WO2023040943A1 - 一种聚酰胺模塑复合材料及其制备方法和应用 - Google Patents

一种聚酰胺模塑复合材料及其制备方法和应用 Download PDF

Info

Publication number
WO2023040943A1
WO2023040943A1 PCT/CN2022/118970 CN2022118970W WO2023040943A1 WO 2023040943 A1 WO2023040943 A1 WO 2023040943A1 CN 2022118970 W CN2022118970 W CN 2022118970W WO 2023040943 A1 WO2023040943 A1 WO 2023040943A1
Authority
WO
WIPO (PCT)
Prior art keywords
semi
aromatic polyamide
polyamide molding
pa10t
unit
Prior art date
Application number
PCT/CN2022/118970
Other languages
English (en)
French (fr)
Inventor
杨汇鑫
黄险波
麦杰鸿
姜苏俊
蒋智强
阎昆
李建伟
徐显骏
Original Assignee
珠海万通特种工程塑料有限公司
金发科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海万通特种工程塑料有限公司, 金发科技股份有限公司 filed Critical 珠海万通特种工程塑料有限公司
Priority to EP22869311.5A priority Critical patent/EP4386052A1/en
Priority to KR1020247008888A priority patent/KR20240050382A/ko
Publication of WO2023040943A1 publication Critical patent/WO2023040943A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/06Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices
    • B29B7/10Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary
    • B29B7/18Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/10Making granules by moulding the material, i.e. treating it in the molten state
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length

Definitions

  • the invention relates to the technical field of polymer materials, in particular to a polyamide molding composite material and its preparation method and application.
  • the LED light source is mainly composed of semiconductor chips, LED light source reflection brackets, gold wires, and packaging glue.
  • the LED light source reflector bracket is the "skeleton" of the LED light source, and it is also a functional part.
  • the LED packaging process needs to go through crystal bonding, wire bonding, and packaging glue curing, and other materials and components are integrated here.
  • the LED reflective bracket needs to reflect the light emitted by the LED chip through a certain angle to reduce light loss, and then pass through epoxy resin or silica gel and other packaging materials to form a light source for LED lighting or display.
  • LED reflective bracket material is a core material of LED lighting, which is directly related to the performance and life of LED light source.
  • the LED reflector bracket needs to be exposed at a temperature of 150-200°C for 6-10 hours.
  • the packaged lamp beads are made into a display screen, they need to go through SMT, requiring LED brackets or lamp beads
  • SMT packaging and SMT, there will be no deformation, and it will not be damaged under load, and the requirements for the adhesion of the LED bracket material are relatively high.
  • the LED display light source has gradually developed towards a small-pitch display with a dot pitch below P2.
  • the manufacture of small-pitch display brackets is gradually developing in the direction of thin walls, multiple mold cavities, and small size, which puts forward more stringent requirements for the fluidity, ultra-multi-cavity formability, and mechanical strength of LED reflective bracket materials.
  • the brightness and contrast of the display screen are very important indicators.
  • the most widely used solution in the market is the LED bracket produced by pure white LED reflective material.
  • the surface needs to be screen-printed with black ink. The process is cumbersome, affects efficiency, and costs are high.
  • the contrast and gray scale of the display is very important indicators.
  • the wavelengths that the eyes of ordinary people can perceive are between 780 and 400nm.
  • the short-wave blue light with a wavelength of 400 to 450nm is the most harmful to the retina.
  • the blue light with this wavelength will increase the amount of toxins in the macular area of the eye and seriously threaten people's eye health.
  • the LED full-color display light source is packaged by three chips of red (R), green (G), and blue (B).
  • R red
  • G green
  • B blue
  • the brightness of the blue chip is the lowest, that is, the contrast is the highest, so the LED light source bracket
  • the blue light reflectivity of the chip will directly affect the overall contrast of the LED display.
  • the anti-blue light of LED screens has been popularized to the LED screens of various mobile phones and TVs, but the general measure is to coat the surface of the screen with anti-blue light film, but this measure has the defects of fragile film and high cost.
  • the purpose of the present invention is to overcome the above-mentioned technical defects and provide a semi-aromatic polyamide molding composite material with high contrast and high gray scale, which can meet the requirements of packaging process and long-term reliability.
  • Another object of the present invention is to provide the application of the above-mentioned semi-aromatic polyamide molding compound.
  • a semi-aromatic polyamide molding compound, by weight, comprising the following components:
  • the 10T unit content is 80-95mol%, and the X unit is 5-20mol%; wherein, the X unit is composed of a diacid unit and a diamine unit, and the diacid unit is selected from terephthalic acid unit, m-phthalic acid unit At least one of dicarboxylic acid units, 1,6-adipic acid, and 1,10-sebacic acid units, and the diamine units are selected from 1,6-hexanediamine units, 1,9-nonanediamine unit, 2-methyl-1,5-pentanediamine unit, 2-methyl-1,8-octanediamine unit, 1,10-decanediamine unit, 1,12-dodecanediamine unit at least one;
  • the average diameter of wollastonite is 4-20 ⁇ m, and the average length is 10-250 ⁇ m;
  • the half maximum width ⁇ T 1/2 of the crystallization peak measured at a cooling rate of 20°C/min after heating up to 345°C by differential scanning calorimetry of the semi-aromatic polyamide molding compound is 4-11°C;
  • the whiteness of the semi-aromatic polyamide molding composite material is less than 26.5, and the reflectance of 460nm light source is less than 6%.
  • the X unit is not 10T.
  • the PA10T/X resin is selected from at least one of PA10T/10I, PA10T/6T, PA10T/66, PA10T/1010, PA10T/610, PA10T/612, and PA10T/12T.
  • the half maximum width ⁇ T 1/2 of the crystallization peak measured at a cooling rate of 20°C/min after heating up to 345°C by differential scanning calorimetry of the semi-aromatic polyamide molding compound is 5- 8°C.
  • the PA10T/X resin of the present invention may be a commercially available product, or may be synthesized according to the following method.
  • the PA10T/X used in the examples and comparative examples of the present invention is a self-made sample, and the raw materials such as reaction monomers and end-capping agents are from commercially available products.
  • Pre-polymerization Add polymerization monomers (diacid, diamine), end-capping agent benzoic acid and deionized water in a stainless steel autoclave equipped with mechanical stirring. Vacuumize and replace with N2 for three times, then start to heat up and stir, raise the temperature to 170-190°C at a rate of 4-6°C/min, keep the temperature for 1-2 hours, then slowly Stir and keep the temperature for 3-5h to allow the pre-polymerization reaction to fully proceed. After the constant temperature is over, slowly increase the temperature to 270-290°C, and start to drain water to normal pressure. When the pressure drops to normal pressure, the drain valve is closed, the reaction is completed, and the material is discharged at room temperature.
  • Solid-phase thickening put the material prepared in the pre-polymerization process into a vacuum drum, the drum speed is set at 10-15r/min, and the vacuum degree is set at 25-35Pa. Raise the temperature at a rate of 15-25°C/min. When the temperature reaches 260-270°C, take a sample to test the viscosity, and judge the end point of the discharge according to the viscosity (or number average molecular weight) result.
  • the number average molecular weight of the PA10T/X resin is 1500-28000.
  • the test method of the number average molecular weight is a conventional method, specifically: the number average molecular weight (Mn) of the PA10T/X resin sample is determined by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the chromatographic workstation cirrus software was used to process the data to obtain the number average molecular weight distribution Mn.
  • the average diameter of the wollastonite in the semi-aromatic polyamide molding composite resin matrix is 6-13 ⁇ m, and the average length is 80-120 ⁇ m.
  • Wollastonite is a powder with a certain length-to-diameter ratio, and its microstructure is fibrous, and its length and diameter hardly change during the melting and shearing process in the screw.
  • PA10T and wollastonite average diameter of 17 ⁇ m and average length of 180 ⁇ m
  • solvent is used to dissolve the resin to test the average diameter and average length of wollastonite. It was found that the diameter of the wollastonite does not change in the shear of the screw, and the average length changes by about 0.5%.
  • the toner is selected from at least one or more color mixed toners selected from carbon black, black species, and amorphous carbon toners.
  • the toner is selected from amorphous carbon toner.
  • the 460nm light source reflectance of the semi-aromatic polyamide molding compound is ⁇ 4.5%; more preferably, the 460nm light source reflectance of the semi-aromatic polyamide molding compound is ⁇ 3.8%.
  • antioxidant selected from hindered phenol antioxidants, hindered amine antioxidants, phosphite antioxidants, mercaptan antioxidants agent, thiodipropionate antioxidant at least one.
  • the application of the semi-aromatic polyamide molding composite material of the present invention is used for preparing a reflective support for a light source of an LED display screen.
  • the preparation method of the semi-aromatic polyamide molding composite material of the present invention adding each component into a mixer and mixing evenly, and then extruding and granulating through a twin-screw extruder to obtain a semi-aromatic polyamide molding composite material; wherein The temperature range of the screw is 280-330°C, and the rotation speed is 450r/min.
  • the reflectivity of the 460nm light source is mainly related to the surface roughness of the material (the greater the roughness of the surface of the object within a certain range, the diffuse reflection of the light emitted by the light source on the surface of the object, and the less light energy received at the light receiving end) ,
  • the whiteness of the material is related (the lower the whiteness, the lower the reflectivity).
  • the influence of the light source reflective support on the LED display screen on the gray scale and contrast of the LED display mainly lies in the whiteness and reflectivity of the light source reflective support.
  • the semi-aromatic polyamide molding compound of the present invention is controlled by the following three aspects: whiteness ⁇ 26.5, 460nm light source reflectance is reduced to ⁇ 6% (increasing gray scale and contrast), and has long-term packaging stability (adhesion), the advantage of low blue light of the packaged LED screen.
  • wollastonite can make the surface roughness of semi-aromatic polyamide molding composite parts meet the requirements of reducing 460nm light reflection, not only reduces the 460nm light source reflectivity, but also improves the closeness with hardware Compatibility.
  • the preferred distribution size of wollastonite in the resin matrix can further reduce the reflectivity of the 460nm light source (reduce the blue light of the LED display screen), and improve the adhesion with hardware.
  • the amorphous carbon toner can further reduce the whiteness and improve the light absorption, thereby reducing the reflectance of the 460nm light source.
  • the crystallization peak FWHM of the semi-aromatic polyamide molding composite material is mainly adjusted by adjusting the addition amount and specification of the toner and wollastonite, and can also be adjusted by adjusting the number average of the semi-aromatic polyamide resin. The molecular weight is obtained.
  • excellent adhesion can be obtained by adjusting the crystallization peak width at half maximum, wollastonite specification, and surface roughness of the PA10T/X molding compound.
  • the semi-aromatic polyamide molding composite material of the present invention does not require additional spraying of light-absorbing paint or frosting, thereby reducing the cost of LED display light source brackets.
  • the monomers used in the following polyamide polymerizations are commercially available and pure.
  • PA10T/1010-1 10T unit content 80mol%, number average molecular weight 7500, crystalline peak width at half maximum ⁇ T 1/2 of 15.1°C, self-made by referring to some methods in the content of the invention;
  • PA10T/1010-2 10T unit content 85mol%, number average molecular weight 9000, crystalline peak width at half maximum ⁇ T 1/2 of 16°C, self-made by referring to some methods in the content of the invention;
  • PA10T/1010-3 10T unit content 90mol%, number average molecular weight 8500, crystalline peak width at half maximum ⁇ T 1/2 of 12.8°C, self-made by referring to some methods in the content of the invention;
  • PA10T/1010-4 10T unit content 95mol%, number average molecular weight 13000, crystallization peak half maximum width ⁇ T 1/2 is 8.4 °C, self-made by referring to some methods in the content of the invention;
  • PA10T/1010-5 10T unit content 90mol%, number average molecular weight 4300, crystalline peak width at half maximum ⁇ T 1/2 of 14.2°C, self-made by referring to some methods in the content of the invention;
  • PA10T/1010-6 10T unit content 90mol%, number average molecular weight 21000, crystallization peak half-maximum width ⁇ T 1/2 is 18.3°C, self-made by referring to some methods in the content of the invention;
  • PA10T/1010-7 10T unit content 75mol%, number average molecular weight 8800, crystallization peak half-maximum width ⁇ T 1/2 is 18.0°C, self-made by referring to some methods in the content of the invention;
  • PA10T/1010-8 10T unit content 97mol%, number average molecular weight 8000, crystalline peak width at half maximum ⁇ T 1/2 of 7.5°C, self-made by referring to some methods in the content of the invention;
  • PA10T/10I-1 10T unit content 80mol%, number average molecular weight 10500, crystallization peak half-maximum width ⁇ T 1/2 is 17.1 °C, self-made by referring to some methods in the content of the invention;
  • PA10T/10I-2 10T unit content 85mol%, number average molecular weight 9800, crystallization peak half-maximum width ⁇ T 1/2 is 12°C, self-made by referring to some methods in the content of the invention;
  • PA10T/10I-3 10T unit content 90mol%, number average molecular weight 8500, crystalline peak width at half maximum ⁇ T 1/2 of 8.3°C, self-made by referring to some methods in the content of the invention;
  • PA10T/10I-4 10T unit content 95mol%, number average molecular weight 8000, crystallization peak half-maximum width ⁇ T 1/2 is 7.1 °C, self-made by referring to some methods in the content of the invention;
  • PA10T/10I-5 10T unit content 60mol%, number average molecular weight 8000, crystallization peak half-maximum width ⁇ T 1/2 is 15°C, self-made by referring to some methods in the content of the invention;
  • PA10T/66 The 10T unit content is 90mol%, the number average molecular weight is 8000, and the crystallization peak half maximum width ⁇ T 1/2 is 13.4°C. It is self-made by referring to some methods in the content of the invention.
  • PA10T/12T 10T unit content 80mol%, number average molecular weight 8000, crystalline peak width at half maximum ⁇ T 1/2 of 10.6°C, self-made by referring to some methods in the content of the invention;
  • Wollastonite A the average diameter is 4 ⁇ m, and the average length is 60 ⁇ m;
  • Wollastonite B the average diameter is 6 ⁇ m, and the average length is 120 ⁇ m;
  • Wollastonite C the average diameter is 13 ⁇ m, and the average length is 80 ⁇ m;
  • Wollastonite D The average diameter is 17 ⁇ m, and the average length is 180 ⁇ m.
  • the wollastonite used in the present invention is purchased from the market and screened to obtain the desired average diameter and average length range.
  • Talc powder AH-1250, Guangxi Longsheng Huamei Talc Development Co., Ltd.
  • Toner A Amorphous carbon toner N774, Tianjin Tianyang Qiushi Chemical Technology Co., Ltd.;
  • Toner B carbon black M570, Cabot Chemical Co., Ltd.;
  • Toner C Black Seed UN2014, Cabot Chemical Co., Ltd.;
  • Toner D Mazcol Blue 153K, Shenzhen Dingtai Chemical Co., Ltd.
  • Antioxidant Irganox1098, hindered phenolic antioxidant.
  • Adhesiveness PA10T/X molded composite material sample passed the red ink test to characterize the adhesiveness of the bracket plastic and hardware: the LED display light source bracket material and the electroplated hardware belt are injected into the LED reflective cup , soak into the red ink, make the red ink soak the pins, place it, and observe whether there is red ink seeping into the inside of the reflective cup.
  • the seal level is judged as A level
  • the density level is D, it proves that the adhesion between the plastic and the hardware is poor, and there is a risk of causing the lamp bead to fail. On the contrary, if the density level is A, B, C, the packaged lamp bead has excellent airtightness and good reliability.
  • the contrast of the evaluation material is characterized by the whiteness index of the material: a test piece with a length of 60 mm, a width of 60 mm, and a thickness of 1 mm prepared by injection molding the PA10T molding composite material.
  • W H 100-[(100-L) 2 +a 2 +b 2 ] 1/2 .
  • Reflectance a test piece with a length of 60 mm, a width of 60 mm, and a thickness of 1 mm prepared by injection molding the PA10T/X molding composite material. Use a Color Eye 7000A color difference meter to measure the reflectance of the test piece to light with a wavelength of 460nm.
  • Table 1 Components (parts by weight) and test results of semi-aromatic polyamide molding composites in Examples 1-6
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Example 6 PA10T/1010-1 60 60 60 60 60 Wollastonite A 30 35 40 45 50 60 Toner A 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Crystallization peak width at half maximum ⁇ T 1/2 , °C 10.6 9.3 8.8 8.1 7.5 7.2
  • Adhesion level B B B B A BaiDu 26.03 25.77 25.28 24.67 24.01 24.32 Reflectivity,% 5.89 5.44 4.91 4.30 3.81 3.92
  • Example 7 Example 8
  • Example 9 Example 10
  • Example 11 PA10T/1010-1 60 60 60 60 40 75 Wollastonite A 45 45 45 45 30 60 Toner A 1 1.3 1.8 0.5 1 4.5 Toner D the the the 0.8 the the the Crystallization peak width at half maximum ⁇ T 1/2 , °C 8.0 8.0 8.1 7.9 7.7 antioxidant the the the the the the 0.5 Adhesion level B B B B A A BaiDu 22.80 22.26 21.47 23.08 22.37 20.16 Reflectivity,% 3.36 2.94 2.61 3.15 3.08 2.35
  • Example 13 Example 14
  • Example 15 Example 16
  • PA10T/1010-1 60 60 60
  • Wollastonite A the the the 45 45 Wollastonite B
  • the Wollastonite C the 45 the the the Wollastonite D
  • the 45 the the Toner A 0.5 0.5 0.5 the the Toner B
  • Toner C the the the the 0.5 Crystallization peak width at half maximum ⁇ T 1/2 , °C 8.2 8.5 8.9 8.1 8.1 Adhesion level A
  • Adhesion level A A B B B BaiDu 24.28 24.05 24.48 24.89 25.33 Reflectivity,% 3.93 3.69 4.42 4.60 5.13
  • the average diameter of wollastonite is preferably 6-14 ⁇ m, and the average length is 80-120 ⁇ m. It can further improve the adhesion level and reduce the reflectivity; the toner is preferably amorphous carbon toner.
  • Table 4 Components (parts by weight) and test results of semi-aromatic polyamide molding composites in Examples 18-24
  • Example 23 Example 24
  • Example 25 Example 26
  • PA10T/10I-1 60 the the the PA10T/10I-2 the 60 the the PA10T/10I-3 the the 60 the PA10T/10I-4 the the the 60 Wollastonite A 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45
  • Comparative example 1 Comparative example 2 Comparative example 3 Comparative example 4 Comparative example 5 Comparative example 6 PA10T/1010-7 60 the the the the the PA10T/1010-8 the 60 the the the the PA10T/10I-5 the the 60 the the the PA10T/1010-1 the the 60 60 60
  • Comparative example 7 Comparative example 8 PA10T/1010-1 60 60 Wollastonite A 35 35 Toner A 0.2 5 Crystallization peak width at half maximum ⁇ T 1/2 , °C 9.3 9.0 Adhesion level B C BaiDu 28.11 21.75 Reflectivity,% 6.41 6.50

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

本发明提供了一种可用于生产LED显示屏光源反射支架的半芳香聚酰胺模塑复合材料,主要是通过选择特定重复单元的半芳香聚酰胺树脂、结晶峰半高宽ΔT 1/2为4-11℃、调节白度<26.5、460nm光源反射率小于6%等,使半芳香聚酰胺模塑复合材料具有减少蓝光、对比度高、灰度高的优点,可满足封装过程及长期可靠性的需求,封装产品可用于制造多场景应用的高对比度LED显示屏光源反射支架。

Description

一种聚酰胺模塑复合材料及其制备方法和应用 技术领域
本发明涉及高分子材料技术领域,特别是涉及一种聚酰胺模塑复合材料及其制备方法和应用。
背景技术
LED光源主要由半导体芯片、LED光源反射支架、金线、封装胶构成。LED光源反射支架是LED光源的“骨架”,也是功能件。LED封装过程其需要经过固晶、焊线、封装胶固化,将其他材料及部件均被集成于此。LED反射支架需要将LED芯片发出的光通过一定的角度反射出来,减少光损失,再透过环氧树脂或者硅胶等封装材料,形成LED照明或显示的光源。LED反射支架材料是LED照明的一种核心材料,直接关系到LED光源的性能和寿命。
现阶段,LED反射支架的材料选择需要考虑以下几点:
第一、在整个封装过程中,LED反射支架需要在150-200℃的温度下暴露6-10小时,同时封装后的灯珠在制成显示屏时,需要经过SMT,要求LED支架或灯珠在经历封装和SMT时,不会出现变形,在有负载的情况下不被破坏,对LED支架材料的密合性要求较高。
第二、近年来LED显示屏光源逐渐向点间距在P2.5以下的小间距显示屏方向发展,使得LED显示屏研发和制造也在此过程中不断地经受着巨大的挑战。小间距显示屏支架制造逐渐往薄壁,多模穴,小尺寸方向发展,对LED反射支架材料的流动性,超多模穴成型性、机械强度等提出了更严苛的要求。
第三、LED灯具或显示屏在使用的过程中,由于环境的不同,时常受到高温、台风、暴雨、雷电等恶劣天气的影响,要让灯具或显示屏在恶劣的天气中安然无恙,因此对使用的材料尺寸稳定性等性能要求高。
第四、在LED显示应用领域,为了显示画质的清晰锐利,显示屏的亮度与对比度是一个非常重要的指标。目前市场上主要使用较多的方案是纯白色的LED反射材料生产的LED支架,表面需要丝印黑色油墨,工序繁琐、影响效率、成本高,但侧面和反光杯表面仍是白色的,降低了LED显示屏显示的对比度和灰度。
第五,关于光源:一方面,一般人的眼睛可以感知的波长在780~400nm之间。其中,波长400到450nm的短波蓝光对视网膜的危害程度最大,此波长的蓝光会使眼睛内的黄斑区毒素量增高,严重威胁人们的眼睛健康。另一方面,LED全彩显示屏光源中由红(R)、绿 (G)、蓝(B)三种芯片封装而成,其中蓝光芯片发光的亮度最低,即对比度是最高,所以LED光源支架对于使用芯片的蓝光反射率会直接影响LED显示屏整体的对比度。LED屏幕防蓝光已经普及至各种手机、电视的LED屏幕,但是一般的措施为在屏幕表面涂层防蓝光膜,但是该措施分别具有薄膜脆弱、成本高的缺陷。
本领域技术人员主要将LED反射支架材料的改进集中在上述第一、第二点上。较少的关注聚酰胺模塑复合材料的吸水率、尺寸稳定性,并且没有通过改善材料本身的对比度和灰度来改善LED显示屏支架的对比度和灰度。
发明内容
本发明的目的在于,克服上述技术缺陷,提供一种半芳香聚酰胺模塑复合材料,具有对比度高、灰度高,可满足封装过程及长期可靠性的需求。
本发明的另一目的在于,提供上述半芳香聚酰胺模塑复合材料的应用。
本发明是通过以下技术方案实现的:
一种半芳香聚酰胺模塑复合材料,按重量份计,包括以下组分:
PA10T/X树脂    40-75份;
硅灰石       30-60份;
色粉        0.5-4.5份;
基于PA10T/X摩尔百分比计,10T单元含量80-95mol%,X单元5-20mol%;其中,X单元由二酸单元和二胺单元构成,二酸单元选自对苯二甲酸单元、间苯二甲酸单元、1,6-己二酸、1,10-癸二酸单元中的至少一种,所述的二胺单元选自1,6-己二胺单元、1,9-壬二胺单元、2-甲基-1,5-戊二胺单元、2-甲基-1,8-辛二胺单元、1,10-癸二胺单元、1,12-十二碳二胺单元中至少一种;
在半芳香聚酰胺模塑复合材料树脂基体中,硅灰石的平均直径为4-20μm,平均长度为10-250μm;
所述的半芳香聚酰胺模塑复合材料通过差示扫描量热法,升温至345℃后以20℃/min的降温速率测得的结晶峰半高宽ΔT 1/2为4-11℃;
所述的半芳香聚酰胺模塑复合材料的白度<26.5,460nm光源反射率<6%。
X单元不为10T。
所述的PA10T/X树脂选自PA10T/10I、PA10T/6T、PA10T/66、PA10T/1010、PA10T/610、PA10T/612、PA10T/12T中的至少一种。
优选的,所述的半芳香聚酰胺模塑复合材料通过差示扫描量热法,升温至345℃后以20℃ /min的降温速率测得的结晶峰半高宽ΔT 1/2为5-8℃。
本发明的PA10T/X树脂可以是市售产品,也可以是根据以下的方法合成。为了更精确的实验,本发明实施例和对比例所采用PA10T/X为自制样品,反应单体、封端剂等原料来源于市售产品。
(1)预聚合:在配有机械搅拌的不锈钢高压反应釜中投入聚合反应单体(二酸、二胺)、封端剂苯甲酸和去离子水。抽真空并用N 2置换三次后开始升温搅拌,以4-6℃/min升温速率升至170-190℃,恒温1-2小时后,以1-3℃/min升温速率260-280℃后缓慢搅拌并恒温3-5h,让预聚合反应充分进行。恒温结束后缓慢升高温度至270-290℃,并开始排水至常压。当压力降至常压后关闭排水阀,反应结束,降至室温出料。
(2)固相增黏:将预聚合过程制备的物料投入真空转鼓中,转鼓转速定为10-15r/min,真空度定为25-35Pa。以15-25℃/min速率升温,当温度达260-270℃时取样测试黏度,根据黏度(或数均分子量)结果判定出料终点。
所述的PA10T/X树脂的数均分子量为1500-28000。数均分子量的测试方法为常规的方法,具体为:PA10T/X树脂样品的数均分子量(Mn)由凝胶渗透色谱(gel permeation chromatography,GPC)测定。安捷伦HPLC-1260高效液相色谱仪,配制:Eppendorf柱温箱、Shodex KF-801,802,802.5和803凝胶渗透色谱柱、示差检测器、G7129A自动进样器。采用六氟异丙醇做流动相,柱温40℃的条件下测定树脂的分子量。利用色谱工作站cirrus软件对数据进行处理进行数据处理得到数均分子量分布Mn。
优选的,所述的硅灰石在半芳香聚酰胺模塑复合材料树脂基体中的平均直径为6-13μm,平均长度为80-120μm。硅灰石属于具有一定长径比的粉体,微观结构为纤维状,其在螺杆中熔融剪切过程中长、径几乎无变化。通过实验显示,PA10T、硅灰石(平均直径为17μm,平均长度为180μm)两种物质经过生产工艺进行熔融剪切共混,再采用溶剂溶出树脂,测试硅灰石的平均直径和平均长度,发现硅灰石在螺杆的剪切中直径不变,平均长度变化约0.5%。
所述的色粉选自炭黑、黑种、无定形碳色粉中的至少一种或多种颜色混合色粉。
优选的,所述的色粉选自无定形碳色粉。
优选的,所述的半芳香聚酰胺模塑复合材料的460nm光源反射率<4.5%;更优选,所述的半芳香聚酰胺模塑复合材料的460nm光源反射率<3.8%。
按重量份计,还包括0-3份抗氧剂;所述的抗氧剂选自受阻酚抗氧剂类、受阻胺类抗氧剂、亚磷酸酯类抗氧剂、硫醇类抗氧剂、硫代二丙酸酯类抗氧剂中的至少一种。
本发明半芳香聚酰胺模塑复合材料的应用,用于制备LED显示屏光源反射支架。
本发明的半芳香聚酰胺模塑复合材料的制备方法:将各组分加入混料机中混合均匀,再通过双螺杆挤出机挤出造粒,得到半芳香聚酰胺模塑复合材料;其中螺杆温度范围280-330℃、转速为450r/min。
本发明具有如下有益效果:
460nm光源反射率主要与材料的表面粗糙度(物体表面的粗糙度在一定范围内数值越大,光源发射出的光线在物体表面发生漫反射,最后在光线接受端接收到的光线能量越少)、材料的白度相关(白度越低,反射率越低)。关于LED显示屏光源反射支架对于LED显示屏的灰度和对比度的影响主要在于光源反射支架的白度和反射率。根据该原理,本发明的半芳香聚酰胺模塑复合材料是通过以下三个方面控制白度<26.5、460nm光源反射率降低至<6%(提升灰度和对比度),并且具有长期封装稳定性(密合性)、封装的LED屏幕低蓝光的优点。
第一,硅灰石与其他无机填料相比,能够使得半芳香聚酰胺模塑复合材料制件表面粗糙度达到降低460nm光反射的要求不仅降低了460nm光源反射率,同时提高了与五金的密合性。优选的硅灰石在树脂基体中的分布尺寸,能够进一步降低460nm光源反射率(降低LED显示屏蓝光)、提高与五金的密合性。
第二,通过色粉调节材料的颜色,得到黑色吸光效果好,优选无定形碳色粉能够进一步降低白度、提升吸光性,从而降低460nm光源反射率。
第三,一方面,通过实验发现半芳香聚酰胺模塑复合材料的结晶峰半高宽也会明显影响复合材料的460nm光源反射率,当结晶峰半高宽ΔT 1/2为4-11℃时制备得到的制件表面具有低的460nm光源反射率。在本发明技术方案中半芳香聚酰胺模塑复合材料的结晶峰半高宽主要是通过调节色粉和硅灰石的添加量、规格调整的,也可以通过调整半芳香聚酰胺树脂的数均分子量获得。另一方面,通过调节PA10T/X模塑复合材料的结晶峰半高宽、硅灰石规格、表面粗糙度以获得优良的密合性。
本发明的半芳香聚酰胺模塑复合材料无需额外喷涂吸光油漆或磨砂,降低LED显示屏光源支架的成本。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护 范围。
实施例与对比例所用原材料如下:
以下聚酰胺聚合所用单体为市售产品,聚合纯。
PA10T/1010-1:10T单元含量80mol%,数均分子量7500,结晶峰半高宽ΔT 1/2为15.1℃,参照发明内容部分方法自制;
PA10T/1010-2:10T单元含量85mol%,数均分子量9000,结晶峰半高宽ΔT 1/2为16℃,参照发明内容部分方法自制;
PA10T/1010-3:10T单元含量90mol%,数均分子量8500,结晶峰半高宽ΔT 1/2为12.8℃,参照发明内容部分方法自制;
PA10T/1010-4:10T单元含量95mol%,数均分子量13000,结晶峰半高宽ΔT 1/2为8.4℃,参照发明内容部分方法自制;
PA10T/1010-5:10T单元含量90mol%,数均分子量4300,结晶峰半高宽ΔT 1/2为14.2℃,参照发明内容部分方法自制;
PA10T/1010-6:10T单元含量90mol%,数均分子量21000,结晶峰半高宽ΔT 1/2为18.3℃,参照发明内容部分方法自制;
PA10T/1010-7:10T单元含量75mol%,数均分子量8800,结晶峰半高宽ΔT 1/2为18.0℃,参照发明内容部分方法自制;
PA10T/1010-8:10T单元含量97mol%,数均分子量8000,结晶峰半高宽ΔT 1/2为7.5℃,参照发明内容部分方法自制;
PA10T/10I-1:10T单元含量80mol%,数均分子量10500,结晶峰半高宽ΔT 1/2为17.1℃,参照发明内容部分方法自制;
PA10T/10I-2:10T单元含量85mol%,数均分子量9800,结晶峰半高宽ΔT 1/2为12℃,参照发明内容部分方法自制;
PA10T/10I-3:10T单元含量90mol%,数均分子量8500,结晶峰半高宽ΔT 1/2为8.3℃,参照发明内容部分方法自制;
PA10T/10I-4:10T单元含量95mol%,数均分子量8000,结晶峰半高宽ΔT 1/2为7.1℃,参照发明内容部分方法自制;
PA10T/10I-5:10T单元含量60mol%,数均分子量8000,结晶峰半高宽ΔT 1/2为15℃,参照发明内容部分方法自制;
PA10T/66:10T单元含量90mol%,数均分子量8000,结晶峰半高宽ΔT 1/2为13.4℃,参照 发明内容部分方法自制;
PA10T/12T:10T单元含量80mol%,数均分子量8000,结晶峰半高宽ΔT 1/2为10.6℃,参照发明内容部分方法自制;
硅灰石A:平均直径为,4μm,平均长度为60μm;
硅灰石B:平均直径为,6μm,平均长度为120μm;
硅灰石C:平均直径为,13μm,平均长度为80μm;
硅灰石D:平均直径为,17μm,平均长度为180μm。
本发明所用硅灰石通过市购后筛选得到所需的平均直径、平均长度范围。
滑石粉:AH-1250,广西龙胜华美滑石开发有限公司。
色粉A:无定形碳色粉N774,天津天阳秋实化工科技有限公司;
色粉B:炭黑M570,卡博特化工有限公司;
色粉C:黑种UN2014,卡博特化工有限公司;
色粉D:Mazcol Blue 153K,深圳市鼎泰化工有限公司。
抗氧剂:Irganox1098,受阻酚类抗氧剂。
实施例和对比例半芳香聚酰胺模塑复合材料的制备方法:将PA10T/X树脂、硅灰石、色粉、抗氧剂加入混料机中混合均匀,再通过双螺杆挤出机挤出造粒,得到半芳香聚酰胺模塑复合材料;其中螺杆温度范围280-330℃、转速为450r/min。
测试方法:
(1)密合性:PA10T/X模塑复合材料样品通过红墨水测试表征支架塑胶与五金的密合性:将LED显示屏光源支架材料与电镀五金料带经模内注塑成型的LED反射杯,浸泡入红墨水,使红墨水浸没引脚,放置,观察是否有红墨水渗入到反射杯内部。
若红墨水5min未渗入反射杯内,密合等级判定为A级;
若红墨水3min未渗入反射杯内但5min时有渗入,密和等级判定为B级;
若红墨水1min未渗入反射杯内但3min时有渗入,密和等级判定为C级;
若红墨水1min内渗入反射杯内,密和等级判定为D级;
若密和等级为D级,证明塑胶与五金密合性差,会有导致灯珠失效的风险。反之,若密和等级为A,B,C,封装成的灯珠气密性优,可靠性好。
(2)白度:评价材料的对比度以材料的白度指标表征:将PA10T模塑复合材料注塑成型而制备的长度为60mm、宽度为60mm、厚度为1mm的试验片。使用Color Eye 7000A型色差计测量L,a,b值计算白度:
W H=100-[(100-L) 2+a 2+b 2] 1/2
(3)反射率:将PA10T/X模塑复合材料注塑成型而制备的长度为60mm、宽度为60mm、厚度为1mm的试验片。使用Color Eye 7000A型色差计测量试验片对460nm波长光的反射率。
(4)半芳香聚酰胺模塑复合材料结晶峰半高宽ΔT 1/2:使用NETZSCH公司制造的差示扫描量热分析仪,在氮气氛围下从30℃以20℃/分钟的速度向345℃升温,恒温2min后,以20℃/min的降温速率降温,将此时出现的结晶峰温度设定为结晶温度Tc(℃),测得的峰宽的一半温度定为结晶峰半高宽ΔT 1/2
表1:实施例1-6半芳香聚酰胺模塑复合材料组分(重量份)及测试结果
  实施例1 实施例2 实施例3 实施例4 实施例5 实施例6
PA10T/1010-1 60 60 60 60 60 60
硅灰石A 30 35 40 45 50 60
色粉A 0.5 0.5 0.5 0.5 0.5 0.5
结晶峰半高宽ΔT 1/2,℃ 10.6 9.3 8.8 8.1 7.5 7.2
密合等级 B B B B A A
白度 26.03 25.77 25.28 24.67 24.01 24.32
反射率,% 5.89 5.44 4.91 4.30 3.81 3.92
由实施例1-6可知,通过调节硅灰石的添加量,可以控制半芳香聚酰胺模塑复合材料的结晶峰半高宽在优选的范围内,不仅密合等级更高,而且反射率也低。
表2:实施例7-12半芳香聚酰胺模塑复合材料组分(重量份)及测试结果
  实施例7 实施例8 实施例9 实施例10 实施例11 实施例12
PA10T/1010-1 60 60 60 60 40 75
硅灰石A 45 45 45 45 30 60
色粉A 1 1.3 1.8 0.5 1 4.5
色粉D       0.8    
结晶峰半高宽ΔT 1/2,℃ 8.0 8.0 8.0 8.1 7.9 7.7
抗氧剂           0.5
密合等级 B B B B A A
白度 22.80 22.26 21.47 23.08 22.37 20.16
反射率,% 3.36 2.94 2.61 3.15 3.08 2.35
由实施例4/7-10可知,通过调整色粉的用量降低白度与反射率。
表3:实施例13-17半芳香聚酰胺模塑复合材料组分(重量份)及测试结果
  实施例13 实施例14 实施例15 实施例16 实施例17
PA10T/1010-1 60 60 60 60 60
硅灰石A       45 45
硅灰石B 45        
硅灰石C   45      
硅灰石D     45    
色粉A 0.5 0.5 0.5    
色粉B       0.5  
色粉C         0.5
结晶峰半高宽ΔT 1/2,℃ 8.2 8.5 8.9 8.1 8.1
密合等级 A A B B B
白度 24.28 24.05 24.48 24.89 25.33
反射率,% 3.93 3.69 4.42 4.60 5.13
由实施例4/13-17可知,优选硅灰石平均直径为6-14μm,平均长度为80-120μm,即使复合材料的结晶峰半高宽没有落在5-8℃的范围内,但是也能够进一步提高密合等级和降低反射率;色粉优选无定形碳色粉。
表4:实施例18-24半芳香聚酰胺模塑复合材料组分(重量份)及测试结果
Figure PCTCN2022118970-appb-000001
由实施例4/18-24可知,不同初始结晶半峰宽的半芳香聚酰胺树脂通过硅灰石与色粉的调节将结晶半峰宽落在不同的范围,得到密合等级与反射率不同的半芳香聚酰胺模塑复合材料。
表5:实施例23-26半芳香聚酰胺模塑复合材料组分(重量份)及测试结果
  实施例23 实施例24 实施例25 实施例26
PA10T/10I-1 60      
PA10T/10I-2   60    
PA10T/10I-3     60  
PA10T/10I-4       60
硅灰石A 45 45 45 45
色粉A 0.5 0.5 0.5 0.5
结晶峰半高宽ΔT 1/2,℃ 8.9 6.6 4.3 4.1
密合等级 B A B B
白度 24.84 24.15 24.79 24.89
反射率,% 4.29 3.80 4.32 4.41
表6:对比例1-6半芳香聚酰胺模塑复合材料组分(重量份)及测试结果
  对比例1 对比例2 对比例3 对比例4 对比例5 对比例6
PA10T/1010-7 60          
PA10T/1010-8   60        
PA10T/10I-5     60      
PA10T/1010-1       60 60 60
硅灰石A 45 45 45   20 70
滑石粉       45    
色粉A 0.5 0.5 0.5 0.5 0.5 0.5
结晶峰半高宽ΔT 1/2,℃ 9.6 3.9 8.2 9.6 11.2 6.8
密合等级 C D D D D C
白度 26.90 24.81 30.14 28.49 27.84 27.40
反射率,% 6.22 4.82 8.60 10.39 6.86 6.75
由对比例1/2/3可知,PA10T/X重复单元中,X含量对于密合等级的影响显著,由于表面特性的改变,反射率也随着上升,并且显著影响密合性。
由对比例4可知,滑石粉无法代替硅灰石。
由对比例5可知,硅灰石含量过低无法将结晶峰半高宽调整至4-11℃,不仅密合等级差,而且反射率高。
由对比例6可知,硅灰石含量过高即使能够将结晶峰半高宽控制在4-11℃内,密合等级与反射率都差,这是由于硅灰石过多破坏了复合材料的表面结构,并且由于硅灰石为白色粉末,加入量过多也反而提升了白度。
表7:对比例7-8半芳香聚酰胺模塑复合材料组分(重量份)及测试结果
  对比例7 对比例8
PA10T/1010-1 60 60
硅灰石A 35 35
色粉A 0.2 5
结晶峰半高宽ΔT 1/2,℃ 9.3 9.0
密合等级 B C
白度 28.11 21.75
反射率,% 6.41 6.50
由对比例7可知,当色粉加入量太低会导致白度过高反射率高。
由对比例8可知,当色粉加入量太多会导致过多色粉富集在表面从而影响密合度和反射率。

Claims (10)

  1. 一种半芳香聚酰胺模塑复合材料,其特征在于,按重量份计,包括以下组分:
    PA10T/X树脂    40-75份;
    硅灰石       30-60份;
    色粉        0.5-4.5份;
    基于PA10T/X摩尔百分比计,10T单元含量80-95mol%,X单元5-20mol%;其中,X单元由二酸单元和二胺单元构成,二酸单元选自对苯二甲酸单元、间苯二甲酸单元、1,6-己二酸、1,10-癸二酸单元中的至少一种,所述的二胺单元选自1,6-己二胺单元、1,9-壬二胺单元、2-甲基-1,5-戊二胺单元、2-甲基-1,8-辛二胺单元、1,10-癸二胺单元、1,12-十二碳二胺单元中至少一种;
    在半芳香聚酰胺模塑复合材料树脂基体中,硅灰石的平均直径为4-20μm,平均长度为10-250μm;
    所述的半芳香聚酰胺模塑复合材料通过差示扫描量热法,升温至345℃后以20℃/min的降温速率测得的结晶峰半高宽ΔT 1/2为4-11℃;
    所述的半芳香聚酰胺模塑复合材料的白度<26.5,460nm光源反射率<6%。
  2. 根据权利要求1所述的半芳香聚酰胺模塑复合材料,其特征在于,所述的PA10T/X树脂选自PA10T/10I、PA10T/6T、PA10T/66、PA10T/1010、PA10T/610、PA10T/612、PA10T/12T中的至少一种。
  3. 根据权利要求1所述的半芳香聚酰胺模塑复合材料,其特征在于,所述的半芳香聚酰胺模塑复合材料通过差示扫描量热法,升温至345℃后以20℃/min的降温速率测得的结晶峰半高宽ΔT 1/2为5-8℃。
  4. 根据权利要求1所述的半芳香聚酰胺模塑复合材料,其特征在于,所述的PA10T/X树脂的数均分子量为1500-28000。
  5. 根据权利要求1所述的半芳香聚酰胺模塑复合材料,其特征在于,所述的硅灰石在半芳香聚酰胺模塑复合材料树脂基体中的平均直径为6-13μm,平均长度为80-120μm。
  6. 根据权利要求1所述的半芳香聚酰胺模塑复合材料,其特征在于,所述的色粉选自炭黑、黑种、无定形碳色粉中的至少一种或多种颜色混合色粉;优选的,所述的色粉选自无定形碳色粉。
  7. 根据权利要求1所述的半芳香聚酰胺模塑复合材料,其特征在于,优选的,所述的半芳香聚酰胺模塑复合材料的460nm光源反射率<4.5%;更优选,所述的半芳香聚酰胺模塑复合材料的460nm光源反射率<3.8%。
  8. 根据权利要求1所述的半芳香聚酰胺模塑复合材料,其特征在于,按重量份计,还包括0-3份抗氧剂。
  9. 权利要求1-8任一项所述半芳香聚酰胺模塑复合材料的制备方法,其特征在于,包括以下步骤,将各组分加入混料机中混合均匀,再通过双螺杆挤出机挤出造粒,得到半芳香聚酰胺模塑复合材料;其中螺杆温度范围280-330℃、转速为400-500r/min。
  10. 权利要求1-8任一项所述的半芳香聚酰胺模塑复合材料的应用,其特征在于,用于制备LED显示屏光源反射支架。
PCT/CN2022/118970 2021-09-18 2022-09-15 一种聚酰胺模塑复合材料及其制备方法和应用 WO2023040943A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22869311.5A EP4386052A1 (en) 2021-09-18 2022-09-15 Polyamide molding composite material, and preparation method therefor and application thereof
KR1020247008888A KR20240050382A (ko) 2021-09-18 2022-09-15 폴리아미드 몰딩 복합재료, 그 제조 방법 및 그 용도

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111097912.1 2021-09-18
CN202111097912.1A CN115819964B (zh) 2021-09-18 2021-09-18 一种聚酰胺模塑复合材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023040943A1 true WO2023040943A1 (zh) 2023-03-23

Family

ID=85515367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118970 WO2023040943A1 (zh) 2021-09-18 2022-09-15 一种聚酰胺模塑复合材料及其制备方法和应用

Country Status (4)

Country Link
EP (1) EP4386052A1 (zh)
KR (1) KR20240050382A (zh)
CN (1) CN115819964B (zh)
WO (1) WO2023040943A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001131408A (ja) * 1999-11-05 2001-05-15 Asahi Kasei Corp 黒着色強化ポリアミド樹脂組成物
CN103890039A (zh) * 2011-08-19 2014-06-25 索尔维特殊聚合物美国有限责任公司 用于led应用的改进的聚酰胺组合物
CN103911000A (zh) * 2012-12-31 2014-07-09 第一毛织株式会社 具有优异的表面光泽、反射性、抗黄化性和模制性的热塑性树脂组合物
CN104804414A (zh) * 2015-03-26 2015-07-29 金发科技股份有限公司 一种聚酰胺模塑组合物
CN106117549A (zh) * 2016-07-15 2016-11-16 珠海万通特种工程塑料有限公司 一种半芳香族共聚酰胺树脂和由其组成的聚酰胺模塑组合物
CN106336659A (zh) * 2016-08-31 2017-01-18 江门市德众泰工程塑胶科技有限公司 一种可用于高功率led的聚酰胺组合物
CN108383996A (zh) * 2018-01-10 2018-08-10 金发科技股份有限公司 一种高结晶速率聚酰胺及其制备方法和应用
US20190002638A1 (en) * 2017-01-20 2019-01-03 Kingfa Sci. & Tech. Co., Ltd. Semiaromatic polyamide resin and preparation method thereof and polyamide molding composition consisting of the same
CN110294842A (zh) * 2019-05-24 2019-10-01 金发科技股份有限公司 一种半芳香族聚酰胺及其合成方法和由其组成的聚酰胺模塑组合物
CN112358610A (zh) * 2020-05-28 2021-02-12 金发科技股份有限公司 一种聚酰胺和由其组成的聚酰胺模塑组合物
WO2021204600A1 (en) * 2020-04-09 2021-10-14 Basf Se Polyamide composition for optical elements

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4525917B2 (ja) * 2005-03-18 2010-08-18 株式会社クラレ Ledリフレクタ成形用ポリアミド樹脂組成物およびledリフレクタ
DE502008000140D1 (de) * 2007-05-03 2009-11-26 Ems Patent Ag Teilaromatische Polyamidformmassen und deren Verwendungen
EP2388293B1 (de) * 2010-05-17 2012-12-26 Ems-Patent Ag Polyamidformmasse und deren Verwendung zur Herstellung von LED-Gehäusekomponenten
KR101581080B1 (ko) * 2011-12-29 2015-12-30 제일모직주식회사 박막 성형성을 비롯한 물성을 향상시킨 폴리아미드 수지 조성물
KR20140099138A (ko) * 2013-02-01 2014-08-11 제일모직주식회사 광안정성 및 내변색성이 우수한 폴리아미드 수지 조성물
CN112745672B (zh) * 2020-12-16 2022-06-14 金发科技股份有限公司 一种聚酰胺模塑组合物及其制备方法和应用

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001131408A (ja) * 1999-11-05 2001-05-15 Asahi Kasei Corp 黒着色強化ポリアミド樹脂組成物
CN103890039A (zh) * 2011-08-19 2014-06-25 索尔维特殊聚合物美国有限责任公司 用于led应用的改进的聚酰胺组合物
CN103911000A (zh) * 2012-12-31 2014-07-09 第一毛织株式会社 具有优异的表面光泽、反射性、抗黄化性和模制性的热塑性树脂组合物
CN104804414A (zh) * 2015-03-26 2015-07-29 金发科技股份有限公司 一种聚酰胺模塑组合物
CN106117549A (zh) * 2016-07-15 2016-11-16 珠海万通特种工程塑料有限公司 一种半芳香族共聚酰胺树脂和由其组成的聚酰胺模塑组合物
CN106336659A (zh) * 2016-08-31 2017-01-18 江门市德众泰工程塑胶科技有限公司 一种可用于高功率led的聚酰胺组合物
US20190002638A1 (en) * 2017-01-20 2019-01-03 Kingfa Sci. & Tech. Co., Ltd. Semiaromatic polyamide resin and preparation method thereof and polyamide molding composition consisting of the same
CN108383996A (zh) * 2018-01-10 2018-08-10 金发科技股份有限公司 一种高结晶速率聚酰胺及其制备方法和应用
CN110294842A (zh) * 2019-05-24 2019-10-01 金发科技股份有限公司 一种半芳香族聚酰胺及其合成方法和由其组成的聚酰胺模塑组合物
WO2021204600A1 (en) * 2020-04-09 2021-10-14 Basf Se Polyamide composition for optical elements
CN112358610A (zh) * 2020-05-28 2021-02-12 金发科技股份有限公司 一种聚酰胺和由其组成的聚酰胺模塑组合物

Also Published As

Publication number Publication date
CN115819964A (zh) 2023-03-21
EP4386052A1 (en) 2024-06-19
CN115819964B (zh) 2024-03-01
KR20240050382A (ko) 2024-04-18

Similar Documents

Publication Publication Date Title
CN102782048B (zh) 用于表面安装型led用反射板的聚酰胺树脂组合物
CN1331945C (zh) 反射板用树脂组合物
CN1990543B (zh) 液晶聚酯组合物
CN101006136B (zh) 芳族聚酰胺组合物和由其制造的制品
WO2023071997A1 (zh) 一种聚酰胺树脂、其组合物及制备方法
CN103804902A (zh) 由无定形聚酰胺制成的移动电子装置
TW201219486A (en) Liquid crystal polyester composition, reflective plate and light-emitting device
WO2021218648A1 (zh) 一种聚酯酰胺的聚合工艺
WO2023040943A1 (zh) 一种聚酰胺模塑复合材料及其制备方法和应用
CN114591624A (zh) 一种灰色半芳香聚酰胺模塑组合物及其制备方法和应用
CN114656781A (zh) 一种灰色半芳香聚酰胺模塑材料及其制备方法和应用
CN115678268B (zh) 一种聚酰胺模塑组合物及其制备方法和应用
TW201245271A (en) Liquid-crystal polyester and manufacturing process therefor
CN105602207B (zh) 改性pct树脂复合物及其制备方法
WO2023040942A1 (zh) 一种pa10t模塑复合材料及其制备方法和应用
CN114685977B (zh) 一种聚酰胺模塑组合物及其应用
CN114685978B (zh) 一种pa6t66模塑组合物及其应用
CN114854193B (zh) 一种聚酰胺复合材料及其制备方法和应用
KR102215676B1 (ko) 액정 폴리에스테르 조성물
WO2022111006A1 (zh) 一种聚酯树脂组合物及其制备方法和应用
JP6819841B1 (ja) ポリアリーレンエーテルケトン樹脂及びその製造方法、並びに成形体
CN116333489B (zh) 一种半芳香族聚酰胺模塑复合材料及其制备方法和应用
CN117363001A (zh) 一种聚酰胺模塑组合物及其制备方法和应用
JPH10287791A (ja) 帯電防止性アクリル系樹脂組成物およびその成形品
CN116589675A (zh) 一种聚酰胺树脂及其聚合方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869311

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247008888

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022869311

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022869311

Country of ref document: EP

Effective date: 20240315

NENP Non-entry into the national phase

Ref country code: DE