WO2023038186A1 - High-efficiency hybrid heater and manufacturing method therefor - Google Patents

High-efficiency hybrid heater and manufacturing method therefor Download PDF

Info

Publication number
WO2023038186A1
WO2023038186A1 PCT/KR2021/013761 KR2021013761W WO2023038186A1 WO 2023038186 A1 WO2023038186 A1 WO 2023038186A1 KR 2021013761 W KR2021013761 W KR 2021013761W WO 2023038186 A1 WO2023038186 A1 WO 2023038186A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating element
carbon
electrode layer
metal electrode
hybrid heating
Prior art date
Application number
PCT/KR2021/013761
Other languages
French (fr)
Korean (ko)
Inventor
정영진
Original Assignee
숭실대학교 산학협력단
주식회사 씨엔티히트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 숭실대학교 산학협력단, 주식회사 씨엔티히트 filed Critical 숭실대학교 산학협력단
Publication of WO2023038186A1 publication Critical patent/WO2023038186A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/03Electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic

Definitions

  • the present invention relates to a high-efficiency hybrid heating element, and more particularly, to a high-efficiency hybrid heating element that can be implemented even with an ultra-thin film without deterioration of electrical characteristics despite being able to maximize energy efficiency as a heating element with low power consumption, low heat capacity and very high emissivity. it's about
  • Carbon-based heating elements have strong heat and durability, excellent thermal conductivity, and a low coefficient of thermal expansion.
  • metal heating elements such as iron, nickel, chromium, and platinum, which have high thermal conductivity, are uniformly sprayed or printed on a film-type resin. or by mixing conductive inorganic particle heating elements such as conductive carbon, graphite, and carbon black with a polymer resin.
  • a carbon nanotube which is a kind of carbon structure, has a tube shape in which six hexagonal carbon atoms are connected to each other.
  • Such carbon nanotubes have electrical conductivity similar to copper, thermal conductivity superior to diamond, and strength much higher than steel. In addition, it is light, has high current density, and has excellent thermal conductivity, so it is attracting attention as a next-generation new material, especially a heating element.
  • the electrical conductivity of one carbon nanotube particle is about ⁇ 10 8 S/m, but when implemented as a carbon nanotube aggregate such as a fiber or sheet, the electrical conductivity is significantly lowered to 10 2 ⁇ 10 6 , which is lower than that of metal. As it exhibits low electrical conductivity, its effectiveness as a heating element rapidly decreases. In order to overcome this, it is necessary to increase the amount of the carbon nanotube aggregate, increase the thickness, and lower the resistance. However, in this case, it is difficult to implement a heating element in the form of an ultra-thin film, and as a large amount of carbon nanotubes are used, there is a problem in that economic feasibility decreases.
  • a conventional heating element has a structure of two electrodes and a heating wire connected thereto, and the heating wire is realized by winding a metal heating wire around a central fiber such as polyethylene. There was no way to solve the degradation problem.
  • a heating element that minimizes the content of the binder, fully utilizes the excellent properties of the carbon structure including the carbon nanotube as a heating element, and does not cause a problem of deterioration in electrical characteristics despite implementing the heating element in the form of an ultra-thin film. There is an urgent need for research on this.
  • the present invention has been made to overcome the above-mentioned problems, and the problem to be solved by the present invention is to implement a heating element having one electrode alone, and to fully utilize the characteristics of a carbon structure as a heating element to reduce power consumption and heat capacity. It is to provide a high-efficiency hybrid heating element and its manufacturing method that can simultaneously improve utilization and economic feasibility in various industries because the thickness can be minimized without deterioration of electrical characteristics despite the fact that the emissivity is very high and the heating efficiency can be maximized.
  • the present invention includes a metal electrode layer and a carbon aggregate having a network structure in which carbon structures are connected to each other so as to surround some or all of the metal electrode layer, and a high-efficiency hybrid heating element that satisfies the following relational expression 1 provides
  • the surface temperature of the hybrid heating element is over 350 ° C.
  • the high-efficiency hybrid heating element may be characterized in that an externally applied current flows into the carbon aggregate from the metal electrode layer having high electrical conductivity, and is converted into thermal energy and released.
  • the carbon aggregate may be characterized in that it contains a binder component of 10% or less.
  • the carbon structure may be characterized in that at least one of carbon nanotube (CNT), graphene, carbon fiber (Carbon fiber).
  • CNT carbon nanotube
  • Carbon fiber Carbon fiber
  • the electrical conductivity of the carbon aggregate may be less than 10 6 S/m and the thickness may be less than 50 nm to 10 mm.
  • the high-efficiency hybrid heating element is in the form of a wire in which the carbon aggregate is wound on the outer surface of a metal electrode layer in the form of a wire, or the carbon aggregate is formed on the upper and lower surfaces of the metal electrode layer in the form of a sheet. It may be characterized in that it is in the form of a sheet.
  • the metal electrode layer is any one selected from copper, nickel, nichrome, iron chromium, gold, silver, tungsten, zinc, iron, platinum, tin, lead, brass, bronze and aluminum It can be characterized as being a phosphorus metal.
  • the carbon aggregate may be rapidly heated to reach a surface temperature of 500 ° C. within 20 seconds.
  • the present invention includes the steps of (1) forming a metal electrode layer and (2) forming a carbon aggregate having a network structure by connecting carbon structures to each other so as to surround a part or all of the metal electrode layer, 1 is provided.
  • the surface temperature of the hybrid heating element is over 350 ° C.
  • the present invention provides a heater including the above-described high-efficiency hybrid heating element.
  • the present invention can manufacture a high-efficiency hybrid heating element without deterioration in electrical characteristics despite maximizing heating efficiency by fully utilizing the characteristics of a carbon structure as a heating element, with low power consumption and heat capacity and very high emissivity.
  • the present invention can minimize the thickness without deterioration of electrical conductivity despite the use of the carbon aggregate, so that it is possible to manufacture a heating element in the form of an ultra-thin film, thereby improving its utilization in various industrial groups.
  • FIG. 1 is a view showing a hybrid heating element according to an embodiment of the present invention.
  • FIG. 2 is a view showing a hybrid heating element according to another embodiment of the present invention.
  • FIG. 3 is a view showing a heating element including a graphene aggregate manufactured using papermaking technology.
  • Example 4 is a diagram showing the heating temperature of the hybrid heating element manufactured in Example 1 of the present invention.
  • FIG. 5 is a diagram showing the heating temperature of the heating element manufactured in Comparative Example 1 of the present invention.
  • FIG. 6 is a diagram showing the heating temperature of the heating element manufactured in Comparative Example 3 of the present invention.
  • the present invention sought to solve the above problems by providing a high-efficiency hybrid heating element including a metal electrode layer and a carbon aggregate having a network structure in which carbon structures are connected to each other so as to surround part or all of the metal electrode layer.
  • a highly efficient hybrid heating element 100 according to the present invention will be described with reference to FIGS. 1 and 2 below.
  • the high-efficiency hybrid heating element 100 includes a metal electrode layer 10 , and the metal electrode layer 10 serves to transport electrons within the high-efficiency hybrid heating element 100 .
  • a heating element has a structure including two metal electrode layers composed of an anode and a cathode and a heating wire connected thereto, and in the case of a carbon heating element, the heating wire may be used as a carbon aggregate.
  • the heating wire may be used as a carbon aggregate.
  • two electrodes composed of an anode and a cathode of a conventional heating element are composed of the metal electrode layer 10 alone, and the metal electrode layer 10 is formed so that the carbon aggregate 20 partially or entirely surrounds it,
  • the flow of current applied from is easily transferred to the carbon aggregate 20 and the carbon aggregate 20 converts and releases current energy into thermal energy to perform the function of a heating element.
  • the metal electrode layer 10 plays a role of transporting electrons, it does not interfere with the flow of current, thereby solving the problem of lowering the electrical conductivity caused by the high resistance of the carbon aggregate 20, and furthermore, through this, relatively Efficiency of the heating element can be maximized by allowing a high surface temperature to be displayed even with low power.
  • the metal electrode layer 10 may be formed of a metal having high electrical conductivity, and non-limiting examples thereof include copper, nickel, nichrome, iron chromium, gold, silver, tungsten, zinc, iron, platinum, tin, lead, and brass. , may include at least one selected from bronze and aluminum, and more preferably may include nichrome wire.
  • the metal electrode layer 10 may have a suitable shape and size depending on the purpose for which the high-efficiency hybrid heating element according to the present invention is used. That is, in the case of implementing a high-efficiency hybrid heating element of a planar heating element according to an embodiment of the present invention, the metal electrode layer 10 may be a sheet-shaped metal electrode layer, and according to another embodiment of the present invention, a high-efficiency hybrid heating element in a wire form In the case of implementing a heating element, the metal electrode layer 10 may be a wire-shaped metal electrode layer.
  • the size of the metal electrode layer 10 can be manufactured without size limitation as long as it has a structure surrounded by a carbon aggregate 20 to be described later. It may have a non-limiting thickness of 50 nm to 10 mm.
  • the high-efficiency hybrid heating element according to the present invention includes a carbon aggregate 20.
  • the carbon assembly 20 has a network structure in which carbon structures are connected to each other so as to surround a part or all of the above-described metal electrode layer 10, and has an electrical resistance to an externally applied current according to the characteristics of a material made of carbon. It plays a role in performing the heating action by.
  • the carbon structure constituting the carbon aggregate 20 may include at least one or more of carbon nanotubes (CNT), graphene, and carbon fiber, and such a carbon structure are connected to each other to form a network structure.
  • the carbon aggregate 20 may form a network structure in which fibrous carbon structures are connected, or a network structure in which hollow carbon structures are connected, and furthermore, a film-type carbon structure. can form a connected network structure, and the above-described carbon nanotubes and carbon fibers may be mixed and used.
  • the carbon structure is a carbon fiber
  • a conventional carbon fiber may be used, and non-limiting examples thereof include PAN (Poly Acrylonitile)-based carbon fiber, Pitch-based carbon fiber, or Rayon-based carbon fiber may be used, and they may be connected to form a carbon fiber aggregate forming a network structure.
  • PAN Poly Acrylonitile
  • Pitch-based carbon fiber Pitch-based carbon fiber
  • Rayon-based carbon fiber may be used, and they may be connected to form a carbon fiber aggregate forming a network structure.
  • the carbon structure may be a carbon nanotube
  • the carbon assembly 20 may be a carbon nanotube assembly having a network structure in which carbon nanotube bundles are connected to each other.
  • the carbon nanotubes may have a structure in which a graphite sheet is rolled with a nano-sized diameter, and depending on the number of bonds constituting the wall, single-walled carbon nanotubes and double-walled carbon nanotubes (double-walled carbon nanotube) and multi-walled carbon nanotube (multi-walled carbon nanotube).
  • a carbon nanotube assembly according to an embodiment of the present invention may be an assembly made by connecting bundles of carbon nanotubes, and the carbon nanotube bundle includes at least one of single-walled carbon nanotubes, double-walled carbon nanotubes, or multi-walled carbon nanotubes. It may consist of strands.
  • the carbon nanotubes have electrical conductivity similar to copper, thermal conductivity superior to diamond, strength much higher than steel, and excellent thermal conductivity. It is characterized by very high resistance due to the voids formed by forming or the binder filling the voids.
  • the electrical conductivity of one carbon nanotube particle is about ⁇ 108 S/m, but when it is implemented as a carbon nanotube aggregate such as a fiber or sheet, the electrical conductivity is significantly lowered to 102 ⁇ 106 S/m, making metal As it exhibits lower electrical conductivity, its effectiveness as a heating element rapidly decreases. In order to overcome this, it is necessary to increase the amount of the carbon nanotube aggregate to increase the thickness and lower the resistance. However, in this case, it is difficult to implement a heating element in the form of an ultra-thin film, and as a large amount of carbon nanotubes are used, there is a problem in that economic feasibility decreases.
  • a conventional heating element has a structure of two electrodes and a heating wire connected thereto, and the heating wire is realized by winding a metal heating wire around a central fiber such as polyethylene. There was no way to solve the degradation problem.
  • the present invention utilizes the excellent physical properties of carbon nanotubes as a heating element, but as the carbon nanotubes form an assembly, the metal electrode layer ( 10) to cover all or part of the metal electrode layer 10 to serve as a passage for electrons, thereby preventing deterioration in heat generation performance due to high resistance of the carbon nanotube assembly.
  • the present invention uses the excellent physical properties of carbon structures including carbon nanotubes as a heating element, but can solve the high resistance problem of the carbon aggregate 20, which is an aggregate thereof, through the metal electrode layer 10 described above.
  • the carbon aggregate 20 may be formed to surround 80 to 99% of the outer surface area of the metal electrode layer 10, more preferably 85 to 95%. At this time, if the carbon aggregate 20 is formed to surround less than 80% of the outer surface area of the metal electrode layer 10, the efficiency of receiving electrons from the carbon aggregate 20 to the metal electrode layer 10 is reduced, resulting in heat generation performance. this may deteriorate. In addition, if the carbon aggregate 20 is formed to surround the outer surface area of the metal electrode layer 10 by more than 99%, the possibility of current being transferred to the metal electrode layer 10 through the carbon aggregate 20 increases, thereby increasing the heat generation efficiency. There is a risk that this will decrease.
  • the electrical conductivity of the carbon aggregate 20 may be less than 10 6 S/m, preferably in the range of 10 2 S/m to 10 6 S/m.
  • the carbon aggregate 20 may have a thickness of 50 nm to 10 mm.
  • the metal electrode layer 10 serves as a passage for electrons, it is possible to prevent deterioration in electrical characteristics and heat generation performance due to the high resistance of the carbon aggregate 20, thereby lowering the high resistance as in the prior art.
  • the carbon aggregate 20 in the form of a thin film can be implemented without the need to manufacture the carbon aggregate 20 thickly. Accordingly, it can be more preferably implemented with a thickness of 100 nm to 1 mm, but is not limited thereto and may have a thickness of a conventional heating element to suit the purpose for which the high-efficiency hybrid heating element is used, as in the above-described embodiments of the present invention. .
  • the thickness of the carbon nanotube aggregate may be implemented as an ultra-thin film of 1 ⁇ m or less.
  • the carbon aggregate 20 may have various shapes depending on the purpose, similar to the metal electrode layer 10 . More specifically, referring to FIG. 1 , a high-efficiency hybrid heating element according to an embodiment of the present invention may have a wire shape.
  • the carbon aggregate 20 may have a wire shape in which the carbon aggregate 20 is wound around the outer surface of the wire-shaped metal electrode layer 10 .
  • one surface of the carbon aggregate 20 is made of a tape type containing an adhesive material, and adheres to the outer surface area of the metal electrode layer 10 to improve heat generation performance and electrical characteristics.
  • the high-efficiency hybrid heating element may have a shape of a planar heating element.
  • the carbon aggregate 20 may be formed to surround the upper and lower surfaces of the metal electrode layer 10 in the form of a sheet.
  • at least one of the carbon assembly 20 and the metal electrode layer 10 may further include an adhesive layer (not shown), Not limited to this.
  • the carbon aggregate 20 may include 10% or less of the binder component, and more preferably, the carbon aggregate 20 may include the binder component in the range of 0.1 to 5%.
  • the carbon aggregate 20 may include 10% or less of the binder component, and more preferably, the carbon aggregate 20 may include the binder component in the range of 0.1 to 5%.
  • nanoparticles in the form of carbon nanotubes were dispersed together with a binder, prepared as a solution, coated on a substrate, and a process of forming two electrodes was performed.
  • a binder prepared as a solution, coated on a substrate, and a process of forming two electrodes was performed.
  • due to inherent limitations in durability and heat resistance of the binder there is a problem in that the characteristics of the carbon nanotube itself as an excellent heating element cannot be fully utilized.
  • the binder component in the carbon aggregate 20 is contained at 10% or less, and the metal electrode layer 10 is constituted alone, and the carbon aggregate 20 is implemented to surround the metal electrode layer 10. Accordingly, the problem of deterioration in heat generation performance due to the binder was solved.
  • the high-efficiency hybrid heating element including the carbon aggregate 20 according to the present invention supplies a voltage of 3.5 V and power of 24 Watt for 5 seconds, so that the surface temperature of the hybrid heating element can reach 350° C. or higher.
  • the high-efficiency hybrid heating element including the carbon aggregate 20 according to the present invention can rapidly heat up to a surface temperature of 500° C. within 20 seconds at a voltage of 3.5 V and power of 24 Watt. can
  • the present invention fully utilizes the characteristics of carbon nanotubes as a heating element to maximize energy efficiency with low power consumption and heat capacity and very high emissivity, but a high-efficiency hybrid heating element without deterioration in electrical characteristics can be manufactured.
  • the present invention can minimize the thickness without deterioration of electrical conductivity despite the use of carbon nanotubes, so that it is possible to manufacture a heating element in the form of an ultra-thin film, thereby improving its utilization in various industrial groups.
  • the present invention provides a heater including the above-described high-efficiency hybrid heating element.
  • the heater may be a known conventional heater that requires a heating element, including a hair dryer used at home.
  • a high-efficiency hybrid heating element includes the steps of (1) forming a metal electrode layer and (2) forming a carbon aggregate having a network structure by connecting carbon structures to each other so as to surround a part or all of the metal electrode layer. It is prepared, and satisfies the following relational expression 1.
  • the surface temperature of the hybrid heating element is over 350 ° C.
  • Step (1) of the present invention is a step of forming the metal electrode layer 10 .
  • the metal electrode layer 10 does not interfere with the flow of current by performing a role of transporting electrons, thereby solving the problem of deterioration in electrical conductivity caused by the high resistance of the carbon aggregate 20, and furthermore, relatively low power through this. It is also possible to maximize the efficiency of the heating element by making it possible to show a high surface temperature.
  • the method of manufacturing the metal electrode layer 10 is not particularly limited, and a conventionally known manufacturing method may be used.
  • step (2) of the present invention is a step of forming a carbon aggregate 20 having a network structure by connecting carbon structures to each other so as to surround a part or all of the metal electrode layer 10 .
  • the carbon aggregate 20 may be a carbon nanotube aggregate according to a preferred embodiment of the present invention, and the method for manufacturing such a carbon nanotube aggregate is not particularly limited, but the durability and heat resistance of the heating element at high temperatures are reduced. It can be prepared by a conventional manufacturing method in which the content of the binder is minimized so as not to occur.
  • Non-limiting examples of this include a method of manufacturing a structure in which carbon nanotube bundles are woven using a direct synthesis method and a method of manufacturing a carbon nanotube aggregate by papermaking technology using a solution in which carbon nanotube particles are dispersed There is, and an appropriate method can be selected according to the use of the heating element so that the content of the above-mentioned binder is minimized.
  • a known conventional method may be used.
  • a raw material solution composed of a carbon source, a catalyst, and a cocatalyst is mixed with a transfer gas at a high temperature. It can be synthesized inside the synthesis furnace.
  • the carbon source mainly uses organic solvents such as acetone, ethanol and butanol, uses metallocene such as ferrocene and nickellocene as a catalyst, and thiophene as a cocatalyst. (Thiophene) or carbon disulfide (CS 2 ) can be used.
  • a carbon nanotube aggregate may be manufactured using papermaking technology, and is not particularly limited.
  • the step (2) may further include a step (2-1) of heat treatment at a high temperature after treating the solvent.
  • the binding force between the carbon aggregate 20 and the metal electrode layer 10 is strengthened, thereby enhancing durability of the heating element and preventing electrical characteristics from deteriorating.
  • the solvent is not particularly limited to an amount that can be sufficiently applied to the surface of the carbon aggregate 20, and a known common solvent may be used, and non-limiting examples thereof include water, alcohol, DMSO, and DMF. etc. can be used.
  • the heat treatment may be performed in an oven at 80 to 300 °C for 20 to 40 minutes to sufficiently dry the solvent. At this time, as the solvent present in the carbon aggregate 20 evaporates, the binding force between the carbon aggregate 20 and the metal electrode layer 10 may be strengthened.
  • the flow rate of injected hydrogen is 2000 sccm.
  • the prepared carbon nanotube assembly had a thickness of 3 ⁇ m and a sheet resistance of 0.5 ⁇ /sq, and was made into a tape having a width of 5 mm and wound around nichrome wire to form a heating element.
  • the carbon assembly was prepared in the same manner as in Example 1, except that a carbon fiber nonwoven fabric having a thickness of 1 mm was used instead of the carbon nanotube assembly.
  • a carbon fiber nonwoven fabric water-dispersible carbon fiber (Tenax-A HTC124, Teijin) was used.
  • Teijin water-dispersible carbon fiber
  • it was treated with a sizing agent and the fiber length was 3 mm, and it was stirred for 30 minutes with a homogenizer (K-corperation, Korea) to prepare a non-woven fabric by the papermaking method.
  • Example 2 Thereafter, it was prepared in the same manner as in Example 1 except that a carbon nanotube aggregate was used as the graphene paper as a carbon aggregate.
  • a heat generating sheet was manufactured by combining carbon nanotube particles (80 wt%) and carbon fibers (20 wt%) with the same papermaking technique as in Example 2.
  • multi-walled carbon nanotubes MWCNTs (K-Nanos 500P, Kumho Petrochemical, Korea) were used, and MWCNTs with a bundle length of 100 ⁇ m and a bulk density of 0.030 g/ml were used to facilitate paper manufacturing and cohesion characteristics.
  • MWCNTs K-Nanos 500P, Kumho Petrochemical, Korea
  • a 0.2 wt% aqueous solution of the dried carbon nanotubes was prepared and stirred for 30 minutes with a homogenizer (K-corperation, Korea) to prepare a dispersion solution.
  • Carbon fibers were prepared as an aqueous solution of 0.08 wt % and stirred for 30 min using an agitator (K-corperation, Korea) to prepare a dispersion solution.
  • Carbon nanotube particles alone did not form a sheet having stable physical properties, so carbon fibers were blended.
  • a composite solution was prepared by stirring the carbon nanotubes and carbon fibers with a homogenizer (K-corperation, Korea) for 15 minutes, and this was prepared into a sheet using a paper machine.
  • the sheet resistance of the prepared sheet was 8.6 ⁇ /sq, and the thickness was 112 ⁇ m. It was prepared in the same manner as in Example 1, except that the carbon nanotube particle/carbon fiber composite sheet was used.
  • Example 2 It was manufactured in the same manner as in Example 1, but a heating element was manufactured only with the nichrome wire of Example 1 without using a carbon aggregate.
  • the graphene sheet prepared in Example 3 was immersed in a 5 wt % solution prepared by dissolving PAN in DMF and dried for one day to prepare a sheet having enhanced mechanical properties.
  • This composite graphene/PAN sheet has a thickness of 16 ⁇ m and electrical conductivity of 20 ⁇ /sq. Then, a heating element was manufactured under the same conditions as in Example 1 using the composite sheet.
  • the heating element was composed of only carbon nanotube aggregates without a metal electrode layer, and an insulator and high heat resistance aramid fiber (Kevlar, DuPont, USA) was used in the center.
  • the carbon aggregate used the same carbon nanotube sheet as in Example 1, and was prepared by winding it around an aramid fiber.
  • the diameter of the aramid fiber was 0.55 mm
  • the width of the carbon nanotube tape was 5 mm
  • the sheet resistance was 0.5 ⁇ /sq.
  • Example 1 when comparing Example 1 and Examples 2 to 4 in Table 1, the same nichrome wire was used as the metal electrode layer, and only the type of carbon aggregate was different. It can be seen that a heating element suitable for the purpose can be manufactured by changing, and in particular, it can be seen that the heating element using the carbon nanotube assembly has the best heating efficiency.
  • Comparative Example 3 which was manufactured only with a carbon nanotube assembly without a metal electrode layer, the applied voltage was 3.5V, as in other Examples and Comparative Examples, but only 1W of power was supplied due to the high resistance of the carbon nanotube assembly. . That is, when the metal electrode layer with high electrical conductivity acts as a passage for electrons through the temperature of the heating element being only 71.4 ° C (FIG. 6) due to the high resistance of the carbon nanotube assembly and the low power of the heating element composed only of it It can be seen that only the present invention, such as Example 1, exhibits the desired heating efficiency.

Abstract

The present invention provides a high-efficiency hybrid heater, wherein the heater contains a binder, of which the content is minimized, and has one electrode alone by using excellent characteristics of a carbon structure, including carbon nanotubes, as a heater, whereby the heater has low power consumption and heat capacity and very high emissivity resulting from the sufficient utilization of the characteristics of the carbon structure as a heater and thus can maximize energy efficiency as a heater, and nevertheless the heater can be implemented as even an ultra-thin film having a minimized thickness without deterioration in electrical characteristics.

Description

고효율 하이브리드 발열체 및 이의 제조방법High-efficiency hybrid heating element and its manufacturing method
본 발명은 고효율 하이브리드 발열체에 관한 것으로, 보다 상세하게는 전력 소모 및 열용량이 낮고 방사율이 매우 높아 발열체로서 에너지 효율을 극대화시킬 수 있음에도 불구하고 전기적 특성의 저하 없이 초박막으로도 구현이 가능한 고효율 하이브리드 발열체에 관한 것이다.The present invention relates to a high-efficiency hybrid heating element, and more particularly, to a high-efficiency hybrid heating element that can be implemented even with an ultra-thin film without deterioration of electrical characteristics despite being able to maximize energy efficiency as a heating element with low power consumption, low heat capacity and very high emissivity. it's about
탄소계 발열체는 열과 내구성이 강하고 열전도도가 우수하며 낮은 열팽창계수를 가지고 있는데, 통상적으로 열전도도가 높은 철, 니켈, 크롬, 백금 등의 금속 발열체를 필름 형태의 수지 등에 균일하게 분사 또는 인쇄 형성시켜 제조하거나, 도전성이 있는 탄소, 흑연, 카본블랙 등의 전도성을 지닌 무기입자 발열체를 고분자 수지에 혼합하여 제조한다.Carbon-based heating elements have strong heat and durability, excellent thermal conductivity, and a low coefficient of thermal expansion. Typically, metal heating elements such as iron, nickel, chromium, and platinum, which have high thermal conductivity, are uniformly sprayed or printed on a film-type resin. or by mixing conductive inorganic particle heating elements such as conductive carbon, graphite, and carbon black with a polymer resin.
한편, 탄소 구조체의 일종인 탄소나노튜브(carbon nanotube, CNT)는 육각형 모양의 탄소 6개가 서로 연결되어 튜브 모양을 이루고 있다. 이와 같은 탄소나노튜브는 전기전도도가 구리와 비슷하고 열전도율은 다이아몬드보다 뛰어나며 강도 역시 철강보다 훨씬 높다. 또한, 가볍고 전류밀도가 높으며, 열전도율이 우수하여 차세대 신소재, 특히 발열체로 주목을 받고 있으며, 탄소나노튜브를 발열체로 이용하는 방법은 탄소나노튜브 입자 형태와 탄소나노튜브 집합체 형태 두가지로 대별할 수 있다. On the other hand, a carbon nanotube (CNT), which is a kind of carbon structure, has a tube shape in which six hexagonal carbon atoms are connected to each other. Such carbon nanotubes have electrical conductivity similar to copper, thermal conductivity superior to diamond, and strength much higher than steel. In addition, it is light, has high current density, and has excellent thermal conductivity, so it is attracting attention as a next-generation new material, especially a heating element.
그러나 현재까지 보고된 탄소계 발열체 및 탄소나노튜브를 이용한 발열체는 아래와 같은 문제가 있어 그 활용에 제한이 있어 왔다.However, the carbon-based heating elements and heating elements using carbon nanotubes reported so far have the following problems, and their utilization has been limited.
첫째로, 탄소계 발열체의 경우 탄소계 입자를 바인더와 함께 분산시킨 후 이를 기판에 코팅하여 제조하는 기술이 소개된 바 있으나, 이 경우 대량생산과 경제성의 이점이 있을 수 있으나 바인더 자체의 내재된 낮은 내구성 및 내열성 특성의 한계로 인해 고온의 발열체로의 사용에 제한이 따르며, 이로 인해 탄소계 입자 자체의 우수한 발열체로서의 특성을 충분히 이용하지 못하는 문제가 있었다. First, in the case of a carbon-based heating element, a technology of dispersing carbon-based particles together with a binder and then coating them on a substrate has been introduced, but in this case, there may be advantages in mass production and economy, but the inherent low Due to limitations in durability and heat resistance, use as a high-temperature heating element is restricted, and thus, there is a problem in that the excellent properties of the carbon-based particles themselves as a heating element cannot be fully utilized.
두번째, 위와 같은 바인더로 인한 문제를 해결하고 탄소나노튜브의 우수한 물성을 이용하기 위해 탄소나노튜브 집합체를 포함하는 발열체를 제조하는 연구가 소개된 바 있다. 그러나 이와 같이 탄소나노튜브를 집합체의 형태로 구현되도록 발열체를 제조하는 방법은 탄소나노튜브가 가진 고유한 특성을 그대로 활용할 수 있어서 고온의 발열체로서 유용한 면이 있으나, 탄소나노튜브 집합체의 접촉저항 및 내부의 공극 또는 공극을 채우는 바인더로 인하여 기존에 문제되지 않았던 전기전도도가 낮아지는 문제가 있다.Second, research on manufacturing a heating element including a carbon nanotube assembly has been introduced in order to solve the above problems caused by the binder and to use the excellent physical properties of the carbon nanotube. However, the method of manufacturing a heating element so that the carbon nanotubes are implemented in the form of an assembly is useful as a high-temperature heating element because the unique characteristics of the carbon nanotubes can be utilized as they are, but the contact resistance and internal contact resistance of the carbon nanotube assembly There is a problem in that electrical conductivity, which was not a problem in the past, is lowered due to the voids or the binder filling the voids.
즉 일반적으로 탄소나노튜브 입자 한 개의 전기전도도는 약 ~108 S/m 정도이나, 섬유나 시트와 같은 탄소나노튜브 집합체로 구현한 경우 전기전도도는 102 ~ 106으로 현격히 낮아지게 되어 금속보다 낮은 전기전도도를 나타내게 됨에 따라 발열체로서의 효용이 급격히 떨어지게 된다. 이를 극복하기 위해서는 탄소나노튜브 집합체의 양을 늘려 두께를 두껍게 하고 저항을 낮춰야 하지만 이 경우 초박막 형태의 발열체를 구현하기 어려워지고 다량의 탄소나노튜브가 사용됨에 따라 경제성도 저하되는 문제가 있다.That is, in general, the electrical conductivity of one carbon nanotube particle is about ~10 8 S/m, but when implemented as a carbon nanotube aggregate such as a fiber or sheet, the electrical conductivity is significantly lowered to 10 2 ~ 10 6 , which is lower than that of metal. As it exhibits low electrical conductivity, its effectiveness as a heating element rapidly decreases. In order to overcome this, it is necessary to increase the amount of the carbon nanotube aggregate, increase the thickness, and lower the resistance. However, in this case, it is difficult to implement a heating element in the form of an ultra-thin film, and as a large amount of carbon nanotubes are used, there is a problem in that economic feasibility decreases.
더욱이 종래 통상적인 발열체는 두 개의 전극과 이와 연결된 발열선의 구조를 가지고 있고 상기 발열선을 폴리에틸렌 등의 중심섬유에 금속 발열선을 감아서 구현되는데, 위와 같이 통상적인 발열체의 구조에서는 탄소나노튜브 집합체의 전기전도도 저하 문제를 해결할 수 있는 방법이 전혀 없었다.Moreover, a conventional heating element has a structure of two electrodes and a heating wire connected thereto, and the heating wire is realized by winding a metal heating wire around a central fiber such as polyethylene. There was no way to solve the degradation problem.
이에 따라, 바인더의 함량을 최소화시킴과 동시에 발열체로서의 상기 탄소나노튜브를 비롯한 탄소 구조체가 가진 우수한 특성을 충분히 이용하고, 발열체를 초박막의 형태로 구현함에도 불구하고 전기적 특성의 저하 문제가 발생하지 않는 발열체에 대한 연구가 시급한 실정이다.Accordingly, a heating element that minimizes the content of the binder, fully utilizes the excellent properties of the carbon structure including the carbon nanotube as a heating element, and does not cause a problem of deterioration in electrical characteristics despite implementing the heating element in the form of an ultra-thin film. There is an urgent need for research on this.
본 발명은 상술한 문제를 극복하기 위해 안출된 것으로, 본 발명의 해결하고자 하는 과제는 하나의 전극을 단독으로 가지는 발열체를 구현하고, 발열체로서의 탄소 구조체의 특성을 충분히 활용하여 전력 소모 및 열용량이 낮고 방사율이 매우 높아 발열 효율을 극대화시킬 수 있음에도 불구하고, 전기적 특성의 저하 없이 두께를 최소화시킬 수 있어서 다양한 산업군에 활용도와 경제성을 동시에 제고할 수 있는 고효율 하이브리드 발열체 및 이의 제조방법을 제공하는 것이다.The present invention has been made to overcome the above-mentioned problems, and the problem to be solved by the present invention is to implement a heating element having one electrode alone, and to fully utilize the characteristics of a carbon structure as a heating element to reduce power consumption and heat capacity. It is to provide a high-efficiency hybrid heating element and its manufacturing method that can simultaneously improve utilization and economic feasibility in various industries because the thickness can be minimized without deterioration of electrical characteristics despite the fact that the emissivity is very high and the heating efficiency can be maximized.
본 발명은 상술한 과제를 해결하기 위해, 금속 전극층 및 상기 금속 전극층의 일부 또는 전부를 둘러쌓도록 탄소 구조체가 서로 연결되어 네트워크 구조를 갖는 탄소 집합체를 포함하며, 하기 관계식 1을 만족하는 고효율 하이브리드 발열체를 제공한다.In order to solve the above-mentioned problems, the present invention includes a metal electrode layer and a carbon aggregate having a network structure in which carbon structures are connected to each other so as to surround some or all of the metal electrode layer, and a high-efficiency hybrid heating element that satisfies the following relational expression 1 provides
[관계식 1][Relationship 1]
5초동안 3.5 V의 전압 및 24 Watt의 전력을 공급하여 하이브리드 발열체의 표면온도가 350℃ 이상By supplying a voltage of 3.5 V and power of 24 Watt for 5 seconds, the surface temperature of the hybrid heating element is over 350 ° C.
또한 본 발명의 일 실시예에 의하면, 상기 고효율 하이브리드 발열체는 외부에서 인가된 전류가 전기전도도가 높은 상기 금속 전극층에서 상기 탄소 집합체에 유입되어 열에너지로 변환 및 방출되는 것을 특징으로 할 수 있다.In addition, according to one embodiment of the present invention, the high-efficiency hybrid heating element may be characterized in that an externally applied current flows into the carbon aggregate from the metal electrode layer having high electrical conductivity, and is converted into thermal energy and released.
또한 본 발명의 다른 실시예에 의하면, 상기 탄소 집합체는 바인더 성분을 10% 이하로 포함하는 것을 특징으로 할 수 있다.In addition, according to another embodiment of the present invention, the carbon aggregate may be characterized in that it contains a binder component of 10% or less.
또한 본 발명의 또 다른 실시예에 의하면, 상기 탄소 구조체는 탄소나노튜브(carbon nanotube, CNT), 그래핀(Graphene), 탄소섬유(Carbon fiber) 중 적어도 어느 하나인 것을 특징으로 할 수 있다.In addition, according to another embodiment of the present invention, the carbon structure may be characterized in that at least one of carbon nanotube (CNT), graphene, carbon fiber (Carbon fiber).
또한 본 발명의 일 실시예에 의하면, 상기 탄소 집합체의 전기전도도는 106 S/m 미만이며 두께가 50 nm ~ 10 mm 미만인 것을 특징으로 할 수 있다.In addition, according to an embodiment of the present invention, the electrical conductivity of the carbon aggregate may be less than 10 6 S/m and the thickness may be less than 50 nm to 10 mm.
또한 본 발명의 다른 실시예에 의하면, 상기 고효율 하이브리드 발열체는 와이어 형태의 금속 전극층의 외부 표면에 상기 탄소 집합체가 권취된 와이어 형태이거나, 시트 형태의 금속 전극층의 상부 및 하부면에 상기 탄소 집합체가 형성된 시트 형태인 것을 특징으로 할 수 있다.In addition, according to another embodiment of the present invention, the high-efficiency hybrid heating element is in the form of a wire in which the carbon aggregate is wound on the outer surface of a metal electrode layer in the form of a wire, or the carbon aggregate is formed on the upper and lower surfaces of the metal electrode layer in the form of a sheet. It may be characterized in that it is in the form of a sheet.
또한 본 발명의 또 다른 실시예에 의하면, 상기 금속 전극층은 구리, 니켈, 니크롬, 철크롬, 금, 은, 텅스텐, 아연, 철, 백금, 주석, 연, 황동, 청동 및 알루미늄 중에서 선택되는 어느 하나인 금속인 것을 특징으로 할 수 있다.In addition, according to another embodiment of the present invention, the metal electrode layer is any one selected from copper, nickel, nichrome, iron chromium, gold, silver, tungsten, zinc, iron, platinum, tin, lead, brass, bronze and aluminum It can be characterized as being a phosphorus metal.
또한 본 발명의 일 실시예에 의하면, 상기 탄소 집합체는 20초 안에 표면온도 500℃에 이르도록 급속 가열이 가능한 것을 특징으로 할 수 있다.In addition, according to an embodiment of the present invention, the carbon aggregate may be rapidly heated to reach a surface temperature of 500 ° C. within 20 seconds.
또한 본 발명은 (1) 금속 전극층을 형성하는 단계 및 (2) 상기 금속 전극층의 일부 또는 전부를 둘러쌓도록 탄소구조체가 서로 연결되어 네트워크 구조를 갖는 탄소집합체를 형성하는 단계를 포함하며, 하기 관계식 1을 만족하는 고효율 하이브리드 발열체의 제조방법을 제공한다.In addition, the present invention includes the steps of (1) forming a metal electrode layer and (2) forming a carbon aggregate having a network structure by connecting carbon structures to each other so as to surround a part or all of the metal electrode layer, 1 is provided.
[관계식 1][Relationship 1]
5초동안 3.5 V의 전압 및 24 Watt의 전력을 공급하여 하이브리드 발열체의 표면온도가 350℃ 이상By supplying a voltage of 3.5 V and power of 24 Watt for 5 seconds, the surface temperature of the hybrid heating element is over 350 ° C.
또한 본 발명은 상술한 고효율 하이브리드 발열체를 포함하는 히터를 제공한다.In addition, the present invention provides a heater including the above-described high-efficiency hybrid heating element.
본 발명은 발열체로서의 탄소 구조체의 특성을 충분히 활용하여 전력 소모 및 열용량이 낮고 방사율이 매우 높아 발열 효율을 극대화시킬 수 있음에도 불구하고 전기적 특성의 저하가 없는 고효율 하이브리드 발열체를 제조할 수 있다.The present invention can manufacture a high-efficiency hybrid heating element without deterioration in electrical characteristics despite maximizing heating efficiency by fully utilizing the characteristics of a carbon structure as a heating element, with low power consumption and heat capacity and very high emissivity.
이와 동시에 본 발명은 탄소 집합체를 사용함에도 불구하고 전기전도도의 저하 없이 두께를 최소화시킬 수 있어서 초박막 형태의 발열체의 제조가 가능하여 다양한 산업군에 활용도를 제고할 수 있다.At the same time, the present invention can minimize the thickness without deterioration of electrical conductivity despite the use of the carbon aggregate, so that it is possible to manufacture a heating element in the form of an ultra-thin film, thereby improving its utilization in various industrial groups.
도 1은 본 발명의 일 실시예에 따른 하이브리드 발열체를 나타내는 도면이다.1 is a view showing a hybrid heating element according to an embodiment of the present invention.
도 2는 본 발명의 다른 실시예에 따른 하이브리드 발열체를 나타내는 도면이다.2 is a view showing a hybrid heating element according to another embodiment of the present invention.
도 3은 초지기술을 이용하여 제조한 그래핀 집합체를 포함하는 발열체를 나타내는 도면이다.3 is a view showing a heating element including a graphene aggregate manufactured using papermaking technology.
도 4는 본 발명의 실시예 1에서 제조한 하이브리드 발열체의 발열 온도를 나타내는 도면이다.4 is a diagram showing the heating temperature of the hybrid heating element manufactured in Example 1 of the present invention.
도 5는 본 발명의 비교예 1에서 제조한 발열체의 발열 온도를 나타내는 도면이다.5 is a diagram showing the heating temperature of the heating element manufactured in Comparative Example 1 of the present invention.
도 6은 본 발명의 비교예 3에서 제조한 발열체의 발열 온도를 나타내는 도면이다.6 is a diagram showing the heating temperature of the heating element manufactured in Comparative Example 3 of the present invention.
이하 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily implement the present invention. This invention may be embodied in many different forms and is not limited to the embodiments set forth herein.
상술한 바와 같이 종래 탄소 발열체의 경우 바인더로 인한 및 내열성의 문제로 인한 활용의 제한이 있었고 특히 탄소나노튜브 집합체를 이용한 탄소 발열체의 경우 탄소나노튜브의 특성을 충분히 이용하지 못할 뿐만 아니라 전기적 특성의 저하되는 문제가 있었다.As described above, in the case of the conventional carbon heating element, there were limitations in utilization due to the binder and heat resistance problems, and in particular, in the case of a carbon heating element using a carbon nanotube assembly, the characteristics of the carbon nanotubes could not be fully utilized and the electrical characteristics were deteriorated. there was a problem with
이에 본 발명은 금속 전극층 및 상기 금속 전극층의 일부 또는 전부를 둘러쌓도록 탄소 구조체가 서로 연결되어 네트워크 구조를 갖는 탄소 집합체를 포함하는 고효율 하이브리드 발열체를 제공하여 상술한 문제의 해결을 모색하였다.Accordingly, the present invention sought to solve the above problems by providing a high-efficiency hybrid heating element including a metal electrode layer and a carbon aggregate having a network structure in which carbon structures are connected to each other so as to surround part or all of the metal electrode layer.
이를 통해 발열체로서의 탄소 구조체의 특성을 충분히 활용하여 전력 소모 및 열용량이 낮고 방사율이 매우 높아 발열 효율을 극대화시킬 수 있음에도 불구하고 전기적 특성의 저하가 없는 고효율 하이브리드 발열체를 제조할 수 있고, 나아가 전기적 특성의 저하 없이 두께를 최소화시킬 수 있어서 초박막 형태의 발열체의 제조가 가능하여 다양한 산업군에 활용도를 제고할 수 있다.Through this, it is possible to manufacture a high-efficiency hybrid heating element without deterioration in electrical characteristics despite the fact that power consumption and heat capacity are low and the emissivity is very high, and the heating efficiency can be maximized by fully utilizing the characteristics of the carbon structure as a heating element. Since the thickness can be minimized without deterioration, it is possible to manufacture a heating element in the form of an ultra-thin film, thereby improving its utilization in various industrial groups.
이하 도 1 및 2를 참조하여 본 발명에 따른 고효율 하이브리드 발열체(100)에 대해 설명한다. A highly efficient hybrid heating element 100 according to the present invention will be described with reference to FIGS. 1 and 2 below.
본 발명에 따른 고효율 하이브리드 발열체(100)는 금속 전극층(10)을 포함하며, 상기 금속 전극층(10)은 고효율 하이브리드 발열체(100) 내에서 전자의 이송역할을 수행한다. The high-efficiency hybrid heating element 100 according to the present invention includes a metal electrode layer 10 , and the metal electrode layer 10 serves to transport electrons within the high-efficiency hybrid heating element 100 .
통상적으로 발열체는 양극과 음극으로 이루어진 두 개의 금속 전극층 및 이와 연결된 발열선을 포함하는 구조를 가지고 있고, 탄소 발열체의 경우 상기 발열선을 탄소 집합체로 사용할 수 있다. 이때, 통상적인 탄소 발열체의 경우 탄소 집합체의 접촉 저항과 네트워크 구조를 이룸에 따라 형성되는 내부 공극 또는 공극을 채우는 바인더로 인해 높은 저항이 발생하게 되며, 이는 전류의 흐름을 방해하여 전기적 특성은 물론 발열체로서의 효율을 현격히 저하시키는 문제가 있다.Typically, a heating element has a structure including two metal electrode layers composed of an anode and a cathode and a heating wire connected thereto, and in the case of a carbon heating element, the heating wire may be used as a carbon aggregate. At this time, in the case of a typical carbon heating element, high resistance occurs due to the binder filling the void or the internal void formed as the carbon aggregate forms a network structure with the contact resistance, which hinders the flow of current, thereby improving electrical characteristics as well as the heating element. There is a problem of significantly lowering the efficiency as such.
이에 본 발명은 종래 발열체의 양극과 음극으로 이루어진 두개의 전극이 상기 금속 전극층(10) 단독으로 구성되고 상기 금속 전극층(10)을 탄소 집합체(20)가 일부 또는 전부를 둘러쌓도록 형성되어, 외부에서 인가된 전류의 흐름을 탄소 집합체(20)에 용이하게 전달하고 탄소 집합체(20)에서 전류에너지를 열에너지 변환 및 방출하게 하여 발열체의 기능을 수행하도록 한다.Accordingly, in the present invention, two electrodes composed of an anode and a cathode of a conventional heating element are composed of the metal electrode layer 10 alone, and the metal electrode layer 10 is formed so that the carbon aggregate 20 partially or entirely surrounds it, The flow of current applied from is easily transferred to the carbon aggregate 20 and the carbon aggregate 20 converts and releases current energy into thermal energy to perform the function of a heating element.
즉, 상기 금속 전극층(10)이 전자의 이송 역할을 수행함으로써 전류의 흐름을 방해하지 않아서 탄소 집합체(20)의 높은 저항으로 인해 발생하는 전기전도도가 저하되는 문제를 해결하고, 나아가 이를 통해 상대적으로 낮은 전력으로도 높은 표면온도를 나타낼 수 있게 하여 발열체의 효율을 극대화시킬 수 있다.That is, since the metal electrode layer 10 plays a role of transporting electrons, it does not interfere with the flow of current, thereby solving the problem of lowering the electrical conductivity caused by the high resistance of the carbon aggregate 20, and furthermore, through this, relatively Efficiency of the heating element can be maximized by allowing a high surface temperature to be displayed even with low power.
이를 위해 상기 금속 전극층(10)은 전기전도도가 높은 금속이 사용될 수 있으며 이에 대한 비제한적인 예로 구리, 니켈, 니크롬, 철크롬, 금, 은, 텅스텐, 아연, 철, 백금, 주석, 연, 황동, 청동 및 알루미늄에서 선택되는 어느 하나 이상을 포함할 수 있으며, 보다 바람직하게는 니크롬선을 포함할 수 있다. To this end, the metal electrode layer 10 may be formed of a metal having high electrical conductivity, and non-limiting examples thereof include copper, nickel, nichrome, iron chromium, gold, silver, tungsten, zinc, iron, platinum, tin, lead, and brass. , may include at least one selected from bronze and aluminum, and more preferably may include nichrome wire.
또한, 상기 금속 전극층(10)은 본 발명에 따른 고효율 하이브리드 발열체가 사용되는 용도에 따라 적합한 형상과 크기를 가질 수 있다. 즉, 본 발명의 일 실시예에 따라 면상 발열체의 고효율 하이브리드 발열체를 구현하는 경우 상기 금속 전극층(10)은 시트 형상의 금속 전극층이 될 수 있으며, 본 발명의 다른 실시예에 따라 와이어 형태의 고효율 하이브리드 발열체를 구현하는 경우 상기 금속 전극층(10)은 와이어 형상의 금속 전극층이 될 수 있다. 나아가 본 발명의 또 다른 실시예들에 따라 대면적 또는 소형 발열체를 구현하는 경우 상기 금속 전극층(10)의 크기는 후술할 탄소 집합체(20)가 둘러쌓는 구조라면 크기의 제한 없이 제조할 수 있다. 이에 대한 비제한적인 50 nm ~ 10 mm 두께를 가질 수 있다.In addition, the metal electrode layer 10 may have a suitable shape and size depending on the purpose for which the high-efficiency hybrid heating element according to the present invention is used. That is, in the case of implementing a high-efficiency hybrid heating element of a planar heating element according to an embodiment of the present invention, the metal electrode layer 10 may be a sheet-shaped metal electrode layer, and according to another embodiment of the present invention, a high-efficiency hybrid heating element in a wire form In the case of implementing a heating element, the metal electrode layer 10 may be a wire-shaped metal electrode layer. Furthermore, in the case of implementing a large-area or small-sized heating element according to other embodiments of the present invention, the size of the metal electrode layer 10 can be manufactured without size limitation as long as it has a structure surrounded by a carbon aggregate 20 to be described later. It may have a non-limiting thickness of 50 nm to 10 mm.
다음 본 발명에 따른 고효율 하이브리드 발열체는 탄소 집합체(20)를 포함한다. Next, the high-efficiency hybrid heating element according to the present invention includes a carbon aggregate 20.
상기 탄소 집합체(20)는 상술한 금속 전극층(10)의 일부 또는 전부를 둘러쌓도록 탄소구조체가 서로 연결되어 네트워크 구조를 가지며, 탄소로 이루어진 물질의 특성에 따라 외부에서 인가되는 전류에 대한 전기적 저항에 의해 발열 작용을 수행하는 역할을 한다.The carbon assembly 20 has a network structure in which carbon structures are connected to each other so as to surround a part or all of the above-described metal electrode layer 10, and has an electrical resistance to an externally applied current according to the characteristics of a material made of carbon. It plays a role in performing the heating action by.
이때 상기 탄소 집합체(20)를 구성하는 탄소 구조체는 탄소나노튜브(carbon nanotube, CNT), 그래핀(Graphene), 탄소섬유(Carbon fiber) 중 적어도 어느 하나 이상을 포함할 수 있으며, 이와 같은 탄소 구조체가 서로 연결된 네트워크 구조를 이룬다. 이에 대한 비제한적인 예로 상기 탄소 집합체(20)는 섬유 형태의 탄소 구조체가 연결된 네트워크 구조를 이룰 수 있고, 또한 내부가 빈 중공 형태의 탄소 구조체가 연결된 네트워크 구조를 이룰 수 있으며, 나아가 필름 형태 탄소 구조체가 연결된 네트워크 구조를 이룰 수 있으며, 상술한 탄소나노튜브와 탄소섬유가 혼합하여 사용될 수 있다.At this time, the carbon structure constituting the carbon aggregate 20 may include at least one or more of carbon nanotubes (CNT), graphene, and carbon fiber, and such a carbon structure are connected to each other to form a network structure. As a non-limiting example of this, the carbon aggregate 20 may form a network structure in which fibrous carbon structures are connected, or a network structure in which hollow carbon structures are connected, and furthermore, a film-type carbon structure. can form a connected network structure, and the above-described carbon nanotubes and carbon fibers may be mixed and used.
한편 본 발명의 일 실시예에 따라, 상기 탄소 구조체가 탄소섬유일 경우 통상적인 탄소섬유가 사용될 수 있으며 이에 대한 비제한적인 예로 PAN(Poly Acrylonitile)계 탄소섬유, Pitch계 탄소섬유 또는 Rayon계 탄소섬유가 사용될 수 있고, 이들이 연결되어 네트워크 구조를 이루는 탄소섬유 집합체가 될 수 있다.Meanwhile, according to one embodiment of the present invention, when the carbon structure is a carbon fiber, a conventional carbon fiber may be used, and non-limiting examples thereof include PAN (Poly Acrylonitile)-based carbon fiber, Pitch-based carbon fiber, or Rayon-based carbon fiber may be used, and they may be connected to form a carbon fiber aggregate forming a network structure.
또한, 본 발명의 바람직한 실시예에 따라 상기 탄소 구조체는 탄소나노튜브일 수 있으며 이 경우 상기 탄소 집합체(20)는 탄소나노튜브 다발이 서로 연결된 네트워크 구조의 탄소나노튜브 집합체일 수 있다. 상기 탄소나노튜브는 흑연면(graphite sheet)이 나노 크기의 직경으로 둥글게 말린 구조를 가질 수 있는데, 벽을 이루고 있는 결합수에 따라 단일벽 탄소나노튜브(single-walled carbon nanotube), 이중벽 탄소나노튜브(double-walled carbonnanotube), 다중벽 탄소나노튜브(multi-walled carbon nanotube)로 구분될 수 있다. 본 발명의 실시예에 따른 탄소나노튜브 집합체는 탄소나노튜브의 다발이 연결되어서 만들어진 집합체일 수 있으며, 탄소나노튜브 다발은 단일벽 탄소나노튜브, 이중벽 탄소나노튜브 또는 다중벽 탄소나노튜브들의 적어도 한 가닥으로 구성될 수 있다.In addition, according to a preferred embodiment of the present invention, the carbon structure may be a carbon nanotube, and in this case, the carbon assembly 20 may be a carbon nanotube assembly having a network structure in which carbon nanotube bundles are connected to each other. The carbon nanotubes may have a structure in which a graphite sheet is rolled with a nano-sized diameter, and depending on the number of bonds constituting the wall, single-walled carbon nanotubes and double-walled carbon nanotubes (double-walled carbon nanotube) and multi-walled carbon nanotube (multi-walled carbon nanotube). A carbon nanotube assembly according to an embodiment of the present invention may be an assembly made by connecting bundles of carbon nanotubes, and the carbon nanotube bundle includes at least one of single-walled carbon nanotubes, double-walled carbon nanotubes, or multi-walled carbon nanotubes. It may consist of strands.
한편 상기 탄소나노튜브는 전기전도도가 구리와 비슷하고 열전도율은 다이아몬드보다 뛰어나며 강도 역시 철강보다 훨씬 높고 열전도율이 우수하지만, 이와 같은 탄소나노튜브가 네트워크 구조를 이루는 탄소나노튜브 집합체의 경우 접촉 저항 및 네트워크 구조를 이룸에 따라 형성되는 공극 또는 공극을 채우는 바인더로 인해 저항이 매우 높은 특징이 있다. 또한, 일반적으로 탄소나노튜브 입자 한 개의 전기전도도는 약 ~108 S/m 정도이나, 섬유나 시트와 같은 탄소나노튜브 집합체로 구현한 경우 전기전도도는 102 ~ 106 S/m으로 현격히 낮아지게 되어 금속보다 낮은 전기전도도를 나타내게 됨에 따라 발열체로서의 효용이 급격히 떨어지게 된다. 이를 극복하기 위해서는 탄소나노튜브 집합체의 양을 늘려 두께를 두껍게 하고 저항을 낮춰야 하지만 이 경우 초박막 형태의 발열체를 구현하기 어려워지고 다량의 탄소나노튜브가 사용됨에 따라 경제성도 저하되는 문제가 있다.On the other hand, the carbon nanotubes have electrical conductivity similar to copper, thermal conductivity superior to diamond, strength much higher than steel, and excellent thermal conductivity. It is characterized by very high resistance due to the voids formed by forming or the binder filling the voids. In addition, in general, the electrical conductivity of one carbon nanotube particle is about ~108 S/m, but when it is implemented as a carbon nanotube aggregate such as a fiber or sheet, the electrical conductivity is significantly lowered to 102 ~ 106 S/m, making metal As it exhibits lower electrical conductivity, its effectiveness as a heating element rapidly decreases. In order to overcome this, it is necessary to increase the amount of the carbon nanotube aggregate to increase the thickness and lower the resistance. However, in this case, it is difficult to implement a heating element in the form of an ultra-thin film, and as a large amount of carbon nanotubes are used, there is a problem in that economic feasibility decreases.
더욱이 종래 통상적인 발열체는 두 개의 전극과 이와 연결된 발열선의 구조를 가지고 있고 상기 발열선을 폴리에틸렌 등의 중심섬유에 금속 발열선을 감아서 구현되는데, 위와 같이 통상적인 발열체의 구조에서는 탄소나노튜브 집합체의 전기전도도 저하 문제를 해결할 수 있는 방법이 전혀 없었다.Moreover, a conventional heating element has a structure of two electrodes and a heating wire connected thereto, and the heating wire is realized by winding a metal heating wire around a central fiber such as polyethylene. There was no way to solve the degradation problem.
이에 본 발명은 이와 같은 발열체로서의 탄소나노튜브의 우수한 물성을 이용하되, 탄소나노튜브가 집합체를 형성함에 따라 저항이 높아지고 발열 특성이 저하되는 문제를 해결하기 위하여 상기 탄소나노튜브 집합체가 상기 금속 전극층(10)의 전부 또는 일부를 덮도록 형성하여 금속 전극층(10)의 전자의 통로 역할을 수행하게 함으로써 상기 탄소나노튜브 집합체의 높은 저항으로 인한 발열 성능 저하를 방지할 수 있다. Accordingly, the present invention utilizes the excellent physical properties of carbon nanotubes as a heating element, but as the carbon nanotubes form an assembly, the metal electrode layer ( 10) to cover all or part of the metal electrode layer 10 to serve as a passage for electrons, thereby preventing deterioration in heat generation performance due to high resistance of the carbon nanotube assembly.
이와 같이 본 발명은 탄소나노튜브를 비롯한 탄소 구조체가 가지는 발열체로서의 우수한 물성을 이용하되, 이들의 집합체인 탄소 집합체(20)의 높은 저항 문제를 상술한 금속 전극층(10)을 통해 해결할 수 있다. In this way, the present invention uses the excellent physical properties of carbon structures including carbon nanotubes as a heating element, but can solve the high resistance problem of the carbon aggregate 20, which is an aggregate thereof, through the metal electrode layer 10 described above.
이를 위해 상기 탄소 집합체(20)는 상기 금속 전극층(10)의 외부 표면적의 80 ~ 99 %, 보다 바람직하게는 85 ~ 95% 둘러쌓도록 형성될 수 있다. 이때 만일 상기 탄소 집합체(20)가 금속 전극층(10)의 외부 표면적을 80 % 미만을 둘러쌓도록 형성되는 경우 탄소 집합체(20)가 금속 전극층(10)으로 전자를 이송받는 효율이 저하되어 발열 성능이 저하될 수 있다. 또한 만일 상기 탄소 집합체(20)가 금속 전극층(10)의 외부 표면적을 99% 초과하여 둘러쌓도록 형성되는 경우 전류가 탄소 집합체(20)를 통해서 금속 전극층(10)으로 전달될 가능성이 높아져 발열 효율이 낮아질 우려가 있다.To this end, the carbon aggregate 20 may be formed to surround 80 to 99% of the outer surface area of the metal electrode layer 10, more preferably 85 to 95%. At this time, if the carbon aggregate 20 is formed to surround less than 80% of the outer surface area of the metal electrode layer 10, the efficiency of receiving electrons from the carbon aggregate 20 to the metal electrode layer 10 is reduced, resulting in heat generation performance. this may deteriorate. In addition, if the carbon aggregate 20 is formed to surround the outer surface area of the metal electrode layer 10 by more than 99%, the possibility of current being transferred to the metal electrode layer 10 through the carbon aggregate 20 increases, thereby increasing the heat generation efficiency. There is a risk that this will decrease.
또한 상기 탄소 집합체(20)의 전기전도도는 106 S/m 미만일 수 있으며 바람직하게는 102 S/m 내지 106 S/m 범위일 수 있다. In addition, the electrical conductivity of the carbon aggregate 20 may be less than 10 6 S/m, preferably in the range of 10 2 S/m to 10 6 S/m.
또한 상기 탄소 집합체(20)의 두께는 50 nm 내지 10 mm 일 수 있다. 본 발명은 상술한 것과 같이 금속 전극층(10)이 전자의 통로 역할을 수행함으로써 탄소 집합체(20)의 높은 저항으로 인한 전기적 특성 및 발열 성능 저하를 방지할 수 있는 바, 종래와 같이 높은 저항을 낮추기 위해 탄소 집합체(20)의 두께를 두껍게 제조할 필요 없이 얇은 박막 형태의 탄소 집합체(20)를 구현할 수 있다. 이에 보다 바람직하게는 100 nm ~ 1 mm의 두께로 구현할 수 있으나, 이에 제한되지 않고 상술한 본 발명의 실시예들과 같이 고효율 하이브리드 발열체가 사용되는 용도에 맞도록 통상적인 발열체의 두께를 가질 수 있다. 더욱이, 상기 탄소 집합체(20)가 본 발명의 바람직한 실시예에 따라 탄소나노튜브 집합체인 경우, 탄소나노튜브 집합체의 두께는 1 ㎛ 이하의 초박막으로 구현할 수 있다.Also, the carbon aggregate 20 may have a thickness of 50 nm to 10 mm. As described above, in the present invention, since the metal electrode layer 10 serves as a passage for electrons, it is possible to prevent deterioration in electrical characteristics and heat generation performance due to the high resistance of the carbon aggregate 20, thereby lowering the high resistance as in the prior art. For this purpose, the carbon aggregate 20 in the form of a thin film can be implemented without the need to manufacture the carbon aggregate 20 thickly. Accordingly, it can be more preferably implemented with a thickness of 100 nm to 1 mm, but is not limited thereto and may have a thickness of a conventional heating element to suit the purpose for which the high-efficiency hybrid heating element is used, as in the above-described embodiments of the present invention. . Moreover, when the carbon aggregate 20 is a carbon nanotube aggregate according to a preferred embodiment of the present invention, the thickness of the carbon nanotube aggregate may be implemented as an ultra-thin film of 1 μm or less.
이때 상기 탄소 집합체(20)는 상기 금속 전극층(10)과 마찬가지로 용도에 따라 다양한 형상이 될 수 있다. 보다 구체적으로 도 1을 참조하면, 본 발명의 일 실시예에 따라 고효율 하이브리드 발열체는 와이어 형상을 가질 수 있다. 이때 상기 탄소 집합체(20)는 와이어 형태의 금속 전극층(10)의 외부 표면에 상기 탄소 집합체(20)가 권취된 와이어 형태일 수 있다. 이 경우 상기 탄소 집합체(20)의 일면은 접착물질을 포함하는 테이프 타입으로 제조되어 상기 금속 전극층(10)의 외부 표면적과 밀착되어 발열 성능 및 전기적 특성을 향상시킬 수 있다.At this time, the carbon aggregate 20 may have various shapes depending on the purpose, similar to the metal electrode layer 10 . More specifically, referring to FIG. 1 , a high-efficiency hybrid heating element according to an embodiment of the present invention may have a wire shape. In this case, the carbon aggregate 20 may have a wire shape in which the carbon aggregate 20 is wound around the outer surface of the wire-shaped metal electrode layer 10 . In this case, one surface of the carbon aggregate 20 is made of a tape type containing an adhesive material, and adheres to the outer surface area of the metal electrode layer 10 to improve heat generation performance and electrical characteristics.
또한 도 2를 참조하면, 본 발명의 일 실시예에 따라 고효율 하이브리드 발열체는 면상 발열체의 형상을 가질 수 있다. 이때 상기 탄소 집합체(20)는 시트 형태의 금속 전극층(10)의 상면 및 하면을 상기 탄소 집합체(20)가 둘러쌓도록 형성될 수 있다. 이 경우 상기 금속 전극층(10)과 상기 탄소 집합체(20)의 밀착력을 향상시키기 위해 상기 탄소 집합체(20) 또는 금속 전극층(10) 중 적어도 어느 하나는 접착층(미도시)을 더 포함할 수 있으나, 이에 제한되지 않는다.Referring also to FIG. 2 , the high-efficiency hybrid heating element according to an embodiment of the present invention may have a shape of a planar heating element. At this time, the carbon aggregate 20 may be formed to surround the upper and lower surfaces of the metal electrode layer 10 in the form of a sheet. In this case, in order to improve adhesion between the metal electrode layer 10 and the carbon assembly 20, at least one of the carbon assembly 20 and the metal electrode layer 10 may further include an adhesive layer (not shown), Not limited to this.
