the same parts are denoted by the same reference numerals, and overlapping descriptions are omitted.
(第1実施形態)
 図1は、第1実施形態に係るシャワープレート1の模式的な斜視図である。図2は、第1実施形態に係るシャワープレート1の模式的な側断面図である。図3は、第1実施形態に係るシャワープレート1の模式的な平断面図である。なお、図3には、図2におけるIII-III線矢視における模式的な断面図を示している。
(First embodiment)
FIG. 1 is a schematic perspective view of a shower plate 1 according to the first embodiment. FIG. 2 is a schematic side sectional view of the shower plate 1 according to the first embodiment. FIG. 3 is a schematic cross-sectional plan view of the shower plate 1 according to the first embodiment. 3 shows a schematic cross-sectional view taken along line III-III in FIG.
 図1に示す第1実施形態に係るシャワープレート1は、例えば半導体の製造工程において半導体ウエハ等の基板に対してプロセスガスを噴出する。シャワープレート1は、例えば、基板に対してプラズマ処理等を行う基板処理装置に搭載される。 A shower plate 1 according to the first embodiment shown in FIG. 1 ejects process gas onto a substrate such as a semiconductor wafer in, for example, a semiconductor manufacturing process. The shower plate 1 is mounted, for example, in a substrate processing apparatus that performs plasma processing or the like on substrates.
 図1及び図2に示すように、シャワープレート1は、基体10を有する。基体10は、例えば、上下方向に厚みがある円板形状を有する。具体的には、基体10は、平面視円形の上面101および下面102と、これら上面101および下面102を繋ぐ側面103とを有する。基体10の上面101と下面102とは、略平行である。シャワープレート1が基板処理装置に搭載される場合、基体10の下面102は、基板支持台に支持される基板と対向する。 As shown in FIGS. 1 and 2, the shower plate 1 has a base 10. As shown in FIG. The substrate 10 has, for example, a disk shape with a thickness in the vertical direction. Specifically, the base 10 has an upper surface 101 and a lower surface 102 which are circular in plan view, and a side surface 103 connecting the upper surface 101 and the lower surface 102 . The upper surface 101 and the lower surface 102 of the substrate 10 are substantially parallel. When the shower plate 1 is mounted on a substrate processing apparatus, the lower surface 102 of the substrate 10 faces the substrate supported by the substrate support.
 基体10は、例えばセラミックスからなり、絶縁性を有する。基体10を構成するセラミックスは、例えば、窒化アルミニウム(AlN)、酸化アルミニウム(Al、アルミナ)、酸化イットリウム(Y、イットリア)、炭化珪素(SiC)、窒化珪素(Si)等を主成分とする焼結体である。なお、主成分は、たとえば、その材料の50質量%以上または80質量%以上を占める材料である。 The substrate 10 is made of ceramics, for example, and has insulating properties. Ceramics constituting the substrate 10 are, for example, aluminum nitride (AlN), aluminum oxide (Al 2 O 3 , alumina), yttrium oxide (Y 2 O 3 , yttria), silicon carbide (SiC), silicon nitride (Si 3 N 4 ), etc. as a main component. In addition, the main component is, for example, a material that accounts for 50% by mass or more or 80% by mass or more of the material.
 なお、基体10の形状は任意である。例えば、本実施形態において、基体10は、円板形状であるが、これに限らず、楕円板形状、矩形板形状、台形板形状などであってもよい。 The shape of the substrate 10 is arbitrary. For example, in the present embodiment, the substrate 10 has a disk shape, but it is not limited to this, and may have an elliptical plate shape, a rectangular plate shape, a trapezoidal plate shape, or the like.
 基体10の内部には、空間11が設けられる。基体10の空間11には、基体10の空間11を内側空間111と内側空間111の周囲に位置する流路112とに隔てる隔壁20が位置している。 A space 11 is provided inside the base 10 . A partition wall 20 is located in the space 11 of the base body 10 and separates the space 11 of the base body 10 into an inner space 111 and a flow path 112 positioned around the inner space 111 .
 また、シャワープレート1は、供給口12と、複数の噴出孔13とを有する。供給口12は、基体10の側面103に位置し、流路112に連通するとともに、図示しないガス供給管などを介してプロセスガス供給源に接続される。図2の例において、供給口12は、基体10の側面103および流路112の外側面を基体10の径方向に貫通する貫通孔である。プロセスガス供給源から供給されるプロセスガスは、ガス供給管を介して供給口12に導入される。そして、供給口12は、導入されるプロセスガスを流路112に供給する。なお、供給口12は、必ずしも基体10の側面103に位置しなくてもよく、例えば、基体10の上面101または下面102に位置してもよい。また、供給口12の数は、任意であり、1つの供給口12が基体10に設けられてもよく、複数の供給口12が基体10に設けられてもよい。例えば、図2及び図3では、基体10の側面103に位置する2つの供給口12が示されている。 Also, the shower plate 1 has a supply port 12 and a plurality of ejection holes 13 . The supply port 12 is positioned on the side surface 103 of the substrate 10, communicates with the flow path 112, and is connected to a process gas supply source via a gas supply pipe (not shown) or the like. In the example of FIG. 2 , the supply port 12 is a through hole penetrating the side surface 103 of the substrate 10 and the outer surface of the channel 112 in the radial direction of the substrate 10 . A process gas supplied from a process gas supply source is introduced into the supply port 12 through a gas supply pipe. The supply port 12 supplies the introduced process gas to the flow path 112 . The supply port 12 does not necessarily have to be positioned on the side surface 103 of the substrate 10, and may be positioned on the upper surface 101 or the lower surface 102 of the substrate 10, for example. Moreover, the number of supply ports 12 is arbitrary, and one supply port 12 may be provided in the base 10 , or a plurality of supply ports 12 may be provided in the base 10 . For example, in FIGS. 2 and 3, two supply ports 12 located on side surfaces 103 of substrate 10 are shown.
 複数の噴出孔13は、内側空間111に連通して基体10の下面102に開口し、プロセスガスを噴出する。図2の例において、複数の噴出孔13は、内側空間111の底面および基体10の下面102を貫通する貫通孔である。なお、複数の噴出孔13は、必ずしも基体10の下面102に位置する必要はなく、例えば、基体10の上面101に位置してもよい。 A plurality of ejection holes 13 communicate with the inner space 111 and open to the lower surface 102 of the substrate 10 to eject process gas. In the example of FIG. 2 , the plurality of ejection holes 13 are through holes penetrating the bottom surface of the inner space 111 and the bottom surface 102 of the base 10 . It should be noted that the plurality of ejection holes 13 do not necessarily need to be positioned on the lower surface 102 of the base 10, and may be positioned on the upper surface 101 of the base 10, for example.
 図3に示すように、隔壁20は、内側空間111と流路112とを連通し、流路112を流れるプロセスガスを内側空間111に導入する複数の導入孔21を有する。 As shown in FIG. 3 , the partition wall 20 has a plurality of introduction holes 21 that communicate the inner space 111 and the flow path 112 and introduce the process gas flowing through the flow path 112 into the inner space 111 .
 このように、本実施形態に係るシャワープレート1において、隔壁20は、基体10内の空間11を内側空間111と流路112とに隔て、且つ内側空間111と流路112とは隔壁20の複数の導入孔21によって連通される。すなわち、隔壁20は、内側空間111と流路112との間に圧力差を発生させながら、流路112から複数の導入孔21を介して内側空間111にプロセスガスを導入する。 As described above, in the shower plate 1 according to the present embodiment, the partition wall 20 separates the space 11 in the base body 10 into the inner space 111 and the flow channel 112 , and the inner space 111 and the flow channel 112 are separated by a plurality of partition walls 20 . are communicated by the introduction hole 21 of the That is, the partition wall 20 introduces the process gas from the flow path 112 into the inner space 111 through the plurality of introduction holes 21 while generating a pressure difference between the inner space 111 and the flow path 112 .
 この構成により、例えば、基体10内の空間11に隔壁20が無い場合と比べて内側空間111に導入されるプロセスガスの拡散が促進されるため、複数の噴出孔13が位置する内側空間111でのプロセスガスの偏在が発生しにくくなる。具体的には、供給口12から流路112にプロセスガスが導入される際に、隔壁20によって流路112内のプロセスガスの圧力が高まることから、流路112から複数の導入孔21を介して内側空間111に導入されるプロセスガスの流速が上がる。また、隔壁20に導入孔21が複数あることから、プロセスガスが内側空間111に複数の方向から導入される。かかる隔壁20および複数の導入孔21の作用により、内側空間111においてプロセスガスが攪拌され、結果として、複数の噴出孔13が位置する内側空間111においてプロセスガスがより均質になる。したがって、本実施形態に係るシャワープレート1によれば、複数の噴出孔13から噴出されるプロセスガスの均一性を向上させることができる。 With this configuration, for example, the diffusion of the process gas introduced into the inner space 111 is promoted as compared with the case where the space 11 in the base body 10 does not have the partition wall 20. uneven distribution of the process gas is less likely to occur. Specifically, when the process gas is introduced from the supply port 12 into the channel 112 , the pressure of the process gas in the channel 112 is increased by the partition wall 20 , so that the process gas is introduced from the channel 112 through the plurality of introduction holes 21 . , the flow velocity of the process gas introduced into the inner space 111 increases. Further, since the partition wall 20 has a plurality of introduction holes 21, the process gas is introduced into the inner space 111 from a plurality of directions. The action of the partition wall 20 and the plurality of introduction holes 21 stirs the process gas in the inner space 111, and as a result, the process gas becomes more homogeneous in the inner space 111 where the plurality of ejection holes 13 are located. Therefore, according to the shower plate 1 of this embodiment, the uniformity of the process gas jetted from the plurality of jet holes 13 can be improved.
 また、隔壁20は、円環状であり、複数の導入孔21は、隔壁20の周方向に間隔を空けて並んで位置している。具体的には、複数の導入孔21は、隔壁20の周方向に等間隔で位置している。 In addition, the partition 20 has an annular shape, and the plurality of introduction holes 21 are arranged side by side at intervals in the circumferential direction of the partition 20 . Specifically, the plurality of introduction holes 21 are positioned at regular intervals in the circumferential direction of the partition wall 20 .
 この構成により、隔壁20の周方向に沿って内側空間111と流路112との間の圧力差の分布が均等化され、プロセスガスを隔壁20の周方向に沿って内側空間111に均等に導入することができる。 With this configuration, the distribution of the pressure difference between the inner space 111 and the flow path 112 is equalized along the circumferential direction of the partition wall 20, and the process gas is evenly introduced into the inner space 111 along the circumferential direction of the partition wall 20. can do.
 また、複数の導入孔21は、隔壁20の径方向に対して傾いている。具体的には、複数の導入孔21は、隔壁20の径方向に対して、隔壁20の内側空間111に面する内壁面へ向かう方向(つまり、隔壁20の内壁面の接線に近づく方向)に傾いている。 Also, the plurality of introduction holes 21 are inclined with respect to the radial direction of the partition wall 20 . Specifically, the plurality of introduction holes 21 are arranged in a direction toward an inner wall surface of the partition wall 20 facing the inner space 111 (that is, a direction approaching a tangent to the inner wall surface of the partition wall 20) with respect to the radial direction of the partition wall 20. leaning
 この構成により、内側空間111に導入されるプロセスガスが隔壁20の内壁面近傍まで拡散することから、隔壁20の内壁面に沿ってプロセスガスの旋回流を発生させることができる。このため、本実施形態に係るシャワープレート1によれば、内側空間111に導入されるプロセスガスを旋回流によって撹拌することができ、複数の噴出孔13から噴出されるプロセスガスの均一性をより向上させることができる。 With this configuration, the process gas introduced into the inner space 111 diffuses to the vicinity of the inner wall surface of the partition wall 20 , so that a swirl flow of the process gas can be generated along the inner wall surface of the partition wall 20 . Therefore, according to the shower plate 1 of the present embodiment, the process gas introduced into the inner space 111 can be agitated by the swirling flow, and the uniformity of the process gas ejected from the plurality of ejection holes 13 can be improved. can be improved.
 また、複数の導入孔21は、隔壁20の流路112に面する外側面において、供給口12の中心軸沿いに延びる仮想線Lとは交差しない位置に位置している。換言すれば、複数の導入孔21は、隔壁20の流路112に面する外側面において、供給口12の中心軸沿いに延びる仮想線Lと交差する位置から隔壁20の周方向にずれた位置に位置している。 In addition, the plurality of introduction holes 21 are located at positions that do not intersect the virtual line L extending along the central axis of the supply port 12 on the outer surface of the partition wall 20 facing the flow path 112 . In other words, the plurality of introduction holes 21 are located at positions displaced in the circumferential direction of the partition 20 from positions intersecting the imaginary line L extending along the central axis of the supply port 12 on the outer surface of the partition 20 facing the flow path 112 . located in
 この構成により、例えば、複数の導入孔21が仮想線Lと交差する位置に位置している場合と比べて供給口12と複数の導入孔21との距離が離れるため、供給口12から流路112に供給されたプロセスガスを流路112内に一時的に滞留させることができる。流路112内にプロセスガスが一時的に滞留することで、内側空間111と流路112との間の圧力差が増大し、流路112から複数の導入孔21を介して内側空間111に導入されるプロセスガスの拡散がより促進される。このため、本実施形態に係るシャワープレート1によれば、複数の噴出孔13が位置する内側空間111でのプロセスガスの偏在の発生をより抑制することができ、複数の噴出孔13から噴出されるプロセスガスの均一性をより向上させることができる。 With this configuration, the distance between the supply port 12 and the plurality of introduction holes 21 is greater than, for example, when the plurality of introduction holes 21 are located at positions that intersect the virtual line L, so that the flow path from the supply port 12 is increased. The process gas supplied to 112 can be temporarily retained within the flow path 112 . As the process gas temporarily stays in the flow path 112, the pressure difference between the inner space 111 and the flow path 112 increases, and the process gas is introduced into the inner space 111 from the flow path 112 through the plurality of introduction holes 21. Diffusion of the process gas to be applied is promoted more. Therefore, according to the shower plate 1 according to the present embodiment, it is possible to further suppress uneven distribution of the process gas in the inner space 111 where the plurality of ejection holes 13 are located. The uniformity of the process gas can be further improved.
 また、複数の噴出孔13の各々の断面積は、複数の導入孔21の各々の断面積よりも小さい。また、複数の導入孔21の各々の断面積は、供給口12の断面積よりも小さい。換言すれば、供給口12、複数の導入孔21の各々および複数の噴出孔13の各々は、プロセスガスの流れ方向に、供給口12、複数の導入孔21の各々および複数の噴出孔13の各々の順番で断面積が小さくなる。 Also, the cross-sectional area of each of the plurality of ejection holes 13 is smaller than the cross-sectional area of each of the plurality of introduction holes 21 . Also, the cross-sectional area of each of the plurality of introduction holes 21 is smaller than the cross-sectional area of the supply port 12 . In other words, the supply port 12, each of the plurality of introduction holes 21, and each of the plurality of ejection holes 13 are aligned in the flow direction of the process gas. The cross-sectional area becomes smaller in each order.
 この構成により、プロセスガスの流れ方向に沿ってプロセスガスが通過する孔を段階的に絞ることができる。このため、本実施形態に係るシャワープレート1によれば、供給口12から複数の導入孔21を経由して複数の噴出孔13へ向かうプロセスガスの流速を徐々に上昇させることができ、複数の噴出孔13からプロセスガスをスムーズに噴出することができる。 With this configuration, the holes through which the process gas passes can be narrowed in stages along the flow direction of the process gas. Therefore, according to the shower plate 1 of the present embodiment, the flow velocity of the process gas from the supply port 12 to the plurality of ejection holes 13 via the plurality of introduction holes 21 can be gradually increased. Process gas can be smoothly ejected from the ejection holes 13 .
 また、複数の噴出孔13の断面積の総和は、複数の導入孔21の断面積の総和よりも小さい。また、複数の導入孔21の断面積の総和は、供給口12の断面積の総和よりも小さい。換言すれば、供給口12、複数の導入孔21および複数の噴出孔13は、プロセスガスの流れ方向に、供給口12、複数の導入孔21および複数の噴出孔13の順番で断面積の総和が小さくなる。 Also, the sum of the cross-sectional areas of the multiple ejection holes 13 is smaller than the sum of the cross-sectional areas of the multiple introduction holes 21 . Also, the total cross-sectional area of the plurality of introduction holes 21 is smaller than the total cross-sectional area of the supply port 12 . In other words, the supply port 12, the plurality of introduction holes 21, and the plurality of ejection holes 13 are the total sum of the cross-sectional areas in the order of the supply port 12, the plurality of introduction holes 21, and the plurality of ejection holes 13 in the flow direction of the process gas. becomes smaller.
 この構成により、プロセスガスの流れ方向に沿ってプロセスガスが通過する孔を段階的に絞ることができる。このため、本実施形態に係るシャワープレート1によれば、供給口12から複数の導入孔21を経由して複数の噴出孔13へ向かうプロセスガスの流速を徐々に上昇させることができ、複数の噴出孔13からプロセスガスをスムーズに噴出することができる。 With this configuration, the holes through which the process gas passes can be narrowed in stages along the flow direction of the process gas. Therefore, according to the shower plate 1 of the present embodiment, the flow velocity of the process gas from the supply port 12 to the plurality of ejection holes 13 via the plurality of introduction holes 21 can be gradually increased. Process gas can be smoothly ejected from the ejection holes 13 .
 また、複数の噴出孔13の総数は、複数の導入孔21の総数よりも多い。また、複数の導入孔21の総数は、供給口の総数よりも多い。換言すれば、供給口12、複数の導入孔21および複数の噴出孔13は、プロセスガスの流れ方向に、供給口12、複数の導入孔21および複数の噴出孔13の順番で総数が多くなる。 Also, the total number of the plurality of ejection holes 13 is greater than the total number of the plurality of introduction holes 21 . Also, the total number of the plurality of introduction holes 21 is greater than the total number of supply ports. In other words, the supply port 12, the plurality of introduction holes 21, and the plurality of ejection holes 13 increase in the order of the supply port 12, the plurality of introduction holes 21, and the plurality of ejection holes 13 in the flow direction of the process gas. .
 この構成により、プロセスガスの流れ方向に沿ってプロセスガスが通過する孔の総数を段階的に増やすことができる。このため、本実施形態に係るシャワープレート1によれば、供給口12から複数の導入孔21を経由して複数の噴出孔13へ向かうプロセスガスの流速を徐々に上昇させることができ、複数の噴出孔13からプロセスガスをスムーズに噴出することができる。 With this configuration, the total number of holes through which the process gas passes can be increased in stages along the flow direction of the process gas. Therefore, according to the shower plate 1 of the present embodiment, the flow velocity of the process gas from the supply port 12 to the plurality of ejection holes 13 via the plurality of introduction holes 21 can be gradually increased. Process gas can be smoothly ejected from the ejection holes 13 .
(シャワープレートの製造方法)
 次に、本実施形態に係るシャワープレート1の製造方法の一例について説明する。シャワープレート1は、複数のセラミックグリーンシートを積層することによって形成される。具体的には、基体10を構成する複数のセラミックグリーンシートを用意する。ここで、空間11、供給口12、噴出孔13および隔壁20を形成するために、形状が異なる複数のセラミックグリーンシートが用意される。そして、用意した複数のセラミックグリーンシートを積層する。
(Manufacturing method of shower plate)
Next, an example of a method for manufacturing the shower plate 1 according to this embodiment will be described. Shower plate 1 is formed by stacking a plurality of ceramic green sheets. Specifically, a plurality of ceramic green sheets forming the substrate 10 are prepared. Here, a plurality of ceramic green sheets having different shapes are prepared to form the spaces 11, the supply ports 12, the ejection holes 13, and the partition walls 20. FIG. Then, a plurality of prepared ceramic green sheets are laminated.
 つづいて、セラミックグリーンシートの積層体を脱脂および焼成する。焼成温度は、例えば1100℃以上1850℃以下の温度である。これにより、シャワープレート1が得られる。 Subsequently, the laminate of ceramic green sheets is degreased and fired. The firing temperature is, for example, 1100° C. or higher and 1850° C. or lower. Thereby, the shower plate 1 is obtained.
(第1実施形態の変形例)
 上述した第1実施形態では、複数の導入孔21が均一な幅を有する直線形状である場合の例について説明したが、複数の導入孔21は、直線形状以外の形状を有してもよい。かかる場合の例について図4を参照して説明する。図4は、第1実施形態の変形例1に係るシャワープレート1の模式的な平断面図である。
(Modified example of the first embodiment)
In the first embodiment described above, an example in which the plurality of introduction holes 21 have a linear shape with a uniform width has been described, but the plurality of introduction holes 21 may have a shape other than a linear shape. An example of such a case will be described with reference to FIG. FIG. 4 is a schematic cross-sectional plan view of the shower plate 1 according to Modification 1 of the first embodiment.
 例えば、図4に示すように、複数の導入孔21Aは、流路112から内側空間111へ向かうにつれて幅が小さくなるテーパ形状を有する。 For example, as shown in FIG. 4, the plurality of introduction holes 21A have a tapered shape whose width decreases from the flow path 112 toward the inner space 111. For example, as shown in FIG.
 この構成により、複数の導入孔21Aの流路112側に位置する入口と内側空間111側に位置する出口との間の圧力差が増大するため、流路112から複数の導入孔21Aを介して内側空間111に導入されるプロセスガスの拡散がより促進される。このため、複数の噴出孔13が位置する内側空間111でのプロセスガスの偏在の発生をより抑制することができ、複数の噴出孔13から噴出されるプロセスガスの均一性をより向上させることができる。 With this configuration, the pressure difference between the inlets located on the channel 112 side and the outlets located on the inner space 111 side of the plurality of introduction holes 21A increases, so that the pressure from the channel 112 through the plurality of introduction holes 21A increases. Diffusion of the process gas introduced into the inner space 111 is further promoted. Therefore, uneven distribution of the process gas in the inner space 111 where the plurality of ejection holes 13 are located can be further suppressed, and the uniformity of the process gas ejected from the plurality of ejection holes 13 can be further improved. can.
 また、上述した第1実施形態では、供給口12が基体10の側面103に位置し、基体10の径方向に沿って直線状に延びる場合の例について説明したが、供給口12は、基体10の径方向に対して傾いていてもよい。かかる場合の例について図5を参照して説明する。図5は、第1実施形態の変形例2に係るシャワープレート1の模式的な平断面図である。 Further, in the above-described first embodiment, an example in which the supply port 12 is positioned on the side surface 103 of the base 10 and extends linearly along the radial direction of the base 10 has been described. may be inclined with respect to the radial direction of An example of such a case will be described with reference to FIG. FIG. 5 is a schematic cross-sectional plan view of a shower plate 1 according to Modification 2 of the first embodiment.
 例えば、図5に示すように、供給口12Aは、複数の導入孔21Aが傾く方向と同じ方向に傾いている。すなわち、複数の導入孔21Aは、隔壁20の径方向に対して、隔壁20の内側空間111に面する内壁面へ向かう方向(つまり、隔壁20の内壁面の接線に近づく方向)に傾いている。このため、供給口12Aは、隔壁20の径方向(つまり、基体10の径方向)に対して、基体10の流路112に面する内壁面へ向かう方向(つまり、基体10の内壁面の接線に近づく方向)に傾いている。 For example, as shown in FIG. 5, the supply port 12A is inclined in the same direction as the plurality of introduction holes 21A. That is, the plurality of introduction holes 21A are inclined with respect to the radial direction of the partition wall 20 in a direction toward the inner wall surface of the partition wall 20 facing the inner space 111 (that is, in a direction approaching a tangent to the inner wall surface of the partition wall 20). . Therefore, the supply port 12A is arranged in a direction toward the inner wall surface of the substrate 10 facing the channel 112 (that is, a tangent to the inner wall surface of the substrate 10) with respect to the radial direction of the partition wall 20 (that is, the radial direction of the substrate 10). direction).
 この構成により、供給口12Aでのプロセスガスの流れ方向と複数の導入孔21Aでのプロセスガスの流れ方向とが一致するため、供給口12Aから流路112に供給されるプロセスガスを複数の導入孔21Aへスムーズに流すことができる。 With this configuration, the flow direction of the process gas at the supply port 12A coincides with the flow direction of the process gas at the plurality of introduction holes 21A. It can flow smoothly into the hole 21A.
 なお、供給口12Aが傾いている場合であっても、複数の導入孔21Aは、隔壁20の流路112に面する外側面において、供給口12Aの中心軸沿いに延びる仮想線Lとは交差しない位置に位置している。このため、供給口12Aから流路112に供給されたプロセスガスを流路112内に一時的に滞留させることができる。 Note that even when the supply port 12A is inclined, the plurality of introduction holes 21A do not cross the virtual line L extending along the central axis of the supply port 12A on the outer surface of the partition wall 20 facing the flow path 112. not located. Therefore, the process gas supplied from the supply port 12</b>A to the channel 112 can be temporarily retained in the channel 112 .
 また、供給口12Aは、基体10の外部から流路112へ向かうにつれて幅が小さくなるテーパ形状を有してもよい。 Also, the supply port 12A may have a tapered shape in which the width decreases from the outside of the substrate 10 toward the channel 112 .
 この構成により、供給口12Aの基体10の外部側に位置する入口と流路112側に位置する出口との間の圧力差が増大するため、供給口12Aから流路112に供給されるプロセスガスの拡散が促進される。このため、流路112でのプロセスガスの偏在の発生を抑制することができる。 With this configuration, the pressure difference between the inlet of the supply port 12A located outside the substrate 10 and the outlet located on the channel 112 side increases, so that the process gas supplied from the supply port 12A to the channel 112 increases. diffusion is promoted. Therefore, uneven distribution of the process gas in the flow path 112 can be suppressed.
(第2実施形態)
 図6は、第2実施形態に係るシャワープレート1の模式的な側断面図である。図7は、第2実施形態に係るシャワープレート1の模式的な平断面図である。なお、図7には、図6におけるVII-VII線矢視における模式的な断面図を示している。
(Second embodiment)
FIG. 6 is a schematic side sectional view of the shower plate 1 according to the second embodiment. FIG. 7 is a schematic cross-sectional plan view of the shower plate 1 according to the second embodiment. 7 shows a schematic cross-sectional view taken along line VII--VII in FIG.
 図6に示すように、本実施形態に係るシャワープレート1は、基体10の内部に発熱体30および電極40を有する。 As shown in FIG. 6, the shower plate 1 according to this embodiment has a heating element 30 and an electrode 40 inside the base 10 .
 発熱体30は、基体10の厚み方向に少なくとも内側空間111と重なって位置している。図6の例においては、発熱体30は、基体10の厚み方向に内側空間111および隔壁20と重なって位置している。なお、発熱体30は、基体10の厚み方向に内側空間111、隔壁20および流路112と重なって位置してもよい。また、発熱体30は、基体10の上面101と内側空間111との間に位置している。なお、発熱体30は、基体10の下面102と内側空間111との間に位置してもよい。 The heating element 30 is positioned so as to overlap at least the inner space 111 in the thickness direction of the base 10 . In the example of FIG. 6, the heating element 30 is positioned overlapping the inner space 111 and the partition wall 20 in the thickness direction of the base 10 . Note that the heating element 30 may be positioned so as to overlap the inner space 111 , the partition wall 20 and the flow path 112 in the thickness direction of the base 10 . Also, the heating element 30 is positioned between the upper surface 101 of the base 10 and the inner space 111 . Note that the heating element 30 may be positioned between the lower surface 102 of the base 10 and the inner space 111 .
 発熱体30は、図示しないヒータ電源から供給される電力によって生じるジュール熱により発熱する。発熱体30は、基体10の上面101に沿って層状に広がっている。発熱体30は、例えば平面視において円板形状を有する。 The heating element 30 generates heat by Joule heat generated by power supplied from a heater power supply (not shown). The heating element 30 extends in layers along the upper surface 101 of the substrate 10 . The heating element 30 has, for example, a disc shape in plan view.
 発熱体30は、たとえば、ニッケル(Ni)、タングステン(W)、モリブデン(Mo)および白金(Pt)等の金属、または、上記金属の少なくとも1つを含む合金からなる。 The heating element 30 is made of, for example, metals such as nickel (Ni), tungsten (W), molybdenum (Mo) and platinum (Pt), or alloys containing at least one of the above metals.
 発熱体30を基体10の厚み方向に少なくとも内側空間111と重なって位置させることにより、内側空間111においてプロセスガスを加熱することができる。 The process gas can be heated in the inner space 111 by positioning the heating element 30 so as to overlap at least the inner space 111 in the thickness direction of the substrate 10 .
 また、発熱体30が基体10の厚み方向に少なくとも内側空間111と重なって位置する場合、基体10は、図6および図7に示すように、内側空間111を支持するように基体10の厚み方向に延びる複数の支柱14を有してもよい。 6 and 7, when the heating element 30 overlaps at least the inner space 111 in the thickness direction of the base 10, the base 10 is arranged in the thickness direction of the base 10 so as to support the inner space 111, as shown in FIGS. There may be a plurality of struts 14 extending to the .
 複数の支柱14で内側空間111を適切に支持することにより、発熱体30の熱が複数の支柱14を介して内側空間111に伝わるため、内側空間111においてプロセスガスをより効率よく加熱することができる。 By appropriately supporting the inner space 111 with the plurality of pillars 14, the heat of the heating element 30 is transmitted to the inner space 111 via the plurality of pillars 14, so that the process gas in the inner space 111 can be heated more efficiently. can.
 電極40は、内側空間111よりも基体10の下面102に近い位置に位置している。電極40は、例えばプラズマ生成用の電極であり、基体10の下面102に沿って層状に広がっている。電極40は、例えば平面視において円板形状を有し、複数の噴出孔13の位置にそれぞれ対応して複数の貫通孔を有する。 The electrode 40 is positioned closer to the lower surface 102 of the base 10 than the inner space 111 is. The electrode 40 is, for example, an electrode for plasma generation, and spreads in layers along the lower surface 102 of the substrate 10 . The electrode 40 has, for example, a disk shape in a plan view, and has a plurality of through holes corresponding to the positions of the plurality of ejection holes 13 respectively.
 電極40は、例えば、ニッケル(Ni)、タングステン(W)、チタン(Ti)、モリブデン(Mo)および白金(Pt)等の金属、または、上記金属の少なくとも1つを含む合金からなる。 The electrode 40 is made of, for example, metals such as nickel (Ni), tungsten (W), titanium (Ti), molybdenum (Mo) and platinum (Pt), or alloys containing at least one of the above metals.
 電極40を内側空間111よりも基体10の下面102に近い位置に位置させることにより、基体10の下面102にプラズマ生成用の電極を別途設ける場合と比べて、シャワープレート1の構造を簡素化することができる。 Positioning the electrode 40 closer to the lower surface 102 of the substrate 10 than the inner space 111 simplifies the structure of the shower plate 1 compared to the case where an electrode for plasma generation is provided separately on the lower surface 102 of the substrate 10. be able to.
 なお、図6および図7に示すシャワープレート1を製造する場合、まず、基体10を構成するセラミックグリーンシートと、発熱体30を構成する金属シートと、電極40を構成する金属シートとを用意する。ここで、空間11、供給口12、噴出孔13、隔壁20および支柱14を形成するために、形状が異なる複数のセラミックグリーンシートが用意される。そして、用意したシートを積層する。つづいて、セラミックグリーンシートおよび金属シートの積層体を脱脂および焼成する。焼成温度は、例えば1100℃以上1850℃以下の温度である。このようにして、図6に示すシャワープレート1が得られる。 When manufacturing the shower plate 1 shown in FIGS. 6 and 7, first, a ceramic green sheet forming the base 10, a metal sheet forming the heating element 30, and a metal sheet forming the electrode 40 are prepared. . Here, a plurality of ceramic green sheets having different shapes are prepared in order to form the spaces 11, the supply ports 12, the ejection holes 13, the partition walls 20, and the struts . Then, the prepared sheets are laminated. Subsequently, the laminate of ceramic green sheets and metal sheets is degreased and fired. The firing temperature is, for example, 1100° C. or higher and 1850° C. or lower. Thus, the shower plate 1 shown in FIG. 6 is obtained.
(効果)
 上述のように、実施形態に係るシャワープレート(例えば、シャワープレート1)は、基体(例えば、基体10)と、隔壁(例えば、隔壁20)と、供給口(例えば、供給口12、12A)と、複数の噴出孔(例えば、噴出孔13)とを備える。基体は、セラミックスからなり、内部に空間(例えば、空間11)を有する板状の基体である。隔壁は、基体の空間を内側空間(例えば、内側空間111)と内側空間の周囲に位置する流路(例えば、流路112)とに隔てる。供給口は、流路にガス(例えば、プロセスガス)を供給する。複数の噴出孔は、内側空間に連通して基体の一面(例えば、下面102)に開口し、ガスを噴出する。そして、隔壁は、内側空間と流路とを連通し、流路を流れるガスを内側空間に導入する複数の導入孔(例えば、導入孔21、21A)を有する。これにより、実施形態に係るシャワープレートによれば、複数の噴出孔から噴出されるガスの均一性を向上させることができる。
(effect)
As described above, the shower plate (eg, shower plate 1) according to the embodiment includes a substrate (eg, substrate 10), a partition wall (eg, partition wall 20), and supply ports (eg, supply ports 12 and 12A). , and a plurality of ejection holes (for example, ejection holes 13). The substrate is a plate-like substrate made of ceramics and having a space (for example, space 11) inside. The partition separates the space of the substrate into an inner space (eg, inner space 111) and a channel (eg, channel 112) located around the inner space. The supply port supplies gas (eg, process gas) to the channel. A plurality of ejection holes communicate with the inner space and open to one surface (for example, the lower surface 102) of the substrate to eject gas. The partition wall has a plurality of introduction holes (for example, introduction holes 21 and 21A) for communicating the inner space and the channel and for introducing the gas flowing through the channel into the inner space. Thus, according to the shower plate according to the embodiment, it is possible to improve the uniformity of the gas ejected from the plurality of ejection holes.
 また、実施形態に係る隔壁は、円環状であり、複数の導入孔は、隔壁の周方向に間隔を空けて並んで位置してもよい。これにより、実施形態に係るシャワープレートによれば、ガスを隔壁の周方向に沿って内側空間に均等に導入することができる。 In addition, the partition according to the embodiment may be annular, and the plurality of introduction holes may be arranged side by side at intervals in the circumferential direction of the partition. Thereby, according to the shower plate according to the embodiment, the gas can be evenly introduced into the inner space along the circumferential direction of the partition wall.
 また、実施形態に係る複数の導入孔は、隔壁の径方向に対して傾いていてもよい。これにより、実施形態に係るシャワープレートによれば、複数の噴出孔から噴出されるガスの均一性をより向上させることができる。 Also, the plurality of introduction holes according to the embodiment may be inclined with respect to the radial direction of the partition wall. Thus, according to the shower plate according to the embodiment, it is possible to further improve the uniformity of the gas ejected from the plurality of ejection holes.
 また、実施形態に係る供給口は、基体の側面(例えば、側面103)に位置し、複数の導入孔が傾く方向と同じ方向に傾いていてもよい。これにより、実施形態に係るシャワープレートによれば、供給口から流路に供給されるプロセスガスを複数の導入孔へスムーズに流すことができる。 In addition, the supply port according to the embodiment may be located on the side surface (for example, side surface 103) of the substrate and may be inclined in the same direction as the plurality of introduction holes. As a result, according to the shower plate of the embodiment, the process gas supplied from the supply port to the channel can smoothly flow to the plurality of introduction holes.
 また、実施形態に係る複数の導入孔は、流路から内側空間へ向かうにつれて幅が小さくなるテーパ形状を有してもよい。これにより、実施形態に係るシャワープレートによれば、複数の噴出孔から噴出されるガスの均一性をより向上させることができる。 Also, the plurality of introduction holes according to the embodiment may have a tapered shape in which the width decreases from the flow path toward the inner space. Thus, according to the shower plate according to the embodiment, it is possible to further improve the uniformity of the gas ejected from the plurality of ejection holes.
 また、実施形態に係る複数の導入孔は、隔壁の流路に面する外壁面において、供給口の中心軸沿いに延びる仮想線とは交差しない位置に位置してもよい。これにより、実施形態に係るシャワープレートによれば、複数の噴出孔から噴出されるガスの均一性をより向上させることができる。 In addition, the plurality of introduction holes according to the embodiment may be located at positions that do not intersect the virtual line extending along the central axis of the supply port on the outer wall surface of the partition facing the channel. Thus, according to the shower plate according to the embodiment, it is possible to further improve the uniformity of the gas ejected from the plurality of ejection holes.
 また、実施形態に係る複数の噴出孔の各々の断面積は、複数の導入孔の各々の断面積よりも小さくてもよい。また、複数の導入孔の各々の断面積は、供給口の断面積よりも小さくてもよい。また、複数の噴出孔の断面積の総和は、複数の導入孔の断面積の総和よりも小さくてもよい。また、複数の導入孔の断面積の総和は、供給口の断面積の総和よりも小さくてもよい。また、複数の噴出孔の総数は、複数の導入孔の総数よりも多くてもよい。また、複数の導入孔の総数は、供給口の総数よりも多くてもよい。これにより、実施形態に係るシャワープレートによれば、複数の噴出孔からプロセスガスをスムーズに噴出することができる。 Also, the cross-sectional area of each of the plurality of ejection holes according to the embodiment may be smaller than the cross-sectional area of each of the plurality of introduction holes. Also, the cross-sectional area of each of the plurality of introduction holes may be smaller than the cross-sectional area of the supply port. Also, the sum of the cross-sectional areas of the plurality of ejection holes may be smaller than the sum of the cross-sectional areas of the plurality of introduction holes. Also, the sum of the cross-sectional areas of the plurality of introduction holes may be smaller than the sum of the cross-sectional areas of the supply ports. Also, the total number of the plurality of ejection holes may be greater than the total number of the plurality of introduction holes. Also, the total number of the plurality of introduction holes may be greater than the total number of supply ports. Thus, according to the shower plate according to the embodiment, the process gas can be smoothly ejected from the plurality of ejection holes.
 また、実施形態に係る供給口は、基体の外部から流路へ向かうにつれて幅が小さくなるテーパ形状を有してもよい。これにより、実施形態に係るシャワープレートによれば、流路でのガスの偏在の発生を抑制することができる。 Also, the supply port according to the embodiment may have a tapered shape in which the width decreases from the outside of the base toward the channel. As a result, according to the shower plate according to the embodiment, it is possible to suppress the uneven distribution of gas in the flow path.
 また、実施形態に係るシャワープレートは、基体の内部において、基体の厚み方向に少なくとも内側空間と重なって位置する発熱体(例えば、発熱体30)をさらに備えてもよい。これにより、実施形態に係るシャワープレートによれば、内側空間においてプロセスガスを加熱することができる。 Further, the shower plate according to the embodiment may further include a heating element (for example, heating element 30) located inside the base so as to overlap at least the inner space in the thickness direction of the base. Thereby, according to the shower plate according to the embodiment, the process gas can be heated in the inner space.
 また、実施形態に係る基体は、内側空間を支持する複数の支柱(例えば、支柱14)を有してもよい。これにより、実施形態に係るシャワープレートによれば、内側空間においてプロセスガスをより効率よく加熱することができる。 Also, the base according to the embodiment may have a plurality of struts (for example, struts 14) that support the inner space. Thereby, according to the shower plate according to the embodiment, the process gas can be heated more efficiently in the inner space.
 また、実施形態に係るシャワープレートは、基体の内部において、内側空間よりも基体の一面に近い位置に位置する電極(例えば、電極40)をさらに備えてもよい。これにより、実施形態に係るシャワープレートによれば、基体の下面にプラズマ生成用の電極を別途設ける場合と比べて、シャワープレートの構造を簡素化することができる。 Further, the shower plate according to the embodiment may further include an electrode (for example, electrode 40) located inside the base at a position closer to one surface of the base than the inner space. Thus, according to the shower plate according to the embodiment, the structure of the shower plate can be simplified as compared with the case where an electrode for plasma generation is separately provided on the lower surface of the substrate.
 さらなる効果や変形例は、当業者によって容易に導き出すことができる。このため、本発明のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付の請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。 Further effects and modifications can be easily derived by those skilled in the art. Therefore, the broader aspects of the invention are not limited to the specific details and representative embodiments so shown and described. Accordingly, various changes may be made without departing from the spirit or scope of the general inventive concept defined by the appended claims and equivalents thereof.
1 シャワープレート
10 基体
11 空間
12、12A 供給口
13 噴出孔
14 支柱
20 隔壁
21、21A 導入孔
30 発熱体
40 電極
101 上面
102 下面
103 側面
111 内側空間
112 流路
L 仮想線
1 shower plate 10 substrate 11 space 12, 12A supply port 13 ejection hole 14 support 20 partition wall 21, 21A introduction hole 30 heating element 40 electrode 101 upper surface 102 lower surface 103 side surface 111 inner space 112 flow path L virtual line

Claims (16)

  1.  セラミックスからなり、内部に空間を有する板状の基体と、
     前記基体の空間を内側空間と前記内側空間の周囲に位置する流路とに隔てる隔壁と、
     前記流路にガスを供給する供給口と、
     前記内側空間に連通して前記基体の一面に開口し、ガスを噴出する複数の噴出孔と
     を備え、
     前記隔壁は、前記内側空間と前記流路とを連通し、前記流路を流れる前記ガスを前記内側空間に導入する複数の導入孔を有する、シャワープレート。
    a plate-shaped substrate made of ceramics and having a space inside;
    a partition separating the space of the base into an inner space and a flow path positioned around the inner space;
    a supply port for supplying gas to the channel;
    a plurality of ejection holes that communicate with the inner space, open on one surface of the base, and eject gas;
    The shower plate, wherein the partition wall communicates the inner space with the channel and has a plurality of introduction holes for introducing the gas flowing through the channel into the inner space.
  2.  前記隔壁は、円環状であり、
     前記複数の導入孔は、前記隔壁の周方向に間隔を空けて並んで位置する、請求項1に記載のシャワープレート。
    The partition is annular,
    2. The shower plate according to claim 1, wherein the plurality of introduction holes are arranged side by side at intervals in the circumferential direction of the partition wall.
  3.  前記複数の導入孔は、前記隔壁の径方向に対して傾いている、請求項2に記載のシャワープレート。 The shower plate according to claim 2, wherein the plurality of introduction holes are inclined with respect to the radial direction of the partition wall.
  4.  前記供給口は、前記基体の側面に位置し、前記複数の導入孔が傾く方向と同じ方向に傾いている、請求項3に記載のシャワープレート。 The shower plate according to claim 3, wherein the supply port is positioned on the side surface of the base and is inclined in the same direction as the plurality of introduction holes.
  5.  前記複数の導入孔は、前記流路から前記内側空間へ向かうにつれて幅が小さくなるテーパ形状を有する、請求項1~4のいずれか一つに記載のシャワープレート。 The shower plate according to any one of claims 1 to 4, wherein the plurality of introduction holes have a tapered shape whose width decreases from the channel toward the inner space.
  6.  前記複数の導入孔は、前記隔壁の前記流路に面する外壁面において、前記供給口の中心軸沿いに延びる仮想線とは交差しない位置に位置する、請求項1~5のいずれか一つに記載のシャワープレート。 6. The plurality of introduction holes according to any one of claims 1 to 5, wherein the outer wall surface of the partition wall facing the channel is positioned so as not to intersect an imaginary line extending along the central axis of the supply port. The shower plate described in .
  7.  前記複数の噴出孔の各々の断面積は、前記複数の導入孔の各々の断面積よりも小さい、請求項1~6のいずれか一つに記載のシャワープレート。 The shower plate according to any one of claims 1 to 6, wherein the cross-sectional area of each of the plurality of ejection holes is smaller than the cross-sectional area of each of the plurality of introduction holes.
  8.  前記複数の導入孔の各々の断面積は、前記供給口の断面積よりも小さい、請求項1~7のいずれか一つに記載のシャワープレート。 The shower plate according to any one of claims 1 to 7, wherein the cross-sectional area of each of the plurality of introduction holes is smaller than the cross-sectional area of the supply port.
  9.  前記複数の噴出孔の断面積の総和は、前記複数の導入孔の断面積の総和よりも小さい、請求項1~8のいずれか一つに記載のシャワープレート。 The shower plate according to any one of claims 1 to 8, wherein the sum of the cross-sectional areas of the plurality of ejection holes is smaller than the sum of the cross-sectional areas of the plurality of introduction holes.
  10.  前記複数の導入孔の断面積の総和は、前記供給口の断面積の総和よりも小さい、請求項1~9のいずれか一つに記載のシャワープレート。 The shower plate according to any one of claims 1 to 9, wherein the total cross-sectional area of the plurality of introduction holes is smaller than the total cross-sectional area of the supply port.
  11.  前記複数の噴出孔の総数は、前記複数の導入孔の総数よりも多い、請求項1~10のいずれか一つに記載のシャワープレート。 The shower plate according to any one of claims 1 to 10, wherein the total number of said plurality of ejection holes is greater than the total number of said plurality of introduction holes.
  12.  前記複数の導入孔の総数は、前記供給口の総数よりも多い、請求項1~11のいずれか一つに記載のシャワープレート。 The shower plate according to any one of claims 1 to 11, wherein the total number of said plurality of introduction holes is greater than the total number of said supply ports.
  13.  前記供給口は、前記基体の外部から前記流路へ向かうにつれて幅が小さくなるテーパ形状を有する、請求項1~12のいずれか一つに記載のシャワープレート。 The shower plate according to any one of claims 1 to 12, wherein said supply port has a tapered shape whose width decreases from the outside of said base toward said channel.
  14.  前記基体の内部において、前記基体の厚み方向に少なくとも前記内側空間と重なって位置する発熱体をさらに備える、請求項1~13のいずれか一つに記載のシャワープレート。 The shower plate according to any one of claims 1 to 13, further comprising a heating element located inside the base so as to overlap at least the inner space in the thickness direction of the base.
  15.  前記基体は、前記内側空間を支持する複数の支柱を有する、請求項14に記載のシャワープレート。 The shower plate according to claim 14, wherein said base has a plurality of pillars supporting said inner space.
  16.  前記基体の内部において、前記内側空間よりも前記基体の一面に近い位置に位置する電極をさらに備える、請求項1~15のいずれか一つに記載のシャワープレート。 The shower plate according to any one of claims 1 to 15, further comprising an electrode located inside the base at a position closer to one surface of the base than the inner space.
PCT/JP2022/036301 2021-09-29 2022-09-28 Shower plate WO2023054531A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021159090 2021-09-29
JP2021-159090 2021-09-29

Publications (1)

Publication Number Publication Date
WO2023054531A1 true WO2023054531A1 (en) 2023-04-06

Family

ID=85780722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036301 WO2023054531A1 (en) 2021-09-29 2022-09-28 Shower plate

Country Status (1)

Country Link
WO (1) WO2023054531A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000315680A (en) * 1999-04-30 2000-11-14 Ngk Insulators Ltd Ceramic gas supplying structure for semiconductor manufacturing apparatus
JP2008001923A (en) * 2006-06-20 2008-01-10 Tokyo Electron Ltd Film deposition apparatus, gas feeder, film deposition method, and storage medium
JP2010047780A (en) * 2008-08-19 2010-03-04 Shibaura Mechatronics Corp Vacuum treatment apparatus and vacuum treatment method
JP2012009752A (en) * 2010-06-28 2012-01-12 Sharp Corp Vapor phase growth device and gas discharging device
WO2012124047A1 (en) * 2011-03-15 2012-09-20 東芝三菱電機産業システム株式会社 Film formation device
JP2015095551A (en) * 2013-11-12 2015-05-18 東京エレクトロン株式会社 Showerhead assembly and plasma processing apparatus
CN107393802A (en) * 2017-07-17 2017-11-24 江苏鲁汶仪器有限公司 A kind of spray head of plasma etching system
WO2018190220A1 (en) * 2017-04-14 2018-10-18 住友電気工業株式会社 Showerhead
JP2019114653A (en) * 2017-12-22 2019-07-11 東京エレクトロン株式会社 Substrate processing device and temperature control method
WO2020116246A1 (en) * 2018-12-06 2020-06-11 東京エレクトロン株式会社 Shower plate, plasma processing apparatus and plasma processing method
WO2020241703A1 (en) * 2019-05-30 2020-12-03 京セラ株式会社 Flow path member

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000315680A (en) * 1999-04-30 2000-11-14 Ngk Insulators Ltd Ceramic gas supplying structure for semiconductor manufacturing apparatus
JP2008001923A (en) * 2006-06-20 2008-01-10 Tokyo Electron Ltd Film deposition apparatus, gas feeder, film deposition method, and storage medium
JP2010047780A (en) * 2008-08-19 2010-03-04 Shibaura Mechatronics Corp Vacuum treatment apparatus and vacuum treatment method
JP2012009752A (en) * 2010-06-28 2012-01-12 Sharp Corp Vapor phase growth device and gas discharging device
WO2012124047A1 (en) * 2011-03-15 2012-09-20 東芝三菱電機産業システム株式会社 Film formation device
JP2015095551A (en) * 2013-11-12 2015-05-18 東京エレクトロン株式会社 Showerhead assembly and plasma processing apparatus
WO2018190220A1 (en) * 2017-04-14 2018-10-18 住友電気工業株式会社 Showerhead
CN107393802A (en) * 2017-07-17 2017-11-24 江苏鲁汶仪器有限公司 A kind of spray head of plasma etching system
JP2019114653A (en) * 2017-12-22 2019-07-11 東京エレクトロン株式会社 Substrate processing device and temperature control method
WO2020116246A1 (en) * 2018-12-06 2020-06-11 東京エレクトロン株式会社 Shower plate, plasma processing apparatus and plasma processing method
WO2020241703A1 (en) * 2019-05-30 2020-12-03 京セラ株式会社 Flow path member

Similar Documents

Publication Publication Date Title
TWI671792B (en) Substrate processing apparatus
TWI615501B (en) Gas flow control device, showerhead assembly, and semiconductor manufacturing apparatus
JP6739940B2 (en) Gas distribution ceramic plate with embedded electrodes
CN104838476B (en) For providing plasma to the device of processing chamber housing
JP2024069333A (en) Multi-plate electrostatic chuck with ceramic base plate
TWI726994B (en) 3d printed plasma arrestor for an electrostatic chuck
TWI595554B (en) Chemical control features in wafer process equipment
TWI490366B (en) Flow control features of cvd chambers
JP2020529124A (en) Monolithic ceramic gas distribution plate
US20130112337A1 (en) Shower plate, manufacturing method of the shower plate, and plasma processing apparatus using the shower plate
KR20140100435A (en) Method and apparatus for purging and plasma suppression in a process chamber
TW201448026A (en) Multi-plenum showerhead with temperature control
JP2011500961A (en) Chemical vapor deposition reactor
TW202338150A (en) Gas distribution plate for thermal deposition
CN113169023B (en) Shield plate for CVD reactor
WO2023054531A1 (en) Shower plate
JP2009516077A (en) ALD reaction vessel
JP6650808B2 (en) Holding device
TW202111763A (en) Methods and apparatus for dual channel showerheads
US11035040B2 (en) Showerhead and substrate processing apparatus
WO2020116250A1 (en) Plasma processing apparatus
JP2023046391A (en) System and apparatus for gas distribution
KR102500928B1 (en) Dual Plenum Fractal Showerhead
CN115852343A (en) Air inlet distribution mechanism and CVD reaction equipment with same
JP7170546B2 (en) sample holder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876397

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551811

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE