WO2023053502A1 - 作業機械 - Google Patents

作業機械 Download PDF

Info

Publication number
WO2023053502A1
WO2023053502A1 PCT/JP2022/011142 JP2022011142W WO2023053502A1 WO 2023053502 A1 WO2023053502 A1 WO 2023053502A1 JP 2022011142 W JP2022011142 W JP 2022011142W WO 2023053502 A1 WO2023053502 A1 WO 2023053502A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
estimated speed
hydraulic actuator
estimated
arbitration
Prior art date
Application number
PCT/JP2022/011142
Other languages
English (en)
French (fr)
Inventor
直也 ▲高▼川
賢人 熊谷
充彦 金濱
裕昭 天野
涼介 伊藤
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to EP22875385.1A priority Critical patent/EP4290021A1/en
Priority to JP2023551031A priority patent/JPWO2023053502A1/ja
Priority to US18/281,450 priority patent/US20240151003A1/en
Priority to CN202280020455.2A priority patent/CN116964283A/zh
Priority to KR1020237030605A priority patent/KR20230143178A/ko
Publication of WO2023053502A1 publication Critical patent/WO2023053502A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • E02F9/2228Control of flow rate; Load sensing arrangements using pressure-compensating valves including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2203Arrangements for controlling the attitude of actuators, e.g. speed, floating function
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • E02F9/2235Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/18Combined units comprising both motor and pump
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/40Special vehicles
    • B60Y2200/41Construction vehicles, e.g. graders, excavators
    • B60Y2200/412Excavators
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/327Directional control characterised by the type of actuation electrically or electronically

Definitions

  • the present invention relates to a working machine, and more particularly to a working machine that controls driving of hydraulic actuators.
  • a working device configured by connecting a plurality of driven members (link members) such as booms, arms, and buckets is driven by a plurality of hydraulic actuators.
  • link members such as booms, arms, and buckets
  • a plurality of hydraulic actuators As a technique for improving the work efficiency of a hydraulic excavator, an information-aided construction system is known that uses information-oriented communication technology to automatically or semi-automatically operate working equipment to perform work such as finish excavation. In an information-aided construction system, it is required to accurately control the tip (toe) of the bucket of the working device in order to improve the finishing accuracy of the construction surface with respect to the design surface. Therefore, in a hydraulic excavator, it is necessary to precisely control the driving speed of each hydraulic actuator that operates the working device and the flow rate of pressure oil flowing into each hydraulic actuator (hereinafter sometimes referred to as meter-in flow rate).
  • Patent Document 1 the technology described in Patent Document 1 is known as an example of a technique for controlling the operation of a work device with high precision.
  • the motion state quantity of the combined center of gravity of the work device By performing feedback control using the driving torque of the hydraulic actuator obtained from the actual measurement values such as the stroke length and pressure of each hydraulic actuator measured by the sensor, the motion state quantity of the composite center of gravity of the work equipment is controlled to follow the target value.
  • Patent Document 2 As another example of a technique for controlling the operation of a working device with high precision, for example, the technique described in Patent Document 2 is known.
  • the displacement of the spool of the control valve detected by the spool displacement sensor attached to the control valve that controls the flow rate of hydraulic oil flowing from the hydraulic pump to the hydraulic actuator is used to pass through the control valve.
  • the flow rate through the control valve that is, the meter-in flow rate of the hydraulic actuator
  • the speed of the hydraulic actuator to be applied deviates greatly from the target value corresponding to the amount of operation of the operating device.
  • the correction amount of the feedback control becomes excessive, and the hydraulic actuator tends to protrude or hunt.
  • the hydraulic actuator cannot be controlled. There is concern that the stability of
  • the flow rate through the control valve (the meter-in flow rate of the hydraulic actuator) estimated based on the detection value of the spool displacement sensor is fed back to set the meter-in flow rate to the target value.
  • the control amount (correction amount) can be determined by predicting the future drive state of the hydraulic actuator. Therefore, even if an operation with a large operation amount and a fast start-up is input, it is possible to correct the meter-in flow rate before the hydraulic actuator actually starts moving. It is possible to suppress protrusion and hunting.
  • the present invention has been made to solve the above problems, and its object is to enable highly accurate control of the hydraulic actuator while ensuring the stability of the control when the hydraulic actuator starts to move. It is to provide the machine.
  • the present application includes multiple means for solving the above problems.
  • a hydraulic pump that discharges pressure oil
  • a hydraulic actuator that is driven by pressure oil supplied from the hydraulic pump, and a flow of pressure oil that is supplied from the hydraulic pump to the hydraulic actuator is controlled.
  • a directional control valve a driven member operated by driving the hydraulic actuator, an operation device for outputting an operation signal instructing the operation of the driven member, and a first detection device for detecting operation information of the driven member.
  • a second detection device for detecting information related to the flow rate of pressure oil supplied to the hydraulic actuator via the direction control valve; and a controller for controlling driving of the hydraulic pump and the direction control valve.
  • the controller calculates a required speed of the hydraulic actuator based on the operation signal of the operating device, and calculates the speed of the hydraulic actuator estimated based on the detection value of the first detection device as a first Calculate as an estimated speed, calculate the speed of the hydraulic actuator estimated based on the detection value of the second detection device as a second estimated speed, and calculate the first estimated speed and the second estimated speed as the hydraulic actuator to calculate an arbitration speed by arbitrating according to the drive state of the controller, and to control the driving of the hydraulic pump and the directional control valve based on the deviation between the requested speed and the arbitration speed;
  • the arbitration speed when it is possible to determine that the driving state of the hydraulic actuator is in the starting state based on the first estimated speed, the degree of influence on the second estimated speed is the influence on the first estimated speed.
  • the first estimated speed Arbitration is performed so that the degree of influence on speed is greater than the degree of influence on the second estimated speed.
  • the drive of the hydraulic actuator when the drive state of the hydraulic actuator starts to move, the drive of the hydraulic actuator is controlled using the second estimated speed that predicts the future drive state of the hydraulic actuator. It is possible to prevent the hydraulic actuator from popping out or hunting due to the response delay of the hydraulic actuator. Further, when the drive of the hydraulic actuator is approaching a steady state, the first estimated speed derived based on the actual drive state of the hydraulic actuator is used to control the drive of the hydraulic actuator. Driving of the hydraulic actuator can be controlled with higher accuracy than when using the second estimated speed, which is inferior in accuracy. That is, it is possible to control the hydraulic actuator with high accuracy while ensuring the stability of the control when the hydraulic actuator starts to move. Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
  • FIG. 1 is an external view showing a hydraulic excavator as a first embodiment of a working machine of the present invention
  • FIG. 1 is a circuit diagram showing a hydraulic system provided in a working machine according to a first embodiment of the present invention
  • FIG. 3 is a functional block diagram of a controller that controls the hydraulic system of the first embodiment of the work machine of the present invention shown in FIG. 2
  • FIG. 4 is a flow chart showing an example of a control procedure of the controller of the first embodiment of the working machine of the present invention shown in FIG. 3
  • FIG. FIG. 4 is a diagram showing an example of temporal changes in calculation results of various estimated speeds of a hydraulic actuator by a controller with respect to inputs of an operation device in the first embodiment of the working machine of the present invention
  • FIG. 6 is a functional block diagram of a controller that constitutes a second embodiment of the working machine of the present invention
  • FIG. 7 is a flow chart showing an example of a control procedure of the controller of the second embodiment of the work machine of the present invention shown in FIG. 6
  • FIG. 9 is a diagram showing an example of temporal changes in calculation results of various estimated speeds of a hydraulic actuator by a controller with respect to inputs of an operation device in the second embodiment of the working machine of the present invention
  • FIG. 1 is an external view showing a hydraulic excavator as a first embodiment of the working machine of the present invention.
  • the directions viewed from the operator seated in the driver's seat will be described.
  • a hydraulic excavator as a working machine includes a self-propelled lower traveling body 1, an upper revolving body 2 rotatably mounted on the lower traveling body 1, and a front portion of the upper revolving body 2 that can be raised and lowered. and a front working device 3 provided as possible.
  • the upper revolving structure 2 is driven to revolve relative to the lower traveling structure 1 by a revolving device 4 including a revolving hydraulic motor, which is a hydraulic actuator.
  • the upper revolving body 2 constitutes the body of the hydraulic excavator.
  • the lower traveling body 1 has, for example, crawler-type traveling devices 11 (only the left side is shown in FIG. 1) on both left and right sides.
  • the left and right traveling devices 11 are respectively driven by traveling hydraulic motors 12, which are hydraulic actuators.
  • the upper revolving structure 2 includes a revolving frame 14 as a support structure mounted rotatably on the lower traveling structure 1 , a cab 15 installed on the left front side of the revolving frame 14 , and a rear end portion of the revolving frame 14 . and a machine room 17 provided between the cab 15 and the counterweight 16 .
  • a driver's seat (not shown) in which an operator sits, an operating device 58 (see FIG. 2 which will be described later), and the like.
  • the counterweight 16 is for balancing the weight with the front working device 3 .
  • the machine room 17 accommodates various devices such as a prime mover (not shown), a hydraulic pump 31 described later (see FIG. 2 described later), and a control valve unit 33 including a control valve 332 described later (see FIG. 2 described later). are doing.
  • the front work device 3 is for performing various works such as excavation work, and is, for example, a multi-joint type work device configured by connecting a plurality of driven members so as to be rotatable in the vertical direction.
  • the plurality of driven members are composed of, for example, a boom 19, an arm 20, and a bucket 21 as a working tool.
  • the base end of the boom 19 is supported by the front portion of the revolving frame 14 of the upper revolving body 2 so as to be vertically rotatable.
  • a base end of an arm 20 is supported at a tip of the boom 19 so as to be vertically rotatable.
  • a base end of a bucket 21 is supported by the tip of the arm 20 so as to be vertically rotatable.
  • the boom 19, the arm 20, and the bucket 21 are operated by driving a boom cylinder 22, an arm cylinder 23, and a bucket cylinder 24, which are hydraulic actuators, respectively.
  • the upper revolving structure 2 has a first attitude detection device 26 for detecting physical quantities (attitude information) relating to the attitude of the upper revolving structure 2 (body) and a second attitude detection device for detecting the revolving speed and turning angle of the upper revolving body 2. 27 is installed.
  • the first attitude detection device 26 detects, for example, the inclination (pitch angle) in the longitudinal direction of the upper revolving body 2 and the lateral direction (width direction) of the upper revolving body 2 as physical quantities related to the attitude of the upper revolving body 2 (body). is to detect the inclination (roll angle) of the
  • the first attitude detection device 26 and the second attitude detection device 27 are composed of, for example, an inertial measurement unit (IMU).
  • the first attitude detection device 26 and the second attitude detection device 27 output detection signals corresponding to the detection values to the controller 60 (see FIG. 2, which will be described later).
  • the front work device 3 is provided with a third posture detection device 28 that detects a physical quantity (posture information) related to the posture of the front work device 3 and a physical quantity (motion information) related to the operating state of the front work device 3 .
  • the third posture detection device 28 is a plurality of posture sensors that detect physical quantities (posture information) relating to postures and physical quantities (motion information) relating to operating states of the boom 19, arm 20, and bucket 21, which are components of the front working device 3. 28a, 28b and 28c.
  • Each attitude sensor 28a, 28b, 28c is composed of, for example, an inertial measurement unit (IMU).
  • IMU inertial measurement unit
  • the third attitude detection device 28 (orientation sensors 28a, 28b, 28c) outputs a detection signal corresponding to the detected value to the controller 60 (see FIG. 2, which will be described later).
  • the orientation sensors 28a, 28b, and 28c constituting the third orientation detection device 28 may be capable of detecting orientation information and motion information of the driven members 19, 20, and 21 of the front working device 3. , an angle sensor, a stroke sensor, or the like.
  • the orientation sensors 28a, 28b, and 28c of the third orientation detection device 28 correspond to the "first detection device for detecting motion information of the driven member" recited in the claims.
  • FIG. 2 is a circuit diagram showing a hydraulic system provided in the first embodiment of the working machine of the present invention.
  • the hydraulic excavator includes a hydraulic system 30 that hydraulically operates a lower traveling body 1, an upper revolving body 2, and a front work device 3 (see FIG. 1 for both). 2, only the hydraulic circuit related to the boom cylinder 22 for operating the boom 19 of the front work device 3 is shown. Hydraulic circuits related to the swing hydraulic motor (swing device 4) that causes the front working device 3 to operate, and the arm cylinder 23 and the bucket cylinder 24 that operate the arm 20 and the bucket 21 of the front work device 3 are omitted.
  • the bleed-off valve for discharging the discharge flow rate of the hydraulic pump 31 to the hydraulic oil tank 36 which will be described later, when the operating device 58, which will be described later, is not operated, and various devices, which are not related to the present invention, are omitted.
  • the hydraulic system 30 includes a hydraulic pump 31 that is driven by a prime mover (not shown) to discharge pressure oil, and a hydraulic actuator 32 (boom cylinder 22 ) that is driven by the pressure oil supplied from the hydraulic pump 31 to operate the boom 19 . ) and a direction control valve 332 for controlling the flow (direction and flow rate) of pressure oil supplied from the hydraulic pump 31 to the hydraulic actuator 32 .
  • the prime mover is, for example, an engine or an electric motor.
  • the hydraulic pump 31 is, for example, a variable capacity pump and has a regulator that adjusts the pump capacity.
  • the regulator for example, adjusts the pump displacement according to a command signal from the controller 60, and includes a flow rate command pressure port 31a to which a pilot pressure as a flow rate command signal is input from a pilot hydraulic circuit 40, which will be described later.
  • the directional control valve 332 for the boom cylinder 22 constitutes part of the control valve unit 33 (see FIG. 1). That is, the control valve unit 33 is an assembly of directional control valves that control the flow (direction and flow rate) of pressure oil to each of the hydraulic actuators 12 , 22 , 23 , 24 .
  • the directional control valve 332 is, for example, of a hydraulic pilot type, and has a pair of command pressure ports 332a, 332b on both sides.
  • the directional control valve 332 is controlled in its drive (switching direction and stroke amount) by inputting a pilot secondary pressure generated in a pilot hydraulic circuit 40, which will be described later, to a pair of command pressure ports 332a and 332b.
  • the directional control valve 332 is connected to the discharge side of the hydraulic pump 31 via the pump line 37 .
  • the directional control valve 332 is also connected to the hydraulic actuator 32 (boom cylinder 22) via actuator lines 38,38.
  • the pump line 37 is connected to the hydraulic oil tank 36 via a relief line 39 branching off from the pump line 37 .
  • a relief valve 35 is provided on the relief line 39 .
  • the relief valve 35 defines the upper limit of the discharge pressure (main hydraulic circuit) of the hydraulic pump 31, and is configured to open when the discharge pressure of the hydraulic pump 31 exceeds a set pressure.
  • a check valve 34 is provided on the pump line 37 .
  • the check valve 34 is configured to allow pressure oil to flow from the hydraulic pump 31 to the directional control valve 332 while preventing pressure oil to flow from the directional control valve 332 to the hydraulic pump 31 . That is, the check valve 34 prevents backflow of pressure oil from the actuator lines 38 , 38 to the pump line 37 .
  • a first pressure sensor 51 that detects the discharge pressure of the hydraulic pump 31 is provided on the pump line 37 .
  • the first pressure sensor 51 outputs a pressure detection signal Pp corresponding to the detected discharge pressure of the hydraulic pump 31 to the controller 60 .
  • Second pressure sensors 52, 53 for detecting the pressure of the hydraulic actuator 32 (driving pressure of the boom cylinder 22) are provided on the actuator lines 38, 38, respectively.
  • the second pressure sensors 52 and 53 output a pressure detection signal Ps corresponding to the detected pressure of the hydraulic actuator 32 to the controller 60 .
  • Second electromagnetic proportional valves 44 and 45 are provided to reduce pressure and generate pilot secondary pressure to be input to command pressure ports 332a and 332b of the directional control valve 332 .
  • An assembly of a plurality of proportional solenoid valves including the first proportional solenoid valve 43 and the second proportional solenoid valves 44 and 45 constitutes the solenoid valve unit 42 .
  • the pilot pump 41 generates pilot primary pressure, which is the source pressure of the pilot secondary pressure input to the regulator of the hydraulic pump 31 and the direction control valve 332, and is driven by a motor (not shown).
  • the pilot pump 41 is, for example, a fixed displacement pump.
  • the pilot pump 41 is connected via a pilot line 48 to a solenoid valve unit 42 including a first proportional solenoid valve 43 and second proportional solenoid valves 44 and 45 .
  • a pilot line 48 is connected to the hydraulic oil tank 36 via a pilot relief valve 47 .
  • the pilot relief valve 47 is configured to open when the discharge pressure (pilot primary pressure) of the pilot pump 41 exceeds a set pressure, and is for maintaining the pilot primary pressure at the set pressure.
  • the output side of the first electromagnetic proportional valve 43 is connected to the flow rate command pressure port 31 a of the regulator of the hydraulic pump 31 .
  • the output sides of the second proportional solenoid valves 44 and 45 are connected to command pressure ports 332a and 332b of the direction control valve 332, respectively.
  • the first proportional solenoid valve 43 and the second proportional solenoid valves 44 , 45 are connected to the hydraulic oil tank 36 via a pilot line 49 .
  • the solenoid portion 43a of the first electromagnetic proportional valve 43 is electrically connected to the controller 60, and receives the first valve command signal Cp from the controller 60.
  • the solenoid portions 44a, 45a of the second electromagnetic proportional valves 44, 45 are electrically connected to the controller 60, and the second valve command signal Cv from the controller 60 is input.
  • Current sensors 55 and 56 are provided to detect the current from the controller 60 to the solenoid portions 44a and 45a of the second proportional electromagnetic valves 44 and 45 as the second valve command signal Cv.
  • the controller 60 is electrically connected to an operation device 58 that instructs the operation of the boom 19 or the like that is the driven member of the front working device 3 .
  • the operation device 58 is, for example, an electric device, and outputs an operation signal corresponding to the input operation amount and operation direction to the controller 60 as an electric signal.
  • the operation device 58 is, for example, an operation lever device, and includes an operation lever 58a held by an operator and an electric power generator that detects the operation direction and the amount of operation of the operation lever 58a and generates an operation signal corresponding to the detected value as an electric signal. and a signal generator 58b.
  • the controller 60 controls the electromagnetic proportional valves 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44 based on the operation signal (electrical signal) from the operating device 58 and detection signals (detection values) from the sensors 28a (28), 51, 52, 53, 55, 56. By controlling the opening of 45, the driving of the hydraulic actuator 32 (boom cylinder 22) is finally controlled.
  • FIG. 3 is a functional block diagram of a controller that controls the hydraulic system of the first embodiment of the working machine of the present invention shown in FIG.
  • the controller 60 includes, for example, a storage device 61 made up of RAM, ROM, etc., and a processing device 62 made up of a CPU, MPU, etc., as a hardware configuration.
  • the storage device 61 preliminarily stores programs and various information necessary for controlling the pump volume (pump flow rate) of the hydraulic pump 31 and the driving of the direction control valve 332 .
  • the processing device 62 appropriately reads programs and various information from the storage device 61 and implements various functions by executing processes according to the programs.
  • the feature of the controller 60 of the present embodiment is that, roughly speaking, the speeds of the hydraulic actuators of the boom cylinder 22, the arm cylinder 23, and the bucket cylinder 24 are estimated using two types of techniques, and the two estimated speeds are calculated for each hydraulic actuator.
  • the arbitrated speed is calculated by arbitrating according to the driving state of each hydraulic actuator, and feedback control is performed based on the arbitrated speed of the calculation result, thereby controlling the drive (speed control) of each hydraulic actuator.
  • the drive control (speed control) of the boom cylinder 22 hydroaulic actuator 32
  • “Arbitration" is synonymous with signal arbitration, and means to adjust one speed relatively higher than the other speed and the other speed relatively lower than the other speed.
  • the controller 60 includes, as functions executed by the processing device 62, a required speed calculation unit 71, a first estimated speed calculation unit 72, a second estimated speed calculation unit 73, an estimated speed arbitration unit 74, a feedback controller (hereinafter referred to as FB control). 76 , a pump target flow rate calculator 77 , a pump flow rate controller 78 , and a directional control valve controller 79 .
  • FB control feedback controller
  • the required speed calculation unit 71 takes in the operation signal L from the operating device 58 and calculates the required speed Vs_R of the hydraulic actuator 32 (boom cylinder 22) based on the taken in operation signal L.
  • the requested speed calculator 71 can calculate the requested speed Vs_R by using, for example, a characteristic table that predefines the correspondence relationship between the operation amount of the operating device 58 and the speed of the hydraulic actuator (hydraulic cylinder).
  • the calculated required speed Vs_R is used by the FB controller 76 for calculation of feedback control, which will be described later.
  • the first estimated speed calculation unit 72 detects posture sensors 28a, 28b, and 28c of a third posture detection device 28 that detects posture information and motion information of the boom 19, arm 20, and bucket 21 that constitute the front working device 3.
  • the driving speed of the boom cylinder 22 that operates the boom 19 is estimated as a first estimated speed Vs_E1 based on the detected value Si of each of the posture sensors 28a, 28b, and 28c.
  • the first estimated speed Vs_E1 is Based on the geometrical relationship with each hydraulic actuator (boom cylinder 22, arm cylinder 23, bucket cylinder 24), the driving speed of each hydraulic actuator can be determined directly based on the actual operating state of the driven members 19, 20, 21. is the calculated value. Therefore, the first estimated speed Vs_E1 is a value obtained by estimating the actual driving state (driving speed) of the hydraulic actuator 32 (boom cylinder 22) with high accuracy.
  • the attitude sensors 28a, 28b, 28c output motion information in a stopped state until the driven members 19, 20, 21 of the front work device 3 actually start moving
  • the first estimated velocity Vs_E1 is The estimate is zero until the driven members 19, 20, 21 actually begin to move. Therefore, based on the first estimated speed Vs_E1 estimated from the detection values of the attitude sensors 28a, 28b, 28c, the movement of each of the driven members 19, 20, 21 of the front work device 3 is predicted and a control command is issued. It is impossible to adjust properly.
  • the second estimated speed calculation unit 73 calculates the detection value Pp of the first pressure sensor 51 (the discharge pressure of the hydraulic pump 31), the detection value Ps of the second pressure sensors 52 and 53 (the pressure of the hydraulic actuator 32), the current sensor 55, 56 detection value Iv (current value as a second valve command signal to the second electromagnetic proportional valves 44 and 45) is taken in, and based on the detection values of the sensors 51, 52, 53, 55, and 56 taken in, the hydraulic actuator 32 is estimated as the second estimated speed Vs_E2.
  • the differential pressure across the directional control valve 332 is estimated from the difference between the discharge pressure of the hydraulic pump 31 (detected value Pp of the first pressure sensor 51) and the pressure of the hydraulic actuator 32 (detected value Ps of the second pressure sensors 52 and 53).
  • the degree of opening (opening area) of the directional control valve 332 can be estimated based on the current values to the second proportional solenoid valves 44 and 45 . It is possible to estimate the flow rate of pressure oil flowing from the direction control valve 332 to the hydraulic actuator 32 by using a hydrodynamic relational expression from the differential pressure across the direction control valve 332 and the opening area.
  • the second estimated speed Vs_E2 is calculated using, for example, the following formula (1).
  • Cd is the flow coefficient
  • Av is the opening area of each directional control valve 332
  • As is the pressure receiving area of each hydraulic actuator 32 (boom cylinder 22)
  • ⁇ P is the differential pressure across each directional control valve 332
  • is hydraulic oil. shows the density of The flow coefficient Cd, the density ⁇ of hydraulic fluid, and the pressure receiving area As of the hydraulic actuator 32 (boom cylinder 22) are stored in the storage device 61 in advance.
  • the second estimated speed Vs_E2 is the drive speed of the hydraulic actuator 32 (boom cylinder 22) predicted from the flow rate (meter-in flow rate) of pressure oil supplied from the direction control valve 332 to the hydraulic actuator 32 (boom cylinder 22). That is, the second estimated speed Vs_E2 is not estimated based on the actual drive state of the hydraulic actuator 32 (boom cylinder 22), but is an estimated value that predicts the possible drive state of the hydraulic actuator 32 (boom cylinder 22). is. Therefore, based on the second estimated speed Vs_E2 estimated from the detection values of the sensors 51, 52, 53, 55, and 56 associated with the direction control valve 332, the driven members 19, 20, and 21 of the front work device 3 are calculated. It is possible to predict the operation of and appropriately adjust the control command.
  • the second estimated speed Vs_E2 is an estimated value obtained by using a hydrodynamic relational expression, the estimation accuracy is likely to be lowered due to disturbances such as oil temperature and cavitation, and sensor detection accuracy. Therefore, the second estimated speed Vs_E2 tends to be inferior to the first estimated speed Vs_E1 in estimation accuracy.
  • the first pressure sensor 51, the second pressure sensors 52 and 53, and the current sensors 55 and 56 are related to the flow rate of pressure oil supplied to the hydraulic actuator 32 via the direction control valve 332.
  • the estimated speed arbitration unit 74 calculates the first estimated speed Vs_E1 of the hydraulic actuator 32 (boom cylinder 22), which is the calculation result of the first estimated speed calculation unit 72, and the hydraulic actuator, which is the calculation result of the second estimated speed calculation unit 73.
  • the arbitration speed Vs_Ar of the hydraulic actuator 32 (boom cylinder 22) is calculated using the second estimated speed Vs_E2 of 32 (boom cylinder 22).
  • the estimated speed mediation unit 74 mediates the first estimated speed Vs_E1 and the second estimated speed Vs_E2 according to the drive state of the hydraulic actuator 32. By doing so, the arbitration speed Vs_Ar is calculated.
  • the arbitration speed Vs_Ar is calculated using, for example, the following formulas (2) to (4).
  • Vs_E1 is the first estimated speed
  • Vs_E2 is the second estimated speed
  • Vs_R is the requested speed.
  • ⁇ derived from equation (3) and ⁇ derived from equation (4) are weights for arbitrating the first estimated speed Vs_E1 and the second estimated speed Vs_E2.
  • the coefficient ⁇ is basically a weight that reflects whether or not the driving state of the hydraulic actuator 32 (boom cylinder 22) is in the state of starting to move. That is, it functions as an index that can determine whether the hydraulic actuator 32 is in a state of starting movement.
  • the coefficient ⁇ also serves as a weight that reflects that the driving state of the hydraulic actuator 32 (boom cylinder 22) has shifted from the starting state to exceed a predetermined state and is approaching a steady state. is.
  • the coefficient ⁇ is a weight that more reliably reflects whether or not the driving state of the hydraulic actuator 32 (boom cylinder 22) exceeds a predetermined state and approaches a steady state than the coefficient ⁇ . is. In other words, it functions as an index that can more reliably determine whether the hydraulic actuator 32 is in a state of exceeding a predetermined state and approaching a steady state.
  • the coefficient ⁇ is further used to arbitrate between the first estimated speed Vs_E1 and the second estimated speed Vs_E2.
  • the actual driving state of the hydraulic actuator 32 corresponds to the operation of the operating device 58. It means that the speed is close to the requested speed Vs_R.
  • This state is when the actual driving state of the hydraulic actuator 32 (boom cylinder 22) appropriately follows the control target value.
  • the weight ⁇ of the second estimated speed Vs_E2 is reduced, while the weight of the first estimated speed Vs_E1 is relatively increased.
  • the FB controller 76 arbitrates the requested speed Vs_R based on the requested speed Vs_R of the hydraulic actuator 32 which is the calculation result of the requested speed calculation unit 71 and the arbitration speed Vs_Ar of the hydraulic actuator 32 which is the calculation result of the estimated speed arbitration unit 74.
  • a target speed Vs_T of the hydraulic actuator 32 is calculated to correct the control command so that the speed deviation of the speed Vs_Ar is reduced.
  • the target speed Vs_T is calculated based on the speed deviation between the required speed Vs_R and the arbitration speed Vs_Ar using, for example, a PID control calculation method.
  • the pump target flow rate calculation unit 77 calculates the pump target flow rate Qp of the hydraulic pump 31 based on the target speed Vs_T of the hydraulic actuator 32 that is the calculation result of the FB controller 76 . In calculating the pump target flow rate Qp, design specifications of the hydraulic actuator 32 stored in advance in the storage device 61 are also used.
  • the pump flow rate control section 78 calculates the first valve command signal Cp for the first electromagnetic proportional valve 43 according to the pump target flow rate Qp, which is the calculation result of the pump target flow rate calculation section 77 .
  • the pump flow rate control unit 78 calculates the first valve command signal Cp by using, for example, a characteristic table that predefines the correspondence relationship between the pump target flow rate Qp and the first valve command signal Cp for the first electromagnetic proportional valve 43. is possible.
  • the pump flow rate control section 78 outputs the first valve command signal Cp to the first electromagnetic proportional valve 43 .
  • the directional control valve control unit 79 calculates a second valve command signal Cv for the second electromagnetic proportional valves 44 and 45 according to the target speed Vs_T of the hydraulic actuator 32, which is the calculation result of the FB controller 76.
  • the directional control valve control unit 79 uses, for example, a characteristic table that predefines the correspondence relationship between the target speed Vs_T and the second valve command signal Cv for the second proportional solenoid valves 44 and 45 so that the second valve command signal Cv can be calculated.
  • the direction control valve control section 79 outputs the second valve command signal Cv to the second electromagnetic proportional valves 44 and 45 .
  • step S10 the controller 60 shown in FIG. 3 first determines whether or not there is an operation input to the operation device 58 (input of an operation signal from the operation device 58) (step S10). If there is an operation input from the operation device 58, that is, if an operation signal is input (YES), the process proceeds to step S20. On the other hand, if there is no operation signal input (NO), the process returns to step S10 and repeats step S10 until YES.
  • the required speed calculation unit 71 of the controller 60 calculates the required speed Vs_R of each hydraulic actuator 32 based on the operation signal L (operation input amount) from the operation device 58 (step S20).
  • the requested speed calculation unit 71 calculates the requested speed Vs_R using, for example, a characteristic table that predefines the correspondence relationship between the operation input amount and the speed of the hydraulic actuator.
  • the first estimated speed calculation unit 72 of the controller 60 detects the detected values Si of the attitude sensors 28a, 28b, and 28c of the third attitude detection device 28 (the attitude information of the driven members 19, 20, and 21 of the front work device 3). and operation information), the driving speed of each hydraulic actuator 32 is calculated as a first estimated speed Vs_E1 (step S30).
  • the first estimated speed Vs_E1 is directly calculated from the geometric relationship of the driven members 19, 20, and 21 based on the actual movement information of the driven members 19, 20, and 21 of the front work device 3. , 20 and 21 are estimated values.
  • the second estimated speed calculator 73 of the controller 60 calculates the discharge pressure of the hydraulic pump 31, which is the detection value Pp of the first pressure sensor 51, and the pressure of the hydraulic actuator 32, which is the detection value Ps of the second pressure sensors 52 and 53.
  • the current value as the second valve command signal Cv to the second electromagnetic proportional valves 44, 45, which is the detection value Iv of the current sensors 55, 56, the driving speed of each hydraulic actuator 32 is set as the second estimated speed Vs_E2.
  • the second estimated speed calculator 73 calculates the second estimated speed Vs_E2 by using, for example, Equation (1), which is a hydrodynamic relational expression.
  • the second estimated speed Vs_E2 is an estimated value of the drive speed of each hydraulic actuator 32 predicted based on the flow rate of pressure oil supplied to the hydraulic actuators 32 via the direction control valve 332 .
  • the estimated speed arbitration unit 74 of the controller 60 uses the first estimated speed Vs_E1 that is the calculation result of the first estimated speed calculation unit 72 and the second estimated speed Vs_E2 that is the calculation result of the second estimated speed calculation unit 73.
  • An arbitration speed Vs_Ar of each hydraulic actuator 32 is calculated (step S50).
  • the estimated speed arbitration unit 74 arbitrates the first estimated speed Vs_E1 and the second estimated speed Vs_E2 according to the driving state of each hydraulic actuator 32 by using the above-described formulas (2) to (4), for example. Calculate the velocity Vs_Ar.
  • the weight ⁇ of the second estimated speed Vs_E2 becomes small, while the weight of the first estimated speed Vs_E1 becomes relatively large.
  • the weight ⁇ of the second estimated speed Vs_E2 increases, while the weight of the first estimated speed Vs_E1 relatively decreases.
  • the FB controller 76 of the controller 60 calculates the target speed Vs_T of the hydraulic actuator 32 based on the requested speed Vs_R, which is the calculation result of the requested speed calculation unit 71, and the arbitration speed Vs_Ar, which is the calculation result of the estimated speed adjustment unit 74. is calculated (step S60).
  • the target speed Vs_T is, for example, a target value (control amount) for correcting the control command so as to reduce the speed deviation between the requested speed Vs_R and the arbitration speed Vs_Ar.
  • the pump target flow rate calculation unit 77 of the controller 60 calculates the pump target flow rate Qp of the hydraulic pump 31 based on the target speed Vs_T of each hydraulic actuator 32, which is the calculation result of the FB controller 76 (step S70). . Further, the pump flow rate control section 78 of the controller 60 calculates the first valve command signal Cp for the first electromagnetic proportional valve 43 according to the pump target flow rate Qp of the hydraulic pump 31, which is the calculation result of the pump target flow rate calculation section 77. , the first valve command signal Cp is output to the first electromagnetic proportional valve 43 (step S80).
  • the first electromagnetic proportional valve 43 shown in FIG. By inputting the pilot secondary pressure generated by the first electromagnetic proportional valve 43 to the fluid pressure port 31a of the regulator of the hydraulic pump 31, the pump flow rate (pump volume) of the hydraulic pump 31 is calculated by the controller 60. It is adjusted to the target flow rate Qp.
  • the directional control valve control section 79 of the controller 60 calculates the second valve command signal Cv for the second electromagnetic proportional valves 44 and 45 according to the target speed Vs_T of each hydraulic actuator 32 which is the calculation result of the FB controller 76. Then, the second valve command signal Cv is output to the second electromagnetic proportional valves 44, 45 (step S90). Thereby, the second electromagnetic proportional valves 44 and 45 shown in FIG.
  • the pilot secondary pressure generated by the second electromagnetic proportional valves 44, 45 is input to the command pressure ports 332a, 332b of the direction control valve 332, thereby controlling the opening area (opening degree) of the direction control valve 332, As a result, the flow rate (meter-in flow rate) of pressure oil supplied to the hydraulic actuator 32 via the direction control valve 332 is controlled to the target speed Vs_T of the hydraulic actuator 32 calculated by the controller 60 .
  • step S80 When the controller 60 finishes outputting the first valve command signal Cp to the first proportional solenoid valve 43 (step S80) and outputting the second valve command signal Cv to the second proportional solenoid valves 44 and 45 (step S90), , returns to start a new control cycle. That is, the controller 60 re-executes the control cycle composed of steps S10 to S90 shown in FIG. 4, and repeats this.
  • FIG. 5 is a diagram showing an example of temporal changes in calculation results of various estimated speeds of the hydraulic actuator by the controller with respect to the input of the operation device in the first embodiment of the working machine of the present invention.
  • the upper diagram shows an example of temporal changes in the amount of operation input to the operating device
  • the lower diagram shows an example of temporal changes in various speeds of the boom cylinder, which are the calculation results of the controller for the operation input amounts shown in the upper diagram.
  • a stepwise operation input (solid line in the upper diagram of FIG. 5) is started on the operating device 58 shown in FIG.
  • the controller 60 shown in FIG. 3 calculates the required speed Vs_R (the long dashed line in the lower diagram of FIG. 5) of the boom cylinder 22 according to the operation input amount L from the operation device 58.
  • the controller 60 outputs command signals to the hydraulic pump 31 and the direction control valve 332 based on the requested speed Vs_R.
  • the directional control valve 332 shown in FIG. By opening according to , pressure oil is supplied from the hydraulic pump 31 to the hydraulic actuator 32 (boom cylinder 22 ) via the direction control valve 332 . Therefore, the detection value Pp of the first pressure sensor 51, the detection value Ps of the second pressure sensors 52 and 53 (differential pressure across the direction control valve 332), and the detection value Iv of the current sensors 55 and 56 (the pressure difference of the direction control valve 332) The second estimated speed Vs_E2 calculated by the controller 60 based on the opening area) becomes a non-zero value.
  • the boom cylinder 22 applies a driving force to the stopped boom 19 having a large mass, but the boom 19 remains stopped due to inertia or the like. Therefore, the attitude sensor 28a of the third attitude detection device 28 detects the driving state of the boom cylinder 22 as the stopped state. Therefore, the first estimated velocity Vs_E1 calculated by the controller 60 based on the detection value Si of the third posture detection device 28 becomes 0 (zero). As a result, the arbitration speed Vs_Ar calculated by the controller 60 based on the first estimated speed Vs_E1 and the second estimated speed Vs_E2 becomes the same value as the second estimated speed Vs_E2.
  • the position sensor 28a of the third position detection device 28 detects that the boom cylinder 22 is stopped.
  • the weights ⁇ and ⁇ of the second estimated speed Vs_E2 are 1, while the weight of the first estimated speed Vs_E1 is 0.
  • the boom 19 has shifted to a state in which it is actually operating. That is, the attitude sensor 28 a of the third attitude detection device 28 detects the actual driving of the boom cylinder 22 . Therefore, the first estimated velocity Vs_E1 becomes a value corresponding to the detection value Si of the third posture detection device 28.
  • the second estimated speed Vs_E2 is the detection value Pp of the first pressure sensor 51 and the detection value Ps of the second pressure sensors 52 and 53 (differential pressure across the direction control valve 332) and the current It becomes a value corresponding to the detection value Iv of the sensors 55 and 56 (the opening area of the direction control valve 332).
  • the arbitration speed Vs_Ar is a value obtained by arbitrating the first estimated speed Vs_E1 and the second estimated speed Vs_E2 according to the weights ⁇ and ⁇ shown in the above equations (2) to (4). Immediately after the boom cylinder 22 starts to move like time T3, the difference between the second estimated speed Vs_E2 and the first estimated speed Vs_E1 is large. Therefore, the arbitration speed Vs_Ar is calculated so that the weight ⁇ of the second estimated speed Vs_E2 is increased while the weight of the first estimated speed Vs_E1 is relatively decreased.
  • the first estimated speed Vs_E1 calculated based on the detection value Si of the third posture detection device 28 is close to the required speed Vs_R corresponding to the amount of operation input. value. That is, the boom cylinder 22 is in a driving state that is extremely close to a steady state.
  • the weight ⁇ of the second estimated speed Vs_E2 becomes small, while the weight of the first estimated speed Vs_E1 becomes relatively large. Therefore, the arbitration speed Vs_Ar is arbitrated so that the component of the first estimated speed Vs_E1 is the majority and the component of the second estimated speed Vs_E2 is hardly included.
  • the flow rate of the pressure oil supplied to the boom cylinder 22 via the direction control valve 332 is Drive control of the boom cylinder 22 is performed mainly using the second estimated speed Vs_E2 of the boom cylinder 22 predicted based on . Since the response delay of the boom cylinder 22 due to the inertia of the boom 19 has a large effect immediately after the start of the operation input, it is better to use the second estimated speed Vs_E2 so that the actual drive state (substantially stopped state) of the boom cylinder 22 can be obtained.
  • the divergence from the required speed Vs_R corresponding to the operation input can be suppressed more than when using the first estimated speed Vs_E1 of the boom cylinder 22 calculated based thereon. Therefore, it is possible to prevent the boom cylinder 22 from protruding or hunting due to an excessive correction amount of the feedback control.
  • the first position of the boom cylinder 22 calculated based on the detection value of the attitude sensor 28a that detects the actual driving state of the boom cylinder 22 is calculated.
  • Drive control of the boom cylinder 22 is performed mainly using the estimated speed Vs_E1. Since the first estimated speed Vs_E1 is for estimating the driving speed of the boom cylinder 22 based on the actual driving state of the boom cylinder 22, a highly accurate estimated value can be obtained.
  • the second estimated speed Vs_E2 estimates the drive speed of the boom cylinder 22 via a hydrodynamic relational expression, and therefore tends to be inferior in estimation accuracy to the first estimated speed Vs_E1.
  • the boom cylinder 22 when the boom cylinder 22 is in a state close to the driving state corresponding to the operation of the operation device 58, the boom is driven mainly using the first estimated speed Vs_E1, which is an estimated value with higher accuracy than the second estimated speed Vs_E2. Since the cylinder 22 is controlled, highly accurate speed control of the boom cylinder 22 can be achieved.
  • the weighting of the first estimated speed Vs_E1 and the weighting of the second estimated speed Vs_E2 are relatively increased or decreased according to the driving state of the hydraulic actuator 32 (transition from the starting state to the steady state).
  • the arbitration speed Vs_Ar of the hydraulic actuator 32 is calculated. Therefore, since the arbitration speed Vs_Ar does not switch instantaneously between the value of the first estimated speed Vs_E1 and the second estimated speed Vs_E2, it is possible to obtain a calculation result of continuous change. Therefore, control based on the arbitration speed Vs_Ar can ensure control stability.
  • An example of the operation of the hydraulic excavator in which the action and effect of the present embodiment are exhibited is the operation of loading earth and sand after excavation.
  • a case is assumed in which earth and sand excavated by the bucket 21 is turned and lifted by raising the boom before being loaded onto a dump truck. Hydraulic excavator operators are expected to input a large amount of operation at an early rise after excavation in order to shorten the work time (see the upper diagram in FIG. 5). In this case, the time (time) when the first estimated speed Vs_E1 of the boom cylinder 22 rises is later than the time (time) when the second estimated speed Vs_E2 rises.
  • the calculation of the arbitration speed Vs_Ar by the controller 60 is performed when the degree ⁇ of the deviation of the first estimated speed Vs_E1 from the second estimated speed Vs_E2 is large. As the speed increases, the weight for the second estimated speed Vs_E2 increases, while the weight for the first estimated speed Vs_E1 relatively decreases.
  • the weighting of the second estimated speed Vs_E2 is made larger than the weighting of the first estimated speed Vs_E1, thereby predicting the future drive state of the hydraulic actuator 32. Since the driving of the hydraulic actuator 32 is controlled using the arbitration speed Vs_Ar whose main component is the second estimated speed Vs_E2, the control is unstable due to the influence of the response delay of the hydraulic actuator 32 caused by the inertia of the front work device 3. Qualitative (hunting, etc.) can be suppressed.
  • the weighting of the first estimated speed Vs_E1 is increased, while the weighting of the second estimated speed Vs_E2 is relatively decreased.
  • the drive of the hydraulic actuator 32 is controlled using the arbitration speed whose main component is the first estimated speed Vs_E1 derived based on the actual driving state of the hydraulic actuator 32. Therefore, the first estimated speed Vs_E1 It is possible to control the drive of the hydraulic actuator 32 with higher accuracy than when using the second estimated speed Vs_E2, which is inferior in estimation accuracy. That is, it is possible to control the hydraulic actuator 32 with high accuracy while ensuring the stability of the control when the hydraulic actuator 32 starts to move.
  • the arbitration speed Vs_Ar continuously changes by arbitrating so that the weighting for the first estimated speed Vs_E1 and the weighting for the second estimated speed Vs_E2 are relatively changed according to the increase or decrease in the degree of divergence ⁇ . Therefore, the stability of control using the arbitration speed Vs_Ar can be ensured.
  • the calculation of the arbitration speed Vs_Ar by the controller 60 increases the weight of the first estimated speed Vs_E1 as the degree of divergence ⁇ of the first estimated speed Vs_E1 from the required speed Vs_R decreases. Arbitration is performed so that the weight for the second estimated speed Vs_E2 is relatively small.
  • the weight ⁇ for the second estimated speed Vs_E2 is decreased, while the weight for the first estimated speed Vs_E1 is relatively increased.
  • the driving of the hydraulic actuator 32 is controlled using the arbitration speed whose main component is the first estimated speed Vs_E1 derived based on the actual driving state of the hydraulic actuator 32. Therefore, it is possible to control the driving of the hydraulic actuator 32 with higher accuracy than when using the second estimated speed Vs_E2 whose estimation accuracy is inferior to that of the first estimated speed Vs_E1.
  • FIG. 6 is a functional block diagram of a controller that constitutes a second embodiment of the working machine of the present invention.
  • the drive control (speed control) of the boom cylinder 22 (hydraulic actuator 32) will be described, but the drive control (speed control) of the arm cylinder 23 and the bucket cylinder 24 is the same.
  • the second embodiment of the work machine of the present invention differs from the first embodiment in that the first estimated speed Vs_E1 and the second estimated speed Vs_E1 of the estimated speed adjustment section 74A in the controller 60A shown in FIG.
  • the difference is the arbitration method for Vs_E2 (calculation method for the arbitration speed Vs_Ar).
  • Estimated speed arbitration unit 74 of controller 60 according to the first embodiment uses two coefficients of weight ⁇ and weight ⁇ for first estimated speed Vs_E1 and second estimated speed Vs_E2 to estimate first estimated speed Vs_E1.
  • the arbitration speed Vs_Ar is calculated by continuously changing and arbitrating the ratio and the ratio of the second estimated speed Vs_E2.
  • estimated speed arbitration unit 74A basically adjusts first estimated speed Vs_E1 and second The arbitrated speed Vs_Ar is calculated by arbitrating the first estimated speed Vs_E1 and the second estimated speed Vs_E2 so as to switch to one of the two estimated speeds Vs_E2. That is, the estimated speed adjusting unit 74A sets the weight to 1 for either the first estimated speed Vs_E1 or the second estimated speed Vs_E2 based on the magnitude relationship between the first estimated speed Vs_E1 and the threshold ⁇ , and sets the weight to 1 for the other.
  • the estimated speed arbitration unit 74A of the controller 60A first determines whether or not the first estimated speed Vs_E1, which is the calculation result of the first estimated speed calculation unit 72, has reached the threshold value ⁇ .
  • the hydraulic actuator 32 boost cylinder 22
  • the hydraulic actuator 32 decelerating, it is determined whether or not the first estimated speed Vs_E1 is equal to or less than the threshold value ⁇ .
  • the threshold value ⁇ is set, for example, to a value that is 80% of the requested speed Vs_R, which is the calculation result of the requested speed calculator 71 .
  • This threshold value ⁇ is set to a state in which it is assumed that the driving state of the hydraulic actuator 32 has shifted from the start-up state, exceeded a predetermined state, and is approaching a steady state.
  • the attitude sensors 28a, 28b, and 28c of the third attitude detection device 28 are substantially affected by the response delay of the hydraulic actuator 32 caused by the inertia of the driven members 19, 20, and 21 of the front working device 3.
  • a state is set in which the driving state of the hydraulic actuator 32 can be detected without any delay.
  • the estimated speed arbitration unit 74A calculates the second estimated speed Vs_E2, which is the calculation result of the second estimated speed calculation unit 73, as the arbitration speed Vs_Ar. That is, arbitration is performed so that the weight of the first estimated speed Vs_E1 is set to 0 and the weight of the second estimated speed Vs_E2 is set to 1.
  • the estimated speed arbitration unit 74A calculates a rate limit speed V_rlmt for limiting the amount of change in the calculation result of the arbitration speed Vs_Ar.
  • the first estimated speed Vs_E1 when the hydraulic actuator 32 (boom cylinder 22) is accelerating is equal to or higher than the calculated rate limit speed V_rlmt, or when the hydraulic actuator 32 (boom cylinder 22) is decelerating
  • the first estimated speed Vs_E1 when the vehicle is moving is equal to or lower than the rate limit speed V_rlmt
  • the first estimated speed Vs_E1 is calculated as the arbitration speed Vs_Ar. That is, arbitration is performed so that the weight of the first estimated speed Vs_E1 is set to 1, while the weight of the second estimated speed Vs_E2 is set to 0.
  • the rate limit speed V_rlmt is set to the arbitration speed Vs_Ar.
  • the estimated speed arbitration unit 74A basically switches the setting of the arbitration speed Vs_Ar to either the first estimated speed Vs_E1 or the second estimated speed Vs_E2 using the threshold ⁇ .
  • the rate limit speed V_rlmt is used to limit the amount of change when the arbitration speed Vs_Ar is switched.
  • the rate limit speed V_rlmt is calculated using the following equation (5).
  • Vs_E1 is the first estimated speed
  • Vs_E2 is the second estimated speed
  • R is the rate limit
  • t is the elapsed time since it was determined that the first estimated speed Vs_E1 reached the threshold value ⁇ .
  • the limit rate R is, for example, a preset fixed value and stored in advance in the storage device 61 .
  • FIG. 7 is a flow chart showing an example of the control procedure of the controller of the second embodiment of the working machine of the present invention shown in FIG.
  • the control procedure of the controller 60A of the second embodiment shown in FIG. 7 differs from the control procedure of the controller 60 of the first embodiment shown in FIG. is to execute the calculation procedure for the arbitration speed Vs_Ar in steps S42 to S56 instead of the calculation procedure for the arbitration speed Vs_Ar in step S42 to S56.
  • Other processing procedures, that is, steps S10 to S40 and S60 to S90 shown in FIG. 7 are the same as the processing procedures of the controller 60 of the first embodiment shown in FIG. 4, and descriptions thereof will be omitted. .
  • the controller 60A calculates the arbitration speed Vs_Ar by executing steps S42 to S56.
  • the estimated speed arbitration unit 74A of the controller 60A determines whether or not the first estimated speed Vs_E1 has reached the threshold value ⁇ (step S42).
  • the hydraulic actuator 32 When the hydraulic actuator 32 is accelerating, it is determined whether or not the first estimated speed Vs_E1 is equal to or greater than the threshold value ⁇ . If the hydraulic actuator 32 is decelerating, it is determined whether or not the first estimated speed Vs_E1 is equal to or less than the threshold value ⁇ . If the determination result is YES, the process proceeds to step S44, and if the determination result is NO, the process proceeds to step S52.
  • step S42 the estimated speed arbitration unit 74A calculates the second estimated speed Vs_E2, which is the calculation result of step S40, as the arbitration speed Vs_Ar (step S52). That is, arbitration is performed so that the weight of the first estimated speed Vs_E1 is set to 0 and the weight of the second estimated speed Vs_E2 is set to 1.
  • the estimated speed arbitration unit 74A calculates a rate limit speed V_rlmt for limiting the amount of change in the arbitration speed Vs_Ar (step S44).
  • the rate limit speed V_rlmt is calculated from the above equation (5) using, for example, the first estimated speed Vs_E1, the second estimated speed Vs_E2, the set value limit rate R, and the elapsed time t from the YES determination in step S42. calculated.
  • the estimated speed adjustment unit 74A determines whether or not the first estimated speed Vs_E1 is smaller than the rate limit speed V_rlmt (step S46). If the hydraulic actuator 32 is decelerating, it is determined whether or not the first estimated speed Vs_E1 is greater than the rate limit speed V_rlmt (step S46). If the determination result is YES, the process proceeds to step S54, and if the determination result is NO, the process proceeds to step S56.
  • step S46 the estimated speed arbitration unit 74A calculates the first estimated speed Vs_E1, which is the calculation result of step S30, as the arbitration speed Vs_Ar (step S56). That is, arbitration is performed so that the weight of the first estimated speed Vs_E1 is set to 1, while the weight of the second estimated speed Vs_E2 is set to 0.
  • step S46 the estimated speed arbitration unit 74A calculates the rate limit speed V_rlmt, which is the calculation result of step S44, as the arbitration speed Vs_Ar (step S54). This is arbitration so that the amount of change in the arbitration speed Vs_Ar at the time of switching is limited by the rate limit speed V_rlmt.
  • FIG. 8 is a diagram showing an example of temporal changes in calculation results of various estimated speeds of the hydraulic actuator by the controller with respect to the input of the operating device in the working machine according to the second embodiment of the present invention.
  • the upper diagram shows an example of temporal changes in the amount of operation input to the operating device
  • the lower diagram shows an example of temporal changes in various speeds of the boom cylinder, which are the calculation results of the controller for the amounts of operation input shown in the upper diagram.
  • the controller 60A shown in FIG. 6 calculates the required speed Vs_R (the long dashed line in the lower diagram of FIG. 8) of the boom cylinder 22 according to the operation input amount L from the operation device 58.
  • This requested speed Vs_R is the same as the requested speed Vs_R indicated by the long dashed line in the lower diagram of FIG. 5 in the case of the first embodiment.
  • the controller 60A outputs command signals to the hydraulic pump 31 and the direction control valve 332 based on the requested speed Vs_R.
  • the boom 19 is actually in operation, as at time T3 shown in FIG. 5 in the first embodiment. Therefore, since the third attitude detection device 28 detects the actual driving of the boom cylinder 22 , the first estimated velocity Vs_E1 becomes a value corresponding to the detection value Si of the third attitude detection device 28 . However, since it has not been long since the boom cylinder 22 has started to move, the first estimated speed Vs_E1 is a value smaller than the threshold value ⁇ . In this case, unlike the case of the first embodiment, the arbitration speed Vs_Ar is set to the second estimated speed Vs_E2. This is synonymous with arbitration so that the weight of the first estimated speed Vs_E1 is set to zero and the weight of the second estimated speed Vs_E2 is set to one.
  • the first estimated speed Vs_E1 is greater than the threshold ⁇ and is greater than the rate limit speed V_rlmt. Therefore, the arbitration speed Vs_Ar is set to the first estimated speed Vs_E1. That is, it is synonymous with arbitration so that the weight of the first estimated speed Vs_E1 is set to 1 and the weight of the second estimated speed Vs_E2 is set to 0.
  • the flow rate of the pressure oil supplied to the boom cylinder 22 via the direction control valve 332 is Drive control of the boom cylinder 22 is performed using only the second estimated speed Vs_E2 predicted based on.
  • the response delay of the boom cylinder 22 due to the inertia of the boom 19 has a large effect. Deviation from the required speed Vs_R according to the operation input can be suppressed more than when the estimated speed Vs_E1 is used. Therefore, it is possible to prevent the boom cylinder 22 from protruding or hunting due to an excessive correction amount of the feedback control.
  • the first estimated speed Vs_E1 calculated based on the detection value of the attitude sensor 28a that detects the actual driving state of the boom cylinder 22 is set to the first estimated speed Vs_E1.
  • the drive control of the boom cylinder 22 is performed. Since the first estimated speed Vs_E1 is for estimating the driving speed of the boom cylinder 22 based on the actual driving state of the boom cylinder 22, a highly accurate estimated value can be obtained.
  • the boom cylinder 22 when the boom cylinder 22 is close to the driving state corresponding to the operation of the operating device 58, the boom cylinder 22 is switched to the first estimated speed Vs_E1, which is an estimated value with higher precision than the second estimated speed Vs_E2. , the boom cylinder 22 can be controlled with high precision.
  • the change in the arbitration speed Vs_Ar at the time of switching can be made smooth. . Thereby, the stability of the control using the arbitration speed Vs_Ar can be ensured.
  • While the second estimated speed Vs_E2 is calculated as the arbitration speed Vs_Ar, when the first estimated speed Vs_E1 is equal to or greater than the threshold ⁇ during acceleration of the hydraulic actuator 32 or when the first estimated speed Vs_E1 is equal to or less than the threshold ⁇ during deceleration of the hydraulic actuator 32, calculates the first estimated speed Vs_E1 as the arbitration speed Vs_Ar.
  • the threshold ⁇ is set as a value that is a predetermined percentage of the requested speed Vs_R.
  • the calculation of the arbitration speed by the controller limits the amount of change before and after switching between the first estimated speed and the second estimated speed.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the described configurations.
  • it is possible to replace part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.
  • the current value of the second valve command signal Cv to the second proportional solenoid valves 44 and 45 is detected as a detector that detects a physical quantity related to the opening area of the directional control valve 332.
  • a detector that detects a physical quantity related to the opening area of the directional control valve 332.
  • An example of a configuration using current sensors 55 and 56 is shown.
  • the opening area of the direction control valve 332 can be estimated by calculating the amount of displacement of the spool of the direction control valve 332 based on the pilot pressure detected by the pressure sensor and the detection value of the spool displacement sensor.
  • the controller 60 calculates the arbitration speed Vs_Ar using the above equation (2). That is, an example of a configuration for calculating the arbitration speed Vs_Ar using two weights, the weight ⁇ defined by the above equation (3) and the weight ⁇ defined by the above equation (4), is shown.
  • the controller 60 can also be configured to calculate the arbitration speed Vs_Ar using only the weight ⁇ .
  • the control accuracy of the hydraulic actuator may be inferior to the case of using two coefficients of weight ⁇ and weight ⁇ .
  • the controller 60A is configured to calculate the arbitration speed Vs_Ar using the rate limit speed V_rlmt when the first estimated speed Vs_E1 reaches the threshold ⁇ . Indicated. However, without using the rate limit speed V_rlmt, the controller 60A selects either the first estimated speed Vs_E1 or the second estimated speed Vs_E2 according to the magnitude relationship between the first estimated speed Vs_E1 and the threshold value ⁇ (result of comparison determination). A configuration is possible in which the arbitration speed Vs_Ar is calculated so as to switch to one side.
  • the controllers 60, 60A calculate the required speed Vs_R of the hydraulic actuator 32 based on the operation signal of the operating device 58, and the hydraulic actuator 32 estimated based on the detection value of the third posture detection device 28 (first detection device).
  • the estimated speed of the hydraulic actuator 32 is calculated as a second estimated speed Vs_E2, and the first estimated speed Vs_E1 and the second estimated speed Vs_E2 are arbitrated according to the driving state of the hydraulic actuator 32 to calculate an arbitrated speed Vs_Ar.
  • the driving of the hydraulic pump 31 and the directional control valve 332 is controlled based on the deviation between the required speed Vs_R and the arbitration speed Vs_Ar.
  • the calculation of the arbitration speed Vs_Ar by the controllers 60 and 60A is such that when it is possible to determine that the driving state of the hydraulic actuator 32 is in the starting state based on the first estimated speed Vs_E1, the degree of influence on the second estimated speed Vs_E2 is While arbitrating so that the degree of influence on the first estimated speed Vs_E1 is greater than the degree of influence, if it can be determined based on the first estimated speed Vs_E1 that the drive state of the hydraulic actuator 32 exceeds a predetermined state and is approaching a steady state. arbitrates so that the degree of influence on the first estimated speed Vs_E1 is greater than the degree of influence on the second estimated speed Vs_E2.
  • the driving of the hydraulic actuator 32 is controlled using the second estimated speed Vs_E2 that predicts the future driving state of the hydraulic actuator 32 .
  • Vs_E2 the second estimated speed of the hydraulic actuator 32
  • the driving of the hydraulic actuator 32 is controlled using the first estimated speed Vs_E1 derived based on the actual driving state of the hydraulic actuator 32.
  • Driving of the hydraulic actuator 32 can be controlled with higher precision than when using the second estimated speed Vs_E2, which is inferior in estimation accuracy to the speed Vs_E1. That is, it is possible to control the hydraulic actuator 32 with high accuracy while ensuring the stability of the control when the hydraulic actuator 32 starts to move.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

作業機械のコントローラは、操作信号を基に油圧アクチュエータの要求速度を演算し、被駆動部材の動作情報を検出する第1検出装置の検出値を基に油圧アクチュエータの第1推定速度を演算し、方向制御弁の流量を検出する第2検出装置の検出値を基に油圧アクチュエータの第2推定速度を演算し、第1推定速度と第2推定速度を油圧アクチュエータの駆動状態に応じて調停して調停速度を演算し、要求速度と調停速度の偏差を基に方向制御弁を制御する。調停速度の演算は、油圧アクチュエータが動き出しの場合に第2推定速度の影響度が第1推定速度の影響度より大きくなるよう調停し、油圧アクチュエータの駆動が定常状態に近づいている場合に第1推定速度の影響度が第2推定速度の影響度より大きくなるよう調停する。

Description

作業機械
 本発明は、作業機械に係り、更に詳しくは、油圧アクチュエータの駆動を制御する作業機械に関する。
 油圧ショベルなどの作業機械では、ブームやアーム、バケットなどの複数の被駆動部材(リンク部材)を連結することで構成された作業装置を複数の油圧アクチュエータによって駆動している。油圧ショベルの作業効率を向上させる技術として、情報化通信技術を用いて作業装置を自動的又は半自動的に動作させて仕上げ掘削等の作業を行う情報化施工システムが知られている。情報化施工システムでは、設計面に対する施工面の仕上げ精度を高めるために、作業装置のバケット先端(爪先)を正確に制御することが求められている。そのため、油圧ショベルでは、作業装置を動作させる各油圧アクチュエータの駆動速度や各油圧アクチュエータに流入する圧油の流量(以下、メータイン流量と称することがある)を高精度に制御する必要がある。
 作業装置の動作を高精度に制御するための手法の一例として、例えば、特許文献1に記載の技術が知られている。特許文献1に記載の建設機械においては、作業装置の各部材(ブームやアームなど)の速度や角度、位置などを計測するセンサの実測値から得られた作業装置の合成重心の運動状態量(速度や位置)及びセンサよって計測された各油圧アクチュエータのストローク長や圧力などの実測値から得られた油圧アクチュエータの駆動トルクを用いてフィードバック制御を行うことで、作業装置の合成重心の運動状態量が目標値に追従するように制御されている。
 また、作業装置の動作を高精度に制御するための手法の別の例として、例えば、特許文献2に記載の技術が知られている。特許文献2に記載のショベルにおいては、油圧ポンプから油圧アクチュエータへ流れる作動油の流量を制御する制御弁に取り付けられたスプール変位センサによって検出された制御弁のスプールの変位を用いて制御弁を通過する作動油の流量(通過流量)を推定し、制御弁の通過流量の推定値をフィードバックすることで、制御弁の通過流量(すなわち、油圧アクチュエータのメータイン流量)が目標値に追従するように制御されている。
特開2020-033815号公報 特開2019-157521号公報
 特許文献1に記載の建設機械の制御のように、作業装置の速度や角度、位置などを計測するセンサ(例えば、作業装置の姿勢を検出可能な姿勢センサ)の実測値から直接的に導き出される油圧アクチュエータの速度をフィードバックすることで油圧アクチュエータの速度を目標値に追従させる制御を実行する場合、原理的に、油圧アクチュエータ(作業装置)の実際の駆動状態に応じて制御量(補正量)を決定するものである。このため、操作装置に操作量が大きく立ち上がりの早い操作が入力されると、作業装置の動き出しのときに、作業装置の慣性に起因した油圧アクチュエータの応答遅れの影響などによってセンサの実測値から得られる油圧アクチュエータの速度が操作装置の操作量に応じた目標値から大きく乖離してしまう。この場合、フィードバック制御の補正量が過大になって油圧アクチュエータの飛び出しやハンチングが起こり易くなる。すなわち、センサの実測値から直接的に導出される油圧アクチュエータの速度をフィードバックする場合、油圧アクチュエータの動き出しなど、フィードバックした油圧アクチュエータの速度が目標値から大きく乖離している状況では、油圧アクチュエータの制御の安定性が損なわれる懸念がある。
 それに対して、特許文献2に記載のショベルの制御のように、スプール変位センサの検出値を基に推定した制御弁の通過流量(油圧アクチュエータのメータイン流量)をフィードバックすることでメータイン流量を目標値に追従させる制御を実行する場合、油圧アクチュエータのこれからの駆動状態を予測して制御量(補正量)を決定可能である。このため、操作量が大きく立ち上がりの早い操作が入力されても、油圧アクチュエータが実際に動き出す前にメータイン流量を補正することが可能であり、特許文献1に記載の制御の場合よりも油圧アクチュエータの飛び出しやハンチングの抑制が可能である。
 しかし、スプール変位センサの検出値を用いた制御弁の通過流量(油圧アクチュエータのメータイン流量)の推定値は、流体力学的な関係式などを利用するので、油温やキャビテーションなどの外乱及びセンサの検出精度の影響によって推定精度の低下を招きやすい。このため、スプール変位センサの検出値を基に推定した油圧アクチュエータのメータイン流量を用いるフィードバック制御の精度は、油圧アクチュエータの実際の駆動状態が目標値に接近すると、特許文献1に記載の制御のようにセンサの実測値から直接的に得られる油圧アクチュエータの速度を用いるフィードバック制御の精度よりも劣る傾向にある。
 本発明は、上記の問題点を解消するためになされたものであり、その目的は、油圧アクチュエータの動き出し時における制御の安定性を確保しつつ、油圧アクチュエータの高精度な制御を可能とする作業機械を提供することである。
 本願は上記課題を解決する手段を複数含んでいる。その一例を挙げるならば、圧油を吐出する油圧ポンプと、前記油圧ポンプから供給される圧油により駆動する油圧アクチュエータと、前記油圧ポンプから前記油圧アクチュエータに供給される圧油の流れを制御する方向制御弁と、前記油圧アクチュエータの駆動により動作する被駆動部材と、前記被駆動部材の動作を指示する操作信号を出力する操作装置と、前記被駆動部材の動作情報を検出する第1検出装置と、前記方向制御弁を介して前記油圧アクチュエータに供給される圧油の流量に関係する情報を検出する第2検出装置と、前記油圧ポンプ及び前記方向制御弁の駆動を制御するコントローラとを備えた作業機械において、前記コントローラは、前記操作装置の操作信号を基に前記油圧アクチュエータの要求速度を演算し、前記第1検出装置の検出値を基に推定される前記油圧アクチュエータの速度を第1推定速度として演算し、前記第2検出装置の検出値を基に推定される前記油圧アクチュエータの速度を第2推定速度として演算し、前記第1推定速度と前記第2推定速度とを前記油圧アクチュエータの駆動状態に応じて調停することで調停速度を演算し、前記要求速度と前記調停速度の偏差に基づいて前記油圧ポンプ及び前記方向制御弁の駆動を制御するように構成され、前記コントローラの前記調停速度の演算は、前記第1推定速度を基に前記油圧アクチュエータの駆動状態が動き出しの状態であると判定可能な場合には、前記第2推定速度に対する影響度が前記第1推定速度に対する影響度よりも大きくなるように調停する一方、前記第1推定速度を基に前記油圧アクチュエータの駆動状態が所定の状態を超えて定常状態に近づいていると判定可能な場合には、前記第1推定速度に対する影響度が前記第2推定速度に対する影響度よりも大きくなるように調停するものであることを特徴とする。
 本発明によれば、油圧アクチュエータの駆動状態が動き出しのときには、油圧アクチュエータのこれからの駆動状態を予測した第2推定速度を用いて油圧アクチュエータの駆動を制御するので、被駆動部材の慣性に起因した油圧アクチュエータの応答遅れの影響による油圧アクチュエータの飛び出しやハンチングを抑制することができる。また、油圧アクチュエータの駆動が定常状態に近づいているときには、油圧アクチュエータの実際の駆動状態を基に導き出される第1推定速度を用いて油圧アクチュエータの駆動を制御するので、第1推定速度よりも推定精度に劣る第2推定速度を用いる場合よりも油圧アクチュエータの駆動を高精度に制御することができる。すなわち、油圧アクチュエータの動き出し時における制御の安定性を確保しつつ、油圧アクチュエータの高精度な制御が可能となる。
  上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の作業機械の第1の実施の形態としての油圧ショベルを示す外観図である。 本発明の作業機械の第1の実施の形態が備える油圧システムを示す回路図である。 図2に示す本発明の作業機械の第1の実施の形態の油圧システムを制御するコントローラの機能ブロック図である。 図3に示す本発明の作業機械の第1の実施の形態のコントローラの制御手順の一例を示すフローチャートである。 本発明の作業機械の第1の実施の形態における操作装置の入力に対するコントローラによる油圧アクチュエータの各種の推定速度の演算結果の時間変化の一例を示す図である。 本発明の作業機械の第2の実施の形態を構成するコントローラの機能ブロック図である。 図6に示す本発明の作業機械の第2の実施の形態のコントローラの制御手順の一例を示すフローチャートである。 本発明の作業機械の第2の実施の形態における操作装置の入力に対するコントローラによる油圧アクチュエータの各種の推定速度の演算結果の時間変化の一例を示す図である。
 以下、本発明の作業機械の実施の形態について図面を用いて説明する。本実施の形態においては、作業機械の一例として油圧ショベルを例に挙げて説明する。
[第1の実施の形態]
  まず、本発明の作業機械の第1の実施の形態としての油圧ショベルの概略構成について図1を用いて説明する。図1は本発明の作業機械の第1の実施の形態としての油圧ショベルを示す外観図である。ここでは、運転席に着座したオペレータから見た方向を用いて説明する。
 図1において、作業機械としての油圧ショベルは、自走可能な下部走行体1と、下部走行体1上に旋回可能に搭載された上部旋回体2と、上部旋回体2の前部に俯仰動可能に設けられたフロント作業装置3とを備えている。上部旋回体2は、油圧アクチュエータである旋回油圧モータを含む旋回装置4によって下部走行体1に対して旋回駆動されるように構成されている。なお、上部旋回体2は、油圧ショベルの機体を構成している。
 下部走行体1は、例えば、左右両側にクローラ式の走行装置11(図1中、左側のみ図示)を有している。左右の走行装置11はそれぞれ、油圧アクチュエータである走行油圧モータ12によって走行動作する。
 上部旋回体2は、下部走行体1上に旋回可能に搭載された支持構造体としての旋回フレーム14と、旋回フレーム14上の左前側に設置されたキャブ15と、旋回フレーム14の後端部に設けられたカウンタウェイト16と、キャブ15とカウンタウェイト16の間に設けられた機械室17とを含んで構成されている。キャブ15内には、オペレータが着座する運転席(図示せず)や後述の操作装置58(後述の図2参照)などが配置されている。カウンタウェイト16は、フロント作業装置3と重量バランスをとるためのものである。機械室17は、原動機(図示せず)、後述の油圧ポンプ31(後述の図2参照)、後述の制御弁332(後述の図2参照)を含む制御弁ユニット33などの各種の機器を収容している。
 フロント作業装置3は、掘削作業等の各種作業を行うためのものであり、例えば、複数の被駆動部材を垂直方向に回動可能に連結することで構成された多関節型の作業装置である。複数の被駆動部材は、例えば、ブーム19、アーム20、作業具としてのバケット21とで構成されている。ブーム19は、その基端部が上部旋回体2の旋回フレーム14の前部に上下方向に回動可能に支持されている。ブーム19の先端部には、アーム20の基端部が上下方向に回動可能に支持されている。アーム20の先端部には、バケット21の基端部が上下方向に回動可能に支持されている。ブーム19、アーム20、バケット21はそれぞれ、油圧アクチュエータであるブームシリンダ22、アームシリンダ23、バケットシリンダ24の駆動によって動作する。
 上部旋回体2には、上部旋回体2(機体)の姿勢に関する物理量(姿勢情報)を検出する第1姿勢検出装置26及び上部旋回体2の旋回速度や旋回角を検出する第2姿勢検出装置27が設置されている。第1姿勢検出装置26は、例えば、上部旋回体2(機体)の姿勢に関する物理量として、上部旋回体2の前後方向への傾き(ピッチ角)及び上部旋回体2の左右方向(幅方向)への傾き(ロール角)を検出するものである。第1姿勢検出装置26及び第2姿勢検出装置27は、例えば、慣性計測装置(Inertial Measurement Unit:IMU)で構成されている。第1姿勢検出装置26及び第2姿勢検出装置27は、検出値に応じた検出信号を後述のコントローラ60(後述の図2を参照)へ出力する。
 フロント作業装置3には、フロント作業装置3の姿勢に関する物理量(姿勢情報)及び動作状態に関する物理量(動作情報)を検出する第3姿勢検出装置28が設置されている。第3姿勢検出装置28は、フロント作業装置3の構成部材であるブーム19、アーム20、バケット21の姿勢に関する物理量(姿勢情報)及び動作状態に関する物理量(動作情報)をそれぞれ検出する複数の姿勢センサ28a、28b、28cによって構成されている。各姿勢センサ28a、28b、28cは、例えば、慣性計測装置(IMU)で構成されている。第3姿勢検出装置28(姿勢センサ28a、28b、28c)は、検出値に応じた検出信号を後述のコントローラ60(後述の図2参照)へ出力する。なお、第3姿勢検出装置28を構成する各姿勢センサ28a、28b、28cは、フロント作業装置3の被駆動部材19、20、21の姿勢情報及び動作情報を検出可能であればよく、傾斜センサや角度センサ、ストロークセンサなどで構成することも可能である。第3姿勢検出装置28の各姿勢センサ28a、28b、28cは、請求項に記載の「被駆動部材の動作情報を検出する第1検出装置」に相当するものである。
 次に、本発明の作業機械の第1の実施の形態に搭載された油圧システムの構成について図2を用いて説明する。図2は本発明の作業機械の第1の実施の形態が備える油圧システムを示す回路図である。
 図2において、油圧ショベルは、下部走行体1、上部旋回体2、フロント作業装置3(共に図1を参照)を油圧によって動作させる油圧システム30を備えている。なお、図2では、フロント作業装置3のブーム19を動作させるブームシリンダ22に関する油圧回路のみが示されており、それ以外の走行装置11を動作させる走行油圧モータ12、上部旋回体2を旋回動作させる旋回油圧モータ(旋回装置4)、フロント作業装置3のアーム20やバケット21を動作させるアームシリンダ23やバケットシリンダ24に関する油圧回路は省略されている。また、後述の操作装置58の非操作時に油圧ポンプ31の吐出流量を後述の作動油タンク36へ排出するブリードオフ弁や各種機器など本発明の関係しないものは省略されている。
 油圧システム30は、原動機(図示せず)により駆動されて圧油を吐出する油圧ポンプ31と、油圧ポンプ31から供給される圧油により駆動してブーム19を動作させる油圧アクチュエータ32(ブームシリンダ22)と、油圧ポンプ31から油圧アクチュエータ32に供給される圧油の流れ(方向や流量)を制御する方向制御弁332とを備えている。原動機は、例えば、エンジンや電動モータである。
 油圧ポンプ31は、例えば、可変容量式のポンプであり、ポンプ容積を調整するレギュレータを有している。レギュレータは、例えば、コントローラ60の指令信号に応じてポンプ容積を調整するものであり、後述のパイロット油圧回路40から流量指令信号としてのパイロット圧が入力される流量指令圧ポート31aを含んでいる。
 ブームシリンダ22用の方向制御弁332は、制御弁ユニット33(図1参照)の一部を構成している。すなわち、制御弁ユニット33は、各油圧アクチュエータ12、22、23、24への圧油の流れ(方向や流量)を制御する方向制御弁の集合体である。方向制御弁332は、例えば、油圧パイロット式のものであり、両側に一対の指令圧ポート332a、332bを有している。方向制御弁332は、後述のパイロット油圧回路40で生成されたパイロット2次圧が一対の指令圧ポート332a、332bに入力されることで、その駆動(切換方向及びストローク量)が制御される。
 方向制御弁332は、ポンプライン37を介して油圧ポンプ31の吐出側と接続されている。方向制御弁332は、また、アクチュエータライン38、38を介して油圧アクチュエータ32(ブームシリンダ22)に接続されている。
 ポンプライン37は、ポンプライン37から分岐するリリーフライン39を介して作動油タンク36に接続されている。リリーフライン39上には、リリーフ弁35が設けられている。リリーフ弁35は、油圧ポンプ31の吐出圧(メイン油圧回路)の上限を規定するものであり、油圧ポンプ31の吐出圧が設定圧を超えると開弁するように構成されている。
 ポンプライン37上には、チェック弁34が設けられている。チェック弁34は、油圧ポンプ31から方向制御弁332への圧油の流れを許容する一方、方向制御弁332から油圧ポンプ31への圧油の流れを阻止するように構成されている。すなわち、チェック弁34は、アクチュエータライン38、38からポンプライン37への圧油の逆流を防止するものである。
 ポンプライン37上には、油圧ポンプ31の吐出圧を検出する第1圧力センサ51が設けられている。第1圧力センサ51は、検出した油圧ポンプ31の吐出圧に応じた圧力検出信号Ppをコントローラ60へ出力する。
 アクチュエータライン38、38上にはそれぞれ、油圧アクチュエータ32の圧力(ブームシリンダ22の駆動圧力)を検出する第2圧力センサ52、53が設けられている。第2圧力センサ52、53は、検出した油圧アクチュエータ32の圧力に応じた圧力検出信号Psをコントローラ60へ出力する。
 油圧システム30は、制御弁ユニット33を構成する油圧パイロット式の各方向制御弁の駆動(切換方向やストローク量)制御及び油圧ポンプ31のポンプ容積の調整のためのパイロット油圧回路40を更に備えている。パイロット油圧回路40は、パイロット油圧源であるパイロットポンプ41と、パイロットポンプ41の吐出圧(パイロット1次圧)をコントローラ60からの第1弁指令信号Cpに応じて減圧して油圧ポンプ31のレギュレータの流量指令圧ポート31aに入力するパイロット2次圧を生成する第1電磁比例弁43と、パイロットポンプ41の吐出圧(パイロット1次圧)をコントローラ60からの第2弁指令信号Cvに応じて減圧して方向制御弁332の指令圧ポート332a、332bに入力するパイロット2次圧を生成する第2電磁比例弁44、45とを備えている。第1電磁比例弁43及び第2電磁比例弁44、45を含む複数の電磁比例弁の集合体が電磁弁ユニット42を構成している。
 パイロットポンプ41は、油圧ポンプ31のレギュレータや方向制御弁332に入力するパイロット2次圧の元圧であるパイロット1次圧を生成するものであり、原動機(図示せず)によって駆動される。パイロットポンプ41は、例えば、固定容量型のポンプである。パイロットポンプ41は、パイロットライン48を介して第1電磁比例弁43及び第2電磁比例弁44、45を含む電磁弁ユニット42に接続されている。パイロットライン48は、パイロットリリーフ弁47を介して作動油タンク36に接続されている。パイロットリリーフ弁47は、パイロットポンプ41の吐出圧(パイロット1次圧)が設定圧を超えると開弁するように構成されており、パイロット1次圧を設定圧に維持するためのものである。
 第1電磁比例弁43の出力側は、油圧ポンプ31のレギュレータの流量指令圧ポート31aに接続されている。第2電磁比例弁44、45の出力側はそれぞれ、方向制御弁332の指令圧ポート332a、332bに接続されている。第1電磁比例弁43及び第2電磁比例弁44、45は、パイロットライン49を介して作動油タンク36に接続されている。
 第1電磁比例弁43のソレノイド部43aは、コントローラ60に電気的に接続されており、コントローラ60からの第1弁指令信号Cpが入力される。第2電磁比例弁44、45のソレノイド部44a、45aは、コントローラ60に電気的に接続されており、コントローラ60からの第2弁指令信号Cvが入力される。コントローラ60から第2電磁比例弁44、45のソレノイド部44a、45aへの第2弁指令信号Cvとしての電流を検出する電流センサ55、56が設けられている。
 コントローラ60には、フロント作業装置3の被駆動部材であるブーム19などの動作を指示する操作装置58が電気的に接続されている。操作装置58は、例えば、電気式のものであり、入力された操作量及び操作方向に応じた操作信号を電気信号としてコントローラ60へ出力する。操作装置58は、例えば、操作レバー装置であり、オペレータにより把持される操作レバー58aと、操作レバー58aの操作方向および操作量を検出して検出値に応じた操作信号を電気信号として生成する電気信号生成部58bとを有している。
 コントローラ60は、操作装置58からの操作信号(電気信号)及び各センサ28a(28)、51、52、53、55、56からの検出信号(検出値)に基づき各電磁比例弁43、44、45の開度を制御することで、最終的に油圧アクチュエータ32(ブームシリンダ22)の駆動を制御するものである。
 次に、本発明の作業機械の第1の実施の形態の一部を構成するコントローラの機能について図3を用いて説明する。図3は図2に示す本発明の作業機械の第1の実施の形態の油圧システムを制御するコントローラの機能ブロック図である。
 図3において、コントローラ60は、ハード構成として例えば、RAMやROM等からなる記憶装置61と、CPUやMPU等からなる処理装置62とを備えている。記憶装置61には、油圧ポンプ31のポンプ容積(ポンプ流量)及び方向制御弁332の駆動を制御するために必要なプラグラムや各種情報が予め記憶されている。処理装置62は、記憶装置61からプログラムや各種情報を適宜読み込み、当該プログラムに従って処理を実行することで各種機能を実現する。本実施の形態のコントローラ60の特徴は、概略すると、ブームシリンダ22、アームシリンダ23、バケットシリンダ24の各油圧アクチュエータの速度を2種類の手法を用いて推定し、2つの推定速度を各油圧アクチュエータの駆動状態に応じて調停することで調停された速度である調停速度を演算し、演算結果の調停速度を基にフィードバック制御を行うことで、各油圧アクチュエータの駆動制御(速度制御)を行うものである。なお、ここでは、ブームシリンダ22(油圧アクチュエータ32)の駆動制御(速度制御)のみについて説明するが、アームシリンダ23やバケットシリンダ24の駆動制御(速度制御)の場合も同様であるので、その説明は省略する。「調停」とは、信号調停と同義であって、一方の速度を他方の速度に対し相対的に大きくし、他方の速度を一方の速度に対し相対的に小さく調整することを意味する。
 コントローラ60は、処理装置62により実行される機能として、要求速度演算部71、第1推定速度演算部72、第2推定速度演算部73、推定速度調停部74、フィードバック制御器(以下、FB制御器を称することがある)76、ポンプ目標流量演算部77、ポンプ流量制御部78、方向制御弁制御部79を備えている。
 要求速度演算部71は、操作装置58からの操作信号Lを取り込み、取り込んだ操作信号Lに基づいて油圧アクチュエータ32(ブームシリンダ22)の要求速度Vs_Rを演算する。要求速度演算部71は、例えば、操作装置58の操作量と油圧アクチュエータ(油圧シリンダ)の速度との対応関係を予め規定した特性テーブルを用いることで、要求速度Vs_Rの演算が可能である。演算結果の要求速度Vs_Rは、FB制御器76による後述のフィードバック制御の演算に用いられる。
 第1推定速度演算部72は、フロント作業装置3を構成するブーム19、アーム20、バケット21の姿勢情報及び動作情報を検出する第3姿勢検出装置28の各姿勢センサ28a、28b、28cの検出値Siを取り込み、取り込んだ各姿勢センサ28a、28b、28cの検出値Siを基に、ブーム19を動作させるブームシリンダ22の駆動速度を第1推定速度Vs_E1として推定するものである。
 各姿勢センサ28a、28b、28cはフロント作業装置3の被駆動部材19、20、21の実際の動作状態を検出するものなので、第1推定速度Vs_E1は、各被駆動部材19、20、21と各油圧アクチュエータ(ブームシリンダ22、アームシリンダ23、バケットシリンダ24)との幾何学的な関係から、被駆動部材19、20、21の実際の動作状態を基に直接的に各油圧アクチュエータの駆動速度を算出した値となる。したがって、第1推定速度Vs_E1は、油圧アクチュエータ32(ブームシリンダ22)の実際の駆動状態(駆動速度)を高精度に推定した値となる。逆に、各姿勢センサ28a、28b、28cは、フロント作業装置3の各被駆動部材19、20、21が実際に動き出すまでは停止状態の動作情報を出力するので、第1推定速度Vs_E1は各被駆動部材19、20、21が実際に動き出すまでゼロの推定値となる。このため、各姿勢センサ28a、28b、28cの検出値から推定される第1推定速度Vs_E1を基に、フロント作業装置3の各被駆動部材19、20、21の動作を予測して制御指令を適切に調整することは不可能である。
 第2推定速度演算部73は、第1圧力センサ51の検出値Pp(油圧ポンプ31の吐出圧)、第2圧力センサ52、53の検出値Ps(油圧アクチュエータ32の圧力)、電流センサ55、56の検出値Iv(第2電磁比例弁44、45への第2弁指令信号としての電流値)を取り込み、取り込んだ各センサ51、52、53、55、56の検出値を基に油圧アクチュエータ32のそれぞれの駆動速度を第2推定速度Vs_E2として推定するものである。油圧ポンプ31の吐出圧(第1圧力センサ51の検出値Pp)と油圧アクチュエータ32の圧力(第2圧力センサ52、53の検出値Ps)との差分から方向制御弁332の前後差圧を推定可能である。また、第2電磁比例弁44、45への電流値を基に方向制御弁332の開口度(開口面積)を推定可能である。方向制御弁332の前後差圧及び開口面積から流体力学的な関係式を用いることで方向制御弁332から油圧アクチュエータ32へ流れる圧油の流量を推定することが可能である。
 具体的には、第2推定速度Vs_E2は、例えば、以下の式(1)を用いて演算される。
Figure JPOXMLDOC01-appb-M000001
 ここで、Cdは流量係数、Avは各方向制御弁332の開口面積、Asは各油圧アクチュエータ32(ブームシリンダ22)の受圧面積、ΔPは各方向制御弁332の前後差圧、ρは作動油の密度を示している。流量係数Cd、作動油の密度ρ、油圧アクチュエータ32(ブームシリンダ22)の受圧面積Asは、予め記憶装置61に記憶されている。
 第2推定速度Vs_E2は、方向制御弁332から油圧アクチュエータ32(ブームシリンダ22)に供給される圧油の流量(メータイン流量)から予測される油圧アクチュエータ32(ブームシリンダ22)の駆動速度となる。つまり、第2推定速度Vs_E2は、油圧アクチュエータ32(ブームシリンダ22)の実際の駆動状態を基に推定するものではなく、油圧アクチュエータ32(ブームシリンダ22)のこれから起こりうる駆動状態を予測した推定値である。このため、方向制御弁332に関連する各センサ51、52、53、55、56の検出値から推定する第2推定速度Vs_E2を基に、フロント作業装置3の各被駆動部材19、20、21の動作を予測して制御指令を適切に調整することが可能である。ただし、第2推定速度Vs_E2は、流体力学的な関係式を用いることで得られる推定値なので、油温やキャビテーションなどの外乱及びセンサの検出精度の影響によって推定精度の低下を招きやすい。このため、第2推定速度Vs_E2は、第1推定速度Vs_E1に比べると、推定精度が劣る傾向にある。
 なお、本実施の形態においては、第1圧力センサ51及び第2圧力センサ52、53並びに電流センサ55、56が方向制御弁332を介して油圧アクチュエータ32に供給される圧油の流量に関係する情報を検出する検出装置を構成する。当該検出装置を細分化すると、第1圧力センサ51及び第2圧力センサ52、53が方向制御弁332の前後差圧に関する物理量を検出する検出器を構成する。また、電流センサ55、56が方向制御弁332の開口面積に関する物理量を検出する検出器を構成する。
 推定速度調停部74は、第1推定速度演算部72の演算結果である油圧アクチュエータ32(ブームシリンダ22)の第1推定速度Vs_E1、及び、第2推定速度演算部73の演算結果である油圧アクチュエータ32(ブームシリンダ22)の第2推定速度Vs_E2を用いて油圧アクチュエータ32(ブームシリンダ22)の調停速度Vs_Arを演算する。推定速度調停部74は、上述した第1推定速度Vs_E1の特性及び第2推定速度Vs_E2の特性を踏まえて、油圧アクチュエータ32の駆動状態に応じて第1推定速度Vs_E1と第2推定速度Vs_E2を調停することで調停速度Vs_Arを演算する。
 概略すると、油圧アクチュエータ32(ブームシリンダ22)の動き出しのときには、フロント作業装置3(ブーム19)の慣性に起因した油圧アクチュエータ32の応答遅れの影響による制御の不安定性(ハンチングなど)を抑制するために、第2推定速度Vs_E2に対する重み付けが第1推定速度Vs_E1に対する重み付けよりも大きくなるように調停を行う。ここで、「重み付け」とは影響度もしくは優先度と同義である。また、油圧アクチュエータ32(ブームシリンダ22)の駆動状態が動き出しの状態から移行して所定の状態を超えて定常状態に近づいている場合には、油圧アクチュエータ32の推定速度の精度を高めるために、第1推定速度Vs_E1に対する重み付けを大きくする一方、第2推定速度Vs_E2に対する重み付けを相対的に小さくする調停を行う。このような調停を行うにより、油圧アクチュエータ32が動き出しのときや所定の状態よりも定常状態に近づくときなど、油圧アクチュエータ32の駆動状態に応じてフィードバック制御に適切な油圧アクチュエータ32の推定速度(調停速度Vs_Ar)を演算する。
 具体的には、調停速度Vs_Arは、例えば、以下の式(2)~式(4)を用いて演算される。ここで、Vs_E1は第1推定速度、Vs_E2は第2推定速度、Vs_Rは要求速度である。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 式(3)から導かれるα及び式(4)から導かれるβは、第1推定速度Vs_E1と第2推定速度Vs_E2を調停するときの重みである。係数αは、基本的に、油圧アクチュエータ32(ブームシリンダ22)の駆動状態が動き出しの状態であるか否かが反映される重みとなるものである。すなわち、油圧アクチュエータ32が動き出しの状態であるか否かを判定可能な指標として機能する。また、係数αは、油圧アクチュエータ32(ブームシリンダ22)の駆動状態が動き出しの状態から移行して所定の状態を超えて定常状態に近づいている状態であることが反映される重みにもなるものである。すなわち、油圧アクチュエータ32が所定の状態を超えて定常状態に近づいている状態であるか否かを判定可能な指標としても機能する。一方、係数βは、油圧アクチュエータ32(ブームシリンダ22)の駆動状態が所定の状態を超えて定常状態に近づいている状態であるか否かが係数αよりも確実に反映される重みとなるものである。すなわち、油圧アクチュエータ32が所定の状態を超えて定常状態に近づいている状態であるか否かをより確実に判定可能な指標として機能する。
 式(3)のαの演算において、第2推定速度Vs_E2に対する第1推定速度Vs_E1の乖離の度合いが大きい場合、油圧アクチュエータ32(ブームシリンダ22)の実際の駆動状態が方向制御弁332を介して油圧アクチュエータ32に供給される圧油の流量を基に予測される油圧アクチュエータ32の駆動状態に対して乖離していることを意味する。この状態は、通常、油圧アクチュエータ32(ブームシリンダ22)が動き出しの状態であることが想定される。この場合、第2推定速度Vs_E2の重みαが大きくなる一方、第1推定速度Vs_E1の重みが相対的に小さくなる。
 逆に、式(3)のαの演算において、第2推定速度Vs_E2に対する第1推定速度Vs_E1の乖離の度合いが極めて小さい場合、油圧アクチュエータ32(ブームシリンダ22)の実際の駆動状態と方向制御弁332の通過流量から予測される油圧アクチュエータ32の駆動状態とが近い状態であることを意味する。この状態は、通常、油圧アクチュエータ32(ブームシリンダ22)が所定の状態を超えて定常状態に近づく駆動状態が継続していることが想定される。この場合、第2推定速度Vs_E2の重みαが小さくなる一方、第1推定速度Vs_E1の重みが相対的に大きくなる。
 ただし、第2推定速度Vs_E2に対する第1推定速度Vs_E1の乖離の度合い(係数α)が極めて小さい場合であっても、第1推定速度Vs_E1が要求速度Vs_Rの近傍に達しているとは限らない。そこで、係数βをさらに用いて第1推定速度Vs_E1と第2推定速度Vs_E2の調停を行う。式(4)のβの演算において、要求速度Vs_Rに対する第1推定速度Vs_E1の乖離の度合いが極めて小さい場合、油圧アクチュエータ32(ブームシリンダ22)の実際の駆動状態が操作装置58の操作に応じた要求速度Vs_Rに近い状態であることを意味する。この状態は、油圧アクチュエータ32(ブームシリンダ22)の実際の駆動状態が制御目標値に適切に追従しているときである。この場合、第2推定速度Vs_E2の重みβを小さくする一方、第1推定速度Vs_E1の重みを相対的に大きくする。第2推定速度Vs_E2よりも高精度な第1推定速度Vs_E1の重みを大きくすることで、駆動状態が定常状態に近い状態である油圧アクチュエータ32の速度を高精度に推定することが可能となる。
 逆に、式(4)のβの演算において、要求速度Vs_Rに対する第1推定速度Vs_E1の乖離の度合いが大きい場合、油圧アクチュエータ32(ブームシリンダ22)の実際の駆動状態が操作に応じた要求速度Vs_Rから乖離した状態であることを意味する。第1推定速度Vs_E1を用いてフィードバック制御を行うと、フィードバック制御の補正量が過大になって油圧アクチュエータ32の飛び出しやハンチングが懸念される。そこで、このような場合には、第2推定速度Vs_E2の重みβを大きくする一方、第1推定速度Vs_E1の重みを相対的に小さくする。
 FB制御器76は、要求速度演算部71の演算結果である油圧アクチュエータ32の要求速度Vs_Rおよび推定速度調停部74の演算結果である油圧アクチュエータ32の調停速度Vs_Arを基に、要求速度Vs_Rと調停速度Vs_Arの速度偏差が小さくなるように制御指令を補正する油圧アクチュエータ32の目標速度Vs_Tを演算する。目標速度Vs_Tは、例えば、PID制御の演算手法を用いて要求速度Vs_Rと調停速度Vs_Arの速度偏差を基に演算される。
 ポンプ目標流量演算部77は、FB制御器76の演算結果である油圧アクチュエータ32の目標速度Vs_Tを基に、油圧ポンプ31のポンプ目標流量Qpを演算する。ポンプ目標流量Qpの演算では、記憶装置61に予め記憶されている油圧アクチュエータ32の設計諸元も用いられる。
 ポンプ流量制御部78は、ポンプ目標流量演算部77の演算結果であるポンプ目標流量Qpに応じた第1電磁比例弁43に対する第1弁指令信号Cpを演算する。ポンプ流量制御部78は、例えば、ポンプ目標流量Qpと第1電磁比例弁43に対する第1弁指令信号Cpとの対応関係を予め規定した特性テーブルを用いることで、第1弁指令信号Cpの演算が可能である。ポンプ流量制御部78は、第1弁指令信号Cpを第1電磁比例弁43へ出力する。
 方向制御弁制御部79は、FB制御器76の演算結果である油圧アクチュエータ32の目標速度Vs_Tに応じた第2電磁比例弁44、45に対する第2弁指令信号Cvを演算する。方向制御弁制御部79は、例えば、目標速度Vs_Tと第2電磁比例弁44、45に対する第2弁指令信号Cvとの対応関係を予め規定した特性テーブルを用いることで、第2弁指令信号Cvの演算が可能である。方向制御弁制御部79は、第2弁指令信号Cvを第2電磁比例弁44、45へ出力する。
 次に、本発明の作業機械の第1の実施の形態のコントローラが実行する制御手順の一例について図4を用いて説明する。図4は図3に示す本発明の作業機械の第1の実施の形態のコントローラの制御手順の一例を示すフローチャートである。
 図4において、図3に示すコントローラ60は、まず、操作装置58に対する操作入力(操作装置58からの操作信号の入力)の有無を判定する(ステップS10)。操作装置58の操作入力が有る場合、すなわち、操作信号が入力された場合(YESの場合)には、ステップS20に進む。一方、操作信号の入力が無い場合(NOの場合)には、再びステップS10に戻り、YESになるまでステップS10を繰り返す。
 ステップS10においてYESの場合には、コントローラ60の要求速度演算部71が操作装置58からの操作信号L(操作入力量)を基に各油圧アクチュエータ32の要求速度Vs_Rを演算する(ステップS20)。要求速度演算部71は、例えば、操作入力量と油圧アクチュエータの速度との対応関係を予め規定した特性テーブルを用いて要求速度Vs_Rを演算する。
 次に、コントローラ60の第1推定速度演算部72は、第3姿勢検出装置28の姿勢センサ28a、28b、28cの検出値Si(フロント作業装置3の被駆動部材19、20、21の姿勢情報及び動作情報)を基に、各油圧アクチュエータ32の駆動速度を第1推定速度Vs_E1として演算する(ステップS30)。第1推定速度Vs_E1は、フロント作業装置3の被駆動部材19、20、21の実際の動作情報を基に被駆動部材19、20、21の幾何学的な関係から直接的に被駆動部材19、20、21の駆動速度を推定した値となる。
 同時に、コントローラ60の第2推定速度演算部73は、第1圧力センサ51の検出値Ppである油圧ポンプ31の吐出圧、第2圧力センサ52、53の検出値Psである油圧アクチュエータ32の圧力、電流センサ55、56の検出値Ivである第2電磁比例弁44、45への第2弁指令信号Cvとしての電流値を基に、各油圧アクチュエータ32の駆動速度を第2推定速度Vs_E2として演算する(ステップS40)。第2推定速度演算部73は、例えば、流体力学的な関係式である上述の式(1)を用いることで、第2推定速度Vs_E2を演算する。第2推定速度Vs_E2は、方向制御弁332を介して油圧アクチュエータ32に供給される圧油の流量を基に、これから生じると予測される各油圧アクチュエータ32の駆動速度の推定値である。
 次いで、コントローラ60の推定速度調停部74は、第1推定速度演算部72の演算結果である第1推定速度Vs_E1及び第2推定速度演算部73の演算結果である第2推定速度Vs_E2を用いて各油圧アクチュエータ32の調停速度Vs_Arを演算する(ステップS50)。推定速度調停部74は、例えば、上述の式(2)~式(4)を用いることで、各油圧アクチュエータ32の駆動状態に応じて第1推定速度Vs_E1と第2推定速度Vs_E2を調停した調停速度Vs_Arを演算する。
 第2推定速度Vs_E2に対する第1推定速度Vs_E1の乖離の度合いが大きい場合、第2推定速度Vs_E2の重みαが大きくなる一方、第1推定速度Vs_E1の重みが相対的に小さくなる。逆に、第2推定速度Vs_E2に対する第1推定速度Vs_E1の乖離の度合いが極めて小さい場合、第2推定速度Vs_E2の重みαが小さくなる一方、第1推定速度Vs_E1の重みが相対的に大きくなる。
 また、要求速度Vs_Rに対する第1推定速度Vs_E1の乖離の度合いが極めて小さい場合、第2推定速度Vs_E2の重みβが小さくなる一方、第1推定速度Vs_E1の重みが相対的に大きくなる。逆に、要求速度Vs_Rに対する第1推定速度Vs_E1の乖離の度合いが大きい場合、第2推定速度Vs_E2の重みβが大きくなる一方、第1推定速度Vs_E1の重みが相対的に小さくなる。
 続いて、コントローラ60のFB制御器76は、要求速度演算部71の演算結果である要求速度Vs_Rおよび推定速度調停部74の演算結果である調停速度Vs_Arを基に、油圧アクチュエータ32の目標速度Vs_Tを演算する(ステップS60)。目標速度Vs_Tは、例えば、要求速度Vs_Rと調停速度Vs_Arとの速度偏差が小さくなるように制御指令を補正する目標値(制御量)である。
 次に、コントローラ60のポンプ目標流量演算部77は、FB制御器76の演算結果である各油圧アクチュエータ32の目標速度Vs_Tを基に、油圧ポンプ31のポンプ目標流量Qpを演算する(ステップS70)。さらに、コントローラ60のポンプ流量制御部78は、ポンプ目標流量演算部77の演算結果である油圧ポンプ31のポンプ目標流量Qpに応じた第1電磁比例弁43に対する第1弁指令信号Cpを算出し、第1弁指令信号Cpを第1電磁比例弁43へ出力する(ステップS80)。
 これにより、図2に示す第1電磁比例弁43がパイロットポンプ41の吐出圧としてのパイロット1次圧から第1弁指令信号Cpに応じたパイロット2次圧を生成する。第1電磁比例弁43によって生成されたパイロット2次圧が油圧ポンプ31のレギュレータの流体圧ポート31aに入力されることで、油圧ポンプ31のポンプ流量(ポンプ容積)がコントローラ60の演算結果のポンプ目標流量Qpになるように調整される。
 また、コントローラ60の方向制御弁制御部79は、FB制御器76の演算結果である各油圧アクチュエータ32の目標速度Vs_Tに応じた第2電磁比例弁44、45に対する第2弁指令信号Cvを算出し、第2弁指令信号Cvを第2電磁比例弁44、45へ出力する(ステップS90)。これにより、図2に示す第2電磁比例弁44、45がパイロットポンプ41の吐出圧としてのパイロット1次圧から第2弁指令信号Cvに応じたパイロット2次圧を生成する。第2電磁比例弁44、45によって生成されたパイロット2次圧が方向制御弁332の指令圧ポート332a、332bに入力されることで、方向制御弁332の開口面積(開口度)が制御され、それによって、方向制御弁332を介して油圧アクチュエータ32に供給される圧油の流量(メータイン流量)がコントローラ60の演算結果の油圧アクチュエータ32の目標速度Vs_Tになるように制御される。
 コントローラ60は、第1弁指令信号Cpの第1電磁比例弁43への出力(ステップS80)及び第2弁指令信号Cvの第2電磁比例弁44、45への出力(ステップS90)を終了すると、リターンして新たな制御周期をスタートさせる。すなわち、コントローラ60は、図4に示すステップS10~S90で構成された制御周期を再び実行し、これを繰り返す。
 次に、本発明の作業機械の第1の実施の形態の動作及び効果について説明する。ここでは、説明を簡便にするために、ブームの単独操作を行う場合における油圧システムの動作について図2及び図5を用いて説明する。図5は本発明の作業機械の第1の実施の形態における操作装置の入力に対するコントローラによる油圧アクチュエータの各種の推定速度の演算結果の時間変化の一例を示す図である。図5中、上図は操作装置に対する操作入力量の一例の時間変化を、下図は上図に示す操作入力量に対するコントローラの演算結果であるブームシリンダの各種の速度の時間変化の一例を示している。
 図5に示す時間T1において、図2に示す操作装置58に対してステップ状の操作入力(図5の上図の実線)が開始されている。これにより、図3に示すコントローラ60は、操作装置58からの操作入力量Lに応じたブームシリンダ22の要求速度Vs_R(図5の下図の長破線)を演算する。コントローラ60は、要求速度Vs_Rに基づき油圧ポンプ31及び方向制御弁332に対して指令信号を出力する。
 操作入力の開始時間T1から極めて短時間経過後の時間T2においては、図2に示す方向制御弁332がコントローラ60からの指令信号(第2電磁比例弁44、45に対する第2弁指令信号Cv)に応じて開口することで、油圧ポンプ31から方向制御弁332を介して油圧アクチュエータ32(ブームシリンダ22)に圧油が供給されている状態となる。このため、第1圧力センサ51の検出値Pp及び第2圧力センサ52、53の検出値Ps(方向制御弁332の前後差圧)並びに電流センサ55、56の検出値Iv(方向制御弁332の開口面積)に基づきコントローラ60が演算する第2推定速度Vs_E2が0でない値になる。
 一方、質量の大きな停止状態のブーム19に対してブームシリンダ22は駆動力を作用させているが、ブーム19は慣性などによって停止状態のままである。このため、第3姿勢検出装置28の姿勢センサ28aは、ブームシリンダ22の駆動状態を停止状態として検出する。このため、第3姿勢検出装置28の検出値Siに基づきコントローラ60が演算する第1推定速度Vs_E1は0(ゼロ)になる。この結果、第1推定速度Vs_E1及び第2推定速度Vs_E2を基にコントローラ60が演算する調停速度Vs_Arは、第2推定速度Vs_E2と同値となる。すなわち、ブームシリンダ22が実際に動き出す前の状態では、第3姿勢検出装置28の姿勢センサ28aがブームシリンダ22の停止状態を検出するので、上述の式(2)~(4)に示した第2推定速度Vs_E2の重みα及びβが1となる一方、第1推定速度Vs_E1の重みが0となるように調停される。
 時間T2から或る程度の時間が経過した後の時間T3においては、ブーム19が実際に動作している状態に移行している。すなわち、第3姿勢検出装置28の姿勢センサ28aがブームシリンダ22の実際の駆動を検出している。このため、第1推定速度Vs_E1は、第3姿勢検出装置28の検出値Siに応じた値になる。一方、第2推定速度Vs_E2は、時間T2のときと同様に、第1圧力センサ51の検出値Pp及び第2圧力センサ52、53の検出値Ps(方向制御弁332の前後差圧)並びに電流センサ55、56の検出値Iv(方向制御弁332の開口面積)に応じた値となる。
 この場合、調停速度Vs_Arは、上述の式(2)~(4)に示した重みα及びβに応じて第1推定速度Vs_E1と第2推定速度Vs_E2とを調停した値となる。時間T3のようにブームシリンダ22の動き出し直後の場合には、第2推定速度Vs_E2と第1推定速度Vs_E1との間の乖離が大きい。このため、第2推定速度Vs_E2の重みαが大きくなる一方、第1推定速度Vs_E1の重みが相対的に小さくなるように調停した調停速度Vs_Arが算出される。
 操作入力の開始時間T1から相当な時間が経過した時間T4においては、第3姿勢検出装置28の検出値Siに基づき演算される第1推定速度Vs_E1が操作入力量に応じた要求速度Vs_Rに近い値となっている。すなわち、ブームシリンダ22が定常状態に極めて接近した駆動状態となっている。この場合、要求速度Vs_Rに対する第1推定速度Vs_E1の乖離の度合いが極めて小さいので、第2推定速度Vs_E2の重みβが小さくなる一方、第1推定速度Vs_E1の重みが相対的に大きくなる。したがって、調停速度Vs_Arは、第1推定速度Vs_E1の成分が大部分となり、第2推定速度Vs_E2の成分をほとんど含まないように調停される。
 このように、本実施の形態においては、操作装置58への操作入力が開始された直後のブームシリンダ22の動き出しのときには、方向制御弁332を介してブームシリンダ22に供給される圧油の流量を基に予測されるブームシリンダ22の第2推定速度Vs_E2を主に用いてブームシリンダ22の駆動制御を行う。操作入力の開始直後では、ブーム19の慣性に起因したブームシリンダ22の応答遅れの影響が大きいので、第2推定速度Vs_E2を用いる方が、ブームシリンダ22の実際の駆動状態(ほぼ停止状態)を基に演算するブームシリンダ22の第1推定速度Vs_E1を用いる場合よりも、操作入力に応じた要求速度Vs_Rに対する乖離を抑制することができる。このため、フィードバック制御の補正量の過大によるブームシリンダ22の飛び出しやハンチングの発生を抑制することができる。
 一方、ブームシリンダ22の実際の駆動状態が操作入力に応じた状態に近いときには、ブームシリンダ22の実際の駆動状態を検出する姿勢センサ28aの検出値を基に演算されるブームシリンダ22の第1推定速度Vs_E1を主に用いてブームシリンダ22の駆動制御を行う。第1推定速度Vs_E1は、ブームシリンダ22の実際の駆動状態を基にブームシリンダ22の駆動速度を推定するものなので、高精度な推定値を得ることができる。それに対して、第2推定速度Vs_E2は、流体力学的な関係式を介してブームシリンダ22の駆動速度を推定するものなので、第1推定速度Vs_E1よりも推定精度が劣る傾向にある。したがって、ブームシリンダ22が操作装置58の操作に応じた駆動状態に近づいた状態の場合には、第2推定速度Vs_E2よりも高精度な推定値である第1推定速度Vs_E1を主に用いてブームシリンダ22の制御を行うので、ブームシリンダ22の高精度な速度制御を実現することが可能である。
 したがって、本実施の形態においては、ブームシリンダ22(油圧アクチュエータ32)の駆動状態が動き出しの状態から定常状態になるまで、油圧アクチュエータ32の良好な制御精度を実現することができる。
 また、本実施の形態においては、第1推定速度Vs_E1に対する重み付けと第2推定速度Vs_E2に対する重み付けを油圧アクチュエータ32の駆動状態(動き出しの状態から定常状態までの移行)に応じて相対的に増減させることで油圧アクチュエータ32の調停速度Vs_Arを演算する。このため、調停速度Vs_Arは、第1推定速度Vs_E1の値と第2推定速度Vs_E2との間で瞬間的に切り替わることがないので、連続的な変化の演算結果を得ることができる。したがって、調停速度Vs_Arに基づく制御では、制御の安定性を確保することができる。
 本実施の形態の作用及び効果が発揮される油圧ショベルの動作としては、例えば、掘削後の土砂の積込み動作が挙げられる。バケット21により掘削した土砂を旋回してブーム上げにより持ち上げてからダンプトラックに積み込む場合を想定する。油圧ショベルのオペレータは、作業時間を短くするために、掘削後に大きな操作量を早い立ち上がりで入力することが予想される(図5の上図を参照)。この場合、ブームシリンダ22の第1推定速度Vs_E1が立ち上がるときの時間(時刻)は、第2推定速度Vs_E2が立ち上がるときの時間(時刻)に比べて遅くなる。すなわち、図5の下図における時間T2のような第1推定速度Vs_E1が0(ゼロ)である時間領域が長くなる。また、要求速度Vs_Rは大きな操作量に応じて大きくなるので、ブームシリンダ22の実速度が要求速度Vs_Rに接近するまでの時間領域(図5の下図の時間T3付近から時間T4に向かう時間領域)も長くなる。したがって、油圧ショベルの掘削後の土砂の積込み動作は、本実施の形態の作用及び効果が大いに発揮されると考えられる。
 上述した本発明の第1の実施の形態に係る油圧ショベル(作業機械)においては、コントローラ60の調停速度Vs_Arの演算は、第2推定速度Vs_E2に対する第1推定速度Vs_E1の乖離の度合いαが大きくなるにつれて、第2推定速度Vs_E2に対する重みが大きくなる一方、第1推定速度Vs_E1に対する重みが相対的に小さくなるように調停するものである。
 この構成によれば、油圧アクチュエータ32の動き出しのときには、第2推定速度Vs_E2に対する重み付けを第1推定速度Vs_E1に対する重み付けよりも大きくする調停を行うことで、油圧アクチュエータ32のこれからの駆動状態を予測した第2推定速度Vs_E2を主成分とする調停速度Vs_Arを用いて油圧アクチュエータ32の駆動を制御するようになるので、フロント作業装置3の慣性に起因した油圧アクチュエータ32の応答遅れの影響による制御の不安定性(ハンチングなど)を抑制することができる。また、油圧アクチュエータ32の駆動状態が所定の状態を超えて定常状態に近づいているときには、第1推定速度Vs_E1に対する重み付けを大きくする一方、第2推定速度Vs_E2に対する重み付けを相対的に小さくする調停を行うことで、油圧アクチュエータ32の実際の駆動状態を基に導き出される第1推定速度Vs_E1を主成分とする調停速度を用いて油圧アクチュエータ32の駆動を制御するようになるので、第1推定速度Vs_E1よりも推定精度に劣る第2推定速度Vs_E2を用いる場合よりも油圧アクチュエータ32の駆動を高精度に制御することができる。すなわち、油圧アクチュエータ32の動き出し時における制御の安定性を確保しつつ、油圧アクチュエータ32の高精度な制御が可能となる。加えて、乖離の度合いαの増減に応じて第1推定速度Vs_E1に対する重みづけと第2推定速度Vs_E2に対する重み付けを相対的に変化させるように調停することで、調停速度Vs_Arが連続的に変化するようになるので、調停速度Vs_Arを用いた制御の安定性を確保することができる。
 また、本実施の形態においては、コントローラ60の調停速度Vs_Arの演算は、要求速度Vs_Rに対する第1推定速度Vs_E1の乖離の度合いβが小さくなるにつれて、第1推定速度Vs_E1に対する重みが大きくなる一方、第2推定速度Vs_E2に対する重みが相対的に小さくなるように調停するものである。
 この構成によれば、油圧アクチュエータ32の駆動状態が所定の状態を超えて定常状態に近づいているときに、第2推定速度Vs_E2に対する重みβを小さくする一方、第1推定速度Vs_E1に対する重みを相対的に大きくするように調停を行うことで、油圧アクチュエータ32の実際の駆動状態を基に導き出される第1推定速度Vs_E1を主成分とする調停速度を用いて油圧アクチュエータ32の駆動を制御するようになるので、第1推定速度Vs_E1よりも推定精度に劣る第2推定速度Vs_E2を用いる場合よりも油圧アクチュエータ32の駆動を高精度に制御することができる。また、重みβは、要求速度Vs_Rに対する第1推定速度Vs_E1の乖離の度合いを示すものなので、油圧アクチュエータ32の駆動状態が所定の状態を超えて定常状態に近づいている状態か否かを確実に反映させた指標となる。
[第2の実施の形態]
  次に、本発明の作業機械の第2の実施の形態について図6~図8を用いて説明する。なお、図6~図8において、図1~図5に示す符号と同符号のものは、同様な部分であるので、その詳細な説明は省略する。図6は本発明の作業機械の第2の実施の形態を構成するコントローラの機能ブロック図である。ここでも、ブームシリンダ22(油圧アクチュエータ32)の駆動制御(速度制御)のみについて説明するが、アームシリンダ23やバケットシリンダ24の駆動制御(速度制御)の場合も同様である。
 本発明の作業機械の第2の実施の形態が第1の実施の形態に対して相違する点は、図6に示すコントローラ60Aにおける推定速度調停部74Aの第1推定速度Vs_E1と第2推定速度Vs_E2の調停手法(調停速度Vs_Arの演算方法)が異なっていることである。第1の実施の形態に係るコントローラ60の推定速度調停部74は、第1推定速度Vs_E1及び第2推定速度Vs_E2に対して重みαと重みβの2つの係数を用いて第1推定速度Vs_E1の割合と第2推定速度Vs_E2の割合を連続的に変化させて調停することで調停速度Vs_Arを演算するものである。それに対して、本実施の形態に係る推定速度調停部74Aは、基本的には、第1推定速度Vs_E1と閾値γの大小関係(比較判定の結果)に応じて、第1推定速度Vs_E1及び第2推定速度Vs_E2のいずれか一方に切り替えるように第1推定速度Vs_E1と第2推定速度Vs_E2を調停することで調停速度Vs_Arを演算するものである。すなわち、推定速度調停部74Aは、第1推定速度Vs_E1と閾値γの大小関係を基に、第1推定速度Vs_E1及び第2推定速度Vs_E2のいずれか一方に対して重みを1に設定すると共に他方に対して重みを0に設定する。第1推定速度Vs_E1と閾値γの大小関係が逆の関係である場合には、第1推定速度Vs_E1及び第2推定速度Vs_E2に対して設定する重み(0と1)を逆転させるように調停することで調停速度Vs_Arを演算する。
 具体的には、コントローラ60Aの推定速度調停部74Aは、先ず、第1推定速度演算部72の演算結果である第1推定速度Vs_E1が閾値γに達しているか否かを判定する。油圧アクチュエータ32(ブームシリンダ22)が加速している場合には、第1推定速度Vs_E1が閾値γ以上であるか否かを判定する。油圧アクチュエータ32(ブームシリンダ22)が減速している場合には、第1推定速度Vs_E1が閾値γ以下であるか否かを判定する。閾値γは、例えば、要求速度演算部71の演算結果である要求速度Vs_Rの80%の値に設定される。この閾値γは、油圧アクチュエータ32の駆動状態が動き出しの状態から移行して所定の状態を超えて定常状態に近づいている状態であると想定される状況に設定されている。具体的には、第3姿勢検出装置28の各姿勢センサ28a、28b、28cがフロント作業装置3の被駆動部材19、20、21の慣性に起因した油圧アクチュエータ32の応答遅れの影響をほぼ受けずに油圧アクチュエータ32の駆動状態を検出可能な状況に設定されている。
 第1推定速度Vs_E1が閾値γに達していない場合には、推定速度調停部74Aは、第2推定速度演算部73の演算結果である第2推定速度Vs_E2を調停速度Vs_Arとして算出する。すなわち、第1推定速度Vs_E1の重みを0に設定する一方、第2推定速度Vs_E2の重みを1に設定するように調停する。
 一方、第1推定速度Vs_E1が閾値γに達している場合には、推定速度調停部74Aは、調停速度Vs_Arの演算結果の変化量を制限するためのレート制限速度V_rlmtを演算する。
 具体的には、油圧アクチュエータ32(ブームシリンダ22)が加速しているときの第1推定速度Vs_E1が演算結果のレート制限速度V_rlmt以上である場合、又は、油圧アクチュエータ32(ブームシリンダ22)が減速しているときの第1推定速度Vs_E1がレート制限速度V_rlmt以下である場合には、第1推定速度Vs_E1を調停速度Vs_Arとして算出する。すなわち、第1推定速度Vs_E1の重みを1に設定する一方、第2推定速度Vs_E2の重みを0に設定するように調停する。また、加速時の第1推定速度Vs_E1がレート制限速度V_rlmtよりも小さい場合、又は、減速時の第1推定速度Vs_E1がレート制限速度V_rlmtよりも大きい場合には、レート制限速度V_rlmtを調停速度Vs_Arとして算出する。
 推定速度調停部74Aは、基本的に、閾値γを用いて調停速度Vs_Arの設定を第1推定速度Vs_E1及び第2推定速度Vs_E2のいずれか一方に切り替えるものである。ただし、第1推定速度Vs_E1と第2推定速度Vs_E2の切替時に調停速度Vs_Arの演算結果の変化量が大きいと、調停速度Vs_Arの急峻な変化により制御の安定性が損なわれる懸念がある。そこで、レート制限速度V_rlmtを用いて調停速度Vs_Arの切替時の変化量を制限する。
 具体的には、例えば、レート制限速度V_rlmtを以下の式(5)を用いて演算する。
Figure JPOXMLDOC01-appb-M000005
 ここで、Vs_E1は第1推定速度、Vs_E2は第2推定速度、Rは制限レート、tは第1推定速度Vs_E1が閾値γに到達したと判定した時点からの経過時間である。制限レートRは、例えば、予め設定された固定値であり、記憶装置61に予め記憶されている。
 次に、本発明の作業機械の第2の実施の形態のコントローラが実行する制御手順の一例について図7を用いて説明する。図7は図6に示す本発明の作業機械の第2の実施の形態のコントローラの制御手順の一例を示すフローチャートである。
 図7に示す第2の実施の形態のコントローラ60Aの制御手順が図4に示す第1の実施の形態のコントローラ60の制御手順に対して相違する点は、第1の実施の形態のステップS50の調停速度Vs_Arの演算手順に代えて、ステップS42~S56の調停速度Vs_Arの演算手順を実行することである。それ以外の処理手順、すなわち、図7に示すステップS10~S40及びS60~S90については、図4に示す第1の実施の形態のコントローラ60の処理手順と同様であり、それらの説明を省略する。
 図7において、本実施の形態に係るコントローラ60Aは、ステップS42~S56の処理を実行することで、調停速度Vs_Arを演算する。
 具体的には、先ず、コントローラ60Aの推定速度調停部74Aは、第1推定速度Vs_E1が閾値γに達しているか否かを判定する(ステップS42)。油圧アクチュエータ32が加速している場合には、第1推定速度Vs_E1が閾値γ以上であるか否かを判定する。油圧アクチュエータ32が減速している場合には、第1推定速度Vs_E1が閾値γ以下であるか否かを判定する。判定結果がYESの場合にはステップS44に進む一方、判定結果がNOの場合にはステップS52に進む。
 ステップS42においてNOの場合、推定速度調停部74Aは、ステップS40の演算結果である第2推定速度Vs_E2を調停速度Vs_Arとして算出する(ステップS52)。すなわち、第1推定速度Vs_E1の重みを0に設定する一方、第2推定速度Vs_E2の重みを1に設定するように調停する。
 一方、ステップS42においてYESの場合、推定速度調停部74Aは、調停速度Vs_Arの変化量を制限するためのレート制限速度V_rlmtを演算する(ステップS44)。レート制限速度V_rlmtは、例えば、第1推定速度Vs_E1、第2推定速度Vs_E2、設定値である制限レートR、ステップS42のYESの判定時点からの時間経過tを用いて上述の式(5)から演算される。
 次いで、推定速度調停部74Aは、油圧アクチュエータ32が加速している場合には、第1推定速度Vs_E1がレート制限速度V_rlmtよりも小さいか否かを判定する(ステップS46)。また、油圧アクチュエータ32が減速している場合には、第1推定速度Vs_E1がレート制限速度V_rlmtよりも大きいか否かを判定する(ステップS46)。判定結果がYESの場合にはステップS54に進む一方、判定結果がNOの場合にはステップS56に進む。
 ステップS46においてNOの場合、推定速度調停部74Aは、ステップS30の演算結果である第1推定速度Vs_E1を調停速度Vs_Arとして算出する(ステップS56)。すなわち、第1推定速度Vs_E1の重みを1に設定する一方、第2推定速度Vs_E2の重みを0に設定するように調停する。
 一方、ステップS46においてYESの場合、推定速度調停部74Aは、ステップS44の演算結果であるレート制限速度V_rlmtを調停速度Vs_Arとして算出する(ステップS54)。これは、調停速度Vs_Arの切替時の変化量をレート制限速度V_rlmtにより制限するように調停したものである。
 次に、本発明の作業機械の第2の実施の形態の動作及び効果について説明する。ここでは、説明を簡便にするために、ブームの単独操作を行う場合における油圧システムの動作について図2及び図8を用いて説明する。図8は本発明の作業機械の第2の実施の形態における操作装置の入力に対するコントローラによる油圧アクチュエータの各種の推定速度の演算結果の時間変化の一例を示す図である。図8中、上図は操作装置に対する操作入力量の一例の時間変化を、下図は上図に示す操作入力量に対するコントローラの演算結果であるブームシリンダの各種の速度の時間変化の一例を示している。
 図8の上図に示す操作装置58の操作入力は、第1の実施の形態の場合の図5の上図に示す操作装置58の操作入力と同様なものである。すなわち、図8に示す時間T1において、操作装置58に対してステップ状の操作入力(図8の上図の実線)が開始されている。
 これにより、図6に示すコントローラ60Aは、操作装置58からの操作入力量Lに応じたブームシリンダ22の要求速度Vs_R(図8の下図の長破線)を演算する。この要求速度Vs_Rは、第1の実施の形態の場合の図5の下図の長破線で示す要求速度Vs_Rと同様なものである。コントローラ60Aは、要求速度Vs_Rに基づき油圧ポンプ31及び方向制御弁332に対して指令信号を出力する。
 図8に示す時間T2においては、第1の実施の形態の場合の図5に示す時間T2の場合と同様に、コントローラ60Aからの第2弁指令信号Cvに応じて図2に示す方向制御弁332が開口することでブームシリンダ22に圧油が供給されている。このため、方向制御弁332の開口面積及び前後差圧に基づきコントローラ60Aが演算する第2推定速度Vs_E2が0でない値になっている。一方、ブーム19は慣性の影響などにより停止状態のままなので、第3姿勢検出装置28はブームシリンダ22の駆動状態を停止状態として検出する。このため、第3姿勢検出装置28の検出値Siに基づきコントローラ60Aが演算する第1推定速度Vs_E1は0になる。このため、第1の実施の形態の場合と同様に、調停速度Vs_Arは、第2推定速度Vs_E2に設定される。
 図8に示す時間T3aにおいては、第1の実施の形態の場合の図5に示す時間T3の場合と同様に、ブーム19が実際に動作している状態に移行している。このため、第3姿勢検出装置28がブームシリンダ22の実際の駆動を検出するので、第1推定速度Vs_E1が第3姿勢検出装置28の検出値Siに応じた値になる。しかし、ブームシリンダ22が動き出してから間がないので、第1推定速度Vs_E1は閾値γよりも小さい値である。この場合、調停速度Vs_Arは、第1の実施の形態の場合と異なり、第2推定速度Vs_E2に設定される。これは、第1推定速度Vs_E1の重みが0に設定されると共に、第2推定速度Vs_E2の重みが1に設定されるように調停することと同義である。
 図8に示す時間T5においては、第1推定速度Vs_E1が閾値γよりも大きくなっている。しかし、第1推定速度Vs_E1は、レート制限速度V_rlmtよりも小さくなっている。そのため、調停速度Vs_Arは、第2推定速度Vs_E2から第1推定速度Vs_E1へ切り替わらずに、レート制限速度V_rlmtになるように調停される。調停速度Vs_Arは、その後もレート制限速度V_rlmtに維持され、第1推定速度Vs_E1がレート制限速度V_rlmtよりも大きくなると、レート制限速度V_rlmtから第1推定速度Vs_E1へ切り替えられる。
 操作入力の開始時間T1から相当な時間が経過した時間T4aにおいては、第1推定速度Vs_E1が閾値γよりも大きく且つレート制限速度V_rlmtよりも大きくなっている。このため、調停速度Vs_Arは、第1推定速度Vs_E1に設定されている。すなわち、第1推定速度Vs_E1の重みが1に設定されると共に、第2推定速度Vs_E2の重みが0に設定されるように調停することと同義である。
 このように、本実施の形態においては、操作装置58への操作入力が開始された直後のブームシリンダ22の動き出しのときには、方向制御弁332を介してブームシリンダ22に供給される圧油の流量を基に予測される第2推定速度Vs_E2のみを用いてブームシリンダ22の駆動制御を行う。操作入力の開始直後では、ブーム19の慣性に起因したブームシリンダ22の応答遅れの影響が大きいので、ブームシリンダ22の実際の駆動状態(ほぼ停止状態)を基に演算するブームシリンダ22の第1推定速度Vs_E1を用いる場合よりも、操作入力に応じた要求速度Vs_Rに対する乖離を抑制することができる。このため、フィードバック制御の補正量の過大によるブームシリンダ22の飛び出しやハンチングの発生を抑制することができる。
 一方、ブームシリンダ22の実際の駆動状態が操作入力に応じた状態に近いときには、ブームシリンダ22の実際の駆動状態を検出する姿勢センサ28aの検出値を基に演算される第1推定速度Vs_E1に切り替えてブームシリンダ22の駆動制御を行う。第1推定速度Vs_E1は、ブームシリンダ22の実際の駆動状態を基にブームシリンダ22の駆動速度を推定するものなので、高精度な推定値を得ることができる。したがって、ブームシリンダ22が操作装置58の操作に応じた駆動状態に近づいた状態の場合には、第2推定速度Vs_E2よりも高精度な推定値である第1推定速度Vs_E1に切り替えてブームシリンダ22の駆動制御を行うのでブームシリンダ22の高精度な制御を実現可能である。
 したがって、本実施の形態においては、ブームシリンダ22(油圧アクチュエータ32)の駆動状態が動き出しの状態から定常状態になるまで、油圧アクチュエータ32の良好な制御精度を実現することができる。
 また、本実施の形態においては、第1推定速度Vs_E1と第2推定速度Vs_E2の切替時に調停速度Vs_Arの変化量を制限することで、調停速度Vs_Arの切替時の変化を滑らかにすることができる。これにより、調停速度Vs_Arを用いた制御の安定性を確保することができる。
 また、本実施の形態の作用及び効果は、第1の実施の形態の場合と同様に、油圧ショベルの掘削後の土砂の積込み動作に対して大いに発揮されると考えられる。
 上述した本発明の作業機械の第2の実施の形態に係るコントローラ60Aは、第1推定速度Vs_E1および第2推定速度Vs_E2のいずれかに一方に切り替えるように調停することで調停速度Vs_Arを演算するように構成されている。コントローラ60Aの調停速度Vs_Arの演算は、油圧アクチュエータ32の加速時に第1推定速度Vs_E1が閾値γよりも小さい場合又は油圧アクチュエータ32の減速時に第1推定速度Vs_E1が閾値γよりも大きい場合には、第2推定速度Vs_E2を調停速度Vs_Arとして算出する一方、油圧アクチュエータ32の加速時に第1推定速度Vs_E1が閾値γ以上の場合又は油圧アクチュエータ32の減速時に第1推定速度Vs_E1が閾値γ以下の場合には、第1推定速度Vs_E1を調停速度Vs_Arとして算出するものである。閾値γは、要求速度Vs_Rに対する所定の割合の値として設定されている。
 この構成によれば、油圧アクチュエータ32の動き出しのときには、調停速度Vs_Arを第2推定速度Vs_E2に切り替える調停を行うことで、油圧アクチュエータ32のこれからの駆動状態を予測した第2推定速度Vs_E2である調停速度Vs_Arを用いて油圧アクチュエータ32の駆動を制御するようになるので、フロント作業装置3の慣性に起因した油圧アクチュエータ32の応答遅れの影響による制御の不安定性(ハンチングなど)を抑制することができる。また、油圧アクチュエータ32の駆動状態が所定の状態を超えて定常状態に近づいているときには、調停速度Vs_Arを第1推定速度Vs_E1に切り替える調停を行うことで、油圧アクチュエータ32の実際の駆動状態を基に導き出される第1推定速度Vs_E1である調停速度を用いて油圧アクチュエータ32の駆動を制御するようになるので、第1推定速度Vs_E1よりも推定精度に劣る第2推定速度Vs_E2を用いる場合よりも油圧アクチュエータ32の駆動を高精度に制御することができる。すなわち、油圧アクチュエータ32の動き出し時における制御の安定性を確保しつつ、油圧アクチュエータ32の高精度な制御が可能となる。
 また、本実施の形態においては、コントローラの調停速度の演算が第1推定速度と第2推定速度の切替えの前後の変化量を制限するものである。
 この構成によれば、調停速度の変化量が第1推定速度と第2推定速度の切替えの前後で制限することで、調停速度Vs_Arの変化を滑らかにすることができるので、調停速度Vs_Arを用いた制御の安定性を確保することができる。
 [その他の実施の形態]
 なお、上述した第1~第2の実施の形態においては、本発明を油圧ショベルに適用した例を示したが、油圧アクチュエータにより駆動する作業装置を備えた各種の作業機械に広く本発明を適用することができる。
 また、本発明は上述した実施の形態に限られるものではなく、様々な変形例が含まれる。上記した実施形態は本発明をわかり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。例えば、ある実施形態の構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加、削除、置換をすることも可能である。
 例えば、上述した実施の形態においては、方向制御弁332の開口面積に関係する物理量を検出する検出器として、第2電磁比例弁44、45への第2弁指令信号Cvの電流値を検出する電流センサ55、56を用いた構成の例を示した。しかし、当該検出器として、方向制御弁332の流体圧ポート332a、332bに入力されるパイロット圧を検出する圧力センサや方向制御弁332のスプールの変位を検出するスプール変位センサを用いる構成も可能である。圧力センサによって検出されるパイロット圧やスプール変位センサの検出値を基に方向制御弁332のスプールの変位量を算出することで方向制御弁332の開口面積の推定が可能である。
 また、上述した第1の実施の形態においては、コントローラ60が調停速度Vs_Arを上述の式(2)を用いて演算する構成の例を示した。すなわち、上述の式(3)により規定された重みα及び上述の式(4)により規定された重みβの2つの重みを用いて調停速度Vs_Arを演算する構成の例が示されている。しかし、コントローラ60は、重みαのみを用いて調停速度Vs_Arを演算する構成も可能である。ただし、この場合、重みα及び重みβの2つの係数を用いる場合と比べて、油圧アクチュエータの制御精度が劣ることがある。
 また、上述した第2の実施の形態においては、第1推定速度Vs_E1が閾値γに到達したときに、レート制限速度V_rlmtを用いて調停速度Vs_Arを演算するように構成されたコントローラ60Aの例を示した。しかし、コントローラ60Aは、レート制限速度V_rlmtを用いずに、第1推定速度Vs_E1と閾値γの大小関係(比較判定の結果)に応じて、第1推定速度Vs_E1及び第2推定速度Vs_E2のいずれか一方に切り替えるように調停速度Vs_Arを演算する構成が可能である。ただし、レート制限速度V_rlmtを用いる構成の場合よりも、調停速度Vs_Arの変化量が急変して制御の安定性が低下することがある。
 [まとめ]
 以上をまとめると、上述した本発明の実施の形態に係る作業機械は、圧油を吐出する油圧ポンプ31と、油圧ポンプ31から供給される圧油により駆動する油圧アクチュエータ32と、油圧ポンプ31から油圧アクチュエータ32に供給される圧油の流れを制御する方向制御弁332と、油圧アクチュエータ32の駆動により動作する被駆動部材19、20、21と、被駆動部材19、20、21の動作を指示する操作信号を出力する操作装置58と、被駆動部材19、20、21の動作情報を検出する第3姿勢検出装置28(第1検出装置)と、方向制御弁332を介して油圧アクチュエータ32に供給される圧油の流量に関係する情報を検出する第2検出装置を構成する第1圧力センサ51、第2圧力センサ52、53、電流センサ55、56と、油圧ポンプ31及び方向制御弁332の駆動を制御するコントローラ60、60Aとを備える。コントローラ60、60Aは、操作装置58の操作信号を基に油圧アクチュエータ32の要求速度Vs_Rを演算し、第3姿勢検出装置28(第1検出装置)の検出値を基に推定される油圧アクチュエータ32の速度を第1推定速度Vs_E1として演算し、第2検出装置を構成する第1圧力センサ51、第2圧力センサ52、53、電流センサ55、56(第2検出装置)の検出値を基に推定される油圧アクチュエータ32の速度を第2推定速度Vs_E2として演算し、第1推定速度Vs_E1と第2推定速度Vs_E2とを油圧アクチュエータ32の駆動状態に応じて調停することで調停速度Vs_Arを演算し、要求速度Vs_Rと調停速度Vs_Arの偏差に基づいて油圧ポンプ31及び方向制御弁332の駆動を制御するように構成されている。コントローラ60、60Aの調停速度Vs_Arの演算は、第1推定速度Vs_E1を基に油圧アクチュエータ32の駆動状態が動き出しの状態であると判定可能な場合には、第2推定速度Vs_E2に対する影響度が第1推定速度Vs_E1に対する影響度よりも大きくなるように調停する一方、第1推定速度Vs_E1を基に油圧アクチュエータ32の駆動状態が所定の状態を超えて定常状態に近づいていると判定可能な場合には、第1推定速度Vs_E1に対する影響度が第2推定速度Vs_E2に対する影響度よりも大きくなるように調停するものである。
 この構成によれば、油圧アクチュエータ32の駆動状態が動き出しのときには、油圧アクチュエータ32のこれからの駆動状態を予測した第2推定速度Vs_E2を用いて油圧アクチュエータ32の駆動を制御するので、被駆動部材19、20、21の慣性に起因した油圧アクチュエータ32の応答遅れの影響による油圧アクチュエータ32の飛び出しやハンチングを抑制することができる。また、油圧アクチュエータ32の駆動が定常状態に近づいているときには、油圧アクチュエータ32の実際の駆動状態を基に導き出される第1推定速度Vs_E1を用いて油圧アクチュエータ32の駆動を制御するので、第1推定速度Vs_E1よりも推定精度に劣る第2推定速度Vs_E2を用いる場合よりも油圧アクチュエータ32の駆動を高精度に制御することができる。すなわち、油圧アクチュエータ32の動き出し時における制御の安定性を確保しつつ、油圧アクチュエータ32の高精度な制御が可能となる。
 19…ブーム(被駆動部材)、 20…アーム(被駆動部材)、 21…バケット(被駆動部材)、 22…ブームシリンダ(油圧アクチュエータ)、 23…アームシリンダ(油圧アクチュエータ)、 24…バケットシリンダ(油圧アクチュエータ)、 28…第3姿勢検出装置(第1検出装置)、 31…油圧ポンプ、 332…方向制御弁、 51…第1圧力センサ(第2検出装置)、 52、53…第2圧力センサ(第2検出装置)、 55、56…電流センサ(第2検出装置)、 58…操作装置、 60、60A…コントローラ

Claims (5)

  1.  圧油を吐出する油圧ポンプと、
     前記油圧ポンプから供給される圧油により駆動する油圧アクチュエータと、
     前記油圧ポンプから前記油圧アクチュエータに供給される圧油の流れを制御する方向制御弁と、
     前記油圧アクチュエータの駆動により動作する被駆動部材と、
     前記被駆動部材の動作を指示する操作信号を出力する操作装置と、
     前記被駆動部材の動作情報を検出する第1検出装置と、
     前記方向制御弁を介して前記油圧アクチュエータに供給される圧油の流量に関係する情報を検出する第2検出装置と、
     前記油圧ポンプ及び前記方向制御弁の駆動を制御するコントローラとを備えた作業機械において、
     前記コントローラは、
     前記操作装置の操作信号を基に前記油圧アクチュエータの要求速度を演算し、
     前記第1検出装置の検出値を基に推定される前記油圧アクチュエータの速度を第1推定速度として演算し、
     前記第2検出装置の検出値を基に推定される前記油圧アクチュエータの速度を第2推定速度として演算し、
     前記第1推定速度と前記第2推定速度とを前記油圧アクチュエータの駆動状態に応じて調停することで調停速度を演算し、
     前記要求速度と前記調停速度の偏差に基づいて前記油圧ポンプ及び前記方向制御弁の駆動を制御するように構成され、
     前記コントローラの前記調停速度の演算は、
     前記第1推定速度を基に前記油圧アクチュエータの駆動状態が動き出しの状態であると判定可能な場合には、前記第2推定速度に対する影響度が前記第1推定速度に対する影響度よりも大きくなるように調停する一方、
     前記第1推定速度を基に前記油圧アクチュエータの駆動状態が所定の状態を超えて定常状態に近づいていると判定可能な場合には、前記第1推定速度に対する影響度が前記第2推定速度に対する影響度よりも大きくなるように調停するものである
     ことを特徴とする作業機械。
  2.  請求項1に記載の作業機械において、
     前記コントローラの前記調停速度の演算は、前記第2推定速度に対する前記第1推定速度の乖離の度合いが大きくなるにつれて、前記第2推定速度に対する影響度が大きくなる一方、前記第1推定速度に対する影響度が相対的に小さくなるように調停するものである
     ことを特徴とする作業機械。
  3.  請求項2に記載の作業機械において、
     前記コントローラの前記調停速度の演算は、前記要求速度に対する前記第1推定速度の乖離の度合いが小さくなるにつれて、前記第1推定速度に対する影響度が大きくなる一方、前記第2推定速度に対する影響度が相対的に小さくなるように調停するものである
     ことを特徴とする作業機械。
  4.  請求項1に記載の作業機械において、
     前記コントローラは、前記第1推定速度および前記第2推定速度のいずれかに一方に切り替えるように調停することで前記調停速度を演算するように構成され、
     前記コントローラの前記調停速度の演算は、
     前記油圧アクチュエータの加速時に前記第1推定速度が閾値よりも小さい場合又は前記油圧アクチュエータの減速時に前記第1推定速度が閾値よりも大きい場合には、前記第2推定速度を前記調停速度として算出する一方、
     前記油圧アクチュエータの加速時に前記第1推定速度が閾値以上の場合又は前記油圧アクチュエータの減速時に前記第1推定速度が閾値以下の場合には、前記第1推定速度を前記調停速度として算出するものであり、
     前記閾値は、前記要求速度に対する所定の割合の値として設定されている
     ことを特徴とする作業機械。
  5.  請求項4に記載の作業機械において、
     前記コントローラの前記調停速度の演算は、前記第1推定速度と前記第2推定速度の切替えの前後の変化量を制限する
     ことを特徴とする作業機械。
PCT/JP2022/011142 2021-09-30 2022-03-11 作業機械 WO2023053502A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP22875385.1A EP4290021A1 (en) 2021-09-30 2022-03-11 Work machine
JP2023551031A JPWO2023053502A1 (ja) 2021-09-30 2022-03-11
US18/281,450 US20240151003A1 (en) 2021-09-30 2022-03-11 Work Machine
CN202280020455.2A CN116964283A (zh) 2021-09-30 2022-03-11 作业机械
KR1020237030605A KR20230143178A (ko) 2021-09-30 2022-03-11 작업 기계

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021162384 2021-09-30
JP2021-162384 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023053502A1 true WO2023053502A1 (ja) 2023-04-06

Family

ID=85782147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011142 WO2023053502A1 (ja) 2021-09-30 2022-03-11 作業機械

Country Status (6)

Country Link
US (1) US20240151003A1 (ja)
EP (1) EP4290021A1 (ja)
JP (1) JPWO2023053502A1 (ja)
KR (1) KR20230143178A (ja)
CN (1) CN116964283A (ja)
WO (1) WO2023053502A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08145007A (ja) * 1994-11-18 1996-06-04 Toshio Fukuda アクチュエータの作動方法及び装置
JPH09242708A (ja) * 1996-03-11 1997-09-16 Kobe Steel Ltd 油圧アクチュエータの速度制御装置
JPH11181840A (ja) * 1997-12-25 1999-07-06 Shin Caterpillar Mitsubishi Ltd 旋回作業機の旋回制御装置
JP2008231903A (ja) * 2007-02-21 2008-10-02 Kobelco Contstruction Machinery Ltd 旋回制御装置及びこれを備えた作業機械
JP2019019567A (ja) * 2017-07-18 2019-02-07 株式会社神戸製鋼所 建設機械の制御装置
JP2019157521A (ja) 2018-03-14 2019-09-19 住友重機械工業株式会社 ショベル及び油圧制御装置
JP2020033815A (ja) 2018-08-31 2020-03-05 コベルコ建機株式会社 建設機械

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08145007A (ja) * 1994-11-18 1996-06-04 Toshio Fukuda アクチュエータの作動方法及び装置
JPH09242708A (ja) * 1996-03-11 1997-09-16 Kobe Steel Ltd 油圧アクチュエータの速度制御装置
JPH11181840A (ja) * 1997-12-25 1999-07-06 Shin Caterpillar Mitsubishi Ltd 旋回作業機の旋回制御装置
JP2008231903A (ja) * 2007-02-21 2008-10-02 Kobelco Contstruction Machinery Ltd 旋回制御装置及びこれを備えた作業機械
JP2019019567A (ja) * 2017-07-18 2019-02-07 株式会社神戸製鋼所 建設機械の制御装置
JP2019157521A (ja) 2018-03-14 2019-09-19 住友重機械工業株式会社 ショベル及び油圧制御装置
JP2020033815A (ja) 2018-08-31 2020-03-05 コベルコ建機株式会社 建設機械

Also Published As

Publication number Publication date
KR20230143178A (ko) 2023-10-11
EP4290021A1 (en) 2023-12-13
CN116964283A (zh) 2023-10-27
US20240151003A1 (en) 2024-05-09
JPWO2023053502A1 (ja) 2023-04-06

Similar Documents

Publication Publication Date Title
US8340875B1 (en) Lift system implementing velocity-based feedforward control
US8886415B2 (en) System implementing parallel lift for range of angles
JP6474718B2 (ja) 建設機械の油圧制御装置
EP3354803B1 (en) Hydraulic system for work machines
KR20180048918A (ko) 건설 기계
US20130125537A1 (en) Swirl flow control system for construction equipment and method of controlling the same
US10895059B2 (en) Shovel
WO2017094822A1 (ja) 油圧建設機械の制御装置
CN110325747B (zh) 作业机械
JP7085996B2 (ja) 作業機械および作業機械の制御方法
US11920325B2 (en) Construction machine
WO2018207267A1 (ja) 作業機械
CN112639300A (zh) 工程机械
JP5918728B2 (ja) 作業機械の油圧制御装置
WO2015151776A1 (ja) 作業機械の油圧制御装置
JP6915042B2 (ja) ショベル
JP6692568B2 (ja) 建設機械
US10767674B2 (en) Construction machine
WO2023053502A1 (ja) 作業機械
KR20180024695A (ko) 건설기계의 제어 시스템 및 건설기계의 제어 방법
JP7053731B2 (ja) 作業機械
JP7495872B2 (ja) 建設機械
WO2022071584A1 (ja) 作業機械
JP7406042B2 (ja) 作業機械
JP7314404B2 (ja) 作業機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875385

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551031

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237030605

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022875385

Country of ref document: EP

Ref document number: 1020237030605

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 18281450

Country of ref document: US

Ref document number: 202280020455.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2022875385

Country of ref document: EP

Effective date: 20230907

NENP Non-entry into the national phase

Ref country code: DE