한편 상기 탄소 집합체(20)는 바인더 성분을 10% 이하로 포함할 수 있으며, 보다 바람직하게는 상기 탄소 집합체(20)는 상기 바인더 성분을 0.1 내지 5 % 범위로 포함할 수 있다. 종래 탄소나노튜브를 이용하여 발열체를 제조하기 위하여는 탄소나노튜브 형태의 나노입자를 바인더와 함께 분산시킨 후 용액으로 제조하여 이를 기판에 코팅하고 두개의 전극을 형성시키는 과정을 수행하였다. 그러나 이 경우, 바인더의 내구성 및 내열성의 내재적인 한계로 인하여 탄소나노튜브 자체의 우수한 발열체로서의 특성을 충분히 이용하지 못하는 문제가 있었다. 이에 본 발명은 상기 탄소 집합체(20) 내의 바인더 성분이 10% 이하로 포함됨과 동시에 금속 전극층(10)을 단독으로 구성하고, 탄소 집합체(20)가 상기 금속 전극층(10)을 둘러쌓도록 구현함에 따라 바인더로 인한 발열 성능 저하 문제를 해소하였다.Meanwhile, the carbon aggregate 20 may include 10% or less of the binder component, and more preferably, the carbon aggregate 20 may include the binder component in the range of 0.1 to 5%. Conventionally, in order to manufacture a heating element using carbon nanotubes, nanoparticles in the form of carbon nanotubes were dispersed together with a binder, prepared as a solution, coated on a substrate, and a process of forming two electrodes was performed. However, in this case, due to inherent limitations in durability and heat resistance of the binder, there is a problem in that the characteristics of the carbon nanotube itself as an excellent heating element cannot be fully utilized. Accordingly, in the present invention, the binder component in the carbon aggregate 20 is contained at 10% or less, and the metal electrode layer 10 is constituted alone, and the carbon aggregate 20 is implemented to surround the metal electrode layer 10. Accordingly, the problem of deterioration in heat generation performance due to the binder was solved.
한편 본 발명에 따른 상기 탄소 집합체(20)를 포함하는 고효율 하이브리드 발열체는 5초동안 3.5 V의 전압 및 24 Watt의 전력을 공급하여 하이브리드 발열체의 표면온도가 350℃ 이상이 될 수 있다. Meanwhile, the high-efficiency hybrid heating element including the carbon aggregate 20 according to the present invention supplies a voltage of 3.5 V and power of 24 Watt for 5 seconds, so that the surface temperature of the hybrid heating element can reach 350° C. or higher.
보다 구체적으로 하기 표 1을 참조하면, 본 발명에 따른 금속 전극층(10)으로만 구성된 발열체의 경우3.5 V의 전압 및 24 Watt의 전력에서 195 ℃의 표면온도를 나타내었으나, 본 발명에 따른 고효율 하이브리드 발열체(100)의 경우 3.5 V의 전압 및 24 Watt의 전력에서 350℃ 이상의 표면온도를 나타내는 것이 가능함을 알 수 있다. 이를 통해 금속 전극층(10)이 전자의 통로 역할을 수행함으로써 탄소 집합체(20)의 높은 저항으로 인한 전기적 특성 저하를 방지하여 발열 성능이 현격히 상승되었음을 알 수 있다.More specifically, referring to Table 1 below, in the case of a heating element composed of only the metal electrode layer 10 according to the present invention, a surface temperature of 195 ° C. was exhibited at a voltage of 3.5 V and a power of 24 Watt, but a high-efficiency hybrid according to the present invention In the case of the heating element 100, it can be seen that it is possible to exhibit a surface temperature of 350 ° C. or more at a voltage of 3.5 V and power of 24 Watt. Through this, it can be seen that the metal electrode layer 10 serves as a passage for electrons, thereby preventing deterioration in electrical characteristics due to the high resistance of the carbon aggregate 20, thereby significantly increasing heat generation performance.
또한 본 발명의 일 실시예에 의하면 본 발명에 따른 상기 탄소 집합체(20)를 포함하는 고효율 하이브리드 발열체는 3.5 V의 전압 및 24 Watt의 전력에서 20초 안에 표면온도 500℃에 이르도록 급속 가열을 할 수 있다.In addition, according to an embodiment of the present invention, the high-efficiency hybrid heating element including the carbon aggregate 20 according to the present invention can rapidly heat up to a surface temperature of 500° C. within 20 seconds at a voltage of 3.5 V and power of 24 Watt. can
이와 같이 본 발명은 발열체로서의 탄소나노튜브의 특성을 충분히 활용하여 전력 소모 및 열용량이 낮고 방사율이 매우 높아 에너지 효율을 극대화시킬 수 있음에도 불구하고 전기적 특성의 저하가 없는 고효율 하이브리드 발열체를 제조할 수 있다. 이와 동시에 본 발명은 탄소나노튜브를 사용함에도 불구하고 전기전도도의 저하 없이 두께를 최소화시킬 수 있어서 초박막 형태의 발열체의 제조가 가능하여 다양한 산업군에 활용도를 제고할 수 있다.As described above, the present invention fully utilizes the characteristics of carbon nanotubes as a heating element to maximize energy efficiency with low power consumption and heat capacity and very high emissivity, but a high-efficiency hybrid heating element without deterioration in electrical characteristics can be manufactured. At the same time, the present invention can minimize the thickness without deterioration of electrical conductivity despite the use of carbon nanotubes, so that it is possible to manufacture a heating element in the form of an ultra-thin film, thereby improving its utilization in various industrial groups.
이에 본 발명은 상술한 고효율 하이브리드 발열체를 포함하는 히터를 제공한다. 이때 히터는 가정에서 사용하는 헤어 드라이기를 비롯하여 발열체를 필요로 하는 공지의 통상적인 히터가 될 수 있다.Accordingly, the present invention provides a heater including the above-described high-efficiency hybrid heating element. At this time, the heater may be a known conventional heater that requires a heating element, including a hair dryer used at home.
다음 본 발명에 따른 고효율 하이브리드 발열체의 제조방법을 설명한다. 다만 중복을 피하기 위하여 상술한 고효율 하이브리드 발열체와 기술적 사상이 동일한 부분에 대하여는 설명을 생략한다.Next, a method for manufacturing a high-efficiency hybrid heating element according to the present invention will be described. However, in order to avoid duplication, descriptions of portions having the same technical concept as the high-efficiency hybrid heating element described above are omitted.
본 발명에 따른 고효율 하이브리드 발열체는 (1) 금속 전극층을 형성하는 단계 및 (2) 상기 금속 전극층의 일부 또는 전부를 둘러쌓도록 탄소 구조체가 서로 연결되어 네트워크 구조를 갖는 탄소 집합체를 형성하는 단계를 포함하여 제조되며, 하기 관계식 1을 만족한다.A high-efficiency hybrid heating element according to the present invention includes the steps of (1) forming a metal electrode layer and (2) forming a carbon aggregate having a network structure by connecting carbon structures to each other so as to surround a part or all of the metal electrode layer. It is prepared, and satisfies the following relational expression 1.
[관계식 1][Relationship 1]
5초동안 3.5 V의 전압 및 24 Watt의 전력을 공급하여 하이브리드 발열체의 표면온도가 350℃ 이상By supplying a voltage of 3.5 V and power of 24 Watt for 5 seconds, the surface temperature of the hybrid heating element is over 350 ° C.
본 발명의 (1) 단계는 금속 전극층(10)을 형성하는 단계이다.Step (1) of the present invention is a step of forming the metal electrode layer 10 .
상기 금속 전극층(10)은 전자의 이송 역할을 수행함으로써 전류의 흐름을 방해하지 않아서 탄소 집합체(20)의 높은 저항으로 인해 발생하는 전기전도도가 저하되는 문제를 해결하고, 나아가 이를 통해 상대적으로 낮은 전력으로도 높은 표면온도를 나타낼 수 있게 하여 발열체의 효율을 극대화시킬 수 있다.The metal electrode layer 10 does not interfere with the flow of current by performing a role of transporting electrons, thereby solving the problem of deterioration in electrical conductivity caused by the high resistance of the carbon aggregate 20, and furthermore, relatively low power through this. It is also possible to maximize the efficiency of the heating element by making it possible to show a high surface temperature.
이때 상기 금속 전극층(10)은 금속 전극을 제조하는 방법은 특별히 제한하지 않으며 통상적인 공지의 제조방법이 사용될 수 있다.At this time, the method of manufacturing the metal electrode layer 10 is not particularly limited, and a conventionally known manufacturing method may be used.
다음 본 발명의 (2) 단계는 상기 금속 전극층(10)의 일부 또는 전부를 둘러쌓도록 탄소구조체가 서로 연결되어 네트워크 구조를 갖는 탄소 집합체(20)를 형성하는 단계이다.Next, step (2) of the present invention is a step of forming a carbon aggregate 20 having a network structure by connecting carbon structures to each other so as to surround a part or all of the metal electrode layer 10 .
상기 탄소 집합체(20)는 본 발명의 바람직한 실시예에 따라 탄소나노튜브 집합체가 될 수 있으며, 이와 같은 탄소나노튜브 집합체를 제조하는 방법은 특별히 제한하지 않으나, 고온에서 발열체의 내구성 및 내열성 물성 저하가 발생하지 않도록 바인더의 함량이 최소가 되는 통상적인 제조방법으로 제조할 수 있다.The carbon aggregate 20 may be a carbon nanotube aggregate according to a preferred embodiment of the present invention, and the method for manufacturing such a carbon nanotube aggregate is not particularly limited, but the durability and heat resistance of the heating element at high temperatures are reduced. It can be prepared by a conventional manufacturing method in which the content of the binder is minimized so as not to occur.
이에 대한 비제한적인 예로 직접합성법(Direct synthesis)법을 이용하여 탄소나노튜브 다발이 엮인 구조를 제조하는 방법과 탄소나노튜브 입자가 분산된 용액을 사용하여 초지기술로 탄소나노튜브 집합체를 제조하는 방법이 있으며, 상술한 바인더의 함량이 최소가 되도록 발열체의 용도에 맞게 적절한 방법을 선택할 수 있다.Non-limiting examples of this include a method of manufacturing a structure in which carbon nanotube bundles are woven using a direct synthesis method and a method of manufacturing a carbon nanotube aggregate by papermaking technology using a solution in which carbon nanotube particles are dispersed There is, and an appropriate method can be selected according to the use of the heating element so that the content of the above-mentioned binder is minimized.
예를 들어 상기 직접합성법은 본 발명의 목적에 부합하는 한 공지의 통상적인 방법이 사용될 수 있으며, 이에 대한 비제한적인 예로 탄소 공급원, 촉매 및 조촉매 등으로 구성된 원료 용액을 이송 가스와 함께 고온의 합성로 내부에서 합성할 수 있다. 상기 탄소 공급원은 아세톤, 에탄올 및 부탄올과 같은 유기용매를 주로 사용하며, 촉매로 페로세인(Ferrocene) 및 니켈로센(Nicklocene)과 같은 메탈로세인(Metallocene)을 사용하고, 조촉매로는 싸이오펜(Thiophene)이나 이황화탄소(CS2) 등을 사용할 수 있다. 또 다른 예로 초지기술을 이용하여 탄소나노튜브 집합체를 제조할 수 있으며 특별히 제한하지 않는다.For example, as long as the direct synthesis method meets the purpose of the present invention, a known conventional method may be used. As a non-limiting example thereof, a raw material solution composed of a carbon source, a catalyst, and a cocatalyst is mixed with a transfer gas at a high temperature. It can be synthesized inside the synthesis furnace. The carbon source mainly uses organic solvents such as acetone, ethanol and butanol, uses metallocene such as ferrocene and nickellocene as a catalyst, and thiophene as a cocatalyst. (Thiophene) or carbon disulfide (CS 2 ) can be used. As another example, a carbon nanotube aggregate may be manufactured using papermaking technology, and is not particularly limited.
한편 상기 (2) 단계는 용매를 처리한 후 고온에서 열처리하는 (2-1) 단계를 더 포함할 수 있다. 이 경우 탄소 집합체(20)와 금속 전극층(10) 간의 결속력이 강화되어 발열체의 내구성이 강화되고 전기적 특성 저하를 방지할 수 있다.Meanwhile, the step (2) may further include a step (2-1) of heat treatment at a high temperature after treating the solvent. In this case, the binding force between the carbon aggregate 20 and the metal electrode layer 10 is strengthened, thereby enhancing durability of the heating element and preventing electrical characteristics from deteriorating.
상기 용매는 탄소 집합체(20)의 표면에 충분히 도포될 수 있는 양으로 특별히 제한되지 않으며, 용매의 종류도 공지의 통상적인 용매가 사용될 수 있으며, 이에 대한 비제한적인 예로 물, 알코올, DMSO, DMF 등을 사용할 수 있다.The solvent is not particularly limited to an amount that can be sufficiently applied to the surface of the carbon aggregate 20, and a known common solvent may be used, and non-limiting examples thereof include water, alcohol, DMSO, and DMF. etc. can be used.
상기 열처리는 80 내지 300 ℃의 오븐에서 20 내지 40분간 열처리하여 용매를 충분히 건조시킬 수 있다. 이때 탄소 집합체(20)에 존재하는 용매가 증발하면서 탄소 집합체(20)와 금속 전극층(10)간의 결속력이 강화될 수 있다.The heat treatment may be performed in an oven at 80 to 300 °C for 20 to 40 minutes to sufficiently dry the solvent. At this time, as the solvent present in the carbon aggregate 20 evaporates, the binding force between the carbon aggregate 20 and the metal electrode layer 10 may be strengthened.
이하에서는 실시예를 통하여 본 발명을 더욱 구체적으로 설명하기로 하지만, 하기 실시예가 본 발명의 범위를 제한하는 것은 아니며, 이는 본 발명의 이해를 돕기 위한 것으로 해석되어야 할 것이다.Hereinafter, the present invention will be described in more detail through examples, but the following examples are not intended to limit the scope of the present invention, which should be interpreted to aid understanding of the present invention.
실시예 1 - 고효율 하이브리드 발열체의 제조Example 1 - Manufacturing of High Efficiency Hybrid Heating Element
지름 0.7 mm, 저항 3.05 Ω/m인 니크롬선을 전극으로 하고, 직접합성법으로 탄소나노튜브 집합체를 제조하기 위해 아세톤 (94 wt%), ferrocene (1.2 wt%), thiophene (4.8 wt%) 혼합용액을 1200°C의 고온 합성로에 11 ml/h 속도로 수소와 함께 주입하였다. 주입된 수소의 유량은 2000 sccm이다. 제조된 탄소나노튜브 집합체는 두께가 3 ㎛, 면저항이 0.5 Ω/sq이며 이를 폭 5mm 테이프로 제조하여, 니크롬선에 감아서 발열체로 제조하였다. A mixed solution of acetone (94 wt%), ferrocene (1.2 wt%), and thiophene (4.8 wt%) to prepare a carbon nanotube assembly by direct synthesis using a nichrome wire with a diameter of 0.7 mm and a resistance of 3.05 Ω/m as an electrode. was injected with hydrogen at a rate of 11 ml/h into a high-temperature synthesis furnace at 1200 °C. The flow rate of injected hydrogen is 2000 sccm. The prepared carbon nanotube assembly had a thickness of 3 μm and a sheet resistance of 0.5 Ω/sq, and was made into a tape having a width of 5 mm and wound around nichrome wire to form a heating element.
실시예 2 - 고효율 하이브리드 발열체의 제조Example 2 - Manufacturing of High Efficiency Hybrid Heating Element
탄소 집합체로 탄소나노튜브 집합체 대신 두께가 1 mm인 탄소섬유 부직포를 사용한 것을 제외하고 실시예 1과 동일하게 제조하였다. 탄소섬유 부직포는 수분산성이 용이한 탄소섬유(Tenax-A HTC124, Teijin)를 사용하였다. 탄소섬유의 수분산성 향상을 위해 호제 처리가 되어있고 섬유장이 3mm인 것을 호모게나이저(Homogenizer, K-corperation, Korea)로 30분간 교반하여 초지공법으로 부직포로 제조하였다.The carbon assembly was prepared in the same manner as in Example 1, except that a carbon fiber nonwoven fabric having a thickness of 1 mm was used instead of the carbon nanotube assembly. As the carbon fiber nonwoven fabric, water-dispersible carbon fiber (Tenax-A HTC124, Teijin) was used. In order to improve the water dispersibility of the carbon fiber, it was treated with a sizing agent and the fiber length was 3 mm, and it was stirred for 30 minutes with a homogenizer (K-corperation, Korea) to prepare a non-woven fabric by the papermaking method.
실시예 3 - 고효율 하이브리드 발열체의 제조Example 3 - Manufacturing of High Efficiency Hybrid Heating Element
산화그래핀(graphene oxide)이 물과 메탄올 1:1로 혼합된 용액을 도 3과 같이 초지기술을 이용하여 산화그래핀 종이를 제조하고, 이를 HI 용액에 적신후에 건조하므로서 환원된 그래핀 종이를 제조하였다. 이후 제조된 환원 그래핀(reduced graphene)를 이용하여 두께가 15 ㎛, 전기전도도가 1.5 Ω/sq 인 그래핀 종이를 준비하였다. As shown in FIG. 3, a solution in which graphene oxide is mixed with water and methanol 1:1 is used to prepare graphene oxide paper, and then dipped in HI solution and dried to obtain reduced graphene paper. manufactured. Then, graphene paper having a thickness of 15 μm and an electrical conductivity of 1.5 Ω/sq was prepared using the prepared reduced graphene.
이후, 탄소 집합체로 탄소나노튜브 집합체를 상기 그래핀 종이로 사용한 것을 제외하고 실시예 1과 동일하게 제조하였다.Thereafter, it was prepared in the same manner as in Example 1 except that a carbon nanotube aggregate was used as the graphene paper as a carbon aggregate.
실시예 4 - 고효율 하이브리드 발열체의 제조Example 4 - Manufacturing of High Efficiency Hybrid Heating Element
실시예 2에서와 같은 초지기술로 탄소나노튜브 입자(80 wt%)와 탄소섬유(20 wt%)로 복합하여 발열시트를 제조하였다. 이를 위해서 다중벽 탄소나노튜브, MWCNT(K-Nanos 500P, Kumho Petrochemical, Korea)를 사용하였고, 페이퍼 제조 및 응집특성을 용이하기 위해 번들 길이가 100㎛, Bulk density가 0.030g/ml인 MWCNT를 사용하였다. 페이퍼 제조에 앞서 탄소나노튜브와 탄소섬유의 수분 제어를 위해 오븐에 100℃에서 12시간 건조시켰다. 이렇게 건조된 탄소나노튜브를0.2 wt% 수용액을 만들고 Homogenizer(K-corperation, Korea)로 30분간 교반하여 분산용액을 제조하였다. 탄소섬유는0.08 wt%의 수용액으로 제조하고 Agitator(K-corperation, Korea)를 이용하여 30 min간 교반하여 분산용액을 제조하였다. 탄소나노튜브 입자만으로는 안정적인 물성을 갖는 시트 형성이 되지 않아, 탄소섬유를 배합하였다. 탄소나노튜브 및 탄소섬유를 Homogenizer(K-corperation, Korea)로 15분간 교반하여 복합 용액을 제조하고, 이를 초지기를 활용하여 시트로 제조하였다. 제조된 시트의 면저항은 8.6 Ω/sq며, 두께는 112 ㎛ 였다. 탄소나노튜브 입자/탄소섬유 복합시트를 사용한 것을 제외하고 실시예 1과 동일하게 제조하였다.A heat generating sheet was manufactured by combining carbon nanotube particles (80 wt%) and carbon fibers (20 wt%) with the same papermaking technique as in Example 2. To this end, multi-walled carbon nanotubes, MWCNTs (K-Nanos 500P, Kumho Petrochemical, Korea) were used, and MWCNTs with a bundle length of 100 μm and a bulk density of 0.030 g/ml were used to facilitate paper manufacturing and cohesion characteristics. did Prior to paper production, carbon nanotubes and carbon fibers were dried in an oven at 100° C. for 12 hours to control moisture. A 0.2 wt% aqueous solution of the dried carbon nanotubes was prepared and stirred for 30 minutes with a homogenizer (K-corperation, Korea) to prepare a dispersion solution. Carbon fibers were prepared as an aqueous solution of 0.08 wt % and stirred for 30 min using an agitator (K-corperation, Korea) to prepare a dispersion solution. Carbon nanotube particles alone did not form a sheet having stable physical properties, so carbon fibers were blended. A composite solution was prepared by stirring the carbon nanotubes and carbon fibers with a homogenizer (K-corperation, Korea) for 15 minutes, and this was prepared into a sheet using a paper machine. The sheet resistance of the prepared sheet was 8.6 Ω/sq, and the thickness was 112 μm. It was prepared in the same manner as in Example 1, except that the carbon nanotube particle/carbon fiber composite sheet was used.
비교예 1 - 발열체 제조Comparative Example 1 - Heating element manufacturing
실시예 1과 동일하게 제조하되, 탄소 집합체를 사용하지 않고 실시예 1의 니크롬선만으로 발열체를 제조하였다.It was manufactured in the same manner as in Example 1, but a heating element was manufactured only with the nichrome wire of Example 1 without using a carbon aggregate.
비교예 2 - 발열체 제조Comparative Example 2 - Heating element manufacturing
실시예 3에서 제조된 그래핀 시트를 PAN을 DMF에 용해하여 만든 5 wt%의 용액에 침지 후 하루동안 건조하여, 역학적 특성이 강화된 시트로 제조하였다. 이 복합 그래핀/PAN 시트는 두께가 16 ㎛, 전기전도도가 20 Ω/sq이다. 이후 상기 복합 시트를 사용하여 실시예 1과 동일한 조건으로 발열체를 제조하였다. The graphene sheet prepared in Example 3 was immersed in a 5 wt % solution prepared by dissolving PAN in DMF and dried for one day to prepare a sheet having enhanced mechanical properties. This composite graphene/PAN sheet has a thickness of 16 μm and electrical conductivity of 20 Ω/sq. Then, a heating element was manufactured under the same conditions as in Example 1 using the composite sheet.
비교예 3- 발열체 제조Comparative Example 3 - Heating element manufacturing
금속 전극층 없이 탄소나노튜브 집합체 만으로 발열체를 구성하였으며, 중심부는 절연체이면서 고내열성인 아라미드 섬유(Kevlar, 듀퐁, 미국)를 사용하였다. 탄소 집합체는 실시예 1과 동일한 탄소나노튜브 시트를 사용하였으며, 이를 아라미드 섬유에 감아서 제조하였다. 아라미드 섬유의 직경은 0.55mm, 탄소나노튜브 테이프의 폭은 5 mm, 면저항 0.5 Ω/sq 인 것을 사용하였다.The heating element was composed of only carbon nanotube aggregates without a metal electrode layer, and an insulator and high heat resistance aramid fiber (Kevlar, DuPont, USA) was used in the center. The carbon aggregate used the same carbon nanotube sheet as in Example 1, and was prepared by winding it around an aramid fiber. The diameter of the aramid fiber was 0.55 mm, the width of the carbon nanotube tape was 5 mm, and the sheet resistance was 0.5 Ω/sq.
실험예 - 발열 성능 평가Experimental Example - Thermal Performance Evaluation
상기 실시예 및 비교예에서 제조된 발열체를 5초 동안 3.5V, 24Watt의 전력을 공급하고 온도를 측정하였다.Power of 3.5V and 24 Watt was supplied to the heating element prepared in Examples and Comparative Examples for 5 seconds, and the temperature was measured.
탄소 집합체carbon aggregate 금속 전극층metal electrode layer 발열체 온도(℃)Heating element temperature (℃) 측정 조건(시간, 전압, 전력)Measurement conditions (time, voltage, power)
실시예 1Example 1 탄소나노튜브 집합체Carbon nanotube aggregate 니크롬선nichrome wire 558.2558.2 5초, 3.5V, 24Watt5 seconds, 3.5V, 24Watt
실시예 2Example 2 탄소섬유 집합체carbon fiber aggregate 니크롬선nichrome wire 250250 5초, 3.5V, 24Watt5 seconds, 3.5V, 24Watt
실시예 3Example 3 그래핀 집합체graphene aggregate 니크롬선nichrome wire 305305 5초, 3.5V, 24Watt5 seconds, 3.5V, 24Watt
실시예 4Example 4 탄소나노튜브 입자/탄소섬유 복합집합체Carbon nanotube particles/carbon fiber composite assembly 니크롬선nichrome wire 285285 5초, 3.5V, 24Watt5 seconds, 3.5V, 24Watt
비교예 1Comparative Example 1 없음doesn't exist 니크롬선nichrome wire 195195 5초, 3.5V, 24Watt5 seconds, 3.5V, 24Watt
비교예 2Comparative Example 2 그래핀/PANGraphene/PAN 니크롬선nichrome wire 120120 5초, 3.5V, 12Watt5 seconds, 3.5V, 12Watt
비교예 3Comparative Example 3 탄소나노튜브 집합체Carbon nanotube aggregate 없음doesn't exist 71.471.4 5초, 3.5V, 1 Watt5 seconds, 3.5V, 1 Watt
이하 상기 표 1 및 도 4 내지 6을 참조하여 설명한다.Hereinafter, it will be described with reference to Table 1 and FIGS. 4 to 6.
상기 표 1에서 실시예 1과 비교예 1 및 2를 비교하여 보면, 탄소 집합체로 탄소나노튜브 집합체와 금속 전극층으로 니크롬선을 사용한 본 발명에 따른 하이브리드 발열체의 경우 발열체의 표면온도가 20초 안에 558.2℃(도 4)에 이르는 것을 알 수 있다. 이에 반하여 탄소 집합체를 포함하지 않는 비교예 1(도5)의 경우 같은 조건에서 불과 195℃의 온도를 나타내어 발열효율이 현격히 낮음을 알 수 있다. 또한, 탄소 집합체(그래핀)과 PAN을 혼합하여 사용한 비교예 2의 경우 120℃에 불과하여 탄소 집합체로 구성된 발열체의 발열 효율이 우수함을 알 수 있다.Comparing Example 1 with Comparative Examples 1 and 2 in Table 1, in the case of the hybrid heating element according to the present invention using a carbon nanotube assembly as the carbon assembly and nichrome wire as the metal electrode layer, the surface temperature of the heating element is 558.2 within 20 seconds. It can be seen that it reaches ℃ (Fig. 4). On the other hand, in the case of Comparative Example 1 (FIG. 5), which does not contain a carbon aggregate, it can be seen that the heating efficiency is remarkably low as it shows a temperature of only 195 ° C. under the same conditions. In addition, in the case of Comparative Example 2 using a mixture of the carbon aggregate (graphene) and PAN, the temperature was only 120 ° C, indicating that the heating efficiency of the heating element composed of the carbon aggregate was excellent.
또한, 상기 표 1에서 실시예 1과 실시예 2 내지 4를 비교하여 보면, 금속 전극층으로 니크롬선으로 동일하게 사용하였고 탄소 집합체의 종류만을 달리하였는데, 같은 조건에서 발열체의 온도가 다름을 통해 탄소 집합체를 달리하여 용도에 맞는 발열체를 제조할 수 있음을 알 수 있으며, 특히 탄소나노튜브 집합체를 이용한 발열체가 발열 효율이 가장 우수함을 알 수 있다.In addition, when comparing Example 1 and Examples 2 to 4 in Table 1, the same nichrome wire was used as the metal electrode layer, and only the type of carbon aggregate was different. It can be seen that a heating element suitable for the purpose can be manufactured by changing, and in particular, it can be seen that the heating element using the carbon nanotube assembly has the best heating efficiency.
나아가 금속 전극층 없이 탄소나노튜브 집합체로만 제조한 비교예 3의 경우 다른 실시예 및 비교예들과 같은 인가전압을 3.5V로 하였으나 탄소나노튜브 집합체의 높은 저항으로 인해서 전력은 1W의 전력 밖에 공급되지 않았다. 즉, 탄소나노튜브 집합체의 높은 저항 및 이로만 구성된 발열체의 낮은 전력으로 인해 발열체의 온도가 71.4℃ (도 6)에 불과함을 통해 전기전도도가 높은 금속 전극층이 이 전자의 통로 역할을 수행하는 경우에만 실시예 1과 같은 본 발명이 목적하는 발열 효율을 나타냄을 알 수 있다Furthermore, in the case of Comparative Example 3, which was manufactured only with a carbon nanotube assembly without a metal electrode layer, the applied voltage was 3.5V, as in other Examples and Comparative Examples, but only 1W of power was supplied due to the high resistance of the carbon nanotube assembly. . That is, when the metal electrode layer with high electrical conductivity acts as a passage for electrons through the temperature of the heating element being only 71.4 ° C (FIG. 6) due to the high resistance of the carbon nanotube assembly and the low power of the heating element composed only of it It can be seen that only the present invention, such as Example 1, exhibits the desired heating efficiency.

Claims (10)

  1. 금속 전극층; 및 metal electrode layer; and
    상기 금속 전극층의 일부 또는 전부를 둘러쌓도록 탄소 구조체가 서로 연결되어 네트워크 구조를 갖는 탄소 집합체; 를 포함하며, a carbon aggregate having a network structure in which carbon structures are connected to each other to surround a part or all of the metal electrode layer; Including,
    하기 관계식 1을 만족하는 고효율 하이브리드 발열체.A high-efficiency hybrid heating element that satisfies the following relational expression 1.
    [관계식 1][Relationship 1]
    5초동안 3.5 V의 전압 및 24 Watt의 전력을 공급하여 하이브리드 발열체의 표면온도가 350℃ 이상By supplying a voltage of 3.5 V and power of 24 Watt for 5 seconds, the surface temperature of the hybrid heating element is over 350 ° C.
  2. 제1항에 있어서,According to claim 1,
    상기 고효율 하이브리드 발열체는 외부에서 인가된 전류가 전기전도도가 높은 상기 금속 전극층에서 상기 탄소 집합체로 유입되어 열에너지로 변환 및 방출되는 것을 특징으로 하는 고효율 하이브리드 발열체.The high-efficiency hybrid heating element is a high-efficiency hybrid heating element, characterized in that the current applied from the outside flows into the carbon aggregate from the metal electrode layer having high electrical conductivity and is converted into thermal energy and released.
  3. 제1항에 있어서,According to claim 1,
    상기 탄소 집합체는 바인더 성분을 10% 이하로 포함하는 것을 특징으로 하는 고효율 하이브리드 발열체.The carbon aggregate is a high-efficiency hybrid heating element, characterized in that it contains a binder component of 10% or less.
  4. 제1항에 있어서,According to claim 1,
    상기 탄소 구조체는 탄소나노튜브(carbon nanotube, CNT), 그래핀(Graphene), 탄소섬유(Carbon fiber) 중 적어도 어느 하나 이상인 것을 특징으로 하는 고효율 하이브리드 발열체.The carbon structure is a high-efficiency hybrid heating element, characterized in that at least one or more of carbon nanotube (CNT), graphene (Graphene), carbon fiber (Carbon fiber).
  5. 제1항에 있어서,According to claim 1,
    상기 탄소 집합체의 전기전도도는 106 S/m 미만이며 두께가 50 nm 내지 10 mm 미만인 것을 특징으로 하는 고효율 하이브리드 발열체.Electrical conductivity of the carbon aggregate is less than 10 6 S / m and a high efficiency hybrid heating element, characterized in that the thickness is less than 50 nm to 10 mm.
  6. 제1항에 있어서,According to claim 1,
    상기 고효율 하이브리드 발열체는 와이어 형태의 금속 전극층의 외부 표면에 상기 탄소 집합체가 권취된 와이어 형태이거나, 시트 형태의 금속 전극층의 상부 및 하부면에 상기 탄소 집합체가 형성된 시트 형태인 것을 특징으로 하는 고효율 하이브리드 발열체.The high-efficiency hybrid heating element is a high-efficiency hybrid heating element, characterized in that in the form of a wire in which the carbon aggregate is wound on the outer surface of the metal electrode layer in the form of a wire, or in the form of a sheet in which the carbon aggregate is formed on the upper and lower surfaces of the metal electrode layer in the form of a sheet .
  7. 제1항에 있어서,According to claim 1,
    상기 금속 전극층은 구리, 니켈, 니크롬, 철크롬, 금, 은, 텅스텐, 아연, 철, 백금, 주석, 연, 황동, 청동 및 알루미늄 중에서 선택되는 어느 하나인 금속인 것을 특징으로 하는 고효율 하이브리드 발열체.The metal electrode layer is a high efficiency hybrid heating element, characterized in that any one metal selected from copper, nickel, nichrome, iron chromium, gold, silver, tungsten, zinc, iron, platinum, tin, lead, brass, bronze and aluminum.
  8. 제6항에 있어서,According to claim 6,
    상기 탄소 집합체는 20초 안에 표면온도 500℃에 이르도록 급속 가열이 가능한 것을 특징으로 하는 고효율 하이브리드 발열체.The carbon aggregate is a high-efficiency hybrid heating element, characterized in that it can be rapidly heated to reach a surface temperature of 500 ℃ in 20 seconds.
  9. (1) 금속 전극층을 형성하는 단계; 및(1) forming a metal electrode layer; and
    (2) 상기 금속 전극층의 일부 또는 전부를 둘러쌓도록 탄소구조체가 서로 연결되어 네트워크 구조를 갖는 탄소집합체를 형성하는 단계; 를 포함하며,(2) forming a carbon aggregate having a network structure by connecting carbon structures to each other so as to surround part or all of the metal electrode layer; Including,
    하기 관계식 1을 만족하는 고효율 하이브리드 발열체의 제조방법.A method for manufacturing a high-efficiency hybrid heating element that satisfies the following relational expression 1.
    [관계식 1][Relationship 1]
    5초동안 3.5 V의 전압 및 24 Watt의 전력을 공급하여 하이브리드 발열체의 표면온도가 350℃ 이상By supplying a voltage of 3.5 V and power of 24 Watt for 5 seconds, the surface temperature of the hybrid heating element is over 350 ° C.
  10. 제1항에 따른 고효율 하이브리드 발열체를 포함하는 히터.A heater comprising the high-efficiency hybrid heating element according to claim 1.
PCT/KR2021/013761 2021-09-07 2021-10-07 High-efficiency hybrid heater and manufacturing method therefor WO2023038186A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210118893A KR20230036254A (en) 2021-09-07 2021-09-07 High-efficiency hybrid heating element and manufacturing method thereof
KR10-2021-0118893 2021-09-07

Publications (1)

Publication Number Publication Date
WO2023038186A1 true WO2023038186A1 (en) 2023-03-16

Family

ID=85502627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/013761 WO2023038186A1 (en) 2021-09-07 2021-10-07 High-efficiency hybrid heater and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR20230036254A (en)
WO (1) WO2023038186A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140030281A (en) * 2014-01-20 2014-03-11 (주)탑나노시스 Nanowire-carbon nano tube hybrid film and method for manufacturing the same
KR20140105640A (en) * 2013-02-22 2014-09-02 (주)엘지하우시스 Thermal mat for car by using radiant heat
KR20190011646A (en) * 2017-07-25 2019-02-07 세진 장 Defrost and Deice, Dew condensation prevention Heater and Manufacturing method for Refrigerator and Freezer using Carbon fiber
KR101969487B1 (en) * 2018-09-18 2019-04-16 코윈시스템 주식회사 Resistors with carbon nanotubes
KR20200094807A (en) * 2018-12-28 2020-08-10 허광호 carbon heater and manufacturing method of carbon heater and heating pad for car seat

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101514530B1 (en) 2013-07-11 2015-04-22 김장호 Grinding unit for Grinding machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140105640A (en) * 2013-02-22 2014-09-02 (주)엘지하우시스 Thermal mat for car by using radiant heat
KR20140030281A (en) * 2014-01-20 2014-03-11 (주)탑나노시스 Nanowire-carbon nano tube hybrid film and method for manufacturing the same
KR20190011646A (en) * 2017-07-25 2019-02-07 세진 장 Defrost and Deice, Dew condensation prevention Heater and Manufacturing method for Refrigerator and Freezer using Carbon fiber
KR101969487B1 (en) * 2018-09-18 2019-04-16 코윈시스템 주식회사 Resistors with carbon nanotubes
KR20200094807A (en) * 2018-12-28 2020-08-10 허광호 carbon heater and manufacturing method of carbon heater and heating pad for car seat

Also Published As

Publication number Publication date
KR20230036254A (en) 2023-03-14

Similar Documents

Publication Publication Date Title
Zhang et al. Polymer-embedded carbon nanotube ribbons for stretchable conductors
JP4577385B2 (en) Conductor and manufacturing method thereof
WO2011055961A2 (en) Method for manufacturing a composite carbon sheet by coating a mixed dispersion solution onto an expanded graphite sheet
KR101294596B1 (en) Composition and method of carbon nanotube paste for flat heating element device
JP5487502B2 (en) Planar heating element obtained by using fine carbon fiber aqueous dispersion and method for producing the same
CN101189686B (en) Electric insulation material, an electric device and a method for producing an electric insulation material
WO2011105837A2 (en) Soft electrode material and manufacturing method thereof
CN1430785A (en) Power cable
WO2012036538A2 (en) Conductive polymer composition for ptc element with decreased ntc characteristics, using carbon nanotube
WO2018044110A1 (en) Method for preparing porous carbon structure, and porous carbon structure for electrode of secondary battery
WO2019066173A1 (en) Carbon felt heating apparatus and manufacturing method therefor
WO2013187675A1 (en) Carbon nanotube coating film and carbon nanotube solution composition for forming the carbon nanotube coating film
WO2004082333A1 (en) Seat-like heating units with porous plate-shaped electrode
CN111073059A (en) Nano-cellulose electrothermal film and preparation method thereof
WO2023038186A1 (en) High-efficiency hybrid heater and manufacturing method therefor
WO2017159917A1 (en) Method for fabricating electrically conductive carbon paper
US7618679B2 (en) Thermally and electrically conductive structure, method of applying a carbon coating to same, and method of reducing a contact resistance of same
WO2015016490A1 (en) Method for manufacturing ceramic-coated graphite
WO2022075565A1 (en) Lithium-sulfur battery cathode using fabric material, lithium-sulfur battery comprising same, and manufacturing method therefor
WO2019160391A1 (en) Cathode and secondary battery comprising same cathode
CN107419607A (en) A kind of High Strength Carbon Nanotubes conductive paper and preparation method
KR102259236B1 (en) Composition of carbon nanotube paste for flat heating element device, flat heating element device comprising the same and film heater for preventing winter damage of water pipe using carbon nanotube
CN113736112B (en) Preparation method of ZnO pressure-sensitive microsphere-epoxy resin composite material reinforced by polymer fiber cloth
WO2022005242A1 (en) Slurry composition for secondary battery electrode, and secondary battery electrode using same
WO2021162368A1 (en) Multifunctional composite film having heat dissipation and electromagnetic wave shielding/ absorption capabilities, and production method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956891

Country of ref document: EP

Kind code of ref document: A1