WO2023053308A1 - Air intake device for internal combustion engine - Google Patents

Air intake device for internal combustion engine Download PDF

Info

Publication number
WO2023053308A1
WO2023053308A1 PCT/JP2021/036013 JP2021036013W WO2023053308A1 WO 2023053308 A1 WO2023053308 A1 WO 2023053308A1 JP 2021036013 W JP2021036013 W JP 2021036013W WO 2023053308 A1 WO2023053308 A1 WO 2023053308A1
Authority
WO
WIPO (PCT)
Prior art keywords
intake
valve
intake passage
pipe
air
Prior art date
Application number
PCT/JP2021/036013
Other languages
French (fr)
Japanese (ja)
Inventor
直道 香取
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to PCT/JP2021/036013 priority Critical patent/WO2023053308A1/en
Priority to JP2023550876A priority patent/JPWO2023053308A1/ja
Publication of WO2023053308A1 publication Critical patent/WO2023053308A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/04Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/08Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems

Definitions

  • the present invention relates to an intake system for an internal combustion engine, in which an intake passage is partitioned into a main flow passage and a tumble flow passage, and a resonator communicating with the intake passage is provided.
  • Patent Document 1 discloses a structure in which an intake passage of an internal combustion engine is divided into a main flow path and a tumble flow path by a partition to generate a tumble flow.
  • An intake device for an internal combustion engine such as that disclosed in Patent Document 1, does not include a resonator communicating with an intake passage, and the amount of intake air remaining in the intake port is small.
  • the opening of the throttle valve is narrowed. Therefore, in the intake stroke from when the intake valve opens to when it closes, the volume on the side of the intake port increases as the piston descends.
  • the inside of the intake port suddenly becomes a negative pressure state and the flow inside the intake passage becomes weak, resulting in a decrease in the flow of the tumble flow.
  • the present invention reduces the decrease in the flow in the intake passage even when the throttle valve is throttled in the low-load region of the internal combustion engine, strengthens the flow of the tumble flow, improves the combustion efficiency, and further reduces the flow from the resonator.
  • An object of the present invention is to provide an intake device for an internal combustion engine that can further improve combustion efficiency by switching the inflow of air into a tumble passage.
  • the present invention has been made in view of the above problems, and includes an intake passage that introduces intake air into a combustion chamber, an intake passage pipe that is a part of the intake passage, and an intake passage pipe that introduces intake air into the intake passage pipe.
  • An intake system for an internal combustion engine comprising a throttle body and a throttle valve provided inside the throttle body for controlling the opening of the intake passage,
  • the intake passage pipe is disposed downstream of the throttle body and has a partition wall that divides the intake passage into a tumble flow passage and a main flow passage along the longitudinal direction, which is the inflow direction of the intake air, Having a resonator communicating with the intake passage via a communicating pipe
  • the intake passage pipe has an intake control valve positioned downstream of the throttle valve for controlling the intake air flow ratio between the tumble flow passage and the main flow passage, and a communication hole opening into the communication pipe.
  • the air intake device for an internal combustion engine is characterized in that the communication pipe is provided with an air amount control valve that opens and closes the inside of the intake passage pipe.
  • the throttle valve is throttled when the internal combustion engine is operated in a low load region by providing the resonator located downstream of the throttle valve in the intake passage pipe and communicating with the intake passage pipe. Also, since the intake air flows from the resonator into the intake passage on the downstream side of the throttle valve, the flow of the intake air in the intake passage does not decrease, and the tumble flow is strengthened to improve the combustion efficiency. can. Furthermore, the above effect can be further enhanced by switching the inflow of air from the resonator into the intake passage pipe with the air amount control valve as required.
  • the intake control valve and the air amount regulating valve may be provided on the same shaft member as a rotating shaft.
  • the intake control valve and the air amount adjustment valve may have a structure in which one valve opens and the other valve closes.
  • the intake control valve is opened during stoichiometric operation, and the air amount adjustment valve between the resonator and the resonator is closed, thereby causing pumping loss due to the inflow of air from the resonator having the intake volume.
  • the intake control valve is closed and the air volume adjustment valve between the resonator and the resonator is opened to promote tumble flow formation by utilizing the intake volume of the resonator. can improve combustion efficiency.
  • the communication hole may be positioned between the downstream end of the throttle body and the upstream end of the partition wall.
  • the communication hole communicating with the resonator is arranged at a location away from the internal combustion engine, which is a heat-generating portion, even if airflow with a relatively high temperature flows into the intake passage, Heat is not transmitted to the communicating pipe, and the effect of exhaust heat from the internal combustion engine is reduced, thereby preventing reduction in intake efficiency.
  • the intake passage pipe may have a mounting portion to which one end of the communication pipe is mounted, and the mounting portion and the intake passage pipe may be integrated.
  • fixing parts for fixing the mounting portion to the intake passage pipe are not required, so that an increase in the number of parts can be prevented and the labor for processing can be reduced.
  • the configuration includes a fuel injection valve that injects fuel toward the interior of the intake passage,
  • the inner wall of the intake passage pipe may be provided with a notch extending from the upstream side to the downstream side in the intake flow direction, and the communication hole may be provided at a position overlapping with the notch.
  • the throttle valve is throttled when the internal combustion engine is operating in a low load region by providing a resonator positioned downstream of the throttle valve in the intake passage pipe and communicating with the intake passage pipe. Also, since the intake air flows from the resonator into the intake passage on the downstream side of the throttle valve, the flow of the intake air in the intake passage does not decrease, and the tumble flow is strengthened to improve the combustion efficiency. can. Furthermore, the above effects can be further enhanced by switching the inflow of air into the resonator with an air amount control valve as needed.
  • FIG. 1 is a right side view of a motorcycle equipped with a power unit having an intake structure for an internal combustion engine according to Embodiment 1 of the present invention.
  • 2 is a rear right side surface of the motorcycle of FIG. 1 with a body cover removed.
  • FIG. 3 is a side cross-sectional view of a power unit taken out from FIG. 2 and shown in substantially the same orientation as that shown in FIG. 2 and having an intake structure for an internal combustion engine according to Embodiment 1;
  • FIG. 4 is an enlarged view of a main portion of FIG. 3;
  • FIG. 4 is a schematic diagram showing the vicinity of an intake pipe and a resonator; 4 is a cross-sectional view of the inlet pipe and the communicating pipe cut at a position where the communicating hole passes;
  • FIG. 3 is a side cross-sectional view of a power unit taken out from FIG. 2 and shown in substantially the same orientation as that shown in FIG. 2 and having an intake structure for an internal combustion engine according to Embodiment 1;
  • FIG. 5 is an enlarged view of a main portion of FIG. 4;
  • FIG. 9 is an enlarged cross-sectional perspective view of a main part of FIG. 8;
  • Fig. 3 is a left side view showing the vicinity of the throttle body and the inlet pipe;
  • Fig. 3 is a perspective view showing the periphery of an inlet pipe mounting portion; It is the figure which looked at the periphery of a communicating hole from the inside of an inlet pipe.
  • FIG. 4 is a perspective view showing a valve shaft and a notch of the air amount regulating valve;
  • FIG. 4 is a vertical cross-sectional view of the communicating pipe and the air amount regulating valve showing the open state of the air amount regulating valve;
  • FIG. 4 is a vertical cross-sectional view of the communicating pipe and the air amount regulating valve showing the closed state of the air amount regulating valve;
  • FIG. 4 is a schematic diagram showing a state in which the tumble control valve is open and the air amount adjustment valve is closed;
  • FIG. 4 is a schematic diagram showing a state in which the tumble control valve is closed and the air amount adjustment valve is open;
  • FIG. 4 is a schematic diagram of an intake passage showing a region downstream of a throttle valve;
  • FIG. 17 shows the pressure variation at the point indicated in FIG.
  • 4 is a graph showing the effect of the presence or absence of a resonator in the open state of the tumble control valve on the pumping loss and fuel consumption of the internal combustion engine.
  • 4 is a graph showing how the presence or absence of a resonator in the closed state of the tumble control valve affects the pumping loss and fuel consumption of the internal combustion engine.
  • FIG. 1 An intake system for an internal combustion engine according to one embodiment of the present invention will be described with reference to FIGS. 1 to 21.
  • FIG. 1 An intake system for an internal combustion engine according to one embodiment of the present invention will be described with reference to FIGS. 1 to 21.
  • the directions of front, back, left, right, up and down in the description of this specification and the scope of the claims follow the directions of the vehicle when the power unit equipped with the intake device for the internal combustion engine according to the present embodiment is mounted on the vehicle. do.
  • the vehicle is a small vehicle, specifically a motorcycle.
  • the intake passage 70 of the throttle body 7 and the intake passage 80 the upper side of the partition portion 81 as a partition dividing them along the intake air flow direction F is described as the "upper” side, and the lower side is described as the "lower” side. do.
  • an arrow FR indicates the front of the vehicle, LH the left of the vehicle, RH the right of the vehicle, and UP the upper of the vehicle.
  • FIG. 1 shows the right side of a motorcycle 1 equipped with a power unit 3 equipped with an intake device for an internal combustion engine according to an embodiment of the present invention.
  • 2 shows the rear right side of the motorcycle 1 of FIG. 1 with the body cover 10 removed.
  • a motorcycle 1 equipped with an intake device 60 for an internal combustion engine according to the present embodiment is a so-called scooter type motorcycle, and a front body portion 1A and a rear body portion 1B are connected via a low floor portion 1C.
  • the vehicle body frame 2 forming the skeleton of the vehicle body generally consists of a down tube 21 and a main pipe 22 (see FIG. 2).
  • a down tube 21 extends downward from a head pipe 20 in the front portion 1A of the vehicle body, and the down tube 21 bends horizontally at its lower end to extend rearward under the floor portion 1C, and as shown in FIG.
  • a pair of left and right main pipes 22 are connected via a connecting frame 23 arranged in the width direction of the vehicle. It bends and extends backward.
  • a storage box 11 and a fuel tank 12 are supported above the inclined portion 22a of the main pipe 22, and the storage box 11 and the fuel tank 12 are closed by an occupant seat 13 mounted thereabove.
  • a vehicle body cover 10 covers the lower part of the passenger seat 13 including the fuel tank 12 .
  • a handlebar 14 is provided upwardly while being pivotally supported by a head pipe 20, and a front fork 15 extends downward, and a front wheel 16 is pivotally supported at the lower end thereof.
  • a bracket 24 is protruded near the lower end of the inclined portion 22a of the main pipe 22, and the power unit is connected to the bracket 24 via a link member 25. 3 is connected and supported so as to be able to swing.
  • the front portion of the power unit 3 is a single-cylinder four-stroke cycle air-cooled internal combustion engine (hereinafter simply referred to as the "internal combustion engine") 30, and a crankshaft is mounted in the front portion of the power unit case 50 constituting the crankcase portion 50a.
  • 51 is arranged in the vehicle width direction and rotatably supported, and the end of the hanger arm 52 protruding forward from the lower end of the power unit case 50 is in a posture in which the cylinder axis C is greatly inclined forward to a substantially horizontal state. are connected via a link member 25 attached to a bracket 24 of the main pipe 22 so as to be vertically swingable.
  • a cylinder block 31, a cylinder head 32, and a cylinder head cover 33, which constitute the internal combustion engine 30, are stacked in order on the front portion of the power unit case 50, which constitutes the crankcase portion 50a.
  • a power transmission case portion 55 equipped with a belt-type continuously variable transmission and the like extends integrally from the crankcase portion 50a to the rear left side, and a rear axle 56, which is the output shaft of the power unit 3, is provided at its rear portion. and the rear wheels 17 are attached. That is, the power unit 3 is a so-called swing unit, and a rear cushion (not shown) is interposed between the power transmission case portion 55 at the rear of the power unit 3 and the rear of the main pipe 22 .
  • an inlet pipe 6 as an intake passage pipe extends from the upper part of the cylinder head 32 of the internal combustion engine 30, which tilts forward greatly, and curves rearward.
  • the connected throttle body 7 is located above the cylinder block 31 , and an air cleaner device 86 connected to the throttle body 7 via a connecting tube 85 is arranged above the power transmission case portion 55 .
  • an exhaust pipe 38 extending downward from the lower portion of the cylinder head 32 is bent rearward and extends rearward while biased to the right side, and is connected to a muffler 39 on the right side of the rear wheel 17 .
  • FIG. 3 is a side cross-sectional view of the power unit 3 taken out of FIG. 2 and shown in substantially the same orientation as shown in FIG.
  • the internal combustion engine 30 in the power unit 3 is shown in cross-section of the left half of the cylinder block 31, the cylinder head 32, and the cylinder head cover 33, and the power unit case 50 has a left case half 50L which is a mating surface with a right case half (not shown). 50b is shown facing forward in the drawing.
  • the power unit case 50 is constructed by combining a left-right split left case half 50L and a right case half (not shown).
  • the half body 50L has a front portion forming the left half of the crankcase portion 50a, and extends rearward to form a long belt (not shown) between the crankshaft 51 and the rear axle 56 of the rear wheel 17.
  • a power transmission case portion 55 is formed to accommodate a transmission including a type continuously variable transmission and a reduction gear mechanism 57 and the like.
  • the reduction gear mechanism 57 is housed inside the rear right open surface 55R of the power transmission case portion 55 and is covered by a reduction gear case (not shown).
  • the output shaft of the reduction gear mechanism 57 is the rear axle 56 of the rear wheel 17 .
  • Rotational power of the crankshaft 51 of the crankcase portion 50a of the internal combustion engine 30 is transmitted to the rear wheels 17 through the belt-type continuously variable transmission and the reduction gear mechanism 57 in the power transmission case portion 55. .
  • a piston 34 that reciprocates in the cylinder bore 31a of the cylinder block 31 is connected by a connecting rod 35 to a crankpin 51a of the crankshaft 51 of the crankcase portion 50a.
  • a combustion chamber 36 is formed between the top surface 34a of the piston 34 slidably fitted in the cylinder bore 31a of the cylinder block 31 and the combustion chamber ceiling surface 32a of the cylinder head 32 facing the top surface 34a.
  • the internal combustion engine 30 employs a SOHC type two-valve system, and a valve mechanism 9 is provided in the cylinder head 32 .
  • a cylinder head cover 33 is overlaid on the cylinder head 32 so as to cover the valve mechanism 9 .
  • an endless cam chain (not shown) is provided on one side of the crankcase portion 50a, the cylinder block 31, and the cylinder head 32 in the crankshaft 51 direction.
  • the camshaft 91 and the crankshaft 51 are spanned through a cam chain chamber that does not rotate, and the camshaft 91 rotates in synchronism with the crankshaft 51 at a rotation speed of 1/2.
  • An ignition plug (not shown) is inserted into the combustion chamber 36 from the opposite side of the cam chain chamber (the other side in the crankshaft 51 direction) of the cylinder head 32 .
  • FIG. 3 and FIG. 4 which is an enlarged view of the main part of FIG. 3, in the cylinder head 32 in which the cylinder axis C is substantially horizontal and greatly inclined forward, the intake valve port 40 opens to the combustion chamber ceiling surface 32a.
  • An intake port 42 and an exhaust port 43 extend from the and exhaust valve openings 41 while curving in directions away from each other in the vertical direction.
  • the upstream end of the intake port 42 opens upward from the cylinder head 32 and is connected to the inlet pipe 6 to form a continuous intake passage 80 .
  • a downstream end 7a of the throttle body 7 is connected to an upstream end 6e of the inlet pipe 6 via an insulator 8 as a connecting member.
  • a downstream end of the exhaust port 43 opens downward in the cylinder head 32 and is connected to an exhaust pipe 38 (see FIG. 2).
  • a cylindrical intake valve guide 44 is integrally fitted to the curved outer wall portion 42a of the intake port 42 in the cylinder head 32, and the intake valve 46 slidably supported by the intake valve guide 44 moves into the combustion chamber of the intake port 42.
  • the intake valve port 40 facing 36 is opened and closed.
  • an exhaust valve 47 slidably supported by an exhaust valve guide 45 integrally fitted to the curved outer wall portion 43a of the exhaust port 43 in the cylinder head 32 is an exhaust valve opening facing the combustion chamber 36 of the exhaust port 43. Open and close 41.
  • the intake valve 46 and the exhaust valve 47 are urged upward by a valve spring 48 so that the head portions 46a and 47a of the intake valve 46 and the exhaust valve 47 close the intake valve port 40 and the exhaust valve port 41 facing the combustion chamber 36.
  • stem ends 46b and 47b of the intake valve 46 and the exhaust valve 47 are pushed down by an intake rocker arm 94 and an exhaust rocker arm 95 which contact and oscillate with the intake cam 92 and the exhaust cam 93 of the camshaft 91.
  • the intake valve 46 and the exhaust valve 47 are opened at a predetermined timing, the intake port 42 and the combustion chamber 36 and the exhaust port 43 and the combustion chamber 36 are communicated, and intake and exhaust are performed at predetermined timing.
  • an intake device 60 capable of imparting a tumble vortex T, that is, longitudinal rotation of the fuel-air mixture is used in the combustion chamber 36.
  • the inlet pipe 6 is connected to the upstream end of the intake port 42 of the internal combustion engine 30 via the insulator 61 to form a continuous intake passage 80 having a substantially circular cross section.
  • a throttle body 7 is connected to the upstream side of the inlet pipe 6 via an insulator 8 as a fixing member.
  • the throttle body 7 has an intake passage 70 with a substantially circular cross section forming part of an intake passage 80 connected to the combustion chamber 36 of the internal combustion engine 30, and an air cleaner device 86 ( (See Fig. 2).
  • the throttle body 7 has a throttle valve 75.
  • the throttle valve 75 is of the butterfly type, and has a throttle valve shaft 76 and a disk-shaped valve body 77 fixed to the throttle valve shaft 76 and rotating integrally therewith.
  • the valve body 77 is fixed to the throttle valve shaft 76 so as to substantially bisect the disk.
  • the valve body 77 is rotatably supported in the throttle body 7 by a throttle valve shaft 76 which is oriented substantially horizontally perpendicular to the intake flow direction F of the intake passage 70, that is, intersects perpendicularly with the central axis of the intake passage 70. ing.
  • the throttle valve 75 is rotated by an instruction from an operator or the like, and variably controls the flow area of the intake passage 70 to change the amount of intake air flowing through the intake passage 70 .
  • the intake passage 80 continues from the inlet pipe 6 to the intake port 42 and is divided by a partition 81 along the intake flow direction F so that the passing intake air generates a tumbling vortex T in the combustion chamber 36. It is partitioned into a tumble channel 80A and a main channel 80B excluding the tumble channel 80A. The intake passage 80 is partitioned by a partition portion 81 such that the tumble passage 80A is narrower than the main passage 80B.
  • the "tumble flow path" is an intake air flow path for generating a tumble vortex T in the combustion chamber 36 when the throttle valve 75 is at a low opening, that is, when the internal combustion engine 30 is at a low load.
  • the lower portion of the intake passage 80 partitioned by the partition portion 81 serves as the tumble passage 80A, and the upper portion serves as the main passage 80B, but the present invention is not limited to the vertical arrangement.
  • "upper” and “lower” with respect to the intake passage 80, the intake passage 70, and the throttle valve 75 mean “up” in the direction of the cylinder head 32 or the cylinder head cover 33 in the direction of the cylinder axis C, and “up” in the direction of the crankshaft 51. is called ⁇ lower,'' and it does not mean ⁇ upper, lower'' in space.
  • the partitioning portion 81 includes an inlet pipe side partitioning portion 81A, an insulator side partitioning portion 81B, and an intake port side partitioning portion 81C positioned continuously from the upstream side to the downstream side of the intake air flow. configured as
  • a main flow passage 80B on the upper side of the drawing and a tumble flow passage 80A on the lower side of the drawing vertically extend from the inlet pipe 6 to the intake port 42, and the intake passage 80 on the downstream side of the throttle valve 75 is vertically partitioned by the partition portion 81. , each having a substantially semicircular cross section.
  • the surface of the partition portion 81 in the width direction of the intake passage 80 and the throttle valve shaft 76 are parallel.
  • the downstream end 81b of the partition 81 that is, the downstream end 81b located in the intake port 42 of the cylinder head 32 is directed toward the cylinder block 31 in the cylinder head 32.
  • the end 80Ab of the tumble flow path 80A is bent and integrally formed, and is formed so as to point toward the combustion chamber ceiling surface 32a of the cylinder head 32.
  • the intake air flowing through the tumble flow path 80A can pass above the head portion 46a of the intake valve 46 and then flow into the cylinder bore 31a, as indicated by the middle and small arrows in FIG.
  • the tumble vortex T can be easily generated inside.
  • the tumble flow path 80A is configured such that the passing intake air generates the tumble vortex T. As shown in FIG.
  • a tumble valve serving as an intake control valve is provided near the upstream end 81a of the partition portion 81 formed in the inlet pipe 6 to control the ratio of the intake air flow rate between the tumble flow path 80A and the main flow path 80B.
  • a control valve 65 is provided.
  • the tumble control valve 65 is arranged with an interval from the upstream end 81a of the partition 81, but may be arranged at the upstream end 81aa of the partition 81 on the upstream side.
  • the tumble control valve 65 has a valve shaft 66 and a tumble valve element 67 that is fixed to the valve shaft 66 and rotates together.
  • the tumble valve body 67 is formed in a plate-like semi-disk that closes the opening of the main flow path 80B near the upstream end 81a of the partition portion 81 within the inlet pipe 6 .
  • a valve stem 66 is attached to one linear end of the tumble valve body 67 .
  • the valve shaft 66 is rotatably supported by the inlet pipe 6 so as to be parallel to the plane of the partition 81 in the width direction of the intake passage 80 .
  • the valve shaft 66 is connected to an actuator 68 via a speed reducer 69, as shown in FIG. Also referring to FIG. 8, the valve shaft 66 is appropriately rotated to a predetermined angle by an actuator 68 .
  • the tumble valve element 67 also rotates to change the opening degree of the main flow passage 80B, thereby adjusting the amount of intake air flowing through the main flow passage 80B. is also adjusted.
  • a fuel injection valve 87 is attached to the throttle body 7 so as to penetrate from the upper outside and is arranged to inject fuel toward the intake passage 80 .
  • a fuel injection valve 88 which penetrates the main flow path 80B from the upper outside and is arranged to inject and supply fuel toward the intake valve port 40 .
  • the fuel injection valves 88 and 87 are arranged in the inlet pipe 6 and the throttle body 7, but the number of fuel injection valves is not limited to two, and may be, for example, one. , only one of the fuel injection valves 87 and 88 may be attached. Further, a direct injection structure in which a fuel injection valve is arranged in the cylinder head 32 or the cylinder block 31 to inject fuel into the combustion chamber 36 may be used.
  • the intake device 60 has a resonator 100 communicating with an intake passage 80 inside the inlet pipe 6 through a communicating pipe 101, as shown in FIG.
  • a communicating pipe 101 As shown in FIG. 6, one end 101a of the communication pipe 101 is connected to a mounting portion 104 projecting from the inlet pipe 6.
  • the other end 101b of the communicating pipe 101 is connected to the resonator 100 as shown in FIG.
  • the interior of the communicating pipe 101 forms a communicating passage 101c that communicates the interior of the inlet pipe 6 and the interior of the resonator 100 with each other.
  • the inlet pipe 6 is provided with a mounting portion 104 for mounting one end 101a of the communicating pipe 101, protruding from the outer wall surface 6d of the inlet pipe 6.
  • the attachment portion 104 is formed in a tubular shape and has a communicating passage 104a inside.
  • a collar-shaped portion 104b is formed on the outer surface of the mounting portion 104.
  • the communication pipe 101 is an integral part that is formed integrally with the inlet pipe 6, but it may be structured to be attached to the inlet pipe 6 separately from the inlet pipe 6.
  • the inner wall 6c of the inlet pipe 6 is formed with a communication hole 102 opening to the communication passage 104a inside the mounting portion 104.
  • FIGS. 8 and 9 the inner wall 6c of the inlet pipe 6 is formed with a communication hole 102 opening to the communication passage 104a inside the mounting portion 104.
  • the intake passage 80 inside the inlet pipe 6 is partitioned by a partition portion 81 into a tumble passage 80A and a main passage 80B.
  • a plane passing through the center of the plate in the thickness direction of the partition 81 is defined as a partition central plane Pa, and an extended central plane Pb extending the partition central plane Pa along the shape of the inlet pipe 6 is defined.
  • a plane composed of the partition central plane Pa and the extension central plane Pb is defined as a central plane P such as a partition.
  • the inlet pipe 6 is divided by the central plane P such as the partition, the portion on the tumble flow path 80A side is defined as the tumble flow path side portion 6a, and the portion on the main flow path 80B side is defined as the main flow path side portion 6b.
  • the communication hole 102 formed in the inlet pipe 6 is located in the inner wall surface 6a1 of the tumble flow path side portion 6a, as shown in FIGS.
  • the communication hole 102 is formed between the downstream end 7a of the throttle body 7 and the upstream end 81a of the partition portion 81, as shown in FIG.
  • the communication hole 102 is provided downstream of the downstream end 8 a of the insulator 8 connecting the throttle body 7 and the inlet pipe 6 . Even if the inlet pipe 6 is connected to the throttle body 7 via the insulator 8, the communication hole 102 is not blocked by the insulator 8. - ⁇
  • the inlet pipe 6 is fixed to the cylinder head 32 via the insulator 61 by bolts 37, which are fastening members.
  • the communication hole 102 and the mounting portion 104 communicate with the communication hole 102 and project from the inlet pipe 6 so that the mounting portion 104 does not interfere with fastening the bolt 37 to the cylinder head 32. , are positioned so as not to overlap with the bolt 37.
  • the inner wall 6c of the inlet pipe 6 is provided with notches 103 recessed from the inner wall 6c toward the upstream side and the downstream side of the intake air across the communication hole 102. It is The notch 103 is deepest in the vicinity of the communication hole 102 and gradually becomes shallower toward the upstream end 103a and the downstream end 103b. As shown in FIG. 12, the lower edge 103c of the notch 103 slopes downward from the upstream end 103a toward the downstream end 103b, so that the injected fuel injected into the inlet pipe 6 is It is designed to prevent the fluid from accumulating in the communication hole 102 and the notch 103.
  • the communicating pipe 101 connecting the resonator 100 and the inlet pipe 6 is provided with an air quantity adjusting valve 110 for adjusting the quantity of air flowing into the inlet pipe 6 from the resonator 100.
  • the air amount adjusting valve 110 has a valve shaft 111 whose axis is in a direction intersecting the direction of air flow in the communicating pipe 101 .
  • the valve shaft 111 is formed to have a circular cross-sectional shape, and a notch 112 is formed in the valve shaft 111 .
  • an insertion hole 101d through which the valve shaft 111 of the air amount adjustment valve 110 is inserted is provided at a predetermined position of the communication pipe 101.
  • the valve shaft 111 is inserted through the insertion hole 101d so that the notch 112 is positioned inside the communicating pipe 101, and is rotatably supported by bearings 105 positioned on both sides of the communicating pipe 101.
  • a packing member 106 is arranged between the insertion hole 101d and the bearing 105 to prevent air leakage from the communicating pipe 101. As shown in FIG.
  • valve shaft 66 of tumble control valve 65 and valve shaft 111 of air amount adjusting valve 110 are formed of the same shaft member 120 .
  • valve shaft 111 of the air amount adjusting valve 110 is rotated.
  • valve shaft 66 of tumble control valve 65 and valve shaft 111 of air amount adjusting valve 110 are formed as the same component. It may be formed in parts and connected so as to rotate together.
  • the tumble control valve 65 when the tumble control valve 65 is open, the air amount adjustment valve 110 is closed and the resonator 100 and the intake passage 80 are not communicated. As shown in FIG. 17 , when the tumble control valve 65 is closed, the air amount adjustment valve 110 is opened, and air is supplied from the resonator 100 to the intake passage 80 .
  • the tumble control valve 65 and the air amount adjustment valve 110 are configured so that when one valve opens, the other valve closes.
  • FIGS. 18 and 19 the effect of enhancing the flow of the tumble flow by providing the resonator 100 downstream from the throttle valve 75 in communication with the intake passage 80 will be described with reference to FIGS. A description will be given in comparison with the case of an intake device.
  • the tumble control valve 65 is attached to the upper passage of the intake passage, the upper side being the main passage 80B and the lower side being the tumble passage 80A.
  • a and B indicate the positions of various locations representing changes in pressure in the intake system shown in FIG. Point A is located downstream of the throttle valve 75 and upstream of the upstream end 81a of the partition 81 separating the tumble flow path 80A and the main flow path 80B, and point B is located within the tumble flow path 80A. are doing.
  • FIG. 19 shows crank angles in one cycle when the throttle valve 75 is gradually opened for an intake system in which the resonator 100 is connected downstream of the throttle valve 75 and an intake system in which the resonator 100 is not connected downstream of the throttle valve 75.
  • the pressure data at each location are shown with the crank angle on the horizontal axis and the pressure on the vertical axis.
  • An intake passage area in the intake system from downstream of the throttle valve 75 to the intake valve 46 is defined as a throttle valve downstream intake area, and this volume is defined as a throttle valve downstream intake volume.
  • These definitions also include areas and volumes within resonator 100 when resonator 100 is connected.
  • the pressure change in the intake passage and the flow of intake air when the resonator 100 is not connected downstream of the throttle valve 75 will be described.
  • the case where the resonator 100 is not connected downstream of the throttle valve 75 means that the intake system does not have the resonator 100, and even if the intake system has the resonator 100, it is connected upstream of the throttle valve 75. is the case.
  • the intake volume downstream of the throttle valve is not large. , air is taken in from the atmosphere upstream of the throttle valve 75 through the opening of the throttle valve 75 .
  • the opening of the throttle valve 75 is small, it is not possible to charge the volume of air that increases as the piston 34 descends. between 380 degrees and 540 degrees).
  • the pressure inside the intake port suddenly becomes negative in this way, as the piston 34 descends, the air in the intake area downstream of the throttle valve expands and is drawn in, weakening the flow and forming a tumble flow in the cylinder. weakens.
  • the presence or absence of the resonator 100 communicating with the intake passage 80 depends on the pumping loss (PMEP (kPa)) and fuel consumption (net fuel consumption rate BSFC (g/ The effect on kW-h)) was predicted using a desktop model.
  • PMEP pumping loss
  • BSFC net fuel consumption rate
  • FIG. 20 is a graph showing prediction results of pumping loss and fuel consumption values for a model with the resonator 100 and a model without the resonator 100 when the tumble control valve 65 is open. Stoichiometric operation of the internal combustion engine is assumed when the tumble control valve 65 is open. When the tumble control valve 65 was open, the pumping loss was smaller and the fuel consumption was better when there was no resonator than when there was a resonator.
  • FIG. 21 is a graph showing prediction results of pumping loss and fuel consumption values for a model with the resonator 100 and a model without the resonator 100 when the tumble control valve 65 is closed.
  • the tumble control valve 65 When the tumble control valve 65 is closed, it is assumed that the internal combustion engine is running lean.
  • the tumble control valve 65 was in the closed state, the pumping loss was smaller and the fuel consumption was better when the resonator was present than when there was no resonator.
  • air amount regulating valve 110 is closed when tumble control valve 65 is open, and air amount regulating valve 110 is open when tumble control valve 65 is closed. Since the tumble control valve 65 is in the valve state, it is in the connected state with the resonator 100 having superior fuel efficiency regardless of whether the tumble control valve 65 is open or closed.
  • the intake device 60 for an internal combustion engine is configured as described above, it has the following effects.
  • the intake device 60 includes an intake passage 80 for introducing intake air into the combustion chamber 36, an inlet pipe 6 whose interior is part of the intake passage 80, a throttle body 7 for introducing intake air into the inlet pipe 6, and an intake passage 80. and a resonator 100.
  • the inlet pipe 6 is arranged downstream of the throttle body 7, and an intake passage 80 is provided for intake air flow. Equipped with a partition 81 that divides the tumble flow path 80A and the main flow path 80B along the longitudinal direction, which is the inflow direction. 100 and a communicating hole 102 that opens to the communicating pipe 10) connecting the intake passage 80.
  • the communicating pipe 101 is provided with an air amount adjusting valve 110 for adjusting the amount of air between the resonator 100 and the inlet pipe 6.
  • the throttle valve 75 is suppressed when the internal combustion engine 30 operates in a low load region. Even in the throttled state, intake air flows from inside the resonator 100 into the intake passage 80 on the downstream side of the throttle valve 75, so the flow of intake air in the intake passage 80 does not decrease, and the tumble flow is strengthened. , the combustion efficiency can be improved. Furthermore, by switching the inflow of air from the resonator 100 into the inlet pipe 6 with the air amount control valve 110 as needed, the above effects can be further enhanced.
  • the tumble control valve 65 and the air amount adjusting valve 110 are provided on the shaft member 120 as the same rotating shaft, the tumble control valve 65 and the air amount adjusting valve 110 are mounted on the same rotating shaft. By providing it on the shaft member 120 as a shaft, it is possible to reduce the number of parts by sharing the shaft.
  • the tumble control valve 65 and the air amount adjustment valve 110 have a structure such that when one valve opens, the other valve closes. By closing the air amount adjustment valve 110 between the two, it is possible to prevent deterioration of fuel consumption due to an increase in pumping loss due to the inflow of air from the resonator 100 having an intake volume. By closing the valve 65 and opening the air amount adjustment valve between the resonator and the resonator, the intake volume of the resonator can be used to promote the formation of a tumble flow and improve the combustion efficiency.
  • the communication hole 102 since the communication hole 102 is located between the downstream end 7a of the throttle body 7 and the upstream end 81a of the partition portion 81, the communication hole 102 communicates with the resonator 100 at a location away from the internal combustion engine 30 which is a heat generating portion. , even if airflow with a relatively high temperature flows into the intake passage 80, the heat is not transmitted to the communicating pipe 101 communicating with the resonator 100, and is affected by the exhaust heat of the internal combustion engine 30. It becomes difficult, and the reduction of intake efficiency can be prevented.
  • the inlet pipe 6 has a mounting portion 104 to which one end 101a of the communicating pipe 101 is mounted. Fixing parts are no longer required, preventing an increase in the number of parts and reducing the labor required for processing.
  • a fuel injection valve 87 for injecting fuel toward the inside of the intake passage 80 is provided, and the inner wall 6c of the inlet pipe 6 is provided with a notch portion 103 extending from the upstream side to the downstream side in the intake air flow direction to form a communication hole. Since 102 is provided at a position overlapping with notch 103, injection fuel can be prevented from accumulating in communication hole 102 and notch 103.
  • FIG. 1 A fuel injection valve 87 for injecting fuel toward the inside of the intake passage 80 is provided, and the inner wall 6c of the inlet pipe 6 is provided with a notch portion 103 extending from the upstream side to the downstream side in the intake air flow direction to form a communication hole. Since 102 is provided at a position overlapping with notch 103, injection fuel can be prevented from accumulating in communication hole 102 and notch 103.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

Provided is an air intake device for an internal combustion engine including an air intake passage 80, an air intake passage pipe 6; and a throttle valve 75. The air intake passage pipe 6 is located downstream of a throttle body 7, is equipped with a dividing wall 81 for dividing the air intake passage pipe into a tumble flow path 80A and a main flow path 80B, and has a resonator 100 that is connected with the intake passage 80 via a connecting pipe 101. The air intake passage pipe 6 has: an intake air control valve 65 that is located downstream of the throttle valve 75 and that controls the ratio between the air intake flow rates of the tumble flow path 80A and the main flow path 80B; and a connecting hole 102 that is open to the connecting pipe 101. The connecting pipe 101 is equipped with an air volume adjustment valve 110 that opens and closes the interior of the air intake passage pipe 6, and thus enhances the flow of tumble flow and improves combustion efficiency.

Description

内燃機関の吸気装置Intake system for internal combustion engine
 本発明は、吸気通路が主流路とタンブル流路とに仕切られ、吸気通路に連通吸うレゾネータが設けられた内燃機関の吸気装置に関する。 The present invention relates to an intake system for an internal combustion engine, in which an intake passage is partitioned into a main flow passage and a tumble flow passage, and a resonator communicating with the intake passage is provided.
 内燃機関の吸気通路を仕切部により主流路とタンブル流路に仕切り、タンブル流を発生させる構造が、例えば特許文献1に開示されている。特許文献1に示されるような内燃機関の吸気装置では、吸気通路に連通するレゾネータを備えておらず、吸気ポート内に溜まっている吸気量が少なく、内燃機関は低負荷領域での稼働時ではスロットル弁が絞られた開口部が小さい状態となっている。そのため、吸気弁が開いてから閉じるまでの吸気行程において、ピストンの下降に伴って吸気ポート側の体積が増加するが、その体積増加に対してスロットル弁の開口部からの空気量の流入が間に合わず、吸気ポート内は急激に負圧の状態となって吸気通路内の流動が弱くなってしまい、タンブル流の流動が低下するといった課題があった。 Patent Document 1, for example, discloses a structure in which an intake passage of an internal combustion engine is divided into a main flow path and a tumble flow path by a partition to generate a tumble flow. An intake device for an internal combustion engine, such as that disclosed in Patent Document 1, does not include a resonator communicating with an intake passage, and the amount of intake air remaining in the intake port is small. The opening of the throttle valve is narrowed. Therefore, in the intake stroke from when the intake valve opens to when it closes, the volume on the side of the intake port increases as the piston descends. However, there is a problem that the inside of the intake port suddenly becomes a negative pressure state and the flow inside the intake passage becomes weak, resulting in a decrease in the flow of the tumble flow.
国際公開WO2018/16391号公報International publication WO2018/16391
 そこで本発明は、内燃機関の低負荷領域におけるスロットル弁が絞られた状態においても、吸気通路内の流動の低下を低減させてタンブル流の流動を強化し、燃焼効率を向上させ、またレゾネータからタンブル通路への空気の流入を切り替えることにより、さらに燃燃焼効率を向上させることのできる内燃機関の吸気装置を提供することを目的する。 Therefore, the present invention reduces the decrease in the flow in the intake passage even when the throttle valve is throttled in the low-load region of the internal combustion engine, strengthens the flow of the tumble flow, improves the combustion efficiency, and further reduces the flow from the resonator. An object of the present invention is to provide an intake device for an internal combustion engine that can further improve combustion efficiency by switching the inflow of air into a tumble passage.
 本発明は、上記課題に鑑みなされたものであり、燃焼室に吸気を導入する吸気通路と、内部が前記吸気通路の一部となる吸気通路管と、前記吸気通路管に吸気空気を導入するスロットルボディと、前記吸気通路の開度を制御するために前記スロットルボディの内部に設けられるスロットル弁と、を有する内燃機関の吸気装置において、
 前記吸気通路管は、スロットルボディの下流側に配置され、前記吸気通路を吸気空気の流入方向である長手方向に沿ってタンブル流路と主流路とに分割する隔壁を備え、
 前記吸気通路に、連通管を介して連通するレゾネータを有し、
 前記吸気通路管は、前記スロットル弁の下流側に位置して、前記タンブル流路と前記主流路との吸気流量割合を制御する吸気制御弁と、前記連通管に開口する連通孔とを有し、
 前記連通管は、前記吸気通路管内を開閉する空気量調整弁を備えることを特徴とする内燃機関の吸気装置を特徴とするものである。
The present invention has been made in view of the above problems, and includes an intake passage that introduces intake air into a combustion chamber, an intake passage pipe that is a part of the intake passage, and an intake passage pipe that introduces intake air into the intake passage pipe. An intake system for an internal combustion engine, comprising a throttle body and a throttle valve provided inside the throttle body for controlling the opening of the intake passage,
The intake passage pipe is disposed downstream of the throttle body and has a partition wall that divides the intake passage into a tumble flow passage and a main flow passage along the longitudinal direction, which is the inflow direction of the intake air,
Having a resonator communicating with the intake passage via a communicating pipe,
The intake passage pipe has an intake control valve positioned downstream of the throttle valve for controlling the intake air flow ratio between the tumble flow passage and the main flow passage, and a communication hole opening into the communication pipe. ,
The air intake device for an internal combustion engine is characterized in that the communication pipe is provided with an air amount control valve that opens and closes the inside of the intake passage pipe.
 前記構成によれば、吸気通路管においてスロットル弁の下流側に位置して、吸気通路管に連通するレゾネータを設けることで、内燃機関の低負荷領域での稼働時におけるスロットル弁が絞られた状態においても、レゾネータ内からスロットル弁より下流側の吸気通路内に吸気が流れ込むので、吸気通路内の吸気の流動が低下することなく、タンブル流の流動を強化して、燃焼効率を向上させることができる。さらに、レゾネータから吸気通路管内への空気の流入を必要に応じて空気量調整弁で切り替えることにより、上記効果をさらに高めることができる。 According to the above configuration, the throttle valve is throttled when the internal combustion engine is operated in a low load region by providing the resonator located downstream of the throttle valve in the intake passage pipe and communicating with the intake passage pipe. Also, since the intake air flows from the resonator into the intake passage on the downstream side of the throttle valve, the flow of the intake air in the intake passage does not decrease, and the tumble flow is strengthened to improve the combustion efficiency. can. Furthermore, the above effect can be further enhanced by switching the inflow of air from the resonator into the intake passage pipe with the air amount control valve as required.
 前記構成において、前記吸気制御弁と前記空気量調整弁とは、同一の回動軸としての軸部材上に設けることもできる。 In the above configuration, the intake control valve and the air amount regulating valve may be provided on the same shaft member as a rotating shaft.
 前記構成によれば、吸気制御弁と空気量調整弁とを同一の回動軸としての軸部材上に設けることで、軸共用化により部品点数を削減することができる。 According to the above configuration, by providing the intake control valve and the air amount adjustment valve on the same shaft member as the rotation shaft, it is possible to reduce the number of parts by sharing the shaft.
 前記構成において、前記吸気制御弁と前記空気量調整弁とは、一方の弁が開くと他方の弁が閉じる構造を有してもよい。 In the above configuration, the intake control valve and the air amount adjustment valve may have a structure in which one valve opens and the other valve closes.
 前記構成によれば、ストイキ運転時に吸気制御弁を開弁状態とし、レゾネータとの間の空気量調整弁を閉弁状態とすることで、吸気ボリュームのあるレゾネータから空気が流入することによるポンピング損失増加による燃費の悪化を防ぐことができ、一方リーン燃焼時には、吸気制御弁を閉じて、レゾネータとの間の空気量調整弁を開けることで、レゾネータの吸気ボリュームを生かしてタンブル流形成を促進して燃焼効率を向上させることができる。 According to the above configuration, the intake control valve is opened during stoichiometric operation, and the air amount adjustment valve between the resonator and the resonator is closed, thereby causing pumping loss due to the inflow of air from the resonator having the intake volume. In addition, during lean combustion, the intake control valve is closed and the air volume adjustment valve between the resonator and the resonator is opened to promote tumble flow formation by utilizing the intake volume of the resonator. can improve combustion efficiency.
 前記構成において、前記連通孔は前記スロットルボディの下流端と前記隔壁の上流端との間に位置させてもよい。 In the above configuration, the communication hole may be positioned between the downstream end of the throttle body and the upstream end of the partition wall.
 前記構成によれば、発熱部である内燃機関から離れた箇所にレゾネータに連通する連通孔を配置したことにより、比較的温度が高い気流が吸気通路内に流入した場合であっても、レゾネータと連通する連通管に熱が伝わらず、内燃機関の排熱の影響を受けにくくなり、吸気効率の低減を防止することができる。 According to the above configuration, since the communication hole communicating with the resonator is arranged at a location away from the internal combustion engine, which is a heat-generating portion, even if airflow with a relatively high temperature flows into the intake passage, Heat is not transmitted to the communicating pipe, and the effect of exhaust heat from the internal combustion engine is reduced, thereby preventing reduction in intake efficiency.
 前記構成において、前記吸気通路管は、前記連通管の一端が取り付けられる取付部を有し、前記取付部と前記吸気通路管とを一体品としてもよい。 In the above configuration, the intake passage pipe may have a mounting portion to which one end of the communication pipe is mounted, and the mounting portion and the intake passage pipe may be integrated.
 前記構成によれば、取付部を吸気通路管に固定するための固定部品が不要となり、部品点数の増加を防ぐとともに、加工の手間を低減することができる。 According to the above configuration, fixing parts for fixing the mounting portion to the intake passage pipe are not required, so that an increase in the number of parts can be prevented and the labor for processing can be reduced.
 前記構成において、前記吸気通路の内部に向かって燃料を噴射する燃料噴射弁を備え、
 前記吸気通路管の内壁に、吸気流れ方向の上流側から下流側に向かった切欠部が設けられ、前記連通孔は、前記切欠部と重なる位置に設けてもよい。
The configuration includes a fuel injection valve that injects fuel toward the interior of the intake passage,
The inner wall of the intake passage pipe may be provided with a notch extending from the upstream side to the downstream side in the intake flow direction, and the communication hole may be provided at a position overlapping with the notch.
 前記構成によれば、連通孔および切欠部に噴射燃料が溜まることを防止できる。 According to the above configuration, it is possible to prevent the injected fuel from accumulating in the communication hole and the notch.
 本発明によれば、吸気通路管においてスロットル弁の下流側に位置して、吸気通路管に連通するレゾネータを設けることで、内燃機関の低負荷領域での稼働時におけるスロットル弁が絞られた状態においても、レゾネータ内からスロットル弁より下流側の吸気通路内に吸気が流れ込むので、吸気通路内の吸気の流動が低下することなく、タンブル流の流動を強化して、燃焼効率を向上させることができる。さらに、レゾネータ内の空気の流入を必要に応じて空気量調整弁で切り替えることにより、上記効果をさらに高めることができる。 According to the present invention, the throttle valve is throttled when the internal combustion engine is operating in a low load region by providing a resonator positioned downstream of the throttle valve in the intake passage pipe and communicating with the intake passage pipe. Also, since the intake air flows from the resonator into the intake passage on the downstream side of the throttle valve, the flow of the intake air in the intake passage does not decrease, and the tumble flow is strengthened to improve the combustion efficiency. can. Furthermore, the above effects can be further enhanced by switching the inflow of air into the resonator with an air amount control valve as needed.
本発明の実施形態1に係る内燃機関の吸気構造を備えたパワーユニットを搭載した自動二輪車の右側面である。1 is a right side view of a motorcycle equipped with a power unit having an intake structure for an internal combustion engine according to Embodiment 1 of the present invention. 図1の自動二輪車の車体カバーを外した後部右側面である。2 is a rear right side surface of the motorcycle of FIG. 1 with a body cover removed. 図2中のパワーユニットを取出して、図2に示したものと略同じ配向により示し、実施形態1に係る内燃機関の吸気構造を備えたパワーユニットの側面断面図である。FIG. 3 is a side cross-sectional view of a power unit taken out from FIG. 2 and shown in substantially the same orientation as that shown in FIG. 2 and having an intake structure for an internal combustion engine according to Embodiment 1; 図3の要部拡大図である。FIG. 4 is an enlarged view of a main portion of FIG. 3; 吸気管およびレゾネータの周辺を示した概略図である。FIG. 4 is a schematic diagram showing the vicinity of an intake pipe and a resonator; インレットパイプ、連通管を連通孔が通る位置で切断した断面図である。4 is a cross-sectional view of the inlet pipe and the communicating pipe cut at a position where the communicating hole passes; FIG. レゾネータの縦断面図である。It is a longitudinal cross-sectional view of a resonator. 図4の要部拡大図である。5 is an enlarged view of a main portion of FIG. 4; FIG. 図8の要部拡大断面斜視図である。FIG. 9 is an enlarged cross-sectional perspective view of a main part of FIG. 8; スロットルボディおよびインレットパイプ近傍を示した左側面図である。Fig. 3 is a left side view showing the vicinity of the throttle body and the inlet pipe; インレットパイプの取付部周辺を示した斜視図である。Fig. 3 is a perspective view showing the periphery of an inlet pipe mounting portion; 連通孔周辺をインレットパイプ内部から視た図である。It is the figure which looked at the periphery of a communicating hole from the inside of an inlet pipe. 空気量調整弁の弁軸および切欠部を示した斜視図である。FIG. 4 is a perspective view showing a valve shaft and a notch of the air amount regulating valve; 空気量調整弁の開弁状態を示した連通管および空気量調整弁の縦断面図である。FIG. 4 is a vertical cross-sectional view of the communicating pipe and the air amount regulating valve showing the open state of the air amount regulating valve; 空気量調整弁の閉弁状態を示した連通管および空気量調整弁の縦断面図である。FIG. 4 is a vertical cross-sectional view of the communicating pipe and the air amount regulating valve showing the closed state of the air amount regulating valve; タンブルコントロール弁が開いて、空気量調整弁が閉じた状態を示す概略図である。FIG. 4 is a schematic diagram showing a state in which the tumble control valve is open and the air amount adjustment valve is closed; タンブルコントロール弁が閉じて、空気量調整弁が開いた状態を示す概略図である。FIG. 4 is a schematic diagram showing a state in which the tumble control valve is closed and the air amount adjustment valve is open; スロットル弁下流側領域を示した吸気通路の模式図である。FIG. 4 is a schematic diagram of an intake passage showing a region downstream of a throttle valve; 内燃機関のサイクルにおいて図16で示された箇所における圧力の変動を示した図である。FIG. 17 shows the pressure variation at the point indicated in FIG. 16 during the cycle of the internal combustion engine; タンブルコントロール弁の開弁状態におけるレゾネータの有無が内燃機関のポンピング損失および燃費に与える影響を示したグラフである。4 is a graph showing the effect of the presence or absence of a resonator in the open state of the tumble control valve on the pumping loss and fuel consumption of the internal combustion engine. タンブルコントロール弁の閉弁状態におけるレゾネータの有無が内燃機関のポンピング損失および燃費に与える影響を示したグラフである。4 is a graph showing how the presence or absence of a resonator in the closed state of the tumble control valve affects the pumping loss and fuel consumption of the internal combustion engine.
 図1から図21に基づき、本発明の一実施形態に係る内燃機関の吸気装置について説明する。 An intake system for an internal combustion engine according to one embodiment of the present invention will be described with reference to FIGS. 1 to 21. FIG.
 なお、本明細書の説明および特許請求の範囲における前後左右上下等の向きは、本実施形態に係る内燃機関の吸気装置を備えたパワーユニットを、車両に搭載した状態での車両の向きに従うものとする。本実施形態において車両は小型車両であり、具体的には自動二輪車である。ただし、スロットルボディ7の吸気路70、および吸気通路80に関しては、それらを吸気流れ方向Fに沿って分割する隔壁としての仕切部81の上方を「上」側、下方を「下」側として記載する。また、図中矢印FRは車両前方を、LHは車両左方を、RHは車両右方を、UPは車両上方を、それぞれ示す。 It should be noted that the directions of front, back, left, right, up and down in the description of this specification and the scope of the claims follow the directions of the vehicle when the power unit equipped with the intake device for the internal combustion engine according to the present embodiment is mounted on the vehicle. do. In this embodiment, the vehicle is a small vehicle, specifically a motorcycle. However, regarding the intake passage 70 of the throttle body 7 and the intake passage 80, the upper side of the partition portion 81 as a partition dividing them along the intake air flow direction F is described as the "upper" side, and the lower side is described as the "lower" side. do. In the drawing, an arrow FR indicates the front of the vehicle, LH the left of the vehicle, RH the right of the vehicle, and UP the upper of the vehicle.
 図1に、本発明の実施形態の内燃機関の吸気装置を備えたパワーユニット3を搭載した自動二輪車1の右側面を示す。また、図2に、図1の自動二輪車1の車体カバー10を外した後部右側面を示す。 FIG. 1 shows the right side of a motorcycle 1 equipped with a power unit 3 equipped with an intake device for an internal combustion engine according to an embodiment of the present invention. 2 shows the rear right side of the motorcycle 1 of FIG. 1 with the body cover 10 removed.
 本実施形態に係る内燃機関の吸気装置60を搭載した自動二輪車1は、いわゆるスクータ型自動二輪車であり、車体前部1Aと車体後部1Bとが、低いフロア部1Cを介して連結されており、車体の骨格をなす車体フレーム2は、概ねダウンチューブ21とメインパイプ22(図2参照)とからなる。 A motorcycle 1 equipped with an intake device 60 for an internal combustion engine according to the present embodiment is a so-called scooter type motorcycle, and a front body portion 1A and a rear body portion 1B are connected via a low floor portion 1C. The vehicle body frame 2 forming the skeleton of the vehicle body generally consists of a down tube 21 and a main pipe 22 (see FIG. 2).
 すなわち車体前部1Aのヘッドパイプ20からダウンチューブ21が下方へ延出し、ダウンチューブ21は下端で水平に屈曲してフロア部1Cの下方を後方へ延び、図2に示されるようにその後端において車幅方向に配設された連結フレーム23を介して、左右一対のメインパイプ22が連結され、メインパイプ22は連結フレーム23から傾斜部22aをなして斜め後方に立ち上がって、途中、傾斜をゆるめるように屈曲して後方に延びている。 That is, a down tube 21 extends downward from a head pipe 20 in the front portion 1A of the vehicle body, and the down tube 21 bends horizontally at its lower end to extend rearward under the floor portion 1C, and as shown in FIG. A pair of left and right main pipes 22 are connected via a connecting frame 23 arranged in the width direction of the vehicle. It bends and extends backward.
 メインパイプ22の傾斜部22aの上方には収納ボックス11と燃料タンク12が支持されるとともに、収納ボックス11と燃料タンク12はその上方に取付けられた乗員シート13で塞がれ、収納ボックス11、燃料タンク12を含め、乗員シート13の下方は、車体カバー10で覆われている。一方、車体前部1Aにおいては、ヘッドパイプ20に軸支されて上方にハンドル14が設けられ、下方にフロントフォーク15が延びてその下端に前輪16が軸支されている。 A storage box 11 and a fuel tank 12 are supported above the inclined portion 22a of the main pipe 22, and the storage box 11 and the fuel tank 12 are closed by an occupant seat 13 mounted thereabove. A vehicle body cover 10 covers the lower part of the passenger seat 13 including the fuel tank 12 . On the other hand, in the front part 1A of the vehicle body, a handlebar 14 is provided upwardly while being pivotally supported by a head pipe 20, and a front fork 15 extends downward, and a front wheel 16 is pivotally supported at the lower end thereof.
 図2に、車体カバー10を外した自動二輪車1の後部右側面を示すように、メインパイプ22の傾斜部22aの下端付近にブラケット24が突設され、ブラケット24にリンク部材25を介してパワーユニット3が揺動可能に連結支持されている。 As shown in FIG. 2, the rear right side of the motorcycle 1 with the vehicle body cover 10 removed, a bracket 24 is protruded near the lower end of the inclined portion 22a of the main pipe 22, and the power unit is connected to the bracket 24 via a link member 25. 3 is connected and supported so as to be able to swing.
 パワーユニット3は、その前部が単気筒4ストロークサイクルの空冷式内燃機関(以下、単に「内燃機関」という。)30であり、クランクケース部50aを構成するパワーユニットケース50の前部に、クランク軸51を車幅方向に配して回転自在に軸支し、シリンダ軸線Cを略水平に近い状態にまで大きく前傾した姿勢にあって、パワーユニットケース50の下端から前方に突出したハンガアーム52の端部が、メインパイプ22のブラケット24に取付けられたリンク部材25を介して上下揺動自在に連結される。 The front portion of the power unit 3 is a single-cylinder four-stroke cycle air-cooled internal combustion engine (hereinafter simply referred to as the "internal combustion engine") 30, and a crankshaft is mounted in the front portion of the power unit case 50 constituting the crankcase portion 50a. 51 is arranged in the vehicle width direction and rotatably supported, and the end of the hanger arm 52 protruding forward from the lower end of the power unit case 50 is in a posture in which the cylinder axis C is greatly inclined forward to a substantially horizontal state. are connected via a link member 25 attached to a bracket 24 of the main pipe 22 so as to be vertically swingable.
 パワーユニット3には、クランクケース部50aを構成するパワーユニットケース50の前部に略水平に大きく前傾して内燃機関30を構成するシリンダブロック31、シリンダヘッド32、シリンダヘッドカバー33が順次積み上げられるように締結されるほか、クランクケース部50aから左側後方にかけてベルト式無段変速機等を備えた動力伝動ケース部55が一体に延在し、その後部にパワーユニット3の出力軸である後車軸56が設けられ、後輪17が取り付けられている。すなわち、パワーユニット3はいわゆるスイングユニットであり、パワーユニット3の後部の動力伝動ケース部55と、メインパイプ22の後部との間には図示しないリヤクッションが介装されている。 In the power unit 3, a cylinder block 31, a cylinder head 32, and a cylinder head cover 33, which constitute the internal combustion engine 30, are stacked in order on the front portion of the power unit case 50, which constitutes the crankcase portion 50a. In addition to being fastened, a power transmission case portion 55 equipped with a belt-type continuously variable transmission and the like extends integrally from the crankcase portion 50a to the rear left side, and a rear axle 56, which is the output shaft of the power unit 3, is provided at its rear portion. and the rear wheels 17 are attached. That is, the power unit 3 is a so-called swing unit, and a rear cushion (not shown) is interposed between the power transmission case portion 55 at the rear of the power unit 3 and the rear of the main pipe 22 .
 図2に示されるように、パワーユニット3の上部では、内燃機関30の大きく前傾したシリンダヘッド32の上部から、吸気通路管としてのインレットパイプ6が延出して後方に湾曲し、インレットパイプ6に接続されたスロットルボディ7がシリンダブロック31の上方に位置し、スロットルボディ7にコネクティングチューブ85を介して接続するエアクリーナ装置86が動力伝動ケース部55の上方に配設されている。一方、シリンダヘッド32の下部から下方に延出した排気管38は、後方へ屈曲し右側に偏って後方に延びて後輪17の右側のマフラ39に接続される。 As shown in FIG. 2, in the upper part of the power unit 3, an inlet pipe 6 as an intake passage pipe extends from the upper part of the cylinder head 32 of the internal combustion engine 30, which tilts forward greatly, and curves rearward. The connected throttle body 7 is located above the cylinder block 31 , and an air cleaner device 86 connected to the throttle body 7 via a connecting tube 85 is arranged above the power transmission case portion 55 . On the other hand, an exhaust pipe 38 extending downward from the lower portion of the cylinder head 32 is bent rearward and extends rearward while biased to the right side, and is connected to a muffler 39 on the right side of the rear wheel 17 .
 図3は、図2のパワーユニット3を取出して、図2に示すと略同じ配向により示す、パワーユニット3の側面断面図である。パワーユニット3における内燃機関30は、シリンダブロック31、シリンダヘッド32、シリンダヘッドカバー33の左半面の断面が示され、パワーユニットケース50は、左ケース半体50Lが、図示しない右ケース半体との合わせ面50bを図示手前に向けて示される。 FIG. 3 is a side cross-sectional view of the power unit 3 taken out of FIG. 2 and shown in substantially the same orientation as shown in FIG. The internal combustion engine 30 in the power unit 3 is shown in cross-section of the left half of the cylinder block 31, the cylinder head 32, and the cylinder head cover 33, and the power unit case 50 has a left case half 50L which is a mating surface with a right case half (not shown). 50b is shown facing forward in the drawing.
 パワーユニットケース50は、左右割りの左ケース半体50Lと図示されない右ケース半体とを合体して構成されるもので、右ケース半体は、クランクケース部50aの右半体をなし、左ケース半体50Lは、前部がクランクケース部50aの左半体をなすとともに、後方に延設されて、クランク軸51と後輪17の後車軸56との間の前後に図示しない長尺のベルト式無段変速機と減速ギヤ機構57等を含む伝動装置を収容する動力伝動ケース部55を形成する。 The power unit case 50 is constructed by combining a left-right split left case half 50L and a right case half (not shown). The half body 50L has a front portion forming the left half of the crankcase portion 50a, and extends rearward to form a long belt (not shown) between the crankshaft 51 and the rear axle 56 of the rear wheel 17. A power transmission case portion 55 is formed to accommodate a transmission including a type continuously variable transmission and a reduction gear mechanism 57 and the like.
 減速ギヤ機構57は、動力伝動ケース部55の後部の右側開放面55Rの内部に収納され、図示しない減速機ケースにより覆われる。減速ギヤ機構57の出力軸は、後輪17の後車軸56である。而して、内燃機関30のクランクケース部50aのクランク軸51の回転動力は、動力伝動ケース部55内のベルト式無段変速機と減速ギヤ機構57を介して、後輪17に伝達される。 The reduction gear mechanism 57 is housed inside the rear right open surface 55R of the power transmission case portion 55 and is covered by a reduction gear case (not shown). The output shaft of the reduction gear mechanism 57 is the rear axle 56 of the rear wheel 17 . Rotational power of the crankshaft 51 of the crankcase portion 50a of the internal combustion engine 30 is transmitted to the rear wheels 17 through the belt-type continuously variable transmission and the reduction gear mechanism 57 in the power transmission case portion 55. .
 シリンダブロック31のシリンダボア31a内を往復動するピストン34は、クランクケース部50aのクランク軸51のクランクピン51aと、コネクティングロッド35により連結されている。シリンダブロック31のシリンダボア31a内に摺動自在に嵌合されるピストン34の頂面34aと、頂面34aが対向するシリンダヘッド32の燃焼室天井面32aとの間には燃焼室36が構成される。 A piston 34 that reciprocates in the cylinder bore 31a of the cylinder block 31 is connected by a connecting rod 35 to a crankpin 51a of the crankshaft 51 of the crankcase portion 50a. A combustion chamber 36 is formed between the top surface 34a of the piston 34 slidably fitted in the cylinder bore 31a of the cylinder block 31 and the combustion chamber ceiling surface 32a of the cylinder head 32 facing the top surface 34a. be.
 内燃機関30は、SOHC型式の2バルブシステムを採用しており、シリンダヘッド32に動弁機構9が設けられている。動弁機構9を覆うように、シリンダヘッド32にはシリンダヘッドカバー33が重ねられて被せられる。 The internal combustion engine 30 employs a SOHC type two-valve system, and a valve mechanism 9 is provided in the cylinder head 32 . A cylinder head cover 33 is overlaid on the cylinder head 32 so as to cover the valve mechanism 9 .
 シリンダヘッドカバー33内の動弁機構9に動力伝達を行うため、図示しない無端状のカムチェーンが、クランクケース部50a、シリンダブロック31、シリンダヘッド32のクランク軸51方向の一方側に設けられた図示しないカムチェーン室を通って、カム軸91とクランク軸51との間に架設され、カム軸91はクランク軸51に同期して1/2の回転速度で回転する。なお、シリンダヘッド32において前記カムチェーン室と反対側(クランク軸51方向の他方側)から燃焼室36内に向かって図示しない点火プラグが嵌挿されている。 In order to transmit power to the valve mechanism 9 in the cylinder head cover 33, an endless cam chain (not shown) is provided on one side of the crankcase portion 50a, the cylinder block 31, and the cylinder head 32 in the crankshaft 51 direction. The camshaft 91 and the crankshaft 51 are spanned through a cam chain chamber that does not rotate, and the camshaft 91 rotates in synchronism with the crankshaft 51 at a rotation speed of 1/2. An ignition plug (not shown) is inserted into the combustion chamber 36 from the opposite side of the cam chain chamber (the other side in the crankshaft 51 direction) of the cylinder head 32 .
 図3、および図3の要部拡大図である図4に示されるように、シリンダ軸線Cを略水平に近く大きく前傾したシリンダヘッド32において、燃焼室天井面32aに開口した吸気弁口40と排気弁口41からは、各々吸気ポート42と排気ポート43が互いに上下に離れる方向に湾曲しながら延出して形成される。 As shown in FIG. 3 and FIG. 4, which is an enlarged view of the main part of FIG. 3, in the cylinder head 32 in which the cylinder axis C is substantially horizontal and greatly inclined forward, the intake valve port 40 opens to the combustion chamber ceiling surface 32a. An intake port 42 and an exhaust port 43 extend from the and exhaust valve openings 41 while curving in directions away from each other in the vertical direction.
 吸気ポート42の上流端は、シリンダヘッド32の上方に向けて開口し、インレットパイプ6と接続して、連続した吸気通路80が構成されている。図5に示されるように、インレットパイプ6の上流端6eに、接続部材としてのインシュレータ8を介して、スロットルボディ7の下流端7aが接続される。
 排気ポート43の下流端は、シリンダヘッド32の下方に向けて開口し、排気管38(図2参照)に連結される。
The upstream end of the intake port 42 opens upward from the cylinder head 32 and is connected to the inlet pipe 6 to form a continuous intake passage 80 . As shown in FIG. 5, a downstream end 7a of the throttle body 7 is connected to an upstream end 6e of the inlet pipe 6 via an insulator 8 as a connecting member.
A downstream end of the exhaust port 43 opens downward in the cylinder head 32 and is connected to an exhaust pipe 38 (see FIG. 2).
 シリンダヘッド32における吸気ポート42の湾曲外壁部42aに一体に円筒状の吸気弁ガイド44が嵌着され、吸気弁ガイド44に摺動可能に支持された吸気弁46が、吸気ポート42の燃焼室36に臨む吸気弁口40を開閉する。また、シリンダヘッド32における排気ポート43の湾曲外壁部43aに一体に嵌着された排気弁ガイド45に摺動可能に支持された排気弁47が、排気ポート43の燃焼室36に臨む排気弁口41を開閉する。 A cylindrical intake valve guide 44 is integrally fitted to the curved outer wall portion 42a of the intake port 42 in the cylinder head 32, and the intake valve 46 slidably supported by the intake valve guide 44 moves into the combustion chamber of the intake port 42. The intake valve port 40 facing 36 is opened and closed. Also, an exhaust valve 47 slidably supported by an exhaust valve guide 45 integrally fitted to the curved outer wall portion 43a of the exhaust port 43 in the cylinder head 32 is an exhaust valve opening facing the combustion chamber 36 of the exhaust port 43. Open and close 41.
 吸気弁46および排気弁47はその傘部46a、47aが、いずれも燃焼室36に臨む吸気弁口40、排気弁口41を閉じるように、弁ばね48により上方に付勢されているが、図3に示すように、カム軸91の吸気カム92、排気カム93に当接揺動する吸気ロッカアーム94、排気ロッカアーム95によって、吸気弁46、排気弁47のステムエンド46b、47bが押し下げられて、所定のタイミングで吸気弁46、排気弁47が開弁し、吸気ポート42と燃焼室36、また、排気ポート43と燃焼室36が連通し、所定のタイミングの吸気、排気がなされる。 The intake valve 46 and the exhaust valve 47 are urged upward by a valve spring 48 so that the head portions 46a and 47a of the intake valve 46 and the exhaust valve 47 close the intake valve port 40 and the exhaust valve port 41 facing the combustion chamber 36. As shown in FIG. 3, stem ends 46b and 47b of the intake valve 46 and the exhaust valve 47 are pushed down by an intake rocker arm 94 and an exhaust rocker arm 95 which contact and oscillate with the intake cam 92 and the exhaust cam 93 of the camshaft 91. , the intake valve 46 and the exhaust valve 47 are opened at a predetermined timing, the intake port 42 and the combustion chamber 36 and the exhaust port 43 and the combustion chamber 36 are communicated, and intake and exhaust are performed at predetermined timing.
 以上のような内燃機関30において、燃焼室36でのより好ましい燃焼を得るために燃焼室36において燃料・空気混合気のタンブル渦流T、すなわち縦回転を与えることのできる吸気装置60が用いられている。 In the internal combustion engine 30 as described above, in order to obtain more favorable combustion in the combustion chamber 36, an intake device 60 capable of imparting a tumble vortex T, that is, longitudinal rotation of the fuel-air mixture is used in the combustion chamber 36. there is
 すなわち、内燃機関30の吸気ポート42の上流端には、インシュレータ61を介してインレットパイプ6が接続して、連続した断面略円形の吸気通路80が構成されている。インレットパイプ6の上流側に、固定部材としてのインシュレータ8を介してスロットルボディ7が接続される。 That is, the inlet pipe 6 is connected to the upstream end of the intake port 42 of the internal combustion engine 30 via the insulator 61 to form a continuous intake passage 80 having a substantially circular cross section. A throttle body 7 is connected to the upstream side of the inlet pipe 6 via an insulator 8 as a fixing member.
 スロットルボディ7は、内燃機関30の燃焼室36に連なる吸気通路80の一部を構成する断面略円形の吸気路70を有し、その上流側は、コネクティングチューブ85を介して、エアクリーナ装置86(図2参照)に接続している。 The throttle body 7 has an intake passage 70 with a substantially circular cross section forming part of an intake passage 80 connected to the combustion chamber 36 of the internal combustion engine 30, and an air cleaner device 86 ( (See Fig. 2).
 図4に示されるように、スロットルボディ7は、スロットル弁75を備えている。スロットル弁75はバタフライ式のもので、スロットル弁軸76と、スロットル弁軸76に固定され共に一体的に回転する円盤状の弁体77とを有している。弁体77は、スロットル弁軸76に、円盤を略二等分するように固定されている。弁体77は、吸気路70の吸気流れ方向Fと垂直、すなわち吸気路70の中心軸線と垂直に交差して略水平に配向するスロットル弁軸76によってスロットルボディ7内に回転自在に軸支されている。スロットル弁75は、操作者等の指示により回動され、吸気路70の流路面積を可変制御して吸気路70内に流れる吸気流量を変更する。 As shown in FIG. 4, the throttle body 7 has a throttle valve 75. The throttle valve 75 is of the butterfly type, and has a throttle valve shaft 76 and a disk-shaped valve body 77 fixed to the throttle valve shaft 76 and rotating integrally therewith. The valve body 77 is fixed to the throttle valve shaft 76 so as to substantially bisect the disk. The valve body 77 is rotatably supported in the throttle body 7 by a throttle valve shaft 76 which is oriented substantially horizontally perpendicular to the intake flow direction F of the intake passage 70, that is, intersects perpendicularly with the central axis of the intake passage 70. ing. The throttle valve 75 is rotated by an instruction from an operator or the like, and variably controls the flow area of the intake passage 70 to change the amount of intake air flowing through the intake passage 70 .
 吸気通路80は、インレットパイプ6から吸気ポート42へと続けて仕切部81によって、吸気流れ方向Fに沿って分割され、通った吸気が燃焼室36内でタンブル渦流Tを発生するように構成されたタンブル流路80Aと、タンブル流路80Aを除く主流路80Bとに、仕切られている。吸気通路80は、タンブル流路80Aが主流路80Bと比較して流路が狭くなるように、仕切部81により仕切られている。本発明において「タンブル流路」とは、スロットル弁75低開度時、つまり、内燃機関30低負荷時に燃焼室36にタンブル渦流Tを発生させるための吸気の流路である。 The intake passage 80 continues from the inlet pipe 6 to the intake port 42 and is divided by a partition 81 along the intake flow direction F so that the passing intake air generates a tumbling vortex T in the combustion chamber 36. It is partitioned into a tumble channel 80A and a main channel 80B excluding the tumble channel 80A. The intake passage 80 is partitioned by a partition portion 81 such that the tumble passage 80A is narrower than the main passage 80B. In the present invention, the "tumble flow path" is an intake air flow path for generating a tumble vortex T in the combustion chamber 36 when the throttle valve 75 is at a low opening, that is, when the internal combustion engine 30 is at a low load.
 吸気通路80の仕切部81によって仕切られた下側部分がタンブル流路80A、上側部分が主流路80Bとなるが、本発明においてはその上下配置に限定されない。また、本明細書において、吸気通路80や吸気路70、スロットル弁75についての「上、下」とは、シリンダ軸線C方向においてシリンダヘッド32ないしシリンダヘッドカバー33方向を「上」、クランク軸51方向を「下」といい、空間上の絶対的な「上、下」の意味ではない。 The lower portion of the intake passage 80 partitioned by the partition portion 81 serves as the tumble passage 80A, and the upper portion serves as the main passage 80B, but the present invention is not limited to the vertical arrangement. In this specification, "upper" and "lower" with respect to the intake passage 80, the intake passage 70, and the throttle valve 75 mean "up" in the direction of the cylinder head 32 or the cylinder head cover 33 in the direction of the cylinder axis C, and "up" in the direction of the crankshaft 51. is called ``lower,'' and it does not mean ``upper, lower'' in space.
 図4に示されるように、仕切部81は、インレットパイプ側仕切部81Aと、インシュレータ側仕切部81Bと、吸気ポート側仕切部81Cが、吸気流の上流側から下流側へと連続して位置して構成される。 As shown in FIG. 4, the partitioning portion 81 includes an inlet pipe side partitioning portion 81A, an insulator side partitioning portion 81B, and an intake port side partitioning portion 81C positioned continuously from the upstream side to the downstream side of the intake air flow. configured as
 図示上側の主流路80Bと図示下側のタンブル流路80Aとは、インレットパイプ6から吸気ポート42へ縦通し仕切部81により、スロットル弁75の下流側の吸気通路80を図示上下に区画することで、各々断面略半円状に画成される。
 なお、仕切部81の吸気通路80幅方向の面とスロットル弁軸76とは平行である。
A main flow passage 80B on the upper side of the drawing and a tumble flow passage 80A on the lower side of the drawing vertically extend from the inlet pipe 6 to the intake port 42, and the intake passage 80 on the downstream side of the throttle valve 75 is vertically partitioned by the partition portion 81. , each having a substantially semicircular cross section.
The surface of the partition portion 81 in the width direction of the intake passage 80 and the throttle valve shaft 76 are parallel.
 また、図4に示されるように、仕切部81の下流側端部81b、すなわちシリンダヘッド32の吸気ポート42内に位置する下流側端部81bは、シリンダヘッド32においてシリンダブロック31側に向けて屈曲して一体に形成され、且つタンブル流路80Aの終端80Abは、シリンダヘッド32の燃焼室天井面32aを指向するように形成されている。
 そのため、タンブル流路80Aを流れる吸気を、図4中小矢印が示すように、吸気弁46の傘部46aの上方を通過させたうえで、シリンダボア31a内に流入させことができるため、燃焼室36内においてタンブル渦流Tが発生しやすくすることができる。そのように、タンブル流路80Aは、通過した吸気がタンブル渦流Tを発生させるように構成されている。
Further, as shown in FIG. 4, the downstream end 81b of the partition 81, that is, the downstream end 81b located in the intake port 42 of the cylinder head 32 is directed toward the cylinder block 31 in the cylinder head 32. The end 80Ab of the tumble flow path 80A is bent and integrally formed, and is formed so as to point toward the combustion chamber ceiling surface 32a of the cylinder head 32. As shown in FIG.
Therefore, the intake air flowing through the tumble flow path 80A can pass above the head portion 46a of the intake valve 46 and then flow into the cylinder bore 31a, as indicated by the middle and small arrows in FIG. The tumble vortex T can be easily generated inside. As such, the tumble flow path 80A is configured such that the passing intake air generates the tumble vortex T. As shown in FIG.
 図4に示されるように、インレットパイプ6内に形成された仕切部81の上流端81aに近接して、タンブル流路80Aと主流路80Bとの吸気流量割合を制御する吸気制御弁としてのタンブルコントロール弁65が配設されている。本実施の形態では、タンブルコントロール弁65は、仕切部81の上流端81aと間隔を存して配設されているが、仕切部81の上流側の上流端部81aaに設けてもよい。タンブルコントロール弁65は、弁軸66と、弁軸66に固定され共に一体的に回転するタンブル弁体67とを有している。 As shown in FIG. 4, a tumble valve serving as an intake control valve is provided near the upstream end 81a of the partition portion 81 formed in the inlet pipe 6 to control the ratio of the intake air flow rate between the tumble flow path 80A and the main flow path 80B. A control valve 65 is provided. In the present embodiment, the tumble control valve 65 is arranged with an interval from the upstream end 81a of the partition 81, but may be arranged at the upstream end 81aa of the partition 81 on the upstream side. The tumble control valve 65 has a valve shaft 66 and a tumble valve element 67 that is fixed to the valve shaft 66 and rotates together.
 タンブル弁体67は、インレットパイプ6内において仕切部81の上流端81a近傍の主流路80Bの開口を塞ぐような板状の半円盤に形成されている。タンブル弁体67の直線状の一端に弁軸66が取り付けられている。 The tumble valve body 67 is formed in a plate-like semi-disk that closes the opening of the main flow path 80B near the upstream end 81a of the partition portion 81 within the inlet pipe 6 . A valve stem 66 is attached to one linear end of the tumble valve body 67 .
 弁軸66は、仕切部81の吸気通路80幅方向の面と平行になるようにインレットパイプ6に回動自在に支承されている。弁軸66は、図5に示されるように、減速機69を介してアクチュエータ68に接続されている。図8も参照して、弁軸66は、アクチュエータ68により適宜所定の角度に回動される。弁軸66の回動に伴ってタンブル弁体67も回動して、主流路80Bの開度が変更されて、主流路80Bに流れる吸気量が調整されるに従って、タンブル流路80Aの吸気量も調整される。 The valve shaft 66 is rotatably supported by the inlet pipe 6 so as to be parallel to the plane of the partition 81 in the width direction of the intake passage 80 . The valve shaft 66 is connected to an actuator 68 via a speed reducer 69, as shown in FIG. Also referring to FIG. 8, the valve shaft 66 is appropriately rotated to a predetermined angle by an actuator 68 . As the valve shaft 66 rotates, the tumble valve element 67 also rotates to change the opening degree of the main flow passage 80B, thereby adjusting the amount of intake air flowing through the main flow passage 80B. is also adjusted.
 図4に示されるように、スロットルボディ7には、上方外部から貫通して燃料噴射弁87が取り付けらえており、吸気通路80に向けて燃料を噴射供給するように配置されている。またインレットパイプ6にも、主流路80Bに上方外部から貫通して、吸気弁口40に向けて燃料を噴射供給するように配置された燃料噴射弁88が取り付けられる。燃料噴射弁88をインレットパイプ6に取り付ける場合には、吸気通路壁面に燃料が付着することを防止するために、タンブル流路80Aよりも流路断面積が大きい主流路80B側に取り付けることが好ましい。 As shown in FIG. 4 , a fuel injection valve 87 is attached to the throttle body 7 so as to penetrate from the upper outside and is arranged to inject fuel toward the intake passage 80 . Also attached to the inlet pipe 6 is a fuel injection valve 88 which penetrates the main flow path 80B from the upper outside and is arranged to inject and supply fuel toward the intake valve port 40 . When attaching the fuel injection valve 88 to the inlet pipe 6, in order to prevent the fuel from adhering to the wall surface of the intake passage, it is preferable to attach the fuel injection valve 88 to the side of the main flow passage 80B, which has a larger flow passage cross-sectional area than the tumble flow passage 80A. .
 本実施の形態では、インレットパイプ6およびスロットルボディ7に燃料噴射弁88,87を配置しているが、燃料噴射弁の数を2つに限定するものではなく、例えば1つであってもよく、燃料噴射弁87,88のいずれか一方のみを取り付けるものであってもよい。また、シリンダヘッド32、あるいは、シリンダブロック31に燃料噴射弁を配置し、燃焼室36に燃料を噴射する直噴構造でもよい。 In this embodiment, the fuel injection valves 88 and 87 are arranged in the inlet pipe 6 and the throttle body 7, but the number of fuel injection valves is not limited to two, and may be, for example, one. , only one of the fuel injection valves 87 and 88 may be attached. Further, a direct injection structure in which a fuel injection valve is arranged in the cylinder head 32 or the cylinder block 31 to inject fuel into the combustion chamber 36 may be used.
 吸気装置60は、図5に示されるように、インレットパイプ6の内部の吸気通路80と連通管101を介して連通しているレゾネータ100を具備している。
 図6に示されるように、連通管101の一端101aはインレットパイプ6から突出した取付部104に接続されている。連通管101の他端101bは、図7に示されるように、レゾネータ100に接続されている。連通管101の内部は、インレットパイプ6の内部とレゾネータ100の内部を連通する連通路101cとなっている。
The intake device 60 has a resonator 100 communicating with an intake passage 80 inside the inlet pipe 6 through a communicating pipe 101, as shown in FIG.
As shown in FIG. 6, one end 101a of the communication pipe 101 is connected to a mounting portion 104 projecting from the inlet pipe 6. As shown in FIG. The other end 101b of the communicating pipe 101 is connected to the resonator 100 as shown in FIG. The interior of the communicating pipe 101 forms a communicating passage 101c that communicates the interior of the inlet pipe 6 and the interior of the resonator 100 with each other.
 インレットパイプ6には、図9および図10に示されるように、連通管101の一端101aを取り付ける取付部104が、インレットパイプ6の外壁面6dから突出して形成されている。取付部104は管状に形成され、内部が連通路104aとなっている。取付部104の外面には鍔状部104bが形成されている。本実施の形態では、連通管101はインレットパイプ6と一体に形成された一体品であるが、インレットパイプ6と別体でインレットパイプ6に取り付ける構造であってもよい。図8および図9に示されるように、インレットパイプ6の内壁6cには、取付部104の内部の連通路104aに開口する連通孔102が形成されている。 As shown in FIGS. 9 and 10, the inlet pipe 6 is provided with a mounting portion 104 for mounting one end 101a of the communicating pipe 101, protruding from the outer wall surface 6d of the inlet pipe 6. As shown in FIGS. The attachment portion 104 is formed in a tubular shape and has a communicating passage 104a inside. A collar-shaped portion 104b is formed on the outer surface of the mounting portion 104. As shown in FIG. In the present embodiment, the communication pipe 101 is an integral part that is formed integrally with the inlet pipe 6, but it may be structured to be attached to the inlet pipe 6 separately from the inlet pipe 6. As shown in FIGS. 8 and 9, the inner wall 6c of the inlet pipe 6 is formed with a communication hole 102 opening to the communication passage 104a inside the mounting portion 104. As shown in FIGS.
 図8に示されるように、インレットパイプ6内部の吸気通路80は、仕切部81によりタンブル流路80Aと主流路80Bとに仕切られている。インレットパイプ6において、仕切部81の板の厚さ方向における中心を通る面を仕切部中心面Paと、仕切部中心面Paをインレットパイプ6の形状に沿って延長した延長中心面Pbと定義し、これらの仕切部中心面Paと延長中心面Pbとで構成される面を仕切部等中心面Pと定義する。インレットパイプ6を仕切部等中心面Pで分けて、タンブル流路80A側の部分をタンブル流路側部6aと定義し、主流路80B側の部分を主流路側部6bとする。 As shown in FIG. 8, the intake passage 80 inside the inlet pipe 6 is partitioned by a partition portion 81 into a tumble passage 80A and a main passage 80B. In the inlet pipe 6, a plane passing through the center of the plate in the thickness direction of the partition 81 is defined as a partition central plane Pa, and an extended central plane Pb extending the partition central plane Pa along the shape of the inlet pipe 6 is defined. , a plane composed of the partition central plane Pa and the extension central plane Pb is defined as a central plane P such as a partition. The inlet pipe 6 is divided by the central plane P such as the partition, the portion on the tumble flow path 80A side is defined as the tumble flow path side portion 6a, and the portion on the main flow path 80B side is defined as the main flow path side portion 6b.
 インレットパイプ6に形成された連通孔102は、図8および図9に示されるように、タンブル流路側部6aの内壁面6aに位置して設けられている。このように連通孔102をタンブル流路側部6aに設けることで、吸気弁46が開口していく際に、レゾネータ100に溜まった吸気を積極的にタンブル流路80A側に流すことができ、タンブル流の強化を図ることができる。 The communication hole 102 formed in the inlet pipe 6 is located in the inner wall surface 6a1 of the tumble flow path side portion 6a, as shown in FIGS. By providing the communication hole 102 in the tumble flow path side portion 6a in this manner, the intake air accumulated in the resonator 100 can be positively flowed to the tumble flow path 80A side when the intake valve 46 is being opened. You can try to strengthen the flow.
 連通孔102は、図4に示されるように、スロットルボディ7の下流端7aと、仕切部81の上流端81aとの間に位置するように形成されている。連通孔102を発熱部である燃焼室36から比較的遠い位置に設けることで、比較的温度が高い気流が吸気通路80に流入した場合であっても、レゾネータ100と接続している連通管101に熱が伝わることを防ぐことができ、吸気効率が下がることを防止することができる。 The communication hole 102 is formed between the downstream end 7a of the throttle body 7 and the upstream end 81a of the partition portion 81, as shown in FIG. By providing the communication hole 102 at a position relatively far from the combustion chamber 36, which is a heat-generating portion, even when airflow with a relatively high temperature flows into the intake passage 80, the communication pipe 101 connected to the resonator 100 is maintained. It is possible to prevent the heat from being transferred to the air intake, and to prevent the intake efficiency from being lowered.
 さらに、図8に示されるように、連通孔102は、スロットルボディ7とインレットパイプ6とを接続するインシュレータ8の下流端8aよりも下流側に設けられている。インレットパイプ6がインシュレータ8を介してスロットルボディ7に接続されても、連通孔102がインシュレータ8により塞がれることがない。 Furthermore, as shown in FIG. 8 , the communication hole 102 is provided downstream of the downstream end 8 a of the insulator 8 connecting the throttle body 7 and the inlet pipe 6 . Even if the inlet pipe 6 is connected to the throttle body 7 via the insulator 8, the communication hole 102 is not blocked by the insulator 8. - 特許庁
 図10および図11に示されるように、インレットパイプ6は、締結部材であるボルト37により、インシュレータ61を介してシリンダヘッド32に固定されている。連通孔102と連通し、インレットパイプ6から突出した取付部104が、ボルト37をシリンダヘッド32に締結するのを妨げないように、連通孔102および取付部104は、ボルト37の取付方向視において、ボルト37と重ならない位置に配置されている。 As shown in FIGS. 10 and 11, the inlet pipe 6 is fixed to the cylinder head 32 via the insulator 61 by bolts 37, which are fastening members. The communication hole 102 and the mounting portion 104 communicate with the communication hole 102 and project from the inlet pipe 6 so that the mounting portion 104 does not interfere with fastening the bolt 37 to the cylinder head 32. , are positioned so as not to overlap with the bolt 37.
 インレットパイプ6の内壁6cには、図6、図8および図9に示されるように、連通孔102を挟んで吸気の上流側および下流側に向かって、内壁6cから凹んだ切欠部103が設けられている。切欠部103は、連通孔102の近傍が最も深くなっており、上流端103aおよび下流端103bに向かうに従って、次第に浅くなるように形成されている。図12に示されるように、切欠部103の下縁103cは、上流端103aから下流端103bに向かうに従って下方に向かうように下り勾配にされており、インレットパイプ6内に噴射された噴射燃料が連通孔102および切欠部103に溜まることを防ぐようになっている。 As shown in FIGS. 6, 8 and 9, the inner wall 6c of the inlet pipe 6 is provided with notches 103 recessed from the inner wall 6c toward the upstream side and the downstream side of the intake air across the communication hole 102. It is The notch 103 is deepest in the vicinity of the communication hole 102 and gradually becomes shallower toward the upstream end 103a and the downstream end 103b. As shown in FIG. 12, the lower edge 103c of the notch 103 slopes downward from the upstream end 103a toward the downstream end 103b, so that the injected fuel injected into the inlet pipe 6 is It is designed to prevent the fluid from accumulating in the communication hole 102 and the notch 103.
 さらに、図5に示されるように、レゾネータ100とインレットパイプ6を接続する連通管101には、その途中に、レゾネータ100からインレットパイプ6内へ流入する空気量を調整する空気量調整弁110が設けられている。空気量調整弁110は、連通管101内の空気流れ方向に対して交差する方向が軸線となる弁軸111を備えている。図13に示されるように、弁軸111はその断面形状が円形となるように形成されており、該弁軸111に切欠部112が形成されている。 Further, as shown in FIG. 5, the communicating pipe 101 connecting the resonator 100 and the inlet pipe 6 is provided with an air quantity adjusting valve 110 for adjusting the quantity of air flowing into the inlet pipe 6 from the resonator 100. is provided. The air amount adjusting valve 110 has a valve shaft 111 whose axis is in a direction intersecting the direction of air flow in the communicating pipe 101 . As shown in FIG. 13, the valve shaft 111 is formed to have a circular cross-sectional shape, and a notch 112 is formed in the valve shaft 111 .
 図5に示されるように、連通管101の所定の位置には、空気量調整弁110の弁軸111が挿通される挿通孔101dが設けられている。弁軸111は、切欠部112が連通管101の内部に位置するように、挿通孔101dに挿通され、連通管101の両側に位置した軸受105に回動自在に支承されている。挿通孔101dと軸受105の間には、連通管101からの空気漏れを防止するパッキン部材106配設されている。 As shown in FIG. 5, an insertion hole 101d through which the valve shaft 111 of the air amount adjustment valve 110 is inserted is provided at a predetermined position of the communication pipe 101. As shown in FIG. The valve shaft 111 is inserted through the insertion hole 101d so that the notch 112 is positioned inside the communicating pipe 101, and is rotatably supported by bearings 105 positioned on both sides of the communicating pipe 101. As shown in FIG. A packing member 106 is arranged between the insertion hole 101d and the bearing 105 to prevent air leakage from the communicating pipe 101. As shown in FIG.
 空気量調整弁110は、タンブルコントロール弁65と、同一の回動軸上に設けられている。本実施の形態の吸気装置60では、タンブルコントロール弁65の弁軸66と空気量調整弁110の弁軸111とは同一の軸部材120により構成されている。軸部材120がアクチュエータ68により回動されると、空気量調整弁110の弁軸111が回動する。本実施の形態の吸気装置60では、タンブルコントロール弁65の弁軸66と空気量調整弁110の弁軸111とが同一の部品として形成されているが、弁軸66と弁軸111とを別部品で形成し、一体に回動するように連結してもよい。 The air amount adjustment valve 110 and the tumble control valve 65 are provided on the same rotary shaft. In intake device 60 of the present embodiment, valve shaft 66 of tumble control valve 65 and valve shaft 111 of air amount adjusting valve 110 are formed of the same shaft member 120 . When the shaft member 120 is rotated by the actuator 68, the valve shaft 111 of the air amount adjusting valve 110 is rotated. In intake device 60 of the present embodiment, valve shaft 66 of tumble control valve 65 and valve shaft 111 of air amount adjusting valve 110 are formed as the same component. It may be formed in parts and connected so as to rotate together.
 図14に示されるように、空気量調整弁110の弁軸111が所定角度回動すると、切欠部112が開口して、切欠部112内を空気が通過可能な開弁状態となる。図15に示されるように、空気量調整弁110の弁軸111が所定角度に回動すると、連通管101は弁軸111により閉じられて閉弁状態となる。 As shown in FIG. 14, when the valve shaft 111 of the air amount adjustment valve 110 rotates by a predetermined angle, the notch 112 opens and the valve is in an open state in which air can pass through the notch 112 . As shown in FIG. 15, when the valve shaft 111 of the air amount control valve 110 rotates to a predetermined angle, the communicating pipe 101 is closed by the valve shaft 111 to be in the closed state.
 図16に示さるように、タンブルコントロール弁65が開弁状態時には、空気量調整弁110が閉弁状態とされ、レゾネータ100と吸気通路80とが連通されていない状態となる。図17に示されるように、タンブルコントロール弁65が閉弁状態時には、空気量調整弁110が開弁状態となり、レゾネータ100から吸気通路80に空気が供給される。このように、タンブルコントロール弁65と空気量調整弁110は、一方の弁が開くと他方の弁が閉じるように構成されている。 As shown in FIG. 16, when the tumble control valve 65 is open, the air amount adjustment valve 110 is closed and the resonator 100 and the intake passage 80 are not communicated. As shown in FIG. 17 , when the tumble control valve 65 is closed, the air amount adjustment valve 110 is opened, and air is supplied from the resonator 100 to the intake passage 80 . Thus, the tumble control valve 65 and the air amount adjustment valve 110 are configured so that when one valve opens, the other valve closes.
 次に、吸気通路80に連通してスロットル弁75より下流にレゾネータ100を設けることにより、タンブル流の流動を強化する効果について、図18および図19を参照して、レゾネータ100が設けられていない吸気装置の場合と比較して説明する。図18に示されるように、これらの吸気装置では、吸気通路の上側の通路にタンブルコントロール弁65が取り付けられており、上側が主流路80B、下側がタンブル流路80Aとなっている。図18には、図19で示す吸気装置内の圧力の変化を表している各所の位置を、A,Bで示している。A点は、スロットル弁75の下流側であってタンブル流路80Aと主流路80Bとを仕切る仕切部81の上流端81aより上流側に位置しており、B点はタンブル流路80A内に位置している。 Next, referring to FIGS. 18 and 19, the effect of enhancing the flow of the tumble flow by providing the resonator 100 downstream from the throttle valve 75 in communication with the intake passage 80 will be described with reference to FIGS. A description will be given in comparison with the case of an intake device. As shown in FIG. 18, in these intake devices, the tumble control valve 65 is attached to the upper passage of the intake passage, the upper side being the main passage 80B and the lower side being the tumble passage 80A. In FIG. 18, A and B indicate the positions of various locations representing changes in pressure in the intake system shown in FIG. Point A is located downstream of the throttle valve 75 and upstream of the upstream end 81a of the partition 81 separating the tumble flow path 80A and the main flow path 80B, and point B is located within the tumble flow path 80A. are doing.
 図19は、レゾネータ100がスロットル弁75より下流側に接続された吸気装置と、レゾネータ100がスロットル弁75より下流側に接続されていない吸気装置の、スロットル弁75の徐開時における1サイクルにおけるクランク角ごとの各所の圧力のデータを、横軸をクランク角、縦軸を圧力として表している。スロットル弁75下流から吸気弁46までの吸気装置内の吸気通路領域をスロットル弁下流吸気領域と定義し、この容積をスロットル弁下流吸気容積と定義する。これらの定義においては、レゾネータ100が接続されている場合には、レゾネータ100内の領域および容積も含んでいる。 FIG. 19 shows crank angles in one cycle when the throttle valve 75 is gradually opened for an intake system in which the resonator 100 is connected downstream of the throttle valve 75 and an intake system in which the resonator 100 is not connected downstream of the throttle valve 75. The pressure data at each location are shown with the crank angle on the horizontal axis and the pressure on the vertical axis. An intake passage area in the intake system from downstream of the throttle valve 75 to the intake valve 46 is defined as a throttle valve downstream intake area, and this volume is defined as a throttle valve downstream intake volume. These definitions also include areas and volumes within resonator 100 when resonator 100 is connected.
 レゾネータ100がスロットル弁75より下流側に接続されてない場合の吸気通路の圧力変化および吸気の流動について説明する。レゾネータ100がスロットル弁75より下流側に接続されてない場合とは、吸気装置がレゾネータ100を有しない場合、また吸気装置がレゾネータ100を有していても、スロットル弁75より上流側に接続されている場合である。 The pressure change in the intake passage and the flow of intake air when the resonator 100 is not connected downstream of the throttle valve 75 will be described. The case where the resonator 100 is not connected downstream of the throttle valve 75 means that the intake system does not have the resonator 100, and even if the intake system has the resonator 100, it is connected upstream of the throttle valve 75. is the case.
 レゾネータ100がスロットル弁75より下流側に接続されていない吸気装置では、スロットル弁下流吸気容積が大きくないので、ここに溜まっている空気量が少なく、吸気弁46が開いてから閉じるまでの吸気行程において、スロットル弁75の開口を通じて、スロットル弁75の上流の大気から空気の取り込みを行う。しかし、スロットル弁75の開口が小さいので、ピストン34の下降に伴って増加する体積分の空気量のチャージが間に合わず、吸気ポート内圧力は急激に負圧となる(図19)において、クランク角380度付近から540度付近の間)。このように吸気ポート内圧力が急激に負圧になると、ピストン34の下降にともない、スロットル弁下流吸気領域内の空気が膨張して吸入するため流動が弱くなり、筒内で形成されるタンブル流が弱くなる。 In an intake system in which the resonator 100 is not connected to the downstream side of the throttle valve 75, the intake volume downstream of the throttle valve is not large. , air is taken in from the atmosphere upstream of the throttle valve 75 through the opening of the throttle valve 75 . However, since the opening of the throttle valve 75 is small, it is not possible to charge the volume of air that increases as the piston 34 descends. between 380 degrees and 540 degrees). When the pressure inside the intake port suddenly becomes negative in this way, as the piston 34 descends, the air in the intake area downstream of the throttle valve expands and is drawn in, weakening the flow and forming a tumble flow in the cylinder. weakens.
 次にレゾネータ100がスロットル弁75より下流側に接続された場合の吸気通路の圧力変化および吸気の流動について説明する。吸気弁46が開いてから閉じるまでの吸気行程において、レゾネータ100が接続されていないものの場合に比べて、レゾネータ100内の容積分、スロットル弁下流吸気容積が大きいので、溜る空気の質量は大きい。 Next, the pressure change in the intake passage and the flow of intake air when the resonator 100 is connected downstream of the throttle valve 75 will be described. In the intake stroke from when the intake valve 46 opens to when it closes, compared to when the resonator 100 is not connected, the intake volume downstream of the throttle valve is larger by the volume inside the resonator 100, so the mass of the accumulated air is larger.
 吸気弁46が開いた時に、ピストン34の下降に伴って増加する体積分の空気量のチャージが、スロットル弁下流吸気領域内に多く溜まった空気から行われて、スロットル弁75の開口を通じて、スロットル弁75の上流の大気から取り込む空気量が比較的少ない。
 そのため、徐開時等のスロットル弁75の開口が小さい場合であっても、吸気ポート内圧力の負圧の変化は比較的少ないものとなる(図19)において、クランク角380度付近から540度付近の間)。このように吸気ポート内圧力が急激に負圧になることが少ないので、ピストン下降にともなったスロットル弁下流吸気領域内の吸気の膨張が比較的少なく、流動が低下せず、筒内で形成されるタンブル流の流動を高めることができる。
When the intake valve 46 opens, the volume of air that increases with the descent of the piston 34 is charged from the air accumulated in the intake area downstream of the throttle valve 75, and the throttle valve 75 opens. The amount of air taken from the atmosphere upstream of valve 75 is relatively small.
Therefore, even when the opening of the throttle valve 75 is small, such as when the throttle valve 75 is gradually opened, the change in the negative pressure in the intake port is relatively small (Fig. 19). while). Since the pressure inside the intake port does not suddenly drop to a negative pressure in this way, the expansion of the intake air in the intake area downstream of the throttle valve as the piston descends is relatively small, and the flow does not decrease, and the flow is formed in the cylinder. It is possible to increase the flow of the tumble flow.
 次に、タンブルコントロール弁65の開弁状態および閉弁状態のそれぞれについて、吸気通路80と連通するレゾネータ100の有無が、ポンピング損失(PMEP(kPa))と燃費(正味燃料消費率 BSFC(g/kW-h))に与える影響を、机上モデルを用いて効果を予測した。 Next, for each of the open state and closed state of the tumble control valve 65, the presence or absence of the resonator 100 communicating with the intake passage 80 depends on the pumping loss (PMEP (kPa)) and fuel consumption (net fuel consumption rate BSFC (g/ The effect on kW-h)) was predicted using a desktop model.
 図20は、タンブルコントロール弁65の開弁状態において、レゾネータ100があるモデルとレゾネータ100がないモデルについて、ポンピング損失および燃費の値の予測結果をグラフにしたものである。タンブルコントロール弁65が開弁状態時は、内燃機関のストイキ運転時を想定している。タンブルコントロール弁65が開弁状態においては、レゾネータが無い場合はレゾネータがある場合に比べて、ポンピング損失が小さく燃費が良い結果となった。 FIG. 20 is a graph showing prediction results of pumping loss and fuel consumption values for a model with the resonator 100 and a model without the resonator 100 when the tumble control valve 65 is open. Stoichiometric operation of the internal combustion engine is assumed when the tumble control valve 65 is open. When the tumble control valve 65 was open, the pumping loss was smaller and the fuel consumption was better when there was no resonator than when there was a resonator.
 図21は、タンブルコントロール弁65の閉弁状態において、レゾネータ100があるモデルとレゾネータ100がないモデルについて、ポンピング損失および燃費の値の予測結果をグラフにしたものである。タンブルコントロール弁65が閉弁状態時は、内燃機関のリーン運転時を想定している。タンブルコントロール弁65が閉弁状態においては、レゾネータがある場合はレゾネータが無い場合に比べて、ポンピング損失が小さく燃費が良い結果となった。 FIG. 21 is a graph showing prediction results of pumping loss and fuel consumption values for a model with the resonator 100 and a model without the resonator 100 when the tumble control valve 65 is closed. When the tumble control valve 65 is closed, it is assumed that the internal combustion engine is running lean. When the tumble control valve 65 was in the closed state, the pumping loss was smaller and the fuel consumption was better when the resonator was present than when there was no resonator.
 タンブルコントロール弁65の開閉状態により、ポンピング損失および燃費に対して、レゾネータ100の有無の優位性が逆転する。本実施の形態の吸気装置60では、タンブルコントロール弁65の開弁状態のときに空気量調整弁110が閉弁状態となり、タンブルコントロール弁65の閉弁状態のときに空気量調整弁110が開弁状態となるので、タンブルコントロール弁65の開閉どちらの状態においても、燃費優位性のあるレゾネータ100との接続状態となるので、内燃機関30の燃費改善することが可能となる。 Depending on the open/closed state of the tumble control valve 65, the advantage of the presence or absence of the resonator 100 is reversed with respect to pumping loss and fuel consumption. In intake device 60 of the present embodiment, air amount regulating valve 110 is closed when tumble control valve 65 is open, and air amount regulating valve 110 is open when tumble control valve 65 is closed. Since the tumble control valve 65 is in the valve state, it is in the connected state with the resonator 100 having superior fuel efficiency regardless of whether the tumble control valve 65 is open or closed.
 本発明の実施の形態の内燃機関の吸気装置60は、前記したように構成されているので、以下のような効果を奏する。 Since the intake device 60 for an internal combustion engine according to the embodiment of the present invention is configured as described above, it has the following effects.
 吸気装置60は、燃焼室36に吸気を導入する吸気通路80と、内部が吸気通路80の一部となるインレットパイプ6と、インレットパイプ6に吸気空気を導入するスロットルボディ7と、吸気通路80の開度を制御するためにスロットルボディ7の内部に設けられるスロットル弁75と、レゾネータ100とを有し、インレットパイプ6は、スロットルボディ7の下流側に配置され、吸気通路80を吸気空気の流入方向である長手方向に沿ってタンブル流路80Aと主流路80Bとに分割する仕切部81を備え、インレットパイプ6は、スロットル弁75の下流側に位置して、タンブルコントロール弁65と、レゾネータ100および吸気通路80を繋ぐ連通管10)に開口する連通孔102とを有し、連通管101は、レゾネータ100とインレットパイプ6との間の空気量を調整する空気量調整弁110を備えている。 The intake device 60 includes an intake passage 80 for introducing intake air into the combustion chamber 36, an inlet pipe 6 whose interior is part of the intake passage 80, a throttle body 7 for introducing intake air into the inlet pipe 6, and an intake passage 80. and a resonator 100. The inlet pipe 6 is arranged downstream of the throttle body 7, and an intake passage 80 is provided for intake air flow. Equipped with a partition 81 that divides the tumble flow path 80A and the main flow path 80B along the longitudinal direction, which is the inflow direction. 100 and a communicating hole 102 that opens to the communicating pipe 10) connecting the intake passage 80. The communicating pipe 101 is provided with an air amount adjusting valve 110 for adjusting the amount of air between the resonator 100 and the inlet pipe 6. there is
 前記構成によれば、インレットパイプ6においてスロットル弁75の下流側に位置して、吸気通路80に連通するレゾネータ100を設けることで、内燃機関30の低負荷領域での稼働時におけるスロットル弁75が絞られた状態においても、レゾネータ100内からスロットル弁75より下流側の吸気通路80内に吸気が流れ込むので、吸気通路80内の吸気の流動が低下することなく、タンブル流の流動を強化して、燃焼効率を向上させることができる。さらに、レゾネータ100からインレットパイプ6内への空気の流入を必要に応じて空気量調整弁110で切り替えることにより、上記効果をさらに高めることができる。 According to the above configuration, by providing the resonator 100 that is positioned downstream of the throttle valve 75 in the inlet pipe 6 and communicates with the intake passage 80, the throttle valve 75 is suppressed when the internal combustion engine 30 operates in a low load region. Even in the throttled state, intake air flows from inside the resonator 100 into the intake passage 80 on the downstream side of the throttle valve 75, so the flow of intake air in the intake passage 80 does not decrease, and the tumble flow is strengthened. , the combustion efficiency can be improved. Furthermore, by switching the inflow of air from the resonator 100 into the inlet pipe 6 with the air amount control valve 110 as needed, the above effects can be further enhanced.
 さらに、タンブルコントロール弁65と空気量調整弁110とは、同一の回動軸としての軸部材120上に設けられているので、タンブルコントロール弁65と空気量調整弁110とを同一の回動軸としての軸部材120上に設けることで、軸共用化により部品点数を削減することができる。 Furthermore, since the tumble control valve 65 and the air amount adjusting valve 110 are provided on the shaft member 120 as the same rotating shaft, the tumble control valve 65 and the air amount adjusting valve 110 are mounted on the same rotating shaft. By providing it on the shaft member 120 as a shaft, it is possible to reduce the number of parts by sharing the shaft.
 また、タンブルコントロール弁65と空気量調整弁110とは、一方の弁が開くと他方の弁が閉じる構造を有しているので、ストイキ運転時にタンブルコントロール弁65を開弁状態とし、レゾネータ100との間の空気量調整弁110を閉弁状態とすることで、吸気ボリュームのあるレゾネータ100から空気が流入することによるポンピング損失増加による燃費の悪化を防ぐことができ、一方リーン燃焼時には、タンブルコントロール弁65を閉じて、レゾネータとの間の空気量調整弁を開けることで、レゾネータの吸気ボリュームを生かしてタンブル流形成を促進して燃焼効率を向上させることができる。 Further, the tumble control valve 65 and the air amount adjustment valve 110 have a structure such that when one valve opens, the other valve closes. By closing the air amount adjustment valve 110 between the two, it is possible to prevent deterioration of fuel consumption due to an increase in pumping loss due to the inflow of air from the resonator 100 having an intake volume. By closing the valve 65 and opening the air amount adjustment valve between the resonator and the resonator, the intake volume of the resonator can be used to promote the formation of a tumble flow and improve the combustion efficiency.
 さらにまた、連通孔102はスロットルボディ7の下流端7aと仕切部81の上流端81aとの間に位置するので、発熱部である内燃機関30から離れた箇所にレゾネータ100に連通する連通孔102を配置したことにより、比較的温度が高い気流が吸気通路80内に流入した場合であっても、レゾネータ100と連通する連通管101に熱が伝わらず、内燃機関30の排熱の影響を受けにくくなり、吸気効率の低減を防止することができる。 Furthermore, since the communication hole 102 is located between the downstream end 7a of the throttle body 7 and the upstream end 81a of the partition portion 81, the communication hole 102 communicates with the resonator 100 at a location away from the internal combustion engine 30 which is a heat generating portion. , even if airflow with a relatively high temperature flows into the intake passage 80, the heat is not transmitted to the communicating pipe 101 communicating with the resonator 100, and is affected by the exhaust heat of the internal combustion engine 30. It becomes difficult, and the reduction of intake efficiency can be prevented.
 また、インレットパイプ6は、連通管101の一端101aが取り付けられる取付部104を有し、取付部104とインレットパイプ6とは一体品であるので、取付部104をインレットパイプ6に固定するための固定部品が不要となり、部品点数の増加を防ぐとともに、加工の手間を低減することができる。 Also, the inlet pipe 6 has a mounting portion 104 to which one end 101a of the communicating pipe 101 is mounted. Fixing parts are no longer required, preventing an increase in the number of parts and reducing the labor required for processing.
 さらに、吸気通路80の内部に向かって燃料を噴射する燃料噴射弁87を備え、インレットパイプ6の内壁6cに、吸気流れ方向の上流側から下流側に向かった切欠部103が設けられ、連通孔102は切欠部103と重なる位置に設けられているので、連通孔102および切欠部103に噴射燃料が溜まることを防止できる。 Further, a fuel injection valve 87 for injecting fuel toward the inside of the intake passage 80 is provided, and the inner wall 6c of the inlet pipe 6 is provided with a notch portion 103 extending from the upstream side to the downstream side in the intake air flow direction to form a communication hole. Since 102 is provided at a position overlapping with notch 103, injection fuel can be prevented from accumulating in communication hole 102 and notch 103. FIG.
 以上、本発明の実施形態につき説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の設計変更が可能であり、本発明の要旨の範囲で、車両、内燃機関等が、多様な態様で実施されるものを含むことは勿論である。
 なお、説明の便宜上、図示の実施例の左右配置のものについて説明したが、左右配置の異なるものであっても、発明の要旨の範囲であれば本発明に含まれる。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various design changes are possible without departing from the gist of the present invention. , vehicles, internal combustion engines, etc., of course, include those implemented in various modes.
For convenience of explanation, the left-right arrangement of the illustrated embodiment has been described, but the present invention includes a different left-right arrangement as long as it is within the scope of the invention.
 6…吸気通路管、7…スロットルボディ、
 30…内燃機関、36…燃焼室、
 60…吸気装置、65…タンブルコントロール弁、
 75…スロットル弁、
 80…吸気通路、80A…タンブル流路、80B…主流路、81…隔壁、87…燃料噴射弁、
 100…レゾネータ、101…連通管、101a…一端、102…連通孔、103…切欠部、104…取付部、
 110…空気量調整弁、
 120…軸部材。
6... Intake passage pipe, 7... Throttle body,
30... internal combustion engine, 36... combustion chamber,
60 ... intake device, 65 ... tumble control valve,
75 ... Throttle valve,
80... intake passage, 80A... tumble flow path, 80B... main flow path, 81... partition wall, 87... fuel injection valve,
DESCRIPTION OF SYMBOLS 100... Resonator, 101... Communication pipe, 101a... One end, 102... Communication hole, 103... Notch, 104... Mounting part,
110 ... air volume control valve,
120 ... Shaft member.

Claims (6)

  1.  燃焼室(36)に吸気を導入する吸気通路(80)と、内部が前記吸気通路(80)の一部となる吸気通路管(6)と、前記吸気通路管(6)に吸気空気を導入するスロットルボディ(7)と、前記吸気通路(80)の開度を制御するために前記スロットルボディ(7)の内部に設けられるスロットル弁(75)と、を有する内燃機関(E)の吸気装置において、
     前記吸気通路管(6)は、スロットルボディ(7)の下流側に配置され、前記吸気通路(80)を吸気空気の流入方向である長手方向に沿ってタンブル流路(80A)と主流路(80B)とに分割する隔壁(81)を備え、
     前記吸気通路(80)に、連通管(101)を介して連通するレゾネータ(100)を有し、
     前記吸気通路管(6)は、前記スロットル弁(75)の下流側に位置して、前記タンブル流路(80A)と前記主流路(80B)との吸気流量割合を制御する吸気制御弁(65)と、前記連通管(101)に開口する連通孔(102)とを有し、
     前記連通管(101)は、前記吸気通路管(6)内を開閉する空気量調整弁(110)を備えることを特徴とする内燃機関の吸気装置。
    An intake passage (80) that introduces intake air into the combustion chamber (36), an intake passage pipe (6) that is part of the intake passage (80), and intake air is introduced into the intake passage pipe (6). and a throttle valve (75) provided inside the throttle body (7) for controlling the opening of the intake passage (80). in
    The intake passage pipe (6) is disposed on the downstream side of the throttle body (7), and extends along the longitudinal direction of the intake passage (80), which is the inflow direction of intake air. 80B) and a partition wall (81) dividing the
    Having a resonator (100) communicating with the intake passage (80) through a communicating pipe (101),
    The intake passage pipe (6) is located downstream of the throttle valve (75), and is an intake control valve (65) that controls the ratio of the intake flow rate between the tumble flow path (80A) and the main flow path (80B). ) and a communicating hole (102) opening into the communicating pipe (101),
    An intake system for an internal combustion engine, wherein the communication pipe (101) is provided with an air amount control valve (110) that opens and closes the interior of the intake passage pipe (6).
  2.  前記吸気制御弁(65)と前記空気量調整弁(110)とは、同一の回動軸としての軸部材(120)上に設けられていることを特徴とする請求項1に記載の内燃機関の吸気装置。 2. An internal combustion engine according to claim 1, wherein said intake control valve (65) and said air amount adjusting valve (110) are provided on a shaft member (120) as a same rotating shaft. air intake system.
  3.  前記吸気制御弁(65)と前記空気量調整弁(110)とは、一方の弁(65,110)が開くと他方の弁(110,65)が閉じる構造を有することを特徴とする請求項2に記載の内燃機関の吸気装置。 3. The air intake control valve (65) and the air amount adjusting valve (110) have a structure such that when one valve (65, 110) opens, the other valve (110, 65) closes. An intake system for an internal combustion engine as described.
  4.  前記連通孔(102)は前記スロットルボディ(7)の下流端(7a)と前記隔壁(81)の上流端(81a)との間に位置することを特徴とする請求項1ないし請求項3のいずれかに記載の内燃機関の吸気装置。 The communication hole (102) is located between the downstream end (7a) of the throttle body (7) and the upstream end (81a) of the partition wall (81). The intake device for an internal combustion engine according to any one of the above.
  5.  前記吸気通路管(6)は、前記連通管(101)の一端(101a)が取り付けられる取付部(104)を有し、前記取付部(104)と前記吸気通路管(6)とは一体品であることを特徴とする請求項1ないし請求項4のいずれかに記載の内燃機関の吸気装置。 The intake passage pipe (6) has a mounting portion (104) to which one end (101a) of the communication pipe (101) is mounted, and the mounting portion (104) and the intake passage pipe (6) are integrated. 5. An intake system for an internal combustion engine according to any one of claims 1 to 4, characterized in that:
  6.  前記吸気通路(80)の内部に向かって燃料を噴射する燃料噴射弁(87)を備え、
     前記吸気通路管(6)の内壁(6c)に、吸気流れ方向の上流側から下流側に向かった切欠部(103)が設けられ、前記連通孔(102)は、前記切欠部(103)と重なる位置に設けられたことを特徴とする請求項1ないし請求項5のいずれかに記載の内燃機関の吸気装置。
    a fuel injection valve (87) for injecting fuel toward the inside of the intake passage (80);
    The inner wall (6c) of the intake passage pipe (6) is provided with a notch (103) extending from the upstream side to the downstream side in the intake air flow direction, and the communicating hole (102) and the notch (103) are formed. 6. The intake system for an internal combustion engine according to any one of claims 1 to 5, wherein the intake system is provided at an overlapping position.
PCT/JP2021/036013 2021-09-29 2021-09-29 Air intake device for internal combustion engine WO2023053308A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/036013 WO2023053308A1 (en) 2021-09-29 2021-09-29 Air intake device for internal combustion engine
JP2023550876A JPWO2023053308A1 (en) 2021-09-29 2021-09-29

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/036013 WO2023053308A1 (en) 2021-09-29 2021-09-29 Air intake device for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2023053308A1 true WO2023053308A1 (en) 2023-04-06

Family

ID=85780509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036013 WO2023053308A1 (en) 2021-09-29 2021-09-29 Air intake device for internal combustion engine

Country Status (2)

Country Link
JP (1) JPWO2023053308A1 (en)
WO (1) WO2023053308A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0439848A1 (en) * 1990-02-01 1991-08-07 Volvo Car B.V. Short circuit primary turbulence system for a combustion engine
JPH08338253A (en) * 1995-06-14 1996-12-24 Suzuki Motor Corp Intake system for engine
JPH11166417A (en) * 1997-09-30 1999-06-22 Yamaha Motor Co Ltd Intake device for engine
JPH11218029A (en) * 1998-02-02 1999-08-10 Yamaha Motor Co Ltd Intake system for engine
JP2003262165A (en) * 2002-03-07 2003-09-19 Hitachi Ltd Air intake pipe for multiple cylinder internal combustion engine
JP2017089527A (en) * 2015-11-12 2017-05-25 アイシン精機株式会社 Intake manifold
JP6714764B2 (en) * 2017-03-10 2020-06-24 本田技研工業株式会社 Intake structure of internal combustion engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0439848A1 (en) * 1990-02-01 1991-08-07 Volvo Car B.V. Short circuit primary turbulence system for a combustion engine
JPH08338253A (en) * 1995-06-14 1996-12-24 Suzuki Motor Corp Intake system for engine
JPH11166417A (en) * 1997-09-30 1999-06-22 Yamaha Motor Co Ltd Intake device for engine
JPH11218029A (en) * 1998-02-02 1999-08-10 Yamaha Motor Co Ltd Intake system for engine
JP2003262165A (en) * 2002-03-07 2003-09-19 Hitachi Ltd Air intake pipe for multiple cylinder internal combustion engine
JP2017089527A (en) * 2015-11-12 2017-05-25 アイシン精機株式会社 Intake manifold
JP6714764B2 (en) * 2017-03-10 2020-06-24 本田技研工業株式会社 Intake structure of internal combustion engine

Also Published As

Publication number Publication date
JPWO2023053308A1 (en) 2023-04-06

Similar Documents

Publication Publication Date Title
JP6714764B2 (en) Intake structure of internal combustion engine
JP6439070B1 (en) Intake structure of internal combustion engine
WO2013146703A1 (en) Air intake device for internal combustion engine
EP2131034B1 (en) Motor cycle
JP6262587B2 (en) Intake structure of internal combustion engine
JP6691564B2 (en) Intake passage of internal combustion engine
JP6741362B2 (en) Intake structure of internal combustion engine
WO2023053308A1 (en) Air intake device for internal combustion engine
JP4628161B2 (en) Intake device for vehicle-mounted engine
JP6748782B2 (en) Intake structure of internal combustion engine
WO2022209880A1 (en) Air suction device for internal combustion engine
WO2018163909A1 (en) Air intake device for internal combustion engine
JP2018150817A (en) Suction structure for internal combustion engine
JP7241235B2 (en) Intake device for internal combustion engine for straddle-type vehicle
EP4116553A1 (en) Intake control device for saddle-type vehicle internal combustion engine
JP7493097B2 (en) Intake structure of an internal combustion engine
JP7336587B2 (en) Intake structure of internal combustion engine
JP6798910B2 (en) Internal combustion engine intake system
JP6824218B2 (en) Sub-combustion chamber of internal combustion engine
JP7241236B2 (en) Intake device for internal combustion engine for straddle-type vehicle
JP6564523B2 (en) Intake device for internal combustion engine
JP6186299B2 (en) Air intake structure for saddle-ride type vehicles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21959350

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023550876

Country of ref document: JP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024005137

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2401001953

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 112024000058327

Country of ref document: IT

NENP Non-entry into the national phase

Ref country code: DE