WO2023047768A1 - Pattern manufacturing method, program, and pattern manufacturing device - Google Patents

Pattern manufacturing method, program, and pattern manufacturing device Download PDF

Info

Publication number
WO2023047768A1
WO2023047768A1 PCT/JP2022/027491 JP2022027491W WO2023047768A1 WO 2023047768 A1 WO2023047768 A1 WO 2023047768A1 JP 2022027491 W JP2022027491 W JP 2022027491W WO 2023047768 A1 WO2023047768 A1 WO 2023047768A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzles
nozzle
pattern
area
dots
Prior art date
Application number
PCT/JP2022/027491
Other languages
French (fr)
Japanese (ja)
Inventor
忠 京相
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2023047768A1 publication Critical patent/WO2023047768A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern

Definitions

  • the present invention relates to a pattern manufacturing method, a program, and a pattern manufacturing apparatus, and more particularly to technology for forming highly accurate patterns using a liquid ejection head.
  • Patent Document 1 As a method for improving printing accuracy, in Patent Document 1, in order to eliminate unevenness in the boundary caused by printing in "shift mode”, only the boundary is printed in normal mode (non-shift mode), and the inside is shifted. A technique for printing in mode is described.
  • Patent Document 2 describes applying a pretreatment liquid to prevent interference between ink dots on the printing substrate and improve image quality.
  • Patent Document 1 cannot cope with the collapse of the drawing pattern caused by the characteristic variation between nozzles, and has the problem that the drawing accuracy cannot be sufficiently improved.
  • Patent Document 2 can only ensure accuracy on the base material, and cannot compensate for variations in characteristics between nozzles. rice field.
  • One aspect of a pattern manufacturing method for achieving the above object is a pattern manufacturing apparatus comprising a liquid ejection head having a plurality of nozzles for ejecting liquid, and a relative movement mechanism for relatively moving the substrate and the liquid ejection head.
  • the liquid ejection head includes a plurality of nozzle regions each having a plurality of nozzles, the nozzle regions being divided according to the positions of the nozzles in the direction of relative movement
  • a pattern forming step is provided in which the substrate and the liquid ejection head are moved relative to each other to eject the liquid from a plurality of nozzles to form a pattern by arranging a plurality of dots in a printing region on the surface of the substrate, the pattern forming step comprising:
  • dots are arranged by nozzles of a specific nozzle area among a plurality of nozzle areas in a boundary area including a boundary between a non-printing area different from the printing area in the printing area. According to this aspect, it is possible to improve the drawing accuracy of the pattern even if there are variations in characteristics within the liquid ejection head.
  • dots are preferably arranged in non-boundary areas other than the boundary areas of the print area by nozzles of a plurality of nozzle areas. As a result, a pattern in which dots are arranged in the print area can be formed.
  • the nozzles of a specific nozzle area arrange dots in the boundary area and then the nozzles of a plurality of nozzle areas arrange dots in the non-boundary area. As a result, it is possible to prevent the dots arranged in the boundary area from moving due to landing interference.
  • the specific nozzle area is preferably an upstream nozzle area arranged on the upstream side of the relative movement. Dots can thus be placed in the boundary area before they are placed in the non-boundary area.
  • the pattern forming step it is preferable to arrange dots having a size relatively larger than the size of the dots arranged in the boundary area in the area adjacent to the boundary area in the printing area. As a result, the dots can be spread over the boundary areas where the amount of liquid is relatively small.
  • the pattern is preferably formed by relatively moving the substrate and the liquid ejection head multiple times in a specific direction. Thereby, a pattern can be formed appropriately.
  • a plurality of nozzles can each arrange dots of a plurality of sizes, and the pattern forming step preferably arranges dots of the same size in the boundary area. This makes it possible to eliminate the influence of characteristic variations between dot sizes.
  • the substrate has an alignment mark, and comprises a reading step of reading the alignment mark, and an adjusting step of adjusting the landing position of the nozzle in a specific nozzle region using the result of reading the alignment mark in the reading step. is preferred. Thereby, the drawing accuracy of the boundary area can be further improved.
  • pretreatment liquid application step of previously applying a pretreatment liquid containing a functional material that suppresses wetting and spreading of the liquid to the base material.
  • a pretreatment liquid application step of previously applying a pretreatment liquid containing a functional material that suppresses wetting and spreading of the liquid to the base material.
  • the base material is an electric circuit board on which electric components are mounted
  • the printed area includes the electric components to form an electromagnetic wave shield
  • the liquid is a conductive liquid.
  • One aspect of the program for achieving the above object is a program for causing a computer to execute the above pattern manufacturing method.
  • a computer-readable non-transitory storage medium in which this program is recorded may also be included in this embodiment.
  • One aspect of a pattern manufacturing apparatus for achieving the above object comprises a liquid ejection head having a plurality of nozzles for ejecting liquid, a relative movement mechanism for relatively moving the substrate and the liquid ejection head, and at least one processor. , and at least one memory for storing instructions for causing the at least one processor to execute, the liquid ejection head having a plurality of nozzle regions each having a plurality of nozzles, the positions of the nozzles in the direction of relative movement.
  • At least one processor causes the substrate and the liquid ejection head to relatively move to eject the liquid from the plurality of nozzles to form a plurality of dots in the print area on the surface of the substrate are arranged to form a pattern, and dots are arranged by nozzles of a specific nozzle region among a plurality of nozzle regions in a boundary region including a boundary with a non-printing region different from the printing region in the printing region. manufacturing equipment. According to this aspect, it is possible to improve the drawing accuracy of the pattern even if there are variations in characteristics within the liquid ejection head.
  • pattern drawing accuracy can be improved even if there are variations in characteristics within the liquid ejection head.
  • FIG. 1 is a perspective view of an electrical component mounting board.
  • FIG. 2 is a cross-sectional view showing the three-dimensional structure of the electrical component mounting board.
  • FIG. 3 is an overall configuration diagram of the pattern manufacturing apparatus.
  • FIG. 4 is a perspective view of the head module.
  • FIG. 5 is a plan view of the nozzle surface of the silicon die.
  • FIG. 6 is a functional block diagram showing the electrical configuration of the pattern manufacturing apparatus.
  • FIG. 7 is a block diagram showing a hardware configuration example of the pattern manufacturing apparatus.
  • FIG. 8 is a diagram showing dot arrangement when a conductive pattern is formed in a print area.
  • FIG. 9 is a diagram showing dot arrangement when a conductive pattern is formed in a printing area.
  • FIG. 8 is a diagram showing dot arrangement when a conductive pattern is formed in a print area.
  • FIG. 10 is a diagram showing a printed area forming a conductive pattern on the surface of a substrate and a non-printed area.
  • FIG. 11 is a diagram showing a conductive pattern formed in the printing area.
  • FIG. 12 is a diagram for explaining ink landing interference.
  • FIG. 13 is a flow chart showing each step of the pattern manufacturing method by the pattern manufacturing apparatus.
  • FIG. 14 is a flow chart showing the details of the conductive pattern forming process.
  • FIG. 15 is a flow chart showing each step of the nozzle position adjustment method of the pattern manufacturing apparatus.
  • FIG. 16 is a schematic diagram showing a cross pattern printed on a printed wiring board.
  • FIG. 17 is an overall configuration diagram of the pattern manufacturing apparatus.
  • FIG. 18 is a plan perspective view of the nozzle surface.
  • FIG. 19 is a cross-sectional view showing the internal structure of the head module.
  • FIG. 20 is a plan view and an enlarged plan view of the nozzle surface.
  • FIG. 1 is a perspective view of an electrical component mounting board 1000.
  • the electrical component mounting board 1000 is obtained by mounting an IC 1006 , a resistor 1008 and a capacitor 1010 on a component mounting surface 1004 of a printed wiring board 1002 .
  • a conductive pattern 1020 is formed on the electric component mounting board 1000 for the IC 1006 , and an insulating coating 1022 is formed for the resistor 1008 and the capacitor 1010 . Also, on the electrical component mounting board 1000, an insulating coating 1022 is formed on the electrodes 1009 exposed without the electrical components of the printed wiring board 1002 being mounted.
  • FIG. 1 illustrates an embodiment in which one surface of the printed wiring board 1002 is used as the component mounting surface 1004, the other surface of the printed wiring board 1002 may be used as the component mounting surface. Both one surface and the other surface of may be used as component mounting surfaces.
  • the printed wiring board 1002 is provided with two alignment marks 1005 (an example of "alignment marks").
  • the alignment mark 1005 indicates a reference position of the printed wiring board 1002 .
  • a camera 13 see FIG. 3
  • the amount of relative positional deviation between the printed wiring board 1002 and the liquid ejection head 12 is detected.
  • the number, positions, and shapes of the alignment marks 1005 can be determined as appropriate.
  • the IC 1006 is an electric component in which a semiconductor integrated circuit is enclosed in a package such as resin.
  • the IC 1006 has electrodes exposed outside the package. Note that IC is an abbreviation for Integrated Circuit. Also, electrical components are sometimes called electronic components.
  • a resistor 1008 includes an electrical resistance element. Resistor 1008 also includes a resistor array 1008A in which a plurality of integrated electric resistance elements are encapsulated in a package such as resin. Capacitor 1010 includes various capacitors such as electrolytic capacitors and ceramic capacitors.
  • An insulating pattern 1024 (see FIG. 2) is formed using an insulating ink in an arrangement area of the IC 1006 among the electrical components mounted on the printed wiring board 1002, and at least part of the insulating pattern is coated with a conductive ink. is used to form the conductive pattern 1020 . 1, illustration of the insulating pattern 1024 is omitted.
  • the conductive pattern 1020 is formed by ejecting conductive ink from the liquid ejection head 12 (see FIG. 3), thereby disposing ink dots of the conductive ink in a formation region (an example of a “printing region”) of the conductive pattern 1020 . It is formed by drying and curing a series of ink dots.
  • the insulating coating 1022 and the insulating pattern 1024 are formed by ejecting insulating ink from a liquid ejection head (not shown) to arrange ink dots of the insulating ink in the formation regions of the insulating coating 1022 and the insulating pattern 1024 . It is formed by drying and curing a series of dots.
  • the conductive pattern 1020 functions as an electromagnetic shield for the purpose of suppressing electromagnetic waves received by the IC 1006 and suppressing electromagnetic waves emitted from the IC 1006 .
  • the insulating pattern 1024 serves as an insulating member for ensuring electrical insulation between the conductive pattern 1020 and the IC 1006, an adhesive member for ensuring adhesion between the conductive pattern 1020 and the IC 1006, and a member for ensuring the flatness of the base of the conductive pattern 1020. Function.
  • At least a portion of the component area of the printed wiring board 1002 where electrical components that do not require electromagnetic wave shielding are arranged is not formed with the conductive pattern 1020 and is covered with an insulating coating 1022 .
  • Electrical parts that do not require electromagnetic shielding include resistors 1008, capacitors 1010, diodes, coils, transformers, switches, and the like.
  • the electrode area where the electrode 1009 is arranged is covered with an insulating coating 1022 .
  • the insulating coating 1022 suppresses a short circuit of an electric circuit caused by adhesion of finely divided conductive ink to the resistor 1008 or the like when the conductive pattern 1020 is formed.
  • the printed wiring board 1002 on which the IC 1006, the resistor 1008 and the capacitor 1010 are mounted is an example of an “electric circuit board” on which electric parts including the IC are mounted.
  • the IC 1006 is an example of "an electrical component for which electromagnetic wave shielding is to be formed”.
  • FIG. 2 is a cross-sectional view showing the three-dimensional structure of the electrical component mounting board 1000.
  • FIG. FIG. 2 schematically shows a cross section of any IC 1006 shown in FIG. 1 with insulating patterns 1024 and conductive patterns 1020 formed thereon.
  • Board-side electrodes 1030 formed on the component mounting surface 1004 of the printed wiring board 1002 and element-side electrodes 1032 of the IC 1006 are electrically connected via solder bumps 1034 .
  • the insulating pattern 1024 is around the IC 1006 surrounding the four side surfaces 1006A of the IC 1006, and is formed closer to the printed wiring board 1002 than the back surface 1006B of the IC 1006 on which the element-side electrodes 1032 are formed. Insulating pattern 1024 may be formed at a location that contacts side 1006A of IC 1006 . The insulating pattern 1024 may be formed between the back surface 1006B of the IC 1006 and the component mounting surface 1004 of the printed wiring board 1002 .
  • the conductive pattern 1020 is formed to overlap at least part of the insulating pattern 1024 .
  • FIG. 2 shows a mode in which the conductive pattern 1020 is formed over the entire surface of the insulating pattern 1024 .
  • the conductive pattern 1020 may be formed in a region covering the side surface 1006A of the IC 1006 and the top surface 1006C of the IC 1006.
  • An insulating pattern 1024 underlying the conductive pattern 1020 may be formed on the side surface 1006A of the IC 1006 and the top surface of the IC 1006 .
  • an insulating pattern 1024 is formed at least in a region covering all the electrodes.
  • FIG. 2 illustrates the electrical component mounting board 1000 with the conductive pattern 1020 exposed
  • a protective film may be formed over the conductive pattern 1020 .
  • the protective film may have insulating properties.
  • FIG. 3 is an overall configuration diagram of the pattern manufacturing apparatus 10.
  • the pattern manufacturing apparatus 10 is an apparatus for forming a conductive pattern 1020 on a component mounting surface 1004 of a printed wiring board 1002 on which an insulating pattern 1024 is formed.
  • the pattern manufacturing apparatus 10 includes a liquid ejection head 12, a camera 13, a head supporting member 14, a conveying device 20, and a base 30.
  • the head supporting member 14 and the conveying device 20 are arranged on the upper surface of a base 30 to which a surface plate or the like is applied.
  • the liquid ejection head 12 ejects conductive ink.
  • a conductive ink is an example of a “conductive liquid” and is an ink in which a conductive material is dispersed in a solvent.
  • the conductive material is, for example, metal nanoparticles such as silver or copper.
  • a conductive pattern formed on a substrate by conductive ink can conduct electricity.
  • the liquid ejection head 12 includes a plurality of head modules 40.
  • FIG. 4 is a perspective view of one head module 40.
  • the head module 40 includes an L-shaped bracket 42 , a silicon die 44 , an ink supply channel 46 , an ink recovery channel 48 and a filter housing 50 .
  • the L-shaped bracket 42 is a member for fixing the head module 40 to the head support member 14 .
  • the silicon die 44 has a nozzle surface 60 facing the printed wiring board 1002 conveyed by the conveying device 20 .
  • FIG. 5 is a plan view of the nozzle face 60 of the silicon die 44.
  • the nozzle surface 60 has an end surface on the long side along the V direction inclined at an angle ⁇ with respect to the X direction, and an end surface on the long side along the W direction inclined at an angle ⁇ with respect to the Y direction corresponding to the substrate transfer direction. It has a planar shape of a parallelogram having end faces on the short sides.
  • the nozzle surface 60 is a plurality of nozzle regions each having a plurality of nozzles 62, and includes a plurality of nozzle regions divided according to the positions of the nozzles 62 in the Y direction (an example of the "relative movement direction").
  • the nozzle face 60 includes an upstream nozzle area 64A and a downstream nozzle area 64B.
  • a plurality of nozzles 62 are arranged in a two-dimensional matrix in the row direction along the V direction and the column direction along the W direction, respectively, in the upstream nozzle region 64A and the downstream nozzle region 64B.
  • the nozzles 62 on the 1st to 16th rows are arranged in the upstream nozzle region 64A, and the nozzles 62 on the 17th to 32nd rows are arranged in the downstream nozzle region 64B.
  • a projected nozzle array obtained by projecting the nozzles 62 in the two-dimensional matrix arrangement along the X direction is equivalent to a single nozzle array in which the nozzles 62 are arranged at approximately equal intervals at a nozzle density that achieves the maximum recording resolution in the X direction.
  • the projected nozzle row it is possible to associate a nozzle number representing the nozzle position with each nozzle in the order of the projected nozzles arranged along the X direction.
  • the nozzles 62 in the upstream nozzle region 64A and the nozzles 62 in the downstream nozzle region 64B are arranged alternately. That is, the nozzle numbers of the nozzles 62 in the upstream nozzle region 64A are odd numbers, and the nozzle numbers of the nozzles 62 in the downstream nozzle region 64B are even numbers.
  • substantially equal intervals means that droplet ejection points that can form a pattern in the pattern manufacturing apparatus 10 are substantially equally spaced.
  • the concept of equidistant spacing also applies to cases where the spacing is slightly different in consideration of at least one of manufacturing error and movement of droplets on the medium due to landing interference. included.
  • a projected nozzle array corresponds to a substantial nozzle array.
  • the liquid ejection head 12 ejects conductive ink from each of the plurality of nozzles 62 .
  • the plurality of nozzles 62 can each eject ink of a plurality of sizes, and can arrange ink dots of a plurality of sizes.
  • the ejection method of the liquid ejection head 12 is a piezoelectric method in which the conductive ink is ejected by pressurizing the conductive ink using bending deformation of the piezoelectric element.
  • the ejection method of the liquid ejection head 12 may be a thermal method in which the conductive ink is heated using a heater and the conductive ink is ejected using the film boiling phenomenon of the conductive ink. It should be noted that the term "ejection" includes meanings such as jetting, coating, and flowing down.
  • the ink supply path 46 is connected to an ink tank (not shown) through a supply pump (not shown) together with the ink supply path 46 of another head module 40 .
  • the supply pump applies pressure to the ink inside the ink supply path 46 and supplies the ink stored in the ink tank to the head module 40 .
  • the ink recovery path 48 is connected to the ink tank together with the ink recovery path 48 of the other head module 40 via a recovery pump (not shown).
  • the recovery pump applies pressure to the ink inside the ink recovery path 48 and recovers the ink supplied to the head module 40 to the ink tank.
  • the filter housing 50 accommodates a filter for removing foreign substances and the like contained in the ink inside the head module 40 .
  • the camera 13 is for photographing the alignment mark 1005 provided on the printed wiring board 1002 .
  • the camera 13 includes a light source (not shown), an imaging element (not shown), and an observation optical system (not shown). Camera 13 may be an in-line sensor.
  • the head support member 14 fixes and supports the liquid ejection head 12 and camera 13 .
  • the head support member 14 aligns a plurality of head modules 40 in the X direction, and fixes and supports them with L-shaped brackets 42 with the nozzle surfaces 60 facing the -Z direction.
  • the head support member 14 arranges the upstream nozzle region 64A on the upstream side ( ⁇ Y direction side) and the downstream nozzle region 64B on the downstream side (Y direction side) in the substrate transport direction, and each head module 40 fixed support.
  • the liquid ejection head 12 becomes a line type head in which a plurality of nozzles 62 are arranged along a length exceeding the full width of the printed wiring board 1002 . .
  • the head support member 14 fixes and supports the camera 13 with the observation optical system directed in the -Z direction.
  • the camera 13 can observe the printed wiring board 1002 after printing with the liquid ejection head 12 by being arranged on the downstream side (Y direction side) of the liquid ejection head 12 in the substrate transport direction.
  • the head support member 14 includes a head position adjustment mechanism (not shown) that adjusts the X- and Y-direction positions of the liquid ejection head 12 while maintaining a fixed positional relationship between the liquid ejection head 12 and the camera 13 . .
  • the transport device 20 (an example of a "relative movement mechanism”) transports the printed wiring board 1002 along the Y direction (an example of a "relative movement”).
  • the transport device 20 includes a table 22 that supports the printed wiring board 1002 and a moving mechanism 24 that moves the table 22 along the Y direction.
  • the table 22 has a fixing mechanism for fixing the printed wiring board 1002 .
  • the fixing mechanism may fix the printed wiring board 1002 mechanically, or may fix the printed wiring board 1002 by suction by applying a negative pressure to the printed wiring board 1002 .
  • the table 22 may include an adjustment mechanism that adjusts the distance in the Z direction between the printed wiring board 1002 and the liquid ejection head 12.
  • the table 22 may include an adjustment mechanism that adjusts the position of the printed wiring board 1002 in the X direction.
  • a ball screw drive mechanism, a belt drive mechanism, etc. are connected to the rotating shaft of the motor.
  • the moving mechanism 24 may have a linear motor.
  • the pattern manufacturing apparatus 10 moves the printed wiring board 1002 in the Y direction with respect to the liquid ejection head 12 whose position is fixed. It may be moved in the Y direction. Also, the pattern manufacturing apparatus 10 may move the printed wiring board 1002 in the Y direction and the liquid ejection head 12 in the -Y direction.
  • FIG. 6 is a functional block diagram showing the electrical configuration of the pattern manufacturing apparatus 10.
  • the pattern manufacturing apparatus 10 includes a system control section 70 , a data acquisition section 72 , a data processing section 74 , a head control section 76 , a camera control section 77 , a transport control section 78 and a memory 79 .
  • the system control unit 70 transmits command signals to the data acquisition unit 72, the data processing unit 74, the head control unit 76, the camera control unit 77, and the transport control unit 78, and controls the operation of the pattern manufacturing apparatus 10 in an integrated manner.
  • the data acquisition unit 72 acquires various data including conductive pattern data for forming the conductive pattern 1020 from an external device (not shown) such as a host computer.
  • the data processing unit 74 performs processing on various data acquired by the data acquisition unit 72 .
  • the data processing unit 74 generates conductive ink ejection data from the conductive pattern data. That is, the data processing unit 74 performs image processing such as halftone processing on the conductive pattern data to generate ejection data that defines the positions and sizes of dots corresponding to the conductive pattern.
  • the head control unit 76 controls ejection from the nozzles 62 of the liquid ejection head 12 based on the ejection data corresponding to the conductive pattern. Further, the head control unit 76 controls a head position adjusting mechanism (not shown) according to the result of reading the alignment mark 1005, which will be described later, to adjust the position of the liquid ejection head 12 in advance.
  • the camera control unit 77 controls the operation of the camera 13.
  • the camera control unit 77 causes the camera 13 to read, for example, the alignment mark 1005 (see FIG. 1) of the printed wiring board 1002 and obtains the reading result from the camera 13 .
  • the transport control unit 78 controls the operation of the transport device 20 .
  • the memory 79 stores various data, various parameters, various programs, etc. used for controlling the pattern manufacturing apparatus 10 .
  • the system control unit 70 applies various parameters and the like stored in the memory 79 to control each unit of the pattern manufacturing apparatus 10 .
  • FIG. 7 is a block diagram showing a hardware configuration example of the pattern manufacturing apparatus 10. As shown in FIG. Pattern manufacturing apparatus 10 includes a control device 80 , an input device 92 and a display device 94 .
  • a computer is applied to the control device 80 .
  • the computer is a server, personal computer, workstation, tablet terminal, or the like.
  • Controller 80 includes processor 82 , computer readable media 84 , communication interface 86 , input/output interface 88 , and bus 90 .
  • Processor 82 executes instructions stored on computer readable medium 84 .
  • the hardware structure of the processor 82 is various processors as follows.
  • Various processors include a CPU (Central Processing Unit), which is a general-purpose processor that executes software (programs) and acts as various functional units, a GPU (Graphics Processing Unit), which is a processor specialized for image processing, A circuit specially designed to execute specific processing such as PLD (Programmable Logic Device), which is a processor whose circuit configuration can be changed after manufacturing such as FPGA (Field Programmable Gate Array), ASIC (Application Specific Integrated Circuit), etc. Also included are dedicated electrical circuits, which are processors with configuration, and the like.
  • One processing unit may be composed of one of these various processors, or two or more processors of the same or different type (for example, a plurality of FPGAs, a combination of CPU and FPGA, or a combination of CPU and GPU).
  • a plurality of functional units may be configured by one processor.
  • a single processor is configured by combining one or more CPUs and software.
  • a processor acts as a plurality of functional units.
  • SoC System On Chip
  • various functional units are configured using one or more of the above various processors as a hardware structure.
  • the hardware structure of these various processors is, more specifically, an electrical circuit that combines circuit elements such as semiconductor elements.
  • Processor 82 is coupled to computer-readable media 84 , communication interface 86 , and input/output interface 88 via bus 90 .
  • a computer-readable medium 84 stores instructions for processor 82 to execute.
  • the computer-readable medium 84 includes RAM (Random Access Memory) and ROM (Read Only Memory) (not shown).
  • the computer-readable medium 84 may also include a magnetic storage medium such as a hard disk, an optical disk such as a CD (Compact Disc)-ROM, and a semiconductor memory such as a USB (Universal Serial Bus) memory.
  • Computer readable medium 84 may also serve as memory 79 shown in FIG.
  • a computer readable medium 84 stores a pattern manufacturing program 85 including one or more instructions.
  • the pattern manufacturing program 85 may be provided by a computer-readable non-transitory storage medium. Also, the pattern manufacturing program 85 may be provided as an application that can be downloaded from an external server.
  • the computer-readable medium 84 stores various data and various parameters.
  • the processor 82 executes the pattern manufacturing program 85 using the RAM of the computer-readable medium 84 as a work area, and uses the data and parameters stored in the computer-readable medium 84 to perform various processes of the pattern manufacturing apparatus 10. Execute.
  • the communication interface 86 communicably connects the control device 80 with an external device via a network (not shown).
  • the network is, for example, a LAN (Local Area Network).
  • the input/output interface 88 connects the control device 80 to the input device 92 and the display device 94 .
  • the input device 92 is, for example, a keyboard, mouse, multi-touch panel, other pointing device, or a combination thereof.
  • the display device 94 is a liquid crystal display, an organic EL (Electro-Luminescence) display, a projector, or a combination thereof. Various information related to the control device 80 is displayed on the display device 94 .
  • the conductive ink may adhere to unnecessary portions, causing a short circuit. do.
  • the size accuracy of the conductive pattern may be required to be within 100 ⁇ m error.
  • FIG. 8 is a diagram showing the dot arrangement in the ideal liquid ejection head 12 when a conductive pattern is formed in a print area having a size S in the Y direction of the base material.
  • ink dots arranged by ejecting ink from the nozzles 62 of the upstream nozzle region 64A are indicated by relatively dark hatching
  • ink dots arranged by ejecting ink from the nozzles 62 of the downstream nozzle region 64B are shown. Dots are indicated by relatively light hatching.
  • the nozzles 62 in the upstream nozzle region 64A and the nozzles 62 in the downstream nozzle region 64B are alternately arranged in the X direction. Therefore, as shown in FIG. 8, the ink dots arranged by the nozzles 62 in the upstream nozzle region 64A and the ink dots arranged by the nozzles 62 in the downstream nozzle region 64B are alternately arranged in the X direction. Also, the ink dots arranged by the nozzles 62 in the upstream nozzle region 64A and the ink dots arranged by the nozzles 62 in the downstream nozzle region 64B are aligned in the Y direction. As described above, according to the ideal liquid ejection head 12, it is possible to form a conductive pattern of size S in the Y direction, which is a desired size.
  • the liquid ejection head 12 may have variations in characteristics within the head due to manufacturing variations in the silicon die 44 .
  • an example using the liquid ejection head 12 having variations in the characteristics of the upstream nozzle region 64A and the downstream nozzle region 64B will be described.
  • the characteristic variation of each nozzle 62 within the same nozzle region will not be discussed.
  • FIG. 9 is a diagram showing a dot arrangement when a conductive pattern is formed in a print area having a size S in the Y direction of the substrate in the liquid ejection head 12 having characteristic variations in the head.
  • the ink dots arranged by ejecting ink from the nozzles 62 of the upstream nozzle region 64A are indicated by relatively dark hatching
  • the dots of ink ejected from the nozzles 62 of the downstream nozzle region 64B are indicated by relatively dark hatching.
  • Ink dots arranged by ejection are indicated by relatively light hatching.
  • FIG. 9 is a diagram showing a dot arrangement when a conductive pattern is formed in a print area having a size S in the Y direction of the substrate in the liquid ejection head 12 having characteristic variations in the head.
  • the ink dots arranged by ejecting ink from the nozzles 62 of the upstream nozzle region 64A are indicated by relatively dark hatching
  • displacement may occur in the direction (X direction) perpendicular to the movement direction of the base material.
  • X direction perpendicular to the movement direction of the base material.
  • the error is likely to be larger for the nozzles 62 which are also located at physically distant positions.
  • one of the upstream nozzle region 64A and the downstream nozzle region 64B (an example of “a plurality of nozzle regions”) of the liquid ejection head 12 is The nozzles 62 in a nozzle area (an example of a "specific nozzle area”) place ink dots that form the boundary area of the conductive pattern.
  • FIG. 10 shows a printed area 102 forming a conductive pattern on the surface of the substrate 100 and a non-printed area 104 different from the printed area 102 .
  • the print area 102 is a fixed area area having a size of SX in the X direction and SY in the Y direction.
  • the print area 102 has a boundary 102 A with the non-print area 104 .
  • the print area 102 also includes a border area 102B including the border 102A and a non-border area 102C other than the border area 102B.
  • a boundary area 102B shown in FIG. 10 is an area extending inward by one ink dot (one pixel) from the boundary 102A.
  • FIG. 11 is a diagram showing a conductive pattern formed in the printing area 102 by the pattern manufacturing apparatus 10.
  • the ink dots 110A arranged by ejecting ink from the nozzles 62 of the upstream nozzle region 64A are indicated by relatively dark hatching
  • the ink dots 110A arranged by ejecting ink from the nozzles 62 of the downstream nozzle region 64B are shown.
  • Ink dots 110B are indicated by relatively light hatching.
  • ink dots 110A are arranged in the boundary area 102B of the print area 102 by the nozzles 62 of the upstream nozzle area 64A.
  • ink dots 110A and 110B are arranged by the nozzles 62 of the upstream nozzle area 64A and the nozzles 62 of the downstream nozzle area 64B.
  • the pattern boundary region 102B is one pixel here, it may be two pixels or more depending on the characteristic variation between the nozzle regions. Also, here, the printing areas 102 are provided on the four sides of the boundary area 102B, but the boundary area 102B may be provided on at least one side.
  • Ink dots are arranged in the boundary region 102B if the nozzles 62 are in either one of the upstream nozzle region 64A and the downstream nozzle region 64B, but as shown in FIG. It is desirable to use the nozzles 62 in the upstream nozzle region 64A. As a result, landing interference between ink dots on the surface of the substrate 100 can be suppressed. This is because the ink ejected from the nozzles 62 of the upstream nozzle area 64A forming the boundary area 102B lands first, and then the ink ejected from the downstream nozzle area 64B lands on the periphery, so more accuracy is required. This is because the ink in the boundary area 102B that is drawn is difficult to move.
  • FIG. 12 is a diagram for explaining ink landing interference, and is a side view of the substrate 100.
  • FIG. FIG. 12 shows an ink dot 111A that has landed on the surface of the substrate 100 earlier, and an ink dot 111B that has landed after the ink dot 111A.
  • the ink dot 111B that landed later moves in the direction of the ink dot 111A by being pulled by the ink dot 111A that landed earlier.
  • the ink dot 111A has a higher impact position accuracy than the ink dot 111B. Therefore, by arranging the ink dots in the boundary area 102B first, the accuracy of the positions of the ink dots in the boundary area 102B can be improved.
  • a pretreatment liquid that is a pretreatment liquid for enhancing the anchor effect to the base material 100 and contains a functional material that suppresses wetting and spreading of the conductive ink is applied to the base material 100 in advance.
  • a chemical reaction between the ink that has landed on the surface of the base material 100 and the pretreatment liquid that has been applied to the surface of the base material causes the components of the ink that react with the pretreatment liquid to quickly coagulate, further suppressing landing interference. be able to.
  • ink dots are arranged by the nozzles 62 of the upstream nozzle region 64A and the nozzles 62 of the downstream nozzle region 64B in the non-boundary region 102C. Only the ink dots by the nozzles 62 in the region 64A are arranged, and the ink dots by the nozzles 62 in the downstream nozzle region 64B are not arranged.
  • the ink dots in the boundary region 102B are fewer than the ink dots by the nozzles 62 in the downstream nozzle region 64B, and the total amount of ink dots in the printing region 102 is equal to the nozzles 62 in the upstream nozzle region 64A and less than when the pattern is formed with the nozzles 62 in the downstream nozzle region 64B.
  • ink dots in the non-boundary area 102C so as to compensate for the decrease in ink dots in the boundary area 102B.
  • the position for supplementing the ink amount is desirably a position slightly inside the non-boundary region 102C from the boundary region 102B (for example, a region adjacent to the boundary region 102B in the non-boundary region 102C). By increasing the amount of ink at such a position, it is assumed that the increased amount of ink naturally spreads over the boundary area 102B where the amount of ink is relatively small.
  • the adjacent ink dots 110A need to be connected. That is, the dot size must be such that the ink dots 110A adjacent to each other are connected. Further, in order to further enhance the effect of pattern drawing accuracy, it is desirable that the ink dots forming the boundary area 102B be of the same droplet type (an example of “same size”). As a result, it is less likely to be affected by variations in characteristics between droplet types.
  • ink dots are arranged in the boundary region 102B of the printing region 102 only by the nozzles 62 of the upstream nozzle region 64A of the liquid ejection head 12.
  • Ink dots need only be arranged by the nozzles 62 . That is, dots are arranged in the boundary region 102B by the nozzles 62 of the downstream nozzle region 64B to the extent that the pattern drawing accuracy can be improved even if there are variations in the characteristics of the nozzle region of the liquid ejection head 12. good too.
  • 90% or more of the ink dots arranged in the boundary region 102B may be arranged by the nozzles 62 of the upstream nozzle region 64A. In this case, the ink dots are formed only by the nozzles 62 of the upstream nozzle region 64A. Included in what is placed.
  • FIG. 13 is a flow chart showing each process of the pattern manufacturing method by the pattern manufacturing apparatus 10.
  • the pattern manufacturing method corresponds to a printed matter manufacturing method.
  • a printed matter includes an electronic device, and the electronic device includes an electric component mounting board.
  • the pattern manufacturing method is implemented by the processor 82 executing a pattern manufacturing program 85 (see FIG. 7).
  • a pattern manufacturing program 85 see FIG. 7
  • FIG. 7 an example of forming a conductive pattern 1020 by arranging ink dots of conductive ink in a printing region including the upper surface of the IC 1006 of the printed wiring board 1002 will be described.
  • step S ⁇ b>1 the data acquisition unit 72 acquires conductive pattern data from an external device (not shown) via the communication interface 86 .
  • the data acquisition unit 72 may acquire conductive pattern data from the input device 92 or may acquire conductive pattern data from the computer-readable medium 84 .
  • step S2 the data processing unit 74 generates conductive ink ejection data from the conductive pattern data acquired in step S1.
  • step S3 (an example of the "pattern forming process"), the head control unit 76 and the transport control unit 78 form a conductive pattern in the print area of the printed wiring board 1002 according to the ejection data generated in step S2.
  • FIG. 14 is a flowchart showing the details of the conductive pattern forming process in step S3.
  • the transport control unit 78 controls the transport device 20 to transport the printed wiring board 1002 to the initial position.
  • the initial position is a position where the table 22 (printed wiring board 1002) is arranged on the -Y direction side (upstream side in the transport direction) of the head support member 14 (liquid ejection head 12).
  • the transport control unit 78 transports the printed wiring board 1002 in the Y direction.
  • step S13 the liquid ejection head 12 ejects conductive ink onto the printed wiring board 1002 that is transported in the Y direction.
  • the head controller 76 uses the nozzles 62 in the upstream nozzle area 64A to arrange ink dots in the boundary area including the boundary between the print area and the non-print area that is different from the print area.
  • step S14 the transport control unit 78 controls the transport device 20 to transport the printed wiring board 1002 in the -Y direction and print.
  • the wiring board 1002 is returned to the initial position again.
  • the transport control unit 78 transports the printed wiring board 1002 again in the Y direction.
  • step S16 the liquid ejection head 12 ejects ink onto the printed wiring board 1002 that is transported in the Y direction.
  • the head control unit 76 arranges ink dots in non-boundary areas other than the boundary areas in the print area using the nozzles 62 in the upstream nozzle area 64A and the nozzles 62 in the downstream nozzle area 64B.
  • ink dots are arranged in the boundary area by the nozzles 62 of the upstream nozzle area 64A, and ink dots are arranged in the non-boundary area by the nozzles 62 of the upstream nozzle area 64A and the nozzles 62 of the downstream nozzle area 64B.
  • ink dots are arranged in the boundary area by the nozzles 62 of the upstream nozzle area 64A, and ink dots are arranged in the non-boundary area by the nozzles 62 of the upstream nozzle area 64A and the nozzles 62 of the downstream nozzle area 64B.
  • step S13 the nozzles 62 of the upstream nozzle area 64A arrange ink dots in the entire printing area, and in step S16, the nozzles 62 of the downstream nozzle area 64B arrange non-border areas of the printing area. Ink dots may be placed in the boundary area. Further, in one transfer of the printed wiring board 1002 in the Y direction, the nozzles 62 of the upstream nozzle region 64A arrange ink dots in the entire printing region, and the nozzles 62 of the downstream nozzle region 64B dispose ink dots in the entire printing region. Ink dots may be placed in non-boundary areas other than the boundary areas to complete the conductive pattern.
  • FIG. 15 is a flow chart showing each step of the nozzle position adjustment method of the pattern manufacturing apparatus 10.
  • the nozzle position adjustment method is performed when the state of the pattern manufacturing apparatus 10 may change.
  • the case where the state of the pattern manufacturing apparatus 10 may change includes, for example, when the liquid ejection head 12 is removed, when maintenance is performed on the conveying device 20 or the like, or when the liquid ejection head 12 is left for a long period of time.
  • the nozzle position adjustment method is performed, for example, once every morning.
  • step S21 the head control unit 76 and the transport control unit 78 use predetermined nozzles 62 to print a cross pattern for checking the nozzle position at predetermined positions on the printed wiring board 1002 .
  • a cross pattern is printed using the nozzles 62 in the upstream nozzle region 64A.
  • FIG. 16 is a schematic diagram showing the cross pattern 112 printed on the printed wiring board 1002. As shown in FIG. The position where the cross pattern 112 is printed may be the upper surface of the IC 1006 .
  • step S22 an example of a “reading step”
  • the camera control unit 77 causes the camera 13 to read the cross pattern 112 printed in step S3 and the alignment marks 1005 of the printed wiring board 1002, Get the reading result.
  • step S23 the head control unit 76 adjusts the nozzle positions of the nozzles 62 in the upstream nozzle region 64A (the positions of the liquid ejection heads 12) based on the reading results obtained in step S4. do.
  • the positional relationship between the nozzle 62 that printed the cross pattern 112 and the camera 13 can be found from the result of reading the cross pattern 112
  • the positional relationship between the nozzle 62 and the alignment mark 1005 can be found from the result of reading the alignment mark 1005 .
  • the positional relationship between the alignment mark 1005 and the printing area is known in advance from the conductive pattern data. Therefore, the nozzle positions can be adjusted so that the nozzles 62 can place ink dots in the boundary area of the print area.
  • the nozzles 62 of the upstream nozzle area 64A arrange ink dots in the boundary area of the printing area. Therefore, priority is given to the nozzle position adjustment of the nozzles 62 in the upstream nozzle region 64A. This is because if an attempt is made to make adjustments in a plurality of nozzle regions, the adjustment will end up being an average adjustment.
  • FIG. 17 is an overall configuration diagram of a pattern manufacturing apparatus 10A according to another embodiment. Here, differences between the pattern manufacturing apparatus 10A and the pattern manufacturing apparatus 10 will be described, and descriptions of common components between the two will be omitted as appropriate.
  • the pattern manufacturing apparatus 10A includes a liquid ejection head 12B.
  • the liquid ejection head 12B is a short head whose total length in the Y direction is less than the length of the printed wiring board 1002 in the Y direction.
  • the liquid ejection head 12B has a plurality of nozzle regions each having a plurality of nozzles (not shown), which are divided according to the positions of the nozzles in the X direction (an example of the “direction of relative movement”). include.
  • the arrangement of the plurality of nozzles is, for example, one-row arrangement along the Y direction or two-row zigzag arrangement.
  • the number of nozzles in the Y direction may be appropriately determined according to the printing resolution in the Y direction.
  • the liquid ejection head 12B is supported by the carriage 26.
  • a carriage 26 (an example of a “relative movement mechanism”) is movably supported in the X direction and the ⁇ X direction by a guide 28 arranged along the X direction.
  • a dot row of conductive ink is formed in the X direction on the printed wiring board 1002 .
  • FIG. 18 is a perspective plan view of a nozzle surface 202 in another form of head module 200 applied to the liquid ejection head 12.
  • FIG. Parts common to those in FIG. 5 are denoted by common reference numerals, and detailed description thereof will be omitted.
  • the shape of the nozzle surface 202 of the head module 200 is the same as the shape of the nozzle surface 60.
  • the nozzle surface 202 of the head module 200 has a first nozzle area 204A and a second nozzle area 204B, which are two nozzle areas with independent flow paths in the W direction.
  • Nozzles 206A are arranged in a two-dimensional matrix in the first nozzle region 204A
  • nozzles 206B are arranged in a two-dimensional matrix in the second nozzle region 204B.
  • the nozzles 206A belonging to the first nozzle region 204A and the nozzles 206B belonging to the second nozzle region 204B have the same number and the same arrangement.
  • Nozzles 206A and 204B are arranged alternately in a projection nozzle row obtained by projecting nozzles 206A of the first nozzle region 204A and nozzles 206B of the second nozzle region 204B of the head module 200 along the X direction. That is, the nozzle number of the nozzle 206A is odd, and the nozzle number of the nozzle 206B is even.
  • a supply channel 208A is provided for each nozzle row composed of a plurality of nozzles 206A arranged along the W direction.
  • the nozzles 206A belonging to the same nozzle row are supplied with ink from the same supply channel 208A.
  • the plurality of supply channels 208A communicate with a main supply channel 210A provided along the V direction.
  • a supply channel 208B is provided for each nozzle row composed of a plurality of nozzles 206B arranged along the W direction.
  • the nozzles 206B belonging to the same nozzle row are supplied with ink from the same supply channel 208B.
  • the plurality of supply channels 208B communicate with the main supply channel 210B provided along the V direction.
  • FIG. 19 is a cross-sectional view showing the internal structure of the head module 200.
  • FIG. Here, the first nozzle region 204A is shown.
  • the silicon die 44 of the head module 200 includes a nozzle plate 212 , a channel structure 214 , piezoelectric elements 230 , a vibration plate 232 and an adhesive layer 234 .
  • the nozzle plate 212 is provided on the lower surface of the channel structure 214 and constitutes the nozzle surface 202 .
  • the nozzle plate 212 is provided with nozzles 206A.
  • the channel structure 214 is provided with a supply channel 208A, an individual supply channel 216, a pressure chamber 218, a nozzle communication channel 220, an individual circulation channel 226, and a common circulation channel 228.
  • the supply channel 208A communicates with the main supply channel 210A (see FIG. 18).
  • the individual supply channel 216 allows the supply channel 208A and the pressure chamber 218 to communicate with each other.
  • the pressure chamber 218 is provided corresponding to the nozzle 206A.
  • the pressure chamber 218 has a substantially square planar shape, and the individual supply passage 216 is provided at one of both diagonal corners, and the nozzle communication passage 220 is provided at the other corner.
  • the shape of the pressure chamber 218 is not limited to a square, and may be polygonal, circular, or elliptical.
  • the nozzle communication passage 220 communicates the pressure chamber 218 and the nozzle 206A.
  • the individual circulation channel 226 allows the nozzle communication channel 220 and the common circulation channel 228 to communicate with each other.
  • the circulation common channel 228 communicates with the ink recovery channel 48 (see FIG. 4) via the main recovery channel (not shown).
  • a vibration plate 232 is provided on the upper surface of the flow path structure 214 .
  • the piezoelectric element 230 is arranged on the upper surface of the vibration plate 232 with an adhesive layer 234 interposed therebetween.
  • the piezoelectric element 230 is an actuator for ejecting ink from the corresponding nozzle 206A.
  • the piezoelectric element 230 has a laminated structure in which an upper electrode (individual electrode) 236, a piezoelectric layer 238, and a lower electrode (common electrode) 240 are laminated.
  • the upper electrode 236 is an individual electrode patterned in accordance with the shape of each pressure chamber 218 , and the piezoelectric element 230 is provided for each pressure chamber 218 .
  • ink supplied from an ink tank (not shown) through the ink supply channel 46 (see FIG. 4) is supplied to the pressure chamber through the main supply channel 210A and the supply channel 208A. 218.
  • a drive voltage is applied to the upper electrode 236 of the piezoelectric element 230 provided in the corresponding pressure chamber 218, the piezoelectric element 230 and the vibration plate 232 are deformed to change the volume of the pressure chamber 218, resulting in a pressure increase.
  • Ink is ejected from the nozzle 206A through the nozzle communication path 220 due to the change.
  • Ink not ejected from the nozzles 206A is recovered to an ink tank (not shown) through the individual circulation channel 226, the common circulation channel 228, the main recovery channel, and the ink recovery channel 48. This prevents thickening of the ink from the nozzle 206A during non-ejection.
  • the internal structure and operation of the second nozzle region 204B are similar to those of the first nozzle region 204A.
  • the nozzles 206A of the first nozzle area 204A or the nozzles 206B of the second nozzle area 204B arrange ink dots in the boundary area of the substrate, thereby Even if there are variations in characteristics due to the channel structure, the boundary drawing accuracy can be improved.
  • FIG. 20A and 20B are a plan view and an enlarged plan view of a nozzle surface 302 in another form of head module 300 applied to the liquid ejection head 12.
  • FIG. The nozzle surface 302 of the head module 300 has a first nozzle area 304A and a second nozzle area 304B.
  • Nozzles 306A are arranged in a row at intervals L along the X direction in the first nozzle region 304A, and nozzles 306B are arranged in a row at intervals L along the X direction in the second nozzle region 304B.
  • the nozzles 306A and 306B are arranged in a zigzag arrangement at positions shifted by L/2 in the X direction.
  • Nozzles 306A and 304B are arranged alternately in a projected nozzle row obtained by projecting nozzles 306A of the first nozzle region 304A and nozzles 306B of the second nozzle region 304B of the head module 300 along the X direction.
  • the nozzles 306A of the first nozzle region 304A or the nozzles 306B of the second nozzle region 304B arrange ink dots in the boundary region of the base material, thereby Even if there are variations in characteristics, it is possible to improve the drawing accuracy of the boundary.
  • the liquid ejection head 12 includes two nozzle regions divided according to the position of the nozzles in the direction of relative movement, and ink dots are arranged in the boundary region with the nozzles of one of the nozzle regions.
  • ink dots may be arranged in boundary regions by nozzles in any of the nozzle regions.
  • the present embodiment can be applied to the formation of the insulating pattern 1024 .
  • the present embodiment is not limited to conductive ink and insulating ink, and can be applied to formation of various patterns using a liquid ejection head.
  • Head module 302 Nozzle surface 304A... First nozzle area 304B... Second nozzle area 306A, 306B... Nozzle 1000... Electric component mounting board 1002... Printed wiring board 1004... Component mounting surface 1005... Alignment mark 1006... IC 1006A side surface 1006B rear surface 1006C upper surface 1008 resistor 1008A resistor array 1009 electrode 1010 capacitor 1020 conductive pattern 1022 insulating coating 1024 insulating pattern 1030 board-side electrode 1032 element-side electrode 1034 solder bump S1 ⁇ S3 Steps S11 to S16 of the pattern manufacturing method Detailed steps S21 to S23 of the conductive pattern forming process Steps of the nozzle position adjusting method

Abstract

Provided are a pattern manufacturing method, a program, and a pattern manufacturing device that increase pattern drawing accuracy even when there is variation in characteristics within a liquid ejection head. When a substrate and a liquid ejection head are relatively moved, said liquid ejection head including a plurality of nozzle regions that respectively have a plurality of nozzles and are divided according to the locations of said nozzles in the direction of relative movement, and a liquid is ejected from the plurality of nozzles to position a plurality of dots in a printing region of a surface of the substrate and form a pattern, the nozzle of a specific nozzle region among the plurality of nozzle regions is used to position a dot in a border region of the printing region, said border region including a border with a non-printing region that is different from the printing region.

Description

パターン製造方法、プログラム、及びパターン製造装置Pattern manufacturing method, program, and pattern manufacturing apparatus
 本発明はパターン製造方法、プログラム、及びパターン製造装置に係り、特に液体吐出ヘッドを用いて高精度のパターンを形成する技術に関する。 The present invention relates to a pattern manufacturing method, a program, and a pattern manufacturing apparatus, and more particularly to technology for forming highly accurate patterns using a liquid ejection head.
 インクジェット印刷において、印刷パターンの境界部の描画精度、特に印刷する範囲の寸法精度を高めたい場合がある。 In inkjet printing, there are cases where it is desired to increase the drawing accuracy of the boundary part of the print pattern, especially the dimensional accuracy of the printing range.
 印刷の精度を高めるための方法として、特許文献1には、「シフトモード」の印刷に起因する境界部の凹凸を無くすため、境界部だけ通常モード(非シフトモード)で印刷し、内部はシフトモードで印刷する技術が記載されている。 As a method for improving printing accuracy, in Patent Document 1, in order to eliminate unevenness in the boundary caused by printing in "shift mode", only the boundary is printed in normal mode (non-shift mode), and the inside is shifted. A technique for printing in mode is described.
 また、特許文献2には、印刷基材上でのインクドット間の干渉を防ぎ、画質を向上させるために、前処理液を塗布することが記載されている。 In addition, Patent Document 2 describes applying a pretreatment liquid to prevent interference between ink dots on the printing substrate and improve image quality.
特開平6-171091号公報JP-A-6-171091 特開2007-1045号公報Japanese Unexamined Patent Application Publication No. 2007-1045
 しかしながら、特許文献1に記載された技術は、ノズル間の特性ばらつきに起因する描画パターンの崩れには対応できず、描画精度を十分に高めることはできないという課題があった。 However, the technique described in Patent Document 1 cannot cope with the collapse of the drawing pattern caused by the characteristic variation between nozzles, and has the problem that the drawing accuracy cannot be sufficiently improved.
 また、特許文献2に記載された技術は、基材上での精度を確保できるだけであり、ノズル間の特性ばらつきを補正することはできず、描画精度を十分に高めることはできないという課題があった。 In addition, the technique described in Patent Document 2 can only ensure accuracy on the base material, and cannot compensate for variations in characteristics between nozzles. rice field.
 本発明はこのような事情に鑑みてなされたもので、液体吐出ヘッド内に特性ばらつきがあってもパターンの描画精度を高めるパターン製造方法、プログラム、及びパターン製造装置を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a pattern manufacturing method, a program, and a pattern manufacturing apparatus that improve pattern drawing accuracy even if there are variations in characteristics within the liquid ejection head. .
 上記目的を達成するためのパターン製造方法の一の態様は、液体を吐出する複数のノズルを有する液体吐出ヘッドと、基材及び液体吐出ヘッドを相対移動させる相対移動機構と、を備えるパターン製造装置を用いたパターン製造方法であって、液体吐出ヘッドは、それぞれ複数のノズルを有する複数のノズル領域であって、相対移動の方向におけるノズルの位置に応じて分割された複数のノズル領域を含み、基材及び液体吐出ヘッドを相対移動させて複数のノズルから液体を吐出させ、基材の表面の印刷領域に複数のドットを配置してパターンを形成するパターン形成工程を備え、パターン形成工程は、印刷領域のうち印刷領域とは異なる非印刷領域との境界を含む境界領域に、複数のノズル領域のうちの特定のノズル領域のノズルによってドットを配置する、パターン製造方法である。本態様によれば、液体吐出ヘッド内に特性ばらつきがあってもパターンの描画精度を高めることができる。 One aspect of a pattern manufacturing method for achieving the above object is a pattern manufacturing apparatus comprising a liquid ejection head having a plurality of nozzles for ejecting liquid, and a relative movement mechanism for relatively moving the substrate and the liquid ejection head. wherein the liquid ejection head includes a plurality of nozzle regions each having a plurality of nozzles, the nozzle regions being divided according to the positions of the nozzles in the direction of relative movement, A pattern forming step is provided in which the substrate and the liquid ejection head are moved relative to each other to eject the liquid from a plurality of nozzles to form a pattern by arranging a plurality of dots in a printing region on the surface of the substrate, the pattern forming step comprising: In this pattern manufacturing method, dots are arranged by nozzles of a specific nozzle area among a plurality of nozzle areas in a boundary area including a boundary between a non-printing area different from the printing area in the printing area. According to this aspect, it is possible to improve the drawing accuracy of the pattern even if there are variations in characteristics within the liquid ejection head.
 パターン形成工程は、印刷領域のうち境界領域以外の非境界領域に、複数のノズル領域のノズルによってドットを配置することが好ましい。これにより、印刷領域にドットを配置したパターンを形成することができる。 In the pattern forming step, dots are preferably arranged in non-boundary areas other than the boundary areas of the print area by nozzles of a plurality of nozzle areas. As a result, a pattern in which dots are arranged in the print area can be formed.
 パターン形成工程は、特定のノズル領域のノズルによって境界領域にドットを配置してから複数のノズル領域のノズルによって非境界領域にドットを配置することが好ましい。これにより、境界領域に配置したドットが着弾干渉により移動することを抑制することができる。 In the pattern forming process, it is preferable that the nozzles of a specific nozzle area arrange dots in the boundary area and then the nozzles of a plurality of nozzle areas arrange dots in the non-boundary area. As a result, it is possible to prevent the dots arranged in the boundary area from moving due to landing interference.
 特定のノズル領域は、相対移動の上流側に配置された上流側ノズル領域であることが好ましい。これにより、非境界領域よりも先に境界領域にドットを配置することができる。 The specific nozzle area is preferably an upstream nozzle area arranged on the upstream side of the relative movement. Dots can thus be placed in the boundary area before they are placed in the non-boundary area.
 パターン形成工程は、境界領域以外の領域に配置するドットを増加させることが好ましい。これにより、液体総量の減少を抑制することができる。 In the pattern forming process, it is preferable to increase the number of dots arranged in areas other than the boundary area. As a result, reduction in the total amount of liquid can be suppressed.
 パターン形成工程は、印刷領域のうち境界領域に隣接する領域に、境界領域に配置するドットのサイズよりも相対的に大きいサイズのドットを配置することが好ましい。これにより、液体量が相対的に少ない境界領域にドットを広げることができる。 In the pattern forming step, it is preferable to arrange dots having a size relatively larger than the size of the dots arranged in the boundary area in the area adjacent to the boundary area in the printing area. As a result, the dots can be spread over the boundary areas where the amount of liquid is relatively small.
 パターン形成工程は、基材及び液体吐出ヘッドの特定の方向の複数回の相対移動によってパターンを形成することが好ましい。これにより、パターンを適切に形成することができる。 In the pattern forming step, the pattern is preferably formed by relatively moving the substrate and the liquid ejection head multiple times in a specific direction. Thereby, a pattern can be formed appropriately.
 パターン形成工程は、境界領域に、特定のノズル領域のノズルのみによってドットを配置することが好ましい。これにより、液体吐出ヘッド内の特性ばらつきを排除して境界領域の描画精度を高めることができる。なお、「特定のノズル領域のノズルのみ」とは、実質的に特定のノズル領域のノズルのみによってドットが配置されていればよく、本発明の効果を奏する程度に特定のノズル領域以外のノズルによって境界領域にドットが配置されることも含む。 In the pattern forming process, it is preferable to arrange dots in the boundary area using only nozzles in a specific nozzle area. As a result, it is possible to eliminate characteristic variations in the liquid ejection head and improve the drawing accuracy of the boundary area. Note that "only nozzles in a specific nozzle region" means that dots are substantially arranged only by nozzles in the specific nozzle region, and dots are arranged by nozzles other than the specific nozzle region to the extent that the effect of the present invention is exhibited. It also includes placing dots in the boundary area.
 複数のノズルは、それぞれ複数のサイズのドットを配置可能であり、パターン形成工程は、境界領域に同一サイズのドットを配置することが好ましい。これにより、ドットサイズ間の特性ばらつきの影響を排除することができる。 A plurality of nozzles can each arrange dots of a plurality of sizes, and the pattern forming step preferably arranges dots of the same size in the boundary area. This makes it possible to eliminate the influence of characteristic variations between dot sizes.
 基材は、位置合わせマークを備え、位置合わせマークを読み取る読取工程と、読取工程における位置合わせマークの読取結果を用いて特定のノズル領域のノズルの着弾位置を調整する調整工程と、を備えることが好ましい。これにより、境界領域の描画精度をさらに高めることができる。 The substrate has an alignment mark, and comprises a reading step of reading the alignment mark, and an adjusting step of adjusting the landing position of the nozzle in a specific nozzle region using the result of reading the alignment mark in the reading step. is preferred. Thereby, the drawing accuracy of the boundary area can be further improved.
 基材に対して予め液体の濡れ広がりを抑制する機能性材料を含んだ前処理液を予め塗布する前処理液塗布工程を備えることが好ましい。これにより、液体の着弾干渉を抑制してパターンの描画精度をさらに高めることができる。 It is preferable to include a pretreatment liquid application step of previously applying a pretreatment liquid containing a functional material that suppresses wetting and spreading of the liquid to the base material. Thereby, the landing interference of the liquid can be suppressed, and the drawing accuracy of the pattern can be further improved.
 基材は、電気部品が実装された電気回路基板であり、印刷領域は、電磁波シールドの形成の対象とされる電気部品を含み、液体は導電性液体であることが好ましい。これにより、電磁波シールドの形成の対象とされる電気部品に電磁波シールドとして機能するパターンを形成することができる。 It is preferable that the base material is an electric circuit board on which electric components are mounted, the printed area includes the electric components to form an electromagnetic wave shield, and the liquid is a conductive liquid. As a result, a pattern that functions as an electromagnetic shield can be formed on the electrical component that is the target of forming the electromagnetic shield.
 上記目的を達成するためのプログラムの一の態様は、上記のパターン製造方法をコンピュータに実行させるためのプログラムである。このプログラムが記録された、コンピュータが読み取り可能な非一時的記憶媒体も本態様に含んでよい。 One aspect of the program for achieving the above object is a program for causing a computer to execute the above pattern manufacturing method. A computer-readable non-transitory storage medium in which this program is recorded may also be included in this embodiment.
 上記目的を達成するためのパターン製造装置の一の態様は、液体を吐出する複数のノズルを有する液体吐出ヘッドと、基材及び液体吐出ヘッドを相対移動させる相対移動機構と、少なくとも1つのプロセッサと、少なくとも1つのプロセッサに実行させるための命令を記憶する少なくとも1つのメモリと、を備え、液体吐出ヘッドは、それぞれ複数のノズルを有する複数のノズル領域であって、相対移動の方向におけるノズルの位置に応じて分割された複数のノズル領域を含み、少なくとも1つのプロセッサは、基材及び液体吐出ヘッドを相対移動させて複数のノズルから液体を吐出させ、基材の表面の印刷領域に複数のドットを配置してパターンを形成し、印刷領域のうち印刷領域とは異なる非印刷領域との境界を含む境界領域に、複数のノズル領域のうちの特定のノズル領域のノズルによってドットを配置する、パターン製造装置である。本態様によれば、液体吐出ヘッド内に特性ばらつきがあってもパターンの描画精度を高めることができる。 One aspect of a pattern manufacturing apparatus for achieving the above object comprises a liquid ejection head having a plurality of nozzles for ejecting liquid, a relative movement mechanism for relatively moving the substrate and the liquid ejection head, and at least one processor. , and at least one memory for storing instructions for causing the at least one processor to execute, the liquid ejection head having a plurality of nozzle regions each having a plurality of nozzles, the positions of the nozzles in the direction of relative movement. at least one processor causes the substrate and the liquid ejection head to relatively move to eject the liquid from the plurality of nozzles to form a plurality of dots in the print area on the surface of the substrate are arranged to form a pattern, and dots are arranged by nozzles of a specific nozzle region among a plurality of nozzle regions in a boundary region including a boundary with a non-printing region different from the printing region in the printing region. manufacturing equipment. According to this aspect, it is possible to improve the drawing accuracy of the pattern even if there are variations in characteristics within the liquid ejection head.
 本発明によれば、液体吐出ヘッド内に特性ばらつきがあってもパターンの描画精度を高めることができる。 According to the present invention, pattern drawing accuracy can be improved even if there are variations in characteristics within the liquid ejection head.
図1は、電気部品実装基板の斜視図である。FIG. 1 is a perspective view of an electrical component mounting board. 図2は、電気部品実装基板の立体構造を示す断面図である。FIG. 2 is a cross-sectional view showing the three-dimensional structure of the electrical component mounting board. 図3は、パターン製造装置の全体構成図である。FIG. 3 is an overall configuration diagram of the pattern manufacturing apparatus. 図4は、ヘッドモジュールの斜視図である。FIG. 4 is a perspective view of the head module. 図5は、シリコンダイのノズル面の平面図である。FIG. 5 is a plan view of the nozzle surface of the silicon die. 図6は、パターン製造装置の電気的構成を示す機能ブロック図である。FIG. 6 is a functional block diagram showing the electrical configuration of the pattern manufacturing apparatus. 図7は、パターン製造装置のハードウェアの構成例を示すブロック図である。FIG. 7 is a block diagram showing a hardware configuration example of the pattern manufacturing apparatus. 図8は、印刷領域に対して導電パターンを形成した場合のドット配置を示す図である。FIG. 8 is a diagram showing dot arrangement when a conductive pattern is formed in a print area. 図9は、印刷領域に対して導電パターンを形成した場合のドット配置を示す図である。FIG. 9 is a diagram showing dot arrangement when a conductive pattern is formed in a printing area. 図10は、基材の表面の導電パターンを形成する印刷領域、及び非印刷領域を示す図である。FIG. 10 is a diagram showing a printed area forming a conductive pattern on the surface of a substrate and a non-printed area. 図11は、印刷領域に形成した導電パターンを示す図である。FIG. 11 is a diagram showing a conductive pattern formed in the printing area. 図12は、インクの着弾干渉を説明するための図である。FIG. 12 is a diagram for explaining ink landing interference. 図13は、パターン製造装置によるパターン製造方法の各工程を示すフローチャートである。FIG. 13 is a flow chart showing each step of the pattern manufacturing method by the pattern manufacturing apparatus. 図14は、導電パターンの形成工程の詳細を示すフローチャートである。FIG. 14 is a flow chart showing the details of the conductive pattern forming process. 図15は、パターン製造装置のノズル位置調整方法の各工程を示すフローチャートである。FIG. 15 is a flow chart showing each step of the nozzle position adjustment method of the pattern manufacturing apparatus. 図16は、プリント配線基板に印刷された十字パターンを示す模式図である。FIG. 16 is a schematic diagram showing a cross pattern printed on a printed wiring board. 図17は、パターン製造装置の全体構成図である。FIG. 17 is an overall configuration diagram of the pattern manufacturing apparatus. 図18は、ノズル面の平面透視図である。FIG. 18 is a plan perspective view of the nozzle surface. 図19は、ヘッドモジュールの内部構造を示す断面図である。FIG. 19 is a cross-sectional view showing the internal structure of the head module. 図20は、ノズル面の平面図と平面拡大図である。FIG. 20 is a plan view and an enlarged plan view of the nozzle surface.
 以下、添付図面に従って本発明の好ましい実施形態について詳説する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
 [電気部品実装基板の構成]
 図1は、電気部品実装基板1000の斜視図である。図1に示すように、電気部品実装基板1000は、プリント配線基板1002の部品実装面1004に、IC1006、抵抗器1008、及びコンデンサ1010が実装されたものである。
[Configuration of electrical component mounting board]
FIG. 1 is a perspective view of an electrical component mounting board 1000. FIG. As shown in FIG. 1, the electrical component mounting board 1000 is obtained by mounting an IC 1006 , a resistor 1008 and a capacitor 1010 on a component mounting surface 1004 of a printed wiring board 1002 .
 電気部品実装基板1000には、IC1006に対して導電パターン1020が形成され、抵抗器1008、及びコンデンサ1010に対して絶縁被覆1022が形成される。また、電気部品実装基板1000には、プリント配線基板1002の電気部品が実装されずに露出する電極1009に対して絶縁被覆1022が形成される。 A conductive pattern 1020 is formed on the electric component mounting board 1000 for the IC 1006 , and an insulating coating 1022 is formed for the resistor 1008 and the capacitor 1010 . Also, on the electrical component mounting board 1000, an insulating coating 1022 is formed on the electrodes 1009 exposed without the electrical components of the printed wiring board 1002 being mounted.
 図1には、プリント配線基板1002の一方の面が部品実装面1004とされる態様を例示したが、プリント配線基板1002の他方の面が部品実装面とされてもよいし、プリント配線基板1002の一方の面及び他方の面の両面が部品実装面とされてもよい。 Although FIG. 1 illustrates an embodiment in which one surface of the printed wiring board 1002 is used as the component mounting surface 1004, the other surface of the printed wiring board 1002 may be used as the component mounting surface. Both one surface and the other surface of may be used as component mounting surfaces.
 プリント配線基板1002には、2つのアライメントマーク1005(「位置合わせマーク」の一例)が設けられる。アライメントマーク1005は、プリント配線基板1002の基準となる位置を示すものである。後述するカメラ13(図3参照)によってアライメントマーク1005を撮影することで、プリント配線基板1002、及び後述する液体吐出ヘッド12(図3参照)の相対的な位置ずれ量が検知される。アライメントマーク1005の数、位置、及び形状は、適宜決めることができる。 The printed wiring board 1002 is provided with two alignment marks 1005 (an example of "alignment marks"). The alignment mark 1005 indicates a reference position of the printed wiring board 1002 . By photographing the alignment mark 1005 with a camera 13 (see FIG. 3), which will be described later, the amount of relative positional deviation between the printed wiring board 1002 and the liquid ejection head 12 (see FIG. 3), which will be described later, is detected. The number, positions, and shapes of the alignment marks 1005 can be determined as appropriate.
 IC1006は、半導体集積回路が樹脂等のパッケージに封入された電気部品である。IC1006は、パッケージの外部に電極が露出される。なお、ICはIntegrated Circuitの省略語である。また、電気部品は、電子部品と呼ばれる場合もある。 The IC 1006 is an electric component in which a semiconductor integrated circuit is enclosed in a package such as resin. The IC 1006 has electrodes exposed outside the package. Note that IC is an abbreviation for Integrated Circuit. Also, electrical components are sometimes called electronic components.
 抵抗器1008は、電気抵抗素子を含む。また、抵抗器1008は、集積化された複数の電気抵抗素子が樹脂等のパッケージに封入された抵抗アレイ1008Aを含む。コンデンサ1010は、電解コンデンサ、及びセラミックコンデンサ等の各種のコンデンサを含む。 A resistor 1008 includes an electrical resistance element. Resistor 1008 also includes a resistor array 1008A in which a plurality of integrated electric resistance elements are encapsulated in a package such as resin. Capacitor 1010 includes various capacitors such as electrolytic capacitors and ceramic capacitors.
 プリント配線基板1002に実装される電気部品のうち、IC1006の配置領域は、絶縁インクを用いて絶縁パターン1024(図2参照)が形成され、更に、絶縁パターンの少なくとも一部に対して、導電インクを用いて導電パターン1020が形成される。なお、図1では、絶縁パターン1024の図示が省略されている。 An insulating pattern 1024 (see FIG. 2) is formed using an insulating ink in an arrangement area of the IC 1006 among the electrical components mounted on the printed wiring board 1002, and at least part of the insulating pattern is coated with a conductive ink. is used to form the conductive pattern 1020 . 1, illustration of the insulating pattern 1024 is omitted.
 導電パターン1020は、液体吐出ヘッド12(図3参照)から導電インクを吐出させることで、導電パターン1020の形成領域(「印刷領域」の一例)に導電インクのインクドットを配置し、導電インクのインクドットの連続体を乾燥させ、硬化させることで形成される。 The conductive pattern 1020 is formed by ejecting conductive ink from the liquid ejection head 12 (see FIG. 3), thereby disposing ink dots of the conductive ink in a formation region (an example of a “printing region”) of the conductive pattern 1020 . It is formed by drying and curing a series of ink dots.
 絶縁被覆1022、及び絶縁パターン1024は、不図示の液体吐出ヘッドから絶縁インクを吐出させることで、絶縁被覆1022、及び絶縁パターン1024の形成領域に絶縁インクのインクドットを配置し、絶縁インクのインクドットの連続体を乾燥させ、硬化させることで形成される。 The insulating coating 1022 and the insulating pattern 1024 are formed by ejecting insulating ink from a liquid ejection head (not shown) to arrange ink dots of the insulating ink in the formation regions of the insulating coating 1022 and the insulating pattern 1024 . It is formed by drying and curing a series of dots.
 導電パターン1020は、IC1006が受ける電磁波の抑制、及びIC1006から放出される電磁波の抑制を目的とする電磁波シールドとして機能する。絶縁パターン1024は、導電パターン1020とIC1006との電気的絶縁を確保する絶縁部材、導電パターン1020とIC1006と密着性を確保する接着部材、及び導電パターン1020の下地の平坦性を確保する部材等として機能する。 The conductive pattern 1020 functions as an electromagnetic shield for the purpose of suppressing electromagnetic waves received by the IC 1006 and suppressing electromagnetic waves emitted from the IC 1006 . The insulating pattern 1024 serves as an insulating member for ensuring electrical insulation between the conductive pattern 1020 and the IC 1006, an adhesive member for ensuring adhesion between the conductive pattern 1020 and the IC 1006, and a member for ensuring the flatness of the base of the conductive pattern 1020. Function.
 プリント配線基板1002のうち、電磁波シールドを不要とする電気部品が配置される部品領域の少なくとも一部は、導電パターン1020は形成されず、絶縁被覆1022を用いて被覆される。電磁波シールドを不要とする電気部品は、抵抗器1008、コンデンサ1010の他、ダイオード、コイル、トランス、及びスイッチ等を含む。 At least a portion of the component area of the printed wiring board 1002 where electrical components that do not require electromagnetic wave shielding are arranged is not formed with the conductive pattern 1020 and is covered with an insulating coating 1022 . Electrical parts that do not require electromagnetic shielding include resistors 1008, capacitors 1010, diodes, coils, transformers, switches, and the like.
 また、電極1009が配置される電極領域は、絶縁被覆1022を用いて被覆される。絶縁被覆1022は、導電パターン1020が形成される際に微粒子化された導電インクが、抵抗器1008等へ付着して生じる電気回路の短絡を抑制する。 Also, the electrode area where the electrode 1009 is arranged is covered with an insulating coating 1022 . The insulating coating 1022 suppresses a short circuit of an electric circuit caused by adhesion of finely divided conductive ink to the resistor 1008 or the like when the conductive pattern 1020 is formed.
 なお、IC1006、抵抗器1008及びコンデンサ1010が実装されたプリント配線基板1002は、ICを含む電気部品が実装された「電気回路基板」の一例である。IC1006は、「電磁波シールドの形成の対象とされる電気部品」の一例である。 The printed wiring board 1002 on which the IC 1006, the resistor 1008 and the capacitor 1010 are mounted is an example of an "electric circuit board" on which electric parts including the IC are mounted. The IC 1006 is an example of "an electrical component for which electromagnetic wave shielding is to be formed".
 図2は、電気部品実装基板1000の立体構造を示す断面図である。図2は、図1に示した任意のIC1006について、絶縁パターン1024、及び導電パターン1020が形成された状態の断面を模式的に示している。 FIG. 2 is a cross-sectional view showing the three-dimensional structure of the electrical component mounting board 1000. FIG. FIG. 2 schematically shows a cross section of any IC 1006 shown in FIG. 1 with insulating patterns 1024 and conductive patterns 1020 formed thereon.
 プリント配線基板1002の部品実装面1004に形成される基板側電極1030、及びIC1006の素子側電極1032は、はんだバンプ1034を介して電気接続される。 Board-side electrodes 1030 formed on the component mounting surface 1004 of the printed wiring board 1002 and element-side electrodes 1032 of the IC 1006 are electrically connected via solder bumps 1034 .
 絶縁パターン1024は、IC1006の4つの側面1006Aを囲むIC1006の周囲であり、IC1006の素子側電極1032が形成される裏面1006Bよりもプリント配線基板1002の側に形成される。絶縁パターン1024は、IC1006の側面1006Aと接触する位置に形成されてもよい。絶縁パターン1024は、IC1006の裏面1006B、及びプリント配線基板1002の部品実装面1004の間に形成されてもよい。 The insulating pattern 1024 is around the IC 1006 surrounding the four side surfaces 1006A of the IC 1006, and is formed closer to the printed wiring board 1002 than the back surface 1006B of the IC 1006 on which the element-side electrodes 1032 are formed. Insulating pattern 1024 may be formed at a location that contacts side 1006A of IC 1006 . The insulating pattern 1024 may be formed between the back surface 1006B of the IC 1006 and the component mounting surface 1004 of the printed wiring board 1002 .
 導電パターン1020は、絶縁パターン1024の少なくとも一部に重ねて形成される。図2は、導電パターン1020が絶縁パターン1024の全面に重ねて形成される態様を示している。 The conductive pattern 1020 is formed to overlap at least part of the insulating pattern 1024 . FIG. 2 shows a mode in which the conductive pattern 1020 is formed over the entire surface of the insulating pattern 1024 .
 また、導電パターン1020は、IC1006の側面1006A、及びIC1006の上面1006Cを覆う領域に形成されてもよい。IC1006の側面1006A及びIC1006の上面は、導電パターン1020の下地となる絶縁パターン1024が形成されてもよい。 Also, the conductive pattern 1020 may be formed in a region covering the side surface 1006A of the IC 1006 and the top surface 1006C of the IC 1006. An insulating pattern 1024 underlying the conductive pattern 1020 may be formed on the side surface 1006A of the IC 1006 and the top surface of the IC 1006 .
 IC1006が、側面1006AからIC1006の外側へ突出する電極を備える場合は、少なくとも、全ての電極を被覆する領域に絶縁パターン1024が形成される。 When the IC 1006 has electrodes protruding from the side surface 1006A to the outside of the IC 1006, an insulating pattern 1024 is formed at least in a region covering all the electrodes.
 図2には、導電パターン1020が露出する電気部品実装基板1000を例示したが、導電パターン1020に重ねて保護膜が形成されてもよい。保護膜は、絶縁性を有していてもよい。 Although FIG. 2 illustrates the electrical component mounting board 1000 with the conductive pattern 1020 exposed, a protective film may be formed over the conductive pattern 1020 . The protective film may have insulating properties.
 [パターン製造装置]
 〔全体構成〕
 図3は、パターン製造装置10の全体構成図である。パターン製造装置10は、絶縁パターン1024が形成されたプリント配線基板1002の部品実装面1004に、導電パターン1020を形成する装置である。図3に示すように、パターン製造装置10は、液体吐出ヘッド12、カメラ13、ヘッド支持部材14、搬送装置20、及び基台30を備える。ヘッド支持部材14、及び搬送装置20は、定盤等が適用される基台30の上面に配置される。
[Pattern manufacturing equipment]
〔overall structure〕
FIG. 3 is an overall configuration diagram of the pattern manufacturing apparatus 10. As shown in FIG. The pattern manufacturing apparatus 10 is an apparatus for forming a conductive pattern 1020 on a component mounting surface 1004 of a printed wiring board 1002 on which an insulating pattern 1024 is formed. As shown in FIG. 3, the pattern manufacturing apparatus 10 includes a liquid ejection head 12, a camera 13, a head supporting member 14, a conveying device 20, and a base 30. As shown in FIG. The head supporting member 14 and the conveying device 20 are arranged on the upper surface of a base 30 to which a surface plate or the like is applied.
 液体吐出ヘッド12は、導電インクを吐出する。導電インクは、「導電性液体」の一例であり、導電性材料を溶剤中に分散させたインクである。導電性材料は、例えば銀、又は銅等の金属ナノ粒子である。導電インクにより基材上に形成された導電パターンは、電気を導通させることができる。 The liquid ejection head 12 ejects conductive ink. A conductive ink is an example of a “conductive liquid” and is an ink in which a conductive material is dispersed in a solvent. The conductive material is, for example, metal nanoparticles such as silver or copper. A conductive pattern formed on a substrate by conductive ink can conduct electricity.
 液体吐出ヘッド12は、複数のヘッドモジュール40を備える。図4は、1つのヘッドモジュール40の斜視図である。ヘッドモジュール40は、L型ブラケット42、シリコンダイ44、インク供給路46、インク回収路48、及びフィルタハウジング50を備える。 The liquid ejection head 12 includes a plurality of head modules 40. FIG. 4 is a perspective view of one head module 40. FIG. The head module 40 includes an L-shaped bracket 42 , a silicon die 44 , an ink supply channel 46 , an ink recovery channel 48 and a filter housing 50 .
 L型ブラケット42は、ヘッドモジュール40をヘッド支持部材14に固定するための部材である。 The L-shaped bracket 42 is a member for fixing the head module 40 to the head support member 14 .
 シリコンダイ44は、搬送装置20によって搬送されるプリント配線基板1002と対向するノズル面60を備える。図5は、シリコンダイ44のノズル面60の平面図である。ノズル面60は、X方向に対して角度βの傾きを有するV方向に沿った長辺側の端面と、基板搬送方向に相当するY方向に対して角度αの傾きを持つW方向に沿った短辺側の端面とを有する平行四辺形の平面形状である。 The silicon die 44 has a nozzle surface 60 facing the printed wiring board 1002 conveyed by the conveying device 20 . FIG. 5 is a plan view of the nozzle face 60 of the silicon die 44. FIG. The nozzle surface 60 has an end surface on the long side along the V direction inclined at an angle β with respect to the X direction, and an end surface on the long side along the W direction inclined at an angle α with respect to the Y direction corresponding to the substrate transfer direction. It has a planar shape of a parallelogram having end faces on the short sides.
 ノズル面60は、それぞれ複数のノズル62を有する複数のノズル領域であって、Y方向(「相対移動方向」の一例)におけるノズル62の位置に応じて分割された複数のノズル領域を含む。図5に示す例では、ノズル面60は、上流側ノズル領域64A、及び下流側ノズル領域64Bを含む。 The nozzle surface 60 is a plurality of nozzle regions each having a plurality of nozzles 62, and includes a plurality of nozzle regions divided according to the positions of the nozzles 62 in the Y direction (an example of the "relative movement direction"). In the example shown in FIG. 5, the nozzle face 60 includes an upstream nozzle area 64A and a downstream nozzle area 64B.
 上流側ノズル領域64A、及び下流側ノズル領域64Bには、それぞれV方向に沿う行方向、及びW方向に沿う列方向について、複数のノズル62が2次元マトリクス配置される。図5に示す例では、上流側ノズル領域64Aには1行目から16行目のノズル62が配置され、下流側ノズル領域64Bには17行目から32行目のノズル62が配置される。また、それぞれ1行につき64個のノズル62が配置されている。したがって、ノズル面60には合計で32行×64列=2048個のノズル62が配置されている。 A plurality of nozzles 62 are arranged in a two-dimensional matrix in the row direction along the V direction and the column direction along the W direction, respectively, in the upstream nozzle region 64A and the downstream nozzle region 64B. In the example shown in FIG. 5, the nozzles 62 on the 1st to 16th rows are arranged in the upstream nozzle region 64A, and the nozzles 62 on the 17th to 32nd rows are arranged in the downstream nozzle region 64B. Also, 64 nozzles 62 are arranged for each row. Therefore, a total of 32 rows×64 columns=2048 nozzles 62 are arranged on the nozzle surface 60 .
 2次元マトリクス配置における各ノズル62をX方向に沿って投影した投影ノズル列は、X方向について最大の記録解像度を達成するノズル密度で各ノズル62が概ね等間隔で並ぶ一列のノズル列と等価なものと考えることができる。投影ノズル列を考慮すると、X方向に沿って並ぶ投影ノズルの並び順に、各ノズルにノズル位置を表すノズル番号を対応付けることができる。液体吐出ヘッド12の投影ノズル列は、上流側ノズル領域64Aのノズル62、及び下流側ノズル領域64Bのノズル62が交互に並ぶ。すなわち、上流側ノズル領域64Aのノズル62のノズル番号は奇数となり、下流側ノズル領域64Bのノズル62のノズル番号は偶数となる。 A projected nozzle array obtained by projecting the nozzles 62 in the two-dimensional matrix arrangement along the X direction is equivalent to a single nozzle array in which the nozzles 62 are arranged at approximately equal intervals at a nozzle density that achieves the maximum recording resolution in the X direction. can be thought of as Considering the projected nozzle row, it is possible to associate a nozzle number representing the nozzle position with each nozzle in the order of the projected nozzles arranged along the X direction. In the projection nozzle row of the liquid ejection head 12, the nozzles 62 in the upstream nozzle region 64A and the nozzles 62 in the downstream nozzle region 64B are arranged alternately. That is, the nozzle numbers of the nozzles 62 in the upstream nozzle region 64A are odd numbers, and the nozzle numbers of the nozzles 62 in the downstream nozzle region 64B are even numbers.
 なお、概ね等間隔とは、パターン製造装置10においてパターン形成可能な打滴点として実質的に等間隔であることを意味している。例えば、製造上の誤差、及び着弾干渉による媒体上での液滴の移動の少なくともいずれか一方を考慮して僅かに間隔を異ならせたもの等が含まれている場合も、等間隔の概念に含まれる。投影ノズル列は実質的なノズル列に相当する。 It should be noted that "substantially equal intervals" means that droplet ejection points that can form a pattern in the pattern manufacturing apparatus 10 are substantially equally spaced. For example, the concept of equidistant spacing also applies to cases where the spacing is slightly different in consideration of at least one of manufacturing error and movement of droplets on the medium due to landing interference. included. A projected nozzle array corresponds to a substantial nozzle array.
 液体吐出ヘッド12は、複数のノズル62のそれぞれから導電インクを吐出させる。複数のノズル62は、それぞれ複数のサイズのインクを吐出可能であり、複数のサイズのインクドットを配置可能である。液体吐出ヘッド12の吐出方式は、圧電素子のたわみ変形を利用して導電インクを加圧して、導電インクを吐出させる圧電方式である。液体吐出ヘッド12の吐出方式は、ヒータを用いて導電インクを加熱し、導電インクの膜沸騰現象を利用して導電インクを吐出させるサーマル方式であってもよい。なお、吐出とは、噴射、塗布、及び流下等の意味を含む。 The liquid ejection head 12 ejects conductive ink from each of the plurality of nozzles 62 . The plurality of nozzles 62 can each eject ink of a plurality of sizes, and can arrange ink dots of a plurality of sizes. The ejection method of the liquid ejection head 12 is a piezoelectric method in which the conductive ink is ejected by pressurizing the conductive ink using bending deformation of the piezoelectric element. The ejection method of the liquid ejection head 12 may be a thermal method in which the conductive ink is heated using a heater and the conductive ink is ejected using the film boiling phenomenon of the conductive ink. It should be noted that the term "ejection" includes meanings such as jetting, coating, and flowing down.
 図4の説明に戻り、インク供給路46は、他のヘッドモジュール40のインク供給路46とともに不図示の供給ポンプを介して不図示のインクタンクと接続される。供給ポンプは、インク供給路46の内部のインクに圧力を付与し、インクタンクに貯留されているインクをヘッドモジュール40に供給する。 Returning to the description of FIG. 4, the ink supply path 46 is connected to an ink tank (not shown) through a supply pump (not shown) together with the ink supply path 46 of another head module 40 . The supply pump applies pressure to the ink inside the ink supply path 46 and supplies the ink stored in the ink tank to the head module 40 .
 インク回収路48は、他のヘッドモジュール40のインク回収路48とともに不図示の回収ポンプを介してインクタンクと接続される。回収ポンプは、インク回収路48の内部のインクに圧力を付与し、ヘッドモジュール40に供給されたインクをインクタンクに回収する。 The ink recovery path 48 is connected to the ink tank together with the ink recovery path 48 of the other head module 40 via a recovery pump (not shown). The recovery pump applies pressure to the ink inside the ink recovery path 48 and recovers the ink supplied to the head module 40 to the ink tank.
 フィルタハウジング50は、ヘッドモジュール40の内部のインクに含まれる異物等を除去するためのフィルタを収納する。 The filter housing 50 accommodates a filter for removing foreign substances and the like contained in the ink inside the head module 40 .
 図3の説明に戻り、カメラ13は、プリント配線基板1002に設けられたアライメントマーク1005を撮影するためのものである。カメラ13は、不図示の光源、不図示の撮像素子、及び不図示の観察光学系を備える。カメラ13は、インラインセンサであってもよい。 Returning to the description of FIG. 3, the camera 13 is for photographing the alignment mark 1005 provided on the printed wiring board 1002 . The camera 13 includes a light source (not shown), an imaging element (not shown), and an observation optical system (not shown). Camera 13 may be an in-line sensor.
 ヘッド支持部材14は、液体吐出ヘッド12、及びカメラ13を固定支持する。ヘッド支持部材14は、複数のヘッドモジュール40をそれぞれX方向に並べ、それぞれノズル面60を-Z方向に向けてL型ブラケット42により固定支持する。ここで、ヘッド支持部材14は、基板搬送方向における上流側(-Y方向側)に上流側ノズル領域64Aを、下流側(Y方向側)に下流側ノズル領域64Bを配置して各ヘッドモジュール40を固定支持する。液体吐出ヘッド12は、X方向に複数のヘッドモジュール40が並べられて配置されることで、プリント配線基板1002の全幅を超える長さに沿って複数のノズル62が配置されるライン型ヘッドとなる。 The head support member 14 fixes and supports the liquid ejection head 12 and camera 13 . The head support member 14 aligns a plurality of head modules 40 in the X direction, and fixes and supports them with L-shaped brackets 42 with the nozzle surfaces 60 facing the -Z direction. Here, the head support member 14 arranges the upstream nozzle region 64A on the upstream side (−Y direction side) and the downstream nozzle region 64B on the downstream side (Y direction side) in the substrate transport direction, and each head module 40 fixed support. By arranging a plurality of head modules 40 side by side in the X direction, the liquid ejection head 12 becomes a line type head in which a plurality of nozzles 62 are arranged along a length exceeding the full width of the printed wiring board 1002 . .
 また、ヘッド支持部材14は、観察光学系を-Z方向に向けてカメラ13を固定支持する。カメラ13は、液体吐出ヘッド12よりも基板搬送方向における下流側(Y方向側)に配置されることで、液体吐出ヘッド12で印刷した後にプリント配線基板1002を観察可能である。ヘッド支持部材14は、液体吐出ヘッド12、及びカメラ13の一定の位置関係を保持した状態で、液体吐出ヘッド12のX方向、及びY方向の位置を調整する不図示のヘッド位置調整機構を備える。 Also, the head support member 14 fixes and supports the camera 13 with the observation optical system directed in the -Z direction. The camera 13 can observe the printed wiring board 1002 after printing with the liquid ejection head 12 by being arranged on the downstream side (Y direction side) of the liquid ejection head 12 in the substrate transport direction. The head support member 14 includes a head position adjustment mechanism (not shown) that adjusts the X- and Y-direction positions of the liquid ejection head 12 while maintaining a fixed positional relationship between the liquid ejection head 12 and the camera 13 . .
 搬送装置20(「相対移動機構」の一例)は、Y方向に沿ってプリント配線基板1002を搬送(「相対移動」の一例)させる。搬送装置20は、プリント配線基板1002を支持するテーブル22、及びY方向に沿ってテーブル22を移動させる移動機構24を備える。 The transport device 20 (an example of a "relative movement mechanism") transports the printed wiring board 1002 along the Y direction (an example of a "relative movement"). The transport device 20 includes a table 22 that supports the printed wiring board 1002 and a moving mechanism 24 that moves the table 22 along the Y direction.
 テーブル22は、プリント配線基板1002を固定する固定機構を備える。固定機構は、プリント配線基板1002を機械的に固定してもよし、プリント配線基板1002に対して負圧を付与することで吸着して固定してもよい。 The table 22 has a fixing mechanism for fixing the printed wiring board 1002 . The fixing mechanism may fix the printed wiring board 1002 mechanically, or may fix the printed wiring board 1002 by suction by applying a negative pressure to the printed wiring board 1002 .
 テーブル22は、プリント配線基板1002と液体吐出ヘッド12との間のZ方向の距離を調整する調整機構を備えてもよい。テーブル22は、プリント配線基板1002のX方向の位置を調整する調整機構を備えてもよい。 The table 22 may include an adjustment mechanism that adjusts the distance in the Z direction between the printed wiring board 1002 and the liquid ejection head 12. The table 22 may include an adjustment mechanism that adjusts the position of the printed wiring board 1002 in the X direction.
 移動機構24は、ボールネジ駆動機構、及びベルト駆動機構等がモータの回転軸に連結される。移動機構24は、リニアモータを備えてもよい。 In the moving mechanism 24, a ball screw drive mechanism, a belt drive mechanism, etc. are connected to the rotating shaft of the motor. The moving mechanism 24 may have a linear motor.
 パターン製造装置10は、位置が固定された液体吐出ヘッド12に対して、プリント配線基板1002をY方向に移動させるが、位置が固定されたプリント配線基板1002に対して、液体吐出ヘッド12を-Y方向に移動させてもよい。また、パターン製造装置10は、プリント配線基板1002をY方向に、液体吐出ヘッド12を-Y方向に、両者を移動させてもよい。 The pattern manufacturing apparatus 10 moves the printed wiring board 1002 in the Y direction with respect to the liquid ejection head 12 whose position is fixed. It may be moved in the Y direction. Also, the pattern manufacturing apparatus 10 may move the printed wiring board 1002 in the Y direction and the liquid ejection head 12 in the -Y direction.
 〔パターン製造装置の電気的構成〕
 図6は、パターン製造装置10の電気的構成を示す機能ブロック図である。図6に示すように、パターン製造装置10は、システム制御部70、データ取得部72、データ処理部74、ヘッド制御部76、カメラ制御部77、搬送制御部78、及びメモリ79を備える。
[Electrical Configuration of Pattern Manufacturing Apparatus]
FIG. 6 is a functional block diagram showing the electrical configuration of the pattern manufacturing apparatus 10. As shown in FIG. As shown in FIG. 6 , the pattern manufacturing apparatus 10 includes a system control section 70 , a data acquisition section 72 , a data processing section 74 , a head control section 76 , a camera control section 77 , a transport control section 78 and a memory 79 .
 システム制御部70は、データ取得部72、データ処理部74、ヘッド制御部76、カメラ制御部77,及び搬送制御部78へ指令信号を送信し、パターン製造装置10の動作を統括制御する。 The system control unit 70 transmits command signals to the data acquisition unit 72, the data processing unit 74, the head control unit 76, the camera control unit 77, and the transport control unit 78, and controls the operation of the pattern manufacturing apparatus 10 in an integrated manner.
 データ取得部72は、例えばホストコンピュータ等の不図示の外部装置から、導電パターン1020を形成するための導電パターンデータを含む各種のデータを取得する。 The data acquisition unit 72 acquires various data including conductive pattern data for forming the conductive pattern 1020 from an external device (not shown) such as a host computer.
 データ処理部74は、データ取得部72が取得した各種のデータに対する処理を実施する。データ処理部74は、導電パターンデータから導電インクの吐出データを生成する。すなわち、データ処理部74は、導電パターンデータに対して、ハーフトーン処理等の画像処理を施し、導電パターンに対応するドットの位置、及びドットのサイズが規定される吐出データを生成する。 The data processing unit 74 performs processing on various data acquired by the data acquisition unit 72 . The data processing unit 74 generates conductive ink ejection data from the conductive pattern data. That is, the data processing unit 74 performs image processing such as halftone processing on the conductive pattern data to generate ejection data that defines the positions and sizes of dots corresponding to the conductive pattern.
 ヘッド制御部76は、導電パターンに対応する吐出データに基づいて、液体吐出ヘッド12のノズル62の吐出を制御する。また、ヘッド制御部76は、後述するアライメントマーク1005の読取結果に応じて不図示のヘッド位置調整機構を制御し、事前に液体吐出ヘッド12の位置を調整する。 The head control unit 76 controls ejection from the nozzles 62 of the liquid ejection head 12 based on the ejection data corresponding to the conductive pattern. Further, the head control unit 76 controls a head position adjusting mechanism (not shown) according to the result of reading the alignment mark 1005, which will be described later, to adjust the position of the liquid ejection head 12 in advance.
 カメラ制御部77は、カメラ13の動作を制御する。カメラ制御部77は、例えば、プリント配線基板1002のアライメントマーク1005(図1参照)をカメラ13に読み取らせ、カメラ13から読取結果を取得する。 The camera control unit 77 controls the operation of the camera 13. The camera control unit 77 causes the camera 13 to read, for example, the alignment mark 1005 (see FIG. 1) of the printed wiring board 1002 and obtains the reading result from the camera 13 .
 搬送制御部78は、搬送装置20の動作を制御する。 The transport control unit 78 controls the operation of the transport device 20 .
 メモリ79は、パターン製造装置10の制御に使用される各種のデータ、各種のパラメータ、及び各種のプログラム等が記憶される。システム制御部70は、メモリ79へ記憶される各種のパラメータ等を適用して、パターン製造装置10の各部の制御を実施する。 The memory 79 stores various data, various parameters, various programs, etc. used for controlling the pattern manufacturing apparatus 10 . The system control unit 70 applies various parameters and the like stored in the memory 79 to control each unit of the pattern manufacturing apparatus 10 .
 〔パターン製造装置のハードウェアの構成〕
 図7は、パターン製造装置10のハードウェアの構成例を示すブロック図である。パターン製造装置10は、制御装置80、入力装置92、及びディスプレイ装置94を備える。
[Hardware Configuration of Pattern Manufacturing Device]
FIG. 7 is a block diagram showing a hardware configuration example of the pattern manufacturing apparatus 10. As shown in FIG. Pattern manufacturing apparatus 10 includes a control device 80 , an input device 92 and a display device 94 .
 制御装置80は、コンピュータが適用される。コンピュータは、サーバ、パーソナルコンピュータ、ワークステーション、又はタブレット端末等である。制御装置80は、プロセッサ82、コンピュータ可読媒体84、通信インターフェース86、入出力インターフェース88、及びバス90を備える。 A computer is applied to the control device 80 . The computer is a server, personal computer, workstation, tablet terminal, or the like. Controller 80 includes processor 82 , computer readable media 84 , communication interface 86 , input/output interface 88 , and bus 90 .
 プロセッサ82は、コンピュータ可読媒体84に記憶された命令を実行する。プロセッサ82のハードウェア的な構造は、次に示すような各種のプロセッサ(processor)である。各種のプロセッサには、ソフトウェア(プログラム)を実行して各種の機能部として作用する汎用的なプロセッサであるCPU(Central Processing Unit)、画像処理に特化したプロセッサであるGPU(Graphics Processing Unit)、FPGA(Field Programmable Gate Array)等の製造後に回路構成を変更可能なプロセッサであるPLD(Programmable Logic Device)、ASIC(Application Specific Integrated Circuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路等が含まれる。 Processor 82 executes instructions stored on computer readable medium 84 . The hardware structure of the processor 82 is various processors as follows. Various processors include a CPU (Central Processing Unit), which is a general-purpose processor that executes software (programs) and acts as various functional units, a GPU (Graphics Processing Unit), which is a processor specialized for image processing, A circuit specially designed to execute specific processing such as PLD (Programmable Logic Device), which is a processor whose circuit configuration can be changed after manufacturing such as FPGA (Field Programmable Gate Array), ASIC (Application Specific Integrated Circuit), etc. Also included are dedicated electrical circuits, which are processors with configuration, and the like.
 1つの処理部は、これら各種のプロセッサのうちの1つで構成されていてもよいし、同種又は異種の2つ以上のプロセッサ(例えば、複数のFPGA、又はCPUとFPGAの組み合わせ、あるいはCPUとGPUの組み合わせ)で構成されてもよい。また、複数の機能部を1つのプロセッサで構成してもよい。複数の機能部を1つのプロセッサで構成する例としては、第1に、クライアント又はサーバ等のコンピュータに代表されるように、1つ以上のCPUとソフトウェアの組合せで1つのプロセッサを構成し、このプロセッサが複数の機能部として作用させる形態がある。第2に、SoC(System On Chip)等に代表されるように、複数の機能部を含むシステム全体の機能を1つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。このように、各種の機能部は、ハードウェア的な構造として、上記各種のプロセッサを1つ以上用いて構成される。 One processing unit may be composed of one of these various processors, or two or more processors of the same or different type (for example, a plurality of FPGAs, a combination of CPU and FPGA, or a combination of CPU and GPU). Also, a plurality of functional units may be configured by one processor. As an example of configuring a plurality of functional units in a single processor, first, as represented by a computer such as a client or server, a single processor is configured by combining one or more CPUs and software. There is a form in which a processor acts as a plurality of functional units. Secondly, as typified by SoC (System On Chip), etc., there is a mode of using a processor that realizes the functions of the entire system including multiple functional units with a single IC (Integrated Circuit) chip. In this way, various functional units are configured using one or more of the above various processors as a hardware structure.
 さらに、これらの各種のプロセッサのハードウェア的な構造は、より具体的には、半導体素子等の回路素子を組み合わせた電気回路(circuitry)である。 Furthermore, the hardware structure of these various processors is, more specifically, an electrical circuit that combines circuit elements such as semiconductor elements.
 プロセッサ82は、バス90を介してコンピュータ可読媒体84、通信インターフェース86、及び入出力インターフェース88と接続される。 Processor 82 is coupled to computer-readable media 84 , communication interface 86 , and input/output interface 88 via bus 90 .
 コンピュータ可読媒体84は、プロセッサ82に実行させるための命令を記憶する。コンピュータ可読媒体84は、不図示のRAM(Random Access Memory)、及びROM(Read Only Memory)を含む。また、コンピュータ可読媒体84は、ハードディスク等の磁気記憶媒体、CD(Compact Disc)-ROM等の光ディスク、及びUSB(Universal Serial Bus)メモリ等の半導体メモリを含んでもよい。コンピュータ可読媒体84は、図6に示したメモリ79を兼ねてもよい。 A computer-readable medium 84 stores instructions for processor 82 to execute. The computer-readable medium 84 includes RAM (Random Access Memory) and ROM (Read Only Memory) (not shown). The computer-readable medium 84 may also include a magnetic storage medium such as a hard disk, an optical disk such as a CD (Compact Disc)-ROM, and a semiconductor memory such as a USB (Universal Serial Bus) memory. Computer readable medium 84 may also serve as memory 79 shown in FIG.
 コンピュータ可読媒体84は、1つ以上の命令を含むパターン製造プログラム85を記憶する。パターン製造プログラム85は、コンピュータの読取可能な非一時的な記憶媒体によって提供されてもよい。また、パターン製造プログラム85は、外部のサーバからダウンロード可能なアプリケーションとして提供されてもよい。 A computer readable medium 84 stores a pattern manufacturing program 85 including one or more instructions. The pattern manufacturing program 85 may be provided by a computer-readable non-transitory storage medium. Also, the pattern manufacturing program 85 may be provided as an application that can be downloaded from an external server.
 コンピュータ可読媒体84は、各種のデータ及び各種のパラメータ等を記憶する。プロセッサ82は、コンピュータ可読媒体84のRAMを作業領域としてパターン製造プログラム85を実行し、かつコンピュータ可読媒体84に記憶されたデータ、及びパラメータを使用することで、パターン製造装置10の各種の処理を実行する。 The computer-readable medium 84 stores various data and various parameters. The processor 82 executes the pattern manufacturing program 85 using the RAM of the computer-readable medium 84 as a work area, and uses the data and parameters stored in the computer-readable medium 84 to perform various processes of the pattern manufacturing apparatus 10. Execute.
 通信インターフェース86は、不図示のネットワークを介して制御装置80を外部装置と通信可能に接続する。ネットワークは、例えばLAN(Local Area Network)である。 The communication interface 86 communicably connects the control device 80 with an external device via a network (not shown). The network is, for example, a LAN (Local Area Network).
 入出力インターフェース88は、制御装置80を入力装置92、及びディスプレイ装置94に接続する。入力装置92は、例えば、キーボード、マウス、マルチタッチパネル、その他のポインティングデバイス、又はこれらの組み合わせ等である。ディスプレイ装置94は、液晶ディスプレイ、有機EL(Electro-Luminescence)ディスプレイ、又はプロジェクタ、又はこれらの組み合わせ等である。ディスプレイ装置94には、制御装置80に関連した各種の情報が表示される。 The input/output interface 88 connects the control device 80 to the input device 92 and the display device 94 . The input device 92 is, for example, a keyboard, mouse, multi-touch panel, other pointing device, or a combination thereof. The display device 94 is a liquid crystal display, an organic EL (Electro-Luminescence) display, a projector, or a combination thereof. Various information related to the control device 80 is displayed on the display device 94 .
 [課題の説明]
 近年、電気製品の小型化が進んだ結果、プリント基板上の電気部品は高密度で実装される傾向があり、導電インクを塗布して導電パターンを形成する場合に、特に導電パターンのサイズの精度、及び端部の描画位置精度の確保が課題になっている。
[Description of assignment]
In recent years, as a result of the miniaturization of electrical products, there is a tendency for electrical components on printed circuit boards to be mounted at high density. , and ensuring the drawing position accuracy of the edge is a problem.
 図1に示したプリント配線基板1002に導電パターンを形成する場合、意図しているサイズよりも導電パターンのサイズが大きくなると不要な箇所に導電インクが付着し、電気回路が短絡する可能性が発生する。例えば、導電パターンのサイズの精度は100μmの誤差に収まることを要求される場合がある。導電パターンの形成にインクジェット方式の液体吐出ヘッドを利用する場合、後述するヘッド内の特性ばらつきの影響、及び描画位置調整の誤差の影響により、導電パターンの精度確保は簡単ではない。 When forming a conductive pattern on the printed wiring board 1002 shown in FIG. 1, if the size of the conductive pattern is larger than the intended size, the conductive ink may adhere to unnecessary portions, causing a short circuit. do. For example, the size accuracy of the conductive pattern may be required to be within 100 μm error. When an ink jet liquid ejection head is used to form a conductive pattern, it is not easy to ensure the precision of the conductive pattern due to the effects of variations in characteristics within the head and errors in drawing position adjustment, which will be described later.
 以下において、液体吐出ヘッド12において一定の印刷領域に対して導電パターン形成した場合を考える。 In the following, consider a case where a conductive pattern is formed in a certain print area in the liquid ejection head 12 .
 図8は、理想的な液体吐出ヘッド12において、基材のY方向にサイズSを有する印刷領域に対して導電パターンを形成した場合のドット配置を示す図である。図8では、上流側ノズル領域64Aのノズル62からのインクの吐出によって配置されたインクドットを相対的に濃いハッチングで示し、下流側ノズル領域64Bのノズル62からのインクの吐出によって配置されたインクドットを相対的に薄いハッチングで示している。 FIG. 8 is a diagram showing the dot arrangement in the ideal liquid ejection head 12 when a conductive pattern is formed in a print area having a size S in the Y direction of the base material. In FIG. 8, ink dots arranged by ejecting ink from the nozzles 62 of the upstream nozzle region 64A are indicated by relatively dark hatching, and ink dots arranged by ejecting ink from the nozzles 62 of the downstream nozzle region 64B are shown. Dots are indicated by relatively light hatching.
 前述のように、液体吐出ヘッド12は、投影ノズル列において、上流側ノズル領域64Aのノズル62、及び下流側ノズル領域64Bのノズル62がX方向に交互に並んでいる。したがって、図8に示すように、上流側ノズル領域64Aのノズル62によって配置されたインクドット、及び下流側ノズル領域64Bのノズル62によって配置されたインクドットは、X方向に交互に配置される。また、上流側ノズル領域64Aのノズル62によって配置されたインクドット、及び下流側ノズル領域64Bのノズル62によって配置されたインクドットは、それぞれY方向の位置が一致している。このように、理想的な液体吐出ヘッド12によれば、所望のサイズであるY方向にサイズSの導電パターンを形成することができる。 As described above, in the projection nozzle row of the liquid ejection head 12, the nozzles 62 in the upstream nozzle region 64A and the nozzles 62 in the downstream nozzle region 64B are alternately arranged in the X direction. Therefore, as shown in FIG. 8, the ink dots arranged by the nozzles 62 in the upstream nozzle region 64A and the ink dots arranged by the nozzles 62 in the downstream nozzle region 64B are alternately arranged in the X direction. Also, the ink dots arranged by the nozzles 62 in the upstream nozzle region 64A and the ink dots arranged by the nozzles 62 in the downstream nozzle region 64B are aligned in the Y direction. As described above, according to the ideal liquid ejection head 12, it is possible to form a conductive pattern of size S in the Y direction, which is a desired size.
 しかしながら、液体吐出ヘッド12は、シリコンダイ44の製造上のばらつきにより、ヘッド内の特性にばらつきを有する場合がある。ここで、上流側ノズル領域64A、及び下流側ノズル領域64Bの特性にばらつきを有する液体吐出ヘッド12を用いた例について説明する。なお、議論を簡単にするため、同じノズル領域内の各ノズル62の特性ばらつきについては議論しない。 However, the liquid ejection head 12 may have variations in characteristics within the head due to manufacturing variations in the silicon die 44 . Here, an example using the liquid ejection head 12 having variations in the characteristics of the upstream nozzle region 64A and the downstream nozzle region 64B will be described. To simplify the discussion, the characteristic variation of each nozzle 62 within the same nozzle region will not be discussed.
 図9は、ヘッド内に特性ばらつきを有する液体吐出ヘッド12において、基材のY方向にサイズSを有する印刷領域に対して導電パターンを形成した場合のドット配置を示す図である。図9では、図8と同様に、上流側ノズル領域64Aのノズル62からのインクの吐出によって配置されたインクドットを相対的に濃いハッチングで示し、下流側ノズル領域64Bのノズル62からのインクの吐出によって配置されたインクドットを相対的に薄いハッチングで示している。図9に示す例では、上流側ノズル領域64Aのノズル62によって配置されたインクドット、及び下流側ノズル領域64Bのノズル62によって配置されたインクドットは、Y方向の位置がΔSだけずれており、その結果、所望のサイズであるY方向にサイズSの導電パターンよりもΔSだけ大きい導電パターンが形成されている。 FIG. 9 is a diagram showing a dot arrangement when a conductive pattern is formed in a print area having a size S in the Y direction of the substrate in the liquid ejection head 12 having characteristic variations in the head. In FIG. 9, as in FIG. 8, the ink dots arranged by ejecting ink from the nozzles 62 of the upstream nozzle region 64A are indicated by relatively dark hatching, and the dots of ink ejected from the nozzles 62 of the downstream nozzle region 64B are indicated by relatively dark hatching. Ink dots arranged by ejection are indicated by relatively light hatching. In the example shown in FIG. 9, the positions of the ink dots arranged by the nozzles 62 in the upstream nozzle region 64A and the ink dots arranged by the nozzles 62 in the downstream nozzle region 64B are shifted by ΔS in the Y direction. As a result, a conductive pattern that is larger than the conductive pattern of size S in the Y direction, which is the desired size, by ΔS is formed.
 このような不具合が発生する理由は複数ある。そもそも複数のノズル領域の各ノズル領域によってインク滴速度、及びインク滴体積等の吐出特性が異なるため、着弾にばらつきが発生する。吐出特性を調整することも考えられるが、現実には調整誤差が発生するため吐出特性を揃えることは困難であり、作業の手間も必要となる。 There are multiple reasons why such a problem occurs. In the first place, since ejection characteristics such as ink droplet speed and ink droplet volume are different for each nozzle region of a plurality of nozzle regions, variations in landing occur. Although it is conceivable to adjust the ejection characteristics, in reality, it is difficult to match the ejection characteristics due to the occurrence of adjustment errors, and the work requires time and effort.
 また、基材の移動に対する液体吐出ヘッド12の吐出タイミングの生成は、不図示のエンコーダ等を使用して補正をかけるものの、当然誤差が発生し、物理的に離れた位置にあるノズル62の方が、その誤差が大きくなりやすい。 In addition, although the generation of the ejection timing of the liquid ejection head 12 with respect to the movement of the base material is corrected using an encoder or the like (not shown), an error naturally occurs, and the nozzle 62 located at a physically distant position may However, the error tends to be large.
 さらに、図9に示した例とはずれの形状が異なるが、基材の移動方向と直交する方向(X方向)にずれが発生する場合がある。例えば、基材は搬送時に多少蛇行するため、これも物理的に離れた位置にあるノズルで62の方が、その誤差が大きくなりやすい。 Furthermore, although the shape of the displacement is different from the example shown in FIG. 9, displacement may occur in the direction (X direction) perpendicular to the movement direction of the base material. For example, since the base material meanders to some extent during transportation, the error is likely to be larger for the nozzles 62 which are also located at physically distant positions.
 [実施形態に係る導電パターン]
 本実施形態では、導電パターンの形成精度を確保するために、液体吐出ヘッド12の上流側ノズル領域64A、及び下流側ノズル領域64B(「複数のノズル領域」の一例)のうちのいずれか一方のノズル領域(「特定のノズル領域」の一例)のノズル62によって、導電パターンの境界領域を形成するインクドットを配置する。
[Conductive pattern according to the embodiment]
In the present embodiment, in order to ensure the formation accuracy of the conductive pattern, one of the upstream nozzle region 64A and the downstream nozzle region 64B (an example of “a plurality of nozzle regions”) of the liquid ejection head 12 is The nozzles 62 in a nozzle area (an example of a "specific nozzle area") place ink dots that form the boundary area of the conductive pattern.
 図10は、基材100の表面の導電パターンを形成する印刷領域102、及び印刷領域102とは異なる非印刷領域104を示す図である。印刷領域102は、X方向にS、Y方向にSのサイズを有する一定の面積の領域である。印刷領域102は、非印刷領域104との境界102Aを有する。また、印刷領域102は、境界102Aを含む境界領域102B、及び境界領域102B以外の非境界領域102Cを含む。図10に示す境界領域102Bは、境界102Aからインクドット1つ分(1画素分)だけ内側までの領域である。 FIG. 10 shows a printed area 102 forming a conductive pattern on the surface of the substrate 100 and a non-printed area 104 different from the printed area 102 . The print area 102 is a fixed area area having a size of SX in the X direction and SY in the Y direction. The print area 102 has a boundary 102 A with the non-print area 104 . The print area 102 also includes a border area 102B including the border 102A and a non-border area 102C other than the border area 102B. A boundary area 102B shown in FIG. 10 is an area extending inward by one ink dot (one pixel) from the boundary 102A.
 図11は、パターン製造装置10によって印刷領域102に形成した導電パターンを示す図である。図11では、上流側ノズル領域64Aのノズル62からのインクの吐出によって配置されたインクドット110Aを相対的に濃いハッチングで示し、下流側ノズル領域64Bのノズル62からのインクの吐出によって配置されたインクドット110Bを相対的に薄いハッチングで示している。図11に示すように、印刷領域102の境界領域102Bには、上流側ノズル領域64Aのノズル62によってインクドット110Aが配置されている。一方、非境界領域102Cには、上流側ノズル領域64Aのノズル62、及び下流側ノズル領域64Bのノズル62によってインクドット110A、及びインクドット110Bが配置されている。 FIG. 11 is a diagram showing a conductive pattern formed in the printing area 102 by the pattern manufacturing apparatus 10. FIG. In FIG. 11, the ink dots 110A arranged by ejecting ink from the nozzles 62 of the upstream nozzle region 64A are indicated by relatively dark hatching, and the ink dots 110A arranged by ejecting ink from the nozzles 62 of the downstream nozzle region 64B are shown. Ink dots 110B are indicated by relatively light hatching. As shown in FIG. 11, ink dots 110A are arranged in the boundary area 102B of the print area 102 by the nozzles 62 of the upstream nozzle area 64A. On the other hand, in the non-boundary area 102C, ink dots 110A and 110B are arranged by the nozzles 62 of the upstream nozzle area 64A and the nozzles 62 of the downstream nozzle area 64B.
 このようにインクドットを配置することで、導電パターンのサイズについてノズル領域間の誤差が乗らないので、正確な導電パターンを形成することができる。ここでは、パターンの境界領域102Bを1画素分としたが、ノズル領域間の特性ばらつきによっては2画素分以上であってもよい。また、ここでは境界領域102Bの四方に印刷領域102を設けたが、境界領域102Bは少なくとも一方に設ければよい。 By arranging the ink dots in this way, errors between nozzle regions are not added to the size of the conductive pattern, so an accurate conductive pattern can be formed. Although the pattern boundary region 102B is one pixel here, it may be two pixels or more depending on the characteristic variation between the nozzle regions. Also, here, the printing areas 102 are provided on the four sides of the boundary area 102B, but the boundary area 102B may be provided on at least one side.
 境界領域102Bにインクドットを配置するのは、上流側ノズル領域64A、及び下流側ノズル領域64Bのうちのいずれか一方のノズル領域のノズル62であればよいが、図11に示したように、上流側ノズル領域64Aのノズル62を使用することが望ましい。これにより、基材100の表面でのインクドット間の着弾干渉を抑制することができる。なぜなら、境界領域102Bを形成する上流側ノズル領域64Aのノズル62から吐出されたインクが先に着弾し、その後、下流側ノズル領域64Bから吐出されたインクが周辺に着弾するので、より精度が求められる境界領域102Bのインクが動きにくいためである。 Ink dots are arranged in the boundary region 102B if the nozzles 62 are in either one of the upstream nozzle region 64A and the downstream nozzle region 64B, but as shown in FIG. It is desirable to use the nozzles 62 in the upstream nozzle region 64A. As a result, landing interference between ink dots on the surface of the substrate 100 can be suppressed. This is because the ink ejected from the nozzles 62 of the upstream nozzle area 64A forming the boundary area 102B lands first, and then the ink ejected from the downstream nozzle area 64B lands on the periphery, so more accuracy is required. This is because the ink in the boundary area 102B that is drawn is difficult to move.
 図12は、インクの着弾干渉を説明するための図であり、基材100の側面図である。図12には、基材100の表面に先に着弾したインクドット111A、及びインクドット111Aよりも後に着弾したインクドット111Bを示している。後に着弾したインクドット111Bは、先に着弾したインクドット111Aに引っ張られることでインクドット111Aの方向に移動する。このため、インクドット111Bよりもインクドット111Aの方が着弾位置の精度が高い結果となる。したがって、境界領域102Bに先にインクドットを配置することで、境界領域102Bのインクドットの位置の精度を高めることができる。 FIG. 12 is a diagram for explaining ink landing interference, and is a side view of the substrate 100. FIG. FIG. 12 shows an ink dot 111A that has landed on the surface of the substrate 100 earlier, and an ink dot 111B that has landed after the ink dot 111A. The ink dot 111B that landed later moves in the direction of the ink dot 111A by being pulled by the ink dot 111A that landed earlier. As a result, the ink dot 111A has a higher impact position accuracy than the ink dot 111B. Therefore, by arranging the ink dots in the boundary area 102B first, the accuracy of the positions of the ink dots in the boundary area 102B can be improved.
 この効果をより高めるために、基材100へのアンカー効果を高めるための前処理液であって、導電インクの濡れ広がりを抑制する機能性材料を含んだ前処理液を基材100に予め塗布しておく(「前処理液塗布工程」の一例)ことが望ましい。基材100の表面に着弾したインクと、基材の表面に塗布された前処理液との化学反応によって、インク成分のうち前処理液と反応する成分を素早く凝集させ、着弾干渉をさらに抑制することができる。 In order to further enhance this effect, a pretreatment liquid that is a pretreatment liquid for enhancing the anchor effect to the base material 100 and contains a functional material that suppresses wetting and spreading of the conductive ink is applied to the base material 100 in advance. (an example of the "pretreatment liquid application step"). A chemical reaction between the ink that has landed on the surface of the base material 100 and the pretreatment liquid that has been applied to the surface of the base material causes the components of the ink that react with the pretreatment liquid to quickly coagulate, further suppressing landing interference. be able to.
 なお、図11に示す例では、非境界領域102Cには上流側ノズル領域64Aのノズル62、及び下流側ノズル領域64Bのノズル62によるインクドットが配置されるが、境界領域102Bには上流側ノズル領域64Aのノズル62によるインクドットのみが配置され、下流側ノズル領域64Bのノズル62によるインクドットは配置されない。このため、境界領域102Bのインクドットは、下流側ノズル領域64Bのノズル62によるインクドットの分だけインクドットが少なく、印刷領域102のインクドットの総量は、上流側ノズル領域64Aのノズル62、及び下流側ノズル領域64Bのノズル62でパターンを形成した場合よりも少ない。 In the example shown in FIG. 11, ink dots are arranged by the nozzles 62 of the upstream nozzle region 64A and the nozzles 62 of the downstream nozzle region 64B in the non-boundary region 102C. Only the ink dots by the nozzles 62 in the region 64A are arranged, and the ink dots by the nozzles 62 in the downstream nozzle region 64B are not arranged. Therefore, the ink dots in the boundary region 102B are fewer than the ink dots by the nozzles 62 in the downstream nozzle region 64B, and the total amount of ink dots in the printing region 102 is equal to the nozzles 62 in the upstream nozzle region 64A and less than when the pattern is formed with the nozzles 62 in the downstream nozzle region 64B.
 そこで、非境界領域102Cには、境界領域102Bにおいてインクドットが減った分を補うようにインクドットを配置することが望ましい。具体的には、インク滴種のコントロールにより、インクドットのサイズを大きくする(インク量を増やす)ことが望ましい。インク量を補う位置は、境界領域102Bから少しだけ非境界領域102Cに入った位置(例えば、非境界領域102Cのうち境界領域102Bに隣接する領域)であることが望ましい。このような位置のインク量を増加させることで、増加したインクは、相対的にインク量が少ない境界領域102Bに自然に広がることが想定される。 Therefore, it is desirable to arrange ink dots in the non-boundary area 102C so as to compensate for the decrease in ink dots in the boundary area 102B. Specifically, it is desirable to increase the size of ink dots (increase the amount of ink) by controlling the type of ink droplets. The position for supplementing the ink amount is desirably a position slightly inside the non-boundary region 102C from the boundary region 102B (for example, a region adjacent to the boundary region 102B in the non-boundary region 102C). By increasing the amount of ink at such a position, it is assumed that the increased amount of ink naturally spreads over the boundary area 102B where the amount of ink is relatively small.
 なお、境界領域102Bに配置されたインクドット110Aが導電パターンの境界を形成するためには、互いに隣り合うインクドット110Aが繋がる必要がある。すなわち、互いに隣り合うインクドット110Aが繋がるドットサイズにする必要がある。また、パターン描画精度の効果をより高めるためには、境界領域102Bを形成するインクドットは、同じ滴種(「同一サイズ」の一例)であることが望ましい。これにより、滴種間の特性ばらつきの影響を受けにくくなる。 In order for the ink dots 110A arranged in the boundary region 102B to form the boundary of the conductive pattern, the adjacent ink dots 110A need to be connected. That is, the dot size must be such that the ink dots 110A adjacent to each other are connected. Further, in order to further enhance the effect of pattern drawing accuracy, it is desirable that the ink dots forming the boundary area 102B be of the same droplet type (an example of “same size”). As a result, it is less likely to be affected by variations in characteristics between droplet types.
 本実施形態では、液体吐出ヘッド12の上流側ノズル領域64Aのノズル62のみによって、印刷領域102の境界領域102Bにインクドットを配置したが、境界領域102Bには実質的に上流側ノズル領域64Aのノズル62のみによってインクドットが配置されればよい。すなわち、液体吐出ヘッド12のノズル領域の特性ばらつきがあってもパターンの描画精度を高めることができるという効果を奏する程度に、下流側ノズル領域64Bのノズル62によって境界領域102Bにドットを配置してもよい。例えば、境界領域102Bに配置されるインクドットの90%以上が上流側ノズル領域64Aのノズル62によって配置されたものであればよく、この場合は上流側ノズル領域64Aのノズル62のみによってインクドットが配置されるものに含まれる。 In this embodiment, ink dots are arranged in the boundary region 102B of the printing region 102 only by the nozzles 62 of the upstream nozzle region 64A of the liquid ejection head 12. Ink dots need only be arranged by the nozzles 62 . That is, dots are arranged in the boundary region 102B by the nozzles 62 of the downstream nozzle region 64B to the extent that the pattern drawing accuracy can be improved even if there are variations in the characteristics of the nozzle region of the liquid ejection head 12. good too. For example, 90% or more of the ink dots arranged in the boundary region 102B may be arranged by the nozzles 62 of the upstream nozzle region 64A. In this case, the ink dots are formed only by the nozzles 62 of the upstream nozzle region 64A. Included in what is placed.
 [パターン製造方法]
 図13は、パターン製造装置10によるパターン製造方法の各工程を示すフローチャートである。パターン製造方法は、印刷物の製造方法に相当する。印刷物は電子デバイスを含み、電子デバイスは電気部品実装基板を含む。パターン製造方法は、プロセッサ82がパターン製造プログラム85(図7参照)を実行することで実現される。ここでは、プリント配線基板1002のIC1006の上面を含む印刷領域に導電インクのインクドットを配置して導電パターン1020を形成する例について説明する。
[Pattern manufacturing method]
FIG. 13 is a flow chart showing each process of the pattern manufacturing method by the pattern manufacturing apparatus 10. FIG. The pattern manufacturing method corresponds to a printed matter manufacturing method. A printed matter includes an electronic device, and the electronic device includes an electric component mounting board. The pattern manufacturing method is implemented by the processor 82 executing a pattern manufacturing program 85 (see FIG. 7). Here, an example of forming a conductive pattern 1020 by arranging ink dots of conductive ink in a printing region including the upper surface of the IC 1006 of the printed wiring board 1002 will be described.
 ステップS1では、データ取得部72は、通信インターフェース86を介して不図示の外部装置から導電パターンデータを取得する。データ取得部72は、入力装置92から導電パターンデータを取得してもよいし、コンピュータ可読媒体84から導電パターンデータを取得してもよい。 In step S<b>1 , the data acquisition unit 72 acquires conductive pattern data from an external device (not shown) via the communication interface 86 . The data acquisition unit 72 may acquire conductive pattern data from the input device 92 or may acquire conductive pattern data from the computer-readable medium 84 .
 ステップS2では、データ処理部74は、ステップS1で取得した導電パターンデータから導電インクの吐出データを生成する。 In step S2, the data processing unit 74 generates conductive ink ejection data from the conductive pattern data acquired in step S1.
 最後に、ステップS3(「パターン形成工程」の一例)では、ヘッド制御部76、及び搬送制御部78は、ステップS2で生成した吐出データに従ってプリント配線基板1002の印刷領域に導電パターンを形成する。 Finally, in step S3 (an example of the "pattern forming process"), the head control unit 76 and the transport control unit 78 form a conductive pattern in the print area of the printed wiring board 1002 according to the ejection data generated in step S2.
 図14は、ステップS3の導電パターンの形成工程の詳細を示すフローチャートである。 FIG. 14 is a flowchart showing the details of the conductive pattern forming process in step S3.
 ステップS11では、搬送制御部78は、搬送装置20を制御して、プリント配線基板1002を初期位置に搬送する。初期位置とは、テーブル22(プリント配線基板1002)がヘッド支持部材14(液体吐出ヘッド12)よりも-Y方向側(搬送方向の上流側)に配置される位置である。 At step S11, the transport control unit 78 controls the transport device 20 to transport the printed wiring board 1002 to the initial position. The initial position is a position where the table 22 (printed wiring board 1002) is arranged on the -Y direction side (upstream side in the transport direction) of the head support member 14 (liquid ejection head 12).
 ステップS12では、搬送制御部78は、プリント配線基板1002をY方向に搬送する。 At step S12, the transport control unit 78 transports the printed wiring board 1002 in the Y direction.
 ステップS13では、液体吐出ヘッド12は、Y方向に搬送されるプリント配線基板1002に対して導電インクを吐出する。ここでは、ヘッド制御部76は、上流側ノズル領域64Aのノズル62によって、印刷領域のうち印刷領域とは異なる非印刷領域との境界を含む境界領域にインクドットを配置する。 In step S13, the liquid ejection head 12 ejects conductive ink onto the printed wiring board 1002 that is transported in the Y direction. Here, the head controller 76 uses the nozzles 62 in the upstream nozzle area 64A to arrange ink dots in the boundary area including the boundary between the print area and the non-print area that is different from the print area.
 プリント配線基板1002の全体が液体吐出ヘッド12と対向する位置を通過すると、ステップS14では、搬送制御部78は、搬送装置20を制御して、プリント配線基板1002を-Y方向に搬送し、プリント配線基板1002を再び初期位置に戻す。 When the entire printed wiring board 1002 passes through the position facing the liquid ejection head 12, in step S14, the transport control unit 78 controls the transport device 20 to transport the printed wiring board 1002 in the -Y direction and print. The wiring board 1002 is returned to the initial position again.
 ステップS15では、搬送制御部78は、プリント配線基板1002を再びY方向に搬送する。 At step S15, the transport control unit 78 transports the printed wiring board 1002 again in the Y direction.
 ステップS16では、液体吐出ヘッド12は、Y方向に搬送されるプリント配線基板1002に対してインクを吐出する。ここでは、ヘッド制御部76は、上流側ノズル領域64Aのノズル62、及び下流側ノズル領域64Bのノズル62によって、印刷領域のうち境界領域以外の非境界領域にインクドットを配置する。 In step S16, the liquid ejection head 12 ejects ink onto the printed wiring board 1002 that is transported in the Y direction. Here, the head control unit 76 arranges ink dots in non-boundary areas other than the boundary areas in the print area using the nozzles 62 in the upstream nozzle area 64A and the nozzles 62 in the downstream nozzle area 64B.
 これにより、境界領域に上流側ノズル領域64Aのノズル62によってインクドットを配置し、非境界領域に上流側ノズル領域64Aのノズル62、及び下流側ノズル領域64Bのノズル62によってインクドットを配置することができる。また、一方向(ここではY方向)に複数回搬送することで、先に境界領域にインクドットを配置して、その後に非境界領域にインクドットを配置することができる。 Thus, ink dots are arranged in the boundary area by the nozzles 62 of the upstream nozzle area 64A, and ink dots are arranged in the non-boundary area by the nozzles 62 of the upstream nozzle area 64A and the nozzles 62 of the downstream nozzle area 64B. can be done. Further, by conveying in one direction (the Y direction in this case) a plurality of times, it is possible to first arrange the ink dots in the boundary area and then arrange the ink dots in the non-boundary area.
 なお、ステップS13において、上流側ノズル領域64Aのノズル62によって、印刷領域の全体にインクドットを配置し、ステップS16において、下流側ノズル領域64Bのノズル62によって、印刷領域のうち境界領域以外の非境界領域にインクドットを配置してもよい。また、プリント配線基板1002のY方向の1回の搬送において、上流側ノズル領域64Aのノズル62によって印刷領域の全体にインクドットを配置し、かつ下流側ノズル領域64Bのノズル62によって印刷領域のうち境界領域以外の非境界領域にインクドットを配置して、導電パターンを完成させてもよい。 In step S13, the nozzles 62 of the upstream nozzle area 64A arrange ink dots in the entire printing area, and in step S16, the nozzles 62 of the downstream nozzle area 64B arrange non-border areas of the printing area. Ink dots may be placed in the boundary area. Further, in one transfer of the printed wiring board 1002 in the Y direction, the nozzles 62 of the upstream nozzle region 64A arrange ink dots in the entire printing region, and the nozzles 62 of the downstream nozzle region 64B dispose ink dots in the entire printing region. Ink dots may be placed in non-boundary areas other than the boundary areas to complete the conductive pattern.
 図15は、パターン製造装置10のノズル位置調整方法の各工程を示すフローチャートである。ノズル位置調整方法は、パターン製造装置10の状態が変わり得る場合に実施される。パターン製造装置10の状態が変わり得る場合とは、例えば、液体吐出ヘッド12を取り外した場合、搬送装置20等をメンテナンスした場合、又は液体吐出ヘッド12を長期間放置した場合等である。ノズル位置調整方法は、例えば毎朝1回実施される。 FIG. 15 is a flow chart showing each step of the nozzle position adjustment method of the pattern manufacturing apparatus 10. FIG. The nozzle position adjustment method is performed when the state of the pattern manufacturing apparatus 10 may change. The case where the state of the pattern manufacturing apparatus 10 may change includes, for example, when the liquid ejection head 12 is removed, when maintenance is performed on the conveying device 20 or the like, or when the liquid ejection head 12 is left for a long period of time. The nozzle position adjustment method is performed, for example, once every morning.
 ステップS21では、ヘッド制御部76、及び搬送制御部78は、予め定められたノズル62を使用してプリント配線基板1002の予め定められた位置にノズル位置確認用の十字パターンを印刷する。ここでは、上流側ノズル領域64Aのノズル62を用いて十字パターンを印刷する。図16は、プリント配線基板1002に印刷された十字パターン112を示す模式図である。十字パターン112を印刷する位置は、IC1006の上面であってもよい。 In step S21, the head control unit 76 and the transport control unit 78 use predetermined nozzles 62 to print a cross pattern for checking the nozzle position at predetermined positions on the printed wiring board 1002 . Here, a cross pattern is printed using the nozzles 62 in the upstream nozzle region 64A. FIG. 16 is a schematic diagram showing the cross pattern 112 printed on the printed wiring board 1002. As shown in FIG. The position where the cross pattern 112 is printed may be the upper surface of the IC 1006 .
 図15の説明に戻り、ステップS22(「読取工程」の一例)では、カメラ制御部77は、ステップS3で印刷した十字パターン112、及びプリント配線基板1002のアライメントマーク1005をカメラ13に読み取らせ、読取結果を取得する。 Returning to the description of FIG. 15, in step S22 (an example of a “reading step”), the camera control unit 77 causes the camera 13 to read the cross pattern 112 printed in step S3 and the alignment marks 1005 of the printed wiring board 1002, Get the reading result.
 ステップS23(「調整工程」の一例)では、ヘッド制御部76は、ステップS4で取得した読取結果に基づいて、上流側ノズル領域64Aのノズル62のノズル位置(液体吐出ヘッド12の位置)を調整する。十字パターン112の読取結果から、十字パターン112を印刷したノズル62、及びカメラ13の位置関係がわかり、アライメントマーク1005の読取結果から、ノズル62とアライメントマーク1005の位置関係がわかる。また、アライメントマーク1005と印刷領域の位置関係は導電パターンデータから予めわかっている。したがって、ノズル62が印刷領域の境界領域にインクドットを配置できるようにノズル位置の調整をすることができる。 In step S23 (an example of an "adjustment step"), the head control unit 76 adjusts the nozzle positions of the nozzles 62 in the upstream nozzle region 64A (the positions of the liquid ejection heads 12) based on the reading results obtained in step S4. do. The positional relationship between the nozzle 62 that printed the cross pattern 112 and the camera 13 can be found from the result of reading the cross pattern 112 , and the positional relationship between the nozzle 62 and the alignment mark 1005 can be found from the result of reading the alignment mark 1005 . Also, the positional relationship between the alignment mark 1005 and the printing area is known in advance from the conductive pattern data. Therefore, the nozzle positions can be adjusted so that the nozzles 62 can place ink dots in the boundary area of the print area.
 本実施形態では、上流側ノズル領域64Aのノズル62によって印刷領域の境界領域にインクドットを配置する。したがって、上流側ノズル領域64Aのノズル62のノズル位置調整を優先する。複数のノズル領域において調整しようとすると、平均的な調整になってしまうためである。 In this embodiment, the nozzles 62 of the upstream nozzle area 64A arrange ink dots in the boundary area of the printing area. Therefore, priority is given to the nozzle position adjustment of the nozzles 62 in the upstream nozzle region 64A. This is because if an attempt is made to make adjustments in a plurality of nozzle regions, the adjustment will end up being an average adjustment.
 [パターン製造装置の他の形態]
 図17は、他の形態に係るパターン製造装置10Aの全体構成図である。ここでは、パターン製造装置10Aとパターン製造装置10との違いについて説明し、両者の間で共通する構成要素の説明は適宜省略する。
[Other Forms of Pattern Manufacturing Apparatus]
FIG. 17 is an overall configuration diagram of a pattern manufacturing apparatus 10A according to another embodiment. Here, differences between the pattern manufacturing apparatus 10A and the pattern manufacturing apparatus 10 will be described, and descriptions of common components between the two will be omitted as appropriate.
 パターン製造装置10Aは、液体吐出ヘッド12Bを備える。液体吐出ヘッド12Bは、Y方向の全長が、プリント配線基板1002のY方向の長さに満たない短尺のヘッドである。液体吐出ヘッド12Bは、それぞれ不図示の複数のノズルを有する複数のノズル領域であって、X方向(「相対移動の方向」の一例)におけるノズルの位置に応じて分割された複数のノズル領域を含む。 The pattern manufacturing apparatus 10A includes a liquid ejection head 12B. The liquid ejection head 12B is a short head whose total length in the Y direction is less than the length of the printed wiring board 1002 in the Y direction. The liquid ejection head 12B has a plurality of nozzle regions each having a plurality of nozzles (not shown), which are divided according to the positions of the nozzles in the X direction (an example of the “direction of relative movement”). include.
 複数のノズルの配置は、Y方向に沿う1列配置、又は2列のジグザグ配置等である。Y方向のノズル数は、Y方向の記録解像度に応じて適宜決めればよい。 The arrangement of the plurality of nozzles is, for example, one-row arrangement along the Y direction or two-row zigzag arrangement. The number of nozzles in the Y direction may be appropriately determined according to the printing resolution in the Y direction.
 液体吐出ヘッド12Bは、キャリッジ26によって支持される。キャリッジ26(「相対移動機構」の一例)は、X方向に沿って配置されるガイド28によって、X方向、及び-X方向に移動自在に支持される。X方向へ移動(「相対移動」の一例)する液体吐出ヘッド12Bから導電インクを吐出させることで、プリント配線基板1002には、X方向に導電インクのドット列が形成される。移動機構24によるプリント配線基板1002のY方向の移動と、キャリッジ26による液体吐出ヘッド12BのX方向の移動とを繰り返すことで、プリント配線基板1002の印刷領域に導電パターンを形成することができる。 The liquid ejection head 12B is supported by the carriage 26. A carriage 26 (an example of a “relative movement mechanism”) is movably supported in the X direction and the −X direction by a guide 28 arranged along the X direction. By ejecting conductive ink from the liquid ejection head 12B that moves in the X direction (an example of “relative movement”), a dot row of conductive ink is formed in the X direction on the printed wiring board 1002 . By repeating movement of the printed wiring board 1002 in the Y direction by the movement mechanism 24 and movement of the liquid ejection head 12B in the X direction by the carriage 26, a conductive pattern can be formed in the printing area of the printed wiring board 1002.
 [液体吐出ヘッドの他の形態]
 図18は、液体吐出ヘッド12に適用される他の形態のヘッドモジュール200におけるノズル面202の平面透視図である。なお、図5と共通する部分には共通する符号を付し、詳細な説明は省略する。
[Other Forms of Liquid Ejection Head]
FIG. 18 is a perspective plan view of a nozzle surface 202 in another form of head module 200 applied to the liquid ejection head 12. FIG. Parts common to those in FIG. 5 are denoted by common reference numerals, and detailed description thereof will be omitted.
 ヘッドモジュール200のノズル面202の形状は、ノズル面60の形状と同様である。ヘッドモジュール200のノズル面202は、W方向についてそれぞれ流路が独立した2つのノズル領域である第1のノズル領域204A、及び第2のノズル領域204Bを有している。第1のノズル領域204Aにはノズル206Aが2次元マトリクス配置され、第2のノズル領域204Bにはノズル206Bが2次元マトリクス配置される。第1のノズル領域204Aに属するノズル206Aと、第2のノズル領域204Bに属するノズル206Bとは、同一数であり、同一の配置を有している。 The shape of the nozzle surface 202 of the head module 200 is the same as the shape of the nozzle surface 60. The nozzle surface 202 of the head module 200 has a first nozzle area 204A and a second nozzle area 204B, which are two nozzle areas with independent flow paths in the W direction. Nozzles 206A are arranged in a two-dimensional matrix in the first nozzle region 204A, and nozzles 206B are arranged in a two-dimensional matrix in the second nozzle region 204B. The nozzles 206A belonging to the first nozzle region 204A and the nozzles 206B belonging to the second nozzle region 204B have the same number and the same arrangement.
 ヘッドモジュール200の第1のノズル領域204Aのノズル206A、及び第2のノズル領域204Bのノズル206BをX方向に沿って投影した投影ノズル列は、ノズル206A、及び204Bが交互に並ぶ。すなわち、ノズル206Aのノズル番号は奇数となり、ノズル206Bのノズル番号は偶数となる。 Nozzles 206A and 204B are arranged alternately in a projection nozzle row obtained by projecting nozzles 206A of the first nozzle region 204A and nozzles 206B of the second nozzle region 204B of the head module 200 along the X direction. That is, the nozzle number of the nozzle 206A is odd, and the nozzle number of the nozzle 206B is even.
 第1のノズル領域204Aは、W方向に沿って配置された複数のノズル206Aから構成されるノズル列ごとに供給流路208Aが設けられる。同一のノズル列に属するノズル206Aは、同一の供給流路208Aからインクが供給される。この複数の供給流路208Aは、V方向に沿って設けられる本供給路210Aと連通している。 In the first nozzle region 204A, a supply channel 208A is provided for each nozzle row composed of a plurality of nozzles 206A arranged along the W direction. The nozzles 206A belonging to the same nozzle row are supplied with ink from the same supply channel 208A. The plurality of supply channels 208A communicate with a main supply channel 210A provided along the V direction.
 同様に、第2のノズル領域204Bは、W方向に沿って配置された複数のノズル206Bから構成されるノズル列ごとに供給流路208Bが設けられる。同一のノズル列に属するノズル206Bは、同一の供給流路208Bからインクが供給される。この複数の供給流路208Bは、V方向に沿って設けられる本供給路210Bと連通している。 Similarly, in the second nozzle region 204B, a supply channel 208B is provided for each nozzle row composed of a plurality of nozzles 206B arranged along the W direction. The nozzles 206B belonging to the same nozzle row are supplied with ink from the same supply channel 208B. The plurality of supply channels 208B communicate with the main supply channel 210B provided along the V direction.
 図19は、ヘッドモジュール200の内部構造を示す断面図である。ここでは、第1のノズル領域204Aを示している。ヘッドモジュール200のシリコンダイ44は、ノズル板212、流路構造体214、圧電素子230、振動板232、及び接着層234を備える。 19 is a cross-sectional view showing the internal structure of the head module 200. FIG. Here, the first nozzle region 204A is shown. The silicon die 44 of the head module 200 includes a nozzle plate 212 , a channel structure 214 , piezoelectric elements 230 , a vibration plate 232 and an adhesive layer 234 .
 ノズル板212は、流路構造体214の下面に設けられ、ノズル面202を構成する。ノズル板212には、ノズル206Aが設けられる。 The nozzle plate 212 is provided on the lower surface of the channel structure 214 and constitutes the nozzle surface 202 . The nozzle plate 212 is provided with nozzles 206A.
 流路構造体214には、供給流路208A、個別供給路216、圧力室218、ノズル連通路220、循環個別流路226、循環共通流路228が設けられる。 The channel structure 214 is provided with a supply channel 208A, an individual supply channel 216, a pressure chamber 218, a nozzle communication channel 220, an individual circulation channel 226, and a common circulation channel 228.
 供給流路208Aは、本供給路210A(図18参照)と連通する。個別供給路216は、供給流路208Aと圧力室218とを連通させる。 The supply channel 208A communicates with the main supply channel 210A (see FIG. 18). The individual supply channel 216 allows the supply channel 208A and the pressure chamber 218 to communicate with each other.
 圧力室218は、ノズル206Aに対応して設けられている。圧力室218は、平面形状が概略正方形となっており、対角線上の両隅部の一方に個別供給路216が設けられ、他方にノズル連通路220が設けられる。なお、圧力室218の形状は、正方形に限定されず、多角形、円形、又は楕円形であってもよい。 The pressure chamber 218 is provided corresponding to the nozzle 206A. The pressure chamber 218 has a substantially square planar shape, and the individual supply passage 216 is provided at one of both diagonal corners, and the nozzle communication passage 220 is provided at the other corner. Note that the shape of the pressure chamber 218 is not limited to a square, and may be polygonal, circular, or elliptical.
 ノズル連通路220は、圧力室218とノズル206Aとを連通させる。循環個別流路226は、ノズル連通路220と循環共通流路228とを連通させる。 The nozzle communication passage 220 communicates the pressure chamber 218 and the nozzle 206A. The individual circulation channel 226 allows the nozzle communication channel 220 and the common circulation channel 228 to communicate with each other.
 循環共通流路228は、不図示の本回収路を介してインク回収路48(図4参照)と連通する。 The circulation common channel 228 communicates with the ink recovery channel 48 (see FIG. 4) via the main recovery channel (not shown).
 流路構造体214の上面には、振動板232が設けられる。圧電素子230は、接着層234を介して振動板232の上面に配置される。 A vibration plate 232 is provided on the upper surface of the flow path structure 214 . The piezoelectric element 230 is arranged on the upper surface of the vibration plate 232 with an adhesive layer 234 interposed therebetween.
 圧電素子230は、対応するノズル206Aからインクを吐出させるためのアクチュエータである。圧電素子230は、上部電極(個別電極)236、圧電体層238、及び下部電極(共通電極)240が積層された積層構造を有する。上部電極236は、各圧力室218の形状に対応してパターニングされた個別電極となっており、圧力室218毎に、それぞれ圧電素子230が設けられている。 The piezoelectric element 230 is an actuator for ejecting ink from the corresponding nozzle 206A. The piezoelectric element 230 has a laminated structure in which an upper electrode (individual electrode) 236, a piezoelectric layer 238, and a lower electrode (common electrode) 240 are laminated. The upper electrode 236 is an individual electrode patterned in accordance with the shape of each pressure chamber 218 , and the piezoelectric element 230 is provided for each pressure chamber 218 .
 このように構成されるヘッドモジュール200において、不図示のインクタンクからインク供給路46(図4参照)を介して供給されるインクは、本供給路210A、及び供給流路208Aを介して圧力室218に供給される。対応する圧力室218に設けられた圧電素子230の上部電極236に駆動電圧が印加されると、圧電素子230、及び振動板232が変形して圧力室218の容積が変化し、これに伴う圧力変化によりノズル連通路220を介してノズル206Aからインクが吐出される。 In the head module 200 configured as described above, ink supplied from an ink tank (not shown) through the ink supply channel 46 (see FIG. 4) is supplied to the pressure chamber through the main supply channel 210A and the supply channel 208A. 218. When a drive voltage is applied to the upper electrode 236 of the piezoelectric element 230 provided in the corresponding pressure chamber 218, the piezoelectric element 230 and the vibration plate 232 are deformed to change the volume of the pressure chamber 218, resulting in a pressure increase. Ink is ejected from the nozzle 206A through the nozzle communication path 220 due to the change.
 ノズル206Aから吐出されなかったインクは、循環個別流路226、循環共通流路228、本回収路、及びインク回収路48を介して不図示のインクタンクへ回収される。これにより、非吐出時におけるノズル206Aのインクの増粘が防止される。 Ink not ejected from the nozzles 206A is recovered to an ink tank (not shown) through the individual circulation channel 226, the common circulation channel 228, the main recovery channel, and the ink recovery channel 48. This prevents thickening of the ink from the nozzle 206A during non-ejection.
 ここでは、第1のノズル領域204Aについて説明したが、第2のノズル領域204Bにおける内部構造、及び動作も第1のノズル領域204Aと同様である。 Although the first nozzle region 204A has been described here, the internal structure and operation of the second nozzle region 204B are similar to those of the first nozzle region 204A.
 ヘッドモジュール200を有する液体吐出ヘッド12において、第1のノズル領域204Aのノズル206A、又は第2のノズル領域204Bのノズル206Bによって基材の境界領域にインクドットを配置することで、液体吐出ヘッド内に流路構造による特性ばらつきがあっても境界の描画精度を高めることができる。 In the liquid ejection head 12 having the head module 200, the nozzles 206A of the first nozzle area 204A or the nozzles 206B of the second nozzle area 204B arrange ink dots in the boundary area of the substrate, thereby Even if there are variations in characteristics due to the channel structure, the boundary drawing accuracy can be improved.
 図20は、液体吐出ヘッド12に適用される他の形態のヘッドモジュール300におけるノズル面302の平面図と平面拡大図である。ヘッドモジュール300のノズル面302は、第1のノズル領域304A、及び第2のノズル領域304Bを有している。第1のノズル領域304Aにはノズル306AがX方向に沿って間隔Lで一列に配置され、第2のノズル領域304Bにはノズル306BがX方向に沿って間隔Lで一列に配置される。ノズル306Aとノズル306Bとは、X方向にL/2だけずれた位置に配置されたジグザグ配置となっている。 20A and 20B are a plan view and an enlarged plan view of a nozzle surface 302 in another form of head module 300 applied to the liquid ejection head 12. FIG. The nozzle surface 302 of the head module 300 has a first nozzle area 304A and a second nozzle area 304B. Nozzles 306A are arranged in a row at intervals L along the X direction in the first nozzle region 304A, and nozzles 306B are arranged in a row at intervals L along the X direction in the second nozzle region 304B. The nozzles 306A and 306B are arranged in a zigzag arrangement at positions shifted by L/2 in the X direction.
 ヘッドモジュール300の第1のノズル領域304Aのノズル306A、及び第2のノズル領域304Bのノズル306BをX方向に沿って投影した投影ノズル列は、ノズル306A、及び304Bが交互に並ぶ。 Nozzles 306A and 304B are arranged alternately in a projected nozzle row obtained by projecting nozzles 306A of the first nozzle region 304A and nozzles 306B of the second nozzle region 304B of the head module 300 along the X direction.
 ヘッドモジュール300を有する液体吐出ヘッド12において、第1のノズル領域304Aのノズル306A、又は第2のノズル領域304Bのノズル306Bによって基材の境界領域にインクドットを配置することで、ノズル領域間に特性ばらつきがあっても境界の描画精度を高めることができる。 In the liquid ejection head 12 having the head module 300, the nozzles 306A of the first nozzle region 304A or the nozzles 306B of the second nozzle region 304B arrange ink dots in the boundary region of the base material, thereby Even if there are variations in characteristics, it is possible to improve the drawing accuracy of the boundary.
 ここまでは、相対移動の方向におけるノズルの位置に応じて分割された2つのノズル領域を含む液体吐出ヘッド12において、一方のノズル領域のノズルで境界領域にインクドットを配置する例を説明したが、ノズル特性に応じて分割された3つ以上のノズル領域を含む液体吐出ヘッドにおいて、いずれかのノズル領域のノズルで境界領域にインクドットを配置してもよい。 So far, an example has been described in which the liquid ejection head 12 includes two nozzle regions divided according to the position of the nozzles in the direction of relative movement, and ink dots are arranged in the boundary region with the nozzles of one of the nozzle regions. In a liquid ejection head including three or more nozzle regions divided according to nozzle characteristics, ink dots may be arranged in boundary regions by nozzles in any of the nozzle regions.
 [その他]
 ここまで導電パターン1020の形成について説明したが、本実施形態は、絶縁パターン1024の形成に適用することができる。さらに、本実施形態は、導電インク、及び絶縁インクに限定されず、液体吐出ヘッドを用いた各種パターンの形成に対して応用することができる。
[others]
Although the formation of the conductive pattern 1020 has been described so far, the present embodiment can be applied to the formation of the insulating pattern 1024 . Furthermore, the present embodiment is not limited to conductive ink and insulating ink, and can be applied to formation of various patterns using a liquid ejection head.
 本発明の技術的範囲は、上記の実施形態に記載の範囲には限定されない。各実施形態における構成等は、本発明の趣旨を逸脱しない範囲で、各実施形態間で適宜組み合わせることができる。 The technical scope of the present invention is not limited to the scope described in the above embodiments. Configurations and the like in each embodiment can be appropriately combined between each embodiment without departing from the gist of the present invention.
10、10A…パターン製造装置
12、12B…液体吐出ヘッド
13…カメラ
14…ヘッド支持部材
20…搬送装置
22…テーブル
24…移動機構
26…キャリッジ
28…ガイド
30…基台
40…ヘッドモジュール
42…L型ブラケット
44…シリコンダイ
46…インク供給路
48…インク回収路
50…フィルタハウジング
60…ノズル面
62…ノズル
64A…上流側ノズル領域
64B…下流側ノズル領域
70…システム制御部
72…データ取得部
74…データ処理部
76…ヘッド制御部
77…カメラ制御部
78…搬送制御部
79…メモリ
80…制御装置
82…プロセッサ
84…コンピュータ可読媒体
85…パターン製造プログラム
86…通信インターフェース
88…入出力インターフェース
90…バス
92…入力装置
94…ディスプレイ装置
100…基材
102…印刷領域
102A…境界
102B…境界領域
102C…非境界領域
104…非印刷領域
110A、110B、111A、111B…インクドット
112…十字パターン
200…ヘッドモジュール
202…ノズル面
204A…第1のノズル領域
204B…第2のノズル領域
206A、206B…ノズル
208A、208B…供給流路
210A、210B…本供給路
212…ノズル板
214…流路構造体
216…個別供給路
218…圧力室
220…ノズル連通路
226…循環個別流路
228…循環共通流路
230…圧電素子
232…振動板
234…接着層
236…上部電極
238…圧電体層
240…下部電極
300…ヘッドモジュール
302…ノズル面
304A…第1のノズル領域
304B…第2のノズル領域
306A、306B…ノズル
1000…電気部品実装基板
1002…プリント配線基板
1004…部品実装面
1005…アライメントマーク
1006…IC
1006A…側面
1006B…裏面
1006C…上面
1008…抵抗器
1008A…抵抗アレイ
1009…電極
1010…コンデンサ
1020…導電パターン
1022…絶縁被覆
1024…絶縁パターン
1030…基板側電極
1032…素子側電極
1034…はんだバンプ
S1~S3…パターン製造方法のステップ
S11~S16…導電パターンの形成工程の詳細なステップ
S21~S23…ノズル位置調整方法のステップ
DESCRIPTION OF SYMBOLS 10, 10A... Pattern manufacturing apparatus 12, 12B... Liquid discharge head 13... Camera 14... Head supporting member 20... Conveying device 22... Table 24... Moving mechanism 26... Carriage 28... Guide 30... Base 40... Head module 42... L Mold bracket 44 Silicon die 46 Ink supply path 48 Ink recovery path 50 Filter housing 60 Nozzle surface 62 Nozzle 64A Upstream nozzle region 64B Downstream nozzle region 70 System control unit 72 Data acquisition unit 74 Data processing unit 76 Head control unit 77 Camera control unit 78 Transport control unit 79 Memory 80 Control device 82 Processor 84 Computer readable medium 85 Pattern manufacturing program 86 Communication interface 88 Input/output interface 90 Bus 92 Input device 94 Display device 100 Base material 102 Print area 102A Boundary area 102B Border area 102C Non-boundary area 104 Non-print area 110A, 110B, 111A, 111B Ink dot 112 Cross pattern 200 Head module 202 Nozzle surface 204A First nozzle region 204B Second nozzle regions 206A, 206B Nozzles 208A, 208B Supply channels 210A, 210B Main supply channel 212 Nozzle plate 214 Channel structure 216 Individual supply channel 218 Pressure chamber 220 Nozzle communication channel 226 Individual circulation channel 228 Common circulation channel 230 Piezoelectric element 232 Diaphragm 234 Adhesive layer 236 Upper electrode 238 Piezoelectric layer 240 Lower electrode 300... Head module 302... Nozzle surface 304A... First nozzle area 304B... Second nozzle area 306A, 306B... Nozzle 1000... Electric component mounting board 1002... Printed wiring board 1004... Component mounting surface 1005... Alignment mark 1006... IC
1006A side surface 1006B rear surface 1006C upper surface 1008 resistor 1008A resistor array 1009 electrode 1010 capacitor 1020 conductive pattern 1022 insulating coating 1024 insulating pattern 1030 board-side electrode 1032 element-side electrode 1034 solder bump S1 ∼S3 Steps S11 to S16 of the pattern manufacturing method Detailed steps S21 to S23 of the conductive pattern forming process Steps of the nozzle position adjusting method

Claims (15)

  1.  液体を吐出する複数のノズルを有する液体吐出ヘッドと、
     基材及び前記液体吐出ヘッドを相対移動させる相対移動機構と、
     を備えるパターン製造装置を用いたパターン製造方法であって、
     前記液体吐出ヘッドは、それぞれ複数のノズルを有する複数のノズル領域であって、前記相対移動の方向におけるノズルの位置に応じて分割された複数のノズル領域を含み、
     前記基材及び前記液体吐出ヘッドを相対移動させて前記複数のノズルから液体を吐出させ、前記基材の表面の印刷領域に複数のドットを配置してパターンを形成するパターン形成工程を備え、
     前記パターン形成工程は、前記印刷領域のうち前記印刷領域とは異なる非印刷領域との境界を含む境界領域に、前記複数のノズル領域のうちの特定のノズル領域のノズルによってドットを配置する、
     パターン製造方法。
    a liquid ejection head having a plurality of nozzles for ejecting liquid;
    a relative movement mechanism for relatively moving the substrate and the liquid ejection head;
    A pattern manufacturing method using a pattern manufacturing apparatus comprising
    the liquid ejection head includes a plurality of nozzle regions each having a plurality of nozzles, the plurality of nozzle regions divided according to the positions of the nozzles in the direction of the relative movement;
    a pattern forming step of forming a pattern by arranging a plurality of dots in a printing region on the surface of the base material by relatively moving the base material and the liquid discharge head to discharge the liquid from the plurality of nozzles;
    In the pattern forming step, dots are arranged by nozzles of a specific nozzle area among the plurality of nozzle areas in a boundary area including a boundary between the print area and a non-print area different from the print area.
    Pattern manufacturing method.
  2.  前記パターン形成工程は、前記印刷領域のうち前記境界領域以外の非境界領域に、前記複数のノズル領域のノズルによってドットを配置する、
     請求項1に記載のパターン製造方法。
    In the pattern forming step, dots are arranged by nozzles of the plurality of nozzle regions in a non-boundary region other than the boundary region in the printing region.
    The pattern manufacturing method according to claim 1.
  3.  前記パターン形成工程は、前記特定のノズル領域のノズルによって前記境界領域にドットを配置してから前記複数のノズル領域のノズルによって前記非境界領域にドットを配置する、
     請求項2に記載のパターン製造方法。
    In the pattern forming step, the nozzles in the specific nozzle area arrange dots in the boundary area, and then the nozzles in the plurality of nozzle areas arrange dots in the non-boundary area.
    The pattern manufacturing method according to claim 2.
  4.  前記特定のノズル領域は、前記相対移動の上流側に配置された上流側ノズル領域である、
     請求項1から3のいずれか1項に記載のパターン製造方法。
    The specific nozzle area is an upstream nozzle area arranged upstream of the relative movement,
    The pattern manufacturing method according to any one of claims 1 to 3.
  5.  前記パターン形成工程は、前記境界領域以外の領域に配置するドットを増加させる、
     請求項1から4のいずれか1項に記載のパターン製造方法。
    The pattern forming step increases the number of dots arranged in areas other than the boundary area.
    The pattern manufacturing method according to any one of claims 1 to 4.
  6.  前記パターン形成工程は、前記印刷領域のうち前記境界領域に隣接する領域に、前記境界領域に配置するドットのサイズよりも相対的に大きいサイズのドットを配置する、
     請求項1から5のいずれか1項に記載のパターン製造方法。
    In the pattern forming step, dots having a size relatively larger than the size of dots to be arranged in the boundary area are arranged in an area adjacent to the boundary area in the printing area.
    The pattern manufacturing method according to any one of claims 1 to 5.
  7.  前記パターン形成工程は、前記基材及び前記液体吐出ヘッドの特定の方向の複数回の相対移動によって前記パターンを形成する、
     請求項1から6のいずれか1項に記載のパターン製造方法。
    In the pattern forming step, the pattern is formed by relatively moving the substrate and the liquid ejection head multiple times in a specific direction.
    The pattern manufacturing method according to any one of claims 1 to 6.
  8.  前記パターン形成工程は、前記境界領域に、前記特定のノズル領域のノズルのみによってドットを配置する、
     請求項1から7のいずれか1項に記載のパターン製造方法。
    In the pattern forming step, dots are arranged in the boundary area only by the nozzles of the specific nozzle area.
    The pattern manufacturing method according to any one of claims 1 to 7.
  9.  前記複数のノズルは、それぞれ複数のサイズのドットを配置可能であり、
     前記パターン形成工程は、前記境界領域に同一サイズのドットを配置する、
     請求項1から8のいずれか1項に記載のパターン製造方法。
    The plurality of nozzles can each arrange dots of a plurality of sizes,
    In the pattern forming step, dots of the same size are arranged in the boundary area.
    The pattern manufacturing method according to any one of claims 1 to 8.
  10.  前記基材は、位置合わせマークを備え、
     前記位置合わせマークを読み取る読取工程と、
     前記読取工程における前記位置合わせマークの読取結果を用いて前記特定のノズル領域のノズルの着弾位置を調整する調整工程と、
     を備える請求項1から9のいずれか1項に記載のパターン製造方法。
    the substrate comprises an alignment mark;
    a reading step of reading the alignment mark;
    an adjustment step of adjusting the landing positions of the nozzles in the specific nozzle region using the reading result of the alignment mark in the reading step;
    The pattern manufacturing method according to any one of claims 1 to 9, comprising:
  11.  前記基材に対して液体の濡れ広がりを抑制する機能性材料を含んだ前処理液を予め塗布する前処理液塗布工程を備える、
     を備える請求項1から10のいずれか1項に記載のパターン製造方法。
    A pretreatment liquid application step of applying in advance a pretreatment liquid containing a functional material that suppresses wetting and spreading of the liquid on the base material,
    The pattern manufacturing method according to any one of claims 1 to 10, comprising:
  12.  前記基材は、電気部品が実装された電気回路基板であり、
     前記印刷領域は、電磁波シールドの形成の対象とされる前記電気部品を含み、
     前記液体は導電性液体である、
     請求項1から11のいずれか1項に記載のパターン製造方法。
    The base material is an electric circuit board on which electric components are mounted,
    the printed area includes the electrical component targeted for formation of an electromagnetic shield;
    the liquid is a conductive liquid;
    The pattern manufacturing method according to any one of claims 1 to 11.
  13.  請求項1から12のいずれか1項に記載のパターン製造方法をコンピュータに実行させるためのプログラム。 A program for causing a computer to execute the pattern manufacturing method according to any one of claims 1 to 12.
  14.  非一時的かつコンピュータ読取可能な記録媒体であって、請求項13に記載のプログラムが記録された記録媒体。 A non-temporary computer-readable recording medium in which the program according to claim 13 is recorded.
  15.  液体を吐出する複数のノズルを有する液体吐出ヘッドと、
     基材及び前記液体吐出ヘッドを相対移動させる相対移動機構と、
     少なくとも1つのプロセッサと、
     前記少なくとも1つのプロセッサに実行させるための命令を記憶する少なくとも1つのメモリと、
     を備え、
     前記液体吐出ヘッドは、それぞれ複数のノズルを有する複数のノズル領域であって、前記相対移動の方向におけるノズルの位置に応じて分割された複数のノズル領域を含み、
     前記少なくとも1つのプロセッサは、
     前記基材及び前記液体吐出ヘッドを相対移動させて前記複数のノズルから液体を吐出させ、前記基材の表面の印刷領域に複数のドットを配置してパターンを形成し、
     前記印刷領域のうち前記印刷領域とは異なる非印刷領域との境界を含む境界領域に、前記複数のノズル領域のうちの特定のノズル領域のノズルによってドットを配置する、
     パターン製造装置。
    a liquid ejection head having a plurality of nozzles for ejecting liquid;
    a relative movement mechanism for relatively moving the substrate and the liquid ejection head;
    at least one processor;
    at least one memory storing instructions for execution by the at least one processor;
    with
    the liquid ejection head includes a plurality of nozzle regions each having a plurality of nozzles, the plurality of nozzle regions divided according to the positions of the nozzles in the direction of the relative movement;
    The at least one processor
    forming a pattern by arranging a plurality of dots in a printing region on the surface of the base material by moving the base material and the liquid discharge head relative to each other to discharge the liquid from the plurality of nozzles;
    arranging dots by nozzles of a specific nozzle area among the plurality of nozzle areas in a boundary area including a boundary between the print area and a non-print area different from the print area;
    Pattern manufacturing equipment.
PCT/JP2022/027491 2021-09-24 2022-07-13 Pattern manufacturing method, program, and pattern manufacturing device WO2023047768A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021155805 2021-09-24
JP2021-155805 2021-09-24

Publications (1)

Publication Number Publication Date
WO2023047768A1 true WO2023047768A1 (en) 2023-03-30

Family

ID=85720454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027491 WO2023047768A1 (en) 2021-09-24 2022-07-13 Pattern manufacturing method, program, and pattern manufacturing device

Country Status (2)

Country Link
TW (1) TW202313362A (en)
WO (1) WO2023047768A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001286812A (en) * 2000-04-07 2001-10-16 Dainippon Printing Co Ltd Application method of coloring agent
JP2007001045A (en) * 2005-06-21 2007-01-11 Fujifilm Holdings Corp Image recorder and recording method
JP2009241563A (en) * 2008-03-31 2009-10-22 Fujifilm Corp Method for determining landing position of processing liquid ejection nozzle and apparatus for determining landing position of processing liquid ejection nozzle
JP2014136319A (en) * 2013-01-15 2014-07-28 Fujifilm Corp Method for detecting position displacement of recording head, and image recording device
JP2017104854A (en) * 2015-11-26 2017-06-15 東レエンジニアリング株式会社 Film pattern drawing method, coating film base material and coating applicator
JP2018183881A (en) * 2017-04-24 2018-11-22 ブラザー工業株式会社 Liquid discharge device and ink jet printer
JP2021137691A (en) * 2020-03-02 2021-09-16 住友重機械工業株式会社 Ink application device, control device of ink application device and ink application method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001286812A (en) * 2000-04-07 2001-10-16 Dainippon Printing Co Ltd Application method of coloring agent
JP2007001045A (en) * 2005-06-21 2007-01-11 Fujifilm Holdings Corp Image recorder and recording method
JP2009241563A (en) * 2008-03-31 2009-10-22 Fujifilm Corp Method for determining landing position of processing liquid ejection nozzle and apparatus for determining landing position of processing liquid ejection nozzle
JP2014136319A (en) * 2013-01-15 2014-07-28 Fujifilm Corp Method for detecting position displacement of recording head, and image recording device
JP2017104854A (en) * 2015-11-26 2017-06-15 東レエンジニアリング株式会社 Film pattern drawing method, coating film base material and coating applicator
JP2018183881A (en) * 2017-04-24 2018-11-22 ブラザー工業株式会社 Liquid discharge device and ink jet printer
JP2021137691A (en) * 2020-03-02 2021-09-16 住友重機械工業株式会社 Ink application device, control device of ink application device and ink application method

Also Published As

Publication number Publication date
TW202313362A (en) 2023-04-01

Similar Documents

Publication Publication Date Title
WO2002001929A2 (en) Jet print apparatus and method for printed circuit board manufacturing
JP4168728B2 (en) Method for correcting dot position of droplet discharge device, droplet discharge method, and electro-optical device manufacturing method
JP4661840B2 (en) Alignment mask and dot position recognition method
WO2023047768A1 (en) Pattern manufacturing method, program, and pattern manufacturing device
TWI723612B (en) Pattern forming apparatus, pattern forming method and ejection data generation method
EP3556543B1 (en) Data conversion device and lamination shaping system
WO2023032463A1 (en) Electric component mounting substrate manufacturing method, liquid discharge device, and electric component mounting substrate
WO2023095521A1 (en) Liquid ejection device, ejection state evaluation method, information processing device, and method for producing printed board
WO2023182034A1 (en) Printing data generation device, printing data generation method and program, printing system, and method for manufacturing three-dimensional structure
TWI760131B (en) Pattern forming apparatus, pattern forming method, and discharge data generating method
WO2023135946A1 (en) Pattern data generation device, pattern data generation method, program, liquid discharge device, and functional pattern formation board manufacturing system
WO2023047769A1 (en) Patterned substrate production method and liquid discharge device
JP2006240296A (en) Liquid ejecting head, its manufacturing method and image forming apparatus
WO2023047770A1 (en) Pattern formation substrate production method and liquid discharge device
JP4600363B2 (en) Liquid drawing method
WO2023135947A1 (en) Method for manufacturing substrate having functional pattern, device for forming functional pattern, and program
JP3947838B2 (en) Partition member forming method, substrate, liquid crystal display device and manufacturing method thereof, and electronic apparatus
TW202321047A (en) Printing device, method for controlling printing device, program and printing system
JP6713570B2 (en) Inkjet device, inkjet printing method, and print processing program
JP2023044200A (en) Pattern formation device, pattern formation method and method for generating discharge data
TW202408689A (en) Printing data generating device, printing system, printing data generating method, three-dimensional structure manufacturing method, program and recording medium
JP2010135499A (en) Device and method for forming wire
JP2011136298A (en) Method of adjusting inkjet head
JP2010197528A (en) Ink-jet coating apparatus and apparatus for producing liquid crystal display element
JP2014100636A (en) Method for manufacturing substrate, and device for manufacturing substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872524

Country of ref document: EP

Kind code of ref document: A1