WO2023036037A1 - 基于多种类、多数量传感器的智能电池监测预警方法及*** - Google Patents

基于多种类、多数量传感器的智能电池监测预警方法及*** Download PDF

Info

Publication number
WO2023036037A1
WO2023036037A1 PCT/CN2022/116236 CN2022116236W WO2023036037A1 WO 2023036037 A1 WO2023036037 A1 WO 2023036037A1 CN 2022116236 W CN2022116236 W CN 2022116236W WO 2023036037 A1 WO2023036037 A1 WO 2023036037A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
sensors
state information
battery pack
data fusion
Prior art date
Application number
PCT/CN2022/116236
Other languages
English (en)
French (fr)
Inventor
杨兴
贾炎燊
王博
柳强
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2023036037A1 publication Critical patent/WO2023036037A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the technical field of battery status monitoring, in particular to an intelligent battery monitoring and early warning method and system based on multiple types and quantities of sensors.
  • the improvement of battery safety performance is mainly through the improvement of battery cell manufacturing technology and the monitoring of battery status information.
  • the improvement of battery cell manufacturing technology is a method to improve battery safety from the materials and technology itself. This method can directly improve the service life and safety performance of the battery.
  • improving the safety performance of the battery by improving the manufacturing process of the battery cell will greatly increase the application cost of the battery, and there are technical and material barriers, which are difficult to satisfy people. Increasing battery safety requirements.
  • the monitoring of battery status information is to consider the changes of various parameters such as temperature and pressure during the process of battery out of control, and the generation of characteristic gas. Using such parameters as fault identification parameters and introducing battery status information monitoring is also the current An important means to improve battery safety. Compared with the improvement of battery cell manufacturing technology, this method is not only low in cost, but also can directly and effectively obtain some relevant parameters of the battery, thereby improving the service life and safety performance of the battery.
  • the types and quantity of information on the monitored battery are small: In addition to the electrical parameters such as voltage, current, and internal resistance that are often monitored by the battery management system, generally only temperature is used as an indicator for evaluating battery safety performance, and when the battery is out of control, It is usually not only accompanied by an increase in temperature, but also a large amount of gas, so monitoring pressure indicators is also an effective means to improve the reliability of the battery monitoring system. In addition, in the current monitoring system, the number of sensors for monitoring battery status information is mostly small, which is not enough to fully and comprehensively monitor battery status information, so more information needs to be monitored and uploaded to the cloud for fusion processing Then transmit to the user, in order to improve the reliability of the monitoring system.
  • a lithium battery temperature sensor detection structure which includes a first lithium battery and a second lithium battery arranged side by side, and the outer wall of the first lithium battery and the second lithium battery A gap is formed between them, and the gap is filled with an adaptive heat-conducting material, and a temperature sensor is embedded in the self-adapting heat-conducting material, and the temperature sensor is connected with an external temperature detection instrument.
  • the sensing information of the lithium battery is only temperature, and there is only one quantity, which makes the sensing information single, and is not conducive to comprehensively evaluating the state performance of the lithium battery.
  • Chinese patent CN 104466285 A discloses a battery system for electric bicycles, including a battery case, a battery and a base, wherein the inside of the battery case is provided with several A temperature sensor, a temperature control chip, an alarm light, a buzzer and a battery output system are installed inside the base.
  • the temperature control chip is connected with the temperature sensor, alarm light and buzzer on the one hand, and connected with the battery output system on the other hand;
  • the battery output system is connected with the battery on the one hand, and connected with the temperature control chip on the other hand.
  • the safety evaluation standard of the battery system is only the parameter of temperature, and parameters such as pressure and gas are not included in the safety evaluation scope, so the accuracy of the battery monitoring system is not fully improved, which is not conducive to protecting the personal and property safety of users.
  • the sensors are not arranged in multiple key positions of the battery: the sensor layout of the current monitoring system also needs to be improved.
  • the temperature sensor mostly directly measures the surface temperature of the battery. This measurement method is the largest
  • the problem is that there is a certain temperature difference between the internal and external temperatures of the battery, and the surface temperature of the battery is not enough to reflect the actual temperature state of the battery, which will cause thermal runaway inside the battery when the external temperature of the battery is still in the normal range, and eventually cause the monitoring system to fail to obtain the correct temperature. status information. Therefore, it is necessary to arrange sensors at multiple key positions of the battery pack/battery, thereby improving the success rate of the lithium battery status information monitoring system.
  • thermocouples which are respectively installed on the surface of the battery and the battery cell.
  • This study proves that placing sensors in key positions of the battery will effectively improve the accuracy of evaluating battery safety, but the thermocouple used in this structure can only detect a temperature of 15-40°C, and the measurement temperature range is not enough to cover the battery.
  • the temperature of the entire working area, and the detection information is only the temperature, and the information is single, which is not conducive to the early warning and monitoring of the safety performance of the lithium battery when it is used.
  • sensing information are small: In the current monitoring system, there are few types of sensors for monitoring battery status information, which is not enough to fully and comprehensively monitor the status information of the battery; in addition, the number of sensors arranged is also insufficient, which will make the The accuracy of monitoring is affected.
  • Sensors are not arranged in multiple key positions of the battery pack/battery: The sensor arrangement of the current monitoring system is not arranged in key positions, which will affect the accuracy of the monitoring system in evaluating the battery status.
  • the present disclosure aims to solve one of the technical problems in the related art at least to a certain extent.
  • an object of the present disclosure is to propose an intelligent battery monitoring and early warning system based on multiple types and multiple sensors.
  • the disclosure uses multiple types and quantities of sensors for early warning monitoring, which can effectively evaluate the safety performance of the battery and improve the reliability of the early warning system; Pressure and other parameters can evaluate the battery status with high accuracy; the information monitored by the sensor is processed by data fusion, which is convenient for quantitative evaluation of battery safety performance; the multi-faceted information obtained by the sensor is established as a cloud database to facilitate the battery safety performance model establishment and identification.
  • Another object of the present disclosure is to propose an intelligent battery monitoring and early warning method based on multiple types and multiple sensors.
  • an embodiment of the present disclosure proposes an intelligent battery monitoring and early warning system based on multiple types and multiple sensors, including:
  • a plurality of sensors are arranged on key positions of the battery pack/battery, and the plurality of sensors are used to obtain a plurality of state information of the battery pack/battery, wherein the plurality of sensors include different types of sensors ;
  • a transmission module configured to transmit a plurality of state information of the battery pack/battery to a data fusion processing module
  • the data fusion processing module is configured to perform data fusion processing on multiple state information of the battery pack/battery to generate fusion state information of the battery pack/battery;
  • the early warning module is configured to identify the working state of the battery pack/battery according to the fusion state information, and when it is determined that the working state of the battery pack/battery is abnormal, give an alarm and execute a preset protection strategy.
  • the intelligent battery monitoring and early warning system based on multiple types and multiple sensors in the embodiment of the present disclosure, through multiple sensors, the multiple sensors are set on multiple key positions of the battery pack/battery, and the multiple sensors are used to obtain A plurality of status information of the battery pack/battery, wherein the plurality of sensors include different types of sensors; a transmission module, configured to transmit the multiple status information of the battery pack/battery to a data fusion processing module; the data The fusion processing module is used to perform data fusion processing on the multiple state information of the battery pack/battery to generate the fusion state information of the battery pack/battery; the early warning module is used to identify the battery pack/battery according to the fusion state information The working state of the battery, and when it is determined that the working state of the battery pack/battery is abnormal, an alarm is issued and a preset protection strategy is executed.
  • the disclosure uses multiple types and multiple sensors for early warning monitoring, which can effectively evaluate the safety performance of the battery and improve the reliability of the early warning system;
  • the sensors can be arranged in multiple key parts of the battery, and multiple points can simultaneously measure parameters such as battery temperature and pressure , the accuracy of evaluating the battery status is high;
  • the information monitored by the sensor is processed by data fusion, which is convenient for a comprehensive evaluation of the battery safety performance;
  • the multi-faceted information obtained by the sensor is established as a cloud database to facilitate the establishment of a battery safety performance model and identification.
  • the battery warning monitoring system based on multiple types and multiple sensors may also have the following additional technical features:
  • the different types of sensors include: at least two types of sensors such as temperature sensors, pressure sensors, gas sensors, force and deformation sensors, humidity sensors, chemical sensors, and inertial sensors.
  • the key position includes key positions such as the upper, lower, left, right, and inside of the battery pack, and one of the positions of the inside, casing, positive pole, and negative pole of a single battery. or more;
  • the arrangement of the batteries and the installation position of the sensors can be adaptively arranged, wherein the batteries include one of lithium batteries, lead-acid batteries, dry batteries, fuel cells, and sodium-ion batteries;
  • the installation quantity of sensors is independently arranged.
  • the applications include but are not limited to electric vehicles, electric bicycles, scooters, electric ships, mobile power supplies, mobile terminals such as mobile phones, drones, computers, electric tools, Portable devices and other fields.
  • the surface of the sensor is coated with a coating encapsulation structure
  • the material of the coating encapsulation structure is one of materials including organic matter, inorganic matter, biological material, chemical material, etc. one or more species.
  • it also includes:
  • the user terminal, the data fusion processing module is set on the user terminal, and the user terminal is used to receive the multiple status information of the battery pack/battery sent by the transmission module, and use the data fusion processing module to Perform data fusion processing on multiple state information of the battery pack/battery to generate fusion state information of the battery pack/battery.
  • it also includes: a cloud server;
  • the cloud server is configured to receive a plurality of state information of the battery pack/battery uploaded by the user terminal through wireless/or wired means;
  • the data fusion processing module is set on the cloud server, the cloud server includes a cloud database, the cloud database is used to store a plurality of state information data of the battery pack/battery used by the user, and the cloud server uses The data fusion processing module performs data fusion processing on a plurality of state information of the battery pack/battery to generate fusion state information of the battery pack/battery.
  • the user terminal is further configured to display fusion state information of the battery pack/battery on a display interface.
  • the data fusion processing module is also used to extract features of each state information of the battery pack/battery, and perform pattern recognition according to the extracted features, so as to use fuzzy reasoning
  • fuzzy reasoning One or more ways of algorithms such as neural network and machine learning are used to perform feature fusion on multiple state information to generate the fusion state information of the battery pack/battery.
  • another embodiment of the present disclosure proposes an intelligent battery monitoring and early warning method based on multiple types and multiple sensors, including the following steps: acquiring multiple status information of the battery pack/battery, wherein the multiple one including different types of state information; performing data fusion processing on multiple state information of the battery pack/battery to generate fusion state information of the battery pack/battery; identifying the work of the battery pack/battery according to the fusion state information state, and when it is determined that the working state of the battery pack/battery is abnormal, execute a preset protection strategy.
  • the intelligent battery monitoring and early warning method based on multiple types and multiple sensors in the embodiment of the present disclosure uses multiple types and multiple sensors for early warning monitoring, which can effectively evaluate the safety performance of the battery and improve the reliability of the early warning system;
  • a large number of sensors measure battery temperature, pressure and other parameters with high accuracy, which can improve the accuracy of monitoring and evaluating battery safety performance;
  • data fusion processing of sensor monitoring information facilitates comprehensive evaluation of battery safety performance;
  • the multi-faceted information of the cloud database is established to facilitate the establishment and identification of battery safety performance models.
  • FIG. 1 is a flowchart of an intelligent battery monitoring and early warning system based on multiple types and multiple sensors according to an embodiment of the present disclosure.
  • Fig. 2 is a principle and structure diagram of an intelligent battery monitoring and early warning system based on multiple types and multiple sensors according to an embodiment of the present disclosure.
  • Fig. 3 is a schematic structural diagram of a battery status information monitoring system applied to vehicles such as electric bicycles according to an embodiment of the present disclosure.
  • Fig. 4 is a schematic structural diagram of a battery state information monitoring system applied to an electric vehicle according to an embodiment of the present disclosure.
  • 5( a ), 5( b ) and 5( c ) are schematic diagrams of a plurality of different types of sensors located at different positions of a single cell according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a plurality of different types of sensors located at different positions of a battery pack according to an embodiment of the present disclosure.
  • Fig. 7 is a schematic diagram of data fusion of multi-sensor information according to an embodiment of the present disclosure.
  • FIG. 8 is a flowchart of a battery pre-warning monitoring method based on multiple types and multiple sensors according to an embodiment of the present disclosure.
  • FIG. 2 is a principle and structural diagram of an intelligent battery monitoring and early warning system based on multi-type and multi-quantity sensors according to an embodiment of the present disclosure, as shown in FIG. 2 , by installing multiple types and a large number of sensors in multiple key positions of the battery, it is possible to obtain all-round information of the battery in real time, so that the status information of the battery during work, charging or standby can be transmitted to the battery through wired/wireless transmission.
  • the user terminal sends the status information to the cloud, and the cloud performs data fusion processing algorithms on it, then sends the evaluated battery status to the user and other receiving ends through the user terminal, and when the fusion status information data is identified to be abnormal, it will alarm and execute
  • the preset protection strategy realizes a battery monitoring method and related system with multi-sensors, carrying data fusion processing, low production cost, high reliability, and real-time monitoring information, which solves the problems existing in the current battery monitoring system. Disadvantages: The monitoring information is not comprehensive enough, not smart enough, not accurate enough, etc.
  • FIG. 1 is a schematic structural diagram of a battery early warning monitoring system based on multiple types and multiple sensors according to an embodiment of the present disclosure.
  • the monitoring system 10 includes: a plurality of sensors 100 , a transmission module 200 , a data fusion processing module 300 and an early warning module 400 .
  • a plurality of sensors 100 the plurality of sensors 100 are arranged on key positions of the battery pack/battery, and the plurality of sensors 100 are used to acquire multiple state information of the battery pack/battery, wherein the plurality of sensors 100 include different types of sensors.
  • the sensors include: temperature sensors, pressure sensors, gas sensors, force and deformation sensors, humidity sensors, chemical sensors, inertial sensors and other sensors.
  • the sensors include: temperature sensors, pressure sensors, gas sensors, force and deformation sensors, humidity sensors, chemical sensors, inertial sensors and other sensors.
  • the present disclosure enables the sensor 100 to be installed in multiple key parts of the battery pack/battery, and transmits the related performance information of the battery to the outside after preliminary data processing, using multiple types and multiple Quantity sensors for early warning monitoring can effectively evaluate the safety performance of the battery and improve the reliability of the early warning system.
  • the senor 100 can be installed at any key position such as the inside, outer shell, positive pole, and negative pole of the single battery.
  • the senor 100 can be installed at any key position such as the top, bottom, left, right, and inside of the battery pack. .
  • the battery includes a lithium battery, a lead storage battery, a dry battery, a fuel cell, a sodium ion battery, etc.
  • a lithium battery a lead storage battery
  • a dry battery a fuel cell
  • a sodium ion battery etc.
  • the installation position of the sensor 100 can be adaptively arranged, which is beneficial to the overall structure design of the battery; according to the application requirements of batteries in different application scenarios and different users, the sensor can be arranged independently
  • the installation quantity of 100 is conducive to the design and manufacture under different conditions.
  • the surface of the used temperature, pressure, gas sensors, etc. can be coated with a certain packaging structure such as coating, and the packaging structure material such as coating can be organic, Inorganic substances, biological materials, chemical materials.
  • the disclosed coating can prevent surrounding liquids, gases, and solids from damaging or affecting the performance of the sensor.
  • the transmission module 200 is configured to upload multiple state information of the battery pack/battery to the data fusion processing module 300 .
  • the data fusion processing module is set on the user terminal, and the user terminal is used to receive the battery pack/battery data sent by the transmission module 200.
  • State information and perform data fusion processing on multiple state information of the battery pack/battery through the data fusion processing module 300 to generate fusion state information of the battery pack/battery, and also use to combine multiple state information of the battery pack/battery through wireless uploaded to the cloud server by way/or wired way, and display the fusion state information of the battery pack/battery on the display interface.
  • the data fusion processing module is arranged on the battery pack/battery, and the battery pack/battery is used to receive the battery pack/battery sent by the transmission module 200 multiple status information of the battery pack/battery, and perform data fusion processing on the multiple status information of the battery pack/battery through the data fusion processing module 300 to generate the fusion status information of the battery pack/battery.
  • the data fusion processing module 300 is configured to perform data fusion processing on a plurality of state information of the battery pack/battery to generate fusion state information of the battery pack/battery.
  • the data fusion processing module 300 performs feature extraction on each state information of the battery pack/battery, and performs pattern recognition according to the extracted features, so as to use fuzzy reasoning, neural network, machine learning algorithm and other ways to perform feature fusion on multiple state information to generate fusion state information of the battery pack/battery.
  • the cloud server receives multiple status information of the battery pack/battery uploaded by the user terminal wirelessly/or wiredly;
  • the data fusion processing module 300 is set on the cloud server.
  • the cloud server includes a cloud database.
  • the cloud database is used to store a plurality of state information data of the battery pack/battery used by the user.
  • the cloud server is used to pass the data fusion processing module 300 to the battery. Multiple state information of the battery pack/battery is processed for data fusion to generate fusion state information of the battery pack/battery.
  • the cloud server receives multiple status information of the battery pack/battery uploaded by the user terminal wirelessly/or wiredly, the data fusion processing module 300 is set on the user terminal, and the cloud server Including a cloud database, the cloud database is used to store multiple state information of the battery pack/battery, and the cloud server is used to perform data fusion processing on the multiple state information of the battery pack/battery through the data fusion processing module 300 to generate the battery pack/battery Fusion state information.
  • the early warning module 400 is configured to identify the working state of the battery pack/battery according to the fusion state information, and when it is determined that the working state of the battery pack/battery is abnormal, give an alarm and execute a preset protection strategy.
  • the fusion state information of the generated battery pack/battery is transmitted through the transmission module and displayed on the display interface, so that the user can know the state information of the battery in real time. If there is an abnormality in the information, early warning actions such as alarming, tweeting, and flashing can be made immediately. At the same time, the battery pack/battery unit can take protective actions such as cutting off the power supply.
  • the intelligent battery monitoring and early warning system based on multiple types and multiple sensors includes, for example:
  • Fig. 3 is a schematic structural diagram of a ternary lithium battery state information monitoring system applied to vehicles such as electric bicycles according to an embodiment of the present disclosure, as shown in Fig. 3 : including a battery pack/battery unit, a sensor unit, a data fusion processing module, Transmission module, alarm module, user terminal.
  • multiple sensors 100 are arranged at multiple key positions of the battery pack/battery unit for obtaining multiple state information of the battery pack/battery unit, wherein the multiple sensors 100 include different types of sensors.
  • FIG. 6 it is a way of placing the sensor on the battery pack, which is only used as an example and is not limited to the above way.
  • multiple sensors 100 can be installed at each key position of the battery pack/battery of the electric bicycle, so as to obtain the state information of the battery, and the sensors can be arranged autonomously for batteries in different application scenarios and the application requirements of different users
  • the number and type of installations, as well as the location of sensor installation As an example, first, various types of sensors are installed in the battery pack/battery unit of the electric bicycle.
  • the installation position of the sensor 100 is shown in Figure 3, including key positions such as the inside, casing, positive pole, and negative pole of a single battery.
  • 3 pressure sensors, 3 temperature sensors, and 1 gas sensor are respectively set on a single battery (the number of sensors can be set to one or more according to the actual situation).
  • the transmission module 200 is configured to transmit multiple state information of the battery pack/battery to the data fusion processing module 300 .
  • the sensor unit transmits the monitored status information of the battery unit to the user terminal (such as the user's mobile phone, computer, etc.) through the transmission module, and the user terminal uploads the monitored information to the cloud server.
  • the user terminal such as the user's mobile phone, computer, etc.
  • the data fusion processing module 300 is configured to perform data fusion processing on a plurality of state information of the battery pack/battery to generate fusion state information of the battery pack/battery.
  • the cloud server is configured to receive a plurality of state information of the battery pack/battery uploaded by the user terminal through wired/or wireless means (such as mobile communication, wide area network, etc.).
  • the data fusion processing module 300 is set on the cloud server.
  • the cloud server includes a cloud database.
  • the cloud database is used to store a plurality of state information data of the battery pack/battery used by the user.
  • the cloud server is used to pass the data fusion processing module 300 to the battery. Multiple state information of the battery pack/battery is processed for data fusion to generate fusion state information of the battery pack/battery.
  • the cloud server judges the working state of the battery through model recognition and algorithm calculation (such as neural network, machine learning and other algorithms).
  • the data fusion processing module 300 is set on the user terminal, and the user terminal is used to receive a plurality of state information of the battery pack/battery sent by the transmission module 200, and use the data fusion processing module 300 to analyze the status information of the battery pack/battery Data fusion processing is performed on multiple state information of the battery pack/battery to generate fusion state information of the battery pack/battery.
  • the data fusion processing module 300 is set on the battery pack/battery, and the battery pack/battery is used to receive multiple state information of the battery pack/battery sent by the transmission module 200, and the data fusion processing module 300 is used to Multiple state information of the battery pack/battery is processed for data fusion to generate fusion state information of the battery pack/battery.
  • the early warning module 400 is configured to identify the working state of the battery pack/battery according to the fusion state information, and execute a preset protection strategy when it is determined that the working state of the battery pack/battery is abnormal, specifically including:
  • the early warning module 400 is set on the user terminal, and the result processed by the data fusion processing module is transmitted back to the user terminal (such as the user's mobile phone, computer, etc.), and the user terminal can display the fusion state information of the battery pack/battery on the real-time display interface, so that The user knows the fusion status information of the battery in real time. If the information is abnormal, the early warning module can immediately make early warning actions such as alarm, tweet, and flash. At the same time, the user terminal sends the abnormality information to the battery pack unit, and the battery pack unit can take protective actions such as cutting off the power supply.
  • the early warning module 400 is set on the battery pack/battery unit, and the result processed by the data fusion processing module is transmitted to the battery pack/battery unit. If the information is abnormal, the early warning module can immediately make an alarm. Early warning behaviors such as tweeting and flashing. At the same time, the battery pack/battery unit can take protective actions such as cutting off the power supply.
  • the intelligent battery monitoring and early warning system based on multiple types and multiple sensors includes, for example:
  • Fig. 4 is a schematic structural diagram of a state information monitoring system for a lithium iron phosphate battery applied to an electric vehicle according to an embodiment of the present disclosure, as shown in Fig. 4 : including a battery pack unit, a sensor unit, a data fusion processing module, a transmission module, and an alarm module , User terminal.
  • a plurality of sensors 100 are arranged at key positions of the battery pack/battery unit, and are used to obtain a plurality of status information of the battery pack/battery unit, wherein the plurality of sensors 100 include different types of sensors.
  • FIG. 6 it is a way of placing the sensor on the battery pack, which is only used as an example and is not limited to the above way.
  • multiple sensors 100 can be installed at each key position of the battery pack/battery of the electric vehicle, so as to obtain the state information of the battery, and according to the application requirements of the battery in different application scenarios and different users, the sensors can be arranged autonomously.
  • various sensors are installed in the battery pack unit of an electric vehicle.
  • the installation position of the sensor 100 is shown in Figure 4, including key positions such as the interior, casing, positive pole, and negative pole of a single battery, as shown in Figure 4
  • Three pressure sensors, three temperature sensors, and one gas sensor are respectively set on a single battery in the battery (the number of sensors can be set to one or more according to the actual situation).
  • the transmission module 200 is configured to transmit multiple state information of the battery pack/battery to the data fusion processing module 300 .
  • the sensor unit transmits the monitored status information of the battery unit to the user terminal (such as the user's mobile phone, computer, etc.) through the transmission module, and the user terminal uploads the monitored information to the cloud server.
  • the user terminal such as the user's mobile phone, computer, etc.
  • the data fusion processing module 300 is configured to perform data fusion processing on a plurality of state information of the battery pack/battery to generate fusion state information of the battery pack/battery.
  • the cloud server is configured to receive a plurality of state information of the battery pack/battery uploaded by the user terminal through wired/or wireless means (such as mobile communication, wide area network, etc.).
  • the data fusion processing module 300 is set on the cloud server.
  • the cloud server includes a cloud database.
  • the cloud database is used to store a plurality of state information data of the battery pack/battery used by the user.
  • the cloud server is used to pass the data fusion processing module 300 to the battery. Multiple state information of the battery pack/battery is processed for data fusion to generate fusion state information of the battery pack/battery.
  • the cloud server judges the working state of the battery through model recognition and algorithm calculation (such as neural network, machine learning and other algorithms).
  • the data fusion processing module 300 is set on the user terminal, and the user terminal is used to receive a plurality of state information of the battery pack/battery sent by the transmission module 200, and use the data fusion processing module 300 to analyze the status information of the battery pack/battery Data fusion processing is performed on multiple state information of the battery pack/battery to generate fusion state information of the battery pack/battery.
  • the data fusion processing module 300 is set on the battery pack/battery, and the battery pack/battery is used to receive multiple state information of the battery pack/battery sent by the transmission module 200, and the data fusion processing module 300 is used to Multiple state information of the battery pack/battery is processed for data fusion to generate fusion state information of the battery pack/battery.
  • the early warning module 400 is configured to identify the working state of the battery pack/battery according to the fusion state information, and execute a preset protection strategy when it is determined that the working state of the battery pack/battery is abnormal, specifically including:
  • the early warning module 400 is set on the user terminal, and the result processed by the data fusion processing module is transmitted back to the user terminal (such as the user's mobile phone, computer, etc.), and the user terminal can display the fusion state information of the battery pack/battery on the real-time display interface, so that The user knows the fusion status information of the battery in real time. If the information is abnormal, the early warning module can immediately make early warning actions such as alarm, tweet, and flash. At the same time, the user terminal sends the abnormality information to the battery pack unit, and the battery pack unit can take protective actions such as cutting off the power supply.
  • the early warning module 400 is set on the battery pack/battery unit, and the result processed by the data fusion processing module is transmitted to the battery pack/battery unit. If the information is abnormal, the early warning module can immediately make an alarm. Early warning behaviors such as tweeting and flashing. At the same time, the battery pack/battery unit can take protective actions such as cutting off the power supply.
  • the intelligent battery monitoring and early warning system based on multiple types and multiple sensors in the embodiment of the present disclosure, by using multiple types and multiple sensors for early warning monitoring, the safety performance of the battery can be effectively evaluated, and the reliability of the early warning system can be improved;
  • the type and number of sensors measure battery temperature, pressure and other parameters with high accuracy, which can improve the accuracy of monitoring and evaluating battery safety performance; data fusion processing of sensor monitoring information facilitates comprehensive evaluation of battery safety performance;
  • the multi-faceted information obtained by the sensor establishes a cloud database to facilitate the establishment and identification of battery safety performance models.
  • Fig. 8 is a flowchart of an intelligent battery monitoring and early warning method based on multiple types and multiple sensors according to an embodiment of the present disclosure.
  • the intelligent battery monitoring and early warning method based on multiple types and multiple sensors includes the following steps:
  • Step S1 obtaining a plurality of state information of the battery pack/battery, wherein a plurality of state information includes different types of state information;
  • Step S2 performing data fusion processing on multiple state information of the battery pack/battery to generate fusion state information of the battery pack/battery;
  • Step S3 identifying the working state of the battery pack/battery according to the fused state information, and executing a preset protection strategy when it is determined that the working state of the battery pack/battery is abnormal.
  • data fusion processing is performed on multiple state information of the battery pack/battery to generate fusion state information of the battery pack/battery, including:
  • Feature extraction is performed on each state information of the battery pack/battery, and pattern recognition is performed based on the extracted features, so as to perform feature fusion on multiple state information according to a preset method to generate fusion state information of the battery pack/battery.
  • the intelligent battery monitoring and early warning system based on multiple types and multiple sensors in the embodiment of the present disclosure, by using multiple types and multiple sensors for early warning monitoring, the safety performance of the battery can be effectively evaluated, and the reliability of the early warning system can be improved;
  • the type and number of sensors measure battery temperature, pressure and other parameters with high accuracy, which can improve the accuracy of monitoring and evaluating battery safety performance; data fusion processing of sensor monitoring information facilitates comprehensive evaluation of battery safety performance;
  • the multi-faceted information obtained by the sensor establishes a cloud database to facilitate the establishment and identification of battery safety performance models.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

本申请公开了一种基于多种类、多数量传感器的智能电池监测预警方法及***,该***包括:多个传感器设置在电池组/电池的关键位置上用于获取电池的多个状态信息,其中,多个传感器包括不同种类的传感器;传输模块用于将电池的多个状态信息传输至数据融合处理模块;数据融合处理模块用于对电池的多个状态信息进行数据融合处理生成电池的融合状态信息;预警模块用于执行预设的保护策略。采用多种类、多数量传感器测量电池温度、压力等参数精准度高,可提高监测和评估电池安全性能的准确性;将传感器监控的信息进行数据融合处理便于对电池安全性能进行全方位的评估;利用传感器获得的信息建立云端数据库便于电池安全性能模型的建立与识别。

Description

基于多种类、多数量传感器的智能电池监测预警方法及*** 技术领域
本公开涉及电池状态监测技术领域,特别涉及一种基于多种类、多数量传感器的智能电池监测预警方法及***。
背景技术
自1799年伏特成功制成了世界上第一个电池后,电池得到了迅猛的发展,因其比能量大、使用便捷、循环寿命长等优点,已被广泛应用于数码、家电等多个方面。然而电池本身存在着不能忽视的安全隐患,随着近些年新型电池的诞生,为了满足人们的使用需求,电池能量密度等指标在不断提高,电池的安全性问题也越发尖锐。因此,提高电池的安全性能成为了电池研发的重要方向。
目前,电池安全性能的提升,主要通过电池单体制作技术的改善和电池状态信息的监测两种手段。
电池单体制作技术的改善,例如添加电解质添加剂、改善正负极材料结构、改善隔膜制备工艺,是一种从材料和技术本身提升电池安全性的方法。该方法可以直接提高电池的使用寿命和安全性能,但是,通过提升电池单体制作工艺的方法来提高电池的安全性能,大大增加电池的应用成本,且存在技术和材料上的壁垒,难以满足人们日益增长的电池安全性需求。
电池状态信息的监测,是考虑到电池失控过程中伴随着温度、压力等多种参数的变化,并伴随有特征气体的生成,将此类参数作为故障识别参数,引入电池状态信息监测,也是目前提升电池安全性的一个重要手段。相较于电池单体制作技术的改善,该方法不仅成本低廉,而且可以直观有效的获得电池的一些相关参数,从而提高电池的使用寿命和安全性能。
目前监测电池状态信息的方法已经用于以电池作为动力源的各种设备,但仍然存在以下问题:
1)监测电池的信息种类、数量较少:除了对于电池管理***经常监测的电压、电流、内阻等电学参数之外,一般仅以温度作为评估电池安全性能的指标,而电池在失控时,通常伴随的不仅仅是温度的升高,还会有大量的气体产生,因此监测压力指标也是提升电池监测***可靠性的有效手段。另外,目前的监测***中,监测电池状态信息的传感器大都数量较少,不足以对电池的状态信息进行充分全面的监测,所以需要监测更多的信息,同时需要上传至云端,并进行融合处理后传输至用户,以此才能提高监测***的可靠性。
例如,在中国专利CN 205280235U型提出了一种锂电池温度传感器检测结构,该结构包括并列设置的第一锂电池和第二锂电池,所述第一锂电池与所述第二锂电池的外壁之间形成有空隙,所述空隙中填充有自适应导热材料,所述自适应导热材料中嵌设有温 度传感器,所述温度传感器与外部的温度检测仪表连接。该锂电池传感信息仅有温度,数量也仅有一个,这就使得传感信息单一,且不利于全面评估锂电池的状态性能。
之后也有人意识到了传感器的数量增加会提高监测***的准确性,例如,在中国专利CN 104466285 A公开了一种电动自行车用电池***,包括电池外壳,电池和底座,其中电池外壳内部设置有若干个温度传感器,在底座内部设置有温度控制芯片,报警灯,蜂鸣器和电池输出***。温度控制芯片一方面与温度传感器,报警灯和蜂鸣器相连,另一方面与电池输出***相连;电池输出***一方面与电池相连,另一方面与温度控制芯片相连。但该电池***的安全性评估标准仅为温度这一参数,没有将压力、气体等参数纳入安全性评估范围,所以没有充分提升电池监测***的准确性,不利于保障用户的人身财产安全。
2)传感器未布置在电池的多个关键位置:目前监测***的传感器布置方式也有待改进,以温度为监测参数的***为例,温度传感器多是直接测量电池表面温度,这种测量方式最大的问题就是电池内外温度有着一定的温差,电池表面温度不足以反应电池的实际温度状态,会导致电池外部温度还处在正常范围时,电池内部已经出现热失控的现象,最终导致监测***没有获取正确的状态信息。故而需要将传感器布置在电池组/电池的多个关键位置,从而提高锂电池状态信息监测***的成功率。
也有人对传感器的安放位置进行了研究,比如,加州大学研究了一种18650圆柱型锂电池,其结构包括两个t型热电偶,分别安装在电池表面和电芯,并基于此,建立了一种电池表面和电芯温度动态的双态热模型,利用带有实测表面温度和实测电芯温度的信号来评估锂电池的安全性能。该研究证明了将传感器布置在电池的关键位置将能够切实有效的提升评估电池安全性的准确率,但该结构使用的热电偶可检测温度仅为15-40℃,测量温度范围不足以涵盖电池的整个工作区域温度,且检测信息仅有温度,信息单一,不利于对锂电池使用时的安全性能进行预警和监控。
3)目前的监测***大多未涉及传感信息融合处理及其相关算法:仅仅是将传感信息的数据传输至用户,大多未经过任何处理,这种方式存在不够智能,不够准确等问题,会导致用户无法准确、定量的评估电池的使用状态,因此需要在监测***中加入传感信息融合处理及其相关算法,从而提高电池状态信息监测***的智能化。
综上所述,采用电池传感信息监测的方法虽然取得了一定的效果,并已经用于一些产品的设计,但仍然存在以下问题:
1.传感信息种类、数量较少:目前的监测***中,监测电池状态信息的传感器种类较少,不足以对电池的状态信息进行充分全面的监测;另外布置的传感器数量也不足,将使得监测的准确性受到影响。
2.传感器未布置在电池组/电池的多个关键位置:目前监测***的传感器布置方式未布置在关键位置,将会影响监测***评估电池状态的准确性。
3.监测***的智能化程度不足:目前的监测***大多未涉及传感信息融合处理及其相关算法,仅仅是将传感信息的数据传输至用户,未经过任何处理,这种方式会使得用户 无法定量的评估电池的使用状态。
因此,上述现有技术的不足需要新的解决方法来克服,需要研究一种监测信息多种多样、传感器多关键点布置、准确率高、智能化程度高的电池状态监测方法。
发明内容
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本公开的一个目的在于提出一种基于多种类、多数量传感器的智能电池监测预警***。本公开采用多种类、多数量传感器进行预警监测,可以有效的评估电池的安全性能,提高预警***的可靠性;传感器可以布置在电池组/电池的多个关键部位,多点同时测量电池温度、压力等参数,评估电池状态的精准度高;将传感器所监控的信息进行数据融合处理,便于对电池安全性能进行定量的评估;将传感获得的多方面信息建立云端数据库,便于电池安全性能模型的建立与识别。
本公开的另一个目的在于提出一种基于多种类、多数量传感器的智能电池监测预警方法。
为达到上述目的,本公开一方面实施例提出了一种基于多种类、多数量传感器的智能电池监测预警***,包括:
多个传感器,所述多个传感器设置在电池组/电池的关键位置上,所述多个传感器用于获取电池组/电池的多个状态信息,其中,所述多个传感器包括不同种类的传感器;
传输模块,用于将所述电池组/电池的多个状态信息传输至数据融合处理模块;
所述数据融合处理模块,用于对所述电池组/电池的多个状态信息进行数据融合处理,生成电池组/电池的融合状态信息;
预警模块,用于根据所述融合状态信息识别所述电池组/电池的工作状态,并在确定所述电池组/电池的工作状态异常时,报警并执行预设的保护策略。
本公开实施例的基于多种类、多数量传感器的智能电池监测预警***,通过多个传感器,所述多个传感器设置在电池组/电池的多个关键位置上,所述多个传感器用于获取电池组/电池的多个状态信息,其中,所述多个传感器包括不同种类的传感器;传输模块,用于将所述电池组/电池的多个状态信息传输至数据融合处理模块;所述数据融合处理模块,用于对所述电池组/电池的多个状态信息进行数据融合处理,生成电池组/电池的融合状态信息;预警模块,用于根据所述融合状态信息识别所述电池组/电池的工作状态,并在确定所述电池组/电池的工作状态异常时,报警并执行预设的保护策略。本公开采用多种类、多数量传感器进行预警监测,可以有效的评估电池的安全性能,提高预警***的可靠性;传感器可以布置在电池的多个关键部位,多点同时测量电池温度、压力等参数,评估电池状态的精准度高;将传感器所监控的信息进行数据融合处理,便于对电池安全性能进行全方位的评估;将传感获得的多方面信息建立云端数据库,便于电池安全性能模型的建立与识别。
另外,根据本公开上述实施例的基于多种类、多数量传感器的电池预警监测***还 可以具有以下附加的技术特征:
进一步地,在本公开的一个实施例中,所述不同种类的传感器包括:温度传感器、压力传感器、气体传感器、力和形变传感器、湿度传感器、化学传感器、惯性传感器等传感器中的至少两种。
进一步地,在本公开的一个实施例中,所述关键位置包括所述电池组的上、下、左、右、内部等关键位置以及单个电池的内部、外壳、正极、负极等位置中的一个或多个;
针对不同型号的电池,可以自适应的安排电池的排列方式和传感器的安装位置,其中,所述电池包括锂电池、铅酸蓄电池、干电池、燃料电池、钠离子电池等电池中的一种;
针对不同应用场景的电池和不同用户的应用需求,自主的安排传感器的安装数量。
进一步地,在本公开的一个实施例中,所述应用包括但不局限于电动汽车,电动自行车,代步车,电动舰船,移动电源,手机等移动终端,无人机,计算机,电动工具,便携设备等领域。
进一步地,在本公开的一个实施例中,在所述传感器的表面包覆涂层封装结构,所述涂层封装结构的材料是包括有机物、无机物、生物材料、化学材料等材料中的一种或多种。
进一步地,在本公开的一个实施例中,还包括:
用户终端,所述数据融合处理模块设置在用户终端上,所述用户终端用于接收所述传输模块发送的所述电池组/电池的多个状态信息,并通过所述数据融合处理模块对所述电池组/电池的多个状态信息进行数据融合处理,生成电池组/电池的融合状态信息。
进一步地,在本公开的一个实施例中,还包括:云端服务器;
所述云端服务器,用于接收所述用户终端通过无线方式/或有线方式上传的所述电池组/电池的多个状态信息;
所述数据融合处理模块设置在所述云端服务器上,所述云端服务器包括云端数据库,所述云端数据库用于存储使用者所使用的电池组/电池的多个状态信息数据,所述云端服务器用于通过所述数据融合处理模块对所述电池组/电池的多个状态信息进行数据融合处理,生成电池组/电池的融合状态信息。
进一步地,在本公开的一个实施例中,所述用户终端,还用于在显示界面上显示所述电池组/电池的融合状态信息。
进一步地,在本公开的一个实施例中,所述数据融合处理模块,还用于对电池组/电池的每个状态信息进行特征提取,并根据提取的特征进行模式识别,以根据采用模糊推理、神经网络、机器学习等算法中的一种或者多种方式对多个状态信息进行特征融合,生成所述电池组/电池的融合状态信息。
为达到上述目的,本公开另一方面实施例提出了一种基于多种类、多数量传感器的智能电池监测预警方法,包括以下步骤:获取电池组/电池的多个状态信息,其中,所述多个包括不同种类的状态信息;将所述电池组/电池的多个状态信息进行数据融合处理, 生成电池组/电池的融合状态信息;根据所述融合状态信息识别所述电池组/电池的工作状态,并在确定所述电池组/电池的工作状态异常时,执行预设的保护策略。
本公开实施例的基于多种类、多数量传感器的智能电池监测预警方法,采用多种类、多数量传感器进行预警监测,可以有效的评估电池的安全性能,提高预警***的可靠性;采用多种类、多数量传感器测量电池温度、压力等参数精准度高,可提高监测和评估电池安全性能的准确性;将传感器监控的信息进行数据融合处理便于对电池安全性能进行全方位的评估;将传感获得的多方面信息建立云端数据库,便于电池安全性能模型的建立与识别。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,这些附图示出了符合本公开的实施例,并与说明书一起用于说明本公开的技术方案。
图1为根据本公开一个实施例的基于多种类、多数量传感器的智能电池监测预警***的流程框图。
图2为根据本公开一个实施例的基于多种类、多数量传感器的智能电池监测预警***的原理和结构图。
图3为根据本公开一个实施例的应用于电动自行车等交通工具的电池状态信息监测***结构示意图。
图4为根据本公开一个实施例的应用于电动汽车的电池状态信息监测***结构示意图。
图5(a)、5(b)和5(c)为根据本公开一个实施例的多个不同种类的传感器位于单电池的不同位置的示意图。
图6为根据本公开一个实施例的多个不同种类的传感器位于电池组的不同位置的示意图。
图7为根据本公开一个实施例的多传感器信息的数据融合示意图;
图8为根据本公开一个实施例的基于多种类、多数量传感器的电池预警监测方法流程图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
下面参照附图描述根据本公开实施例提出的基于多种类、多数量传感器的智能电池监测预警***和方法,首先将参照附图描述根据本公开实施例提出的基于多种类、多数 量传感器的智能电池监测预警***。
本公开将多种类、多数量传感器技术应用于电池监测***,图2为根据本公开一个实施例的基于多种类、多数量传感器的智能电池监测预警***的原理和结构图,如图2所示,通过将多种类、多数量的传感器安装在电池的多个关键位置处,可以实时获取电池的全方位信息,使得电池在工作、充电或待机时的状态信息通过有线/无线传输的方式传输至用户终端,用户终端将状态信息发送至云端,云端对其进行数据融合处理算法后,将评估的电池状态经用户终端发送给用户等接收端,并在识别出融合状态信息数据异常时报警并执行预设的保护策略,由此实现了一种多传感器的、携带数据融合处理的、制作成本低、可靠性高、可实时监测信息的电池监测方法及相关***,解决了目前电池监测***中存在的:监测信息不够全面、不够智能、不够准确等弊端。
图1为根据本公开实施例的基于多种类、多数量传感器的电池预警监测***的结构示意图。
如图1所示,该监测***10包括:多个传感器100、传输模块200、数据融合处理模块300和预警模块400。
多个传感器100,多个传感器100设置在电池组/电池的关键位置上,多个传感器100用于获取电池组/电池的多个状态信息,其中,多个传感器100包括不同种类的传感器。
具体的,传感器包括:温度传感器、压力传感器、气体传感器、力和形变传感器、湿度传感器、化学传感器、惯性传感器等传感器。本领域技术人员可以根据需要进行任意设置,本公开对此不作具体限制。
进一步地,在本公开的一个实施例中,本公开使传感器100安装在电池组/电池的多个关键部位,将电池的相关性能信息进行初步的数据处理后传输至外部,采用多种类、多数量传感器进行预警监测,可以有效的评估电池的安全性能,提高预警***的可靠性。
进一步地,在本公开的一个实施例中,如图5所示,对于不同型号不同用处的单电池,传感器100可以安装在所述单电池的内部、外壳、正极、负极等任何关键位置。
进一步地,在本公开的一个实施例中,如图6所示,对于不同型号不同用处的电池组,传感器100可以安装在所述电池组的上、下、左、右、内部等任何关键位置。
具体的,电池包括锂电池、铅蓄电池、干电池、燃料电池、钠离子电池等,本领域技术人员可以根据需要进行任意设置,本公开对此不作具体限制。
进一步地,针对不同的电池型号和电池的排列方式,可以自适应的安排传感器100的安装位置,有利于电池整体结构设计;针对不同应用场景的电池和不同用户的应用需求,可以自主的安排传感器100的安装数量,有利于不同条件下的设计制造。
进一步地,在本公开的一个实施例中,作为一种实现方式,所使用的温度、压力、气体传感器等表面可包覆一定的涂层等封装结构,涂层等封装结构材料可以是有机物、无机物、生物材料、化学材料。本公开的涂层可以防止周围的液体、气体、固体对传感器的破坏或性能影响。
传输模块200,用于将电池组/电池的多个状态信息上传到数据融合处理模块300。
进一步地,在本公开的一个实施例中,作为一种实现方式,还包括用户终端,数据融合处理模块设置在用户终端上,用户终端用于接收传输模块200发送的电池组/电池的多个状态信息,并通过数据融合处理模块300对电池组/电池的多个状态信息进行数据融合处理,生成电池组/电池的融合状态信息,还用于将电池组/电池的多个状态信息通过无线方式/或有线方式上传至云端服务器,以及在显示界面上显示电池组/电池的融合状态信息。
进一步地,在本公开的一个实施例中,作为一种实现方式,还包括电池组/电池,数据融合处理模块设置在电池组/电池上,电池组/电池用于接收传输模块200发送的电池组/电池的多个状态信息,并通过数据融合处理模块300对电池组/电池的多个状态信息进行数据融合处理,生成电池组/电池的融合状态信息。
数据融合处理模块300,用于对电池组/电池的多个状态信息进行数据融合处理,生成电池组/电池的融合状态信息。
具体的,如图7所示,数据融合处理模块300,对电池组/电池的每个状态信息进行特征提取,并根据提取的特征进行模式识别,以根据采用模糊推理、神经网络、机器学习算法等多种方式对多个状态信息进行特征融合,生成电池组/电池的融合状态信息。
可以理解的是,对电池组/电池的每个状态信息进行特征提取是可采用时间序列分析、频率分析和小波变换等方法。
云端服务器,接收用户终端通过无线方式/或有线方式上传的电池组/电池的多个状态信息;
数据融合处理模块300设置在云端服务器上,云端服务器包括云端数据库,云端数据库用于存储使用者所使用的电池组/电池的多个状态信息数据,云端服务器用于通过数据融合处理模块300对电池组/电池的多个状态信息进行数据融合处理,生成电池组/电池的融合状态信息。
进一步地,在本公开的一个实施例中,云端服务器,接收用户终端通过无线方式/或有线方式上传的电池组/电池的多个状态信息,数据融合处理模块300设置在用户终端上,云端服务器包括云端数据库,云端数据库用于存储电池组/电池的多个状态信息,云端服务器用于通过数据融合处理模块300对电池组/电池的多个状态信息进行数据融合处理,生成电池组/电池的融合状态信息。
预警模块400,用于根据融合状态信息识别电池组/电池的工作状态,并在确定电池组/电池的工作状态异常时,报警并执行预设的保护策略。
可以理解的是,生成电池组/电池的融合状态信息又经过传输模块传输在显示界面上显示,以便用户实时了解电池的状态信息。若出现信息异常,可立即做出如报警,鸣叫,闪光等预警行为。同时电池组/电池单元可做出切断电源等保护动作。
下面通过两个具体实施例对本公开的基于多种类、多数量传感器的智能电池监测预警***进行详细描述。
实施例一
在本实施例中,基于多种类、多数量传感器的智能电池监测预警***例如包括:
图3为根据本公开一个实施例的应用于电动自行车等交通工具的三元锂电池状态信息监测***结构示意图,如图3所示:包括电池组/电池单元、传感器单元、数据融合处理模块、传输模块、报警模块、用户终端。
其中,多个传感器100,设置在电池组/电池单元的多个关键位置上,用于获取电池组/电池单元的多个状态信息,其中,多个传感器100包括不同种类的传感器。
具体的,选择不同种类、不同数量的传感器,设置在电池不同的预设位置,在能够实现本公开实施例上述技术效果的基础上,本领域技术人员可以根据需要进行任意设置,本公开对此不作具体限制。
如图5(a)、5(b)、图5(c)所示,是传感器放置在单个电池的三种不同放置方式,仅作为一种实例,并不局限于上述三种方式。
如图6所示,是传感器放置在电池组的一种放置方式,仅作为一种实例,并不局限于上述方式。
进一步地,可在电动自行车的电池组/电池的各个关键位置安装多种多个传感器100,以此获取电池的状态信息,针对不同应用场景的电池和不同用户的应用需求,可自主的安排传感器的安装数量和种类,以及传感器安装的位置。作为一种示例,首先将多种不同种类传感器安装在电动自行车的电池组/电池单元内,传感器100的安装位置如图3所示,包括单个电池的内部、外壳、正极、负极等关键位置,图3中单个电池上分别设置了3个压力传感器、3个温度传感器、1个气体传感器(传感器数量可根据实际情况设置一个或多个)。
传输模块200,用于将电池组/电池的多个状态信息传输至数据融合处理模块300。
可以理解的是,在电动自行车工作时,传感器单元将监测到的电池组单元的状态信息通过传输模块传输至用户终端(如用户的手机、电脑等),用户终端将监测到的信息上传到云端服务器。
数据融合处理模块300,用于对电池组/电池的多个状态信息进行数据融合处理,生成电池组/电池的融合状态信息。
进一步地,云端服务器,用于接收用户终端通过有线方式/或无线方式(如移动通信、广域网等方式)上传的电池组/电池的多个状态信息。
数据融合处理模块300设置在云端服务器上,云端服务器包括云端数据库,云端数据库用于存储使用者所使用的电池组/电池的多个状态信息数据,云端服务器用于通过数据融合处理模块300对电池组/电池的多个状态信息进行数据融合处理,生成电池组/电池的融合状态信息。
具体的,云端服务器通过模型识别,算法计算(如神经网络,机器学习等算法)判断出电池的工作状态。
作为另外一种实现方式,数据融合处理模块300设置在用户终端上,用户终端用于接收传输模块200发送的电池组/电池的多个状态信息,并通过数据融合处理模块300对电池 组/电池的多个状态信息进行数据融合处理,生成电池组/电池的融合状态信息。
作为另外一种实现方式,数据融合处理模块300设置在电池组/电池上,电池组/电池用于接收传输模块200发送的电池组/电池的多个状态信息,并通过数据融合处理模块300对电池组/电池的多个状态信息进行数据融合处理,生成电池组/电池的融合状态信息。
预警模块400,用于根据融合状态信息识别电池组/电池的工作状态,并在确定电池组/电池的工作状态异常时,执行预设的保护策略,具体包括:
预警模块400设置在用户终端上,经过数据融合处理模块处理后的结果传输回用户终端(如用户的手机、电脑等),用户终端可实时显示界面上显示电池组/电池的融合状态信息,使得用户实时了解电池的融合状态信息。若出现信息异常,预警模块可立即做出如报警,鸣叫,闪光等预警行为。同时用户终端将异常信息发送给电池组单元,电池组单元可做出切断电源等保护动作。
作为另外一种实现方式,预警模块400设置在电池组/电池单元上,经过数据融合处理模块处理后的结果传给电池组/电池单元,若出现信息异常,预警模块可立即做出如报警,鸣叫,闪光等预警行为。同时电池组/电池单元可做出切断电源等保护动作。
实施例二
在本实施例中,基于多种类、多数量传感器的智能电池监测预警***例如包括:
图4为根据本公开一个实施例的应用于电动汽车的磷酸铁锂电池状态信息监测***结构示意图,如图4所示:包括电池组单元、传感器单元、数据融合处理模块、传输模块、报警模块、用户终端。
其中,多个传感器100,设置在电池组/电池单元的关键位置上,用于获取电池组/电池单元的多个状态信息,其中,多个传感器100包括不同种类的传感器。
具体的,选择不同种类、不同数量的传感器,设置在电池不同的预设位置,在能够实现本公开实施例上述技术效果的基础上,本领域技术人员可以根据需要进行任意设置,本公开对此不作具体限制。
如图5(a)、5(b)、图5(c)所示,是传感器放置在单个电池的三种不同放置方式,仅作为一种实例,并不局限于上述三种方式。
如图6所示,是传感器放置在电池组的一种放置方式,仅作为一种实例,并不局限于上述方式。
进一步地,可在电动汽车的电池组/电池各个关键位置安装多种多个传感器100,以此获取电池的状态信息,针对不同应用场景的电池和不同用户的应用需求,可自主的安排传感器的安装数量和种类,以及传感器安装的位置。作为一种示例,首先将多种不同种类传感器安装在电动汽车的电池组单元内,传感器100的安装位置如图4所示,包括单个电池的内部、外壳、正极、负极等关键位置,图4中单个电池上分别设置了3个压力传感器、3个温度传感器、1个气体传感器(传感器数量可根据实际情况设置一个或多个)。
传输模块200,用于将电池组/电池的多个状态信息传输至数据融合处理模块300。
可以理解的是,在电动汽车工作时,传感器单元将监测到的电池组单元的状态信息 通过传输模块传输至用户终端(如用户的手机、电脑等),用户终端将监测到的信息上传到云端服务器。
数据融合处理模块300,用于对电池组/电池的多个状态信息进行数据融合处理,生成电池组/电池的融合状态信息。
进一步地,云端服务器,用于接收用户终端通过有线方式/或无线方式(如移动通信、广域网等方式)上传的电池组/电池的多个状态信息。
数据融合处理模块300设置在云端服务器上,云端服务器包括云端数据库,云端数据库用于存储使用者所使用的电池组/电池的多个状态信息数据,云端服务器用于通过数据融合处理模块300对电池组/电池的多个状态信息进行数据融合处理,生成电池组/电池的融合状态信息。
具体的,云端服务器通过模型识别,算法计算(如神经网络,机器学习等算法)判断出电池的工作状态。
作为另外一种实现方式,数据融合处理模块300设置在用户终端上,用户终端用于接收传输模块200发送的电池组/电池的多个状态信息,并通过数据融合处理模块300对电池组/电池的多个状态信息进行数据融合处理,生成电池组/电池的融合状态信息。
作为另外一种实现方式,数据融合处理模块300设置在电池组/电池上,电池组/电池用于接收传输模块200发送的电池组/电池的多个状态信息,并通过数据融合处理模块300对电池组/电池的多个状态信息进行数据融合处理,生成电池组/电池的融合状态信息。
预警模块400,用于根据融合状态信息识别电池组/电池的工作状态,并在确定电池组/电池的工作状态异常时,执行预设的保护策略,具体包括:
预警模块400设置在用户终端上,经过数据融合处理模块处理后的结果传输回用户终端(如用户的手机、电脑等),用户终端可实时显示界面上显示电池组/电池的融合状态信息,使得用户实时了解电池的融合状态信息。若出现信息异常,预警模块可立即做出如报警,鸣叫,闪光等预警行为。同时用户终端将异常信息发送给电池组单元,电池组单元可做出切断电源等保护动作。
作为另外一种实现方式,预警模块400设置在电池组/电池单元上,经过数据融合处理模块处理后的结果传给电池组/电池单元,若出现信息异常,预警模块可立即做出如报警,鸣叫,闪光等预警行为。同时电池组/电池单元可做出切断电源等保护动作。
根据本公开实施例的基于多种类、多数量传感器的智能电池监测预警***,通过采用多种类、多数量传感器进行预警监测,可以有效的评估电池的安全性能,提高预警***的可靠性;采用多种类、多数量传感器测量电池温度、压力等参数精准度高,可提高监测和评估电池安全性能的准确性;将传感器监控的信息进行数据融合处理便于对电池安全性能进行全方位的评估;将传感获得的多方面信息建立云端数据库,便于电池安全性能模型的建立与识别。
图8是本公开一个实施例的基于多种类、多数量传感器的智能电池监测预警方法的流程图。
如图8所示,该基于多种类、多数量传感器的智能电池监测预警方法包括以下步骤:
步骤S1,获取电池组/电池的多个状态信息,其中,多个包括不同种类的状态信息;
步骤S2,将电池组/电池的多个状态信息进行数据融合处理,生成电池组/电池的融合状态信息;
步骤S3,根据融合状态信息识别电池组/电池的工作状态,并在确定电池组/电池的工作状态异常时,执行预设的保护策略。
进一步地,在本公开的一个实施例中,对电池组/电池的多个状态信息进行数据融合处理,生成电池组/电池的融合状态信息,包括:
对电池组/电池的每个状态信息进行特征提取,并根据提取的特征进行模式识别,以根据预设方式对多个状态信息进行特征融合,生成电池组/电池的融合状态信息。
需要说明的是,前述对基于多种类、多数量传感器的智能电池监测预警***实施例的解释说明也适用于该实施例的基于多种类、多数量传感器的智能电池监测预警方法,此处不再赘述。
根据本公开实施例的基于多种类、多数量传感器的智能电池监测预警***,通过采用多种类、多数量传感器进行预警监测,可以有效的评估电池的安全性能,提高预警***的可靠性;采用多种类、多数量传感器测量电池温度、压力等参数精准度高,可提高监测和评估电池安全性能的准确性;将传感器监控的信息进行数据融合处理便于对电池安全性能进行全方位的评估;将传感获得的多方面信息建立云端数据库,便于电池安全性能模型的建立与识别。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。
以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择, 旨在最好地解释各实施例的原理、实际应用或对市场中的技术的改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (10)

  1. 一种基于多种类、多数量传感器的智能电池监测预警***,其特征在于,包括:
    多个传感器,所述多个传感器设置在电池组/电池的多个关键位置上,所述多个传感器用于获取电池组/电池的多个状态信息,其中,所述多个传感器包括不同种类的传感器;
    传输模块,用于将所述电池组/电池的多个状态信息传输至数据融合处理模块;
    所述数据融合处理模块,用于对所述电池组/电池的多个状态信息进行数据融合处理,生成电池组/电池的融合状态信息;
    预警模块,用于根据所述融合状态信息识别所述电池组/电池的工作状态,并在确定所述电池组/电池的工作状态异常时,报警并执行预设的保护策略。
  2. 根据权利要求1所述的基于多种类、多数量传感器的电池预警监测***,其特征在于,所述不同种类的传感器包括:温度传感器、压力传感器、气体传感器、力和形变传感器、湿度传感器、化学传感器、惯性传感器等传感器中的至少两种。
  3. 根据权利要求1所述的基于多种类、多数量传感器的电池预警监测***,其特征在于,所述关键位置包括所述电池组的上、下、左、右、内部等关键位置以及单个电池的内部、外壳、正极、负极等位置中的一个或多个;
    针对不同型号的电池,可以自适应的安排电池的排列方式和传感器的安装位置,其中,所述电池包括锂电池、铅酸蓄电池、干电池、燃料电池、钠离子电池等电池中的一种;
    针对不同应用场景的电池和不同用户的应用需求,自主的安排传感器的安装数量。
  4. 根据权利要求1所述的基于多种类、多数量传感器的电池预警监测***,其特征在于,在传感器的表面包覆涂层封装结构,所述涂层封装结构的材料包括有机物、无机物、生物材料、化学材料等材料中的一种或多种。
  5. 根据权利要求1所述的基于多种类、多数量传感器的电池预警监测***,其特征在于,还包括:
    用户终端,所述数据融合处理模块设置在用户终端上,所述用户终端用于接收所述传输模块发送的所述电池组/电池的多个状态信息,并通过所述数据融合处理模块对所述电池组/电池的多个状态信息进行数据融合处理,生成电池组/电池的融合状态信息。
  6. 根据权利要求5所述的基于多种类、多数量传感器的电池预警监测***,其特征在于,还包括:云端服务器;
    所述云端服务器,用于接收所述用户终端通过无线方式/或有线方式上传的所述电池组/电池的多个状态信息;
    所述数据融合处理模块设置在所述云端服务器上,所述云端服务器包括云端数据库,所述云端数据库用于存储使用者所使用的电池组/电池的多个状态信息数据,所述云端服务器用于通过所述数据融合处理模块对所述电池组/电池的多个状态信息进行数据融合处理,生成电池组/电池的融合状态信息。
  7. 根据权利要求6所述的基于多种类、多数量传感器的智能电池监测预警***,其特征在于,
    所述用户终端,还用于在显示界面上显示所述电池组/电池的融合状态信息。
  8. 根据权利要求1-7任一项所述的基于多种类、多数量传感器的电池预警监测***,其特征在于,
    所述数据融合处理模块,还用于对电池组/电池的每个状态信息进行特征提取,并根据提取的特征进行模式识别,以根据采用模糊推理、神经网络、机器学习等算法中的一种或者多种方式对多个状态信息进行特征融合,生成所述电池组/电池的融合状态信息。
  9. 一种基于多种类、多数量传感器的电池预警监测方法,其特征在于,包括以下步骤:
    获取电池组/电池的多个状态信息,其中,所述多个包括不同种类的状态信息;
    将所述电池组/电池的多个状态信息进行数据融合处理,生成电池组/电池的融合状态信息;
    根据所述融合状态信息识别所述电池组/电池的工作状态,并在确定所述电池组/电池的工作状态异常时,报警并执行预设的保护策略。
  10. 根据权利要求9所述的基于多种类、多数量传感器的电池预警监测方法,其特征在于,对所述电池组/电池的多个状态信息进行数据融合处理,生成电池组/电池的融合状态信息,包括:
    对电池组/电池的每个状态信息进行特征提取,并根据提取的特征进行模式识别,之后根据预设方式对多个状态信息进行特征融合,生成所述电池组/电池的融合状态信息。
PCT/CN2022/116236 2021-09-10 2022-08-31 基于多种类、多数量传感器的智能电池监测预警方法及*** WO2023036037A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111062521.6 2021-09-10
CN202111062521.6A CN113758527A (zh) 2021-09-10 2021-09-10 基于多种类、多数量传感器的智能电池监测预警方法及***

Publications (1)

Publication Number Publication Date
WO2023036037A1 true WO2023036037A1 (zh) 2023-03-16

Family

ID=78794729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116236 WO2023036037A1 (zh) 2021-09-10 2022-08-31 基于多种类、多数量传感器的智能电池监测预警方法及***

Country Status (2)

Country Link
CN (1) CN113758527A (zh)
WO (1) WO2023036037A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117155761A (zh) * 2023-11-01 2023-12-01 睿至科技集团有限公司 一种基于智能动环监控管理平台的告警方法及***

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113758527A (zh) * 2021-09-10 2021-12-07 清华大学 基于多种类、多数量传感器的智能电池监测预警方法及***
CN114899511B (zh) * 2022-05-20 2023-03-31 电子科技大学 一种基于分布式传感器的锂离子电池热失控预警***
CN117294017A (zh) * 2023-10-07 2023-12-26 南方电网调峰调频(广东)储能科技有限公司 多参数综合分析的储能电站状态监测方法及***
CN117741065A (zh) * 2023-12-20 2024-03-22 江苏讯汇科技股份有限公司 基于LoRa通讯的磷酸铁锂动力电池微量气体检测方法
CN117671876B (zh) * 2024-01-31 2024-04-05 四川千页科技股份有限公司 一种电化学储能站火灾预警监控***及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180143257A1 (en) * 2016-11-21 2018-05-24 Battelle Energy Alliance, Llc Systems and methods for estimation and prediction of battery health and performance
CN108749607A (zh) * 2018-05-23 2018-11-06 清华大学深圳研究生院 一种基于云计算的电动汽车动力电池管理和监控***
CN110311185A (zh) * 2019-07-16 2019-10-08 华侨大学 新能源动力汽车锂电池箱火灾安全状态无线监测***
CN110398699A (zh) * 2019-06-26 2019-11-01 清华大学 多传感器信息融合的动力电池热失控预警方法
CN110667435A (zh) * 2019-09-26 2020-01-10 武汉客车制造股份有限公司 一种新能源汽车动力电池的火灾监测预警***及方法
CN113758527A (zh) * 2021-09-10 2021-12-07 清华大学 基于多种类、多数量传感器的智能电池监测预警方法及***

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9608297B2 (en) * 2011-11-16 2017-03-28 Datang Nxp Semiconductors Co., Ltd. In-cell battery management device
CN107652858A (zh) * 2017-09-11 2018-02-02 清华大学 一种器件的后处理方法
CN107520102A (zh) * 2017-09-11 2017-12-29 清华大学 一种偶联处理方法
CN111907372A (zh) * 2020-08-13 2020-11-10 陕西工业职业技术学院 一种新能源汽车电池监测***
CN112014742A (zh) * 2020-08-20 2020-12-01 国网天津市电力公司 基于物联传感技术的电池组架构带电监测安全预警***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180143257A1 (en) * 2016-11-21 2018-05-24 Battelle Energy Alliance, Llc Systems and methods for estimation and prediction of battery health and performance
CN108749607A (zh) * 2018-05-23 2018-11-06 清华大学深圳研究生院 一种基于云计算的电动汽车动力电池管理和监控***
CN110398699A (zh) * 2019-06-26 2019-11-01 清华大学 多传感器信息融合的动力电池热失控预警方法
CN110311185A (zh) * 2019-07-16 2019-10-08 华侨大学 新能源动力汽车锂电池箱火灾安全状态无线监测***
CN110667435A (zh) * 2019-09-26 2020-01-10 武汉客车制造股份有限公司 一种新能源汽车动力电池的火灾监测预警***及方法
CN113758527A (zh) * 2021-09-10 2021-12-07 清华大学 基于多种类、多数量传感器的智能电池监测预警方法及***

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117155761A (zh) * 2023-11-01 2023-12-01 睿至科技集团有限公司 一种基于智能动环监控管理平台的告警方法及***

Also Published As

Publication number Publication date
CN113758527A (zh) 2021-12-07

Similar Documents

Publication Publication Date Title
WO2023036037A1 (zh) 基于多种类、多数量传感器的智能电池监测预警方法及***
Wei et al. Future smart battery and management: Advanced sensing from external to embedded multi-dimensional measurement
CN110635182B (zh) 电池热失控的预警方法和装置、电子设备、存储介质
US20170117725A1 (en) Thermal Monitoring of Battery Packs
WO2019053557A1 (ja) 二次電池の異常検知システム及び二次電池の異常検出方法
CN110398699A (zh) 多传感器信息融合的动力电池热失控预警方法
CN205674885U (zh) 一种电动汽车的电池检测管理***
CN217157440U (zh) 基于多种类、多数量传感器的智能电池监测预警***
CN115494404B (zh) 一种蓄电池组在线监测方法
CN116455085B (zh) 一种电池储能电站智能监控***
CN108511829A (zh) 一种锂电池
CN114722625B (zh) 锂电池的单体数字孪生模型建立方法、***、终端和介质
WO2013082955A1 (zh) 一种锂离子电池运行状态评估分析***
CN106384854B (zh) 一种可内部测温和加热的动力电池及控制方法
CN207423387U (zh) 一种基于温度差法的电缆中间接头温升在线监测装置
CN106663847A (zh) 电池中区分短路的***和方法
CN108258340A (zh) 一种带气体监控装置的电池***
CN111220202A (zh) 基于物联网的危化品溶液安全预警远程监测***和方法
CN106058338B (zh) 一种动力电池组的检测维护和均衡保养设备
CN114267150A (zh) 一种锂电池热失控早期火灾检测预警方法
CN113258147B (zh) 智能电池
CN108248432A (zh) 一种新能源汽车动力锂电池的监测***
CN207902204U (zh) 一种新能源汽车动力锂电池的监测***
CN115799673A (zh) 一种多维感知的储能电池管理***
CN114545250A (zh) 一种叠片软包锂电池质量检测方法及***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866501

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE