WO2023042693A1 - 自動搬送装置 - Google Patents

自動搬送装置 Download PDF

Info

Publication number
WO2023042693A1
WO2023042693A1 PCT/JP2022/033163 JP2022033163W WO2023042693A1 WO 2023042693 A1 WO2023042693 A1 WO 2023042693A1 JP 2022033163 W JP2022033163 W JP 2022033163W WO 2023042693 A1 WO2023042693 A1 WO 2023042693A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressed air
transport device
automatic transport
pressure tank
automatic
Prior art date
Application number
PCT/JP2022/033163
Other languages
English (en)
French (fr)
Inventor
智也 市川
裕介 浜地
陸 大田原
Original Assignee
株式会社アマダ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アマダ filed Critical 株式会社アマダ
Publication of WO2023042693A1 publication Critical patent/WO2023042693A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B13/00Other railway systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/60Electric or hybrid propulsion means for production processes

Definitions

  • the present disclosure relates to an automatic transport device.
  • Patent Document 1 has been disclosed as an automatic guided vehicle that runs on electric power from a battery.
  • an electric actuator is rotated to expand and contract the bumper.
  • An automatic transport device is an automatic transport device that loads an object to be transported in a facility and runs on electric power from a charged battery, and includes an actuator driven by compressed air, and the actuator and an air supply device for supplying compressed air.
  • the automatic transport device with the above configuration drives the actuators with the compressed air supplied from the air supply device, there is no need to use electric actuators, and it is possible to eliminate the need to install gears and controllers.
  • the automatic transport device since it is not necessary to install a gear or a controller for driving the electric actuator, the number of component parts can be reduced and expensive parts can be eliminated, making the entire device Cost can be reduced.
  • FIG. 1 is a perspective view showing the structure of the automatic transport device according to the first embodiment.
  • FIG. 2 is a perspective view showing a state in which conveyed articles are loaded on the automatic conveying device according to the first embodiment.
  • FIG. 3 is a block diagram showing the configuration of an air supply device provided in the automatic transport device according to the first embodiment.
  • FIG. 4 is a diagram for explaining the operation of the automatic transport device according to the first embodiment.
  • FIG. 5 is a diagram showing the structure of a modified example of the automatic transport device according to the first embodiment.
  • FIG. 6 is a diagram showing the structure of a modified example of the automatic transport device according to the first embodiment.
  • FIG. 7 is a diagram showing the structure of a modification of the automatic transport device according to the first embodiment.
  • FIG. 8 is a block diagram showing the configuration of an air supply device provided in the automatic transport device according to the second embodiment.
  • FIG. 1 is a perspective view showing the structure of an automatic transport device according to this embodiment.
  • the automatic carrier 1 is an autonomously traveling automatic guided vehicle (AGV: Automated Guided Vehicle) having drive wheels 3 .
  • AGV Automated Guided Vehicle
  • the automatic transport device 1 is an unmanned transport vehicle that carries objects to be transported in a facility such as a factory or a warehouse and runs on electric power from a battery 7 charged by a charger 5 .
  • the charger 5 is a power receiver for wirelessly charging the battery 7, and receives power from a power supply installed on the factory side via a power feeder.
  • the battery 7 may be charged by connecting terminals directly instead of wireless charging.
  • the battery 7 supplies the power required to drive the automatic transport device 1.
  • the automatic transport device 1 moves to a charging station installed in the facility and charges the battery 7 .
  • the automatic carrier device 1 is equipped with various controllers, sensors, and the like that are installed in ordinary automatic carrier vehicles. For example, it is equipped with a controller for traveling, a controller for raising and lowering the transported object, sensors for detecting surrounding objects such as cameras and lasers, a charging unit, an elevating mechanism for raising and lowering the transported object, a wireless unit, and the like.
  • the automatic transport device 1 also includes an actuator driven by compressed air and an air supply device that supplies compressed air to the actuator.
  • an actuator driven by compressed air and an air supply device that supplies compressed air to the actuator.
  • FIG. 1 the actuator and the air supply device among the components mounted on the automatic transport device 1 are shown.
  • the air supply device includes a coupler 9, a residual pressure release valve 11, a pressure tank 13, a regulator 15, and a directional control valve 17.
  • An actuator driven by compressed air is the pneumatic cylinder 19 .
  • the pneumatic cylinder 19 is driven by compressed air from an air supply device to operate the anti-slip guard 21 .
  • the anti-slip guard 21 is an L-shaped metal fitting that prevents the transported object 23 from slipping when the transported object 23 such as a product or a work is loaded on the automatic transport device 1. It is a device that holds down corners. When the automatic transport device 1 moves, the L-shaped fitting rises and holds the corner of the transported object 23 so that the transported object 23 does not shift. On the other hand, when the automatic carrier device 1 arrives at the intended destination, the L-shaped fitting descends and the upper surface of the automatic carrier device 1 becomes flat, so that the article 23 can be moved freely.
  • the coupler 9 is a filling port that is connected to a supply port 31 to which compressed air is supplied from a compressor installed in a facility such as a factory, and that fills the pressure tank 13 with compressed air.
  • the positions of the charger 5 and the coupler 9 are arranged corresponding to the positions of the feeder connected to the power supply of the facility and the position of the compressed air supply port 31 installed in the facility. Therefore, the charger 5 and the coupler 9 can be simultaneously connected to the facility-side feeder and the compressed air supply port 31, respectively.
  • the charger 5 and the coupler 9 are arranged on the same side of the automatic transport device 1, and the power supply and the compressed air supply port 31 are arranged side by side on the factory side, and the charger 5 and the coupler are arranged side by side. Install at the same interval as 9.
  • the automatic transport device 1 at a predetermined position of the charging station, charging of the battery 7 and filling of the pressure tank 13 can be performed at the same time.
  • the residual pressure discharge valve 11 is a valve for manually releasing the pressure in the pressure tank 13 before maintenance in order to prevent the automatic transport device 1 from moving unexpectedly when performing maintenance.
  • the pressure tank 13 is a container that stores compressed air, and has the capacity of compressed air required for one process for conveying the article 23 to be conveyed. For example, when transporting a work in a factory, the automatic transport device 1 moves from the standby charging station to the processing machine, loads the work on the processing machine, and transfers the work to the processing machine for the next process. It is one process to transport and return to the charging station.
  • the capacity of the pressure tank 13 is set so as to accommodate the compressed air required to move the anti-slip guard 21 up and down in this process. As a result, the capacity of the pressure tank 13 can be minimized, so the size of the pressure tank 13 can be reduced.
  • the capacity of the pressure tank 13 may be a capacity that can accommodate the compressed air required between charging the battery 7 .
  • the capacity of the pressure tank 13 is set so as to accommodate the compressed air required to move the anti-slip guard 21 up and down in 30 minutes. may As a result, the time for charging the battery 7 can be used to fill the pressure tank 13, thus saving time.
  • the capacity of the pressure tank 13 may be larger than the capacity of the compressed air required for one process.
  • a pressure sensor may be installed in the pressure tank 13, and compressed air may be replenished at the timing when the detected value of the pressure sensor drops below a predetermined value.
  • the regulator 15 reduces the pressure of the compressed air discharged from the pressure tank 13 to the pressure used by the pneumatic cylinder 19.
  • the direction control valve 17 is a valve that switches the direction of the compressed air sent to the pneumatic cylinder 19 .
  • the directional control valve 17 switches the direction of the compressed air to be sent to the pneumatic cylinder 19 depending on whether the anti-slip guard 21 is raised or lowered.
  • the direction control valve 17 is switched by the controller mounted on the automatic transport device 1, and the anti-slip guard 21 is raised or lowered.
  • the pneumatic cylinder 19 is an actuator driven by compressed air, is connected to the anti-slip guard 21, and moves the anti-slip guard 21 up and down by moving the rod in and out.
  • a speed controller is provided in the pneumatic cylinder 19 to adjust the operating speed of the rod.
  • the automatic transport device 1 stands by in a state of being stopped at the charging station, and moves when the transport process starts.
  • the automatic transport device 1 moves from the charging station to the processing machine installed in the factory, loads the work with the processing machine, transports it to the processing machine that performs the next process, and transports it there. Unloading completes the transport process.
  • compressed air is sent from the pressure tank 13 as necessary to move the anti-slip guard 21 up and down.
  • the automatic transport device 1 since the automatic transport device 1 is of an autonomous traveling type, it automatically travels along a preset route at a predetermined speed while estimating its own position during the transport process.
  • the automatic transportation device 1 moves to the charging station, and when it stops at the charging station, it replenishes compressed air and charges the battery 7. If the capacity of the pressure tank 13 is the capacity for one transfer process, the compressed air is replenished each time it returns to the charging station. It is not necessary to charge the battery 7 after each transfer process, and the battery 7 may be charged at the timing when the charge amount drops below a predetermined value.
  • the compressed air can be replenished at the timing when the remaining amount of compressed air decreases. For example, if the capacity of the pressure tank 13 is the capacity of the compressed air required between charging the battery 7, the compressed air can be replenished at the same time the battery 7 is charged. Further, when a pressure sensor is installed in the pressure tank 13, compressed air can be replenished when the detected value of the pressure sensor drops below a predetermined value.
  • the pneumatic cylinder 19 operates the anti-slip guard 21 , but it is also possible to operate something other than the anti-slip guard 21 with the pneumatic cylinder 19 .
  • the connection metal fittings 53 that are used when the automatic transport device 1 pulls a cage-type carriage 51 .
  • the connection fittings 53 are raised by the pneumatic cylinders 19 when the carriage 51 is connected, and the connection fittings 53 are lowered by the pneumatic cylinders 19 when the carriage 51 is disconnected.
  • the pneumatic cylinder 19 may be installed as a stopper. In this case, if the rod of the pneumatic cylinder 19 is lifted, it can be used as a stopper for the roller conveyor 61 .
  • the pneumatic cylinder 19 may be used as an air jack. This air jack jacks up the vehicle body of the automatic carrier 1 by extending the rod of the pneumatic cylinder 19 downward when the automatic carrier 1 is to be maintained.
  • the automatic transport device 1 includes actuators driven by compressed air and an air supply device that supplies compressed air to the actuators. This eliminates the need to install gears and controllers by using pneumatically driven actuators instead of electric actuators, reducing the number of components and eliminating the need for expensive parts, reducing the overall cost of the equipment. can be reduced.
  • the air supply device includes the pressure tank 13 .
  • the actuator can be driven by the compressed air filled in the pressure tank 13, the number of components can be reduced with a simple configuration, and expensive parts can be eliminated, thereby reducing the cost of the entire device.
  • the capacity of the pressure tank 13 is the volume of compressed air required in one process for transporting the transported object. As a result, the capacity of the pressure tank 13 can be minimized, so the size of the pressure tank 13 can be reduced.
  • the capacity of the pressure tank 13 is the capacity of the compressed air required between charging the battery 7 .
  • the pressure tank 13 can be filled while the battery 7 is being charged.
  • the positions of the charger 5 and the coupler 9 are arranged corresponding to the position of the power supply connected to the power source of the facility and the position of the compressed air supply port of the facility, respectively. are doing. Thereby, charging of the battery 7 and replenishment of the pressure tank 13 can be performed at the same place at the same time.
  • the air supply device includes a compressor 81, a regulator 15, and a directional control valve 17.
  • the compressor 81 discharges compressed air having a preset pressure when the automatic transport device 1 is started. Compressed air discharged from the compressor 81 is decompressed by the regulator 15 and the direction control valve 17 is switched to drive the pneumatic cylinder 19 and operate the anti-slip guard 21 as in the first embodiment.
  • the air supply device includes the compressor 81 .
  • the actuator can be driven by the compressed air discharged from the compressor 81, so that the number of components can be reduced with a simple configuration, and expensive parts can be eliminated, thereby reducing the cost of the entire device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Platform Screen Doors And Railroad Systems (AREA)
  • Warehouses Or Storage Devices (AREA)

Abstract

自動搬送装置(1)は、施設内で搬送物を積載して、充電されたバッテリ(7)による電力で走行し、圧縮空気で駆動されるアクチュエータ(19)と、アクチュエータ(19)に圧縮空気を供給する空気供給装置(9~17)とを備える。

Description

自動搬送装置
 本開示は、自動搬送装置に関する。
 従来では、バッテリからの電力で走行する無人搬送車として、特許文献1が開示されている。特許文献1に開示された無人搬送車では、バンパを伸縮させるために電動のアクチュエータを回転させていた。
特開2021-37776号公報
 従来の無人搬送車では、車両が電動であるために、車両に搭載されたアクチュエータも電動のアクチュエータが使用されていた。しかしながら、電動のアクチュエータを駆動するためには、ギアやコントローラを設置する必要があるので、構成部品が多くなるとともに高価な部品も必要になり、装置全体のコストが増大してしまうという問題点があった。
 本開示の一態様に係る自動搬送装置は、施設内で搬送物を積載して、充電されたバッテリによる電力で走行する自動搬送装置であって、圧縮空気で駆動されるアクチュエータと、前記アクチュエータに圧縮空気を供給する空気供給装置とを備える。
 上述した構成の自動搬送装置は、空気供給装置から供給される圧縮空気でアクチュエータを駆動するので、電動のアクチュエータを用いる必要がなくなり、ギアやコントローラを設置する必要をなくすことができる。
 本開示の一態様に係る自動搬送装置によれば、電動のアクチュエータを駆動するためのギアやコントローラを設置する必要がないので、構成部品の数を減らすとともに高価な部品を不要にして装置全体のコストを低減することができる。
図1は、第1実施形態に係る自動搬送装置の構造を示す斜視図である。 図2は、第1実施形態に係る自動搬送装置に搬送物を積載した状態を示す斜視図である。 図3は、第1実施形態に係る自動搬送装置に備えられた空気供給装置の構成を示すブロック図である。 図4は、第1実施形態に係る自動搬送装置の動作を説明するための図である。 図5は、第1実施形態に係る自動搬送装置の変形例の構造を示す図である。 図6は、第1実施形態に係る自動搬送装置の変形例の構造を示す図である。 図7は、第1実施形態に係る自動搬送装置の変形例の構造を示す図である。 図8は、第2実施形態に係る自動搬送装置に備えられた空気供給装置の構成を示すブロック図である。
[第1実施形態]
 以下、本開示を適用した第1実施形態について図面を参照して説明する。図面の記載において同一部分には同一符号を付して詳細な説明は省略する。
 [自動搬送装置の構造]
 図1は、本実施形態に係る自動搬送装置の構造を示す斜視図である。図1に示すように、自動搬送装置1は、駆動輪3を備えた自律走行型の自動搬送車両(AGV:Automated Guided Vehicle)である。具体的に、自動搬送装置1は、工場や倉庫などの施設内で搬送物を積載し、充電器5で充電されたバッテリ7による電力で走行する無人搬送車である。
 充電器5は、バッテリ7をワイヤレス充電するための受電器であり、工場側に設置された電源からの電力を、給電器を介して受電する。ただし、ワイヤレス充電でなくてもよく、直接端子を接続してバッテリ7を充電してもよい。
 バッテリ7は、自動搬送装置1を駆動するために必要な電力を供給する。自動搬送装置1は、施設内に設置された充電ステーションへ移動してバッテリ7の充電を行う。
 尚、図示していないが、自動搬送装置1は、通常の自動搬送車両に搭載されている各種のコントローラやセンサ等を搭載している。例えば、走行用のコントローラや搬送物を昇降させるためのコントローラ、カメラやレーザ等の周囲の物体を検出するセンサ、充電ユニット、搬送物を昇降させる昇降機構、無線ユニット等を搭載している。
 また、自動搬送装置1は、圧縮空気で駆動されるアクチュエータと、アクチュエータに圧縮空気を供給する空気供給装置を備えている。図1では、自動搬送装置1に搭載された構成のうちアクチュエータと空気供給装置を記載している。
 図1に示すように、空気供給装置は、カプラ9と、残圧排出弁11と、圧力タンク13と、レギュレータ15と、方向制御弁17を含んでいる。また、圧縮空気で駆動されるアクチュエータは、空圧シリンダ19である。本実施形態では、空気供給装置からの圧縮空気で空圧シリンダ19を駆動して、ずれ防止ガード21を動作させる場合について説明する。
 図2に示すように、ずれ防止ガード21は、自動搬送装置1に製品やワーク等の搬送物23を積載したときに、搬送物23がずれないようにL字型の金具で搬送物23の角を押さえる装置である。自動搬送装置1が移動するときには、L字型の金具が上昇して搬送物23がずれないように搬送物23の角を押さえている。一方、自動搬送装置1が目的の搬送先に到着すると、L字型の金具が下降して自動搬送装置1の上面が平たんになるので、搬送物23を自由に移動させることができる。
 次に、図3を参照して、空気供給装置の具体的な構成を説明する。カプラ9は、工場等の施設側に設置されたコンプレッサから圧縮空気が供給される供給口31に接続され、圧力タンク13に圧縮空気を充填する充填口である。
 ここで、充電器5とカプラ9の位置は、施設の電源に接続された給電器の位置と施設に設置された圧縮空気の供給口31の位置にそれぞれ対応して配置されている。したがって、充電器5とカプラ9は、施設側の給電器と圧縮空気の供給口31にそれぞれ同時に接続することができる。例えば、図1に示すように、充電器5とカプラ9を自動搬送装置1の同じ側面に配置し、工場側も給電器と圧縮空気の供給口31を並べて配置するとともに、充電器5とカプラ9の間隔と同じ間隔で設置する。これにより、自動搬送装置1を充電ステーションの所定の位置に停車させることで、バッテリ7の充電と圧力タンク13の充填を同時に行うことができる。
 残圧排出弁11は、自動搬送装置1のメンテナンスを行う場合に、不意に動くことを防ぐため、メンテナンスの前に手動で圧力タンク13内の圧力を抜くための弁である。
 圧力タンク13は、圧縮空気を収容する容器であり、搬送物23を搬送するための一つの工程で必要となる圧縮空気の容量を有している。例えば、工場内でワークを搬送する場合には、自動搬送装置1が待機している充電ステーションから加工機へ移動し、加工機でワークを積載して、次の工程を行う加工機にワークを搬送して充電ステーションに戻るまでが一つの工程となる。この工程内でずれ防止ガード21を上下させるために必要となる圧縮空気を収容できるように、圧力タンク13の容量を設定する。これにより、圧力タンク13の容量を最小限に抑えることができるので、圧力タンク13を小型化することができる。
 また、圧力タンク13の容量は、バッテリ7を充電する間隔の間に必要となる圧縮空気を収容できる容量としてもよい。例えば、自動搬送装置1が30分間隔で充電する場合には、30分の間にずれ防止ガード21を上下させるために必要となる圧縮空気を収容できるように、圧力タンク13の容量を設定してもよい。これにより、バッテリ7を充電する時間を利用して圧力タンク13を充填することができるので、時間を節約することができる。
 さらに、圧力タンク13の容量は、一つの工程で必要となる圧縮空気の容量よりも大きくしてもよい。この場合には、圧力タンク13に圧力センサを設置して、圧力センサの検出値が所定値以下に低下したタイミングで、圧縮空気を補充するようにすればよい。
 レギュレータ15は、圧力タンク13から排出された圧縮空気の圧力を、空圧シリンダ19で使用される圧力まで減圧する。
 方向制御弁17は、空圧シリンダ19へ送る圧縮空気の流れる方向を切り替える弁である。ずれ防止ガード21を上昇させる場合と下降させる場合で、方向制御弁17は空圧シリンダ19へ送る圧縮空気の方向を切り替えている。ずれ防止ガード21を動作させるタイミングになると、自動搬送装置1に搭載されているコントローラによって、方向制御弁17が切り替えられて、ずれ防止ガード21が上昇または下降する。
 空圧シリンダ19は、圧縮空気で駆動されるアクチュエータであり、ずれ防止ガード21に接続され、ロッドを出し入れすることによって、ずれ防止ガード21を上下に動作させる。尚、空圧シリンダ19にはスピードコントローラが設けられており、ロッドの動作速度を調整している。
[自動搬送装置の動作]
 次に、図4を参照して、自動搬送装置1の動作を説明する。図4に示すように、自動搬送装置1は、充電ステーションで停車した状態で待機しており、搬送工程が開始すると、移動する。例えば、搬送工程では、自動搬送装置1は、充電ステーションから工場内に設置された加工機まで移動し、加工機でワークを積載して、次の工程を行う加工機へと搬送し、そこで搬送物を下ろすと、搬送工程が完了する。搬送工程中には、必要に応じて、圧力タンク13から圧縮空気を送って、ずれ防止ガード21を上下に動作させている。また、自動搬送装置1は自律走行型であるため、搬送工程中には自己位置を推定しながら予め設定されたルートを所定の速度で自動走行して移動する。
 搬送工程が完了すると、自動搬送装置1は充電ステーションへ移動し、充電ステーションに停車すると、圧縮空気の補充とバッテリ7の充電を行う。圧力タンク13の容量が搬送工程の1回分の容量である場合には、充電ステーションに戻る毎に圧縮空気の補充を行う。バッテリ7の充電は、毎回の搬送工程後に行う必要はなく、充電量が所定値以下に低下したタイミングで充電すればよい。
 尚、圧力タンク13の容量が搬送工程の1回分の容量より大きい場合には、圧縮空気の残量が低下したタイミングで圧縮空気を補充すればよい。例えば、圧力タンク13の容量がバッテリ7を充電する間隔の間に必要となる圧縮空気の容量である場合には、バッテリ7を充電するのと同時に圧縮空気を補充すればよい。また、圧力タンク13に圧力センサが設置されている場合には、圧力センサの検出値が所定値以下に低下したときに圧縮空気を補充すればよい。
 [変形例]
 本実施形態では、空圧シリンダ19でずれ防止ガード21を動作させているが、ずれ防止ガード21以外のものを空圧シリンダ19で動作させることも可能である。例えば、図5に示すように、自動搬送装置1でかご型の台車51を牽引するときに使用される接続金具53を動作させることも可能である。この場合には、台車51を連結するときに、空圧シリンダ19で接続金具53を上昇させ、台車51の連結を解除するときに、空圧シリンダ19で接続金具53を下降させる。
 また、図6に示すように、自動搬送装置1にローラーコンベア61を搭載する場合には、空圧シリンダ19をストッパとして設置してもよい。この場合、空圧シリンダ19のロッドを上昇させれば、ローラーコンベア61のストッパとして利用することができる。
 さらに、図7に示すように、空圧シリンダ19をエアジャッキとして利用してもよい。このエアジャッキは、自動搬送装置1をメンテナンスする場合に、空圧シリンダ19のロッドを下方に伸ばすことによって、自動搬送装置1の車体をジャッキアップする。
 [第1実施形態の効果]
 以上、詳細に説明したように、本実施形態に係る自動搬送装置1では、圧縮空気で駆動されるアクチュエータと、アクチュエータに圧縮空気を供給する空気供給装置とを備えている。これにより、電動のアクチュエータの代わりに圧縮空気で駆動されるアクチュエータを備えたので、ギアやコントローラを設置する必要がなくなり、構成部品の数を減らすとともに高価な部品を不要にして装置全体のコストを低減することができる。
 特に、ずれ防止ガード21のような単純な往復運動のために電動のアクチュエータを設置すると、電動のアクチュエータでは、ギアを設ける必要があるとともに、アクチュエータの動作を制御するためのコントローラも設置する必要がある。そのため、構成部品が多くなるとともに高価な部品も必要になり、装置全体のコストが増大してしまう。しかし、圧縮空気で駆動されるアクチュエータであれば、ギアやコントローラを設置する必要がなくなり、構成部品の数を減らすとともに高価な部品を不要にして装置全体のコストを低減することが可能となる。
 また、本実施形態に係る自動搬送装置1では、空気供給装置が圧力タンク13を含んでいる。これにより、圧力タンク13に充填された圧縮空気でアクチュエータを駆動できるので、簡単な構成によって構成部品の数を減らすとともに高価な部品を不要にして装置全体のコストを低減することができる。
 さらに、本実施形態に係る自動搬送装置1では、圧力タンク13の容量を、搬送物を搬送するための一つの工程で必要となる圧縮空気の容量としている。これにより、圧力タンク13の容量を最小限に抑えることができるので、圧力タンク13を小型化することができる。
 また、本実施形態に係る自動搬送装置1では、圧力タンク13の容量を、バッテリ7を充電する間隔の間に必要となる圧縮空気の容量としている。これにより、バッテリ7を充電する時間を利用して圧力タンク13を充填することができる。
 さらに、本実施形態に係る自動搬送装置1では、充電器5とカプラ9の位置を、施設の電源に接続された給電器の位置と施設の圧縮空気の供給口の位置にそれぞれ対応して配置している。これにより、バッテリ7の充電と圧力タンク13の補充を同じ場所で同時に行うことができる。
 また、本実施形態に係る自動搬送装置1では、圧縮空気で駆動されるアクチュエータとして空圧シリンダを利用する。これにより、安価な構成でアクチュエータを実現できるので、装置全体のコストを低減することができる。
[第2実施形態]
 以下、本開示を適用した第2実施形態について図面を参照して説明する。図面の記載において同一部分には同一符号を付して詳細な説明は省略する。
 [自動搬送装置の構造]
 第1実施形態では空気供給装置に圧力タンク13が含まれていたが、本実施形態では、圧力タンク13の代わりにコンプレッサを備えている。図8を参照して、本実施形態の空気供給装置の具体的な構成を説明する。ただし、空気供給装置以外の構成については、第1実施形態と同一なので、詳細な説明は省略する。
 図8に示すように、空気供給装置は、コンプレッサ81と、レギュレータ15と、方向制御弁17を含んでいる。コンプレッサ81は、自動搬送装置1が始動すると、予め設定された圧力の圧縮空気を吐出する。コンプレッサ81から吐出された圧縮空気をレギュレータ15で減圧し、方向制御弁17を切り替えることによって、空圧シリンダ19を駆動して、第1実施形態と同様にずれ防止ガード21を動作させる。
 [第2実施形態の効果]
 以上、詳細に説明したように、本実施形態に係る自動搬送装置1では、空気供給装置がコンプレッサ81を含んでいる。これにより、コンプレッサ81から吐出された圧縮空気でアクチュエータを駆動できるので、簡単な構成によって構成部品の数を減らすとともに高価な部品を不要にして装置全体のコストを低減することができる。
 なお、上述の実施形態は本発明の一例である。このため、本発明は、上述の実施形態に限定されることはなく、この実施形態以外の形態であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計などに応じて種々の変更が可能であることは勿論である。
 本願の開示は、2021年9月15日に出願された特願2021-150336号に記載の主題と関連しており、その全ての開示内容は引用によりここに援用される。

Claims (7)

  1.  施設内で搬送物を積載して、充電されたバッテリによる電力で走行する自動搬送装置であって、
     圧縮空気で駆動されるアクチュエータと、
     前記アクチュエータに圧縮空気を供給する空気供給装置と
    を備えた自動搬送装置。
  2.  前記空気供給装置は、圧力タンクを含む請求項1に記載の自動搬送装置。
  3.  前記圧力タンクの容量は、前記搬送物を搬送するための一つの工程で必要となる前記圧縮空気の容量である請求項2に記載の自動搬送装置。
  4.  前記圧力タンクの容量は、前記バッテリを充電する間隔の間に必要となる前記圧縮空気の容量である請求項2に記載の自動搬送装置。
  5.  前記バッテリを充電する充電器と前記圧力タンクに前記圧縮空気を充填する充填口の位置は、前記施設の電源に接続された給電器の位置と前記施設の前記圧縮空気の供給口の位置にそれぞれ対応して配置されている請求項2~4のいずれか1項に記載の自動搬送装置。
  6.  前記空気供給装置は、コンプレッサを含む請求項1に記載の自動搬送装置。
  7.  前記アクチュエータは、空圧シリンダである請求項1~6のいずれか1項に記載の自動搬送装置。
PCT/JP2022/033163 2021-09-15 2022-09-02 自動搬送装置 WO2023042693A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-150336 2021-09-15
JP2021150336A JP2023042914A (ja) 2021-09-15 2021-09-15 自動搬送装置

Publications (1)

Publication Number Publication Date
WO2023042693A1 true WO2023042693A1 (ja) 2023-03-23

Family

ID=85602812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033163 WO2023042693A1 (ja) 2021-09-15 2022-09-02 自動搬送装置

Country Status (2)

Country Link
JP (1) JP2023042914A (ja)
WO (1) WO2023042693A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07330131A (ja) * 1994-06-10 1995-12-19 Daifuku Co Ltd 台車使用の搬送装置
JP2005292915A (ja) * 2004-03-31 2005-10-20 Mazda Motor Corp 無人搬送車による部品供給装置
JP2014073885A (ja) * 2012-10-03 2014-04-24 Isuzu Motors Ltd 無人搬送車
JP2018184113A (ja) * 2017-04-27 2018-11-22 株式会社明電舎 無人搬送車

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07330131A (ja) * 1994-06-10 1995-12-19 Daifuku Co Ltd 台車使用の搬送装置
JP2005292915A (ja) * 2004-03-31 2005-10-20 Mazda Motor Corp 無人搬送車による部品供給装置
JP2014073885A (ja) * 2012-10-03 2014-04-24 Isuzu Motors Ltd 無人搬送車
JP2018184113A (ja) * 2017-04-27 2018-11-22 株式会社明電舎 無人搬送車

Also Published As

Publication number Publication date
JP2023042914A (ja) 2023-03-28

Similar Documents

Publication Publication Date Title
CN110683381A (zh) 自动拆码垛装卸车***
WO2008136659A1 (en) System and method for storing goods
KR102172472B1 (ko) 오버헤드 호이스트 이송 장치
CN107622966A (zh) 一种光伏硅晶电池片花篮智能传输***
CN112478650A (zh) 一种智能化自动装卸车***及方法
US7806648B2 (en) Transportation system and transportation method
CN114348583B (zh) 托盘转出控制方法、***及装置
WO2023042693A1 (ja) 自動搬送装置
CN207489835U (zh) 一种光伏硅晶电池片花篮智能传输***
JP2019182625A (ja) ストック装置
JP7499461B2 (ja) 基板供給装置、基板供給方法、基板収納装置、基板回収方法、及び、昇降装置
JPH0243127A (ja) 車輌組立ラインにおける下部品の供給装置
CN113335816A (zh) 一种全向移动多自由度的仓储运输机器人
CN112958402A (zh) 自动化涂胶及转运***
CN111268384A (zh) 一种汽车零部件处理***
CN110790042A (zh) 龙门式袋装水泥无人装车设备
KR101720199B1 (ko) 자동화물 시스템용 화물 리프트 동기화 장치 및 그 제어방법
JP2019119553A (ja) 物品搬送設備
CN220484468U (zh) 一种托盘上料装置及托盘上料机
CN220180652U (zh) 一种氢能源无人驾驶车自动上下料货仓
JP7327425B2 (ja) 搬送設備
KR102627684B1 (ko) 반송차 시스템
CN214454442U (zh) 一种智能化自动装卸车***
JPH07185828A (ja) パネル部材の溶接装置
JP2000127171A (ja) 樹脂成形機への樹脂原料の自動供給方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE