WO2023045156A1 - 一种插层改性c-s-h凝胶纳米分散液的制备方法 - Google Patents

一种插层改性c-s-h凝胶纳米分散液的制备方法 Download PDF

Info

Publication number
WO2023045156A1
WO2023045156A1 PCT/CN2021/141648 CN2021141648W WO2023045156A1 WO 2023045156 A1 WO2023045156 A1 WO 2023045156A1 CN 2021141648 W CN2021141648 W CN 2021141648W WO 2023045156 A1 WO2023045156 A1 WO 2023045156A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter cake
press filter
stage press
quartz sand
intercalation
Prior art date
Application number
PCT/CN2021/141648
Other languages
English (en)
French (fr)
Inventor
孔德玉
盛建松
杨辉
Original Assignee
浙江加州国际纳米技术研究院台州分院
浙江工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江加州国际纳米技术研究院台州分院, 浙江工业大学 filed Critical 浙江加州国际纳米技术研究院台州分院
Publication of WO2023045156A1 publication Critical patent/WO2023045156A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/24Alkaline-earth metal silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof

Definitions

  • the invention belongs to the technical field of production of inorganic nanocomposite materials, and in particular relates to a preparation method of intercalation modified C-S-H gel nano-dispersion liquid.
  • Calcium silicate hydrate (C-S-H) gel is one of the main hydration products of Portland cement and one of the main strength sources of hardened cement-based materials.
  • C-S-H Calcium silicate hydrate
  • Commonly used raw materials include sodium silicate, potassium silicate, lithium silicate, calcium nitrate, calcium chloride, etc.; hydrothermal synthesis method It is prepared by mixing crystalline or amorphous silicon dioxide micropowder with calcium hydroxide and then chemically reacting under high temperature and pressure in an autoclave; the single mineral hydration method first prepares dicalcium silicate ( C 2 S) or tricalcium silicate (C 3 S) single ore, and then hydrate the single ore with water.
  • C 2 S dicalcium silicate
  • C 3 S tricalcium silicate
  • the present invention aims to provide a low-cost preparation method of intercalation-modified calcium silicate hydrate nano-dispersion.
  • a kind of preparation method of intercalation modified C-S-H gel nano-dispersion it is characterized in that the preparation method of described intercalation modification C-S-H gel nano-dispersion comprises the following steps:
  • (1) preparing molar concentration is the sodium hydroxide aqueous solution of 0.5 ⁇ 1.0mol
  • step 2 (3) adding the mixture in step 2 to a ball mill for ball milling, the ball milling time is 90-240min;
  • the primary press filter cake is dispersed in deionized water, after repeated press filter and dispersion treatment, adding a stabilizer, and stirring evenly, to obtain a C-S-H gel nano-dispersion liquid modified by intercalation.
  • the secondary press filter cake is dispersed in deionized water, after stirring evenly, the third-stage press filter is carried out to obtain the third-stage press filter cake;
  • the preparation method of the present invention may also comprise the following steps:
  • the secondary press filter cake is dispersed in the fourth-stage press water described in the above technical solution, after stirring evenly, the third-stage press filter is carried out to obtain the third-stage press filter filter cake;
  • the ball mill is a high-energy ball mill such as a vibration ball mill, a planetary ball mill, or a colloid mill;
  • the soluble small organic molecule intercalation modifier is sucrose, glucose, EDTA, low molecular weight PEG, low molecular weight PVA.
  • the specific surface area of the ultrafine quartz sand powder is more than 500m2/kg
  • the specific surface area of the ultrafine quartz sand powder is above 1000m2/kg.
  • the molecular weight of the low molecular weight PEG is below 10,000.
  • the molecular weight of the low molecular weight PVA is below 20,000.
  • the stabilizer is the same as the soluble organic small molecule intercalation modifier used.
  • the beneficial effects of the present invention are mainly reflected in the full use of the mechanochemical effect in the ball milling process, using sodium hydroxide as an intermediate component of the chemical reaction of quartz sand powder under mechanochemical action, and promoting low-cost quartz sand powder and hydrogen oxidation.
  • the chemical reaction of calcium under the action of mechanochemistry so that cheap and easy-to-obtain quartz sand powder and calcium hydroxide can be used as raw materials to prepare intercalated modified calcium silicate hydrate gel nanodispersion, and the preparation process cost Inexpensive, sodium hydroxide and press filtered water can be recycled.
  • Fig. 1 is the XRD spectrum obtained after the intercalation modified C-S-H gel nano-dispersion liquid of Example 1 is dried and subjected to XRD analysis.
  • Fig. 2 is the XRD spectrum obtained after the intercalation modified C-S-H gel nano-dispersion liquid of Example 2 is dried and subjected to XRD analysis.
  • Fig. 3 is the XRD pattern obtained after the intercalation modified C-S-H gel nano-dispersion liquid of Example 3 is dried and subjected to XRD analysis.
  • a preparation method of intercalation modified C-S-H gel nano-dispersion comprises the following steps:
  • (1) preparing molar concentration is the sodium hydroxide aqueous solution of 0.5mol
  • step 2 Add the mixture in step 2 to a ball mill for ball milling, and the ball milling time is 90min;
  • the ball mill is a vibration ball mill
  • the soluble small organic molecule intercalation modifier is sucrose.
  • the specific surface area of the ultrafine quartz sand powder is 1058m 2 /kg
  • Fig. 1 shows the XRD pattern obtained after drying the obtained nano-dispersion liquid. It can be seen from Fig. 1 that the intercalation-modified C-S-H gel nano-dispersion liquid can be obtained by using this preparation method.
  • a kind of preparation method of intercalation modified C-S-H gel nano-dispersion it is characterized in that the preparation method of described intercalation modification C-S-H gel nano-dispersion comprises the following steps:
  • (1) preparing molar concentration is the sodium hydroxide aqueous solution of 1.0mol
  • step 2 The mixture in step 2 is added into a ball mill for ball milling, and the ball milling time is 240min;
  • the ball mill is a planetary ball mill
  • the soluble small organic molecule intercalation modifier is glucose
  • the specific surface area of the ultrafine quartz sand powder is 512m2/kg.
  • Fig. 2 shows the XRD pattern obtained after drying the obtained nano-dispersion liquid. It can be seen from Fig. 2 that the intercalation-modified C-S-H gel nano-dispersion liquid can be obtained by using this preparation method.
  • a preparation method for intercalation modified C-S-H gel nano-dispersion comprising the following steps:
  • Example 1 After mixing the primary aqueous solution of pressure filtration obtained in Example 1 and the secondary aqueous solution of press filtration, it is tested that its concentration of sodium hydroxide is 0.44mol/L, then sodium hydroxide is added in the mixed solution, and the molar concentration is mixed with 0.5mol/L sodium hydroxide solution;
  • the secondary press filter cake is dispersed in the fourth-stage press water described in Example 2, after stirring evenly, the third-stage press filter is carried out to obtain the third-stage press filter cake ;
  • the ball mill is a colloid mill
  • the soluble small organic molecule intercalation modifier is low molecular weight PEG.
  • the specific surface area of the ultrafine quartz sand powder is above 800m2/kg.
  • the molecular weight of the low molecular weight PEG is about 6000.
  • Fig. 3 shows the XRD pattern obtained after drying the obtained nano-dispersion liquid. It can be seen from Fig. 3 that the intercalation-modified C-S-H gel nano-dispersion liquid can be obtained by using this preparation method.
  • a preparation method of intercalation modified C-S-H gel nano-dispersion comprises the following steps:
  • Example 2 After the primary aqueous solution of pressure filtration obtained in Example 2 is mixed with the secondary aqueous solution of press filtration, it is tested that its concentration of sodium hydroxide is 0.90mol/L, then sodium hydroxide is added in the mixed solution, and the molar concentration is mixed with 1.0mol sodium hydroxide solution;
  • Example 2 Disperse the primary press filter cake in the third-stage press water obtained in Example 2 in a weight ratio of 1:3, and after stirring evenly, perform second-stage press filtration to obtain a second-stage press filter cake;
  • the secondary press filter cake is dispersed in the fourth-stage press water obtained in Example 2, after stirring evenly, the third-stage press filter is carried out to obtain the third-stage press filter cake ;
  • the ball mill is a colloid mill
  • the soluble small organic molecule intercalation modifier is low molecular weight PVA.
  • the specific surface area of the ultrafine quartz sand powder is 1282m 2 /kg.
  • the molecular weight of the low molecular weight PVA is about 12000.
  • a preparation method of intercalation modified C-S-H gel nano-dispersion comprises the following steps:
  • step 2 The mixture in step 2 is added into a ball mill for ball milling, and the ball milling time is as shown in Table 1;
  • a kind of preparation method of intercalation modified C-S-H gel nano-dispersion it is characterized in that the preparation method of described intercalation modification C-S-H gel nano-dispersion comprises the following steps:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明提供了一种插层改性C-S-H凝胶纳米分散液的低成本制备方法,所述制备方法为将氢氧化钙、超细石英砂粉和水溶性小分子加入一定摩尔浓度的氢氧化钠溶液中,然后将混合物加入球磨机进行球磨处理90-240min,反应液经反复压滤处理和分散处理后,即可制得所述插层改性C-S-H凝胶纳米分散液,本发明的有益效果主要体现在充分利用球磨过程中的机械力化学效应,采用氢氧化钠作为石英砂粉在机械力化学作用下发生化学反应的中间组分,促进低成本石英砂粉和氢氧化钙在机械力化学作用下的化学反应,从而可利用价廉易得的石英砂粉和氢氧化钙作为原材料,制备插层改性的水化硅酸钙凝胶纳米分散液,其制备过程成本低廉,氢氧化钠和压滤水可循环利用。

Description

一种插层改性C-S-H凝胶纳米分散液的制备方法 (一)技术领域
本发明属于无机纳米复合材料生产技术领域,具体涉及一种插层改性C-S-H凝胶纳米分散液的制备方法。
(二)背景技术
水化硅酸钙(C-S-H)凝胶是硅酸盐水泥的主要水化产物之一,也是硬化水泥基材料主要的强度来源之一。近几十年来的研究发现,在水泥基材料中掺加水化硅酸钙凝胶纳米粒子,掺入的水化硅酸钙凝胶纳米粒子可作为水泥水化过程中水泥水化产物水化硅酸钙凝胶成核生长的晶核,从而可有效促进新拌水泥基材料的水化反应速度,并进一步有效改善硬化水泥基材料性能,尤其是可有效改善硬化水泥基材料耐久性,包括抗氯离子渗透性能、抗渗性等,并已在工程实践中得以一定范围的应用。此外,研究发现,将水化硅酸钙凝胶与有机高分子复合,可制备得到具有一定插层结构的水化硅酸钙凝胶复合物,在水泥基材料中掺加亦对新拌和硬化水泥基材料具有不同程度的影响。
目前,国内外制备水化硅酸钙凝胶主要有以下几种方法:化学合成法、水热合成法、单矿水化法、纳米二氧化硅与氢氧化钙直接反应法,其中化学合成法是指将碱硅酸盐与钙盐分别配制成溶液后,再进行混合制备而成,常用原材料包括硅酸钠、硅酸钾、硅酸锂和硝酸钙、氯化钙等;水热合成法是指将晶态或非晶态二氧化硅微粉与氢氧化钙混合后,在蒸压釜中的高温高压下发生化学反应制备而成;单矿水化法则首先通过制备出硅酸二钙(C 2S)或硅酸三钙(C 3S)单矿,然后再将单矿与水反应水化而成。
然而这几种水化硅酸钙的制备方法均存在着一定缺点:溶液反应法制备时, 所用钙质原料为可溶性钙盐,如氯化钙、硝酸钙等,其原材料价格较高;水热合成法在高温高压环境下硅质原料和钙质原料反应后大多生成了结晶程度高的托勃莫来石相,并不能制备出半结晶或者无定形的水化硅酸钙凝胶,且该反应需要通过球磨制粉、制备氢氧化钙、两者混合、高温高压养护等步骤,其工艺较为复杂,生产成本较高;单矿法则需要提前制备C 2S、C 3S单矿,其工艺更为复杂,成本更高;采用纳米二氧化硅粉体或硅溶胶与氢氧化钙反应制备时,纳米二氧化硅和硅溶胶本身的成本也很高。除成本因素外,上述四种方法中,除化学合成法之外,其余四种方法均很难制备得到单分散的水化硅酸钙凝胶纳米粒子。
(三)发明内容:
基于以上技术背景和存在问题,本发明旨在提供一种插层改性水化硅酸钙纳米分散液的低成本制备方法。
为达到上述发明目的,本发明采用的技术方案是:
一种插层改性C-S-H凝胶纳米分散液的制备方法,其特征在于所述的插层改性C-S-H凝胶纳米分散液的制备方法包含以下步骤:
(1)制备摩尔浓度为0.5~1.0mol的氢氧化钠水溶液;
(2)在氢氧化钠水溶液中加入石英砂超细粉、氢氧化钙和水溶性有机小分子插层剂,其中石英砂超细粉和氢氧化钙加入量按Na2O:CaO:SiO2摩尔比为1:1:0.8~1.5进行计算,有机小分子插层剂掺加量按石英砂超细粉加入量的0.5%~2.0%进行计算,充分搅拌均匀,得到石英砂超细粉、氢氧化钙分散在氢氧化钠溶液中的混合物,其中还溶解有有机小分子插层剂;
(3)将步骤2中的混合物加入球磨机进行球磨处理,球磨时间为90~240min;
(4)对球磨处理得到的纳米分散液进行压滤处理,得到经插层改性的纳米C-S-H凝胶初级压滤滤饼;
将初级压滤滤饼分散于去离子水中经反复压滤和分散处理后并加入稳定剂,搅拌均匀后,得到经插层改性的C-S-H凝胶纳米分散液。
作为优选,所述的反复压滤和分散处理步骤如下:
(5)按重量比为1:2~3,将初级滤饼分散于去离子水中,搅拌均匀后,进行第二级压滤,得到二级压滤滤饼;
(6)按重量比为1:2~3,将二级压滤滤饼分散于去离子水中,搅拌均匀后,进行第三级压滤,得到三级压滤滤饼;。
(7)按重量比为1:2~3,将三级压滤滤饼分散于去离子水中,搅拌均匀后,进行第四级压滤,得到四级压滤滤饼;
(8)按重量比为1:1~2,将四级压滤滤饼分散于去离子水中,并加入稳定剂,稳定剂用量为用水量的0.5~1.0%,搅拌均匀后,得到经插层改性的C-S-H凝胶纳米分散液。
作为优选,本发明的制备方法还可以包含以下步骤:
(1)将初级压滤水溶液加入球磨机,并加入氢氧化钙、石英砂超细粉和有机小分子插层改性剂,其中,按摩尔比计算,在初级压滤水中加入的氢氧化钙与石英砂超细粉掺加量,按CaO:SiO 2摩尔比为1:0.8~1.5进行计算;有机小分子掺加量按石英砂超细粉加入量的0.5~2.0%计算;
(3)将球磨机中的混合物进行球磨处理,球磨时间为90~240min;
(4)对球磨处理得到的纳米分散液进行压滤处理,得到经插层改性的纳米C-S-H凝胶初级压滤滤饼;
(5)按重量比为1:2~3,将初级压滤滤饼分散于上述技术方案所述的三级 压滤水中,搅拌均匀后,进行第二级压滤,得到二级压滤滤饼;
(6)按重量比为1:2~3,将二级压滤滤饼分散于上述技术方案所述的四级压滤水中,搅拌均匀后,进行第三级压滤,得到三级压滤滤饼;
(7)按重量比为1:2~3,将三级压滤滤饼分散于去离子水中,搅拌均匀后,进行第四级压滤,得到四级压滤滤饼;
(8)按重量比为1:1~2,将四级压滤滤饼分散于去离子水中,并加入稳定剂,稳定剂用量为用水量的0.5~1.0%,搅拌均匀后,即可得到经插层改性的C-S-H凝胶纳米分散液。
上述技术方案中,所述的球磨机为振动球磨机、行星球磨机、胶体磨等高能球磨机;
上述技术方案中,所述的可溶性有机小分子插层改性剂为蔗糖、葡萄糖、EDTA、低分子量PEG、低分子量PVA。
上述技术方案中,所述的石英砂超细粉的比表面积为500m2/kg以上;
上述技术方案中,所述的石英砂超细粉的比表面积为1000m2/kg以上。
上述技术方案中,所述低分子量PEG的分子量在10000以下。
上述技术方案中,所述低分子量PVA的分子量在20000以下。
上述技术方案中,所述稳定剂与所用可溶性有机小分子插层改性剂相同。
本发明的有益效果主要体现在充分利用球磨过程中的机械力化学效应,采用氢氧化钠作为石英砂粉在机械力化学作用下发生化学反应的中间组分,促进低成本石英砂粉和氢氧化钙在机械力化学作用下的化学反应,从而可利用价廉易得的石英砂粉和氢氧化钙作为原材料,制备插层改性的水化硅酸钙凝胶纳米分散液,其制备过程成本低廉,氢氧化钠和压滤水可循环利用。
(四)附图说明
图1为实施例1的插层改性的C-S-H凝胶纳米分散液经烘干后,进行XRD分析后,得到的XRD图谱。
图2为实施例2的插层改性的C-S-H凝胶纳米分散液经烘干后,进行XRD分析后,得到的XRD图谱。
图3为实施例3的插层改性的C-S-H凝胶纳米分散液经烘干后,进行XRD分析后,得到的XRD图谱。
(五)具体实施方式
下面结合具体实施例对本发明进行进一步描述,但本发明保护范围不仅限于此:
实施例1
一种插层改性C-S-H凝胶纳米分散液的制备方法包含以下步骤:
(1)制备摩尔浓度为0.5mol的氢氧化钠水溶液;
(2)在氢氧化钠水溶液中加入石英砂超细粉、氢氧化钙和水溶性有机小分子插层剂,其中石英砂超细粉和氢氧化钙加入量按Na2O:CaO:SiO2摩尔比为1:1:0.8进行计算,有机小分子插层剂掺加量按石英砂超细粉加入量的0.5%进行计算,充分搅拌均匀,得到石英砂超细粉、氢氧化钙分散在氢氧化钠溶液中的混合物,其中还溶解有有机小分子插层剂;
(3)将步骤2中的混合物加入球磨机进行球磨处理,球磨时间为90min;
(4)对球磨处理得到的纳米分散液进行压滤处理,得到经插层改性的纳米C-S-H凝胶初级压滤滤饼;
(5)按重量比为1:3,将滤饼分散于去离子水中,搅拌均匀后,进行第二级压滤,得到二级压滤滤饼;
(6)按重量比为1:3,将二级压滤滤饼分散于去离子水中,搅拌均匀后,进行第三级压滤,得到三级压滤滤饼;
(7)按重量比为1:3,将三级压滤滤饼分散于去离子水中,搅拌均匀后,进行第四级压滤,得到四级压滤滤饼;
(8)按重量比为1:3,将四级压滤滤饼分散于去离子水中,并加入稳定剂,稳定剂用量为用水量的0.5%,搅拌均匀后,即可得到经插层改性的C-S-H凝胶纳米分散液。
上述技术方案中,所述的球磨机为振动球磨机;
上述技术方案中,所述的可溶性有机小分子插层改性剂为蔗糖。
上述技术方案中,所述的石英砂超细粉的比表面积为1058m 2/kg;
图1所示为所得纳米分散液经烘干后,得到的XRD图谱,由图1可见,采用该制备方法,可得到插层改性的C-S-H凝胶纳米分散液。
实施例2
一种插层改性C-S-H凝胶纳米分散液的制备方法,其特征在于所述的插层改性C-S-H凝胶纳米分散液的制备方法包含以下步骤:
(1)制备摩尔浓度为1.0mol的氢氧化钠水溶液;
(2)在氢氧化钠水溶液中加入石英砂超细粉、氢氧化钙和水溶性有机小分子插层剂,其中石英砂超细粉和氢氧化钙加入量按Na 2O:CaO:SiO 2摩尔比为1:1:1.5进行计算,有机小分子插层剂掺加量按石英砂超细粉加入量的2.0%进行计算,充分搅拌均匀,得到石英砂超细粉、氢氧化钙分散在氢氧化钠溶液中的混合物,其中还溶解有有机小分子插层剂;
(3)将步骤2中的混合物加入球磨机进行球磨处理,球磨时间为240min;
(4)对球磨处理得到的纳米分散液进行压滤处理,得到经插层改性的纳米C-S-H凝胶初级压滤滤饼;
(5)按重量比为1:3,将滤饼分散于去离子水中,搅拌均匀后,进行第二级压滤,得到二级压滤滤饼;
(6)按重量比为1:3,将二级压滤滤饼分散于去离子水中,搅拌均匀后,进行第三级压滤,得到三级压滤滤饼;
(7)按重量比为1:3,将三级压滤滤饼分散于去离子水中,搅拌均匀后,进行第四级压滤,得到四级压滤滤饼;
(8)按重量比为1:2,将四级压滤滤饼分散于去离子水中,并加入稳定剂,稳定剂用量为用水量的1.0%,搅拌均匀后,即可得到经插层改性的C-S-H凝胶纳米分散液。
上述技术方案中,所述的球磨机为行星球磨机;
上述技术方案中,所述的可溶性有机小分子插层改性剂为葡萄糖。
上述技术方案中,所述的石英砂超细粉的比表面积为512m2/kg。
图2所示为所得纳米分散液经烘干后,得到的XRD图谱,由图2可见,采用该制备方法,可得到插层改性的C-S-H凝胶纳米分散液。
实施例3
一种插层改性C-S-H凝胶纳米分散液的制备方法,包含以下步骤:
(1)将实施例1所得到的初级压滤水溶液和二级压滤水溶液混合后,测试其氢氧化钠浓度为0.44mol/L,然后在混合溶液中加入氢氧化钠,配制成摩尔浓度为0.5mol/L的氢氧化钠溶液;
(2)在球磨机中加入氢氧化钠溶液,并加入氢氧化钙、石英砂超细粉和有机 小分子插层改性剂,其中,按摩尔比计算,加入的氢氧化钙与石英砂超细粉掺加量,按Na 2O:CaO:SiO 2摩尔比为1:1:1进行计算;有机小分子掺加量按石英砂超细粉加入量的1.0%计算;
(3)将球磨机中的混合物进行球磨处理,球磨时间为150min;
(4)对球磨处理得到的纳米分散液进行压滤处理,得到经插层改性的纳米C-S-H凝胶初级压滤滤饼;
(5)按重量比为1:2.5,将初级压滤滤饼分散于实施例2所述的三级压滤水中,搅拌均匀后,进行第二级压滤,得到二级压滤滤饼;
(6)按重量比为1:2.5,将二级压滤滤饼分散于实施例2所述的四级压滤水中,搅拌均匀后,进行第三级压滤,得到三级压滤滤饼;
(7)按重量比为1:2,将三级压滤滤饼分散于去离子水中,搅拌均匀后,进行第四级压滤,得到四级压滤滤饼;
(8)按重量比为1:2,将四级压滤滤饼分散于去离子水中,并加入稳定剂,稳定剂用量为用水量的0.8%,搅拌均匀后,即可得到经插层改性的C-S-H凝胶纳米分散液。
上述技术方案中,所述的球磨机为胶体磨;
上述技术方案中,所述的可溶性有机小分子插层改性剂为低分子量PEG。
上述技术方案中,所述的石英砂超细粉的比表面积为800m2/kg以上。
上述技术方案中,所述低分子量PEG的分子量在6000左右。
图3所示为所得纳米分散液经烘干后,得到的XRD图谱,由图3可见,采用该制备方法,可得到插层改性的C-S-H凝胶纳米分散液。
实施例4
一种插层改性C-S-H凝胶纳米分散液的制备方法包含以下步骤:
(1)将实施例2所得到的初级压滤水溶液和二级压滤水溶液混合后,测试其氢氧化钠浓度为0.90mol/L,然后在混合溶液中加入氢氧化钠,配制成摩尔浓度为1.0mol的氢氧化钠溶液;
(2)在球磨机中加入氢氧化钠溶液,并加入氢氧化钙、石英砂超细粉和有机小分子插层改性剂,其中,按摩尔比计算,加入的氢氧化钙与石英砂超细粉掺加量,按Na 2O:CaO:SiO 2摩尔比为1:1:1.2进行计算;有机小分子掺加量按石英砂超细粉加入量的0.8%计算;
(3)将球磨机中的混合物进行球磨处理,球磨时间为200min;
(4)对球磨处理得到的纳米分散液进行压滤处理,得到经插层改性的纳米C-S-H凝胶初级压滤滤饼;
(5)按重量比为1:3,将初级压滤滤饼分散于实施例2所得到的三级压滤水中,搅拌均匀后,进行第二级压滤,得到二级压滤滤饼;
(6)按重量比为1:3,将二级压滤滤饼分散于实施例2所得到的四级压滤水中,搅拌均匀后,进行第三级压滤,得到三级压滤滤饼;
(7)按重量比为1:3,将三级压滤滤饼分散于去离子水中,搅拌均匀后,进行第四级压滤,得到四级压滤滤饼;
(8)按重量比为1:2,将四级压滤滤饼分散于去离子水中,并加入稳定剂,稳定剂用量为用水量的0.75%,搅拌均匀后,即可得到经插层改性的C-S-H凝胶纳米分散液。
上述技术方案中,所述的球磨机为胶体磨;
上述技术方案中,所述的可溶性有机小分子插层改性剂为低分子量PVA。
上述技术方案中,所述的石英砂超细粉的比表面积为1282m 2/kg。
上述技术方案中,所述低分子量PVA的分子量为12000左右。
实施例5~8
一种插层改性C-S-H凝胶纳米分散液的制备方法包含以下步骤:
(1)按表1制备一定摩尔浓度的氢氧化钠水溶液;
(2)在氢氧化钠水溶液中加入石英砂超细粉、氢氧化钙和水溶性有机小分子插层剂,充分搅拌均匀,得到石英砂超细粉、氢氧化钙分散在氢氧化钠溶液中的混合物,其中还溶解有有机小分子插层剂;各组分加入量如表1所示;
(3)将步骤2中的混合物加入球磨机进行球磨处理,球磨时间如表1所示;
(4)对球磨处理得到的纳米分散液进行压滤处理,得到经插层改性的纳米C-S-H凝胶初级压滤滤饼;
(5)将滤饼分散于去离子水中,搅拌均匀后,进行第二级压滤,得到二级压滤滤饼,其中滤饼与去离子水的重量比分别见表1。
(6)将二级压滤滤饼分散于去离子水中,搅拌均匀后,进行第三级压滤,得到三级压滤滤饼,其中滤饼与去离子水的重量比分别见表1。
(7)将三级压滤滤饼分散于去离子水中,搅拌均匀后,进行第四级压滤,得到四级压滤滤饼,其中滤饼与去离子水的重量比分别见表1;
(8)将四级压滤滤饼分散于去离子水中,并加入稳定剂,搅拌均匀后,即可得到经插层改性的C-S-H凝胶纳米分散液,其中滤饼与去离子水的重量比和稳定剂用量分别见表1。
各实施例所述的球磨机分别见表1;
各实施例所述的可溶性有机小分子插层改性剂见表1。
各实施例所述的石英砂超细粉的比表面积见表1;
各实施例所述的小分子插层剂分子量见表1。
表1
Figure PCTCN2021141648-appb-000001
实施例9~12
一种插层改性C-S-H凝胶纳米分散液的制备方法,其特征在于所述的插层改性C-S-H凝胶纳米分散液的制备方法包含以下步骤:
(1)将表1实施例5~实施例8所得到的初级压滤水溶液和二级压滤水溶液混合后,测试得到的氢氧化钠浓度如表2所示,然后在混合溶液中加入氢氧化钠,配制成一定摩尔浓度的氢氧化钠溶液,其摩尔浓度分别见表2;
(2)在球磨机中加入氢氧化钠溶液,并加入氢氧化钙、石英砂超细粉和有机小分子插层改性剂,各组分加入量如表2所示;
(3)将步骤2中的混合物加入球磨机进行球磨处理,球磨时间如表2所示;
(4)对球磨处理得到的纳米分散液进行压滤处理,得到经插层改性的纳米C-S-H凝胶初级压滤滤饼;
(5)将滤饼分散于去离子水中,搅拌均匀后,进行第二级压滤,得到二级压滤滤饼,其中滤饼与去离子水的重量比分别见表2。
(6)将二级压滤滤饼分散于去离子水中,搅拌均匀后,进行第三级压滤,得到三级压滤滤饼,其中滤饼与去离子水的重量比分别见表2。
(7)将三级压滤滤饼分散于去离子水中,搅拌均匀后,进行第四级压滤,得到四级压滤滤饼,其中滤饼与去离子水的重量比分别见表2;
(8)将四级压滤滤饼分散于去离子水中,并加入稳定剂,搅拌均匀后,即可得到经插层改性的C-S-H凝胶纳米分散液,其中滤饼与去离子水的重量比和稳定剂用量分别见表2。
各实施例所述的球磨机分别见表2;
各实施例所述的可溶性有机小分子插层改性剂见表2。
各实施例所述的石英砂超细粉的比表面积见表2;
各实施例所述的小分子插层剂分子量见表2。
表2
Figure PCTCN2021141648-appb-000002
Figure PCTCN2021141648-appb-000003
需要说明的是,上述对实施例的描述是为便于该技术领域的普通技术人员能理解和应用本发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其它实施例中而不必经过创造性地劳动。因此,本发明不仅仅限于这里的实施例,本领域技术人员根据本发明的揭示,对于本发明作出的改进和修改都应该在本发明的保护范围之内。

Claims (10)

  1. 一种插层改性C-S-H凝胶纳米分散液的制备方法,其特征在于包含以下步骤:
    (1)制备摩尔浓度为0.5~1.0mol/L的氢氧化钠水溶液;
    (2)在氢氧化钠水溶液中加入石英砂超细粉、氢氧化钙和水溶性有机小分子插层剂,其中石英砂超细粉和氢氧化钙加入量按Na2O:CaO:SiO2摩尔比为1:1:0.8~1.5进行计算,有机小分子插层剂掺加量按石英砂超细粉加入量的0.5%~2.0%进行计算,充分搅拌均匀,得到石英砂超细粉、氢氧化钙分散在氢氧化钠溶液中的混合物,其中还溶解有有机小分子插层剂;
    (3)将步骤2中的混合物加入球磨机进行球磨处理,球磨时间为90~240min;
    (4)对球磨处理得到的纳米分散液进行压滤处理,得到经插层改性的纳米C-S-H凝胶初级压滤滤饼;
    将初级压滤滤饼分散于去离子水中经反复压滤和分散处理后并加入稳定剂,搅拌均匀后,得到经插层改性的C-S-H凝胶纳米分散液。
  2. 如权利要求1所述的制备方法,其特征在于所述的反复压滤和分散处理步骤如下:
    (5)按重量比为1:2~3,将初级滤饼分散于去离子水中,搅拌均匀后,进行第二级压滤,得到二级压滤滤饼;
    (6)按重量比为1:2~3,将二级压滤滤饼分散于去离子水中,搅拌均匀后,进行第三级压滤,得到三级压滤滤饼;
    (7)按重量比为1:2~3,将三级压滤滤饼分散于去离子水中,搅 拌均匀后,进行第四级压滤,得到四级压滤滤饼;
    (8)按重量比为1:1~2,将四级压滤滤饼分散于去离子水中,并加入稳定剂,稳定剂用量为用水量的0.5~1.0%,搅拌均匀后,得到经插层改性的C-S-H凝胶纳米分散液。
  3. 如权利要求2所述的制备方法,其特征在于:
    (1)将初级压滤水溶液和二级压滤水溶液混合后,测试其氢氧化钠浓度,然后在混合溶液中加入氢氧化钠,配制成摩尔浓度为0.5~1.0mol/L的氢氧化钠溶液;
    (2)在球磨机中加入配制好的氢氧化钠溶液,并加入氢氧化钙、石英砂超细粉和有机小分子插层改性剂,其中,按摩尔比计算,在初级压滤水中加入的氢氧化钙与石英砂超细粉掺加量,按Na 2O:CaO:SiO 2摩尔比为1:1:0.8~1.5进行计算;有机小分子掺加量按石英砂超细粉加入量的0.5~2.0%计算;
    (3)将球磨机中的混合物进行球磨处理,球磨时间为90~240min;
    (4)对球磨处理得到的纳米分散液进行压滤处理,得到经插层改性的纳米C-S-H凝胶初级压滤滤饼;
    (5)按重量比为1:2~3,将初级压滤滤饼分散于权利要求2的三级压滤水中,搅拌均匀后,进行第二级压滤,得到二级压滤滤饼;
    (6)按重量比为1:2~3,将二级压滤滤饼分散于如权利要求2所述的四级压滤水中,搅拌均匀后,进行第三级压滤,得到三级压滤滤饼;
    (7)按重量比为1:2~3,将三级压滤滤饼分散于去离子水中,搅 拌均匀后,进行第四级压滤,得到四级压滤滤饼;
    (8)按重量比为1:1~2,将四级压滤滤饼分散于去离子水中,并加入稳定剂,稳定剂用量为用水量的0.5~1.0%,搅拌均匀后,即得到经插层改性的C-S-H凝胶纳米分散液。
  4. 如权利要求1或2或3所述的制备方法,其特征在于所述的球磨机为振动球磨机、行星球磨机、胶体磨等高能磨机。
  5. 如权利要求1或2或3所述的制备方法,其特征在于所述的可溶性有机小分子插层改性剂为蔗糖、葡萄糖、EDTA、低分子量PEG、低分子量PVA。
  6. 如权利要求1或2或3所述的制备方法,其特征在于所述的石英砂超细粉的比表面积为500m2/kg以上。
  7. 如权利要求1或2或3所述的制备方法,其特征在于所述的石英砂超细粉的比表面积为1000m2/kg以上。
  8. 如权利要求1或2或3所述的制备方法,其特征在于所述低分子量PEG的分子量在10000以下。
  9. 如权利要求1或2或3所述的制备方法,其特征在于所述低分子量PVA的分子量在20000以下。
  10. 如权利要求1或3所述的一种插层改性C-S-H凝胶纳米分散液的制备方法,其特征在于所述的稳定剂与所用可溶性有机小分子插层改性剂相同。
PCT/CN2021/141648 2021-09-27 2021-12-27 一种插层改性c-s-h凝胶纳米分散液的制备方法 WO2023045156A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111136673.6 2021-09-27
CN202111136673.6A CN113651337A (zh) 2021-09-27 2021-09-27 一种插层改性c-s-h凝胶纳米分散液的制备方法

Publications (1)

Publication Number Publication Date
WO2023045156A1 true WO2023045156A1 (zh) 2023-03-30

Family

ID=78494426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141648 WO2023045156A1 (zh) 2021-09-27 2021-12-27 一种插层改性c-s-h凝胶纳米分散液的制备方法

Country Status (2)

Country Link
CN (1) CN113651337A (zh)
WO (1) WO2023045156A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113651337A (zh) * 2021-09-27 2021-11-16 浙江加州国际纳米技术研究院台州分院 一种插层改性c-s-h凝胶纳米分散液的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080093774A1 (en) * 2005-04-21 2008-04-24 Forschungszentrum Karlsruhe Gmbh Method for Producing Components
CN104402009A (zh) * 2014-10-29 2015-03-11 上海建工集团股份有限公司 一种水化硅酸钙凝胶溶液早强剂及其制备方法
CN109650398A (zh) * 2019-02-19 2019-04-19 科之杰新材料集团有限公司 一种水化硅酸钙早强剂及其制备方法
CN110156367A (zh) * 2019-04-17 2019-08-23 湖北工业大学 由工业固废湿磨制备纳米c-s-h凝胶早强剂的方法
CN113201314A (zh) * 2021-04-22 2021-08-03 东南大学 C-s-h/peg1000相变复合材料的制备方法及应用
CN113651337A (zh) * 2021-09-27 2021-11-16 浙江加州国际纳米技术研究院台州分院 一种插层改性c-s-h凝胶纳米分散液的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3423945A1 (de) * 1984-06-29 1986-01-09 Henkel KGaA, 4000 Düsseldorf Verfahren und vorrichtung zur kontinuierlichen hydrothermalen herstellung von natriumsilikatloesungen
US7786192B2 (en) * 2006-07-14 2010-08-31 University Of Florida Research Foundation, Inc. Nanomodified concrete additive and high performance cement past and concrete therefrom
CN106279453B (zh) * 2015-05-28 2019-12-10 易媛 交联的高分子化合物及其制备方法、水凝胶、水基压裂液和用途
CN107117627A (zh) * 2017-04-26 2017-09-01 无锡永高新材料科技有限公司 球磨法快速制备插层型蛭石超细粉体
CN110423315A (zh) * 2019-08-13 2019-11-08 重庆三圣实业股份有限公司 一种纳米c-s-h凝胶超早强剂及其制备方法
CN112408926A (zh) * 2020-11-26 2021-02-26 广州至城建筑材料科技有限公司 一种抗开裂再生混凝土及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080093774A1 (en) * 2005-04-21 2008-04-24 Forschungszentrum Karlsruhe Gmbh Method for Producing Components
CN104402009A (zh) * 2014-10-29 2015-03-11 上海建工集团股份有限公司 一种水化硅酸钙凝胶溶液早强剂及其制备方法
CN109650398A (zh) * 2019-02-19 2019-04-19 科之杰新材料集团有限公司 一种水化硅酸钙早强剂及其制备方法
CN110156367A (zh) * 2019-04-17 2019-08-23 湖北工业大学 由工业固废湿磨制备纳米c-s-h凝胶早强剂的方法
CN113201314A (zh) * 2021-04-22 2021-08-03 东南大学 C-s-h/peg1000相变复合材料的制备方法及应用
CN113651337A (zh) * 2021-09-27 2021-11-16 浙江加州国际纳米技术研究院台州分院 一种插层改性c-s-h凝胶纳米分散液的制备方法

Also Published As

Publication number Publication date
CN113651337A (zh) 2021-11-16

Similar Documents

Publication Publication Date Title
Yang et al. Experimental study of the effects of graphene oxide on microstructure and properties of cement paste composite
Alvee et al. Experimental study of the mechanical properties and microstructure of geopolymer paste containing nano-silica from agricultural waste and crystalline admixtures
Kang et al. Effect of graphene oxide (GO) on hydration of tricalcium silicate (C3S)
Liu et al. Effects of graphene oxide on microstructure and mechanical properties of graphene oxide-geopolymer composites
John et al. The influence of the chemical and physical properties of CSH seeds on their potential to accelerate cement hydration
Hu et al. Effect of characteristics of chemical combined of graphene oxide-nanosilica nanocomposite fillers on properties of cement-based materials
CN103014869B (zh) 一种超细高长径比无水硫酸钙晶须的可控制备方法
CN101979443B (zh) 一种改性白炭黑的生产方法
Kerienė et al. The influence of multi-walled carbon nanotubes additive on properties of non-autoclaved and autoclaved aerated concretes
Sarkar et al. Microstructural and phase evolution in metakaolin geopolymers with different activators and added aluminosilicate fillers
Elkashef et al. Acid-treated carbon nanotubes and their effects on mortar strength
KR102070380B1 (ko) 합성-헥토라이트의 저온 상압 제조방법
CN106746834A (zh) 一种石墨烯基纳米晶核类早强剂及其制备方法
WO2023045156A1 (zh) 一种插层改性c-s-h凝胶纳米分散液的制备方法
Sun et al. Early hydration properties of Portland cement with lab-synthetic calcined stöber nano-SiO2 particles as modifier
CN103435046A (zh) 一种雪地轮胎用的高分散性白炭黑的制作工艺
CN112679129A (zh) 一种高强度耐腐蚀碳纳米管改性混凝土及其制备方法
Lu et al. Solid-phase oxalic acid leaching of natural red palygorskite-rich clay: A solvent-free way to change color and properties
CN112707428A (zh) 一种纳米碳酸钙与拟薄水铝石或白炭黑的联合制备方法
CN103435051A (zh) 一种绿色轮胎用的高分散性白炭黑的制作工艺
Hsiang et al. Pre-reaction temperature effect on C–S–H colloidal properties and xonotlite formation via steam assisted crystallization
Vanitha et al. Microstructure properties of poly (phospho-siloxo) geopolymeric network with metakaolin as sole binder reinforced with n-SiO2 and n-Al2O3
Long et al. A facile approach to disperse metakaolin for promoting compressive strength of cement composites
CN106277901A (zh) 一种纤维状纳米硅酸盐混凝土外加剂及其制备方法
Miao et al. Effects of hybrid graphene oxide-nanosilica on calcium silicate hydrate in the simulation environment and cement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958266

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE