WO2023051175A1 - 经济器及包括该经济器的制冷*** - Google Patents

经济器及包括该经济器的制冷*** Download PDF

Info

Publication number
WO2023051175A1
WO2023051175A1 PCT/CN2022/116990 CN2022116990W WO2023051175A1 WO 2023051175 A1 WO2023051175 A1 WO 2023051175A1 CN 2022116990 W CN2022116990 W CN 2022116990W WO 2023051175 A1 WO2023051175 A1 WO 2023051175A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
liquid separation
separation chamber
heat exchange
liquid
Prior art date
Application number
PCT/CN2022/116990
Other languages
English (en)
French (fr)
Inventor
苏秀平
薛芳
梅露
林坤
Original Assignee
约克(无锡)空调冷冻设备有限公司
江森自控泰科知识产权控股有限责任合伙公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 约克(无锡)空调冷冻设备有限公司, 江森自控泰科知识产权控股有限责任合伙公司 filed Critical 约克(无锡)空调冷冻设备有限公司
Priority to KR1020247014167A priority Critical patent/KR20240093518A/ko
Publication of WO2023051175A1 publication Critical patent/WO2023051175A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/003Filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators

Definitions

  • the present application relates to an economizer and a refrigerating system including the economizer, especially suitable for a two-stage compression refrigerating system.
  • a refrigeration system generally includes a compressor, a condenser, a throttling device, and an evaporator, which are connected in sequence to form a refrigerant circulation system for external cooling or heating.
  • Some refrigeration systems also include a subcooler and an economizer. The subcooler is arranged inside the condenser to further cool the condensed refrigerant, so as to increase the refrigeration efficiency and cooling capacity of the refrigeration system.
  • the economizer is used for gas-liquid separation of the gas-liquid two-phase refrigerant after passing through the first-stage throttling device, in which the gas refrigerant returns to the air supply port of the compressor, and the liquid refrigerant enters after passing through the second-stage throttling device Evaporate in the evaporator.
  • At least one object of the first aspect of the present application is to provide an economizer, which can not only perform the function of gas-liquid separation, but also perform the function of heat exchange.
  • the economizer includes: an outer casing, the outer casing includes a heat exchange cavity and a gas-liquid separation cavity, and the outer casing has a length direction; a heat exchange tube bundle, the heat exchange tube bundle is arranged in the heat exchange cavity, and Extending along the length direction; a heat exchange volume inlet and a heat exchange volume outlet, the heat exchange volume inlet and the heat exchange volume outlet are in fluid communication with the heat exchange volume; and a gas-liquid separation volume chamber inlet, gas outlet of the gas-liquid separation chamber and liquid outlet of the gas-liquid separation chamber, the inlet of the gas-liquid separation chamber, the gas outlet of the gas-liquid separation chamber and the liquid outlet of the gas-liquid separation chamber are arranged in the On the outer casing and in fluid communication with the gas-liquid separation chamber, the inlet of the gas-liquid separation chamber is in fluid communication
  • the economizer further includes an inner casing, the inner casing and the outer casing are in a cylindrical shape, the outer casing is arranged around the inner casing, the inner casing and the outer casing are The axial direction of the outer shell is the length direction, the heat exchange cavity is formed inside the inner shell, and the gas-liquid separation cavity is formed between the inner shell and the outer shell; wherein, The inlet of the heat exchange chamber and the outlet of the heat exchange chamber are arranged on the inner casing.
  • the economizer further includes an inlet pipe of the gas-liquid separation chamber, the inlet pipe of the gas-liquid separation chamber is connected to the inlet of the gas-liquid separation chamber, and the inlet pipe of the gas-liquid separation chamber is along the
  • the tangential extension of the outer casing is such that the refrigerant flows helically around the inner casing in the gas-liquid separation chamber along the length direction, thereby realizing gas-liquid separation under the action of centrifugal force.
  • the inner casing and the outer casing are arranged coaxially.
  • the inlet of the gas-liquid separation chamber is arranged on the side of the outer shell close to the bottom; in the width direction and/or the height direction of the inner shell and the outer shell,
  • the axis of the inner casing is arranged away from the axis of the outer casing, and the inner casing is arranged away from the inlet of the gas-liquid separation chamber.
  • the economizer includes a partition plate that divides the interior of the outer casing into the heat exchange volume and the gas-liquid separation volume, and the heat exchange volume
  • the inlet and the outlet of the heat exchange chamber are arranged on the outer casing; the inlet of the gas-liquid separation chamber is configured to guide refrigerant along one end of the length direction of the gas-liquid separation chamber into the gas-liquid separation The cavity, so that the refrigerant flows in the gas-liquid separation cavity along the length direction, so as to realize the gas-liquid separation under the action of gravity.
  • the economizer further includes at least one filter screen, and the at least one filter screen is arranged on the flow path of the refrigerant in the gas-liquid separation chamber.
  • the liquid outlet of the gas-liquid separation chamber is connected with a liquid collection pipe and several outlet branch pipes, and the several outlet branch pipes are respectively connected to the liquid collection pipe along the length direction of the liquid collection pipe. connected.
  • the refrigerant from the condenser is in the heat exchange chamber to exchange heat through the outer walls of the heat exchange tubes in the heat exchange tube bundle.
  • the gas refrigerant flows out from the gas outlet of the gas-liquid separation chamber and is supplied to the gas supply port of the compressor, and the liquid refrigerant flows out from the liquid outlet of the gas-liquid separation chamber and is provided to the second-stage throttling device.
  • the economizer further includes a liquid storage tank and a liquid level sensor, the liquid storage tank is in fluid communication with the liquid outlet of the gas-liquid separation chamber to receive liquid refrigerant, and the liquid level sensor is connected to the liquid level sensor
  • the second-stage throttling device is communicatively connected; wherein, the liquid level sensor is configured to detect the liquid level in the liquid storage tank, and control the opening of the second-stage throttling device based on the detection result.
  • the inlet of the gas-liquid separation chamber and the gas outlet of the gas-liquid separation chamber are arranged close to both ends of the outer casing in the length direction.
  • At least one object of the present application in the second aspect is to provide a refrigeration system, including: a compressor, a condenser, an economizer, a second-stage throttling device, and an evaporator arranged in a refrigerant circuit; wherein the economizer It includes: an outer casing, the outer casing includes a heat exchange cavity and a gas-liquid separation cavity, the outer casing has a length direction; a heat exchange tube bundle, the heat exchange tube bundle is arranged in the heat exchange cavity, and along the The length direction extends; the inlet of the heat exchange chamber and the outlet of the heat exchange chamber, the inlet of the heat exchange chamber and the outlet of the heat exchange chamber are in fluid communication with the heat exchange chamber, and the inlet of the heat exchange chamber It is in fluid communication with the outlet of the condenser; and the inlet of the gas-liquid separation chamber, the gas outlet of the gas-liquid separation chamber and the liquid outlet of the gas-liquid separation chamber, the inlet of the gas-liquid separation chamber, the
  • Fig. 1 is the structural block diagram of an embodiment of the refrigeration system of the present application
  • FIG. 2A is a schematic radial cross-sectional view of the first embodiment of the economizer in FIG. 1;
  • Fig. 2B is a schematic axial sectional view of the economizer in Fig. 2A;
  • Fig. 3 is the radial sectional schematic view of the second embodiment of the economizer in Fig. 1;
  • Fig. 4 is the radial sectional schematic view of the third embodiment of the economizer in Fig. 1;
  • Fig. 5 is the radial sectional schematic view of the fourth embodiment of the economizer in Fig. 1;
  • Fig. 6 is a schematic axial sectional view of a fifth embodiment of the economizer in Fig. 1;
  • Fig. 7 is a schematic axial sectional view of a sixth embodiment of the economizer in Fig. 1;
  • FIG. 8A is a schematic radial cross-sectional view of a seventh embodiment of the economizer in FIG. 1;
  • FIG. 8B is a schematic axial sectional view of the economizer in FIG. 8A .
  • FIG. 1 is a structural block diagram of an embodiment of a refrigeration system 190 of the present application, which is used to illustrate the connection relationship of various components in a two-stage compression refrigeration system.
  • the refrigeration system 190 includes a compressor 193 , a condenser 191 , an economizer 100 , a second-stage throttling device 194 and an evaporator 192 which are sequentially connected by pipelines to form a refrigerant circulation loop.
  • the economizer 100 includes a heat exchange chamber 218 and a gas-liquid separation chamber 217 (see FIG. 2A ).
  • the compressor 193 has a suction port 108a, a discharge port 108b, and an air supply port 108c.
  • the condenser 191 has an inlet 107a and an outlet 107b.
  • the second stage restriction 194 has an inlet 109a and an outlet 109b.
  • the evaporator 192 has an inlet 111a and an outlet 111b.
  • the economizer 100 has a heat exchange chamber inlet 101 , a gas-liquid separation chamber gas outlet 104 and a gas-liquid separation chamber liquid outlet 105 .
  • the refrigeration system 190 also includes a first-stage throttling device 195 having an inlet 106a and an outlet 106b.
  • the economizer 100 also has an outlet 102 of the heat exchange chamber and an inlet 103 of the gas-liquid separation chamber.
  • the exhaust port 108b of the compressor 193 is in fluid communication with the inlet 107a of the condenser 191, and the outlet 107b of the condenser 191 is in fluid communication with the heat exchange chamber inlet 101 of the economizer 100, and the heat exchange chamber inlet 101 is arranged in the condenser 191 Below the outlet 107b of the economizer 100, the outlet 102 of the heat exchange chamber of the economizer 100 is in fluid communication with the inlet 106a of the first-stage throttling device 195, and the outlet 106b of the first-stage throttling device 195 is connected with the inlet of the gas-liquid separation chamber of the economizer 100 103 is fluidly connected, the gas outlet 104 of the gas-liquid separation chamber of the economizer 100 is in fluid communication with the gas supply port 108c of the compressor 193, the liquid outlet 105 of the gas-liquid separation chamber of the economizer 100 is connected to the inlet 109a of the second-stage thrott
  • the refrigeration system 190 is filled with refrigerant, and the operation process of the refrigeration system 190 is briefly described below:
  • the low-temperature and low-pressure gas refrigerant is compressed into a high-temperature and high-pressure gas refrigerant. Then the high-temperature and high-pressure gas refrigerant flows into the condenser 191 , where it releases heat and condenses into a high-pressure liquid refrigerant.
  • High-pressure liquid refrigerant enters the economizer 100 through the heat exchange volume inlet 101 . In the economizer 100, the high-pressure liquid refrigerant first passes through the heat exchange chamber 218 (see FIG. 2A and FIG.
  • the refrigerant flows out from the outlet 102 of the heat exchange chamber to the first-stage throttling device 195, and after the first throttling, a medium-pressure mixture of liquid refrigerant and gas refrigerant (hereinafter referred to as the gas-liquid mixture) is obtained, and then passes through the gas-liquid
  • the inlet 103 of the separation chamber enters the gas-liquid separation chamber 217 (see Fig. 2A and Fig.
  • the gas refrigerant flows out from the gas outlet 104 of the gas-liquid separation chamber, and returns to the compressed air through the gas supply port 108c.
  • the machine 193 it is recompressed into a high-temperature and high-pressure gas refrigerant.
  • the liquid refrigerant therein flows out from the liquid outlet 105 of the gas-liquid separation chamber to the second throttling device 194 for second throttling.
  • the throttled low-pressure refrigerant enters the evaporator 192 to absorb heat and evaporate into a gas refrigerant, and finally returns to the compressor 193 from the suction port 108a to be recompressed into a high-temperature and high-pressure gas refrigerant. This goes round and round to complete the continuous refrigeration cycle.
  • FIG. 2A and FIG. 2B show the specific structure of the first embodiment of the economizer 100 in FIG. 1 .
  • Fig. 2 A is the radial sectional schematic diagram of economizer 100, is used to show the general structure of economizer 100 on width direction and height direction
  • Fig. 2B is the axial sectional schematic diagram of economizer 100, is used to show the The general structure of the device 100 in the length direction and the height direction.
  • the economizer 100 includes an outer casing 210 , and a heat exchange cavity 218 and a gas-liquid separation cavity 217 are formed in the outer casing 210 .
  • the outer shell 210 has a length direction L, a width direction W and a height direction H, and the heat exchange chamber 218 and the gas-liquid separation chamber 217 extend along the common length direction L.
  • the economizer 100 also includes an inner casing 212 , both of the outer casing 210 and the inner casing 212 are approximately cylindrical in shape, and their axial direction is the length direction L. In this embodiment, the outer casing 210 and the inner casing 212 are arranged coaxially.
  • the outer casing 210 is arranged around the inner casing 212.
  • the inner casing 212 forms a substantially cylindrical heat exchange chamber 218, and a substantially annular cylindrical gas-liquid separation chamber is formed between the inner casing 212 and the outer casing 210. Cavity 217.
  • the economizer 100 further includes a heat exchange tube bank 220 disposed in the heat exchange cavity 218 , and each heat exchange tube in the heat exchange tube bank 220 extends along the length direction L.
  • the outer casing 210 also includes two ends arranged on the length direction L of the outer casing 210, which are used to seal the front tube sheet 228 and the rear tube sheet 229 of the heat exchange cavity 218 and the gas-liquid separation cavity 217, and the heat exchange tube bundle 220 Both ends of each heat exchange tube are respectively supported on the front tube sheet 228 and the rear tube sheet 229 , and the inside of the heat exchange tubes are in fluid communication with the front water tank 226 and the rear water tank 227 respectively through the front tube plate 228 and the rear tube plate 229 .
  • the front ends of the heat exchange tubes are in fluid communication with the water inlet 224 through the front tube plate 228 and the front water tank 226
  • the rear ends of the heat exchange tubes are in fluid communication with the water outlet 225 through the rear tube plate 229 and the rear water tank 227
  • the water inlet 224 and the water outlet 225 can be in fluid communication with the cooling medium, and in fluid communication with the interior of each heat exchange tube in the heat exchange tube bundle 220 , for providing a cooling medium for heat exchange, such as cold water, to the inside of the heat exchange tube.
  • the cooling medium flows from left to right along the length direction L inside each heat exchange tube of the heat exchange tube bundle.
  • the heat exchange volume inlet 101 and the heat exchange volume outlet 102 are disposed on the inner housing 212 and are in fluid communication with the heat exchange volume 218 .
  • the inlet 101 of the heat exchange chamber and the outlet 102 of the heat exchange chamber are respectively arranged at the top and bottom of the inner housing 212 in the height direction H, so that the heat exchange chamber inlet 101 flows into the heat exchange chamber
  • the refrigerant of 218 generally flows from top to bottom.
  • the inlet 101 of the heat exchange chamber and the outlet 102 of the heat exchange chamber are arranged approximately in the middle of the inner casing 212 in the length direction L.
  • the heat exchange chamber 218 is also provided with a partition plate 221, and the partition plate 221 is arranged laterally on the heat exchange chamber 218.
  • the partition plate 221 On the refrigerant flow path between the inlet 101 of the heat exchange chamber and the outlet 102 of the heat exchange chamber, so that after the refrigerant enters the heat exchange chamber 218 from the inlet 101 of the heat exchange chamber, it is blocked by the partition plate 221 It flows to the left and right sides in the length direction L, fully exchanges heat with the cooling medium through the outer wall of the heat exchange tube, and flows downward under the action of gravity until it is discharged from the outlet 102 of the heat exchange chamber.
  • the cooling medium flowing in the heat exchange tubes of the heat exchange tube bundle 220 is cold water to further cool the refrigerant flowing in from the heat exchange cavity inlet 101 to make the refrigerant reach a supercooled liquid state.
  • the first-stage throttling device 195 is connected between the outlet 102 of the heat exchange chamber and the inlet 103 of the gas-liquid separation chamber, so that the subcooled liquid refrigerant flowing out from the outlet 102 of the heat exchange chamber can pass through the first-stage throttling device 195 throttling, and then the throttled gas-liquid mixture is transported from the gas-liquid separation chamber inlet 103 to the gas-liquid separation chamber 217 for gas-liquid separation.
  • the inlet 103 of the gas-liquid separation chamber, the gas outlet 104 of the gas-liquid separation chamber and the liquid outlet 105 of the gas-liquid separation chamber are disposed on the outer shell 210 and are in fluid communication with the gas-liquid separation chamber 217 .
  • the inlet 103 of the gas-liquid separation chamber and the gas outlet 104 of the gas-liquid separation chamber are arranged at a certain distance in the length direction L of the outer shell 210, so that the airflow formed by the refrigerant can have a certain flow stroke.
  • the gas-liquid separation chamber inlet 103 is connected with a gas-liquid separation chamber inlet pipe 219, and the gas-liquid separation chamber inlet pipe 219 communicates with the outlet of the first stage throttling device 195, and the gas-liquid separation chamber
  • the cavity inlet pipe 219 extends along the tangential direction of the outer casing 210 to guide the gas-liquid mixture discharged from the first-stage throttling device 195 into the gas-liquid separation cavity 217 along the tangential direction of the gas-liquid separation cavity 217.
  • a gas flow is formed in the liquid separation chamber 217 along the direction indicated by the arrow, that is, spirally rotating along the length direction L. As shown in FIG.
  • the centrifugal force on the liquid refrigerant is greater than that of the gas refrigerant, so that the gas-liquid mixture can achieve gas-liquid separation under the action of centrifugal force.
  • the gas refrigerant with a lower density continues to flow forward in a spiral shape until it is discharged from the gas outlet 104 of the gas-liquid separation chamber, and the liquid refrigerant with a higher density adheres to the outer surface of the inner shell 212 and collects to the bottom of the gas-liquid separation chamber 217 to form a liquid level of a certain height until it flows out from the liquid outlet 105 of the gas-liquid separation chamber.
  • the inlet pipe 219 of the gas-liquid separation chamber generally extends upward along the tangential direction of the outer casing 210 , so that the inlet 103 of the gas-liquid separation chamber is roughly close to the right side of the bottom of the outer casing 210 .
  • the economizer 100 also includes a filter screen 222 and a liquid baffle 223.
  • the filter screen 222 is longitudinally arranged in the gas-liquid separation chamber 217, and is arranged on the flow path of the airflow formed by the gas-liquid mixture to absorb the liquid refrigeration in the airflow. agent.
  • a plurality of filter screens 222 may also be arranged at intervals in the length direction L.
  • the liquid baffle 223 is arranged at the gas outlet 104 of the gas-liquid separation chamber to further prevent liquid droplets from being entrained in the gas flow discharged from the gas outlet 104 of the gas-liquid separation chamber.
  • a heat exchange chamber 218 and a gas-liquid separation chamber 217 are provided in the outer casing 210 of the economizer 100.
  • the refrigerant is first supercooled through heat exchange in the heat exchange chamber 218, and then passed through the first
  • the stage throttling device 195 throttles the gas-liquid mixture, and then the gas-liquid mixture is separated from the gas-liquid in the gas-liquid separation chamber 217 by the principle of centrifugal separation.
  • the economizer 100 can realize not only the function of heat exchange but also the function of gas-liquid separation.
  • the inner casing 212 is arranged inside the outer casing 210, which not only has a compact structure and saves space, but also has a good separation effect for gas-liquid separation by centrifugal force.
  • the shell of the condenser can be smaller in size, and the condensing When the shell size of the condenser is the same, increase the number of heat exchange tubes in the condenser.
  • the outer casing 210 and the inner casing 212 are in the shape of coaxial cylinders, and in some other embodiments, the outer casing 210 and the inner casing 212 may also be arranged asymmetrically.
  • FIG. 3 is a schematic radial cross-sectional view of the second embodiment of the economizer in FIG. 1 , showing another embodiment of the economizer.
  • the economizer 300 similar to the economizer 100, the economizer 300 also includes a cylindrical outer casing 310 and an inner casing 312, the inner casing 312 is arranged in the outer casing 310, and the inner casing 312 A heat exchange chamber 318 is formed inside, and a gas-liquid separation chamber 317 is formed between the inner shell 312 and the outer shell 310 . And the axial direction of the outer casing 310 and the inner casing 312 forms a length direction L.
  • the outer casing 310 and the inner casing 312 are no longer coaxially arranged, and the axes of the outer casing 310 and the inner casing 312 have the same positions in the width direction W, but It is staggered in the height direction H, for example, the axis of the inner housing 312 deviates from the axis of the outer housing 310 along the height direction H in a direction away from the inlet 303 of the gas-liquid separation chamber.
  • Fig. 4 is a schematic radial sectional view of the third embodiment of the economizer in Fig. 1, showing another embodiment of the economizer.
  • the economizer 400 similar to the economizer 100, the economizer 400 also includes a cylindrical outer casing 410 and an inner casing 412, the inner casing 412 is arranged in the outer casing 410, and the inner casing 412 A heat exchange chamber 418 is formed inside, and a gas-liquid separation chamber 417 is formed between the inner shell 412 and the outer shell 410 .
  • the axial directions of the outer shell 410 and the inner shell 412 form a length direction L.
  • the outer casing 410 and the inner casing 412 are not arranged coaxially either.
  • the axes of the outer casing 410 and the inner casing 412 are in the same position in the height direction H, but are staggered in the width direction W, for example, the axis of the inner casing 412 is away from the gas-liquid separation
  • the direction of the cavity inlet 403 deviates from the axis of the outer shell 410 along the width direction W.
  • Fig. 5 is a schematic radial sectional view of the fourth embodiment of the economizer in Fig. 1, showing another embodiment of the economizer.
  • the economizer 500 similar to the economizer 100, the economizer 500 also includes a cylindrical outer casing 510 and an inner casing 512, the inner casing 512 is arranged in the outer casing 510, and the inner casing 512 A heat exchange cavity 518 is formed inside, and a gas-liquid separation cavity 517 is formed between the inner shell 512 and the outer shell 510 . And the axial direction of the outer casing 510 and the inner casing 512 forms a length direction L.
  • the outer casing 510 and the inner casing 512 are not arranged coaxially either.
  • the axes of the outer shell 510 and the inner shell 512 are staggered in the height direction H and the width direction W, for example, the axis of the inner shell 512 is away from the inlet 503 of the gas-liquid separation chamber. direction, and deviates from the axis of the outer casing 510 along the width direction W and the height direction H.
  • the economizer 300 the economizer 400 and the economizer 500 as shown in FIGS.
  • the direction of the inlet is deviated from the axis of the outer casing.
  • Such setting can increase the space at the entrance of the gas-liquid separation chamber, which is beneficial to reduce the pressure drop of the gas-liquid mixture in the gas-liquid separation chamber.
  • the pressure drop between the gas-liquid separation chamber inlet 103 and the gas-liquid separation chamber gas outlet 104 is approximately 5.44kPa
  • the pressure drop between the inlet 503 of the gas-liquid separation chamber and the gas outlet 504 of the gas-liquid separation chamber is only 3.89 kPa.
  • the inner casing is arranged away from the inlet of the gas-liquid separation chamber, which can also help reduce the disturbance of the air flow to the liquid level at the bottom of the outer casing, thereby improving the liquid level.
  • the stability of the liquid level formed by the refrigerant since the inlet of the gas-liquid separation chamber is located close to the side of the bottom of the outer casing, the inner casing is arranged away from the inlet of the gas-liquid separation chamber, which can also help reduce the disturbance of the air flow to the liquid level at the bottom of the outer casing, thereby improving the liquid level.
  • the stability of the liquid level formed by the refrigerant since the inlet of the gas-liquid separation chamber is located close to the side of the bottom of the outer casing, the inner casing is arranged away from the inlet of the gas-liquid separation chamber, which can also help reduce the disturbance of the air flow to the liquid level at the bottom of the outer casing, thereby improving the liquid level.
  • the stability of the liquid level formed by the refrigerant since the inlet
  • Fig. 6 is a schematic axial sectional view of the fifth embodiment of the economizer in Fig. 1, showing another embodiment of the economizer.
  • the structure of the economizer 600 is roughly the same as that of the economizer 100.
  • Several outlet branch pipes 631 and a liquid collection pipe 632 are connected to the liquid outlet 605 of the liquid separation chamber.
  • One end of each outlet branch pipe 631 is connected to the liquid outlet 605 of the corresponding gas-liquid separation chamber, and the other end of each outlet branch pipe 631 is connected to the liquid collection pipe 632 along the length direction of the liquid collection pipe 632 .
  • the length direction of the liquid collection pipe 632 is substantially the same as the length direction L, and each outlet branch pipe 631 is arranged along the length direction of the liquid collection pipe 632 and is in fluid communication with the liquid collection pipe 632 .
  • the liquid refrigerant separated by the economizer 600 can be discharged through the liquid outlet 605 of the gas-liquid separation chamber and the corresponding outlet branch pipe 631 , and then collected by the liquid collection pipe 632 and delivered to the second-stage throttling device 194 .
  • the liquid refrigerant after gas-liquid separation can be discharged in a more timely manner, so as to reduce or avoid the flow of liquid refrigerant in the gas-liquid separation chamber.
  • the bottom of 217 forms the liquid surface.
  • Fig. 7 is a schematic axial sectional view of the sixth embodiment of the economizer in Fig. 1, showing another embodiment of the economizer.
  • the structure of the economizer 700 is roughly the same as that of the economizer 100. outside, and in fluid communication with the liquid outlet 705 of the gas-liquid separation chamber, to receive the liquid refrigerant discharged from the liquid outlet 705 of the gas-liquid separation chamber, and store the liquid refrigerant in the liquid storage tank 735 .
  • a fluid level sensor 736 is communicatively coupled to fluid reservoir 735 and is communicatively coupled to second stage restriction 194 .
  • the liquid level sensor 736 is used to detect the liquid level of the liquid refrigerant stored in the liquid storage tank 735 , and control the opening degree of the second stage throttling device 194 based on the detection result.
  • the economizer 700 can more stably provide liquid refrigerant to the second-stage throttling device 194, and adjust the second stage according to the amount of liquid refrigerant.
  • the opening degree of the stage throttling device 194 makes the operation of the refrigeration system 190 more stable and reliable.
  • the liquid level in the gas-liquid separation chamber can be improved by improving the structure of the liquid outlet part of the gas-liquid separation chamber of the economizer. Less disturbed by the air flow, so that the liquid refrigerant can be supplied to the second-stage throttling device more stably and reliably.
  • These structures can be used in conjunction with any of the embodiments in Fig. 2A, Fig. 2B and Fig. 3-Fig. 5 to achieve better results.
  • Fig. 8A and Fig. 8B are the structural schematic diagrams of the seventh embodiment of the economizer in Fig. 1, wherein Fig. 8A is the radial sectional schematic diagram of the seventh embodiment of the economizer, Fig. 8B is the axis of the seventh embodiment of the economizer Schematic diagram of the cross-section.
  • the economizer 800 includes an outer casing 810 and a partition plate 841 , the outer casing 810 is cylindrical, and the outer casing 810 also has a length direction L, a width direction W and a height direction H.
  • the partition plate 841 is arranged laterally in the outer casing 810 along the width direction W, and extends along the length direction L, so as to divide the cylindrical space inside the outer casing 810 into a heat exchange cavity 818 and a gas-liquid separation cavity 817, as a
  • the gas-liquid separation chamber 817 is located above the heat exchange chamber 818 .
  • the heat exchange chamber 818 and the gas-liquid separation chamber 817 have a common length direction L, but in this embodiment, they are separated by a partition plate 841 and thus no longer have an axial direction.
  • the outer casing 810 includes a front tube sheet 828 and a rear tube sheet 829 for sealing the heat exchange cavity 818 and the gas-liquid separation cavity 817 .
  • the heat exchange tube bundle 820 extends along the length direction L to be supported on the front tube sheet 828 and the rear tube sheet 829 , and is in fluid communication with the cooling medium through the front tube sheet 828 and the rear tube sheet 829 .
  • the economizer 800 also has a heat exchange chamber inlet 801 , a heat exchange chamber outlet 802 , a gas-liquid separation chamber inlet 803 , a gas-liquid separation chamber gas outlet 804 and a gas-liquid separation chamber liquid outlet 805 .
  • the inlet 801 of the heat exchange chamber and the outlet 802 of the heat exchange chamber are arranged at the bottom of the outer shell 810 and are arranged near both ends in the length direction L, for example, the inlet 801 of the heat exchange chamber is arranged at the outer shell 810 near the front tube sheet 828
  • the outlet 802 of the heat exchange chamber is arranged at the bottom of the outer casing 810 close to the rear tube sheet 829 .
  • the flow direction of the cooling medium can be set to be opposite to the flow direction of the refrigerant, for example, the water inlet 824 is set outside the rear tube plate 829, and the water outlet 825 is set on the front tube plate The outside of the plate 828.
  • several baffles 843 are provided in the heat exchange chamber 818 , and the several baffles 843 are arranged along the length direction L on the flow path of the liquid refrigerant in the heat exchange chamber 818 .
  • the baffle 843 is used to change the flow direction of the liquid refrigerant, so that the liquid refrigerant discharged from the condenser 191 can flow in the direction indicated by the arrow B, thereby prolonging the flow distance of the liquid refrigerant, so that the liquid refrigerant can pass through the condenser.
  • the heat pipe bundle 820 fully exchanges heat with the cooling medium.
  • the baffles 843 are sequentially connected to the outer casing 810 and the partition plate 841, and are correspondingly spaced a certain distance from the partition plate 841 and the outer casing 810 for the liquid refrigerant to flow through.
  • a first-stage throttling device 195 is also provided between the outlet 802 of the heat exchange chamber and the inlet 803 of the gas-liquid separation chamber, for throttling the supercooled liquid refrigerant into a two-phase refrigerant, that is, a gas-liquid mixture .
  • the inlet 803 of the gas-liquid separation chamber and the gas outlet 804 of the gas-liquid separation chamber are arranged on the top of the outer shell 810 and are arranged near both ends in the length direction L.
  • the inlet 803 of the gas-liquid separation chamber is arranged on the top of the outer casing 810 near the rear tube sheet 829
  • the gas outlet 804 of the gas-liquid separation chamber is arranged on the top of the outer casing 810 near the front tube sheet 828, so that the gas-liquid separation
  • the gas-liquid mixture entering the gas-liquid separation chamber 817 from the chamber inlet 803 can roughly form an airflow flowing in the direction indicated by arrow C.
  • the gas-liquid mixture can complete the gas-liquid separation under the action of gravity, and the gas refrigerant flows in the direction indicated by the arrow C and then flows from the gas outlet of the gas-liquid separation chamber 804 is discharged, and the liquid refrigerant in it is collected above the partition plate 841 at the bottom of the gas-liquid separation chamber 817 to form a liquid level of a certain height.
  • several filter screens 822 are also provided in the gas-liquid separation chamber 817, and these filter screens 822 are arranged on the flow path of the gas flow in the gas-liquid separation chamber 817 along the length direction L to further improve the gas-liquid separation. effect, so that the liquid refrigerant can be more fully separated from the gas flow.
  • the liquid outlet 805 of the gas-liquid separation chamber is arranged on the outer shell 810 near the gas outlet 804 of the gas-liquid separation chamber.
  • the liquid outlet 805 of the gas-liquid separation chamber is arranged on the front tube sheet 828 close to the partition plate 841 , so as to discharge the liquid refrigerant collected on the partition plate 841 in time.
  • the economizer of this embodiment only needs an outer casing and a partition plate, and does not need an inner casing to form a heat exchange cavity and a gas-liquid separation cavity, which has a simpler structure and further saves manufacturing costs.
  • the economizer of the present application is provided with a heat exchange chamber and a gas-liquid separation chamber inside a housing, so that the economizer can not only realize the gas-liquid separation function of the economizer, but also realize the heat exchange function of the subcooler, thus,
  • the structure of the two-stage compression refrigeration system including the functional requirements of the supercooler can be made more compact.
  • the heat exchange tube bundle used to realize the supercooling effect in the present application is arranged outside the condenser, it is also possible to reduce the charge amount of refrigerant in the refrigeration system and reduce the size requirement of the condenser.
  • an annular columnar gas-liquid separation chamber can be formed by arranging an outer shell and an inner shell with appropriate shapes, so that the centrifugal force when the air flow rotates in the gas-liquid separation chamber can be used to realize
  • the function of gas-liquid separation can also improve the separation effect of gas-liquid separation realized by the economizer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

本申请公开了一种经济器及包括该经济器的制冷***,经济器包括:外壳体,所述外壳体内包括热交换容腔和气液分离容腔;换热管束,所述换热管束设置在所述热交换容腔中;所述经济器被配置为,使来自冷凝器的制冷剂先在所述热交换容腔中进行热交换,然后经过所述第一级节流装置后在所述气液分离容腔中进行气液分离,使得气体制冷剂从气液分离容腔气体出口流出,液体制冷剂从气液分离容腔液体出口流出。本申请的经济器在一个壳体的内部设置热交换容腔和气液分离容腔,使经济器除了实现经济器的气液分离功能以外,还能实现过冷器的热交换功能,由此,能够使得包括过冷器功能需求的双级压缩制冷***的结构更加紧凑。

Description

经济器及包括该经济器的制冷*** 技术领域
本申请涉及一种经济器及包括该经济器的制冷***,特别适合于双级压缩的制冷***。
背景技术
在制冷***中一般包括压缩机、冷凝器、节流装置和蒸发器,它们依次连接形成制冷剂循环***,以向外制冷或制热。在一些制冷***中还包括过冷器和经济器,过冷器设置在冷凝器内部,用于将冷凝后的制冷剂进一步冷却,以增加制冷***的制冷效率和制冷量。经济器用于对经过第一级节流装置后的气液两相的制冷剂进行气液分离,其中气体制冷剂回到压缩机的补气口,液体制冷剂再通过第二级节流装置后进入蒸发器中蒸发。
发明内容
本申请在第一方面的至少一个目的是提供一种经济器,该经济器不仅可以完成气液分离的功能,还能完成热交换的功能。经济器包括:外壳体,所述外壳体内包括热交换容腔和气液分离容腔,所述外壳体具有长度方向;换热管束,所述换热管束设置在所述热交换容腔中,并且沿着所述长度方向延伸;热交换容腔入口和热交换容腔出口,所述热交换容腔入口和所述热交换容腔出口与所述热交换容腔流体连通;以及气液分离容腔入口、气液分离容腔气体出口和气液分离容腔液体出口,所述气液分离容腔入口、所述气液分离容腔气体出口和所述气液分离容腔液体出口设置在所述外壳体上并与所述气液分离容腔流体连通,所述气液分离容腔入口和所述热交换容腔出口通过第一级节流装置流体连通,并且所述气液分离容腔入口和所述气液分离容腔气体出口被设置为在所述长度方向上间隔一定距离;其中,所述经济器被配置为,使来自冷 凝器的制冷剂先在所述热交换容腔中进行热交换,然后经过所述第一级节流装置后在所述气液分离容腔中进行气液分离,使得气体制冷剂从气液分离容腔气体出口流出,液体制冷剂从气液分离容腔液体出口流出。
根据上述第一方面,所述经济器还包括内壳体,所述内壳体和所述外壳体为圆筒形状,所述外壳体环绕所述内壳体设置,所述内壳体和所述外壳体的轴向为所述长度方向,所述内壳体内部形成所述热交换容腔,并且所述内壳体与所述外壳体之间形成所述气液分离容腔;其中,所述热交换容腔入口和所述热交换容腔出口设置在所述内壳体上。
根据上述第一方面,所述经济器还包括气液分离容腔入口管,所述气液分离容腔入口管与所述气液分离容腔入口连接,所述气液分离容腔入口管沿着所述外壳体的切向延伸,以使得制冷剂在所述气液分离容腔中围绕所述内壳体沿长度方向螺旋流动,从而在离心力的作用下实现气液分离。
根据上述第一方面,所述内壳体和所述外壳体为同轴设置。
根据上述第一方面,所述气液分离容腔入口设置在所述外壳体上靠近底部的一侧;在所述内壳体和所述外壳体的宽度方向和/或所述高度方向上,所述内壳体的轴线偏离所述外壳体的轴线布置,并且所述内壳体远离所述气液分离容腔入口的方向布置。
根据上述第一方面,所述经济器包括分隔板,所述分隔板将所述外壳体的内部分隔为所述热交换容腔和所述气液分离容腔,所述热交换容腔入口和所述热交换容腔出口设置在所述外壳体上;所述气液分离容腔入口被配置为引导制冷剂沿所述气液分离容腔的长度方向的一端进入所述气液分离容腔,以使得制冷剂在所述气液分离容腔中沿长度方向流动,从而在重力的作用下实现气液分离。
根据上述第一方面,所述经济器还包括至少一个过滤网,所述至少一个过滤网设 置在所述气液分离容腔内的制冷剂的流动路径上。
根据上述第一方面,所述气液分离容腔液体出口连接有集液管和数个出口支管,所述数个出口支管沿所述集液管的长度方向各自地与所述集液管流体连通。
根据上述第一方面,来自冷凝器的制冷剂在所述热交换容腔中,通过所述换热管束中换热管的外壁进行热交换。
根据上述第一方面,气体制冷剂从气液分离容腔气体出口流出并被提供至压缩机补气口,液体制冷剂从气液分离容腔液体出口流出并被提供至第二级节流装置。
根据上述第一方面,所述经济器还包括储液罐和液位传感器,所述储液罐与所述气液分离容腔液体出口流体连通以接收液体制冷剂,所述液位传感器与所述第二级节流装置通信连接;其中,所述液位传感器被配置为检测所述储液罐中的液位高度,并基于检测结果控制所述第二级节流装置的开度。
根据上述第一方面,所述气液分离容腔入口和所述气液分离容腔气体出口靠近所述外壳体上的所述长度方向上的两端设置。
本申请在第二方面的至少一个目的是提供一种制冷***,包括:设置在制冷剂回路中的压缩机、冷凝器、经济器、第二级节流装置和蒸发器;其中所述经济器包括:外壳体,所述外壳体内包括热交换容腔和气液分离容腔,所述外壳体具有长度方向;换热管束,所述换热管束设置在所述热交换容腔中,并且沿着所述长度方向延伸;热交换容腔入口和热交换容腔出口,所述热交换容腔入口和所述热交换容腔出口与所述热交换容腔流体连通,所述热交换容腔入口与所述冷凝器的出口流体连通;以及气液分离容腔入口、气液分离容腔气体出口和气液分离容腔液体出口,所述气液分离容腔入口、所述气液分离容腔气体出口和所述气液分离容腔液体出口设置在所述外壳体上并与所述气液分离容腔流体连通,所述气液分离容腔入口和所述热交换容腔出口通过 第一级节流装置流体连通,气液分离容腔气体出口与压缩机补气口流体连通,所述气液分离容腔液体出口与所述第二级节流装置的入口流体连通,并且所述气液分离容腔入口和所述气液分离容腔气体出口被设置为在所述长度方向上间隔一定距离;所述经济器被配置为,使来自冷凝器的制冷剂先在所述热交换容腔中进行热交换,然后经过所述第一级节流装置后在所述气液分离容腔中进行气液分离,使得气体制冷剂从气液分离容腔气体出口流出并被提供至压缩机补气口,液体制冷剂从气液分离容腔液体出口流出并被提供至第二级节流装置。
附图说明
图1为本申请的制冷***的一个实施例的结构框图;
图2A为图1中的经济器的第一实施例的径向剖视示意图;
图2B为图2A中的经济器的轴向剖视示意图;
图3为图1中的经济器的第二实施例的径向剖视示意图;
图4为图1中的经济器的第三实施例的径向剖视示意图;
图5为图1中的经济器的第四实施例的径向剖视示意图;
图6为图1中的经济器的第五实施例的轴向剖视示意图;
图7为图1中的经济器的第六实施例的轴向剖视示意图;
图8A为图1中的经济器的第七实施例的径向剖视示意图;
图8B为图8A中的经济器的轴向剖视示意图。
具体实施方式
下面将参考构成本说明书一部分的附图对本申请的各种具体实施方式进行描述。应该理解的是,虽然在本申请中使用表示方向的术语,诸如“前”、“后”、“上”、“下”、“左”、“右”、“顶”、“底”等描述本申请的各种示例结构部分和元件,但是在此使用这些 术语只是为了方便说明的目的,基于附图中显示的示例方位而确定的。由于本申请所公开的实施例可以按照不同的方向设置,所以这些表示方向的术语只是作为说明而不应视作为限制。
图1为本申请的制冷***190的一个实施例的结构框图,用于示出双级压缩的制冷***中的各部件的连接关系。如图1所示,制冷***190包括通过管道依次连接以形成制冷剂循环回路的压缩机193、冷凝器191、经济器100、第二级节流装置194和蒸发器192。经济器100内包括热交换容腔218和气液分离容腔217(参见图2A)。
具体来说,压缩机193具有吸气口108a、排气口108b和补气口108c。冷凝器191具有入口107a和出口107b。第二级节流装置194具有入口109a和出口109b。蒸发器192具有入口111a和出口111b。经济器100具有热交换容腔入口101、气液分离容腔气体出口104和气液分离容腔液体出口105。制冷***190还包括第一级节流装置195,第一级节流装置195具有入口106a和出口106b。经济器100还具有热交换容腔出口102和气液分离容腔入口103。
压缩机193的排气口108b与冷凝器191的入口107a流体连通,冷凝器191的出口107b与经济器100的热交换容腔入口101流体连通,并且热交换容腔入口101设置在冷凝器191的出口107b下方,经济器100的热交换容腔出口102与第一级节流装置195的入口106a流体连通,第一级节流装置195的出口106b与经济器100的气液分离容腔入口103流体连通,经济器100的气液分离容腔气体出口104与压缩机193的补气口108c流体连通,经济器100的气液分离容腔液体出口105与第二级节流装置194的入口109a流体连通,第二级节流装置194的出口109b与蒸发器192的入口111a流体连通,蒸发器192的出口111b与压缩机193的吸气口108a流体连通。
制冷***190中灌注有制冷剂,下面简述制冷***190的运行过程:
在压缩机193中,低温低压的气体制冷剂被压缩为高温高压气体制冷剂。然后高温高压的气体制冷剂流入冷凝器191中,在冷凝器191中放热冷凝为高压液体制冷剂。高压液体制冷剂通过热交换容腔入口101进入经济器100中。在经济器100中,高压 液体制冷剂先经过热交换容腔218(参见图2A和图2B),在热交换容腔218中热交换以进一步冷却为过冷液体制冷剂,然后过冷液体制冷剂从热交换容腔出口102流出至第一级节流装置195,经过第一次节流后得到中压的液体制冷剂和气体制冷剂混合物(以下简称气液混合物),并随后通过气液分离容腔入口103再进入气液分离容腔217(参见图2A和图2B)中进行气液分离,其中的气体制冷剂从气液分离容腔气体出口104流出,经过补气口108c回到压缩机193中重新被压缩为高温高压气体制冷剂。而其中的液体制冷剂从气液分离容腔液体出口105流出至第二级节流装置194中进行第二次节流。节流得到的低压制冷剂进入蒸发器192中吸热蒸发为气体制冷剂,最后从吸气口108a回到压缩机193中再被重新压缩为高温高压气体制冷剂。如此周而复始,完成连续的制冷循环。
图2A和图2B示出了图1中经济器100的第一实施例的具体结构。其中图2A为经济器100的径向剖视示意图,用于示出经济器100在宽度方向和高度方向上的大致结构;图2B为经济器100的轴向剖视示意图,用于示出经济器100在长度方向和高度方向上的大致结构。
如图2A和图2B所示,经济器100包括外壳体210,外壳体210内形成热交换容腔218和气液分离容腔217。外壳体210具有长度方向L、宽度方向W和高度方向H,热交换容腔218和气液分离容腔217沿共同的长度方向L延伸。经济器100还包括内壳体212,外壳体210和内壳体212均大致为圆筒形状,它们的轴向即为长度方向L。在本实施例中,外壳体210和内壳体212为同轴设置。外壳体210环绕内壳体212设置,内壳体212的内部形成大致呈圆柱形的热交换容腔218,内壳体212和外壳体210之间形成大致呈环状柱形的气液分离容腔217。
经济器100还包括换热管束220,换热管束220设置在热交换容腔218中,并且换热管束220中的每根换热管沿着长度方向L延伸。外壳体210还包括设置在外壳体210的长度方向L上的两端,用于封闭热交换容腔218和气液分离容腔217的前管板228和后管板229,换热管束220中的各根换热管的两端分别支撑在前管板228和后管 板229上,并且换热管的内部通过前管板228和后管板229分别与前水箱226和后水箱227流体连通。换热管的前端通过前管板228、前水箱226与进水口224流体连通,换热管的后端通过后管板229、后水箱227与出水口225流体连通。进水口224和出水口225能够与冷却介质流体连通,并且与换热管束220中的各根换热管内部流体连通,用于向换热管内部提供用来热交换的冷却介质,例如冷水。冷却介质在换热管束的各根换热管内部,沿长度方向L从左向右流动。
热交换容腔入口101和热交换容腔出口102设置在内壳体212上,并且与热交换容腔218流体连通。在本实施例中,热交换容腔入口101和热交换容腔出口102分别设置在内壳体212的高度方向H上的顶部和底部,以使得从热交换容腔入口101流入热交换容腔218的制冷剂大致上从上向下流动。热交换容腔入口101和热交换容腔出口102大致设置在内壳体212的长度方向L上的中部。为了使从热交换容腔入口101流入热交换容腔218的制冷剂具有一定的流动行程,在热交换容腔218中还设置有分程隔板221,分程隔板221横向地设置在热交换容腔入口101和热交换容腔出口102之间的制冷剂流动路径上,以使得制冷剂从热交换容腔入口101进入热交换容腔218后,一边在分程隔板221的阻挡下向长度方向L上的左右两侧流动,通过换热管的外壁充分与冷却介质热交换,一边在重力的作用下向下流动至从热交换容腔出口102排出。并且在本实施例中,换热管束220的换热管中流动的冷却介质为冷水,以进一步冷却从热交换容腔入口101流入的制冷剂,使制冷剂达到过冷液体状态。
第一级节流装置195连接在热交换容腔出口102和气液分离容腔入口103之间,以使得从热交换容腔出口102流出的过冷液体制冷剂能够经过第一级节流装置195节流,再将节流得到的气液混合物从气液分离容腔入口103输送至气液分离容腔217中进行气液分离。
气液分离容腔入口103、气液分离容腔气体出口104和气液分离容腔液体出口105设置在外壳体210上,并且与气液分离容腔217流体连通。在本实施例中,气液分离容腔入口103和气液分离容腔气体出口104设置的位置在外壳体210长度方向L上间 隔一定距离,以使得制冷剂形成的气流能够有一定的流动行程。在本实施例中,气液分离容腔入口103上连接有气液分离容腔入口管219,气液分离容腔入口管219与第一级节流装置195的出口连通,并且气液分离容腔入口管219沿着外壳体210的切向延伸,以引导从第一级节流装置195排出的气液混合物沿气液分离容腔217的切向进入气液分离容腔217中,在气液分离容腔217中形成沿箭头所示的,即沿长度方向L呈螺旋状旋转流动的气流。由于气体制冷剂和液体制冷剂的密度不同,它们一起呈螺旋状旋转流动时,液体制冷剂受到的离心力大于气体制冷剂,从而气液混合物能够在离心力的作用下实现气液分离。其中密度较小的气体制冷剂继续呈螺旋状旋转向前流动,直至从气液分离容腔气体出口104中排出,其中密度较大的液体制冷剂附着在内壳体212的外表面后,汇集至气液分离容腔217的底部以形成一定高度的液面,直至从气液分离容腔液体出口105流出。在本实施例中,气液分离容腔入口管219大致沿外壳体210的切向向上延伸,以使得气液分离容腔入口103大致靠近外壳体210的底部的右侧。
经济器100还包括滤网222和挡液板223,滤网222纵向地设置在气液分离容腔217中,并且设置在气液混合物形成的气流的流动路径上,以吸附气流中的液体制冷剂。为了进一步减少气流中的液体制冷剂,滤网222也可以在长度方向L上间隔地设置多个。挡液板223设置在气液分离容腔气体出口104处,以进一步防止从气液分离容腔气体出口104排出的气流中夹带液滴。
在本实施例中,在经济器100的外壳体210内设置热交换容腔218和气液分离容腔217,制冷剂先在热交换容腔218中经过热交换而被过冷,再通过第一级节流装置195节流为气液混合物,然后气液混合物在气液分离容腔217中通过离心分离的原理进行气液分离。由此,经济器100既能够实现热交换的功能又能够实现气液分离的功能。在外壳体210内部设置内壳体212,不仅结构紧凑、节省空间,而且利用离心力进行气液分离的分离效果好。
此外,一般来说,在冷凝器中设置过冷器时,需要制冷***中具有一定的制冷剂 充注量,以使得需要被过冷的制冷剂能够浸没换热管束。而本实施例的制冷***中不再需要在冷凝器中设置过冷器,仅需要将热交换容腔入口101设置在冷凝器191的出口107b下方,就可以保证换热管束220被浸没在制冷剂中。因此,冷凝器中需要更少的制冷剂充注量就能实现同样的过冷度,在冷凝器中的换热管数量相同时,冷凝器的壳体可以采用更小的尺寸,并且在冷凝器的壳体尺寸相同时,增加冷凝器中的换热管数量。
在本实施例的经济器100中,外壳体210和内壳体212为同轴的圆筒形状,在一些其他实施例中,外壳体210和内壳体212也可以不同轴设置。
图3为图1中的经济器的第二实施例的径向剖视示意图,示出了经济器的另一个实施例。如图3所示,与经济器100类似的是,经济器300也包括为圆筒形状的外壳体310和内壳体312,内壳体312设置在外壳体310内,以在内壳体312内部形成热交换容腔318,并且在内壳体312和外壳体310之间形成气液分离容腔317。并且外壳体310和内壳体312的轴向形成长度方向L。
但是与经济器100不同的是,在经济器300中,外壳体310和内壳体312不再是同轴设置,外壳体310和内壳体312的轴线在宽度方向W上的位置相同,但是在高度方向H上是错开的,例如内壳体312的轴线向远离气液分离容腔入口303的方向,沿高度方向H偏离了外壳体310的轴线。
图4为图1中的经济器的第三实施例的径向剖视示意图,示出了经济器的再一个实施例。如图4所示,与经济器100类似的是,经济器400也包括为圆筒形状的外壳体410和内壳体412,内壳体412设置在外壳体410内,以在内壳体412内部形成热交换容腔418,并且在内壳体412和外壳体410之间形成气液分离容腔417。并且外壳体410和内壳体412的轴向形成长度方向L。
在经济器400中,外壳体410和内壳体412也不是同轴设置的。但是与经济器300不同的是,外壳体410和内壳体412的轴线在高度方向H上的位置相同,但是在宽度方向W上是错开的,例如内壳体412的轴线向远离气液分离容腔入口403的方向,沿 宽度方向W偏离了外壳体410的轴线。
图5为图1中的经济器的第四实施例的径向剖视示意图,示出了经济器的再一个实施例。如图5所示,与经济器100类似的是,经济器500也包括为圆筒形状的外壳体510和内壳体512,内壳体512设置在外壳体510内,以在内壳体512内部形成热交换容腔518,并且在内壳体512和外壳体510之间形成气液分离容腔517。并且外壳体510和内壳体512的轴向形成长度方向L。
在经济器500中,外壳体510和内壳体512也不是同轴设置的。但是与经济器300不同的是,外壳体510和内壳体512的轴线在高度方向H和宽度方向W上均是错开的,例如内壳体512的轴线向远离气液分离容腔入口503的方向,同时沿宽度方向W和高度方向H偏离了外壳体510的轴线。
在如图3-图5所述的经济器300、经济器400和经济器500中,各个外壳体和相应的内壳体不是同轴设置的,而是内壳体朝远离气液分离容腔入口的方向偏离外壳体的轴线设置的。这样设置能够增加气液分离容腔入口处的空间,有利于降低气液混合物在气液分离容腔中的压降。例如,在某个相同运行条件下,在图2A和图2B所示的经济器100中,气液分离容腔入口103和气液分离容腔气体出口104之间的压降大致为5.44kPa,而图5所示的经济器500中,气液分离容腔入口503和气液分离容腔气体出口504之间的压降仅有为3.89kPa。
此外,由于气液分离容腔入口靠近外壳体的底部的侧面设置,将内壳体远离气液分离容腔入口设置,还能有利于减少气流对外壳体底部液面的扰动,从而能够提高液体制冷剂形成的液面的稳定性。
图6为图1中的经济器的第五实施例的轴向剖视示意图,示出了经济器的再一个实施例。如图6所示,经济器600的结构大致与经济器100相同,区别仅在于,气液分离容腔液体出口605具有沿长度方向L设置的多个,并且在经济器600中还包括与气液分离容腔液体出口605连接的数个出口支管631和集液管632。每个出口支管631的一端连接至相应的气液分离容腔液体出口605处,并且每个出口支管631的另一端 沿集液管632的长度方向连接到集液管632。在本实施例中,集液管632的长度方向大致与长度方向L相同,每个出口支管631沿集液管632的长度方向布置并各自与集液管632流体连通。由此,能够将经济器600的分离得到的液体制冷剂通过气液分离容腔液体出口605和相应的出口支管631排出,然后再通过集液管632汇集后输送至第二级节流装置194。
在本实施例中,由于设置多个气液分离容腔液体出口605和出口支管631,能够更加及时地排出气液分离后的液体制冷剂,以降低或者避免液体制冷剂在气液分离容腔217的底部形成液面。
图7为图1中的经济器的第六实施例的轴向剖视示意图,示出了经济器的再一个实施例。如图7所示,经济器700的结构大致与经济器100相同,区别仅在于,经济器还包括储液罐735和液位传感器736,储液罐735设置在经济器700的外壳体710的外部,并且与气液分离容腔液体出口705流体连通,以接收从气液分离容腔液体出口705排出的液体制冷剂,并将这些液体制冷剂储存在储液罐735中。液位传感器736通信地连接至储液罐735,并且与第二级节流装置194通信连接。液位传感器736用于检测储液罐735中储存的液体制冷剂的液位高度,并基于检测的结果控制第二级节流装置194的开度。作为一个具体的示例,气液分离容腔液体出口705具有两个,分别设置在滤网722在长度方向L上的两侧。这是因为气液分离容腔717中的气流比较容易在滤网722附近扰动液体制冷剂形成的液面,所以在滤网722附近需要及时地将液体制冷剂排出。
在本实施例中,通过设置储液罐735和液位传感器736能够使经济器700更加稳定地向第二级节流装置194中提供液体制冷剂,并且根据液体制冷剂的量来调节第二级节流装置194的开度,使制冷***190的运行更加稳定可靠。
本领域技术人员可以理解的是,图6和图7的实施例中,是通过对经济器的气液分离容腔液体出口部分的结构进行改进,使得气液分离容腔中的液面能够更少地受到气流扰动,从而更加稳定可靠地向第二级节流装置中提供液体制冷剂。这些结构能够 与图2A、图2B以及图3-图5中的任何实施例结合使用,以达到更好的效果。
图8A和图8B为图1中的经济器的第七实施例结构示意图,其中图8A为经济器的第七实施例的径向剖视示意图,图8B为经济器的第七实施例的轴向剖视示意图。如图8A和图8B所示,经济器800包括外壳体810和分隔板841,外壳体810为圆筒形状,外壳体810也具有长度方向L、宽度方向W和高度方向H。分隔板841沿宽度方向W横向地设置在外壳体810内,并且沿长度方向L延伸,以将外壳体810内部的圆柱形空间分隔为热交换容腔818和气液分离容腔817,作为一个示例,气液分离容腔817位于热交换容腔818的上方。热交换容腔818和气液分离容腔817具有共同的长度方向L,但是该实施例中,它们是由分隔板841分隔形成,因此不再具有轴向。外壳体810包括用于封闭热交换容腔818和气液分离容腔817的前管板828和后管板829。换热管束820沿长度方向L延伸以支撑在前管板828和后管板829上,并且通过前管板828和后管板829与冷却介质流体连通。
经济器800也具有热交换容腔入口801、热交换容腔出口802、气液分离容腔入口803、气液分离容腔气体出口804和气液分离容腔液体出口805。热交换容腔入口801和热交换容腔出口802设置在外壳体810的底部,并且设置在长度方向L上靠近两端处,例如热交换容腔入口801设置在外壳体810靠近前管板828处的底部,热交换容腔出口802设置在外壳体810靠近后管板829处的底部。在本实施例中,为了提高热交换效果,可以将冷却介质的流动方向设置为与制冷剂的流动方向相反,例如将进水口824设置在后管板829的外侧,出水口825设置在前管板828的外侧。此外,为了进一步提高热交换效果,热交换容腔818内还设有数个折流板843,数个折流板843沿长度方向L设置在热交换容腔818内液体制冷剂的流动路径上。折流板843用于改变液体制冷剂的流向,以使得从冷凝器191排出的液体制冷剂能够沿箭头B所示的方向流动,从而延长液体制冷剂的流动距离,使液体制冷剂能够通过换热管束820充分地与冷却介质进行热交换。作为一个具体的示例,这些折流板843依次连接至外壳体810和分隔板841,并且相应的与分隔板841和外壳体810间隔一定距离以供液体制冷 剂流过。
热交换容腔出口802和气液分离容腔入口803之间也设有第一级节流装置195,用于将过冷后的液体制冷剂节流为两相的制冷剂,也就是气液混合物。
气液分离容腔入口803和气液分离容腔气体出口804设置在外壳体810的顶部,并且设置在长度方向L上靠近两端处。例如气液分离容腔入口803设置在外壳体810靠近后管板829处的顶部,气液分离容腔气体出口804设置在外壳体810靠近前管板828处的顶部,以使得从气液分离容腔入口803进入气液分离容腔817的气液混合物大致能够形成沿箭头C所示的方向流动的气流。由于液体制冷剂的密度大于气体制冷剂的密度,因此气液混合物能够在重力的作用下完成气液分离,其中的气体制冷剂沿箭头C所示的方向流动后从气液分离容腔气体出口804排出,其中的液体制冷剂汇集到气液分离容腔817的底部的分隔板841上方,形成一定高度的液面。在本实施例中,气液分离容腔817中还设有数个滤网822,这些滤网822沿长度方向L设置在气液分离容腔817内气流的流动路径上,以进一步提升气液分离的效果,以使得液体制冷剂能够更充分地从气流中分离出来。
气液分离容腔液体出口805设置在靠近气液分离容腔气体出口804一侧的外壳体810上。在本实施例中,气液分离容腔液体出口805设置在前管板828上靠近分隔板841的位置,以便于将汇集在分隔板841上的液体制冷剂及时排出。
由此,本实施例的经济器仅需要一个外壳体和分隔板,而不需要内壳体,就能形成热交换容腔和气液分离容腔,结构更加简单,进一步节省了制造成本。
本申请的经济器在一个壳体的内部设置热交换容腔和气液分离容腔,使经济器除了实现经济器的气液分离功能以外,还能实现过冷器的热交换功能,由此,能够使得包括过冷器功能需求的双级压缩制冷***的结构更加紧凑。并且,由于本申请中用于实现过冷效果的换热管束设置在冷凝器外部,还能够减少制冷***中的制冷剂充注量,并且减小冷凝器的尺寸要求。此外,在本申请的一部分实施例中,通过设置形状合适 的外壳体和内壳体,能够形成环形柱状的气液分离容腔,从而能够利用气流在气液分离容腔中旋转时的离心力实现气液分离的功能,由此还能够提升经济器实现的气液分离的分离效果。
尽管参考附图中出示的具体实施方式将对本申请进行描述,但是应当理解,在不背离本申请教导的精神和范围和背景下,本申请的经济器及制冷***可以有许多变化形式。本领域普通技术人员还将意识到有不同的方式来改变本申请所公开的实施例中的结构细节,均落入本申请和权利要求的精神和范围内。

Claims (13)

  1. 一种经济器,其特征在于包括:
    外壳体,所述外壳体内包括热交换容腔和气液分离容腔,所述外壳体具有长度方向;
    换热管束,所述换热管束设置在所述热交换容腔中,并且沿着所述长度方向延伸;
    热交换容腔入口和热交换容腔出口,所述热交换容腔入口和所述热交换容腔出口与所述热交换容腔流体连通;以及
    气液分离容腔入口、气液分离容腔气体出口和气液分离容腔液体出口,所述气液分离容腔入口、所述气液分离容腔气体出口和所述气液分离容腔液体出口设置在所述外壳体上并与所述气液分离容腔流体连通,所述气液分离容腔入口和所述热交换容腔出口通过第一级节流装置流体连通,并且所述气液分离容腔入口和所述气液分离容腔气体出口被设置为在所述长度方向上间隔一定距离;
    其中,所述经济器被配置为,使来自冷凝器的制冷剂先在所述热交换容腔中进行热交换,然后经过所述第一级节流装置后在所述气液分离容腔中进行气液分离,使得气体制冷剂从气液分离容腔气体出口流出,液体制冷剂从气液分离容腔液体出口流出。
  2. 根据权利要求1所述的经济器,其特征在于:
    所述经济器还包括内壳体,所述内壳体和所述外壳体为圆筒形状,所述外壳体环绕所述内壳体设置,所述内壳体和所述外壳体的轴向为所述长度方向,所述内壳体内部形成所述热交换容腔,并且所述内壳体与所述外壳体之间形成所述气液分离容腔;
    其中,所述热交换容腔入口和所述热交换容腔出口设置在所述内壳体上。
  3. 根据权利要求2所述的经济器,其特征在于:
    所述经济器还包括气液分离容腔入口管,所述气液分离容腔入口管与所述气液分离容腔入口连接,所述气液分离容腔入口管沿着所述外壳体的切向延伸,以使得制冷剂在所述气液分离容腔中围绕所述内壳体沿长度方向螺旋流动,从而在离心力的作用下实现气液分离。
  4. 根据权利要求3所述的经济器,其特征在于:
    所述内壳体和所述外壳体为同轴设置。
  5. 根据权利要求4所述的经济器,其特征在于:
    所述气液分离容腔入口设置在所述外壳体上靠近底部的一侧;
    在所述内壳体和所述外壳体的宽度方向和/或所述高度方向上,所述内壳体的轴线偏离所述外壳体的轴线布置,并且所述内壳体远离所述气液分离容腔入口的方向布置。
  6. 根据权利要求1所述的经济器,其特征在于:
    所述经济器包括分隔板,所述分隔板将所述外壳体的内部分隔为所述热交换容腔和所述气液分离容腔,所述热交换容腔入口和所述热交换容腔出口设置在所述外壳体上;
    所述气液分离容腔入口被配置为引导制冷剂沿所述气液分离容腔的长度方向的一端进入所述气液分离容腔,以使得制冷剂在所述气液分离容腔中沿长度方向流动,从而在重力的作用下实现气液分离。
  7. 根据权利要求1所述的经济器,其特征在于:
    所述经济器还包括至少一个过滤网,所述至少一个过滤网设置在所述气液分离容腔内的制冷剂的流动路径上。
  8. 根据权利要求1所述的经济器,其特征在于:
    所述气液分离容腔液体出口连接有集液管和数个出口支管,所述数个出口支管沿所述集液管的长度方向各自地与所述集液管流体连通。
  9. 根据权利要求1所述的经济器,其特征在于:
    来自冷凝器的制冷剂在所述热交换容腔中,通过所述换热管束中换热管的外壁进行热交换。
  10. 根据权利要求1所述的经济器,其特征在于:
    气体制冷剂从气液分离容腔气体出口流出并被提供至压缩机补气口,液体制冷剂从气液分离容腔液体出口流出并被提供至第二级节流装置。
  11. 根据权利要求1所述的经济器,其特征在于:
    所述经济器还包括储液罐和液位传感器,所述储液罐与所述气液分离容腔液体出口流体连通以接收液体制冷剂,所述液位传感器与第二级节流装置通信连接;
    其中,所述液位传感器被配置为检测所述储液罐中的液位高度,并基于检测结果控制所述第二级节流装置的开度。
  12. 根据权利要求1所述的经济器,其特征在于:
    所述气液分离容腔入口和所述气液分离容腔气体出口靠近所述外壳体上的所述长度方向上的两端设置。
  13. 一种制冷***,其特征在于包括:
    设置在制冷剂回路中的压缩机、冷凝器、经济器、第二级节流装置和蒸发器;
    其中所述经济器包括:
    外壳体,所述外壳体内包括热交换容腔和气液分离容腔,所述外壳体具有长度方向;
    换热管束,所述换热管束设置在所述热交换容腔中,并且沿着所述长度方向延伸;
    热交换容腔入口和热交换容腔出口,所述热交换容腔入口和所述热交换容腔出口与所述热交换容腔流体连通,所述热交换容腔入口与所述冷凝器的出口流体连通;以及
    气液分离容腔入口、气液分离容腔气体出口和气液分离容腔液体出口,所述气液分离容腔入口、所述气液分离容腔气体出口和所述气液分离容腔液体出口设置在所述外壳体上并与所述气液分离容腔流体连通,所述气液分离容腔入口和所述热交换容腔出口通过第一级节流装置流体连通,气液分离容腔气体出口与压缩机补气口流体连通,所述气液分离容腔液体出口与所述第二级节流装置的入口流体连通,并且所述气液分离容腔入口和所述气液分离容腔气体出口被设置为在所述长度方向上间隔一定距离;
    所述经济器被配置为,使来自冷凝器的制冷剂先在所述热交换容腔中进行热交换,然后经过所述第一级节流装置后在所述气液分离容腔中进行气液分离,使得气体制冷剂从气液分离容腔气体出口流出并被提供至压缩机补气口,液体制冷剂从气液分离容腔液体出口流出并被提供至第二级节流装置。
PCT/CN2022/116990 2021-09-28 2022-09-05 经济器及包括该经济器的制冷*** WO2023051175A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247014167A KR20240093518A (ko) 2021-09-28 2022-09-05 이코노마이저 및 이를 포함하는 냉각 시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111139701.X 2021-09-28
CN202111139701.XA CN113819684B (zh) 2021-09-28 2021-09-28 经济器及包括该经济器的制冷***

Publications (1)

Publication Number Publication Date
WO2023051175A1 true WO2023051175A1 (zh) 2023-04-06

Family

ID=78921337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116990 WO2023051175A1 (zh) 2021-09-28 2022-09-05 经济器及包括该经济器的制冷***

Country Status (4)

Country Link
KR (1) KR20240093518A (zh)
CN (1) CN113819684B (zh)
TW (1) TW202338274A (zh)
WO (1) WO2023051175A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113819684B (zh) * 2021-09-28 2022-12-02 约克(无锡)空调冷冻设备有限公司 经济器及包括该经济器的制冷***
CN115342544A (zh) * 2022-08-11 2022-11-15 浙江福腾流体科技有限公司 经济器及空调制冷***

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001066022A (ja) * 1999-08-25 2001-03-16 Showa Alum Corp 熱交換器
CN101439235A (zh) * 2007-11-22 2009-05-27 东京毅力科创株式会社 气液分离装置
CN105402953A (zh) * 2015-12-14 2016-03-16 重庆美的通用制冷设备有限公司 壳管式换热器及具有其的制冷***
CN205332616U (zh) * 2016-01-26 2016-06-22 特灵空调***(中国)有限公司 一种集成冷凝器及经济器的制冷部件
CN111637667A (zh) * 2019-03-01 2020-09-08 浙江盾安机电科技有限公司 经济器以及换热***
CN214250208U (zh) * 2020-12-02 2021-09-21 青岛海尔空调器有限总公司 热交换器及具有其的空调器
CN113819684A (zh) * 2021-09-28 2021-12-21 约克(无锡)空调冷冻设备有限公司 经济器及包括该经济器的制冷***

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6941769B1 (en) * 2004-04-08 2005-09-13 York International Corporation Flash tank economizer refrigeration systems
JP5977952B2 (ja) * 2012-02-03 2016-08-24 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド エコノマイザ及び冷凍機
US9890977B2 (en) * 2013-10-03 2018-02-13 Carrier Corporation Flash tank economizer for two stage centrifugal water chillers
KR102201746B1 (ko) * 2014-05-20 2021-01-12 엘지전자 주식회사 이코노마이저를 포함하는 응축기 및 이를 포함하는 터보 냉동기
CN106352608B (zh) * 2015-07-13 2021-06-15 开利公司 经济器组件及具有其的制冷***
CN106871501A (zh) * 2015-12-10 2017-06-20 开利公司 一种经济器及具有其的制冷***
JP6767196B2 (ja) * 2016-08-02 2020-10-14 荏原冷熱システム株式会社 エコノマイザ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001066022A (ja) * 1999-08-25 2001-03-16 Showa Alum Corp 熱交換器
CN101439235A (zh) * 2007-11-22 2009-05-27 东京毅力科创株式会社 气液分离装置
CN105402953A (zh) * 2015-12-14 2016-03-16 重庆美的通用制冷设备有限公司 壳管式换热器及具有其的制冷***
CN205332616U (zh) * 2016-01-26 2016-06-22 特灵空调***(中国)有限公司 一种集成冷凝器及经济器的制冷部件
CN111637667A (zh) * 2019-03-01 2020-09-08 浙江盾安机电科技有限公司 经济器以及换热***
CN214250208U (zh) * 2020-12-02 2021-09-21 青岛海尔空调器有限总公司 热交换器及具有其的空调器
CN113819684A (zh) * 2021-09-28 2021-12-21 约克(无锡)空调冷冻设备有限公司 经济器及包括该经济器的制冷***

Also Published As

Publication number Publication date
CN113819684B (zh) 2022-12-02
KR20240093518A (ko) 2024-06-24
TW202338274A (zh) 2023-10-01
CN113819684A (zh) 2021-12-21

Similar Documents

Publication Publication Date Title
WO2023051175A1 (zh) 经济器及包括该经济器的制冷***
CN101443615B (zh) 具有节约循环的制冷***
US20110000243A1 (en) Split discharge line with integrated muffler for a compressor
JP2827404B2 (ja) 冷媒凝縮器
CN101738013B (zh) 纯逆流干式蒸发器装置及使用方法
CN116907128A (zh) 冷凝器和制冷***
CN211345950U (zh) 油分离装置、冷凝器以及制冷***
CN105937820A (zh) 一种气液分离装置及具有其的蒸汽压缩循环***
JP6670197B2 (ja) 圧縮式冷凍機用凝縮器
US20160313036A1 (en) Subcooler and air conditioner including the same
KR200460674Y1 (ko) 냉동시스템의 오일 리터너
JP2022173565A (ja) アキュムレータ及び冷凍サイクル
CN210165602U (zh) 一种带喷射器的双级压缩可调干度制冷***
KR20200059578A (ko) 과냉각 열교환기 및 이를 포함하는 공기조화 시스템
CN115183605A (zh) 壳管式换热器及空调机组
CN109140835B (zh) 一种降膜式蒸发器
JP3780834B2 (ja) 空気調和機
CN206399023U (zh) 一种带气液分离器的水冷机组
CN218915481U (zh) 闪蒸器、补气增焓***及空调设备
CN220852670U (zh) 冷凝器和制冷***
KR102403129B1 (ko) 기액분리기
CN220524404U (zh) 用于制冷循环***的热量回收装置和空调***
CN107101420B (zh) 一种适用于低压制冷剂的换热装置
CN107763900A (zh) 一种紧凑型壳管式换热器
CN111256384A (zh) 空调***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874566

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022874566

Country of ref document: EP

Effective date: 20240429