WO2023040055A1 - 一种复合调谐减振装置及其减振方法 - Google Patents

一种复合调谐减振装置及其减振方法 Download PDF

Info

Publication number
WO2023040055A1
WO2023040055A1 PCT/CN2021/134692 CN2021134692W WO2023040055A1 WO 2023040055 A1 WO2023040055 A1 WO 2023040055A1 CN 2021134692 W CN2021134692 W CN 2021134692W WO 2023040055 A1 WO2023040055 A1 WO 2023040055A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration damping
vibration
damping device
suspension mechanism
frame body
Prior art date
Application number
PCT/CN2021/134692
Other languages
English (en)
French (fr)
Inventor
邵国栋
刘娟
王聪
庞继勇
Original Assignee
中国电建集团山东电力建设第一工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电建集团山东电力建设第一工程有限公司 filed Critical 中国电建集团山东电力建设第一工程有限公司
Publication of WO2023040055A1 publication Critical patent/WO2023040055A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/98Protection against other undesired influences or dangers against vibrations or shocks; against mechanical destruction, e.g. by air-raids
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/0215Bearing, supporting or connecting constructions specially adapted for such buildings involving active or passive dynamic mass damping systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention relates to the technical field of vibration reduction, in particular to a compound tuning vibration reduction device and a vibration reduction method thereof.
  • Suspended mass pendulum damper is a relatively economical passive vibration reduction device for high-rise structures. Its outstanding advantage is that the swing direction of the mass pendulum depends entirely on the vibration direction of the structure. In practical applications, the mass pendulum can accurately impart vibration-reducing damping force along the vibration direction.
  • Traditional suspended mass pendulum dampers are mostly passive vibration dampers, which cannot dynamically adjust the natural vibration period and vibration damping force according to the service conditions of the structure and real-time vibration, which reduces its vibration damping effect.
  • the purpose of the present invention is to provide a composite tuning vibration damping device and its vibration damping method, which can reduce the vibration response of the transmission tower structure in all directions under the action of external force, and achieve the purpose of energy consumption and vibration reduction ; and the natural vibration period of the mass pendulum can be adjusted.
  • the embodiment of the present invention provides a composite tuning vibration damping device, which includes a frame body, a suspension mechanism arranged in the center of the frame body and capable of rotating relative to the frame body, and a mass ball is installed at the end of the suspension mechanism; A plurality of energy-consuming units arranged at intervals along the circumference of the suspension mechanism are fixed on the frame body;
  • the energy consumption unit includes a damping chamber and a stirring mechanism arranged in the damping chamber.
  • the stirring mechanism is connected to the suspension mechanism through a traction cable. When the suspension mechanism swings, it can drive the stirring mechanism to stir the magnetorheological fluid filled in the damping chamber.
  • the suspension mechanism includes a cantilever and a telescopic rod, one end of the telescopic rod is rotatably connected to the cantilever, and the other end is connected to a mass ball.
  • the pulling cable is connected to the boom through a connecting piece.
  • the cantilever is equipped with an acceleration sensor.
  • a locking device is installed outside the telescopic rod.
  • the agitating mechanism includes a rotating shaft and blades mounted on the rotating shaft, the blades are circumferentially arranged with energized coils.
  • a casing is installed outside the damping chamber, and the energized coil and blades are arranged in the damping chamber.
  • the rotating shaft is sleeved on a return spring, one end of the returning spring is fixed to the rotating shaft, and the other end is connected to the inner wall of the housing or the outer wall of the damping chamber.
  • an acceleration sensor is installed on the mass ball.
  • the embodiment of the present invention also provides a suspension type composite tuning vibration reduction method, using the vibration reduction device, under the action of external force, the mass ball swings, and the rotating shaft and the blade are rotated by pulling the traction cable; the blade The magnetorheological fluid in the damping chamber is stirred, and the energized coil is energized to generate a magnetic field; at the same time, the vibration information is detected in real time through the acceleration sensor and sent back to the control unit.
  • the present invention utilizes the suspended mass pendulum to realize the multi-dimensional vibration in the plane, so that the mass pendulum can accurately swing along the vibration direction of the transmission tower structure, and provide accurate vibration reduction and damping force; the mass pendulum passes through the traction cable Connecting the energy-dissipating unit enables the energy-dissipating unit to realize the energy-dissipating effect while swinging; the mass pendulum is combined with the energy-dissipating unit to enhance the effect of vibration reduction and energy-dissipating.
  • the present invention constitutes a frequency adjustment system through the telescopic rod and the locking device, and adjusts the swing radius of the mass pendulum through the telescopic rod to achieve the purpose of adjusting the natural vibration period of the shock absorber; and the locking device can prevent the mass ball from slipping after the position is determined. to improve the stability of the vibration damping effect.
  • the energy consumption unit of the present invention changes the viscosity of the magnetorheological fluid through the rotation of the blades, indirectly changes the damping force and energy dissipation capacity of the vibration damping device, and improves the vibration control effect.
  • the present invention realizes the dynamic monitoring of the vibration process by setting the acceleration sensor, and provides a basis for adjusting the period of the vibration device.
  • Figure 1 is a perspective view of the present invention according to one or more embodiments
  • Figure 2 is a front view of the present invention according to one or more embodiments
  • Fig. 3 is a perspective view of a locking device according to one or more embodiments of the present invention.
  • Fig. 4 is a schematic structural diagram of a locking assembly according to one or more embodiments of the present invention.
  • Fig. 5 is a schematic structural diagram of an energy consumption unit according to one or more embodiments of the present invention.
  • This embodiment provides a compound tuning vibration damping device, as shown in Figure 1 and Figure 2, including a frame body 1, an energy dissipation unit 12, a mass ball 11, and a suspension mechanism, and the frame body 1 is used to support various components, and
  • the structure can be set according to actual installation requirements; the frame body 1 of the present embodiment is a rectangular frame, the suspension mechanism is located at the center of the frame body 1, and the top of the suspension mechanism is installed with the first connecting piece 2, and the first connecting piece 2 is connected to the frame during use.
  • the structure of the transmission tower (such as a transmission tower) is fixed; the mass ball 11 is installed at the bottom of the suspension mechanism.
  • the mass ball 11 is a metal solid ball, such as an iron solid ball, so as to provide a large enough mass with as small a volume as possible, which is beneficial to provide a damping force for the vibration-damping structure.
  • the quality of the mass ball 11 should be selected according to the needs of the vibration-damping structure. When the vibration-damping reaction force required by the structure is insufficient, the number of the vibration-damping structure can be increased, or the mass of the mass ball 11 can be increased.
  • the suspension mechanism includes a cantilever 4 and a telescopic rod 8, one end of the cantilever 4 is connected to the first connecting piece 2 through the first universal ball joint 3, and the first connecting piece 2 is connected to the transmission tower structure (such as a transmission tower) , so that the cantilever 4 can swing around the connection point under the action of vibration, and provide sufficient vibration-reducing damping force for the structure of the transmission tower.
  • the transmission tower structure such as a transmission tower
  • the other end of the cantilever 4 is connected to one end of the telescopic rod 8 through the second universal ball joint 6, and the other end of the telescopic rod 8 is connected to the mass ball 11; the distance between the mass ball 11 and the top connection point is adjusted through the telescopic rod 8, thereby adjusting the vibration frequency to meet the requirements of different working conditions.
  • the telescopic rod 8 can be an electric telescopic rod, a hydraulic telescopic rod or the like.
  • a locking device 7 is provided outside the telescopic rod 8 .
  • the locking device 7 of this embodiment includes a limiting plate 18 and a locking component 17 , the locking component 17 is fixed on the outside of the telescopic rod 8 and cooperates with the limiting plate 18 .
  • the locking assembly 17 includes a support, a gear 19 and an electric lock pin 20 , the support is fixed to the telescopic rod 8 , and the gear 19 is rotatably connected to the support.
  • Electric locking pins 20 are installed on the upper and lower sides of the gear 19 , and the gear 19 meshes with the rack structure provided on the side of the limiting plate 18 .
  • the electric lock pin 20 is a controllable pawl structure, for example, the pawl is connected to a motor.
  • the gear 19 can be locked by the electric lock pin 20, and the telescopic rod 8 can be normally stretched after withdrawing from the electric lock pin 20.
  • the safety of the telescopic rod 8 is enhanced by the locking device 7, ensuring that the mass ball 11 does not slide along the direction of the suspension structure during the swing process.
  • the locking device can also adopt other structures, as long as the locking and unlocking of the telescopic rod can be realized.
  • the cantilever 4 is provided with a plurality of second connecting parts 5 at intervals in the circumferential direction, and the second connecting parts 5 are connected to the energy dissipation unit 12 through the traction rope 14 ;
  • the second connecting piece 5 is an annular connecting piece.
  • the energy consumption unit 12 includes a housing 23, an agitating mechanism, a damping chamber 26 and an energized coil 16.
  • the inside of the housing 23 is a closed cavity, and the inside of the housing 23 forms a damping chamber 26 through a partition plate 25.
  • the damping chamber 26 is filled with magnetorheological fluid.
  • the agitating mechanism includes a rotating shaft 22 and a blade 9, the rotating shaft 22 extends into the casing 23, and a capstan 21 is installed at one end outside the casing 23, and one end of the traction cable 14 is fixed to the capstan 21 and wound around the capstan 21 With a certain length, the winch 21 is drawn by the traction cable 14 to drive the rotating shaft 22 to rotate, so that the blade 9 stirs the magnetorheological fluid.
  • the traction cables 14 are steel strands, 8 steel strands are provided, and the angle between adjacent steel strands is 45°, so as to form a stable vibration-damping structure.
  • the outer side of the blade 9 is provided with a energized coil 16, the energized coil 16 is connected to a power supply, and the power supply is connected to the control unit 27; when the rotating shaft 22 rotates, the control unit 27 controls the energized coil 16 to energize, and the magnetic flow in the damping chamber 26 is changed by the generated magnetic field. Change the viscosity of the liquid, so as to realize the adjustment of damping force and energy dissipation capacity.
  • the rotation state of the rotating shaft 22 can be monitored by installing an angle sensor on the rotating shaft 22 .
  • the part of the rotating shaft 22 located outside the damping cavity 26 is covered with a return spring 24, and the returning spring 24 is arranged between the partition plate 25 and the inner wall of the housing 23.
  • One end of the returning spring 24 is fixed to the rotating shaft 22, and the other end is connected to the housing. 23 or dividing plate 25 are fixed.
  • the back-moving spring 24 plays the role of resetting the traction cable 14 so that it is in a pre-tightened state.
  • the mass ball 11 of the present embodiment is installed with the first acceleration sensor 10 for monitoring its dynamics
  • the cantilever 4 is installed with the second acceleration sensor 13 for monitoring its dynamics
  • the third acceleration sensor 15 is installed on the frame body 1 or the transmission tower structure, It is used to monitor the real-time dynamic response of the structure to be damped.
  • the acceleration sensor in this embodiment is connected with the central processing unit. The monitoring of the vibration period is realized by the acceleration sensor; the natural frequency of the acceleration sensor itself is much higher than the vibration frequency of the structure under test.
  • This embodiment is mainly applied to controlling the vibration response of the transmission tower and reducing the damage of the vibration to the transmission tower line system.
  • This embodiment provides a composite tuning and vibration reduction method.
  • the vibration reduction device described in Embodiment 1 when the structure of the transmission tower vibrates, the mass ball 11 is caused to swing; The rotating shaft 22 of the energy unit 12 and the vanes 9 rotate to stir the magnetorheological fluid in the damping chamber 26 .
  • the energized coil 16 is powered on to generate a magnetic field, and the strength of the magnetic field is changed by changing the magnitude of the current, thereby affecting the viscosity of the magneto-rheological fluid and adjusting the damping force and energy dissipation capacity of the energy-consuming unit.
  • the energized coil 16 of the corresponding energy consumption unit 12 is powered on to generate damping force and energy dissipation capacity.
  • the energized coil 16 is powered off, and the traction cable 14 is reset. Under the effect of spring 24, be in tightened state all the time.
  • the structural vibration disappears, the vibration energy of the mass ball 11 is dissipated along with the consumption of the energy-consuming unit, and the structure and the shock-absorbing device return to stability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Vibration Prevention Devices (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

一种复合调谐减振装置及其减振方法,该复合调谐减振装置包括架体(1)、设于架体(1)中心并能够相对架体(1)转动的悬吊机构,所述悬吊机构末端安装质量球(11);所述架体(1)上固定有多个沿悬吊机构周向间隔设置的耗能单元(12);所述耗能单元(12)包括阻尼腔(26)、设于阻尼腔(26)内的搅动机构,所述搅动机构通过牵引索(14)连接悬吊机构,悬吊机构摆动时能够带动搅动机构搅拌阻尼腔(26)内填充的磁流变液。该减振装置能够减小输电塔结构在外力作用下各个方向的振动响应,达到耗能减振的目的,且能够调整质量摆的自振周期。

Description

一种复合调谐减振装置及其减振方法 技术领域
本发明涉及减振技术领域,尤其涉及一种复合调谐减振装置及其减振方法。
背景技术
在地震和风荷载的作用下,高耸结构会产生振动,严重降低高耸结构的安全性。悬挂质量摆阻尼器是一种比较经济的高耸结构被动减振装置,其突出的优点在于质量摆的摆动方向完全取决于结构的振动方向。在实际应用中,质量摆能够准确地给予沿振动方向的减振阻尼力。
技术问题
传统的悬挂质量摆阻尼器多为被动减振,无法根据结构的服役情况和实时振动做出自振周期和减振阻尼力的动态调整,降低了其减振效果。
技术解决方案
针对现有技术存在的不足,本发明的目的是提供一种复合调谐减振装置及其减振方法,能够减小输电塔结构在外力作用下各个方向的振动响应,达到耗能减振的目的;且能够调整质量摆的自振周期。
为了实现上述目的,本发明是通过如下的技术方案来实现:
第一方面,本发明的实施例提供了一种复合调谐减振装置,包括架体、设于架体中心并能够相对架体转动的悬吊机构,所述悬吊机构末端安装质量球;所述架体上固定有多个沿悬吊机构周向间隔设置的耗能单元;
所述耗能单元包括阻尼腔、设于阻尼腔内的搅动机构,所述搅动机构通过牵引索连接悬吊机构,悬吊机构摆动时能够带动搅拌机构搅拌阻尼腔内填充的磁流变液。
作为进一步的实现方式,所述悬吊机构包括悬臂、伸缩杆,所述伸缩杆的一端与悬臂转动连接,另一端连接质量球。
作为进一步的实现方式,所述牵引索通过连接件与悬臂相连。
作为进一步的实现方式,所述悬臂安装有加速度传感器。
作为进一步的实现方式,所述伸缩杆外侧安装锁定装置。
作为进一步的实现方式,所述搅动机构包括转轴、安装于转轴的叶片,所述叶片周向布置有通电线圈。
作为进一步的实现方式,所述阻尼腔外侧安装壳体,所述通电线圈和叶片设置于阻尼腔中。
作为进一步的实现方式,所述转轴上套设于复位弹簧,复位弹簧一端与转轴固定,另一端与壳体内壁或阻尼腔外壁连接。
作为进一步的实现方式,所述质量球上安装有加速度传感器。
第二方面,本发明实施例还提供了一种悬挂式复合调谐减振方法,采用所述的减振装置,在外力作用下,质量球摆动,通过牵引索拉伸使转轴和叶片旋转;叶片搅动阻尼腔内的磁流变液,通电线圈通电产生磁场;同时通过加速度传感器实时检测振动信息并反至控制单元。
有益效果
(1)本发明利用悬吊质量摆实现了在平面内的多维振动,使质量摆可准确的沿着输电塔结构的振动方向发生摆动,提供方向准确的减振阻尼力;质量摆通过牵引索连接耗能单元,能够在摆动的同时使耗能单元实现耗能效果;质量摆与耗能单元结合,增强减振耗能效果。
(2)本发明通过伸缩杆和锁定装置构成频率调节***,通过伸缩杆调整质量摆摆动半径,达到调节减震装置自振周期的目的;且设置锁定装置,能够避免质量球位置确定后出现滑移,提高减振效果的稳定性。
(3)本发明的耗能单元通过叶片旋转改变磁流变液的粘滞性,间接改变减振装置的阻尼力和耗能能力,提高振动控制效果。
(4)本发明通过设置加速度传感器,实现振动过程的动态监测,为调节振动装置的周期提供基础。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1是本发明根据一个或多个实施方式的立体图;
图2是本发明根据一个或多个实施方式的主视图;
图3是本发明根据一个或多个实施方式的锁定装置立体图;
图4是本发明根据一个或多个实施方式的锁定组件结构示意图;
图5是本发明根据一个或多个实施方式的耗能单元结构示意图;
其中,1、架体,2、第一连接件,3、第一万向球铰,4、悬臂,5、第二连接件,6、第二万向球铰,7、锁定装置,8、伸缩杆,9、叶片,10、第一加速度传感器,11、质量球,12、耗能单元,13、第二加速度传感器,14、牵引索,15、第三加速度传感器,16、通电线圈,17、锁定组件,18、限位板,19、齿轮,20、电动锁销,21、绞盘,22、转轴,23、壳体,24、复位弹簧,25、分隔板,26、阻尼腔,27、控制单元。
本发明的最佳实施方式
本实施例提供了一种复合调谐减振装置,如图1和图2所示,包括架体1、耗能单元12、质量球11、悬吊机构,架体1用于支撑各部件,其结构可以根据实际安装要求设置;本实施例的架体1为矩形框架,悬吊机构设于架体1中心,悬吊机构的顶端安装第一连接件2,使用时通过第一连接件2与输电塔结构(例如输电杆塔)固定;质量球11安装于悬吊机构底端。
所述质量球11为金属实心球,例如铁质实心球,以用尽可能小的体积提供足够大的质量,有利于为减振结构提供阻尼力。质量球11的质量应根据减振结构的需要选择,当结构需要的减振反力不足时,可增加该减振结构数量,或增加质量球11的质量。
进一步的,所述悬吊机构包括悬臂4、伸缩杆8,悬臂4一端通过第一万向球铰3与第一连接件2连接,第一连接件2与输电塔结构(例如输电杆塔)连接,以使在振动作用下悬臂4能够绕连接点摆动,为输电塔结构提供足够的减振阻尼力。
所述悬臂4另一端通过第二万向球铰6连接伸缩杆8的一端,伸缩杆8的另一端连接质量球11;通过伸缩杆8调节质量球11与顶部连接点的距离,从而调节振动频率,以满足不同的工况要求。所述伸缩杆8可以为电动伸缩杆、液压伸缩杆等。
如图3所示,为了防止质量球11在调整至合适位置后因外力作用产生滑移,在伸缩杆8外侧设置锁定装置7。本实施例的锁定装置7包括限位板18和锁定组件17,所述锁定组件17固定于伸缩杆8外侧,其与限位板18配合。如图4所示,锁定组件17包括支撑件、齿轮19和电动锁销20,支撑件与伸缩杆8固定,齿轮19与支撑件转动连接。
所述齿轮19上下两侧均安装电动锁销20,且齿轮19与限位板18侧面设置的齿条结构啮合。其中,电动锁销20为可控的棘爪结构,例如棘爪连接电机。通过电动锁销20卡入齿轮19可将其锁止,退出电动锁销20后伸缩杆8可正常伸缩。通过该锁定装置7增强了伸缩杆8的安全性,保证质量球11在摆动过程中不发生沿悬吊结构方向的滑动。
可以理解的,在其他实施例中,锁定装置也可以采用其他结构,只要能够实现对伸缩杆的锁止和解锁即可。
进一步的,所述悬臂4周向间隔设置多个第二连接件5,第二连接件5通过牵引索14连接耗能单元12;通过牵引索14使质量球11与耗能单元12协同作用。在本实施例中,所述第二连接件5为环形连接件。
如图5所示,所述耗能单元12包括壳体23、搅动机构、阻尼腔26和通电线圈16,壳体23内部为封闭的空腔,其内部通过分隔板25形成阻尼腔26,阻尼腔26中填充磁流变液。
进一步的,所述搅动机构包括转轴22和叶片9,转轴22伸入壳体23中,其位于壳体23外侧的一端安装绞盘21,牵引索14的一端与绞盘21固定并绕于绞盘21上一定长度,通过牵引索14牵引绞盘21带动转轴22旋转,以使叶片9搅动磁流变液。
在本实施例中,所述牵引索14为钢绞线,设置8根钢绞线,相邻钢绞线的夹角为45°,以形成稳定的减振结构。
所述叶片9外侧设有通电线圈16,通电线圈16连接电源,所述电源连接控制单元27;当转轴22旋转时控制单元27控制通电线圈16通电,通过产生的磁场改变阻尼腔26内磁流变液的粘滞性,从而实现阻尼力与耗能能力的调节。可通过在转轴22上安装角度传感器监测转轴22的旋转状态。
进一步的,转轴22位于阻尼腔26外侧的部分套设有复位弹簧24,复位弹簧24设于分隔板25与壳体23内壁之间,复位弹簧24一端与转轴22固定,另一端与壳体23或分隔板25固定。复位弹簧24起到复位牵引索14,使其处于预紧状态的作用。
本实施例的质量球11安装用于监测其动态的第一加速度传感器10,悬臂4安装用于监测其动态的第二加速度传感器13,架体1或输电塔结构上安装第三加速度传感器15,用于监测需减振结构的实时动态响应。本实施例的加速度传感器与中央处理器相连。通过加速度传感器实现振动周期的监测;加速度感应器自身的固有频率远大于被测结构的振动频率。
本实施例主要应用于控制输电杆塔的振动响应,减少振动对输电塔线体系的损害。
本实施例提供了复合调谐减振方法,采用实施例一所述的减振装置,当输电塔结构发生振动时,引起质量球11摆动;摆动的质量球11通过带动牵引索14拉伸引起耗能单元12的转轴22和叶片9转动,搅动阻尼腔26内的磁流变液。
通电线圈16接通电源,产生磁场,通过改变电流的大小改变磁场的强弱,从而影响磁流变液的粘滞性,起到调整耗能单元阻尼力和耗能能力的作用。当牵引索14受到拉力时,其对应的耗能单元12的通电线圈16接通电源,产生阻尼力和耗能能力,当牵引索14拉力消失,通电线圈16断开电源,牵引索14在复位弹簧24的作用下始终处于收紧状态。当结构振动消失,质量球11的振动能量随着耗能单元的消耗而耗散,结构和减震装置恢复平稳。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种复合调谐减振装置,其特征在于,包括架体、设于架体中心并能够相对架体转动的悬吊机构,所述悬吊机构末端安装质量球;所述架体上固定有多个沿悬吊机构周向间隔设置的耗能单元;
    所述耗能单元包括阻尼腔、设于阻尼腔内的搅动机构,所述搅动机构通过牵引索连接悬吊机构,悬吊机构摆动时能够带动搅拌机构搅拌阻尼腔内填充的磁流变液。
  2. 根据权利要求1所述的一种复合调谐减振装置,其特征在于,所述悬吊机构包括悬臂、伸缩杆,所述伸缩杆的一端与悬臂转动连接,另一端连接质量球。
  3. 根据权利要求2所述的一种复合调谐减振装置,其特征在于,所述牵引索通过连接件与悬臂相连。
  4. 根据权利要求2或3所述的一种复合调谐减振装置,其特征在于,所述悬臂安装有加速度传感器。
  5. 根据权利要求2所述的一种复合调谐减振装置,其特征在于,所述伸缩杆外侧安装锁定装置。
  6. 根据权利要求1所述的一种复合调谐减振装置,其特征在于,所述搅动机构包括转轴、安装于转轴的叶片,所述叶片周向布置有通电线圈。
  7. 根据权利要求6所述的一种复合调谐减振装置,其特征在于,所述阻尼腔外侧安装壳体,所述通电线圈和叶片设置于阻尼腔中。
  8. 根据权利要求6所述的一种复合调谐减振装置,其特征在于,所述转轴上套设于复位弹簧,复位弹簧一端与转轴固定,另一端与壳体内壁或阻尼腔外壁连接。
  9. 根据权利要求1所述的一种复合调谐减振装置,其特征在于,所述质量球上安装有加速度传感器。
  10. 一种复合调谐减振方法,其特征在于,采用如权利要求1-9任一所述的减振装置,在外力作用下,质量球摆动,通过牵引索拉伸使转轴和叶片旋转;叶片搅动阻尼腔内的磁流变液,通电线圈通电产生磁场;同时通过加速度传感器实时检测振动信息并反至控制单元。
PCT/CN2021/134692 2021-09-14 2021-12-01 一种复合调谐减振装置及其减振方法 WO2023040055A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111074713.9A CN113513103B (zh) 2021-09-14 2021-09-14 一种悬挂式复合调谐减振装置及方法
CN202111074713.9 2021-09-14

Publications (1)

Publication Number Publication Date
WO2023040055A1 true WO2023040055A1 (zh) 2023-03-23

Family

ID=78063156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/134692 WO2023040055A1 (zh) 2021-09-14 2021-12-01 一种复合调谐减振装置及其减振方法

Country Status (2)

Country Link
CN (1) CN113513103B (zh)
WO (1) WO2023040055A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116914403A (zh) * 2023-07-17 2023-10-20 亳州广播电视台 一种高稳定性广播电视天线

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113513103B (zh) * 2021-09-14 2021-12-17 中国电建集团山东电力建设第一工程有限公司 一种悬挂式复合调谐减振装置及方法
CN114482320B (zh) * 2022-03-30 2023-02-03 中联西北工程设计研究院有限公司 一种适用于超高层建筑的复摆耗能阻尼结构及其装配方法
CN114737814B (zh) * 2022-05-22 2024-04-12 北京工业大学 一种具有复合隔振底座和悬臂调谐梁的减振输电塔体系
CN115158683B (zh) * 2022-07-22 2024-06-21 西北核技术研究所 一种无人机吊挂运载的稳定***

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012720A (ja) * 2009-06-30 2011-01-20 Shimizu Corp 吊り制振構造
CN106948640A (zh) * 2017-05-08 2017-07-14 山东大学 悬吊式多维多级碰撞耗能阻尼器
CN107355022A (zh) * 2017-07-18 2017-11-17 大连理工大学 一种双向的悬吊质量摆减振***
CN206681188U (zh) * 2017-04-17 2017-11-28 武汉理工大学 悬吊式调谐质量阻尼器
CN110835963A (zh) * 2019-11-26 2020-02-25 大连理工大学 一种基于偏航的风力发电结构振动控制调谐质量阻尼器
CN110886806A (zh) * 2019-12-04 2020-03-17 安徽江淮汽车集团股份有限公司 旋转式磁流变阻尼器
WO2020239590A1 (en) * 2019-05-24 2020-12-03 Soh Wind Tunnels Aps Pendulum mass damper
CN113513103A (zh) * 2021-09-14 2021-10-19 中国电建集团山东电力建设第一工程有限公司 一种悬挂式复合调谐减振装置及方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1820151B (zh) * 2003-07-11 2012-06-27 奥依列斯工业株式会社 动态振动吸收装置
CN102345333B (zh) * 2011-10-23 2013-08-28 湖南科技大学 变刚度变阻尼调谐质量阻尼器
CN102410524A (zh) * 2011-10-31 2012-04-11 中国电力工程顾问集团华东电力设计院 悬吊式锅炉装置
CN203516584U (zh) * 2013-11-18 2014-04-02 大连理工大学 一种磁流变悬吊质量摆阻尼器
CN104594520B (zh) * 2015-01-13 2017-01-18 山东大学 一种多维可调碰撞耗能减振装置
CN106948256B (zh) * 2017-04-26 2019-06-21 中铁大桥科学研究院有限公司 一种超低频液体质量调谐阻尼器及设计方法
CN206815928U (zh) * 2017-05-08 2017-12-29 山东大学 悬吊式多维多级碰撞耗能阻尼器
CN108869617B (zh) * 2018-09-29 2019-03-05 山东大学 一种自供电式磁流变减振装置
CN109230935B (zh) * 2018-11-12 2023-04-25 山东科技大学 一种基于磁流变效应的智能化立井制动缓冲***及其应用
CN110259241B (zh) * 2019-06-19 2020-12-04 同济大学 自适应变刚度半主动变阻尼的智能调谐质量阻尼器
CN110528949B (zh) * 2019-08-12 2020-07-28 同济大学 一种多重耗能碰撞型调谐质量阻尼器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012720A (ja) * 2009-06-30 2011-01-20 Shimizu Corp 吊り制振構造
CN206681188U (zh) * 2017-04-17 2017-11-28 武汉理工大学 悬吊式调谐质量阻尼器
CN106948640A (zh) * 2017-05-08 2017-07-14 山东大学 悬吊式多维多级碰撞耗能阻尼器
CN107355022A (zh) * 2017-07-18 2017-11-17 大连理工大学 一种双向的悬吊质量摆减振***
WO2020239590A1 (en) * 2019-05-24 2020-12-03 Soh Wind Tunnels Aps Pendulum mass damper
CN110835963A (zh) * 2019-11-26 2020-02-25 大连理工大学 一种基于偏航的风力发电结构振动控制调谐质量阻尼器
CN110886806A (zh) * 2019-12-04 2020-03-17 安徽江淮汽车集团股份有限公司 旋转式磁流变阻尼器
CN113513103A (zh) * 2021-09-14 2021-10-19 中国电建集团山东电力建设第一工程有限公司 一种悬挂式复合调谐减振装置及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116914403A (zh) * 2023-07-17 2023-10-20 亳州广播电视台 一种高稳定性广播电视天线
CN116914403B (zh) * 2023-07-17 2024-02-09 亳州广播电视台 一种高稳定性广播电视天线

Also Published As

Publication number Publication date
CN113513103A (zh) 2021-10-19
CN113513103B (zh) 2021-12-17

Similar Documents

Publication Publication Date Title
WO2023040055A1 (zh) 一种复合调谐减振装置及其减振方法
CN109654162B (zh) 主动复合变阻尼转动控制装置
CN101832358B (zh) 控制结构多维振动的陀螺减振阻尼器及其制作方法
CA3058961A1 (en) Vibration damping of a wind turbine tower
CN112219043B (zh) 用于摆式减振器的阻尼万向悬挂
CN109630612B (zh) 自供能式主被动复合转动惯量驱动控制***
WO2011044843A1 (zh) 一种斜拉索减振装置
US5450931A (en) Vibration control apparatus
CN102409775B (zh) 调谐质量阻尼器减振控制装置
CN105299114B (zh) 一种四自由度并联晶振减振装置及减振方法
CN105926796A (zh) 压电阻尼智能调谐减振控制装置
US10774893B2 (en) Tuned mass dampers for damping an oscillating movement of a structure
GB2488563A (en) Balanced and eccentric mass pendulum
CN107268819B (zh) 一种多维电阻耗能减振装置
CN210916979U (zh) 一种通过剪切增稠阻尼液实现频率自调谐的tmd装置
CN115163723A (zh) 一种磁流变可变阻尼减振耗能装置
JPH11159191A (ja) 制振装置
CN111255105A (zh) 一种多维电磁智能减振装置
CN108729569B (zh) 一种多维涡簧和螺簧组合式调谐减振装置
CN108488045A (zh) 用于风机塔架减振的阻尼器
CN209509216U (zh) 主动转动惯量驱动控制***
CN109610676B (zh) 电磁变阻尼旋转控制***
CN109026527B (zh) 抑振装置及风力发电机组的塔架装置
CN202265916U (zh) 调谐质量阻尼器减振控制装置
JPS5997342A (ja) 振り子式動吸振器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957319

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE