WO2023047499A1 - 基板処理装置、半導体装置の製造方法およびプログラム - Google Patents

基板処理装置、半導体装置の製造方法およびプログラム Download PDF

Info

Publication number
WO2023047499A1
WO2023047499A1 PCT/JP2021/034903 JP2021034903W WO2023047499A1 WO 2023047499 A1 WO2023047499 A1 WO 2023047499A1 JP 2021034903 W JP2021034903 W JP 2021034903W WO 2023047499 A1 WO2023047499 A1 WO 2023047499A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
boat
substrates
heating
chamber
Prior art date
Application number
PCT/JP2021/034903
Other languages
English (en)
French (fr)
Inventor
大幾 木本
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to CN202180101006.6A priority Critical patent/CN117716480A/zh
Priority to KR1020247008956A priority patent/KR20240043805A/ko
Priority to PCT/JP2021/034903 priority patent/WO2023047499A1/ja
Priority to TW111120151A priority patent/TW202314901A/zh
Publication of WO2023047499A1 publication Critical patent/WO2023047499A1/ja
Priority to US18/612,218 priority patent/US20240234178A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67721Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations the substrates to be conveyed not being semiconductor wafers or large planar substrates, e.g. chips, lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68742Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a lifting arrangement, e.g. lift pins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68785Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the mechanical construction of the susceptor, stage or support

Definitions

  • the present disclosure relates to a substrate processing apparatus, a semiconductor device manufacturing method, and a program.
  • a vertical substrate processing apparatus For heat treatment of substrates (wafers) in the manufacturing process of semiconductor devices, for example, vertical substrate processing equipment is used.
  • a vertical substrate processing apparatus a plurality of substrates are vertically arranged and held by a substrate holder, and the substrate holder is carried into a processing chamber. After that, a processing gas is introduced into the processing chamber while the processing chamber is heated, and a thin film forming process is performed on the substrate.
  • a processing gas is introduced into the processing chamber while the processing chamber is heated, and a thin film forming process is performed on the substrate. For example, it is described in Patent Document 1.
  • the present disclosure provides a technology capable of improving the heating efficiency of the substrate.
  • a processing chamber that processes a plurality of substrates, a substrate holder that communicates with a lower portion of the processing chamber and supports the plurality of substrates, a heating unit that heats the plurality of substrates, a substrate
  • a technique is provided that includes at least one heat-retaining section provided between a holder and a heating section, and a transfer chamber that accommodates the holding fixture and the heating section.
  • FIG. 1 is a block diagram showing a schematic configuration of a substrate processing system according to an embodiment of the present disclosure
  • FIG. 2 is a schematic cross-sectional view of a processing chamber and a boat storage chamber showing a state in which a boat loaded with substrates is carried into the processing chamber in the substrate processing apparatus according to the embodiment of the present disclosure
  • FIG. 1 is a top view of a heating device according to an embodiment of the present disclosure
  • FIG. 1 is a cross-sectional view of a heating device according to an embodiment of the present disclosure
  • FIG. 2 is a block diagram showing a schematic configuration of a control unit that operates each unit of the substrate processing apparatus according to the embodiment of the present disclosure
  • FIG. 3 is a diagram showing a flow of a semiconductor device manufacturing process according to an embodiment of the present disclosure
  • (a) is a schematic cross-sectional view of a processing chamber and a transfer chamber showing a state in a pre-atmosphere adjustment step or a state in which substrates mounted on a boat are processed in the processing chamber in the substrate processing apparatus according to the embodiment of the present disclosure; be.
  • (b) is a schematic cross-sectional view of a processing chamber and a transfer chamber showing a state in which a boat loaded with substrates is unloaded from the processing chamber in the substrate processing apparatus according to the embodiment of the present disclosure
  • (c) is a schematic cross-sectional view of a processing chamber and a transfer chamber showing a state in which a boat on which substrates are mounted is carried into the transfer chamber in the substrate processing apparatus according to the embodiment of the present disclosure
  • (d) is a schematic cross-sectional view of a processing chamber and a transfer chamber showing a state in which a boat loaded with substrates is loaded into the processing chamber in the substrate processing apparatus according to the embodiment of the present disclosure.
  • FIG. 4 is a top view of a heating device according to another embodiment of the present disclosure.
  • (a) is a diagram showing a schematic configuration of a first gas supply system in an embodiment of the present disclosure.
  • (b) is a diagram showing a schematic configuration of a second gas supply system in an embodiment of the present disclosure;
  • a semiconductor manufacturing apparatus is a vertical substrate processing apparatus (hereinafter referred to as a vertical substrate processing apparatus) that performs a substrate processing process such as heat treatment as one step of a manufacturing process in a method of manufacturing a semiconductor device (device). 1, referred to as a substrate processing system.
  • a substrate processing system 1 processes a substrate 10, and is mainly composed of an IO stage 61, an atmospheric transfer chamber 1200, a load lock chamber 1300, a vacuum transfer chamber 170, and a substrate processing apparatus 101. .
  • FIG. 1 shows a state in which a boat 200 supporting a plurality of substrates 10 is lowered into a transfer chamber 300 provided below a chamber 180 on the side of a vacuum transfer chamber 170, and FIG.
  • the partial view shows a state in which a boat 200 as a substrate support is raised and inside the first reaction tube 110 .
  • the vacuum transfer chamber 170 is also called a transfer module.
  • the substrate processing apparatus 101 is also called a process module. Next, each configuration will be specifically described.
  • An IO stage (load port) 61 is installed in front of the substrate processing system 1 .
  • a plurality of pods 62 as storage containers can be mounted on the IO stage 61 .
  • the pod 62 is used as a carrier for transporting substrates 10 such as silicon (Si) wafers, and is configured such that a plurality of substrates 10 are stored in each of the pods 62 in a horizontal posture. A maximum of 25 substrates 10 are stored in the pod 62 .
  • the pod 62 is provided with a cap 60, which is opened and closed by a pod opener 1210, which will be described later.
  • the pod opener 1210 opens and closes the cap 60 of the pod 62 placed on the IO stage 61 , and opens/closes the substrate loading/unloading port 1280 to allow the substrate 10 to be taken in and out of the pod 62 .
  • the pod 62 is supplied to and discharged from the IO stage 61 by an in-process transport device (RGV) (not shown).
  • RUV in-process transport device
  • the IO stage 61 is adjacent to the atmosphere transfer chamber 1200 .
  • the atmospheric transfer chamber 1200 is connected to a load lock chamber 1300 (to be described later) on a different surface from the IO stage 61 .
  • An atmospheric transfer robot 1220 as a first transfer robot for transferring the substrate 10 is installed in the atmospheric transfer chamber 1200 .
  • the atmospheric transfer robot 1220 is configured to be elevated by an elevator 1230 installed in the atmospheric transfer chamber 1200 , and is configured to be reciprocated in the horizontal direction by a linear actuator 1240 .
  • a clean unit 1250 that supplies clean air is installed above the atmospheric transfer chamber 1200 .
  • a substrate loading/unloading port 1280 for loading/unloading the substrate 10 into/out of the atmospheric transfer chamber 1200 and a pod opener 1210 are installed on the front side of the housing 1270 of the atmospheric transfer chamber 1200 .
  • An IO stage (load port) 61 is installed on the side opposite to the pod opener 1210 across the substrate loading/unloading port 1280 , that is, on the outside of the housing 1270 .
  • a substrate loading/unloading port 1290 for loading/unloading the substrate 10 into/out of the load lock chamber 1300 is provided on the rear side of the housing 1270 of the atmospheric transfer chamber 1200 .
  • the substrate loading/unloading port 1290 enables loading and unloading of the substrate 10 by being opened and closed by a gate valve 1330 which will be described later.
  • the load lock chamber 1300 is adjacent to the atmospheric transfer chamber 1200 .
  • a vacuum transfer chamber 170 is arranged on a different surface of the housing 1310 constituting the load lock chamber 1300 from the atmospheric transfer chamber 1200 .
  • the load lock chamber 1300 is configured to withstand negative pressure because the pressure inside the housing 1310 fluctuates according to the pressure in the atmospheric transfer chamber 1200 and the pressure in the vacuum transfer chamber 170 .
  • a substrate loading/unloading port 1340 is provided on the side of the housing 1310 adjacent to the vacuum transfer chamber 170 .
  • the substrate loading/unloading port 1340 is opened/closed by a gate valve 1350 to enable loading/unloading of the substrate 10 .
  • a substrate mounting table 1320 for mounting the substrate 10 is installed in the load lock chamber 1300 .
  • the substrate processing system 1 includes a vacuum transfer chamber (transfer module) 170 as a transfer chamber serving as a transfer space in which the substrate 10 is transferred under negative pressure.
  • a load lock chamber 1300 and a substrate processing apparatus 101 for processing the substrate 10 are connected to each side of the vacuum transfer chamber 170 .
  • a transfer machine 30 as a vacuum transfer robot that transfers (transfers) the substrate 10 between the load lock chamber 1300 and the chamber 180 under negative pressure is installed with a flange 35 as a base. It is
  • the transfer machine 30 has, for example, a tweezer 31 that supports one substrate 10, an extendable arm 32, a rotating shaft 33, a base 34, a flange 35, an elevating mechanism 36, and the like.
  • the vacuum transfer chamber 170 is configured to maintain airtightness by the lifting mechanism section 36 and the flange 35 .
  • the substrate processing apparatus 101 includes a reaction tube including a vertically extending cylindrical first reaction tube 110 and a second reaction tube 120 disposed inside the first reaction tube.
  • a reaction tube heating section 100 is provided as a first heating section (furnace body) installed on the outer periphery of the reactor.
  • the first reaction tube 110 and the second reaction tube 120, which constitute the reaction tube, are made of a material such as quartz (SiO 2 ) or silicon carbide (SiC).
  • the inside of the first reaction tube 110 is hermetically sealed against the outside air by a means (not shown).
  • the inside of the second reaction tube 120 forms the processing chamber 115 .
  • the first reaction tube 110 is also called an outer tube, an outer tube, or an outer tube.
  • the second reaction tube 120 is also called an inner cylinder, an inner tube, or an inner tube.
  • the reaction tube is composed of the first reaction tube 110 and the second reaction tube 120 is shown, but the present invention is not limited to this.
  • the technology of the present disclosure can be applied even if the reaction tube is configured only with the first reaction tube 110 .
  • reaction tube heating section 100 may be configured as a zone heater having a plurality of zones in the vertical direction so that zone control is possible in the vertical direction.
  • a boat 200 as a substrate holder is supported by a support rod 160 via a heat insulator 150 .
  • the boat 200 includes a plurality of upright pillars 202, a disk 201 supported by the plurality of pillars 202 at regular intervals, and a substrate support portion 203 supported by the pillars 202 between the disks 201. is configured with
  • the boat 200 has a horizontal posture and a plurality of substrates 10 are placed in a state in which the centers are aligned with each other by placing the substrates 10 on the substrate supports 203 attached to the columns 202 in a space partitioned by a plurality of discs 201 .
  • a number of substrates 10, for example, five substrates, are vertically aligned and supported in multiple stages. There, substrates 10 are arranged at regular intervals.
  • the boat 200 is made of a heat-resistant material such as quartz or silicon carbide.
  • a substrate holder is configured by the heat insulating portion 150 and the boat 200 .
  • the boat 200 is housed inside the second reaction tube 120, as shown in FIG.
  • the boat 200 may be configured to support approximately 5 to 50 substrates 10 .
  • the disk 201 is also called a separator.
  • the adiabatic portion 150 has a structure that reduces heat conduction or transmission in the vertical direction.
  • the heat insulating portion 150 may be configured to have a cavity inside.
  • a hole may be formed in the lower surface of the heat insulating portion 150 . By providing this hole, a pressure difference is prevented from occurring between the inside and the outside of the heat insulating portion 150, and the wall surface of the heat insulating portion 150 does not have to be thick.
  • a cap heater 152 may be provided inside the heat insulating portion 150 .
  • the chamber 180 is installed below the second reaction tube 120 and has a transfer space 330 and a heating space 340 as a transfer chamber 300 . Inside the transfer chamber 300 , the boat 200 and the heat insulation section 150 supported by the support rods 160 are accommodated. A boat elevator 40 as an elevating mechanism for the boat 200 is provided outside the transfer chamber 300 , for example, below the outer side.
  • the transfer space 330 is configured as a space in which the substrates 10 are mounted (mounted) on and removed from the boat 200 .
  • the heating space 340 is configured as a space for heating the substrates 10 placed on the boat 200 .
  • the vertical length of the transfer space 330 is configured to be shorter than the vertical length of the heating space 340 .
  • the vertical length of the heating space 340 is longer than the vertical length of the transfer space 330 .
  • a cooling channel 190 may be provided in the substrate loading port 331 .
  • the heat from the heated boat 200, the reaction tube heating section 100, and the transfer chamber heating section 321, which will be described later, is transferred to the cooling channel 190, thereby lowering the temperature rise rate of the new substrate 10.
  • the length of the heating space 340 in the vertical direction can also be said to include the entire substrate mounting area of the heat insulation part 150 and the boat 200 .
  • the chamber 180 is made of a metal material such as SUS (stainless steel) or Al (aluminum).
  • the heating space 340 may cause the transfer chamber 300 of the chamber 180 to expand.
  • a cooling channel 191 may be provided outside the transfer chamber 300 of the chamber 180 so that the transfer chamber 300 can be cooled.
  • the transfer chamber 300 of the chamber 180 is attached with an inert gas supply pipe 301 for supplying inert gas inside.
  • An inert gas is supplied to the interior of the transfer chamber 300 from the inert gas supply pipe 301 to adjust the pressure inside the transfer chamber 300 to be higher than the pressure inside the first reaction tube 110 .
  • the heating space 340 is a space for heating the substrate 10 by the heating device 320 including the transfer chamber heating section 321 and the like, and is provided below the transfer space 330 .
  • the boat 200 waits in the transfer space 330 .
  • the space where the boat 200 waits at this time is called a boat waiting area.
  • the heating device 320 includes a transfer chamber heating unit 321 as a second heating unit for heating the substrate 10, a boat 200 arranged in the transfer chamber 300, and a transfer chamber. and a heat insulating plate 322 as a heat insulating portion arranged between the heating portion 321 and the heat insulating plate 322 .
  • the heat insulating plate 322 is arranged between the transfer chamber heating section 321 and the boat standby area.
  • the transfer chamber heating unit 321 is provided around the boat 200 and the heat insulating plate 322 is provided around the boat 200 .
  • a cooling unit for cooling the transfer chamber heating unit 321 with cooling water is provided on the outside of the transfer chamber heating unit 321 (the rear surface opposite to the surface facing the heat insulating plate 322), that is, on the wall side constituting the chamber 180. may This can prevent temperature rise in the vacuum chamber.
  • the transfer chamber heating unit 321 extends vertically with respect to the plurality of substrates 10 and is provided in plurality in the horizontal direction, corresponding to the positions of the boats 200 arranged in the transfer chamber 300 . It may be composed of a rod-shaped lamp heater that is wrapped around the heater. A plurality of lamp heaters as lamp heating devices heat the plurality of substrates 10 held in the boat 200 from the side surfaces via heat insulating plates 322 . It is preferable to use, for example, a straight tube halogen lamp or an infrared lamp as the lamp heater. Further, the transfer chamber heating section 321 extends horizontally with respect to the substrate 10 and may be provided with a plurality of rod-shaped lamp heaters in the vertical direction.
  • the heat insulating plate 322 is formed in a polygonal cylindrical shape such as a square when viewed from above.
  • a heat insulating plate 322 having a plurality of side surfaces is provided perpendicular to the substrate 10 mounted on the boat 200 .
  • the heat insulating plate 322 is preferably made of a material that has a high absorption rate of heat generated from the transfer chamber heating section 321 and a high thermal conductivity.
  • the heat insulating plate 322 is preferably made of a material having a small coefficient of thermal expansion and corrosion resistance. This can prevent particles from being generated in the vacuum chamber.
  • the heat insulating plate 322 is preferably made of silicon carbide, for example. Since lamp heaters emit near infrared rays (wavelength: 1.0 to 1.1 ⁇ m), uneven heating occurs depending on the presence or absence of light irradiation. However, by surrounding the boat 200 with the heat insulating plate 322, the heat in the heating space 340 is made uniform, thereby suppressing uneven heating.
  • the heat insulating plate 322 may be composed of a plurality of separated plates 322a, as shown in FIG. That is, a plurality of plates 322a are provided so as to cover the boat 200. As shown in FIG. In this case, holding plates made of SUS or the like that support the plate 322a from both sides may be used.
  • Transfer space 330 In the transfer space 330 , the substrates 10 loaded on the boat 200 are taken out from the boat 200 through the substrate loading port 331 using the transfer machine 30 , and new substrates 10 are placed on the boat 200 .
  • a gate valve (GV) 332 that separates the transfer space 330 from the chamber 180 is provided at the substrate loading port 331 .
  • a support rod 160 is supported by the boat elevator 40 .
  • the boat elevator 40 is driven to move the support rod 160 up and down to carry the boat 200 into or out of the second reaction tube 120 .
  • the support rod 160 is connected to a rotation drive section 42 provided on the boat elevator 40 . By rotating the support rod 160 with the rotation drive section 42, the heat insulating section 150 and the boat 200 can be rotated.
  • the substrate processing system 1 supplies a gas used for substrate processing from a gas supply system, which will be described later, through a nozzle 130 arranged inside the second reaction tube 120 .
  • the gas supplied from the nozzle 130 can be appropriately changed according to the type of film to be formed.
  • a source gas, a reaction gas, an inert gas, and the like are supplied from the nozzle 130 into the second reaction tube 120 .
  • the nozzle 130 includes, for example, two nozzles 130a and 130b, each capable of supplying different types of gases. Nozzle 130 is also referred to as a gas delivery structure.
  • Nozzle 130 is connected to the gas supply shown in FIG.
  • 250 is a first gas supply system
  • 270 is a second gas supply system.
  • the first gas supply system 250 includes a gas supply pipe 251 that can communicate with the nozzle 130a.
  • the second gas supply system 270 includes a gas supply pipe 271 that can communicate with the nozzle 130b.
  • the first gas supply system 250 includes, in order from the upstream direction of the gas supply pipe 251, a first gas source 252, a mass flow controller (MFC) which is a flow controller (flow controller). 253, and a valve 254, which is an on-off valve.
  • MFC mass flow controller
  • flow controller flow controller
  • the first gas source 252 is a source of a first gas containing a first element (also referred to as a "first element-containing gas").
  • the first element-containing gas is one of the raw material gases, that is, the process gases.
  • the first element is silicon (Si), for example.
  • hexachlorodisilane Si 2 Cl 6 , abbreviation: HCDS
  • monochlorosilane SiH 3 Cl, abbreviation: MCS
  • dichlorosilane SiH 2 Cl 2 , abbreviation: DCS
  • trichlorosilane SiHCl 3 , TCS
  • tetrachlorosilane SiCl 4 , STC
  • octachlorotrisilane Si 3 Cl 8 , OCTS
  • a first gas supply system 250 (also referred to as a silicon-containing gas supply system) is mainly composed of the gas supply pipe 251, the MFC 253, and the valve 254.
  • a gas supply pipe 255 is connected to the downstream side of the valve 254 in the gas supply pipe 251 .
  • the gas supply pipe 255 is provided with an inert gas source 256, an MFC 257, and a valve 258, which is an on-off valve, in this order from the upstream direction.
  • An inert gas such as nitrogen (N 2 ) gas is supplied from the inert gas source 256 .
  • a first inert gas supply system is mainly composed of the gas supply pipe 255, the MFC 257, and the valve 258.
  • the inert gas supplied from the inert gas source 256 acts as a purge gas for purging gas remaining in the reaction tube during the substrate processing process.
  • a first inert gas supply system may be added to the first gas supply system 250 .
  • the gas supply pipe 271 is provided with a second gas source 272, an MFC 273 as a flow controller (flow control unit), and a valve 274 as an on-off valve in this order from the upstream direction. It is
  • the second gas source 272 is a source of a second gas containing a second element (hereinafter also referred to as a "second element-containing gas").
  • the second element-containing gas is one of processing gases.
  • the second element-containing gas may be considered as a reaction gas or a reforming gas.
  • the second element-containing gas contains a second element different from the first element.
  • the second element is, for example, any one of oxygen (O), nitrogen (N), and carbon (C).
  • the second element-containing gas is, for example, a nitrogen-containing gas.
  • it is a hydrogen nitride-based gas containing an NH bond, such as ammonia (NH 3 ), diazene (N 2 H 2 ) gas, hydrazine (N 2 H 4 ) gas, N 3 H 8 gas.
  • a second gas supply system 270 is mainly composed of the gas supply pipe 271 , the MFC 273 and the valve 274 .
  • a gas supply pipe 275 is connected to the downstream side of the valve 274 in the gas supply pipe 271 .
  • the gas supply pipe 275 is provided with an inert gas source 276, an MFC 277, and a valve 278, which is an on-off valve, in this order from the upstream direction.
  • An inert gas such as nitrogen (N 2 ) gas is supplied from the inert gas source 276 .
  • a second inert gas supply system is mainly composed of the gas supply pipe 275, the MFC 277, and the valve 278.
  • the inert gas supplied from the inert gas source 276 acts as a purge gas for purging gas remaining in the reaction tube during the substrate processing process.
  • a second inert gas supply system may be added to the second gas supply system 270 .
  • the first gas supply system 250 and the second gas supply system 270 may be collectively called a gas supply system.
  • a gas supply system may be collectively called a gas supply system.
  • two gas supply systems are used as an example here, one gas supply system or three or more gas supply systems may be used depending on the content of the process.
  • the reaction gas that did not contribute to the film formation is discharged into the upper gap 121 between the second reaction tube 120 and the first reaction tube 110 and the lower Through the opening 122, the air is exhausted to the outside from an exhaust pipe 140 as an exhaust portion by an exhaust pump (not shown).
  • Controller 260 As shown in FIGS. 1 and 5, the substrate processing apparatus 101 and the substrate processing system 1 have a controller 260 that controls the operation of each section.
  • a controller 260 which is a control unit (control means), is configured as a computer having a CPU (Central Processing Unit) 260a, a RAM (Random Access Memory) 260b, a storage device 260c, and an I/O port 260d. It is The RAM 260b, storage device 260c, and I/O port 260d are configured to exchange data with the CPU 260a via an internal bus 260e.
  • An input/output device 261 configured as a touch panel, for example, and an external storage device 262 are configured to be connectable to the controller 260 .
  • the storage device 260c is composed of, for example, a flash memory, an HDD (Hard Disk Drive), or the like.
  • a control program for controlling the operation of the substrate processing apparatus, a process recipe describing procedures and conditions for substrate processing, which will be described later, and the like are stored in a readable manner.
  • the process recipe is a combination that allows the controller 260 to execute each procedure in the substrate processing process, which will be described later, to obtain a predetermined result, and functions as a program.
  • the program recipe, the control program, etc. will be collectively referred to simply as a program.
  • the RAM 260b is configured as a memory area (work area) in which programs and data read by the CPU 260a are temporarily held.
  • the I/O port 260d includes gate valves 1330, 1350, 1490, lifting mechanism 36, boat elevator 40, reaction tube heating unit 100, transfer chamber heating unit 321, pressure regulator (not shown), vacuum pump (not shown). ), etc. It may also be connected to the transfer machine 30 as a vacuum transfer robot, atmospheric transfer robot 1220, load lock chamber 1300, gas supply unit (mass flow controller MFC (not shown), valve (not shown)), and the like. .
  • "connection” includes the meaning that each part is connected with a physical cable, but it means that the signal (electronic data) of each part can be directly or indirectly transmitted/received. Also includes For example, equipment for relaying signals or equipment for converting or calculating signals may be provided between the units.
  • the CPU 260a is configured to read out and execute a control program from the storage device 260c, and to read out process recipes from the storage device 260c in response to input of operation commands from the controller 260 and the like. Then, the CPU 260a performs the opening and closing operations of the gate valves 1330, 1350, and 332, the lifting and lowering operations of the lifting mechanism section 36 and the boat elevator 40, the rotating operations of the rotation driving section 42, the reaction tube rotation, and the rotation of the reaction tube, in accordance with the contents of the read process recipe. It is configured to control power supply operations to the heating unit 100 and the transfer chamber heating unit 321 , the transfer machine 30 as a vacuum transfer robot, and the atmosphere transfer robot 1220 . Furthermore, it also controls a gas supply unit (mass flow controller MFC (not shown), valve (not shown)), but the illustration is omitted.
  • MFC mass flow controller
  • valve not shown
  • the controller 260 is not limited to being configured as a dedicated computer, and may be configured as a general-purpose computer.
  • an external storage device for example, a magnetic tape, a magnetic disk such as a flexible disk or a hard disk, an optical disk such as a CD or a DVD, a magneto-optical disk such as an MO, a semiconductor memory such as a USB memory or a memory card
  • the controller 260 can be configured.
  • the means for supplying the program to the computer is not limited to supplying via the external storage device 262 .
  • the program may be supplied without using the external storage device 262 by using communication means such as the network 263 (the Internet or a dedicated line).
  • the storage device 260c and the external storage device 262 are configured as computer-readable recording media. Hereinafter, these are collectively referred to simply as recording media.
  • recording medium when the term “recording medium” is used, it may include only the storage device 260c alone, or may include only the external storage device 262 alone, or may include both.
  • FIG. 7 shows an example in which thirteen substrates 10 are supported by the boat 200 .
  • the controller 260 controls the operation of each part of the substrate processing apparatus 101 .
  • An example flow of a series of substrate processing steps including a film forming step S203 for forming a film on the substrate 10 is shown below as one step of the semiconductor device manufacturing process.
  • the inside of the processing chamber 115 and the boat 200 are heated to a predetermined temperature in the film forming step S203 by the reaction tube heating unit 100 .
  • the boat 200 is placed in the processing position shown in FIG. 7(a).
  • the inside of the processing chamber 115 is evacuated from the exhaust pipe 140 (see FIG. 1) by a vacuum pump (not shown) so that the inside of the processing chamber 115 has a desired pressure (degree of vacuum).
  • the heating of the processing chamber 115 by the reaction tube heating unit 100 and the evacuation of the processing chamber 115 are continued at least until the processing of the substrate 10 is completed.
  • the transfer chamber heating unit 321 may be turned ON to preheat the inside of the heating space 340 to a predetermined temperature.
  • Substrate loading step S201
  • a substrate carrying-in step S201 is performed.
  • the substrate loading step at least the substrate mounting step S201a and the first substrate heating step S201b are performed.
  • the substrate placing step S201a and the first substrate heating step S201b are performed in parallel.
  • the transfer chamber heating unit 321 is turned on to heat the inside of the heating space 340 to a predetermined temperature.
  • the substrate placement step S201a First, the substrate placement step S201a will be described. A process of mounting the substrate 10 on the boat 200 is performed. Specifically, from the state of FIG. 7(a), the substrate support part 203 provided at the bottom of the boat 200 shown in FIG. 7(b) is inserted into the transfer space 330 of the transfer chamber 300. state. It is also referred to as a state in which one pitch (the substrate supporting portion 203 on which one substrate is placed) is inserted into the transfer space 330 . At this time, most of the boat 200 faces the reaction tube heating section 100 and is in a heated state. In this state, the substrate 10 is placed on the substrate support portion 203 of the boat 200 from the transfer machine 30 (see FIG.
  • the first substrate heating step S201b is sequentially performed from the substrates 10 placed on the boat 200 in the substrate placing step S201a. After that, the substrates 10 placed on the boat 200 are heated by the transfer chamber heating section 321 . The step of heating the substrate 10 in this way is called a first substrate heating step S201b. As shown in FIG. 7C, the first substrate heating step S201b continues until the substrates 10 are placed on the substrate supports 203 of all stages of the boat 200. As shown in FIG. In this process, the substrate 10 is heated to a temperature range of, for example, about 200 to 450.degree.
  • the boat 200 is in a state of being stopped from rotating. Since the rotation of the boat 200 is stopped, a temperature difference (temperature distribution) may be formed in the rotation direction (circumferential direction) of the substrate 10 and the boat 200 in the method of rotating the boat 200 (circumferential direction of the substrate 10). There is for example, the temperature of the portion facing the substrate carry-in port 331 may be lower than the temperature of other portions. In order to eliminate this temperature difference, it is preferable to rotate the boat 200 after new substrates 10 are placed on the uppermost substrate support 203 of the boat 200 .
  • the second substrate heating step S202 Before raising the boat 200, the second substrate heating step S202 is performed.
  • the boat 200 In the second substrate heating step S202, in the state shown in FIG. 7C, the boat 200 is kept waiting in the boat waiting area for a predetermined time, and the boat 200 is rotated to eliminate the temperature difference in the circumferential direction of the substrate 10.
  • the transfer chamber heating unit 321 heats the substrate 10 in the heating space 340 to a predetermined temperature. For example, it is heated to a temperature range of about 200 to 450°C.
  • reaction tube heating unit 100 should be configured as a zone heater having vertically divided zones, and the output of the heater in the lower zone should be smaller than the output of the heater in the other zones.
  • the insides of the transfer chamber 300 and the processing chamber 115 are evacuated through the exhaust pipe 140 by a vacuum pump (not shown), so the boat is transferred from the transfer chamber 300 to the processing chamber 115 in a vacuum state. .
  • a temperature drop in the processing chamber 115 can be suppressed.
  • the temperature drop of the substrate 10 can be suppressed while the heated substrate 10 is being moved from the heating space 340 of the transfer chamber 300 to the processing chamber 115 .
  • the inside of the processing chamber 115 is heated by the reaction tube heating unit 100 so that it reaches a desired temperature.
  • the time required for the temperature to rise to the temperature required to start the film forming process is reduced to room temperature without being heated in the transfer chamber 300.
  • the length can be significantly shortened. Thereby, the substrate processing time can be shortened, and the throughput can be improved.
  • the transfer chamber heating unit 321 is turned off (not operated).
  • the surface of the substrate 10 mounted on the boat 200 is removed by repeating several processing steps including the step of supplying the raw material gas to the inside of the second reaction tube 120 through the nozzle 130 and exhausting it to the outside by the exhaust pump. A thin film with a desired thickness is formed on the substrate.
  • the alternate supply process which is an example of the process, will be described.
  • different gases are alternately supplied to form a desired film on the substrate.
  • the first gas is supplied from the first gas supply system 250 to the processing chamber 115
  • the second gas is supplied from the second gas supply system 270 to the processing chamber 115, and the desired gas is supplied. form a film.
  • a purge step for exhausting the atmosphere of the processing chamber 115 is provided.
  • a Si-containing film for example, is formed on the substrate 10 by performing a combination of the first step, the purge step, and the second step at least once, preferably a plurality of times.
  • N 2 gas is supplied from the gas supply system to the inside of the second reaction tube 120 through the nozzle 130, and exhausted to the outside from the exhaust pipe 140 by an exhaust pump (not shown), so that the inside of the processing chamber 115 is filled with an inert gas. to remove residual gases and by-products from the processing chamber 115 .
  • a determination step S205 is performed to determine whether or not the above-described film formation step S203 is to be repeatedly performed on a new unprocessed substrate 10 . If there is an unprocessed substrate 10, the determination is YES, and the substrate replacement step S206a and the first substrate heating step S206b are performed. If there is no unprocessed substrate 10, the determination is NO and the substrate unloading step S207 is performed.
  • the substrate replacement step S206a and the first substrate heating step S206b are performed in parallel.
  • Substrate replacement step: S206a After that, the boat elevator 40 is driven to lower the support rod 160 from the state shown in FIG. 7(a), and the substrate 10 having a thin film having a predetermined thickness formed on the surface is removed as shown in FIG. 7(b). The loaded boat 200 is transported to the transfer chamber 300 .
  • the thin film is formed from the boat 200 through the substrate loading port 331 of the transfer space 330 in this embodiment.
  • the substrates 10 are taken out and new substrates 10 are loaded on the boat 200 one by one by driving the boat elevator 40 and pitch-feeding the boat 200 .
  • the substrates 10 can be replaced in various order, such as from the top, from the bottom, or from near the middle of the boat 200. However, replacing the substrates 10 in order from the bottom of the boat 200 can reduce the time required to raise the temperature of the substrates 10. . However, since the substrates 10 at the top and bottom mounted on the boat 200 tend to have a higher temperature than the substrates 10 mounted near the middle of the boat 200, the replacement is started from near the middle of the boat 200. Also good.
  • this operation is performed until all the substrates 10 on which the thin film is formed mounted on the boat 200 are replaced with new substrates 10.
  • first substrate heating step S206b In the first substrate heating step S206b, the substrate 10 is heated in the same manner as in the above-described first substrate heating step S201b. After that, the second substrate heating step S202 and subsequent steps are performed.
  • the boat 200 is driven by the boat elevator 40 and the boat 200 is pitch-fed to move the substrate 10 on which the thin film is formed from the boat 200 and mount a new substrate 10 on the boat 200 .
  • a plurality of substrates 10 may be taken out from the boat 200 at the same time, and a plurality of new substrates 10 may be loaded into the boat 200 at the same time.
  • the boat elevator 40 pitches the boat 200 by the number of substrates 10 .
  • a plurality of substrates 10 are taken out from the boat 200 at the same time, and a plurality of new substrates 10 are loaded into the boat 200 at the same time, so that all the substrates 10 before processing newly loaded on the boat 200 are heated at once.
  • the reaction tube heating unit 100 of the substrate processing apparatus 101 Heating may be continued.
  • the temperature of the upper part of the boat 200 is prevented from decreasing, and the substrates in the lower part of the boat 200 are heated in the heating space 340 for the substrates 10 in the upper part of the boat 200 after the new substrates 10 are transferred. 10 can be eliminated to some extent.
  • the cap heater 152 may be kept ON (operated) to perform boat down and boat loading. By keeping the cap heater 152 ON, it is possible to suppress the temperature drop of the heat insulation part 150 and the substrate support part 203 in the lower part of the boat 200 .
  • the substrate unloading step S207 is performed when there is no new substrate 10 .
  • the operation of the substrate unloading step S207 is configured so that a new substrate 10 is not placed in the substrate replacement step S206a.
  • the substrate processing process of this embodiment is performed.
  • the transfer chamber communicating with the lower part of the processing chamber includes a substrate holder that supports a plurality of substrates, a heating section that heats the plurality of substrates, and at least one transfer chamber provided between the substrate holder and the heating section. housing two heat retaining parts; As a result, the heat retaining section heated by the heating section can prevent the temperature of the substrate holder from decreasing during the transfer process. The temperature rise time in the processing chamber can be reduced, and the productivity of the substrate processing apparatus can be improved.
  • the heating unit is provided around the substrate holder. As a result, the distance between the heat source and the substrate is short, so the thermal efficiency is improved.
  • the heat retaining part is provided around the substrate holder. As a result, the distance between the heat retaining part and the substrate is short, so the heat retaining property is improved.
  • a plurality of heat retaining parts are provided so as to cover the substrate holder. Thereby, heating unevenness can be suppressed.
  • the heating unit is a lamp heating device. This shortens the heating time. In addition, since the heating element is sealed inside the quartz tube, the risk of contamination in the vacuum chamber is low.
  • the heat retaining part is made of silicon carbide. Because of its heat uniformity, heat retention increases. Moreover, since a heat insulating material made of glass fiber is not used, a clean heat insulating structure can be obtained inside the vacuum chamber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

複数の基板を処理する処理室と、処理室の下方に連通し、複数の基板を支持する基板保持具と、複数の基板を加熱する加熱部と、基板保持具と加熱部との間に設けられる少なくとも1つの保温部と、を収容する移載室と、を有する技術が提供される。

Description

基板処理装置、半導体装置の製造方法およびプログラム
 本開示は、基板処理装置、半導体装置の製造方法およびプログラムに関する。
 半導体デバイスの製造工程における基板(ウエハ)の熱処理では、例えば縦型基板処理装置が使用されている。縦型基板処理装置では、基板保持具によって複数の基板を垂直方向に配列して保持し、基板保持具を処理室内に搬入する。その後、処理室を加熱した状態で処理室内に処理ガスを導入し、基板に対して薄膜形成処理が行われる。例えば特許文献1に記載されている。
特開2003-100736号公報
 本開示は、基板の加熱効率を向上させることが可能な技術を提供するものである。
 本開示の一態様によれば、複数の基板を処理する処理室と、前記処理室の下方に連通し、複数の基板を支持する基板保持具と、複数の基板を加熱する加熱部と、基板保持具と加熱部との間に設けられる少なくとも1つの保温部と、を収容する移載室と、を有する技術が提供される。
 本開示によれば、基板の加熱効率を向上させることが可能になる。
本開示の実施形態における基板処理システムの概略の構成を示すブロック図である。 本開示の実施形態における基板処理装置において、基板を搭載したボートを処理室に搬入した状態を示す処理室とボート収納室の略断面図である。 本開示の実施形態における加熱装置の上面図である。 本開示の実施形態における加熱装置の断面図である。 本開示の実施形態における基板処理装置の各部を動作させる制御部の概略構成を示すブロック図である。 本開示の実施形態における半導体装置製造工程のフローを示す図である。 (a)は本開示の実施形態における基板処理装置において、事前雰囲気調整工程における状態、またはボートに搭載された基板が処理室において処理された状態を示す処理室と移載室の略断面図である。(b)は本開示の実施形態における基板処理装置において、基板を搭載したボートを処理室から搬出している状態を示す処理室と移載室の略断面図である。(c)は本開示の実施形態における基板処理装置において、基板を搭載したボートを移載室に搬入した状態を示す処理室と移載室の略断面図である。(d)は本開示の実施形態における基板処理装置において、基板を搭載したボートを処理室に搬入している状態を示す処理室と移載室の略断面図である。(e)は本開示の実施形態における基板処理装置において、基板を搭載したボートを処理室に搬入した状態を示す処理室と移載室の略断面図である。 本開示の他の実施形態における加熱装置の上面図である。 (a)は本開示の実施形態における第一ガス供給系の概略構成を示す図である。(b)は本開示の実施形態における第二ガス供給系の概略構成を示す図である。
 以下に、本開示の一実施形態について、主に、図面を参照しながら説明する。なお、以下の説明において用いられる図面は、いずれも模式的なものであり、図面に示される、各要素の寸法の関係、各要素の比率等は、現実のものとは必ずしも一致していない。また、複数の図面の相互間においても、各要素の寸法の関係、各要素の比率等は必ずしも一致していない。
 (1)基板処理システムの構成
 本実施形態に係る半導体製造装置は、半導体装置(デバイス)の製造方法における製造工程の一工程として熱処理等の基板処理工程を実施する縦型基板処理装置(以下、基板処理システムと称する)1として構成されている。図1に示すように、基板処理システム1は、基板10を処理するもので、IOステージ61、大気搬送室1200、ロードロック室1300、真空搬送室170、基板処理装置101で主に構成される。
 図1は、複数の基板10を支持するボート200が真空搬送室170の側方のチャンバ180の下方に設けられた移載室300に下降している状態を示し、図2は、図1の一部を示す図で、基板支持具としてのボート200が上昇して第1反応管110の内部にある状態を示している。なお、真空搬送室170は、トランスファモジュールとも呼ぶ。また、基板処理装置101は、プロセスモジュールとも呼ぶ。次に各構成について具体的に説明する。
 [大気搬送室・IOステージ]
 基板処理システム1の手前には、IOステージ(ロードポート)61が設置されている。IOステージ61上には格納容器としてのポッド62が複数搭載可能に構成される。ポッド62はシリコン(Si)ウエハなどの基板10を搬送するキャリアとして用いられ、ポッド62内には、基板10がそれぞれ水平姿勢で複数格納されるように構成されている。なお、ポッド62内には、基板10が最大で25枚格納されている。
 ポッド62にはキャップ60が設けられ、後述するポッドオープナ1210によって開閉される。ポッドオープナ1210は、IOステージ61に載置されたポッド62のキャップ60を開閉し、基板搬入搬出口1280を開放・閉鎖することにより、ポッド62に対する基板10の出し入れを可能とする。ポッド62は図示しない工程内搬送装置(RGV)によって、IOステージ61に対して、供給および排出される。
 IOステージ61は大気搬送室1200に隣接する。大気搬送室1200は、IOステージ61と異なる面に、後述するロードロック室1300が連結される。
 大気搬送室1200内には基板10を移載する第1搬送ロボットとしての大気搬送ロボット1220が設置されている。大気搬送ロボット1220は大気搬送室1200に設置されたエレベータ1230によって昇降されるように構成されているとともに、リニアアクチュエータ1240によって左右方向に往復移動されるように構成されている。
 大気搬送室1200の上部にはクリーンエアを供給するクリーンユニット1250が設置されている。
 大気搬送室1200の筐体1270の前側には、基板10を大気搬送室1200に対して搬入搬出するための基板搬入搬出口1280と、ポッドオープナ1210とが設置されている。基板搬入搬出口1280を挟んでポッドオープナ1210と反対側、すなわち筐体1270の外側にはIOステージ(ロードポート)61が設置されている。
 大気搬送室1200の筐体1270の後ろ側には、基板10をロードロック室1300に搬入搬出するための基板搬入出口1290が設けられる。基板搬入出口1290は、後述するゲートバルブ1330によって解放・閉鎖することにより、基板10の出し入れを可能とする。
 [ロードロック(L/L)室]
 ロードロック室1300は大気搬送室1200に隣接する。ロードロック室1300を構成する筐体1310が有する面のうち、大気搬送室1200とは異なる面には、後述するように、真空搬送室170が配置される。ロードロック室1300は、大気搬送室1200の圧力と真空搬送室170の圧力に合わせて筐体1310内の圧力が変動するため、負圧に耐え得る構造に構成されている。
 筐体1310のうち、真空搬送室170と隣接する側には、基板搬入搬出口1340が設けられる。基板搬入搬出口1340は、ゲートバルブ1350によって解放・閉鎖することで、基板10の出し入れを可能とする。
 さらに、ロードロック室1300内には、基板10を載置する基板載置台1320が設置されている。
 [真空搬送室170]
 基板処理システム1は、負圧下で基板10が搬送される搬送空間となる搬送室としての真空搬送室(トランスファモジュール)170を備えている。真空搬送室170の各辺には、ロードロック室1300及び基板10を処理する基板処理装置101が連結されている。真空搬送室170の略中央部には、負圧下で基板10をロードロック室1300とチャンバ180との間で移載(搬送)する真空搬送ロボットとしての移載機30がフランジ35を基部として設置されている。
 移載機30は、例えば1枚の基板10を支持するツィーザ31と、伸縮可能なアーム32、回転軸33、基部34、フランジ35、昇降機構部36等を有する。真空搬送室170は、昇降機構部36およびフランジ35によって気密性を維持するように構成されている。この昇降機構部36によって、移載機30を動作させることにより、ロードロック室1300と、ボート200との間にて、基板10を搬送させることが可能なように構成される。
 [基板処理装置101]
 基板処理装置101は、鉛直方向に延びた円筒形状の第1反応管110と、この第1反応管の内側に配置された第2反応管120で構成される反応管と、第1反応管110の外周に設置された第1加熱部(炉体)としての反応管加熱部100を備える。反応管を構成する第1反応管110と第2反応管120とは、例えば石英(SiO)や炭化シリコン(SiC)等の材料で形成される。第1反応管110の内部は、外気に対して図示していない手段により気密にシールされる。第2反応管120の内部は、処理室115を形成する。ここで、第1反応管110は、外筒、外管、アウターチューブとも呼ぶ。また、第2反応管120は、内筒、内管、インナーチューブとも呼ぶ。なお、ここでは、反応管を、第1反応管110と第2反応管120とで、構成した例を示すが、これに限るものでは無い。例えば、反応管を第1反応管110だけで構成しても、本開示の技術を適用することができる。
 なお、反応管加熱部100は、上下方向で、ゾーン制御可能な様に、上下方向に複数ゾーンを有するゾーンヒータとして構成しても良い。
 [基板保持具]
 基板保持具としてのボート200は、断熱部150を介して支持ロッド160に支持されている。ボート200は、直立した複数の支柱202と、一定の間隔をあけて複数の支柱202で支持されている円板201と、円板201の間で支柱202に支持されている基板支持部203とを備えて構成されている。ボート200は、複数の円板201で仕切られた空間で支柱202に取り付けられた基板支持部203に基板10を載置することにより、水平姿勢で、かつ、互いに中心を揃えた状態で、複数枚、例えば5枚の基板10を垂直方向に整列させて多段に支持する。そこでは、基板10は、一定の間隔を空けて配列される。ボート200は、例えば石英や炭化シリコン等の耐熱性材料で形成される。断熱部150とボート200とにより基板保持体が構成される。基板処理の際、ボート200は、図2に示すように、第2反応管120の内部に収納される。なお、ここでは、ボート200に5枚の基板10を支持した例を示すが、これに限るもので無い。例えば、基板10を5~50枚程度、支持可能にボート200を構成しても良い。なお、円板201はセパレータとも呼ぶ。
 [断熱部150]
 断熱部150は、上下方向の熱の伝導或いは伝達が小さくなるような構造を有する。また、断熱部150の内部に空洞を有する様に構成しても良い。なお、断熱部150の下面には孔を形成しても良い。この孔を設けたことにより、断熱部150の内部と外部とに圧力差が生じないようにし、断熱部150の壁面を厚くしなくてもよいようにしてある。なお、断熱部150内には、キャップヒータ152を設けても良い。
 [チャンバ180]
 チャンバ180は第2反応管120の下部に設置され、移載室300として移載空間330と加熱空間340を備えている。移載室300の内部には、ボート200および支持ロッド160に支持された断熱部150が収納されている。移載室300の外部であって例えば、外側下方には、ボート200の昇降機構としてのボートエレベータ40が設けられる。移載空間330は、基板10をボート200に載置(搭載)および取り出しが行われる空間として構成される。加熱空間340は、ボート200に載置された基板10を加熱する空間として構成される。
 なお、移載空間330の垂直方向の長さは、加熱空間340の垂直方向の長さよりも短く構成される。言い換えると、加熱空間340の垂直方向の長さは、移載空間330の垂直方向の長さよりも長く構成される。この様な大小関係に構成することによって、後述の、ボート200に基板10を載置してから、基板10の加熱までの時間を短縮させることが可能となる。
 基板搬入口331には、冷却流路190が設けられている場合がある。この場合、加熱されたボート200、反応管加熱部100および後述する移載室加熱部321からの熱が、冷却流路190へ伝達されることにより、新しい基板10の昇温レートが低下する。
 この様な大小関係に構成することにより、冷却流路190付近の低温領域から、新しい基板10を遠ざけることが可能となり、新しい基板10の昇温レートを改善させることが可能となる。なお、このような加熱空間340の垂直方向の長さは、断熱部150とボート200の基板載置領域の全体を含む長さとも言える。
 ここで、チャンバ180は、SUS(ステンレス)又はAl(アルミニウム)等の金属材料で構成される。この場合、加熱空間340によって、チャンバ180の移載室300が膨張することが有る。この場合、図1に示す様に、チャンバ180の移載室300の外側に冷却流路191を設けて、移載室300を冷却可能に構成しても良い。
 さらに、チャンバ180の移載室300には、内部に不活性ガスを供給する不活性ガス供給管301が取り付けられている。不活性ガス供給管301からは、移載室300の内部に不活性ガスを供給して、第1反応管110の内部の圧力よりも移載室300の内部の圧力が高くなるように調整されても良い。この様に構成することにより、第1反応管110の内部の処理室115に供給される処理ガスが、移載室300の内部への進入を抑制することが可能となる。
 [加熱装置320]
 加熱空間340は、移載室加熱部321等で構成される加熱装置320によって、基板10を加熱する空間であり、移載空間330の下方に設けられる。チャンバ180にて基板を加熱する際、ボート200は移載空間330に待機される。このときボート200が待機する空間をボート待機エリアと呼ぶ。図2から図4に示すように、加熱装置320は、基板10を加熱する第二の加熱部としての移載室加熱部321と、移載室300内に配置されるボート200と移載室加熱部321との間に配置される保温部としての保温板322と、で構成されている。すなわち、保温板322は、移載室加熱部321とボート待機エリアとの間に配される。言い換えれば、移載室加熱部321はボート200の周辺に設けられ、保温板322はボート200の周辺に設けられる。移載室加熱部321の外側(保温板322と対向する面とは反対側の背面)、すなわちチャンバ180を構成する壁側に、移載室加熱部321を冷却水で冷却する冷却部を設けてもよい。これにより、真空チャンバ内の温度上昇を防ぐことができる。
 移載室加熱部321は、移載室300内に配置されるボート200の位置に対応させて、例えば、複数の基板10に対して、垂直方向に延びており、かつ、水平方向に複数設けられた棒状のランプヒータで構成してもよい。ランプ加熱装置としての複数のランプヒータは、ボート200に保持された複数の基板10を側面から保温板322を介して加熱する。ランプヒータは例えば直管のハロゲンランプまたは赤外線ランプを用いるのが好ましい。また、移載室加熱部321は、基板10に対して、水平方向に延びており、かつ、垂直方向に棒状のランプヒータを複数設けるようにしてもよい。
 保温板322は、図3に示すように、上面視おいて四角形等の多角形の筒状に形成される。複数の側面を有する保温板322はボート200に載置される基板10と垂直に設けられている。これにより、ボート200と移載室加熱部321との間は保温板322で囲われる。保温板322は、移載室加熱部321から発する熱の吸収率が高く、かつ、熱伝導率が高い材料で形成するのが好ましい。熱伝導率が高い材料を用いることで加熱面が小さい移載室加熱部321を用いても、保温板322の加熱面を大きくすることで、ボートに対する加熱面積を大きくできる。保温板322は熱膨張率が小さく、耐食性がある材料で形成するのが好ましい。これにより、真空チャンバ内のパーティクル発生を防ぐことができる。保温板322は例えば、炭化ケイ素で形成されるのが好ましい。ランプヒータなどは近赤外線(波長1.0~1.1μm)であるので、光の照射有無により加熱ムラが生じる。しかし、保温板322でボート200を取り囲むことにより、加熱空間340内の熱を均一化することで、加熱ムラを抑制し得る。
 保温板322は、図8に示すように、複数の分離された板322aで構成してもよい。すなわち、板322aはボート200を覆うように複数設けられる。この場合は、板322aを両側面から支持するSUS等で形成される抑え板を用いてもよい。
 [移載空間330]
 移載空間330においては、移載機30を用いて基板搬入口331を介してボート200に搭載された基板10をボート200から取り出し、新たな基板10をボート200に載置する。なお、基板搬入口331には、移載空間330と、チャンバ180との間を隔離するゲートバルブ(GV)332が設けられている。
 ボートエレベータ40には支持ロッド160が支持されている。ボートエレベータ40を駆動して支持ロッド160を上下させて、第2反応管120に対してボート200を搬入または搬出させる。支持ロッド160は、ボートエレベータ40に設けられた回転駆動部42に接続されている。回転駆動部42によって支持ロッド160を回転させることにより、断熱部150およびボート200を回転させることができる。
 基板処理システム1は、基板処理に使用されるガスを、後述するガス供給系から、第2反応管120の内部に配置されたノズル130から供給する。ノズル130から供給するガスは、成膜される膜の種類に応じて適宜換えられる。ノズル130から第2反応管120の内部には、原料ガス、反応ガスおよび不活性ガス、等が供給される。ノズル130は、例えば2本のノズル130a、130bを備え、それぞれに異なる種類のガスを供給可能とする。ノズル130は、ガス供給構造とも呼ぶ。
 ノズル130は、図9に記載のガス供給部に接続される。
 図9において、250は第一ガス供給系、270は第二ガス供給系である。第一ガス供給系250は、ノズル130aと連通可能なガス供給管251を備える。第二ガス供給系270は、ノズル130bと連通可能なガス供給管271を備える。
 第一ガス供給系250は、図9(a)に記載のように、ガス供給管251の上流方向から順に、第一ガス源252、流量制御器(流量制御部)であるマスフローコントローラ(MFC)253、及び開閉弁であるバルブ254が設けられている。
 第一ガス源252は第一元素を含有する第一ガス(「第一元素含有ガス」とも呼ぶ。)源である。第一元素含有ガスは、原料ガス、すなわち、処理ガスの一つである。ここで、第一元素は、例えばシリコン(Si)である。具体的にはヘキサクロロジシラン(SiCl、略称:HCDS)ガス、モノクロロシラン(SiHCl、略称:MCS)ガス、ジクロロシラン(SiHCl、略称:DCS)、トリクロロシラン(SiHCl、略称:TCS)ガス、テトラクロロシラン(SiCl、略称:STC)ガス、オクタクロロトリシラン(SiCl、略称:OCTS)ガス等のSi-Cl結合を含むクロロシラン原料ガスである。
 主に、ガス供給管251、MFC253、バルブ254により、第一ガス供給系250(シリコン含有ガス供給系ともいう)が構成される。
 ガス供給管251のうち、バルブ254の下流側には、ガス供給管255が接続される。ガス供給管255には、上流方向から順に、不活性ガス源256、MFC257、及び開閉弁であるバルブ258が設けられている。不活性ガス源256からは不活性ガス、例えば窒素(N)ガスが供給される。
 主に、ガス供給管255、MFC257、バルブ258により、第一不活性ガス供給系が構成される。不活性ガス源256から供給される不活性ガスは、基板処理工程では、反応管内に留まったガスをパージするパージガスとして作用する。第一不活性ガス供給系を第一ガス供給系250に加えてもよい。
 図9(b)に記載のように、ガス供給管271には、上流方向から順に、第二ガス源272、流量制御器(流量制御部)であるMFC273、及び開閉弁であるバルブ274が設けられている。
 第二ガス源272は第二元素を含有する第二ガス(以下、「第二元素含有ガス」とも呼ぶ。)源である。第二元素含有ガスは、処理ガスの一つである。なお、第二元素含有ガスは、反応ガスまたは改質ガスとして考えてもよい。
 ここで、第二元素含有ガスは、第一元素と異なる第二元素を含有する。第二元素としては、例えば、酸素(O)、窒素(N)、炭素(C)のいずれか一つである。本態様では、第二元素含有ガスは、例えば窒素含有ガスである。具体的には、アンモニア(NH)、ジアゼン(N)ガス、ヒドラジン(N)ガス、Nガス等のN-H結合を含む窒化水素系ガスである。
 主に、ガス供給管271、MFC273、バルブ274により、第二ガス供給系270が構成される。
 ガス供給管271のうち、バルブ274の下流側には、ガス供給管275が接続される。ガス供給管275には、上流方向から順に、不活性ガス源276、MFC277、及び開閉弁であるバルブ278が設けられている。不活性ガス源276からは不活性ガス、例えば窒素(N)ガスが供給される。
 主に、ガス供給管275、MFC277、バルブ278により、第二不活性ガス供給系が構成される。不活性ガス源276から供給される不活性ガスは、基板処理工程では、反応管内に留まったガスをパージするパージガスとして作用する。第二不活性ガス供給系を第二ガス供給系270に加えてもよい。
 本態様においては、第一ガス供給系250,第二ガス供給系270をまとめてガス供給系と呼んでも良い。また、ここでは例として二つのガス供給系を用いることを説明したが、処理の内容によっては、一つのガス供給系、あるいは三つ以上のガス供給系を用いてもよい。
 ノズル130から第2反応管120の内部に供給されたガスのうち、成膜に寄与しなかった反応ガスは、第2反応管120と第1反応管110との上側の隙間121及び下側の開口部122を通って、排気部としての排気管140から図示していない排気ポンプにより外部に排気される。
 [コントローラ260]
 図1および図5に示す様に、基板処理装置101や、基板処理システム1は、各部の動作を制御するコントローラ260を有している。
 図5に示すように、制御部(制御手段)であるコントローラ260は、CPU(Central Processing Unit)260a、RAM(Random Access Memory)260b、記憶装置260c、I/Oポート260dを備えたコンピュータとして構成されている。RAM260b、記憶装置260c、I/Oポート260dは、内部バス260eを介して、CPU260aとデータ交換可能なように構成されている。コントローラ260には、例えばタッチパネル等として構成された入出力装置261や、外部記憶装置262が接続可能に構成されている。
 記憶装置260cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置260c内には、基板処理装置の動作を制御する制御プログラムや、後述する基板処理の手順や条件などが記載されたプロセスレシピ等が読み出し可能に格納されている。なお、プロセスレシピは、後述する基板処理工程における各手順をコントローラ260に実行させ、所定の結果を得ることが出来るように組み合わされたものであり、プログラムとして機能する。以下、このプログラムレシピや制御プログラム等を総称して、単にプログラムともいう。なお、本明細書においてプログラムという言葉を用いた場合は、プログラムレシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、その両方を含む場合がある。また、RAM260bは、CPU260aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。
 I/Oポート260dは、ゲートバルブ1330,1350,1490、昇降機構部36、ボートエレベータ40、反応管加熱部100、移載室加熱部321、圧力調整器(不図示)、真空ポンプ(不図示)、等に接続されている。また、真空搬送ロボットとしての移載機30、大気搬送ロボット1220、ロードロック室1300、ガス供給部(マスフローコントローラMFC(不図示)、バルブ(不図示))、等にも接続されていても良い。なお、本開示における「接続」とは、各部が物理的なケーブルで繋がっているという意味も含むが、各部の信号(電子データ)が直接または間接的に送信/受信可能になっているという意味も含む。例えば、各部の間に、信号を中継する機材や、信号を変換または演算する機材が設けられていても良い。
 CPU260aは、記憶装置260cからの制御プログラムを読み出して実行すると共に、コントローラ260からの操作コマンドの入力等に応じて記憶装置260cからプロセスレシピを読み出すように構成されている。そして、CPU260aは、読み出されたプロセスレシピの内容に沿うように、ゲートバルブ1330,1350,332の開閉動作、昇降機構部36,ボートエレベータ40昇降動作、回転駆動部42の回転動作、反応管加熱部100,移載室加熱部321への電力供給動作、真空搬送ロボットとしての移載機30、大気搬送ロボット1220を制御するように構成されている。さらに、ガス供給部(マスフローコントローラMFC(不図示)、バルブ(不図示))の制御も行うが、図示を省略する。
 なお、コントローラ260は、専用のコンピュータとして構成されている場合に限らず、汎用のコンピュータとして構成されていても良い。例えば、上述のプログラムを格納した外部記憶装置(例えば、磁気テープ、フレキシブルディスクやハードディスク等の磁気ディスク、CDやDVD等の光ディスク、MOなどの光磁気ディスク、USBメモリやメモリカード等の半導体メモリ)262を用意し、係る外部記憶装置262を用いて汎用のコンピュータにプログラムをインストールすること等により、本実施形態に係るコントローラ260を構成することができる。なお、コンピュータにプログラムを供給するための手段は、外部記憶装置262を介して供給する場合に限らない。例えば、ネットワーク263(インターネットや専用回線)等の通信手段を用い、外部記憶装置262を介さずにプログラムを供給するようにしても良い。なお、記憶装置260cや外部記憶装置262は、コンピュータ読み取り可能な記録媒体として構成される。以下、これらを総称して、単に記録媒体ともいう。なお、本明細書において、記録媒体という言葉を用いた場合は、記憶装置260c単体のみを含む場合、外部記憶装置262単体のみを含む場合、または、その両方を含む場合が有る。
 (2)基板処理工程
 次に、上述の基板処理装置を用いて半導体装置(半導体デバイス)の製造工程の一工程として、基板上に絶縁膜であって、例えばシリコン含有膜としてのシリコン酸化(SiO)膜を成膜する例について図6および図7を参照して説明する。図7では、ボート200に13枚の基板10が支持される例を示している。なお、以下の説明において、基板処理装置101を構成する各部の動作はコントローラ260により制御される。
 なお、本開示において「基板」という言葉を用いた場合も「ウエハ」という言葉を用いた場合と同様であり、その場合、上記説明において、「基板」を「ウエハ」に置き換えて考えればよい。
 以下に、半導体装置の製造工程の一工程として、基板10に成膜を行う成膜工程S203を含む一連の基板処理工程のフロー例を示す。
 [事前雰囲気調整工程:S200]
 まず、反応管加熱部100によって、処理室115内や、ボート200が成膜工程S203の所定温度に加熱される。この時ボート200は、図7(a)に示す処理位置に配置した状態で行われる。所定温度に達した後、処理室115の内部が所望の圧力(真空度)となるように図示していない真空ポンプによって排気管140(図1参照)から真空排気する。なお、反応管加熱部100による処理室115内の加熱や、処理室115内の排気は、少なくとも基板10に対する処理が完了するまでの間は継続して行われる。
 また、移載室加熱部321をONとして、加熱空間340内を所定温度となる様に、予備加熱しても良い。
 [基板搬入工程:S201]
 続いて、基板搬入工程S201が行われる。基板搬入工程では、少なくとも、基板載置工程S201aと第1基板加熱工程S201bが行われる。
 [基板載置工程:S201a・第1基板加熱工程:S201b]
 ここでは、基板載置工程S201aと第1基板加熱工程S201bとが並行して行われることとなる。これらの工程においては、移載室加熱部321をONにして、加熱空間340内を所定温度となるように加熱している。
 [基板載置工程:S201a]
 まず、基板載置工程S201aについて説明する。ボート200に基板10を載置する工程が行われる。具体的には、図7(a)の状態から、図7(b)に示すボート200の最も下側に設けられた、基板支持部203が、移載室300の移載空間330内に挿入された状態にする。1ピッチ(一つの基板が載置される基板支持部203)が移載空間330内に挿入された状態とも呼ぶ。このとき、ボート200の大部分は、反応管加熱部100と対向し、加熱された状態となっている。この状態で、移載空間330の基板搬入口331を介して移載機30(図1参照)からボート200の基板支持部203に基板10を載置する。これを、ボートエレベータ40(図1参照)で支持ロッド160(図1参照)をボート200の基板支持部203の1ピッチ分ずつ下降(ボートダウン)させながら繰り返し行って、ボート200のすべての段の基板支持部203に基板10を載置する。
 [第1基板加熱工程:S201b]
 次に、第1基板加熱工程S201bについて、図7(b)を用いて説明する。第1基板加熱工程S201bは、上述の基板載置工程S201aで、ボート200に載置された基板10から順に行われることとなる。その後、ボート200に載置された基板10は移載室加熱部321により加熱される。このように、基板10が加熱される工程を第1基板加熱工程S201bと呼ぶ。図7(c)に示すように、第1基板加熱工程S201bは、ボート200のすべての段の基板支持部203に基板10が載置されるまで継続する。この工程において、基板10は、例えば、200~450℃程度の範囲の温度帯まで加熱される。
 また、基板載置工程S201aでは、ボート200の回転は停止した状態となっている。ボート200の回転が停止しているので、ボート200の回転方法(基板10の周方向)において、基板10やボート200の回転方向(周方向)に温度差(温度分布)が形成されることが有る。例えば、基板搬入口331に面している部分の温度が、他の部分の温度よりも低下することがある。この温度差を解消させるため、ボート200の最上部の基板支持部203に新しい基板10が載置された後から、ボート200を回転させることが好ましい。
 [第2基板加熱工程:S202]
 ボート200を上昇させる前に、第2基板加熱工程S202を行わせる。第2基板加熱工程S202では、図7(c)に示す状態で、ボート待機エリアにてボート200を所定時間待機させて、さらに基板10の周方向の温度差をなくすためボート200を回転させながら、移載室加熱部321により加熱空間340内の基板10を所定温度まで加熱させる。例えば、200~450℃程度の範囲の温度帯まで加熱される。
 次に、ボート200のすべての段の基板支持部203に基板10が載置された状態で、図7(d)に示すように、ボートエレベータ40で支持ロッド160を上昇させて、ボート200を第2反応管120の内部に搬入(ボートローディング)する。図7(d)に示す状態では、移載室加熱部321はON(稼働している状態)としている。
 なお、ボートローディング時には、処理室115の下側の温度がオーバーシュートすることが有る。この場合、反応管加熱部100を上下方向で分割したゾーンを有するゾーンヒータとして構成し、下部のゾーンのヒータの出力を他のゾーンのヒータの出力よりも小さくすると良い。
 この状態で、移載室300と処理室115の内部は図示していない真空ポンプによって排気管140から真空排気されているので、ボートは真空状態で移載室300から処理室115へ搬入される。これにより、移載室300から処理室115にボート200を搬入した後に処理室115を真空排気する時間がいらなくなり、全体の処理時間を短縮することができる。このように、移載室300から処理室115へのボート200の搬入を真空状態で行うことで、処理室115の温度低下を抑制できる。また、加熱後の基板10を、移載室300の加熱空間340から処理室115まで移動させる間に基板10の温度低下を抑制することができる。
 図7(e)に示すように、ボート200を搬入した後、処理室115内が所望の温度となるように反応管加熱部100によって加熱する。このとき、ボート200と基板10は移載室300ですでに加熱されているので、成膜処理を開始するのに必要な温度まで上昇する時間が、移載室300で加熱されずに室温の状態で処理室115の内部に搬入された場合と比べると、大幅に短くすることができる。これにより、基板処理の時間を短くすることができ、スループットを向上させることができる。なお、図7(e)に示す状態では、移載室加熱部321はOFF(稼働させない状態)としている。
 [成膜工程:S203]
 続いて、図示していないガス供給系統からノズル130を介して第2反応管120の内部に原料ガスを供給し、第2反応管120と第1反応管110との上側の隙間121及び下側の開口部122を通って、排気管140から図示していない排気ポンプにより外部に排気する。
 このノズル130を介して第2反応管120の内部に原料ガスを供給し、排気ポンプにより外部に排気する工程を含むいくつかの処理工程を繰り返すことで、ボート200に搭載された基板10の表面に所望の厚さの薄膜を形成する。
 次に、処理工程の一例である交互供給処理について説明する。交互供給処理では、異なるガスを交互に供給し、基板上に所望の膜を形成する。
 たとえば第一工程では、第一ガス供給系250から処理室115に第一ガスを供給し、次の第二工程では、第二ガス供給系270から処理室115に第二ガスを供給し所望の膜を形成する。第一工程と第二工程との間では、処理室115の雰囲気を排気するパージ工程を備える。第一工程とパージ工程と第二工程との組み合わせを少なくとも一回以上、望ましくは複数回行うことで、基板10上に、例えばSi含有膜を形成する。
 [雰囲気調整工程:S204]
 基板10の表面に所望の厚さの薄膜が形成された後、雰囲気調整工程S204が行われる。ガス供給系統からノズル130を介して第2反応管120の内部にNガスを供給し、排気管140から図示していない排気ポンプにより外部に排気することにより、処理室115内を不活性ガスでパージし、処理室115内に残留するガスや副生成物を処理室115内から除去する。
 [判定工程:S205]
 続いて、上述の成膜工程S203を未処理の新しい基板10に対して、繰り返し行わせるか否かの判定工程S205が行われる。未処理の基板10がある場合は、YES判定として、基板入れ替え工程S206aと第1基板加熱工程S206bが行われる。未処理の基板10が無い場合は、NO判定として、基板搬出工程S207が行われる。
 [基板入れ替え工程:S206a・第1基板加熱工程:S206b]
 ここでは、基板入れ替え工程S206aと第1基板加熱工程S206bとが並行して行われることとなる。
 [基板入れ替え工程:S206a]
 その後、図7(a)に示す状態からボートエレベータ40を駆動して支持ロッド160を下降させ、図7(b)に示すように、表面に所定の厚さの薄膜が形成された基板10を搭載したボート200を移載室300に搬送する。
 この、薄膜が形成された基板10を搭載したボート200をチャンバ180に搬送するときに、本実施形態においては、移載空間330の基板搬入口331を介して、ボート200から薄膜が形成された基板10を取り出して、新たな基板10をボート200に搭載することを、ボートエレベータ40を駆動してボート200をピッチ送りして1枚ずつ行う。
 基板10の入れ替え順は、上から順、下から順、ボート200の中間付近から順になど様々あるが、ボート200の下から順に入れ替えする方が、基板10の昇温時間を短縮することができる。ただし、ボート200に搭載した一番上と一番下の基板10は、ボート200の中間付近に搭載した基板10よりも温度が高くなる傾向にあるため、ボート200の中間付近から順に入れ替えを始めても良い。
 図7(c)に示すように、この動作を、ボート200に搭載された薄膜が形成された基板10を全て新たな基板10と置き換えるまで実行する。
 [第1基板加熱工程:S206b]
 第1基板加熱工程S206bでは、上述した第1基板加熱工程S201bと同様に基板10の加熱が行われる。その後、第2基板加熱工程S202以降が行われる。
 なお、上記実施形態では、ボート200から薄膜が形成された基板10を取り出して、新たな基板10をボート200に搭載することを、ボートエレベータ40を駆動してボート200をピッチ送りして1枚ずつ行う例を示したが、基板10を複数枚同時にボート200から取り出して、新たな基板10を複数枚同時にボート200搭載するようにしてもよい。この場合、ボートエレベータ40は、ボート200を複数枚の基板10の分だけピッチ送りする。
 また、基板10を複数枚同時にボート200から取り出して、新たな基板10を複数枚同時にボート200搭載するようにして、ボート200に新たに搭載された処理前の基板10全てを一括で加熱するようにしてもよい。
 なお、ボートエレベータ40によりボート200が下降させられて、ボート200に搭載された薄膜が形成された基板10を新たな基板10と置き換えているときに、基板処理装置101の反応管加熱部100による加熱を継続させてもよい。これにより、ボート200の上部の温度の低下を防止して、新たな基板10を移し替えた後のボート200の上部の基板10の加熱空間340における加熱時間が短いことによるボート200の下部の基板10との温度差をある程度解消することができる。
 なお、基板入れ替え工程S206aで、キャップヒータ152のON(稼働)を継続して、ボートダウン、ボートローディングを行う様に構成しても良い。キャップヒータ152のONを継続させることにより、断熱部150や、ボート200の下部の基板支持部203の温度低下を抑制させることが可能となる。 
 [基板搬出工程:S207]
 基板搬出工程S207は、新しい基板10が無い場合に行われる。基板搬出工程S207の動作は、基板入れ替え工程S206aで、新しい基板10を載置しないように構成される。
 このようにして、本実施形態の基板処理工程が行われる。
 本実施形態によれば、以下の一つまたは複数の効果を有する。
 (1)処理室の下方に連通する移載室は、複数の基板を支持する基板保持具と、複数の基板を加熱する加熱部と、基板保持具と加熱部との間に設けられる少なくとも1つの保温部と、を収容する。これにより、加熱部で加熱された保温部は搬送処理中の基板保持具の温度低下を防ぐことができる。処理室における昇温時間が低減でき、基板処理装置の生産性を向上することができる。
 (2)加熱部は、基板保持具の周辺に設けられる。これにより、熱源と基板との距離が短いので熱効率が上がる。
 (3)保温部は、基板保持具の周辺に設けられる。これにより、保温部と基板との距離が短いので保温性が上がる。
 (4)保温部は、基板保持具を覆うように複数設けられる。これにより、加熱ムラを抑制することができる。
 (5)加熱部は、ランプ加熱装置である。これにより、昇温時間が短くなる。また、発熱体を石英管内に封止した加熱装置であり、真空チャンバ内の汚染リスクが少ない。
 (6)保温部は、炭化ケイ素で形成される。均熱性があるので、保温性が上がる。また、ガラス繊維で形成される断熱材を用いないので、真空チャンバ内部でクリーンな保温構造を得ることができる。
 以上、本開示を実施形態に基づき具体的に説明したが、本開示は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。例えば、上記した実施形態は本開示を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 10・・・基板
 101・・・基板処理装置
 115・・・処理室
 200・・・ボート(基板保持具)
 321・・・加熱部
 322・・・保温板(保温部)
 300・・・移載室

Claims (8)

  1.  複数の基板を処理する処理室と、
     前記処理室の下方に連通し、前記複数の基板を支持する基板保持具と、前記複数の基板を加熱する加熱部と、前記基板保持具と前記加熱部との間に設けられる少なくとも1つの保温部と、を収容可能な移載室と、を有する基板処理装置。
  2.  前記加熱部は、前記基板保持具の周辺に設けられる請求項1に記載の基板処理装置。
  3.  前記保温部は、前記基板保持具の周辺に設けられる請求項1又は請求項2に記載の基板処理装置。
  4.  前記保温部は、前記基板保持具を覆うように複数設けられる請求項1から請求項3のうち、いずれか一項に記載の基板処理装置。
  5.  前記加熱部は、ランプ加熱装置である請求項1から請求項4のうち、いずれか一項に記載の基板処理装置。
  6.  前記保温部は、炭化ケイ素で形成される請求項1から請求項5のうち、いずれか一項に記載の基板処理装置。
  7.  複数の基板を処理する処理室と、前記処理室の下方に連通し、前記複数の基板を支持する基板保持具と、前記複数の基板を加熱する加熱部と、前記基板保持具と前記加熱部との間に設けられる少なくとも1つの保温部と、を収容する移載室と、を有する基板処理装置の前記処理室に前記複数の基板を搬入する工程と、
     前記複数の基板にガスを供給して処理する工程と、
    を有する半導体装置の製造方法。
  8.  複数の基板を処理する処理室と、前記処理室の下方に連通し、前記複数の基板を支持する基板保持具と、前記複数の基板を加熱する加熱部と、前記基板保持具と前記加熱部との間に設けられる少なくとも1つの保温部と、を収容する移載室と、を有する基板処理装置の前記処理室に前記複数の基板を搬入する手順と、
     前記複数の基板にガスを供給して処理する手順と、
    をコンピュータにより前記基板処理装置に実行させるプログラム。
PCT/JP2021/034903 2021-09-22 2021-09-22 基板処理装置、半導体装置の製造方法およびプログラム WO2023047499A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180101006.6A CN117716480A (zh) 2021-09-22 2021-09-22 基板处理装置、半导体装置的制造方法以及程序
KR1020247008956A KR20240043805A (ko) 2021-09-22 2021-09-22 기판 처리 장치, 반도체 장치의 제조 방법, 기판 처리 방법 및 프로그램
PCT/JP2021/034903 WO2023047499A1 (ja) 2021-09-22 2021-09-22 基板処理装置、半導体装置の製造方法およびプログラム
TW111120151A TW202314901A (zh) 2021-09-22 2022-05-31 基板處理裝置、半導體裝置之製造方法及程式
US18/612,218 US20240234178A1 (en) 2021-09-22 2024-03-21 Substrate processing apparatus, method of manufacturing semiconductor device, substrate processing method and non-transitory computer-readable recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/034903 WO2023047499A1 (ja) 2021-09-22 2021-09-22 基板処理装置、半導体装置の製造方法およびプログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/612,218 Continuation US20240234178A1 (en) 2021-09-22 2024-03-21 Substrate processing apparatus, method of manufacturing semiconductor device, substrate processing method and non-transitory computer-readable recording medium

Publications (1)

Publication Number Publication Date
WO2023047499A1 true WO2023047499A1 (ja) 2023-03-30

Family

ID=85719348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034903 WO2023047499A1 (ja) 2021-09-22 2021-09-22 基板処理装置、半導体装置の製造方法およびプログラム

Country Status (5)

Country Link
US (1) US20240234178A1 (ja)
KR (1) KR20240043805A (ja)
CN (1) CN117716480A (ja)
TW (1) TW202314901A (ja)
WO (1) WO2023047499A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH113861A (ja) * 1997-06-12 1999-01-06 Sony Corp 半導体装置の製造方法及びその装置
JP2003100736A (ja) * 2001-09-26 2003-04-04 Hitachi Kokusai Electric Inc 基板処理装置
JP2020161808A (ja) * 2019-03-22 2020-10-01 株式会社Kokusai Electric 基板処理装置及び半導体装置の製造方法並びに基板処理プログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH113861A (ja) * 1997-06-12 1999-01-06 Sony Corp 半導体装置の製造方法及びその装置
JP2003100736A (ja) * 2001-09-26 2003-04-04 Hitachi Kokusai Electric Inc 基板処理装置
JP2020161808A (ja) * 2019-03-22 2020-10-01 株式会社Kokusai Electric 基板処理装置及び半導体装置の製造方法並びに基板処理プログラム

Also Published As

Publication number Publication date
TW202314901A (zh) 2023-04-01
US20240234178A1 (en) 2024-07-11
CN117716480A (zh) 2024-03-15
KR20240043805A (ko) 2024-04-03

Similar Documents

Publication Publication Date Title
KR101715530B1 (ko) 기판 처리 장치, 반도체 장치의 제조 방법 및 기록 매체
JPWO2007018139A1 (ja) 半導体装置の製造方法および基板処理装置
JP7212790B2 (ja) 基板処理装置、半導体装置の製造方法、プログラムおよび記録媒体
JP2008235309A (ja) 基板処理装置、基板処理方法および記録媒体
CN106920760A (zh) 衬底处理装置及半导体器件的制造方法
KR102375496B1 (ko) 기판 처리 장치 및 반도체 장치의 제조 방법, 그리고 기판 처리 프로그램
TWI761758B (zh) 半導體裝置的製造方法、基板處理裝置及記錄媒體
KR20170090967A (ko) 기판 처리 장치, 반도체 장치의 제조 방법 및 기록 매체
JP6475135B2 (ja) 半導体装置の製造方法、ガス供給方法及び基板処理装置並びに基板保持具
WO2023047499A1 (ja) 基板処理装置、半導体装置の製造方法およびプログラム
JP6995902B2 (ja) 基板処理装置及び半導体装置の製造方法並びに基板処理プログラム
JP2012195355A (ja) 基板処理装置及び基板の製造方法
WO2021181685A1 (ja) 基板処理装置、加熱装置および半導体装置の製造方法
JP2009016426A (ja) 半導体装置の製造方法および基板処理装置
JP7375069B2 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
US20230091762A1 (en) Substrate processing apparatus, method of manufacturing semiconductor device, and non-transitory computer-readable recording medium
US20230187243A1 (en) Substrate processing apparatus, method of manufacturing semiconductor device, and recording medium
JP2012256724A (ja) 基板処理装置及び半導体装置の製造方法
JP2006080256A (ja) 基板処理装置
WO2004057656A1 (ja) 基板処理装置および半導体装置の製造方法
JP2007234937A (ja) 半導体装置の製造方法および基板処理装置
JP2010080811A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958375

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180101006.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE