WO2023032851A1 - Marker, detection device, and detection method - Google Patents

Marker, detection device, and detection method Download PDF

Info

Publication number
WO2023032851A1
WO2023032851A1 PCT/JP2022/032231 JP2022032231W WO2023032851A1 WO 2023032851 A1 WO2023032851 A1 WO 2023032851A1 JP 2022032231 W JP2022032231 W JP 2022032231W WO 2023032851 A1 WO2023032851 A1 WO 2023032851A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
posture
marker
viewpoint
posture part
Prior art date
Application number
PCT/JP2022/032231
Other languages
French (fr)
Japanese (ja)
Inventor
純哉 桑田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023032851A1 publication Critical patent/WO2023032851A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras

Definitions

  • the present disclosure relates to markers, detection devices, and detection methods.
  • Patent Document 1 discloses a marker unit that includes a striped pattern of any two colors and a lenticular lens attached on the striped pattern.
  • the interval between the cylindrical lenses included in the lenticular lens is different from the interval between the striped lines. Since the gradation pattern observed on the lenticular lens changes according to the direction in which the lenticular lens is observed, a device (for example, a robot) observing the lenticular lens observes the change in the gradation pattern to determine the marker unit. Measure posture.
  • the marker unit disclosed in Patent Document 1 requires a lenticular lens with a relatively high member cost.
  • the marker unit disclosed in Patent Document 1 requires high accuracy in aligning the striped pattern and the lenticular lens, so the manufacturing cost is relatively high.
  • An object of the present disclosure is to reduce the cost of markers used to detect the orientation of an object.
  • the present disclosure provides a marker used for measuring an orientation relative to a viewpoint, the marker comprising a posture part used for detecting the orientation relative to the viewpoint, wherein the posture part is a first period of a first period. a first surface having one pattern; and a second surface having a second pattern of a second period disposed along the first surface at a predetermined distance from the first surface; A marker whose orientation relative to the viewpoint is detected is provided based on an interference pattern observed from the viewpoint by overlapping the first pattern and the second pattern.
  • the present disclosure includes a detection device that measures an orientation relative to the viewpoint using the above-described marker, an imaging device that captures an image of the marker from the viewpoint, and an image captured by the imaging device. and a processor that detects a relative posture with respect to the imaging device based on the interference pattern observed at the posture site.
  • the present disclosure is a detection method for measuring a posture relative to the viewpoint using the marker described above, wherein the marker is imaged from the viewpoint, and the posture part included in the captured image is detected.
  • Schematic diagram showing a configuration example of a detection system according to Embodiment 1 Schematic diagram showing a configuration example of a marker according to Embodiment 1 Sectional view showing an example of the AA cross section of the lateral posture part shown in FIG.
  • Schematic diagram showing an example of a change in the period of the interference pattern of the posture part 1 is a block diagram showing an example of a hardware configuration of a detection device according to Embodiment 1;
  • FIG. 1 is a block diagram showing an example of a functional configuration of a detection device according to Embodiment 1;
  • FIG. 1 Flowchart showing an example of processing for detecting and recording a reference phase of a posture part according to Embodiment 1 4 is a flow chart showing a modification of processing for detecting and recording reference phases of posture parts according to Embodiment 1; 4 is a flowchart showing an example of processing for estimating the posture of a marker according to Embodiment 1 Schematic diagram showing a first modification of the configuration of the marker according to Embodiment 1.
  • FIG. 11 is a schematic diagram showing a third modification of the configuration of the marker according to Embodiment 1; Schematic diagram showing a configuration example of a marker according to Embodiment 2 Schematic diagram showing a first modification of the configuration of the marker according to the second embodiment Schematic diagram showing a second modification of the configuration of the marker according to the second embodiment Schematic diagram showing a first configuration example of a low-sensitivity posture part Schematic diagram showing a low-sensitivity interference pattern and a high-sensitivity interference pattern of a low-high-sensitivity posture part according to the first configuration example Cross-sectional view showing a second configuration example of the low-sensitivity posture part Cross-sectional view showing a third configuration example of the low-sensitivity posture part
  • FIG. 10 is a diagram showing a configuration example of a printing apparatus and a PC according to Embodiment 3;
  • FIG. 1 is a schematic diagram showing a configuration example of a detection system 1 according to Embodiment 1.
  • FIG. 1 is a schematic diagram showing a configuration example of a detection system 1 according to Embodiment 1.
  • the detection system 1 includes a marker 10 and a detection device 100.
  • a marker 10 is attached to a predetermined object 3 .
  • the marker 10 may be fixedly attached to the object 3 or detachably attached to the object 3 .
  • the detection device 100 is configured including an imaging device 105 .
  • the detection device 100 captures an image of the marker 10 with an imaging device 105 , detects the marker 10 from the captured image (hereinafter referred to as a captured image), and based on the detected marker 10 , determines the relative position of the marker 10 with respect to the detection device 100 . position and orientation.
  • the detection device 100 may detect the marker 10 and detect the position and orientation of the detection device 100 relative to the marker 10 .
  • the imaging device 105 is an example of a viewpoint from which the marker 10 is observed, so the imaging device 105 in the following description may be read as a viewpoint.
  • the position of the marker 10 may be expressed as X, Y, Z coordinates.
  • the horizontal plane with respect to the ground is the XY plane
  • the height direction is the Z axis.
  • the X-axis, Y-axis, and Z-axis may be determined in any way.
  • the X-axis direction is sometimes referred to as the horizontal direction
  • the Y-axis direction as the vertical direction
  • the Z-axis direction as the height direction in order to make the description easier to understand.
  • the attitude of the marker 10 may be expressed as a pitch angle, yaw angle, and roll angle.
  • the rotation angle about the X axis is the pitch angle
  • the rotation angle about the Y axis is the yaw angle
  • the rotation angle about the Z axis is the roll angle.
  • the pitch angle, yaw angle, and roll angle may be determined in any way.
  • the marker 10 may be attached to the physical space object 3 as a mark for AR.
  • the detection device 100 may be included in a smart phone, a tablet terminal, AR glasses, or the like that performs AR processing.
  • the detection apparatus 100 can accurately detect the position and orientation of the object 3 in the real space based on the detected marks, so that the computer graphic model can be accurately superimposed and displayed on the object 3 in the real space. can.
  • the marker 10 may be attached to the object 3 to be manipulated by the robot.
  • the detection device 100 may be included in a robot that manipulates the object 3 .
  • the detection apparatus 100 can accurately detect the position and orientation of the object 3 to be operated based on the detected marks, so that the robot can operate the object 3 with high accuracy.
  • the marker 10 and the detection device 100 will be described in detail below.
  • FIG. 2 is a schematic diagram showing a configuration example of the marker 10 according to the first embodiment.
  • the marker 10 may include an identification part 11, a surrounding frame 12, and a posture part 13.
  • the identification part 11 is for allowing the detection device 100 to detect the identification information of the marker 10 .
  • the identification information of the marker 10 is hereinafter referred to as a marker ID.
  • Examples of the identification part 11 include one-dimensional codes, two-dimensional codes, character strings, and the like.
  • the surrounding frame 12 is a frame arranged so as to surround the identification part 11 .
  • Enclosing frame 12 may be a square frame having a predetermined width, as shown in FIG. However, the shape of the surrounding frame 12 is not limited to a square, and may be rectangular, polygonal, circular, or the like.
  • the enclosing frame 12 may be used by the detection device 100 to detect the position of the marker 10 , detect the roll angle of the marker 10 , or roughly detect the orientation of the marker 10 .
  • the posture part 13 is for causing the detection device 100 to detect the posture of the marker 10 .
  • the detection device 100 uses the surrounding frame
  • the orientation (pitch angle or yaw angle) of the marker 10 can be roughly detected from the shape distortion of 12 .
  • the posture part 13 may be used to detect the posture of the marker 10 with sufficient accuracy even when the marker 10 is photographed from a direction close to the front.
  • the posture part 13 has a rectangular shape when viewed from the front (in the Z-axis direction), and is arranged outside the enclosing frame 12 so that its longitudinal direction is along the sides of the enclosing frame 12 .
  • the marker 10 has a horizontal position part 13A whose longitudinal direction extends in the horizontal direction (X-axis direction) and a vertical position part 13A whose longitudinal direction extends in the vertical direction (Y-axis direction). 13B may be arranged.
  • the detecting device 100 can accurately detect the Y-axis rotation angle (yaw angle) of the marker 10 using the sideways attitude part 13A, and can detect the X-axis rotation of the marker 10 using the vertical attitude part 13B.
  • the angle (pitch angle) can be detected with high accuracy.
  • the posture part 13 will be described in detail.
  • description will be made mainly on the sideways attitude portion 13A.
  • this embodiment also applies to the vertically oriented portion 13B.
  • the yaw angle in the description of this embodiment should be read as the pitch angle.
  • FIG. 3 is a cross-sectional view showing an example of the AA cross section of the sideways attitude portion 13A shown in FIG.
  • FIG. 4 is a schematic diagram showing an example of changes in the period of the interference pattern of the posture part 13A.
  • An example of the interference pattern of the posture part 13A in the case of is shown.
  • the posture part 13A has a first surface 21 and a second surface 22.
  • the first surface 21 and the second surface 22 are separated by a predetermined distance d, and the first surface 21 is arranged along (for example, parallel to) the second surface 22 .
  • the first surface 21 has a first pattern 31 with a first period p1 in the longitudinal direction (X-axis direction).
  • the second surface 22 has a second pattern 32 with a second period p2 different from the first period p1 in the longitudinal direction (X-axis direction).
  • the first pattern 31 and the second pattern 32 may be striped patterns composed of a plurality of lines extending in the lateral direction (Y-axis direction), as shown in FIG. In FIG. 4, the first pattern 31 and the second pattern 32 are shown slightly shifted in the lateral direction so that the first pattern 31 and the second pattern 32 can be distinguished from each other. Such deviation need not occur in the actual posture part 13A.
  • the position of the periodic shading of this interference pattern moves in the longitudinal direction, as shown in FIG. 4(b). That is, the phase of the interference pattern changes as the yaw angle ⁇ changes.
  • the phase of the interference pattern in this case is ⁇ 1 ( ⁇ 0).
  • the detection device 100 can detect the yaw angle ⁇ of the marker 10 by detecting the phase of the interference pattern of the posture portion 13 of the marker 10 .
  • the posture part 13 may be configured as a transparent flat plate or sheet that has a thickness d and presents a rectangular shape when viewed from the front.
  • the thickness d of the plane plate or sheet may be, for example, about 1 mm. However, the thickness d may be less than 1 mm or greater than 1 mm.
  • a first pattern 31 may be printed on the first side 21 (eg, the front side) of the plane plate or sheet, and a second pattern 32 may be printed on the second side 22 (eg, the back side) of the plane plate or sheet.
  • the plane plate or sheet may have any transparency as long as the second pattern 32 can be observed from the front direction.
  • the planar plate or sheet may have any refractive index n as long as the second pattern 32 can be observed from the front direction.
  • the posture part 13 may have a configuration different from that of the plane plate or the sheet.
  • the posture part 13 has a first surface 21 and a second surface 22 formed by arranging a plurality of hard rod-like members in a gridiron shape, and a post having a length d between the first surface 21 and the second surface 22.
  • the structure which fixes the 1st surface 21 and the 2nd surface 22 on both sides may be sufficient. In this case, the gap between the first surface 21 and the second surface 22 becomes an air layer.
  • the colors of the first pattern 31 and the second pattern 32 may be the same color (for example, black).
  • the colors of the first pattern 31 and the second pattern 32 may be different colors.
  • the first pattern 31 is red and the second pattern 32 is yellow.
  • a portion where the striped pattern of the first pattern 31 appears to cover the striped pattern of the second pattern 32 looks pink due to the combination of red and white (transparent), and the striped pattern of the first pattern 31 does not overlap with the striped pattern of the first pattern 31 .
  • the detection device 100 can detect the period T of the interference pattern that changes from pink to orange in a gradational manner in the longitudinal direction from the posture part 13A.
  • T p2 ⁇ p1/(p1 ⁇ p2) (Formula 1)
  • the detectable range of the yaw angle ⁇ may be calculated by Equation 2 below. ⁇ arctan(n ⁇ p1/d/2) ⁇ +arctan(n ⁇ p1/d/2) ... (Formula 2)
  • is estimated based on how much the phase ⁇ 1 of the interference pattern deviates from the reference phase ⁇ 0.
  • the detectable range defined by Equation 2 is for the case where the first pattern 31 and the second pattern 32 are sufficiently long. Also, in order to calculate ⁇ , it is necessary to observe the state in which the interference pattern has moved. Therefore, when the lengths of the first pattern 31 and the second pattern 32 are exactly the period T, part of the interference pattern that has moved protrudes beyond the end of the posture part 13 and cannot be observed. There is In this case, it becomes difficult to directly obtain information on the amount of movement of the interference pattern, so there is a risk that the detection accuracy of ⁇ will decrease.
  • the lengths of the first pattern 31 and the second pattern 32 are sufficiently longer than the period T of the interference pattern.
  • the entire pattern should be visible, that is, the posture part 13, the first pattern 31, and the second pattern 32 should be longer than the period T.
  • the posture part 13, the first pattern 31, and the second pattern 32 will be described below as being sufficiently longer than the period T.
  • the posture part 13 according to the present embodiment does not require a lenticular lens whose member cost is relatively high as disclosed in Patent Document 1. Moreover, the posture part 13 according to the present embodiment does not require highly accurate alignment such as alignment between the striped pattern and the lenticular lens disclosed in Patent Document 1. Therefore, according to this embodiment, the cost of the marker 10 can be reduced.
  • the direction in which the phase of the interference pattern changes due to the change in angle is determined by the shape and period of the first pattern 31 and the second pattern 32 that constitute the posture part 13. . More specifically, patterns appearing at periods p1 and p2 in the direction perpendicular to the rotation axis of the angle to be detected are adopted as the first pattern 31 and the second pattern 32, thereby rotating the phase of the interference pattern. It changes depending on the angle. For example, in the example of FIG.
  • FIG. 5 is a block diagram showing an example of the hardware configuration of the detection device 100 according to Embodiment 1. As shown in FIG.
  • the detection device 100 includes a processor 101, a ROM (Read Only Memory) 102, a RAM (Random Access Memory) 103, a storage 104, and an imaging device 105 as hardware.
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the ROM 102 is configured by a non-volatile storage medium and stores computer programs, data, and the like.
  • the RAM 103 is composed of a volatile or non-volatile storage medium, and stores computer programs and data. Note that the RAM 103 may simply be read as a memory.
  • the storage 104 is configured by a non-volatile storage medium and stores computer programs, data, and the like. Examples of the storage 104 include flash memory, SSD (Solid State Drive), and HDD (Hard Disk Drive).
  • the imaging device 105 is composed of a lens, an image sensor, and the like, captures an image of a subject, and generates a captured image.
  • the imaging device 105 may be read as a camera.
  • the processor 101 reads and executes a computer program from the ROM 102 or the storage 104, and cooperates with the imaging device 105, the RAM 103, the storage 104, etc., to implement the functions of the detection device 100. Details of the functions of the detection device 100 will be described later (see FIG. 6). Note that the processor 101 may be read as other terms such as a CPU (Central Processing Unit), a controller, and a control circuit.
  • a CPU Central Processing Unit
  • controller Central Processing Unit
  • FIG. 6 is a block diagram showing an example of the functional configuration of the detection device 100 according to Embodiment 1. As shown in FIG.
  • the detection device 100 has an image acquisition unit 201, a marker detection unit 202, a phase detection unit 203, a reference phase detection unit 204, a reference phase holding unit 205, an angle calculation unit 206, and a posture estimation unit 207 as functions. These functions may be realized by the processor 101 reading and executing a computer program from the ROM 102 or the storage 104 and cooperating with the imaging device 105, the RAM 103, the storage 104, and the like. Therefore, hereinafter, the processing mainly performed by these components can be read as the processing mainly performed by the processor 101 .
  • the image acquisition unit 201 acquires captured images from the imaging device 105 .
  • the marker detection unit 202 detects the marker 10 from the captured image acquired by the image acquisition unit 201 . In addition, the marker detection unit 202 detects the identification part 11 and the posture part 13 from the detected markers 10 .
  • the phase detection unit 203 observes the interference pattern of the posture part 13 detected by the marker detection unit 202 and detects the phase of the interference pattern.
  • the reference phase detection unit 204 observes the interference pattern of the posture part 13 detected by the marker detection unit 202 from the marker 10 in a predetermined posture, and detects the phase of the interference pattern as the reference phase.
  • the reference phase detector 204 associates the detected reference phase with the marker ID detected by the marker detector 202 .
  • the reference phase holding unit 205 holds a set of marker IDs and reference phases associated by the reference phase detection unit 204 in the storage 104, for example.
  • the angle calculator 206 calculates the angle (yaw angle or pitch angle).
  • the posture estimation unit 207 estimates the posture of the marker 10 based on the angle of the posture part 13 calculated by the angle calculation unit 206 and the position of the marker 10 in the captured image.
  • FIG. 7 is a flowchart showing an example of processing for detecting and recording the reference phase of the posture part 13 according to the first embodiment.
  • the imaging device 105 images the marker 10 in a predetermined posture (for example, the marker 10 facing the front) to generate a captured image, and the image acquisition unit 201 acquires the captured image from the imaging device 105 (S101).
  • the marker detection unit 202 detects the marker 10 from the acquired captured image (S102).
  • the marker detection unit 202 detects the identification part 11 (for example, two-dimensional code) and the posture part 13 from the detected marker 10 (S103).
  • the marker detection unit 202 detects the marker ID from the detected identification part 11 (S104).
  • the reference phase detection unit 204 detects the phase of the interference pattern from the detected posture part 13 and uses it as the reference phase (S105).
  • the reference phase holding unit 205 associates and holds the detected marker ID and the reference phase (S106).
  • the phase of the interference pattern of the posture part 13 observed when the marker 10 indicated by the marker ID is in a predetermined posture is held in the reference phase holding unit 205 as a reference phase.
  • FIG. 8 is a flow chart showing a modification of the process of detecting and recording the reference phase of the posture part 13 according to the first embodiment.
  • the imaging device 105 captures an image of the marker 10 to generate a captured image, and the image acquisition unit 201 acquires the captured image (S201).
  • the marker detection unit 202 detects the marker 10 from the acquired captured image (S202).
  • the marker detection unit 202 calculates the amount of posture deviation between the marker 10 in a predetermined posture (for example, the marker 10 facing the front) and the detected marker 10 (S203).
  • the marker detection unit 202 may calculate the amount of deviation based on the shape of the marker 10 in the captured image. For example, when the shape of the enclosing frame 12 of the marker 10 is square, the marker detection unit 202 performs the following processing. That is, when the shape of the surrounding frame 12 of the detected marker 10 is a square, the marker detection unit 202 calculates the amount of deviation to be approximately 0 because the marker 10 is in a posture that faces approximately the front.
  • the marker detection unit 202 determines that the larger the ratio of the shape of the surrounding frame 12 of the detected marker 10 that deviates from the square ), the amount of deviation is calculated to be large because the marker 10 is in a posture that is greatly inclined.
  • the marker detection unit 202 may display information such as the calculated amount of misalignment, the direction of the misalignment, or the direction in which the imaging device 105 should be moved to eliminate the misalignment on the screen so that the user can confirm it. good.
  • the marker detection unit 202 compares the deviation amount calculated last time and the deviation amount calculated this time, and determines whether or not the deviation amount this time is smaller than the deviation amount last time (S204).
  • step S204: NO If the current deviation amount is not smaller than the previous deviation amount (S204: NO), the processor 101 advances the process to step S209, and if the current deviation amount is smaller than the previous deviation amount ( S204: YES), the process proceeds to step S205.
  • the marker detection unit 202 detects the identification part 11 (for example, two-dimensional code) and the posture part 13 from the detected marker 10 (S205).
  • the marker detection unit 202 detects the marker ID from the detected recognition site (S206).
  • the reference phase detection unit 204 detects the phase of the interference pattern from the detected posture part 13 and uses it as the reference phase (S207).
  • the reference phase holding unit 205 associates and holds the detected marker ID and the reference phase (S208). That is, when the current deviation amount is smaller than the previous deviation amount (that is, when step S204 is YES), the reference phase holding unit 205 holds the reference phase, and the current deviation amount is equal to the previous deviation amount. If this is the case (that is, if step S204 is NO), the reference phase is not held. As a result, the reference phase holding unit 205 holds the phase of the interference pattern detected from the marker 10 in a posture closer to the front as the reference phase.
  • the processor 101 determines whether or not the conditions for terminating this process are satisfied (S209).
  • termination conditions include a case where the user performs a predetermined termination operation, or a case where the deviation amount becomes equal to or less than a predetermined threshold.
  • processor 101 determines that the termination condition is not satisfied (S209: NO), it returns the process to step S201, and if it determines that the termination condition is satisfied (S209: YES), it ends this process.
  • the reference phase holding unit 205 holds, as a reference phase, the phase of the interference pattern of the posture part 13 observed in a posture in which the marker 10 indicated by the marker ID faces more toward the front.
  • processing shown in FIG. 7 or 8 described above may be performed when the marker 10 is manufactured.
  • images of the marker 10 in various postures may be captured to check whether or not the interference pattern is appropriately observed in each posture.
  • FIG. 9 is a flowchart showing an example of processing for estimating the orientation of marker 10 according to the first embodiment. It is assumed that the reference phase is held in the reference phase holding unit 205 in advance by the reference phase recording processing shown in FIG. 7 or 8 before execution of this process.
  • the imaging device 105 captures the marker 10 to generate a captured image, and the image acquisition unit 201 acquires the captured image (S301).
  • the marker detection unit 202 detects the marker 10 from the acquired captured image (S302).
  • the marker detection unit 202 detects the identification part 11 (for example, two-dimensional code) and the posture part 13 from the detected marker 10 (S303).
  • the marker detection unit 202 detects the marker ID from the detected identification part 11 (S304).
  • the phase detection unit 203 detects the phase of the interference pattern from the detected posture part 13 (S305).
  • the angle calculator 206 acquires the reference phase (eg, ⁇ 0) associated with the detected marker ID from the reference phase holder 205 . Then, the angle calculator 206 calculates the angle (yaw angle or pitch angle) of the posture part 13 based on the shift between the reference phase and the phase (eg, ⁇ 1) detected in step S305 (S306).
  • the reference phase eg, ⁇ 0
  • the angle calculator 206 calculates the angle (yaw angle or pitch angle) of the posture part 13 based on the shift between the reference phase and the phase (eg, ⁇ 1) detected in step S305 (S306).
  • the posture estimation unit 207 estimates the posture of the marker 10 based on the calculated angle (eg, yaw angle or pitch angle) of the posture part 13 and the position of the marker 10 in the captured image (S307). Note that the processing shown in FIG. 9 may be repeatedly executed.
  • the detection device 100 can estimate the orientation of the marker 10 with high accuracy.
  • the marker ID and the reference phase detected in the reference phase recording process are associated and held, and the reference phase associated with the marker ID detected in the attitude estimation process is obtained. . Therefore, even if there is some error in the posture part 13 for each marker 10, the reference phase based on the error can be retained and used for posture estimation. Therefore, the detection accuracy of the yaw angle ⁇ can be ensured without performing precise alignment between the posture parts 13 .
  • the imaging device 105 used for detecting the marker 10 is the same as the imaging device 105 used for recording the reference phase, it is possible to absorb errors in the reference phase that may arise from differences in camera characteristics.
  • the reference phase held for a certain marker 10 can be It may be used for posture estimation processing using another marker 10 , or the reference phase recording processing and posture estimation processing may be performed by a different detection device 100 .
  • the main purpose is to estimate the posture, it is not necessary to distinguish the markers 10. Therefore, in the reference phase recording process and the posture estimation process, the marker 10 without the identification part 11 is used, or the marker ID The detection process itself may be omitted.
  • the marker 10 may be configured to include only one of the posture part 13A and the posture part 13B. good.
  • the posture portion 13A is arranged at the position in the negative direction of the Y-axis (that is, the lower position), and the posture portion 13B is arranged at the position in the positive direction of the X-axis. (that is, the right position), the posture parts 13A and 13B may be positioned at other positions.
  • the posture part 13A is arranged at the position in the positive direction of the Y-axis (that is, the upper position), and the posture part 13B is arranged at the position in the negative direction of the X-axis (that is, the position to the left).
  • the same effect as the marker 10 of the present embodiment can be obtained.
  • the posture part 13A may be arranged at both the upper and lower positions, or the posture part 13B may be arranged at both the left and right positions. By doing so, even if one of the posture parts 13 is hidden by an obstacle, the angle can be estimated if the other posture parts 13 can be observed.
  • the longitudinal length of the posture part 13 is substantially the same as the length of the side of the enclosing frame 12 , but the longitudinal length of the posture part 13 is the same as the length of the side of the enclosing frame 12 .
  • the length may be different from the length.
  • the angle can be detected even if the length of the posture part 13 in the longitudinal direction is shorter than the length of the side of the enclosing frame 12.
  • the range remains unchanged.
  • the posture portion 13A is arranged at the position in the negative direction of the Y-axis (that is, the lower position), and the posture portion 13B is arranged at the position in the positive direction of the X-axis. (that is, the right position), the posture parts 13A and 13B may be positioned at other positions.
  • the posture parts 13A and 13B may be positioned at other positions. For example, in FIG.
  • the posture part 13A is arranged at any position in the positive or negative direction of the X-axis (that is, any position in the left-right direction), and the posture part 13B is arranged at any position in the positive or negative direction of the Y-axis (that is, The same effect as the marker 10 of the present embodiment can be obtained even if it is arranged at any position in the vertical direction.
  • a rectangular shape is adopted as the posture part 13, and when the enclosing frame 12 of the marker 10 is rectangular, the longitudinal direction of the posture part 13 is arranged along the sides of the enclosing frame 12 of the marker 10. It is By adopting this configuration, the area occupied by the marker 10 can be suppressed.
  • the side of the enclosing frame 12 and the longitudinal direction of the posture part 13 do not necessarily have to be aligned.
  • the side of the enclosing frame 12 and the posture part 13 may be shifted by 45 degrees. Even in this case, if the relative angle between the surrounding frame 12 and the posture part 13 is known, the angle can be accurately estimated using the posture part 13 .
  • the configuration of the marker 10 according to Embodiment 1 is not limited to the example shown in FIG. Next, some modifications of the configuration of marker 10 according to Embodiment 1 will be described.
  • FIG. 10 is a schematic diagram showing a first modification of the configuration of marker 10 according to the first embodiment.
  • the marker 10 may be configured to include posture parts 13 arranged along the sides of the enclosing frame 12 inside the enclosing frame 12 .
  • the marker 10 inside the enclosing frame 12, the marker 10 has a sideways attitude portion 13A arranged along the lateral sides of the enclosing frame 12 in the longitudinal direction, and and a vertically oriented posture portion 13B arranged along the vertical side of the .
  • the detection device 100 can detect the posture parts 13A and 13B using the position of the enclosing frame 12 as a reference. Further, the detection device 100 can detect the yaw angle based on the phase change of the interference pattern of the sideways attitude part 13A, and can detect the pitch angle based on the phase change of the interference pattern of the vertical attitude part 13B.
  • the posture parts 13 may be embedded in the sides of the enclosing frame 12 . However, it is difficult to detect the shape of the enclosing frame 12 in which the posture part 13 is embedded. It is better to arrange the frame 12 and the posture part 13 at different positions.
  • FIG. 11 is a schematic diagram showing a second modification of the configuration of marker 10 according to the first embodiment.
  • the marker 10 may be configured to include a circular posture portion 13 arranged at a predetermined position (for example, the center of the enclosing frame 12) inside the enclosing frame 12.
  • the first pattern 31 and the second pattern 32 are printed on the first surface 21 and the second surface 22 of the posture part 13 as circular patterns that are periodic in the direction away from the center of the circle. good.
  • the posture part 13 is not limited to a circular shape, and may be fan-shaped with a central angle of 1/4 or more. This is because, if the central angle is at least 1/4 of the fan shape, the deviation of the interference pattern can be observed for both rotation in the yaw direction and rotation in the pitch direction. If it is sufficient to calculate only one of the yaw angle and the pitch angle, the posture part 13 may be fan-shaped with a narrower central angle (less than 1/4).
  • the detection device 100 can detect the posture part 13 with the position of the enclosing frame 12 as a reference. Further, the detection device 100 can detect the yaw angle based on the phase change of the interference pattern in the X-axis direction from the center of the posture part 13, and can detect the pitch angle based on the phase change of the interference pattern in the Y-axis direction from the center of the posture part 13. Can detect corners.
  • the marker 10 may be configured to include a ring-shaped posture portion 13 arranged so as to surround the enclosing frame 12 outside the enclosing frame 12 . Further, the marker 10 may be configured to include a ring-shaped posture portion 13 arranged at a predetermined position (for example, the center of the enclosing frame 12) inside the enclosing frame 12.
  • the posture part 13 may have a ring shape (that is, a fan shape) with a central angle of 1/4 or more, as in the case of the circular shape.
  • the posture part 13 has a ring shape (that is, a fan shape) with a narrower central angle (less than 1/4). ).
  • the length of its radius may be equal to or longer than the length of one period of the interference pattern, and when the posture part 13 is ring-shaped, the width of the ring may be longer than or equal to one cycle of .
  • the posture part 13 has a sufficient length in order to maximize the detectable range of angles.
  • the interference pattern appears concentrically and moves in the radial direction of the circle or fan or in the width direction of the ring as the angle changes.
  • the maximum detectable range can be set by increasing the length of the radius of the circle in the case of a circular or sector shape, and by increasing the width of the ring in the case of a ring shape.
  • this length does not necessarily have to be equal to or longer than the length of one cycle, and may be shorter than the length of one cycle. There is a need to.
  • FIG. 12 is a schematic diagram showing a third modification of the configuration of marker 10 according to the first embodiment.
  • the marker 10 may be configured to include a rectangular posture portion 13 arranged at a predetermined position (for example, the center of the enclosing frame 12) inside the enclosing frame 12.
  • the first pattern 31 and the second pattern 32 are lattice patterns in which patterns having periodicity corresponding to mutually different rotation axes are overlapped, and the first surface 21 and the second pattern 32 of the posture part 13 are formed.
  • Surface 22 may be printed.
  • the detection device 100 can detect the pitch angle or yaw angle of the marker 10 based on the phase movement.
  • the interference pattern moves in the Y-axis direction in FIG.
  • the interference pattern moves in the X-axis direction. Therefore, by analyzing the interference pattern focusing on each direction, a plurality of rotation angles can be calculated with one marker 10 .
  • the shape of the posture part 13 may be rectangular even in the case of the lattice pattern.
  • the length in the direction perpendicular to the rotation axis must be equal to or greater than the period of the interference pattern. Therefore, in FIG. 12, a posture portion 13 that is long in both the X-axis direction and the Y-axis direction is provided so that both the pitch angle and the yaw angle can be detected within a sufficient range.
  • the posture part 13 since a large area is required to arrange the posture part 13 outside the enclosing frame 12, the posture part 13 is arranged inside the enclosing frame 12 in FIG. However, if the area of the marker 10 is not restricted, the posture part 13 may be arranged outside the enclosing frame 12 .
  • Embodiment 2 describes a marker 10 that includes a plurality of posture parts 13 with different sensitivities.
  • the same reference numerals are given to the constituent elements that have already been explained in Embodiment 1, and the explanation may be omitted.
  • FIG. 13 is a schematic diagram showing a configuration example of the marker 10 according to the second embodiment.
  • the marker 10 includes an identification part 11, a surrounding frame 12, a low-sensitivity posture part 14, and a high-sensitivity posture part 15.
  • the basic configuration of the low-sensitivity posture part 14 and the high-sensitivity posture part 15 may be the same as that of the posture part 13 described in the first embodiment. Therefore, in the second embodiment, the low-sensitivity posture part 14 and the high-sensitivity posture part 15 may be expressed as the posture part 13 .
  • the sensitivity corresponds to the level of accuracy in detecting the angle of the posture part 13.
  • the detectable angle range is limited to a range in which the same interference pattern as when the angle is 0 degree does not appear.
  • the granularity with which changes in the phase of the interference pattern can be detected is determined by parameters that are difficult to change, such as the resolution of the imaging device 105 . Therefore, a configuration in which a small angle change causes a large phase change can detect an angle change with higher accuracy than a configuration in which a large angle change causes a small phase change.
  • the period of the interference pattern is determined by a parameter different from the detectable range of the angle (equation 1, equation 2). Therefore, if the period of the interference pattern is long (that is, the range in which the same interference pattern does not appear when the angle is 0 degrees is wide) and the parameters are designed so that the angle detection range is narrow, a slight angle change can be achieved. It is possible to design the marker 10 whose phase changes greatly at . On the other hand, however, in order to realize the angle detectable range shown in Equation 2, the length of the posture part 13 needs to be sufficiently longer than the period of the interference pattern.
  • the size of the posture part 13 will become very large, and as a result, the size of the marker 10 will also become very large. That is, in an actual environment where the size of the marker 10 (or the size of the posture part 13) is physically restricted, the higher the sensitivity, the narrower the angle detection range, and the lower the sensitivity, the wider the angle detection range. Become.
  • both the low-sensitivity posture part 14, which is the posture part 13 with relatively low sensitivity, and the high-sensitivity posture part 15, which has higher sensitivity than the low-sensitivity posture part 14, are arranged on the marker 10.
  • the marker 10 capable of detecting the angle of the posture part 13 with a wide detection range and high detection accuracy is realized.
  • the marker 10 is positioned outside the enclosing frame 12 along the lateral sides of the enclosing frame 12 (for example, the upper side and the lower side in FIG. 13).
  • the detection device 100 can detect a wide range of yaw angles with high precision using the low-sensitivity posture part 14A and the high-sensitivity posture part 15A in the horizontal direction, and detect the low-sensitivity posture part 14B and the high-sensitivity posture part 15B in the vertical direction.
  • a wide range of pitch angles can be detected with high accuracy.
  • the period T of the interference pattern is affected by the values of p1 and p2 (equation 1), but the angle detection range is not affected by p2 (equation 2). Therefore, by appropriately adjusting the values of p1 and p2, even when a material having a uniform refractive index n and a uniform distance d is used as the material of the marker 10, an interference pattern having substantially the same period T and different sensitivities can be obtained.
  • a generating marker 10 can be implemented. Also, the sensitivity may be adjusted by forming the marker 10 from a plurality of materials and changing the refractive index n or the distance d.
  • the configuration of the marker 10 according to Embodiment 2 is not limited to the configuration example shown in FIG. Next, some modifications of the configuration of marker 10 according to Embodiment 2 will be described.
  • FIG. 14 is a schematic diagram showing a first modification of the configuration of marker 10 according to the second embodiment.
  • the marker 10 has low-sensitivity posture parts 14 (14A, 14B) and high-sensitivity posture parts 15 (15A, 15B) along each of the four sides of the enclosing frame 12 outside the enclosing frame 12. may be arranged side by side. That is, the low-sensitivity posture part 14 and the high-sensitivity posture part 15 may be arranged adjacent to each other.
  • This also makes it possible to realize the marker 10 capable of detecting the angle of the posture part 13 with a wide detection range and high detection accuracy, as described above.
  • FIG. 15 is a schematic diagram showing a second modification of the configuration of marker 10 according to the second embodiment.
  • the marker 10 is positioned outside the enclosing frame 12 along the sides of the enclosing frame 12 .
  • ) 16 may be arranged. Next, some configuration examples for realizing the low-sensitivity posture part 16 will be described.
  • FIG. 16 is a schematic diagram showing a first configuration example of the low-high-sensitivity posture part 16. As shown in FIG. In FIG. 16, (a) shows the first surface 21 of the low-high-sensitivity posture part 16 viewed from the positive direction of the Z-axis, and (b) shows the second surface 22 of the low-high-sensitivity posture part 16 viewed from the Z-axis. shows a view from the positive direction.
  • the first surface 21 of the low-sensitivity posture portion 16 has a first pattern 33 for low sensitivity and a first pattern 34 for high sensitivity.
  • the second surface 22 of the low-sensitivity posture portion 16 has a second pattern 35 for low sensitivity and a second pattern 36 for high sensitivity.
  • the first pattern 33 for low sensitivity and the first pattern 34 for high sensitivity are the first pattern 31 on the first surface 21 shown in FIG. It corresponds to a line in the lateral direction (Y-axis direction).
  • the first pattern 33 for low sensitivity and the first pattern 34 for high sensitivity are patterns that do not overlap each other in the lateral direction (Y-axis direction). you can For example, as shown in FIG. 16A, the first pattern 33 for low sensitivity and the first pattern 34 for high sensitivity are patterns like dashed lines alternated in the lateral direction (Y-axis direction). is.
  • the first pattern 33 for low sensitivity and the first pattern 34 for high sensitivity may have different cycles in the longitudinal direction (X-axis direction).
  • the second pattern 35 for low sensitivity and the second pattern 36 for high sensitivity are the second pattern on the second surface 22 shown in FIG. It corresponds to a line in the lateral direction (Y-axis direction) of the pattern 32 .
  • the second pattern 35 for low sensitivity and the second pattern 36 for high sensitivity are patterns that do not overlap each other in the lateral direction (Y-axis direction). you can For example, as shown in FIG. 16B, the second pattern 35 for low sensitivity and the second pattern 36 for high sensitivity are patterns like dashed lines alternated in the lateral direction (Y-axis direction). is. Also, the second pattern 35 for low sensitivity and the second pattern 36 for high sensitivity may have different cycles in the longitudinal direction (X-axis direction).
  • an interference pattern for low sensitivity observed by interference between the first pattern 33 for low sensitivity and the second pattern 35 for low sensitivity, and the first pattern 34 for high sensitivity and for high sensitivity The interference pattern for high sensitivity observed by interference with the second pattern 36 of .
  • FIG. 17 is a schematic diagram showing a low-sensitivity interference pattern and a high-sensitivity interference pattern of the low-high-sensitivity posture portion 16 according to the first configuration example.
  • FIG. 17(a) shows an example of an interference pattern for low sensitivity
  • FIG. 17(b) shows an example of an interference pattern for high sensitivity.
  • the detection apparatus 100 detects a portion of the captured image in which the first pattern 33 for low sensitivity and the second pattern 35 for low sensitivity exist on the Y axis as a detection range.
  • the portion where the first pattern 34 and the second pattern 36 for high sensitivity are present is defined as a non-detection range (that is, a non-detection range).
  • the detection apparatus 100 detects the interference pattern for low sensitivity observed by the interference between the first pattern 33 for low sensitivity and the second pattern 35 for low sensitivity, as shown in FIG. can be detected.
  • the detection apparatus 100 detects a portion in which the first high-sensitivity pattern 34 and the second high-sensitivity pattern 36 exist on the Y-axis from the captured image as a detection range.
  • the portion where the pattern 33 of 1 and the second pattern 35 for low sensitivity exist is defined as a non-detection range (that is, a non-detection range). 17(b), the detection device 100 detects an interference pattern for high sensitivity observed by interference between the first pattern 34 for high sensitivity and the second pattern 36 for high sensitivity. can be detected.
  • the detection apparatus 100 detects a wide
  • the angle of the low-high-sensitivity posture part 16 can be calculated within the detection range and with high detection accuracy.
  • the first pattern 33 for low sensitivity and the second pattern 35 for low sensitivity are a thin checkered pattern
  • the first pattern 34 for high sensitivity and the second pattern 36 for high sensitivity are drawn as dark checkered patterns, but these patterns 33, 34, 35, and 36 may all be of the same color (for example, black).
  • FIG. 18 is a cross-sectional view showing a second configuration example of the low-high-sensitivity posture portion 16. As shown in FIG.
  • the low-sensitivity posture part 16 has a first surface 21, a second surface 22 and a third surface 23.
  • the first surface 21 has a first pattern 31
  • the second surface 22 has a second pattern 32
  • the third surface 23 has a third pattern 37 .
  • the third pattern 37 is a striped pattern composed of a plurality of lines extending in the lateral direction of the low-high-sensitivity posture portion 16 .
  • the first period of the first pattern 31, the second period of the second pattern 32, and the third period of the third pattern 37 may be periods different from each other.
  • the first pattern 31 and the second pattern 32 are configured to detect an interference pattern for low sensitivity
  • the second pattern 32 and the third pattern 37 are configured to detect an interference pattern for high sensitivity.
  • the first pattern 31 and the second pattern 32 are configured such that the interference pattern for high sensitivity is detected
  • the second pattern 32 and the third pattern 37 are configured for the interference pattern for low sensitivity. may be configured to be detected.
  • the detection device 100 detects the low-sensitivity interference pattern and the high-sensitivity interference pattern from the captured image, and calculates the angle of the low-high-sensitivity posture part 16 with a wide detection range and high detection accuracy. can.
  • the distance d1 between the first surface 21 and the second surface 22 and the distance d2 between the second surface 22 and the third surface 23 may be common or different. Further, the refractive index n1 between the first surface 21 and the second surface 22 and the refractive index n2 between the second surface 22 and the third surface 23 may be common or different. As described above, the sensitivity can be adjusted by any parameter described in Equation 2, so whether or not the distance or the refractive index is used to set the sensitivity can be freely designed.
  • the first pattern 31 and the second pattern 32 may form one interference pattern
  • the first pattern 31 and the third pattern 37 may form the other pattern.
  • FIG. 19 is a cross-sectional view showing a third configuration example of the low-high-sensitivity posture portion 16. As shown in FIG.
  • the low-high-sensitivity posture part 16 has a first pattern 33 for low-sensitivity and a first pattern 34 for high-sensitivity on the first surface 21.
  • the second surface 22 has a second pattern 35 for low sensitivity and a second pattern 36 for high sensitivity.
  • the first pattern 33 for low sensitivity and the second pattern 35 for low sensitivity have a common color
  • the first pattern 34 for high sensitivity and the second pattern 36 for high sensitivity have a common color.
  • the first pattern 33 for low sensitivity and the second pattern 35 for low sensitivity and the first pattern 34 for high sensitivity and the second pattern 36 for high sensitivity are of different colors. .
  • the first pattern 33 for low sensitivity and the second pattern 35 for low sensitivity are blue
  • the first pattern 34 for high sensitivity and the second pattern 36 for high sensitivity are green.
  • the detection device 100 uses a color filter capable of color separation to obtain a low-sensitivity interference pattern observed by interference between the low-sensitivity first pattern 33 and the low-sensitivity second pattern 35. and the high-sensitivity interference pattern observed by the interference between the high-sensitivity first pattern 34 and the high-sensitivity second pattern 36 may be detected separately.
  • the detection device 100 performs the following processing. That is, the detection device 100 extracts the first pattern 33 for low sensitivity and the second pattern 35 for low sensitivity using a color filter for detecting blue, and detects the interference pattern for low sensitivity. Then, the detection device 100 uses a color filter for detecting green to extract the first pattern 34 for high sensitivity and the second pattern 36 for high sensitivity, and detect the interference pattern for low sensitivity.
  • the detection apparatus 100 detects a wide
  • the angle of the low-high-sensitivity posture part 16 can be calculated within the detection range and with high detection accuracy.
  • the first surface 21 may have a pattern in which the first pattern 33 for low sensitivity and the first pattern 34 for high sensitivity are common.
  • the detection device 100 converts the interference pattern observed by interference between the shared pattern on the first surface 21 and the second pattern 35 for low sensitivity on the second surface 22 into the interference pattern for low sensitivity.
  • an interference pattern observed by interference between the shared pattern on the first surface 21 and the second pattern 36 for high sensitivity on the second surface 22 is detected as an interference pattern for high sensitivity. good.
  • the second surface 22 may have a pattern in which the second pattern 34 for low sensitivity and the second pattern 36 for high sensitivity are common.
  • the detection device 100 converts the interference pattern observed by interference between the shared pattern on the second surface 22 and the first pattern 33 for low sensitivity on the first surface 21 into the interference pattern for low sensitivity.
  • an interference pattern observed by interference between the common pattern on the second surface 22 and the first pattern 34 for high sensitivity on the first surface 21 is detected as an interference pattern for high sensitivity. good.
  • the first pattern 33 for low sensitivity and the second pattern 35 for low sensitivity, and the first pattern 34 for high sensitivity and the second pattern 36 for high sensitivity have mutually different polarizations. It may be painted differently.
  • the detection apparatus 100 uses a polarizing filter capable of separating polarized light, and the interference pattern for low sensitivity observed by interference between the first pattern 33 for low sensitivity and the second pattern 35 for low sensitivity is observed. and the high-sensitivity interference pattern observed by the interference between the high-sensitivity first pattern 34 and the high-sensitivity second pattern 36 may be detected separately.
  • Embodiment 3 describes an example of a method of manufacturing the posture part 13 using a printing apparatus.
  • the same reference numerals are given to the constituent elements that have already been explained in Embodiment 1 or 2, and the explanation may be omitted.
  • FIG. 20 is a diagram showing a configuration example of the printing device 300 and the PC 310 according to the third embodiment.
  • the printing apparatus 300 prints the first pattern 31 on the first surface 21 (front surface) of the set transparent sheet (or plane plate) having a thickness d, and prints the second pattern 31 on the second surface 22 (back surface).
  • pattern 32 is printed.
  • the first pattern 31 and the second pattern 32 are printed on the first side 21 and the second side 22 of the sheet (or plane plate), respectively.
  • the posture part 13 can be easily manufactured using the printer 300 .
  • printing apparatuses and printing services for printing on arbitrary shaped acrylic plates or the like have been widely provided, so these printing apparatuses or services may be used.
  • the printing device 300 may be connected to the PC 310 .
  • the PC 310 executes printing software 311 for printing the first pattern 31 and the second pattern 32 on the printing device 300 .
  • the printing software 311 may be distributed via the Internet, or via a non-volatile storage medium such as a CD, DVD, or USB memory.
  • the PC 310 is an example of a device that executes the printing software 311 . Therefore, the printing software 311 may be executed by a device different from the PC 310, such as a smartphone or tablet terminal.
  • the printing software 311 may provide a function for the user to set parameters for printing the first pattern 31 and the second pattern 32 .
  • parameters include the size of the marker 10, the angle that can be handled, or the resolution. By setting these parameters according to the resolution or accuracy of the printing device 300 , the user can manufacture the desired posture part 13 with the printing device 300 .
  • the printing software 311 may automatically correct the parameters input by the user in consideration of the performance of the printing device 300 .
  • Printing software 311 may output a warning if the parameters entered by the user are inappropriate. For example, if the size of the marker 10 is too small for the parameters input by the user and the pattern of the posture part 13 is likely to collapse, the printing software 311 outputs a warning and proposes an appropriate marker 10 size.
  • the thickness d and refractive index n may be set in advance in the printing software 311 for each type of sheet or plane plate.
  • the sheet or plate may be standard or recommended.
  • the printing software 311 may suggest sheets or flat plates suitable for the input parameters or automatically calculated parameters to the user as recommended products.
  • the first pattern 31, the second pattern 32, and the third pattern 37 are explained as having different cycles.
  • these patterns may be patterns having the same period. Specifically, even if the period of each pattern is the same, as a result of the overlapping part changing according to the change of the imaging angle, the change of the light and shade may appear as a pattern, so this pattern is used as the interference pattern. do it. Also, depending on the characteristics of the imaging device 105, even if the periods of the patterns are the same, a more pronounced interference pattern may appear. In the above-described embodiment, the imaging device 105 is sufficiently far from the marker 10 and the captured image is not distorted.
  • the imaging device 105 is very close to the marker 10 or if a lens with special optical properties such as a fisheye lens is used, an image with radial distortion can be captured. In this case, a more pronounced interference pattern appears because the above-described gray pattern is further emphasized by the distortion. If the distance between the imaging device 105 and the marker 10 or the optical characteristics of the imaging device 105 are known, the angle of the detection device 100 can be estimated by analyzing the phase shift of this interference pattern in consideration of these information. can be done.
  • the identifying portion 11 of the marker 10 is surrounded by the rectangular enclosing frame 12, but the identifying portion 11 and the enclosing frame 12 may have other shapes such as a circular shape. 12 may be omitted.
  • the posture portion 13 may be arranged along the enclosing frame 12 after matching the shape thereof. For example, when the enclosing frame 12 is circular, the ring-shaped posture portion 13 may be arranged outside or inside the enclosing frame 12 so as to follow the shape of the enclosing frame 12 . By doing so, the identification part 11, the enclosing frame 12, and the posture part 13 can be arranged efficiently.
  • the posture part 13 includes a first surface 21 having a first pattern 31 with a first period, and a second pattern 31 arranged along the first surface 21 at a predetermined distance from the first surface 21 and having a second pattern 31 different from the first period. and a second surface 22 having a second pattern 32 with a period of .
  • the orientation relative to the viewpoint is detected.
  • the interference pattern observed at the posture part 13 changes in accordance with the change in the relative posture between the viewpoint and the marker 10.
  • the relative posture can be detected.
  • this eliminates the need for a lenticular lens with a relatively high member cost, as disclosed in Patent Document 1, and does not require high-precision alignment such as alignment between the striped pattern and the lenticular lens.
  • the cost of the marker 10 can be reduced.
  • the first period and the second period are periods different from each other, and the interference pattern is observed from the viewpoint by the period shift between the first pattern and the second pattern.
  • the interference pattern observed at the posture part 13 changes in accordance with the change in the relative posture between the viewpoint and the marker 10. Therefore, based on the change in the interference pattern, the relative posture can be detected.
  • the orientation relative to the viewpoint includes the angle relative to the line of sight about the predetermined rotation axis
  • the first period and the second period are the directions perpendicular to the predetermined rotation axis.
  • the length of the posture part 13 in the direction perpendicular to the predetermined rotation axis may be longer than the length of the period of the interference pattern.
  • the amount of displacement between the phase of the interference pattern and the reference phase corresponding to the detectable range of the change in angle relative to the line of sight falls within the length of the posture part 13. can be observed with high accuracy.
  • the main surface of the posture part 13 may be rectangular, and the first pattern and the second pattern may be striped patterns that are periodic in the longitudinal direction of the posture part 13 .
  • an interference pattern is observed from a viewpoint due to the shift between the striped pattern of the first pattern and the striped pattern of the second pattern.
  • the main surface of the posture part 13 may be circular, and the first pattern and the second pattern may be circular patterns that are periodic in the direction away from the center of the posture part 13 .
  • the interference pattern is observed from the point of view due to the deviation between the circular pattern of the first pattern and the circular pattern of the second pattern.
  • the orientation relative to the viewpoint is the angle relative to the line of sight about the first rotation axis, and the line of sight about the second rotation axis perpendicular to the first rotation axis.
  • the first pattern and the second pattern have a striped pattern with a period perpendicular to the first axis of rotation and a period with a period perpendicular to the second axis of rotation It may be a lattice pattern that overlaps with the striped pattern.
  • the interference pattern is observed from the viewpoint due to the deviation between the grid pattern of the first pattern and the grid pattern of the second pattern.
  • the angles of both the first rotation axis and the second rotation axis can be summarized by observing the change in the interference pattern shift in the two-dimensional plane consisting of the first rotation axis and the second rotation axis. can be detected.
  • the marker 10 may further include an identification portion 11 used for identification of the marker 10 . Thereby, the marker 10 can be identified by detecting the identification portion 11 .
  • the posture part 13 may be arranged outside the rectangular enclosing frame 12 surrounding the identifying part 11 along the sides of the enclosing frame 12 .
  • the posture part 13 can be detected based on the position of the enclosing frame 12, and the relative posture between the viewpoint and the marker 10 can be detected based on the distortion of the shape of the enclosing frame 12 and the change in the interference pattern in the posture part 13. can be detected.
  • the posture part 13 may be arranged inside a rectangular enclosing frame 12 surrounding the identifying part 11 along the sides of the enclosing frame 12 .
  • the posture part 13 can be detected based on the position of the enclosing frame 12, and the relative posture between the viewpoint and the marker 10 can be detected based on the distortion of the shape of the enclosing frame 12 and the change in the interference pattern in the posture part 13. can be detected.
  • the first pattern 31 and the second pattern 32 may be of different colors.
  • the interference pattern observed as a gradation of different colors at the posture part 13 changes according to the change in the relative posture between the viewpoint and the marker 10. Therefore, based on the change in the interference pattern, the A relative attitude to the marker 10 can be detected.
  • the posture part 13 is defined as a first posture part 14, the marker 10 further includes a second posture part 15 where an interference pattern different from the interference pattern of the first posture part 14 is observed, and the first posture part 14 is observed.
  • the phase of the interference pattern of the posture part 14 and the phase of the interference pattern of the second posture part 15 may move by different amounts depending on the angle about the same rotation axis. Since the first posture part 14 and the second posture part 15 have different sensitivities to the change in the interference pattern with respect to the change in posture, the change in the interference pattern of the first posture part 14 and the interference pattern of the second posture part 15 are different. By observing the change in , the relative attitude between the viewpoint and the marker 10 can be detected in a wide detection range and with high detection accuracy.
  • the first posture part 14 and the second posture part 15 may be arranged substantially parallel. As a result, the change in the interference pattern of the first posture part 14 and the change of the interference pattern of the second posture part 15 are observed, and the relative posture between the viewpoint and the marker 10 is detected in a wide detection range and with high detection accuracy. can be detected.
  • first posture part 14 and second posture part 15 may be arranged substantially parallel with identification part 11 for identifying marker 10 interposed therebetween.
  • identification part 11 for identifying marker 10 interposed therebetween.
  • first posture part 14 and second posture part 15 may be arranged adjacent to each other. As a result, the change in the interference pattern of the first posture part 14 and the change of the interference pattern of the second posture part 15 are observed, and the relative posture between the viewpoint and the marker 10 is detected in a wide detection range and with high detection accuracy. can be detected.
  • ⁇ Expression 17> 16 Any one of expressions 1 through 16, wherein the posture portion 13 is a plane plate or sheet that is a predetermined distance (d) thick and transparent to light, and the first surface 21 is a plane plate or sheet and the second side 22 may be the other side of the plane plate or sheet. Thereby, the posture part 13 can be configured using a transparent plane plate or sheet having a predetermined thickness (d).
  • a detection device 100 that measures a posture relative to a viewpoint using the marker 10 according to any one of expressions 1 to 17, and an imaging device 105 that captures an image of the marker 10 from the viewpoint, and an imaging device 105 and a processor 101 that detects the relative posture with respect to the imaging device 105 based on the interference pattern observed at the posture part 13 included in the image captured by the processor 101 .
  • the detecting device 100 can detect the relative posture with respect to the marker 10 based on the captured image of the marker 10 .
  • the technology of the present disclosure is useful for markers for detecting postures and devices for detecting the markers.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Analysis (AREA)

Abstract

The present invention reduces the cost of a marker that is used in detecting the posture of an object. This marker that is used in measuring a posture relative to a viewpoint comprises a posture section that is used in detecting the posture relative to the viewpoint. The posture section includes a first surface that has a first pattern with a first periodicity, and a second surface that is disposed along the first surface and at a prescribed distance from the first surface, and includes a second pattern with a second periodicity differing from the first periodicity. The posture relative to the viewpoint is detected on the basis of an interference pattern that is observed from the viewpoint due to overlapping of the first pattern and the second pattern.

Description

マーカ、検出装置、及び、検出方法Marker, detection device, and detection method
 本開示は、マーカ、検出装置、及び、検出方法に関する。 The present disclosure relates to markers, detection devices, and detection methods.
 AR(Augmented Reality)又はロボティクス等の分野において、物体にマーカを付与し、例えばロボットが、当該マーカを検出して当該物体の位置及び姿勢を認識する技術が知られている。 In the field of AR (Augmented Reality) or robotics, there is known a technique of attaching a marker to an object, for example, a robot detecting the marker and recognizing the position and orientation of the object.
 特許文献1には、任意の2色からなる縞模様と、縞模様の上に付けられたレンチキュラレンズとを備えたマーカユニットが開示される。当該マーカユニットは、レンチキュラレンズに含まれるシリンダー状のレンズの間隔と、縞模様のラインの間隔とが異なる。レンチキュラレンズ上に観測される濃淡パターンは、レンチキュラレンズを観測する方向に応じて変化するので、レンチキュラレンズを観測する装置(例えばロボット)は、その濃淡パターンの変化を観測することにより、マーカユニットの姿勢を計測する。 Patent Document 1 discloses a marker unit that includes a striped pattern of any two colors and a lenticular lens attached on the striped pattern. In the marker unit, the interval between the cylindrical lenses included in the lenticular lens is different from the interval between the striped lines. Since the gradation pattern observed on the lenticular lens changes according to the direction in which the lenticular lens is observed, a device (for example, a robot) observing the lenticular lens observes the change in the gradation pattern to determine the marker unit. Measure posture.
日本国特許第5842248号公報Japanese Patent No. 5842248
 しかしながら、特許文献1に開示されるマーカユニットは、部材コストが比較的高いレンチキュラレンズが必要である。また、特許文献1に開示されるマーカユニットは、縞模様とレンチキュラレンズとの位置合わせに高い精度を要求されるため、製造コストが比較的高くなる。 However, the marker unit disclosed in Patent Document 1 requires a lenticular lens with a relatively high member cost. In addition, the marker unit disclosed in Patent Document 1 requires high accuracy in aligning the striped pattern and the lenticular lens, so the manufacturing cost is relatively high.
 本開示の目的は、物体の姿勢の検出に用いられるマーカのコストを低減することにある。 An object of the present disclosure is to reduce the cost of markers used to detect the orientation of an object.
 本開示は、視点との相対的な姿勢の計測に用いられるマーカであって、前記視点との相対的な姿勢の検出に用いられる姿勢部位を備え、前記姿勢部位は、第1の周期の第1のパターンを有する第1面と、前記第1面から所定距離離れて前記第1面に沿って配置され、第2の周期の第2のパターンを有する第2面と、を含み、前記第1のパターンと前記第2のパターンとの重複によって前記視点から観測される干渉パターンに基づいて、前記視点との相対的な姿勢が検出されるマーカを提供する。 The present disclosure provides a marker used for measuring an orientation relative to a viewpoint, the marker comprising a posture part used for detecting the orientation relative to the viewpoint, wherein the posture part is a first period of a first period. a first surface having one pattern; and a second surface having a second pattern of a second period disposed along the first surface at a predetermined distance from the first surface; A marker whose orientation relative to the viewpoint is detected is provided based on an interference pattern observed from the viewpoint by overlapping the first pattern and the second pattern.
 本開示は、上記のマーカを用いて前記視点との相対的な姿勢を計測する検出装置であって、前記視点から前記マーカを撮像する撮像装置と、前記撮像装置によって撮像された画像に含まれる前記姿勢部位にて観測される前記干渉パターンに基づいて、前記撮像装置との相対的な姿勢を検出するプロセッサと、を備える検出装置を提供する。 The present disclosure includes a detection device that measures an orientation relative to the viewpoint using the above-described marker, an imaging device that captures an image of the marker from the viewpoint, and an image captured by the imaging device. and a processor that detects a relative posture with respect to the imaging device based on the interference pattern observed at the posture site.
 本開示は、上記に記載のマーカを用いて前記視点との相対的な姿勢を計測する検出方法であって、前記視点から前記マーカを撮像し、前記撮像された画像に含まれる前記姿勢部位にて観測される前記干渉パターンに基づいて、前記視点との相対的な姿勢を検出する検出方法を提供する。 The present disclosure is a detection method for measuring a posture relative to the viewpoint using the marker described above, wherein the marker is imaged from the viewpoint, and the posture part included in the captured image is detected. A detection method for detecting a posture relative to the viewpoint based on the interference pattern observed by
 なお、これらの包括的又は具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム又は記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。 In addition, these generic or specific aspects may be realized by a system, device, method, integrated circuit, computer program or recording medium, and any of the system, device, method, integrated circuit, computer program and recording medium may be implemented. may be implemented in any combination.
 本開示によれば、物体の姿勢の検出に用いられるマーカのコストを低減できる。 According to the present disclosure, it is possible to reduce the cost of markers used for detecting the orientation of an object.
実施の形態1に係る検出システムの構成例を示す模式図Schematic diagram showing a configuration example of a detection system according to Embodiment 1 実施の形態1に係るマーカの構成例を示す模式図Schematic diagram showing a configuration example of a marker according to Embodiment 1 図2に示す横向きの姿勢部位のA-A断面の一例を示す断面図Sectional view showing an example of the AA cross section of the lateral posture part shown in FIG. 姿勢部位の干渉パターンの周期の変化の一例を示す模式図Schematic diagram showing an example of a change in the period of the interference pattern of the posture part 実施の形態1に係る検出装置のハードウェア構成の一例を示すブロック図1 is a block diagram showing an example of a hardware configuration of a detection device according to Embodiment 1; FIG. 実施の形態1に係る検出装置の機能構成の一例を示すブロック図1 is a block diagram showing an example of a functional configuration of a detection device according to Embodiment 1; FIG. 実施の形態1に係る姿勢部位の基準位相を検出及び記録する処理の一例を示すフローチャートFlowchart showing an example of processing for detecting and recording a reference phase of a posture part according to Embodiment 1 実施の形態1に係る姿勢部位の基準位相を検出及び記録する処理の変形例を示すフローチャート4 is a flow chart showing a modification of processing for detecting and recording reference phases of posture parts according to Embodiment 1; 実施の形態1に係るマーカの姿勢を推定する処理の一例を示すフローチャート4 is a flowchart showing an example of processing for estimating the posture of a marker according to Embodiment 1 実施の形態1に係るマーカの構成の第1の変形例を示す模式図Schematic diagram showing a first modification of the configuration of the marker according to Embodiment 1. FIG. 実施の形態1に係るマーカの構成の第2の変形例を示す模式図Schematic diagram showing a second modification of the configuration of the marker according to the first embodiment 実施の形態1に係るマーカの構成の第3の変形例を示す模式図FIG. 11 is a schematic diagram showing a third modification of the configuration of the marker according to Embodiment 1; 実施の形態2に係るマーカの構成例を示す模式図Schematic diagram showing a configuration example of a marker according to Embodiment 2 実施の形態2に係るマーカの構成の第1の変形例を示す模式図Schematic diagram showing a first modification of the configuration of the marker according to the second embodiment 実施の形態2に係るマーカの構成の第2の変形例を示す模式図Schematic diagram showing a second modification of the configuration of the marker according to the second embodiment 低高感度姿勢部位の第1の構成例を示す模式図Schematic diagram showing a first configuration example of a low-sensitivity posture part 第1の構成例に係る低高感度姿勢部位の低感度用の干渉パターン及び高感度用の干渉パターンを示す模式図Schematic diagram showing a low-sensitivity interference pattern and a high-sensitivity interference pattern of a low-high-sensitivity posture part according to the first configuration example 低高感度姿勢部位の第2の構成例を示す断面図Cross-sectional view showing a second configuration example of the low-sensitivity posture part 低高感度姿勢部位の第3の構成例を示す断面図Cross-sectional view showing a third configuration example of the low-sensitivity posture part 実施の形態3に係る印刷装置及びPCの構成例を示す図FIG. 10 is a diagram showing a configuration example of a printing apparatus and a PC according to Embodiment 3;
 以下、図面を適宜参照して、本開示の実施の形態について、詳細に説明する。ただし、必要以上に詳細な説明は省略する場合がある。例えば、すでによく知られた事項の詳細説明及び実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。なお、添付図面及び以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の記載の主題を限定することは意図されていない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings as appropriate. However, more detailed description than necessary may be omitted. For example, detailed descriptions of well-known matters and redundant descriptions of substantially the same configurations may be omitted. This is to avoid unnecessary verbosity in the following description and to facilitate understanding by those skilled in the art. It should be noted that the accompanying drawings and the following description are provided to allow those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter of the claims.
(実施の形態1)
<システム構成>
 図1は、実施の形態1に係る検出システム1の構成例を示す模式図である。
(Embodiment 1)
<System configuration>
FIG. 1 is a schematic diagram showing a configuration example of a detection system 1 according to Embodiment 1. FIG.
 図1に示すように、検出システム1は、マーカ10及び検出装置100を含んで構成される。 As shown in FIG. 1, the detection system 1 includes a marker 10 and a detection device 100.
 マーカ10は、所定の物体3に付けられる。マーカ10は、物体3に固定的に付けられてもよいし、物体3に着脱可能に付けられてもよい。 A marker 10 is attached to a predetermined object 3 . The marker 10 may be fixedly attached to the object 3 or detachably attached to the object 3 .
 検出装置100は、撮像装置105を含んで構成される。検出装置100は、撮像装置105によってマーカ10を撮像し、撮像した画像(以下、撮像画像と称する)からマーカ10を検出し、検出したマーカ10に基づいて、検出装置100に対するマーカ10の相対的な位置及び姿勢を検出する。あるいは、検出装置100は、マーカ10を検出し、マーカ10に対する当該検出装置100の相対的な位置及び姿勢を検出してもよい。なお、撮像装置105は、マーカ10を観測する視点の一例であるので、以下の説明における撮像装置105は、視点と読み替えられてもよい。 The detection device 100 is configured including an imaging device 105 . The detection device 100 captures an image of the marker 10 with an imaging device 105 , detects the marker 10 from the captured image (hereinafter referred to as a captured image), and based on the detected marker 10 , determines the relative position of the marker 10 with respect to the detection device 100 . position and orientation. Alternatively, the detection device 100 may detect the marker 10 and detect the position and orientation of the detection device 100 relative to the marker 10 . Note that the imaging device 105 is an example of a viewpoint from which the marker 10 is observed, so the imaging device 105 in the following description may be read as a viewpoint.
 マーカ10の位置は、X,Y,Zの座標として表現されてよい。本実施の形態では、地面に対する水平面をXY平面とし、高さ方向をZ軸とする。ただし、X軸、Y軸、Z軸は、どのように定められてもよい。また、本実施の形態では、説明をわかり易くするために、X軸方向を横方向、Y軸方向を縦方向、Z軸方向を高さ方向と称する場合がある。 The position of the marker 10 may be expressed as X, Y, Z coordinates. In this embodiment, the horizontal plane with respect to the ground is the XY plane, and the height direction is the Z axis. However, the X-axis, Y-axis, and Z-axis may be determined in any way. In addition, in the present embodiment, the X-axis direction is sometimes referred to as the horizontal direction, the Y-axis direction as the vertical direction, and the Z-axis direction as the height direction in order to make the description easier to understand.
 マーカ10の姿勢は、ピッチ角、ヨー角、ロール角として表現されてよい。本実施の形態では、X軸を回転軸とした回転角をピッチ角、Y軸を回転軸とした回転角をヨー角、Z軸を回転軸とした回転角をロール角とする。ただし、ピッチ角、ヨー角、ロール角は、どのように定められてもよい。 The attitude of the marker 10 may be expressed as a pitch angle, yaw angle, and roll angle. In this embodiment, the rotation angle about the X axis is the pitch angle, the rotation angle about the Y axis is the yaw angle, and the rotation angle about the Z axis is the roll angle. However, the pitch angle, yaw angle, and roll angle may be determined in any way.
 例えば、マーカ10は、AR用のマークとして現実空間の物体3に付けられてよい。この場合、検出装置100は、ARの処理を行うスマートフォン、タブレット端末、又はARグラス等に含まれてよい。これにより、検出装置100は、検出したマークに基づいて現実空間の物体3の位置及び姿勢を精度良く検出できるので、コンピュータグラフィックのモデルを現実空間の物体3に精度良く重畳して表示させることができる。 For example, the marker 10 may be attached to the physical space object 3 as a mark for AR. In this case, the detection device 100 may be included in a smart phone, a tablet terminal, AR glasses, or the like that performs AR processing. As a result, the detection apparatus 100 can accurately detect the position and orientation of the object 3 in the real space based on the detected marks, so that the computer graphic model can be accurately superimposed and displayed on the object 3 in the real space. can.
 例えば、マーカ10は、ロボットが操作対象とする物体3に付与されてよい。この場合、検出装置100は、物体3を操作するロボットに含まれてよい。これにより、検出装置100は、検出したマークに基づいて操作対象とする物体3の位置及び姿勢を精度良く検出できるので、ロボットの物体3に対する操作を精度良く行うことができる。 For example, the marker 10 may be attached to the object 3 to be manipulated by the robot. In this case, the detection device 100 may be included in a robot that manipulates the object 3 . As a result, the detection apparatus 100 can accurately detect the position and orientation of the object 3 to be operated based on the detected marks, so that the robot can operate the object 3 with high accuracy.
 以下、マーカ10及び検出装置100について詳細に説明する。 The marker 10 and the detection device 100 will be described in detail below.
<マーカの構成>
 図2は、実施の形態1に係るマーカ10の構成例を示す模式図である。
<Composition of marker>
FIG. 2 is a schematic diagram showing a configuration example of the marker 10 according to the first embodiment.
 図2に示すように、マーカ10は、識別部位11、囲み枠12、及び、姿勢部位13を含んで構成されてよい。 As shown in FIG. 2, the marker 10 may include an identification part 11, a surrounding frame 12, and a posture part 13.
 識別部位11は、検出装置100にマーカ10の識別情報を検出させるためのものである。以下、マーカ10の識別情報を、マーカIDと称する。識別部位11の例として、一次元コード、二次元コード、文字列等が挙げられる。 The identification part 11 is for allowing the detection device 100 to detect the identification information of the marker 10 . The identification information of the marker 10 is hereinafter referred to as a marker ID. Examples of the identification part 11 include one-dimensional codes, two-dimensional codes, character strings, and the like.
 囲み枠12は、識別部位11を囲むように配置される枠である。囲み枠12は、図2に示すように、所定の幅を有する正方形の枠であってよい。ただし、囲み枠12の形状は、正方形に限られず、例えば、長方形、多角形、円形等であってもよい。囲み枠12は、検出装置100が、マーカ10の位置を検出したり、マーカ10のロール角を検出したり、マーカ10の姿勢を大まかに検出したりするために用いられてよい。 The surrounding frame 12 is a frame arranged so as to surround the identification part 11 . Enclosing frame 12 may be a square frame having a predetermined width, as shown in FIG. However, the shape of the surrounding frame 12 is not limited to a square, and may be rectangular, polygonal, circular, or the like. The enclosing frame 12 may be used by the detection device 100 to detect the position of the marker 10 , detect the roll angle of the marker 10 , or roughly detect the orientation of the marker 10 .
 姿勢部位13は、検出装置100にマーカ10の姿勢を検出させるためのものである。マーカ10の面の法線方向と、検出装置100が備える撮像装置105の光軸とによって形成される角度が十分大きい場合(つまりマーカ10を斜めから撮像した場合)、検出装置100は、囲み枠12の形状の歪みから、マーカ10の姿勢(ピッチ角又はヨー角)を大まかに検出できる。しかし、マーカ10の面の法線方向と、検出装置100が備える撮像装置105の光軸とによって形成される角度が比較的小さい場合(つまりマーカ10を正面に近い向きから撮像した場合)、囲み枠12の形状の歪みから検出するマーカ10の姿勢は、誤差が大きくなりやすい。本実施の形態に係る姿勢部位13は、このようにマーカ10を正面に近い向きから撮影した場合であっても、マーカ10の姿勢を十分な精度で検出するために用いられてよい。 The posture part 13 is for causing the detection device 100 to detect the posture of the marker 10 . When the angle formed by the normal direction of the surface of the marker 10 and the optical axis of the imaging device 105 provided in the detection device 100 is sufficiently large (that is, when the image of the marker 10 is obliquely captured), the detection device 100 uses the surrounding frame The orientation (pitch angle or yaw angle) of the marker 10 can be roughly detected from the shape distortion of 12 . However, when the angle formed by the normal direction of the surface of the marker 10 and the optical axis of the imaging device 105 provided in the detection device 100 is relatively small (that is, when the marker 10 is imaged from a direction close to the front), the enclosed The orientation of the marker 10 detected from the distortion of the shape of the frame 12 tends to have a large error. The posture part 13 according to the present embodiment may be used to detect the posture of the marker 10 with sufficient accuracy even when the marker 10 is photographed from a direction close to the front.
 姿勢部位13は、図2に示すように、正面(Z軸方向)から見た場合に長方形の形状を呈し、囲み枠12の外側において、長手方向が囲み枠12の辺に沿うように配置される。例えば、図2に示すように、マーカ10には、長手方向が横方向(X軸方向)に延びる横向きの姿勢部位13Aと、長手方向が縦方向(Y軸方向)に延びる縦向きの姿勢部位13Bとが配置されてよい。これにより、検出装置100は、横向きの姿勢部位13Aを用いてマーカ10のY軸の回転角(ヨー角)を精度良く検出し、縦向きの姿勢部位13Bを用いてマーカ10のX軸の回転角(ピッチ角)を精度良く検出できる。 As shown in FIG. 2 , the posture part 13 has a rectangular shape when viewed from the front (in the Z-axis direction), and is arranged outside the enclosing frame 12 so that its longitudinal direction is along the sides of the enclosing frame 12 . be. For example, as shown in FIG. 2, the marker 10 has a horizontal position part 13A whose longitudinal direction extends in the horizontal direction (X-axis direction) and a vertical position part 13A whose longitudinal direction extends in the vertical direction (Y-axis direction). 13B may be arranged. As a result, the detecting device 100 can accurately detect the Y-axis rotation angle (yaw angle) of the marker 10 using the sideways attitude part 13A, and can detect the X-axis rotation of the marker 10 using the vertical attitude part 13B. The angle (pitch angle) can be detected with high accuracy.
 次に、姿勢部位13について詳細に説明する。なお、本実施の形態では、主に横向きの姿勢部位13Aについて説明する。しかし、本実施の形態は、縦向きの姿勢部位13Bにも当てはまる。この場合、本実施の形態の説明におけるヨー角をピッチ角に読み替えればよい。 Next, the posture part 13 will be described in detail. In addition, in the present embodiment, description will be made mainly on the sideways attitude portion 13A. However, this embodiment also applies to the vertically oriented portion 13B. In this case, the yaw angle in the description of this embodiment should be read as the pitch angle.
<姿勢部位の構成>
 図3は、図2に示す横向きの姿勢部位13AのA-A断面の一例を示す断面図である。図4は、姿勢部位13Aの干渉パターンの周期の変化の一例を示す模式図である。なお、図4の(a)は、ヨー角θ=0の場合における姿勢部位13Aの干渉パターンの例を示し、図4の(b)は、ヨー角θ=θ1(ただしθ1は0ではない)の場合における姿勢部位13Aの干渉パターンの例を示す。
<Configuration of posture parts>
FIG. 3 is a cross-sectional view showing an example of the AA cross section of the sideways attitude portion 13A shown in FIG. FIG. 4 is a schematic diagram showing an example of changes in the period of the interference pattern of the posture part 13A. FIG. 4(a) shows an example of the interference pattern of the posture part 13A when the yaw angle θ=0, and FIG. 4(b) shows the yaw angle θ=θ1 (however, θ1 is not 0). An example of the interference pattern of the posture part 13A in the case of is shown.
 図3に示すように、姿勢部位13Aは、第1面21及び第2面22を有する。第1面21と第2面22とは、所定距離dだけ離れており、第1面21は、第2面22に沿って(例えば平行に)配置される。 As shown in FIG. 3, the posture part 13A has a first surface 21 and a second surface 22. The first surface 21 and the second surface 22 are separated by a predetermined distance d, and the first surface 21 is arranged along (for example, parallel to) the second surface 22 .
 第1面21は、長手方向(X軸方向)において、第1の周期p1の第1のパターン31を有する。第2面22は、長手方向(X軸方向)において、第1の周期p1と異なる第2の周期p2の第2のパターン32を有する。 The first surface 21 has a first pattern 31 with a first period p1 in the longitudinal direction (X-axis direction). The second surface 22 has a second pattern 32 with a second period p2 different from the first period p1 in the longitudinal direction (X-axis direction).
 第1のパターン31及び第2のパターン32は、図4に示すように、短手方向(Y軸方向)に延びる複数のラインにて構成される縞模様であってよい。なお、図4では、第1のパターン31と第2のパターン32とを区別できるように、第1のパターン31と第2のパターン32をそれぞれ短手方向に少しずらして表現しているが、実際の姿勢部位13Aでは、このようなずれは生じなくてよい。 The first pattern 31 and the second pattern 32 may be striped patterns composed of a plurality of lines extending in the lateral direction (Y-axis direction), as shown in FIG. In FIG. 4, the first pattern 31 and the second pattern 32 are shown slightly shifted in the lateral direction so that the first pattern 31 and the second pattern 32 can be distinguished from each other. Such deviation need not occur in the actual posture part 13A.
 このように、所定距離dだけ離れた2つの面のそれぞれに周期が互いに異なる縞模様が配置されている場合、図4の(a)に示すように、姿勢部位13Aを正面方向から見た場合、縞模様同士の干渉度合いに応じて濃淡が長手方向に周期的に表れる干渉パターンが観測される。本実施の形態では、干渉パターンの周期の長さをTと表現する。 In this way, when striped patterns with mutually different periods are arranged on two surfaces separated by a predetermined distance d, as shown in FIG. , an interference pattern is observed in which the gradation appears periodically in the longitudinal direction according to the degree of interference between the fringes. In this embodiment, the length of the period of the interference pattern is expressed as T.
 この干渉パターンの周期的な濃淡の位置は、ヨー角θを変化させると、図4の(b)に示すように、長手方向に移動する。すなわち、干渉パターンの位相は、ヨー角θを変化させると、それに伴って変化する。例えば、図4の(a)に示すように、ヨー角θ=0の場合の干渉パターンの位相を基準位相α0とした場合、図4の(b)に示すように、ヨー角θ=θ1の場合の干渉パターンの位相がα1(≠α0)となる。 When the yaw angle θ is changed, the position of the periodic shading of this interference pattern moves in the longitudinal direction, as shown in FIG. 4(b). That is, the phase of the interference pattern changes as the yaw angle θ changes. For example, as shown in FIG. 4A, when the phase of the interference pattern when the yaw angle θ=0 is the reference phase α0, as shown in FIG. 4B, when the yaw angle θ=θ1 The phase of the interference pattern in this case is α1 (≠α0).
 よって、検出装置100は、マーカ10の姿勢部位13の干渉パターンの位相を検出することにより、マーカ10のヨー角θを検出することができる。 Therefore, the detection device 100 can detect the yaw angle θ of the marker 10 by detecting the phase of the interference pattern of the posture portion 13 of the marker 10 .
 姿勢部位13は、厚さdであり、正面から見た場合に長方形を呈する透明な平面板又はシートとして構成されてよい。平面板又はシートの厚さdは、例えば1mm程度であってよい。しかし、厚さdは、1mmよりも小さくてもよいし、1mmよりも大きくてもよい。 The posture part 13 may be configured as a transparent flat plate or sheet that has a thickness d and presents a rectangular shape when viewed from the front. The thickness d of the plane plate or sheet may be, for example, about 1 mm. However, the thickness d may be less than 1 mm or greater than 1 mm.
 平面板又はシートの第1面21(例えば表面)には第1のパターン31が印刷され、平面板又はシートの第2面22(例えば裏面)には第2のパターン32が印刷されてよい。平面板又はシートの透明度は、正面方向から第2のパターン32が観測できるのならば、どのような透明度であってもよい。平面板又はシートの屈折率nは、正面方向から第2のパターン32が観測できるのならば、どのような屈折率であってもよい。 A first pattern 31 may be printed on the first side 21 (eg, the front side) of the plane plate or sheet, and a second pattern 32 may be printed on the second side 22 (eg, the back side) of the plane plate or sheet. The plane plate or sheet may have any transparency as long as the second pattern 32 can be observed from the front direction. The planar plate or sheet may have any refractive index n as long as the second pattern 32 can be observed from the front direction.
 また、姿勢部位13は、平面板又はシートとは異なる構成であってもよい。例えば、姿勢部位13は、硬質な棒状の部材をすのこ状に複数並べて第1面21及び第2面22を形成し、第1面21と第2面22との間に長さdの支柱を挟んで第1面21と第2面22とを固定する構成であってもよい。この場合、第1面21と第2面22との間の隙間は空気層となる。 Also, the posture part 13 may have a configuration different from that of the plane plate or the sheet. For example, the posture part 13 has a first surface 21 and a second surface 22 formed by arranging a plurality of hard rod-like members in a gridiron shape, and a post having a length d between the first surface 21 and the second surface 22. The structure which fixes the 1st surface 21 and the 2nd surface 22 on both sides may be sufficient. In this case, the gap between the first surface 21 and the second surface 22 becomes an air layer.
 また、第1のパターン31及び第2のパターン32の色は、同一色(例えば黒色)であってよい。あるいは、第1のパターン31及び第2のパターン32の色は、互いに異なる色であってもよい。例えば、第1のパターン31を赤色、第2のパターン32を黄色とする。この場合、第1のパターン31の縞模様が第2のパターン32の縞模様を覆って見える箇所では、赤色と白色(透明)の組み合わせによりピンク色に見え、第1のパターン31の縞模様と第2のパターン32の縞模様とが交互に見える箇所では、赤色と黄色の組み合わせにより橙色に見える。よって、検出装置100は、姿勢部位13Aから、長手方向にピンク色から橙色にグラデーション的に変化する干渉パターンの周期Tを検出できる。 Also, the colors of the first pattern 31 and the second pattern 32 may be the same color (for example, black). Alternatively, the colors of the first pattern 31 and the second pattern 32 may be different colors. For example, the first pattern 31 is red and the second pattern 32 is yellow. In this case, a portion where the striped pattern of the first pattern 31 appears to cover the striped pattern of the second pattern 32 looks pink due to the combination of red and white (transparent), and the striped pattern of the first pattern 31 does not overlap with the striped pattern of the first pattern 31 . At the place where the striped pattern of the second pattern 32 appears alternately, it looks orange due to the combination of red and yellow. Therefore, the detection device 100 can detect the period T of the interference pattern that changes from pink to orange in a gradational manner in the longitudinal direction from the posture part 13A.
 干渉パターンの周期Tは、以下の式1によって算出されてよい。
 T=p2×p1/(p1-p2)   …(式1)
The period T of the interference pattern may be calculated by Equation 1 below.
T=p2×p1/(p1−p2) (Formula 1)
 ヨー角θの検出可能範囲は、以下の式2によって算出されてよい。
 -arctan(n×p1/d/2)<θ<+arctan(n×p1/d/2)
                                  …(式2)
The detectable range of the yaw angle θ may be calculated by Equation 2 below.
−arctan(n×p1/d/2)<θ<+arctan(n×p1/d/2)
... (Formula 2)
 この検出可能範囲は、θ=0と同一の干渉パターンが現れない範囲に対応する。本実施の形態では、干渉パターンの位相α1が基準位相α0からどの程度ずれているかに基づいてθを推定する。ここで、干渉パターンは周期性を持つため、位相の変化量が大きくなると、θ=0の干渉パターンと区別できない干渉パターンが現れ、θの値を一意に定めることができなくなる。したがって、θ=0と同一の干渉パターンが現れない範囲が、検出可能範囲となる。 This detectable range corresponds to the range where the same interference pattern as θ=0 does not appear. In this embodiment, θ is estimated based on how much the phase α1 of the interference pattern deviates from the reference phase α0. Here, since the interference pattern has periodicity, when the amount of phase change increases, an interference pattern indistinguishable from the interference pattern at θ=0 appears, making it impossible to uniquely determine the value of θ. Therefore, the range in which the same interference pattern as θ=0 does not appear is the detectable range.
 なお、第1のパターン31または第2のパターン32が短く、干渉パターン自体が観測できない場合は、当然θも算出できない。すなわち、式2が定める検出可能範囲は、第1のパターン31および第2のパターン32が十分に長い場合のものである。また、θを算出するためには、干渉パターンが移動した状態を観測する必要がある。そのため、第1のパターン31および第2のパターン32の長さが周期Tちょうどの場合、移動した干渉パターンの一部が姿勢部位13の端部より先の部分にはみ出してしまい、観測できなくなることがある。この場合、干渉パターンの移動量の情報を直接的に得ることが難しくなるため、θの検出精度が低下する恐れがある。すなわち、第1のパターン31および第2のパターン32の長さは、干渉パターンの周期Tよりも十分に長いことが望ましい。ただし、干渉パターンの一部が観測できるのであれば、観測されている部分の変化の様子から観測できていない部分についても干渉パターンの位置を推測することは可能である。例えば、干渉パターンの周期Tの半分程度の長さの情報が得られていれば、その先の干渉パターンの変化を比較的正確に推測することができる。また、周期Tの半分よりさらに短い長さの情報しか得られない場合であっても、干渉パターンの変化が十分に観測できるのであれば、観測できなかった部分の干渉パターンを推測することも可能である。すなわち、姿勢部位13の長さが干渉パターンの周期Tより短い場合であっても、精度低下のおそれがあるものの、θを推測することができる。ただし、干渉パターン全体の位置を確実に推測するためには、パターン全体が見えている状態、すなわち、姿勢部位13、第1のパターン31、および第2のパターン32が周期Tよりも長い方が有利である。したがって、特に断らない限り、以下では、姿勢部位13、第1のパターン31および第2のパターン32は、周期Tより十分に長いものとして説明を行う。 If the first pattern 31 or the second pattern 32 is short and the interference pattern itself cannot be observed, naturally θ cannot be calculated. That is, the detectable range defined by Equation 2 is for the case where the first pattern 31 and the second pattern 32 are sufficiently long. Also, in order to calculate θ, it is necessary to observe the state in which the interference pattern has moved. Therefore, when the lengths of the first pattern 31 and the second pattern 32 are exactly the period T, part of the interference pattern that has moved protrudes beyond the end of the posture part 13 and cannot be observed. There is In this case, it becomes difficult to directly obtain information on the amount of movement of the interference pattern, so there is a risk that the detection accuracy of θ will decrease. That is, it is desirable that the lengths of the first pattern 31 and the second pattern 32 are sufficiently longer than the period T of the interference pattern. However, if a part of the interference pattern can be observed, it is possible to estimate the position of the interference pattern for the part that cannot be observed from the changes in the observed part. For example, if information about half the period T of the interference pattern is obtained, the subsequent change in the interference pattern can be estimated relatively accurately. Also, even if only information of a length shorter than half the period T can be obtained, if the change in the interference pattern can be observed sufficiently, it is possible to estimate the interference pattern of the part that could not be observed. is. That is, even if the length of the posture part 13 is shorter than the period T of the interference pattern, θ can be estimated, although there is a possibility that the accuracy will be lowered. However, in order to reliably estimate the position of the entire interference pattern, the entire pattern should be visible, that is, the posture part 13, the first pattern 31, and the second pattern 32 should be longer than the period T. Advantageous. Therefore, unless otherwise specified, the posture part 13, the first pattern 31, and the second pattern 32 will be described below as being sufficiently longer than the period T. FIG.
 このように、本実施の形態に係る姿勢部位13は、特許文献1に開示されるような部材コストが比較的高いレンチキュラレンズが不要である。また、本実施の形態に係る姿勢部位13は、特許文献1に開示される縞模様とレンチキュラレンズとの位置合わせのような、高精度な位置合わせが求められない。よって、本実施の形態によれば、マーカ10のコストを低減できる。 As described above, the posture part 13 according to the present embodiment does not require a lenticular lens whose member cost is relatively high as disclosed in Patent Document 1. Moreover, the posture part 13 according to the present embodiment does not require highly accurate alignment such as alignment between the striped pattern and the lenticular lens disclosed in Patent Document 1. Therefore, according to this embodiment, the cost of the marker 10 can be reduced.
 なお、本実施の形態に係る姿勢部位13において、角度の変化によって干渉パターンの位相が変化する方向は、姿勢部位13を構成する第1のパターン31及び第2のパターン32の形状と周期によって定まる。より具体的には、検出しようとする角度の回転軸に垂直な方向で周期p1、p2で現れるパターンを第1のパターン31及び第2のパターン32として採用することで、干渉パターンの位相が回転角に応じて変化する。例えば、図2の例だと、姿勢部位13Aは、Y軸を回転軸とした角度を検出するため、Y軸に垂直な方向(例えばX軸方向)に周期p1とp2で現れる縞模様を第1のパターン31と第2のパターン32として採用している。同様に、姿勢部位13Bは、X軸を回転軸とした角度を検出するため、X軸に垂直な方向(例えばY軸方向)に周期p1とp2で現れる縞模様を第1のパターン31と第2のパターン32として採用している。 In the posture part 13 according to the present embodiment, the direction in which the phase of the interference pattern changes due to the change in angle is determined by the shape and period of the first pattern 31 and the second pattern 32 that constitute the posture part 13. . More specifically, patterns appearing at periods p1 and p2 in the direction perpendicular to the rotation axis of the angle to be detected are adopted as the first pattern 31 and the second pattern 32, thereby rotating the phase of the interference pattern. It changes depending on the angle. For example, in the example of FIG. 2, since the posture part 13A detects an angle with the Y axis as the rotation axis, a striped pattern appearing at periods p1 and p2 in the direction perpendicular to the Y axis (for example, the X axis direction) is detected as the first. 1 pattern 31 and a second pattern 32 are employed. Similarly, since the posture part 13B detects an angle with the X-axis as the rotation axis, a striped pattern appearing at periods p1 and p2 in the direction perpendicular to the X-axis (for example, the Y-axis direction) is used as the first pattern 31 and the second pattern. 2 pattern 32.
<検出装置のハードウェア構成>
 図5は、実施の形態1に係る検出装置100のハードウェア構成の一例を示すブロック図である。
<Hardware configuration of detection device>
FIG. 5 is a block diagram showing an example of the hardware configuration of the detection device 100 according to Embodiment 1. As shown in FIG.
 検出装置100は、ハードウェアとして、プロセッサ101、ROM(Read Only Memory)102、RAM(Random Access Memory)103、ストレージ104、及び、撮像装置105を備える。 The detection device 100 includes a processor 101, a ROM (Read Only Memory) 102, a RAM (Random Access Memory) 103, a storage 104, and an imaging device 105 as hardware.
 ROM102は、不揮発性記憶媒体によって構成され、コンピュータプログラム及びデータ等を記憶する。 The ROM 102 is configured by a non-volatile storage medium and stores computer programs, data, and the like.
 RAM103は、揮発性記憶媒体又は不揮発性記憶媒体によって構成され、コンピュータプログラム及びデータ等を記憶する。なお、RAM103は、単にメモリと読み替えられてもよい。 The RAM 103 is composed of a volatile or non-volatile storage medium, and stores computer programs and data. Note that the RAM 103 may simply be read as a memory.
 ストレージ104は、不揮発性記憶媒体によって構成され、コンピュータプログラム及びデータ等を記憶する。ストレージ104の例として、フラッシュメモリ、SSD(Solid State Drive)、HDD(Hard Disk Drive)が挙げられる。 The storage 104 is configured by a non-volatile storage medium and stores computer programs, data, and the like. Examples of the storage 104 include flash memory, SSD (Solid State Drive), and HDD (Hard Disk Drive).
 撮像装置105は、レンズ及びイメージセンサ等によって構成され、被写体を撮像し、撮像画像を生成する。撮像装置105は、カメラと読み替えられてもよい。 The imaging device 105 is composed of a lens, an image sensor, and the like, captures an image of a subject, and generates a captured image. The imaging device 105 may be read as a camera.
 プロセッサ101は、ROM102又はストレージ104からコンピュータプログラムを読み出して実行し、撮像装置105、RAM103及びストレージ104等と協働することにより、検出装置100が有する機能を実現する。検出装置100が有する機能の詳細については後述する(図6参照)。なお、プロセッサ101は、CPU(Central Processing Unit)、コントローラ、制御回路といった他の用語に読み替えられてもよい。 The processor 101 reads and executes a computer program from the ROM 102 or the storage 104, and cooperates with the imaging device 105, the RAM 103, the storage 104, etc., to implement the functions of the detection device 100. Details of the functions of the detection device 100 will be described later (see FIG. 6). Note that the processor 101 may be read as other terms such as a CPU (Central Processing Unit), a controller, and a control circuit.
<検出装置の機能構成>
 図6は、実施の形態1に係る検出装置100の機能構成の一例を示すブロック図である。
<Functional configuration of detection device>
FIG. 6 is a block diagram showing an example of the functional configuration of the detection device 100 according to Embodiment 1. As shown in FIG.
 検出装置100は、機能として、画像取得部201、マーカ検出部202、位相検出部203、基準位相検出部204、基準位相保持部205、角度算出部206、及び、姿勢推定部207を有する。これらの機能は、プロセッサ101がROM102又はストレージ104からコンピュータプログラムを読み出して実行し、撮像装置105、RAM103及びストレージ104等と協働することにより、実現されてよい。したがって、以下において、これらの構成要素を主体として説明する処理は、プロセッサ101を主体とする処理に読み替えることができる。 The detection device 100 has an image acquisition unit 201, a marker detection unit 202, a phase detection unit 203, a reference phase detection unit 204, a reference phase holding unit 205, an angle calculation unit 206, and a posture estimation unit 207 as functions. These functions may be realized by the processor 101 reading and executing a computer program from the ROM 102 or the storage 104 and cooperating with the imaging device 105, the RAM 103, the storage 104, and the like. Therefore, hereinafter, the processing mainly performed by these components can be read as the processing mainly performed by the processor 101 .
 画像取得部201は、撮像装置105から撮像画像を取得する。 The image acquisition unit 201 acquires captured images from the imaging device 105 .
 マーカ検出部202は、画像取得部201が取得した撮像画像の中からマーカ10を検出する。加えて、マーカ検出部202は、検出したマーカ10の中から識別部位11及び姿勢部位13を検出する。 The marker detection unit 202 detects the marker 10 from the captured image acquired by the image acquisition unit 201 . In addition, the marker detection unit 202 detects the identification part 11 and the posture part 13 from the detected markers 10 .
 位相検出部203は、マーカ検出部202が検出した姿勢部位13の干渉パターンを観測し、当該干渉パターンの位相を検出する。 The phase detection unit 203 observes the interference pattern of the posture part 13 detected by the marker detection unit 202 and detects the phase of the interference pattern.
 基準位相検出部204は、マーカ検出部202が所定の姿勢のマーカ10から検出した姿勢部位13の干渉パターンを観測し、当該干渉パターンの位相を基準位相として検出する。基準位相検出部204は、その検出した基準位相とマーカ検出部202が検出したマーカIDとを対応付ける。 The reference phase detection unit 204 observes the interference pattern of the posture part 13 detected by the marker detection unit 202 from the marker 10 in a predetermined posture, and detects the phase of the interference pattern as the reference phase. The reference phase detector 204 associates the detected reference phase with the marker ID detected by the marker detector 202 .
 基準位相保持部205は、基準位相検出部204によって対応付けられたマーカIDと基準位相とのセットを、例えばストレージ104に保持する。 The reference phase holding unit 205 holds a set of marker IDs and reference phases associated by the reference phase detection unit 204 in the storage 104, for example.
 角度算出部206は、位相検出部203が検出した干渉パターンの位相と、基準位相保持部205が保持する基準位相とのずれ(例えば差分)に基づいて、姿勢部位13の角度(ヨー角又はピッチ角)を算出する。 The angle calculator 206 calculates the angle (yaw angle or pitch angle).
 姿勢推定部207は、角度算出部206が算出した姿勢部位13の角度、及び、撮像画像におけるマーカ10の位置に基づいて、マーカ10の姿勢を推定する。 The posture estimation unit 207 estimates the posture of the marker 10 based on the angle of the posture part 13 calculated by the angle calculation unit 206 and the position of the marker 10 in the captured image.
<基準位相記録処理>
 図7は、実施の形態1に係る、姿勢部位13の基準位相を検出及び記録する処理の一例を示すフローチャートである。
<Reference phase recording process>
FIG. 7 is a flowchart showing an example of processing for detecting and recording the reference phase of the posture part 13 according to the first embodiment.
 撮像装置105は、所定の姿勢のマーカ10(例えば正面を向いているマーカ10)を撮像して撮像画像を生成し、画像取得部201はその撮像画像を撮像装置105から取得する(S101)。 The imaging device 105 images the marker 10 in a predetermined posture (for example, the marker 10 facing the front) to generate a captured image, and the image acquisition unit 201 acquires the captured image from the imaging device 105 (S101).
 マーカ検出部202は、取得した撮像画像からマーカ10を検出する(S102)。 The marker detection unit 202 detects the marker 10 from the acquired captured image (S102).
 マーカ検出部202は、検出したマーカ10から識別部位11(例えば二次元コード)及び姿勢部位13を検出する(S103)。 The marker detection unit 202 detects the identification part 11 (for example, two-dimensional code) and the posture part 13 from the detected marker 10 (S103).
 マーカ検出部202は、検出した識別部位11からマーカIDを検出する(S104)。 The marker detection unit 202 detects the marker ID from the detected identification part 11 (S104).
 基準位相検出部204は、検出した姿勢部位13から干渉パターンの位相を検出し、基準位相とする(S105)。 The reference phase detection unit 204 detects the phase of the interference pattern from the detected posture part 13 and uses it as the reference phase (S105).
 基準位相保持部205は、検出したマーカIDと基準位相とを対応付けて保持する(S106)。 The reference phase holding unit 205 associates and holds the detected marker ID and the reference phase (S106).
 これにより、マーカIDが示すマーカ10が所定の姿勢の場合に観測される姿勢部位13の干渉パターンの位相が、基準位相として基準位相保持部205に保持される。 As a result, the phase of the interference pattern of the posture part 13 observed when the marker 10 indicated by the marker ID is in a predetermined posture is held in the reference phase holding unit 205 as a reference phase.
<基準位相記録処理の変形例>
 図8は、実施の形態1に係る、姿勢部位13の基準位相を検出及び記録する処理の変形例を示すフローチャートである。
<Modified Example of Reference Phase Recording Processing>
FIG. 8 is a flow chart showing a modification of the process of detecting and recording the reference phase of the posture part 13 according to the first embodiment.
 撮像装置105は、マーカ10を撮像して撮像画像を生成し、画像取得部201は、その撮像画像を取得する(S201)。 The imaging device 105 captures an image of the marker 10 to generate a captured image, and the image acquisition unit 201 acquires the captured image (S201).
 マーカ検出部202は、取得した撮像画像からマーカ10を検出する(S202)。 The marker detection unit 202 detects the marker 10 from the acquired captured image (S202).
 マーカ検出部202は、所定の姿勢のマーカ10(例えば正面を向いているマーカ10)と、検出したマーカ10との間の姿勢のずれ量を算出する(S203)。マーカ検出部202は、撮像画像のマーカ10の形状に基づいてずれ量を算出してよい。例えば、マーカ10の囲み枠12の形状が正方形である場合、マーカ検出部202は、次の処理を行う。すなわち、マーカ検出部202は、検出したマーカ10の囲み枠12の形状が正方形である場合、マーカ10がほぼ正面を向いている姿勢であるため、ずれ量をほぼ0と算出する。一方、マーカ検出部202は、検出したマーカ10の囲み枠12の形状が正方形から外れている割合が大きいほど(例えば検出した囲み枠12の形状が台形、又は、各辺の長さが異なる四角形である場合)、マーカ10が大きく傾いている姿勢であるため、ずれ量を大きく算出する。なお、マーカ検出部202は、ユーザが確認できるように、算出したずれ量やずれの方向、または、ずれを解消するために撮像装置105を動かすべき方向を示す情報等を画面に表示してもよい。 The marker detection unit 202 calculates the amount of posture deviation between the marker 10 in a predetermined posture (for example, the marker 10 facing the front) and the detected marker 10 (S203). The marker detection unit 202 may calculate the amount of deviation based on the shape of the marker 10 in the captured image. For example, when the shape of the enclosing frame 12 of the marker 10 is square, the marker detection unit 202 performs the following processing. That is, when the shape of the surrounding frame 12 of the detected marker 10 is a square, the marker detection unit 202 calculates the amount of deviation to be approximately 0 because the marker 10 is in a posture that faces approximately the front. On the other hand, the marker detection unit 202 determines that the larger the ratio of the shape of the surrounding frame 12 of the detected marker 10 that deviates from the square ), the amount of deviation is calculated to be large because the marker 10 is in a posture that is greatly inclined. Note that the marker detection unit 202 may display information such as the calculated amount of misalignment, the direction of the misalignment, or the direction in which the imaging device 105 should be moved to eliminate the misalignment on the screen so that the user can confirm it. good.
 マーカ検出部202は、前回算出したずれ量と今回算出したずれ量とを比較し、今回のずれ量が前回のずれ量よりも小さくなっているか否かを判定する(S204)。 The marker detection unit 202 compares the deviation amount calculated last time and the deviation amount calculated this time, and determines whether or not the deviation amount this time is smaller than the deviation amount last time (S204).
 プロセッサ101は、今回のずれ量が前回のずれ量よりも小さくなっていない場合(S204:NO)、処理をステップS209に進め、今回のずれ量が前回のずれ量よりも小さくなっている場合(S204:YES)、処理をステップS205に進める。 If the current deviation amount is not smaller than the previous deviation amount (S204: NO), the processor 101 advances the process to step S209, and if the current deviation amount is smaller than the previous deviation amount ( S204: YES), the process proceeds to step S205.
 マーカ検出部202は、検出したマーカ10から識別部位11(例えば二次元コード)及び姿勢部位13を検出する(S205)。 The marker detection unit 202 detects the identification part 11 (for example, two-dimensional code) and the posture part 13 from the detected marker 10 (S205).
 マーカ検出部202は、検出した認識部位からマーカIDを検出する(S206)。 The marker detection unit 202 detects the marker ID from the detected recognition site (S206).
 基準位相検出部204は、検出した姿勢部位13から干渉パターンの位相を検出し、基準位相とする(S207)。 The reference phase detection unit 204 detects the phase of the interference pattern from the detected posture part 13 and uses it as the reference phase (S207).
 基準位相保持部205は、検出されたマーカIDと基準位相とを対応付けて保持する(S208)。すなわち、基準位相保持部205には、今回のずれ量が前回のずれ量よりも小さい場合に(つまりステップS204がYESの場合に)、基準位相が保持され、今回のずれ量が前回のずれ量以上である場合には(つまりステップS204がNOの場合には)、基準位相が保持されない。これにより、基準位相保持部205には、より正面に近い姿勢のマーカ10から検出された干渉パターンの位相が基準位相として保持される。 The reference phase holding unit 205 associates and holds the detected marker ID and the reference phase (S208). That is, when the current deviation amount is smaller than the previous deviation amount (that is, when step S204 is YES), the reference phase holding unit 205 holds the reference phase, and the current deviation amount is equal to the previous deviation amount. If this is the case (that is, if step S204 is NO), the reference phase is not held. As a result, the reference phase holding unit 205 holds the phase of the interference pattern detected from the marker 10 in a posture closer to the front as the reference phase.
 プロセッサ101は、本処理の終了条件を満たしているか否かを判定する(S209)。終了条件の例として、ユーザが所定の終了操作を行った場合、又は、ずれ量が所定の閾値以下となった場合が挙げられる。 The processor 101 determines whether or not the conditions for terminating this process are satisfied (S209). Examples of termination conditions include a case where the user performs a predetermined termination operation, or a case where the deviation amount becomes equal to or less than a predetermined threshold.
 プロセッサ101は、終了条件を満たしていないと判定した場合(S209:NO)、処理をステップS201に戻し、終了条件を満たしていると判定した場合(S209:YES)、本処理を終了する。 If the processor 101 determines that the termination condition is not satisfied (S209: NO), it returns the process to step S201, and if it determines that the termination condition is satisfied (S209: YES), it ends this process.
 これにより、基準位相保持部205には、マーカIDが示すマーカ10がより正面を向いている姿勢にて観測される姿勢部位13の干渉パターンの位相が、基準位相として保持される。 As a result, the reference phase holding unit 205 holds, as a reference phase, the phase of the interference pattern of the posture part 13 observed in a posture in which the marker 10 indicated by the marker ID faces more toward the front.
 なお、上述した図7又は図8に示す処理は、マーカ10の製造時に行われてよい。なお、マーカ10の開発段階では、様々な姿勢のマーカ10を撮像し、それぞれの姿勢において干渉パターンが適切に観測されるか否かなどを確認してもよい。 Note that the processing shown in FIG. 7 or 8 described above may be performed when the marker 10 is manufactured. In the development stage of the marker 10, images of the marker 10 in various postures may be captured to check whether or not the interference pattern is appropriately observed in each posture.
<姿勢推定処理>
 図9は、実施の形態1に係るマーカ10の姿勢を推定する処理の一例を示すフローチャートである。なお、本処理の実行前に、図7又は図8に示す基準位相記録処理によって基準位相が予め基準位相保持部205に保持されているものとする。
<Posture estimation processing>
FIG. 9 is a flowchart showing an example of processing for estimating the orientation of marker 10 according to the first embodiment. It is assumed that the reference phase is held in the reference phase holding unit 205 in advance by the reference phase recording processing shown in FIG. 7 or 8 before execution of this process.
 撮像装置105は、マーカ10を撮像して撮像画像を生成し、画像取得部201は、その撮像画像を取得する(S301)。 The imaging device 105 captures the marker 10 to generate a captured image, and the image acquisition unit 201 acquires the captured image (S301).
 マーカ検出部202は、取得した撮像画像からマーカ10を検出する(S302)。 The marker detection unit 202 detects the marker 10 from the acquired captured image (S302).
 マーカ検出部202は、検出したマーカ10から識別部位11(例えば二次元コード)及び姿勢部位13を検出する(S303)。 The marker detection unit 202 detects the identification part 11 (for example, two-dimensional code) and the posture part 13 from the detected marker 10 (S303).
 マーカ検出部202は、検出した識別部位11からマーカIDを検出する(S304)。 The marker detection unit 202 detects the marker ID from the detected identification part 11 (S304).
 位相検出部203は、検出した姿勢部位13から干渉パターンの位相を検出する(S305)。 The phase detection unit 203 detects the phase of the interference pattern from the detected posture part 13 (S305).
 角度算出部206は、検出したマーカIDに対応付けられている基準位相(例えばα0)を基準位相保持部205から取得する。そして、角度算出部206は、その基準位相とステップS305にて検出した位相(例えばα1)とのずれに基づいて、姿勢部位13の角度(ヨー角又はピッチ角)を算出する(S306)。 The angle calculator 206 acquires the reference phase (eg, α0) associated with the detected marker ID from the reference phase holder 205 . Then, the angle calculator 206 calculates the angle (yaw angle or pitch angle) of the posture part 13 based on the shift between the reference phase and the phase (eg, α1) detected in step S305 (S306).
 姿勢推定部207は、算出した姿勢部位13の角度(例えばヨー角又はピッチ角)と、撮像画像におけるマーカ10の位置とに基づいて、マーカ10の姿勢を推定する(S307)。なお、図9に示す処理は、繰り返し実行されてよい。 The posture estimation unit 207 estimates the posture of the marker 10 based on the calculated angle (eg, yaw angle or pitch angle) of the posture part 13 and the position of the marker 10 in the captured image (S307). Note that the processing shown in FIG. 9 may be repeatedly executed.
 以上の処理により、検出装置100は、マーカ10の姿勢を高精度に推定することができる。 Through the above processing, the detection device 100 can estimate the orientation of the marker 10 with high accuracy.
 本実施の形態では、基準位相記録処理にて検出されたマーカIDと基準位相とを対応付けて保持し、姿勢推定処理にて検出したマーカIDに対応付けられている基準位相を取得している。したがって、マーカ10ごとに姿勢部位13に多少の誤差があったとしても、その誤差を踏まえた基準位相を保持して姿勢推定に用いることができる。したがって、姿勢部位13同士の精緻な位置合わせを行わなくともヨー角θの検出精度を担保できる。 In the present embodiment, the marker ID and the reference phase detected in the reference phase recording process are associated and held, and the reference phase associated with the marker ID detected in the attitude estimation process is obtained. . Therefore, even if there is some error in the posture part 13 for each marker 10, the reference phase based on the error can be retained and used for posture estimation. Therefore, the detection accuracy of the yaw angle θ can be ensured without performing precise alignment between the posture parts 13 .
 また、マーカ10の検出に用いる撮像装置105は、基準位相の記録に用いた撮像装置105と同じものであるため、カメラの特性の違いから生じ得る基準位相の誤差を吸収することができる。 Also, since the imaging device 105 used for detecting the marker 10 is the same as the imaging device 105 used for recording the reference phase, it is possible to absorb errors in the reference phase that may arise from differences in camera characteristics.
 なお、異なるマーカ10間、および異なる撮像装置105間で、姿勢部位13の同一性および撮像装置105間の特性の同一性が十分に担保できるのであれば、あるマーカ10向けに保持した基準位相を他のマーカ10を用いた姿勢推定処理に流用したり、基準位相記録処理と姿勢推定処理とを別の検出装置100で行ったりしてもよい。この場合、姿勢推定を行うことを主目的とするのであれば、マーカ10の区別は不要となるため、基準位相記録処理および姿勢推定処理において、識別部位11のないマーカ10を用いたり、マーカIDの検出の処理自体を省略したりしてもよい。 Note that if the identity of the posture parts 13 and the identity of the characteristics of the imaging devices 105 between different markers 10 and between different imaging devices 105 can be sufficiently ensured, the reference phase held for a certain marker 10 can be It may be used for posture estimation processing using another marker 10 , or the reference phase recording processing and posture estimation processing may be performed by a different detection device 100 . In this case, if the main purpose is to estimate the posture, it is not necessary to distinguish the markers 10. Therefore, in the reference phase recording process and the posture estimation process, the marker 10 without the identification part 11 is used, or the marker ID The detection process itself may be omitted.
 また、本実施の形態のマーカ10において、ヨー角とピッチ角のいずれか一方のみを推定できれば十分である場合、マーカ10は、姿勢部位13Aまたは姿勢部位13Bの一方のみを備える構成であってもよい。 Further, in the marker 10 of the present embodiment, if it is sufficient to estimate only one of the yaw angle and the pitch angle, the marker 10 may be configured to include only one of the posture part 13A and the posture part 13B. good.
 また、本実施の形態のマーカ10では、図2に示すように、姿勢部位13AはY軸の負方向の位置(つまり下方の位置)に配置され、姿勢部位13BはX軸の正方向の位置(つまり右方の位置)に配置されているが、姿勢部位13A、13Bは他の位置に配置されてもよい。例えば、図2において、姿勢部位13AはY軸の正方向の位置(つまり上方の位置)に配置され、姿勢部位13BはX軸の負方向の位置(つまり左方の位置)に配置されたとしても、本実施の形態のマーカ10と同様の効果が得られる。また、姿勢部位13Aが上下両方の位置に配置されたり、姿勢部位13Bが左右両方の位置に配置されたりしてもよい。このようにすることで、いずれかの姿勢部位13が遮蔽物によって隠れたとしても、他の姿勢部位13が観測できれば角度を推定することができる。 Further, in the marker 10 of the present embodiment, as shown in FIG. 2, the posture portion 13A is arranged at the position in the negative direction of the Y-axis (that is, the lower position), and the posture portion 13B is arranged at the position in the positive direction of the X-axis. (that is, the right position), the posture parts 13A and 13B may be positioned at other positions. For example, in FIG. 2, it is assumed that the posture part 13A is arranged at the position in the positive direction of the Y-axis (that is, the upper position), and the posture part 13B is arranged at the position in the negative direction of the X-axis (that is, the position to the left). Also, the same effect as the marker 10 of the present embodiment can be obtained. Also, the posture part 13A may be arranged at both the upper and lower positions, or the posture part 13B may be arranged at both the left and right positions. By doing so, even if one of the posture parts 13 is hidden by an obstacle, the angle can be estimated if the other posture parts 13 can be observed.
 また、本実施の形態において、姿勢部位13の長手方向の長さが、囲み枠12の辺の長さと略同一であるが、姿勢部位13の長手方向の長さは、囲み枠12の辺の長さと異なる長さであってもよい。上述した通り、姿勢部位13を用いた角度の検出可能範囲は、干渉パターンの周期Tに依存し、θ=0と同一の干渉パターンが発生しない範囲に限られる。換言すると、姿勢部位13の長さにかかわらず、検出可能範囲を超えた範囲の角度は検出できない。そのため、干渉パターンTの周期が囲み枠12の辺の長さより十分に短いのであれば、姿勢部位13の長手方向の長さが囲み枠12の辺の長さよりも短いとしても、角度の検出可能範囲は変わらない。ただし、姿勢部位13を長くするほど、姿勢部位13の一部が遮蔽物等によって隠れたとしても干渉パターンを観測できる可能性が高まるため、遮蔽の影響を軽減する目的であれば、長手方向の長さが比較的長い姿勢部位13を採用する意義はある。 Further, in the present embodiment, the longitudinal length of the posture part 13 is substantially the same as the length of the side of the enclosing frame 12 , but the longitudinal length of the posture part 13 is the same as the length of the side of the enclosing frame 12 . The length may be different from the length. As described above, the angle detectable range using the posture part 13 depends on the period T of the interference pattern, and is limited to the range in which the same interference pattern as θ=0 does not occur. In other words, regardless of the length of the posture part 13, angles in a range beyond the detectable range cannot be detected. Therefore, if the period of the interference pattern T is sufficiently shorter than the length of the side of the enclosing frame 12, the angle can be detected even if the length of the posture part 13 in the longitudinal direction is shorter than the length of the side of the enclosing frame 12. The range remains unchanged. However, the longer the posture part 13, the higher the possibility that the interference pattern can be observed even if part of the posture part 13 is hidden by a shield or the like. There is significance in adopting the posture part 13 having a relatively long length.
 また、本実施の形態のマーカ10では、図2に示すように、姿勢部位13AはY軸の負方向の位置(つまり下方の位置)に配置され、姿勢部位13BはX軸の正方向の位置(つまり右方の位置)に配置されているが、姿勢部位13A、13Bは他の位置に配置されてもよい。例えば、図2において、姿勢部位13AはX軸の正負方向のいずれかの位置(つまり左右方向のいずれかの位置)に配置され、姿勢部位13BはY軸の正負方向のいずれかの位置(つまり上下方向のいずれかの位置)に配置されたりしても、本実施の形態のマーカ10と同様の効果が得られる。 Further, in the marker 10 of the present embodiment, as shown in FIG. 2, the posture portion 13A is arranged at the position in the negative direction of the Y-axis (that is, the lower position), and the posture portion 13B is arranged at the position in the positive direction of the X-axis. (that is, the right position), the posture parts 13A and 13B may be positioned at other positions. For example, in FIG. 2, the posture part 13A is arranged at any position in the positive or negative direction of the X-axis (that is, any position in the left-right direction), and the posture part 13B is arranged at any position in the positive or negative direction of the Y-axis (that is, The same effect as the marker 10 of the present embodiment can be obtained even if it is arranged at any position in the vertical direction.
 また、本実施の形態では、姿勢部位13として長方形形状を採用し、マーカ10の囲み枠12が四角形形状の場合、姿勢部位13の長手方向がマーカ10の囲み枠12の辺に沿うように配置されている。この構成を採用することにより、マーカ10によって占有される面積を抑えることができる。ただし、マーカ10の大きさに厳格な制限がなければ、囲み枠12の辺と姿勢部位13の長手方向とは必ずしも沿っていなくともよい。例えば、囲み枠12の辺と姿勢部位13とが45度ずれていてもよい。この場合でも、囲み枠12と姿勢部位13との相対的な角度が既知であれば、姿勢部位13を用いた角度の推定を正確に行うことができる。 Further, in the present embodiment, a rectangular shape is adopted as the posture part 13, and when the enclosing frame 12 of the marker 10 is rectangular, the longitudinal direction of the posture part 13 is arranged along the sides of the enclosing frame 12 of the marker 10. It is By adopting this configuration, the area occupied by the marker 10 can be suppressed. However, if the size of the marker 10 is not strictly limited, the side of the enclosing frame 12 and the longitudinal direction of the posture part 13 do not necessarily have to be aligned. For example, the side of the enclosing frame 12 and the posture part 13 may be shifted by 45 degrees. Even in this case, if the relative angle between the surrounding frame 12 and the posture part 13 is known, the angle can be accurately estimated using the posture part 13 .
 実施の形態1に係るマーカ10の構成は、図2に示した例に限られない。次に、実施の形態1に係るマーカ10の構成のいくつかの変形例について説明する。 The configuration of the marker 10 according to Embodiment 1 is not limited to the example shown in FIG. Next, some modifications of the configuration of marker 10 according to Embodiment 1 will be described.
<マーカの第1の変形例>
 図10は、実施の形態1に係るマーカ10の構成の第1の変形例を示す模式図である。
<First modification of marker>
FIG. 10 is a schematic diagram showing a first modification of the configuration of marker 10 according to the first embodiment.
 図10に示すように、マーカ10は、囲み枠12の内側において、囲み枠12の辺に沿って配置された姿勢部位13を含む構成であってもよい。 As shown in FIG. 10, the marker 10 may be configured to include posture parts 13 arranged along the sides of the enclosing frame 12 inside the enclosing frame 12 .
 例えば、図10に示すように、マーカ10は、囲み枠12の内側において、長手方向が囲み枠12の横方向の辺に沿って配置された横向きの姿勢部位13Aと、長手方向が囲み枠12の縦方向の辺に沿って配置された縦向きの姿勢部位13Bとを含む構成であってよい。 For example, as shown in FIG. 10, inside the enclosing frame 12, the marker 10 has a sideways attitude portion 13A arranged along the lateral sides of the enclosing frame 12 in the longitudinal direction, and and a vertically oriented posture portion 13B arranged along the vertical side of the .
 これにより、検出装置100は、囲み枠12の位置を基準として姿勢部位13A、13Bを検出できる。また、検出装置100は、横向きの姿勢部位13Aの干渉パターンの位相変化に基づいてヨー角を検出でき、縦向きの姿勢部位13Bの干渉パターンの位相変化に基づいてピッチ角を検出できる。 As a result, the detection device 100 can detect the posture parts 13A and 13B using the position of the enclosing frame 12 as a reference. Further, the detection device 100 can detect the yaw angle based on the phase change of the interference pattern of the sideways attitude part 13A, and can detect the pitch angle based on the phase change of the interference pattern of the vertical attitude part 13B.
 なお、囲み枠12の辺に姿勢部位13が埋め込まれてもよい。ただし、姿勢部位13が埋め込まれた囲み枠12は、その形状の検知が難しくなるため、囲み枠12にマーカ10の位置の検出又は姿勢の検出といった特別な役割が与えられている場合は、囲み枠12と姿勢部位13は、異なる位置に配置した方がよい。 It should be noted that the posture parts 13 may be embedded in the sides of the enclosing frame 12 . However, it is difficult to detect the shape of the enclosing frame 12 in which the posture part 13 is embedded. It is better to arrange the frame 12 and the posture part 13 at different positions.
<マーカの第2の変形例>
 図11は、実施の形態1に係るマーカ10の構成の第2の変形例を示す模式図である。
<Second modification of marker>
FIG. 11 is a schematic diagram showing a second modification of the configuration of marker 10 according to the first embodiment.
 図11に示すように、マーカ10は、囲み枠12の内側において、所定の位置(例えば囲み枠12の中心)に配置された円形の姿勢部位13を含む構成であってもよい。 As shown in FIG. 11, the marker 10 may be configured to include a circular posture portion 13 arranged at a predetermined position (for example, the center of the enclosing frame 12) inside the enclosing frame 12.
 この場合、第1のパターン31及び第2のパターン32は、それぞれ、円の中心から離れる方向に周期的な円状模様として、姿勢部位13の第1面21及び第2面22に印刷されてよい。 In this case, the first pattern 31 and the second pattern 32 are printed on the first surface 21 and the second surface 22 of the posture part 13 as circular patterns that are periodic in the direction away from the center of the circle. good.
 なお、姿勢部位13は、円形に限られず、中心角が4分の1以上の扇形であってもよい。中心角が少なくとも4分の1の扇形であれば、ヨー方向の回転とピッチ方向の回転の両方について干渉パターンのずれを観測できるためである。なお、ヨー角とピッチ角のいずれか一方のみを算出できれば十分である場合、姿勢部位13は、更に中心角の狭い(4分の1未満の)扇型であってもよい。 Note that the posture part 13 is not limited to a circular shape, and may be fan-shaped with a central angle of 1/4 or more. This is because, if the central angle is at least 1/4 of the fan shape, the deviation of the interference pattern can be observed for both rotation in the yaw direction and rotation in the pitch direction. If it is sufficient to calculate only one of the yaw angle and the pitch angle, the posture part 13 may be fan-shaped with a narrower central angle (less than 1/4).
 これにより、検出装置100は、囲み枠12の位置を基準として姿勢部位13を検出できる。また、検出装置100は、姿勢部位13の中心からX軸方向の干渉パターンの位相変化に基づいてヨー角を検出でき、姿勢部位13の中心からY軸方向の干渉パターンの位相変化に基づいてピッチ角を検出できる。 As a result, the detection device 100 can detect the posture part 13 with the position of the enclosing frame 12 as a reference. Further, the detection device 100 can detect the yaw angle based on the phase change of the interference pattern in the X-axis direction from the center of the posture part 13, and can detect the pitch angle based on the phase change of the interference pattern in the Y-axis direction from the center of the posture part 13. Can detect corners.
 なお、マーカ10は、囲み枠12の外側において、囲み枠12を囲むように配置されたリング形状の姿勢部位13を含む構成であってもよい。また、マーカ10は、囲み枠12の内側において所定の位置(例えば囲み枠12の中心)に配置されたリング形状の姿勢部位13を含む構成であってもよい。また、この場合、姿勢部位13は、円形の場合と同様、中心角が4分の1以上のリング形状(つまり扇形)であってもよい。さらに、円形の場合と同様に、ヨー角とピッチ角のいずれか一方のみを算出できれば十分である場合、姿勢部位13は、更に中心角の狭い(4分の1未満の)リング形状(つまり扇形)であってもよい。 Note that the marker 10 may be configured to include a ring-shaped posture portion 13 arranged so as to surround the enclosing frame 12 outside the enclosing frame 12 . Further, the marker 10 may be configured to include a ring-shaped posture portion 13 arranged at a predetermined position (for example, the center of the enclosing frame 12) inside the enclosing frame 12. FIG. Further, in this case, the posture part 13 may have a ring shape (that is, a fan shape) with a central angle of 1/4 or more, as in the case of the circular shape. Furthermore, as in the case of a circle, if it is sufficient to calculate only one of the yaw angle and the pitch angle, the posture part 13 has a ring shape (that is, a fan shape) with a narrower central angle (less than 1/4). ).
 また、姿勢部位13が円形または扇型の場合、その半径の長さは干渉パターンの1周期の長さ以上であってよく、姿勢部位13がリング形状の場合、そのリングの幅は、干渉パターンの1周期の長さ以上であってよい。上述したとおり、角度の検出可能範囲を最大化するためには、姿勢部位13が十分な長さを持つことが望ましい。ここで、円形形、扇型、またはリング形状の姿勢部位13を用いる場合、干渉パターンは同心円状に現れ、角度の変化に伴って円形または扇型における半径方向またはリングの幅方向に移動する。したがって、円形および扇状の場合は円の半径の長さを、リング状の場合はリングの幅を長くすれば、最大の検出可能範囲を設定できる。なお、上述した通り、この長さは必ずしも1周期の長さ以上である必要はなく、1周期の長さより短くともよいが、1周期の長さより短い場合は、観測できない部分の干渉パターンを推測する必要がある。 In addition, when the posture part 13 is circular or fan-shaped, the length of its radius may be equal to or longer than the length of one period of the interference pattern, and when the posture part 13 is ring-shaped, the width of the ring may be longer than or equal to one cycle of . As described above, it is desirable that the posture part 13 has a sufficient length in order to maximize the detectable range of angles. Here, when a circular, fan-shaped, or ring-shaped posture portion 13 is used, the interference pattern appears concentrically and moves in the radial direction of the circle or fan or in the width direction of the ring as the angle changes. Therefore, the maximum detectable range can be set by increasing the length of the radius of the circle in the case of a circular or sector shape, and by increasing the width of the ring in the case of a ring shape. In addition, as described above, this length does not necessarily have to be equal to or longer than the length of one cycle, and may be shorter than the length of one cycle. There is a need to.
<マーカの第3の変形例>
 図12は、実施の形態1に係るマーカ10の構成の第3の変形例を示す模式図である。
<Third modification of marker>
FIG. 12 is a schematic diagram showing a third modification of the configuration of marker 10 according to the first embodiment.
 図12に示すように、マーカ10は、囲み枠12の内側において、所定の位置(例えば囲み枠12の中心)に配置された四角形の姿勢部位13を含む構成であってもよい。 As shown in FIG. 12, the marker 10 may be configured to include a rectangular posture portion 13 arranged at a predetermined position (for example, the center of the enclosing frame 12) inside the enclosing frame 12.
 この場合、第1のパターン31及び第2のパターン32は、それぞれ、互いに異なる回転軸に対応させた周期性を持つパターンを重複させた格子模様として、姿勢部位13の第1面21及び第2面22に印刷されてよい。 In this case, the first pattern 31 and the second pattern 32 are lattice patterns in which patterns having periodicity corresponding to mutually different rotation axes are overlapped, and the first surface 21 and the second pattern 32 of the posture part 13 are formed. Surface 22 may be printed.
 これにより、姿勢部位13のピッチ角又はヨー角が変化すると、それに伴い、格子模様の干渉パターンの位相が姿勢部位13の面上を移動するように観測される。よって、検出装置100は、その位相の移動に基づいて、マーカ10のピッチ角又はヨー角を検出できる。 As a result, when the pitch angle or yaw angle of the posture part 13 changes, the phase of the lattice-patterned interference pattern is observed to move on the surface of the posture part 13 accordingly. Therefore, the detection device 100 can detect the pitch angle or yaw angle of the marker 10 based on the phase movement.
 図12に示す例の場合、X軸を回転中心とした角度の変化に伴って図12におけるY軸方向に干渉パターンが移動し、Y軸を回転中心とした角度の変化に伴って図12におけるX軸方向に干渉パターンが移動する。そのため、各方向に着目して干渉パターンを分析することにより、1つのマーカ10で複数の回転角度を算出することができる。 In the case of the example shown in FIG. 12, the interference pattern moves in the Y-axis direction in FIG. The interference pattern moves in the X-axis direction. Therefore, by analyzing the interference pattern focusing on each direction, a plurality of rotation angles can be calculated with one marker 10 .
 なお、格子模様の場合も、姿勢部位13の形状は長方形状であってもよい。ただし、上述した通り、角度を検出可能な範囲を十分に確保するためには、回転軸に垂直な方向に干渉パターンの周期以上の長さが必要である。そこで、図12では、ピッチ角とヨー角のどちらも十分な範囲で検出可能となるよう、X軸方向とY軸方向の両方が長い姿勢部位13を設けている。また、この場合、囲み枠12の外側に姿勢部位13を配置しようとすると広い面積が必要になるため、図12では、囲み枠12の内部に姿勢部位13を配置している。ただし、マーカ10の面積に制約がないのであれば、囲み枠12の外側に姿勢部位13を配置してもよい。 It should be noted that the shape of the posture part 13 may be rectangular even in the case of the lattice pattern. However, as described above, in order to ensure a sufficient angle detectable range, the length in the direction perpendicular to the rotation axis must be equal to or greater than the period of the interference pattern. Therefore, in FIG. 12, a posture portion 13 that is long in both the X-axis direction and the Y-axis direction is provided so that both the pitch angle and the yaw angle can be detected within a sufficient range. In this case, since a large area is required to arrange the posture part 13 outside the enclosing frame 12, the posture part 13 is arranged inside the enclosing frame 12 in FIG. However, if the area of the marker 10 is not restricted, the posture part 13 may be arranged outside the enclosing frame 12 .
(実施の形態2)
 実施の形態2では、感度が互いに異なる複数の姿勢部位13を備えるマーカ10について説明する。なお、実施の形態2では、実施の形態1にて説明済みの構成要素については同一の参照符号を付し、説明を省略する場合がある。
(Embodiment 2)
Embodiment 2 describes a marker 10 that includes a plurality of posture parts 13 with different sensitivities. In addition, in Embodiment 2, the same reference numerals are given to the constituent elements that have already been explained in Embodiment 1, and the explanation may be omitted.
 図13は、実施の形態2に係るマーカ10の構成例を示す模式図である。 FIG. 13 is a schematic diagram showing a configuration example of the marker 10 according to the second embodiment.
 図13に示すように、マーカ10は、識別部位11、囲み枠12、低感度姿勢部位14、及び、高感度姿勢部位15を含んで構成される。低感度姿勢部位14及び高感度姿勢部位15の基本的な構成は、実施の形態1にて説明した姿勢部位13と同様であってよい。よって、実施の形態2では、低感度姿勢部位14及び高感度姿勢部位15を、姿勢部位13と表現する場合がある。 As shown in FIG. 13, the marker 10 includes an identification part 11, a surrounding frame 12, a low-sensitivity posture part 14, and a high-sensitivity posture part 15. The basic configuration of the low-sensitivity posture part 14 and the high-sensitivity posture part 15 may be the same as that of the posture part 13 described in the first embodiment. Therefore, in the second embodiment, the low-sensitivity posture part 14 and the high-sensitivity posture part 15 may be expressed as the posture part 13 .
 ここで、感度とは、姿勢部位13の角度の検出精度の高さに対応し、感度が高いほど角度の検出精度が高くなり、感度が低いほど角度の検出精度が低くなる。上述した通り、本実施の形態において、角度の検出可能範囲は、角度が0度の場合と同一の干渉パターンが現れない範囲に限られる。一方、干渉パターンの位相の変化を検出できる粒度は、撮像装置105の解像度等に代表される変更困難なパラメータによって定まる。そのため、小さな角度変化で位相が大きく変化する構成の方が、大きな角度変化で位相が小さく変化する構成よりも、高精度に角度の変化を検出できる。ここで、干渉パターンの周期は、角度の検出可能範囲とは異なるパラメータで決定される(式1、式2)。したがって、干渉パターンの周期が長く(すなわち、角度が0度の場合と同一の干渉パターンが現れない範囲が広く)、かつ、角度の検出範囲が狭くなるようパラメータを設計すれば、わずかな角度変化で大きく位相が変化するマーカ10を設計できる。しかし一方で、式2に示す角度の検出可能範囲を実現するためには、姿勢部位13の長さを干渉パターンの周期より十分に長くする必要がある。そのため、角度の検出範囲が広く、かつ、感度が高いマーカを実現しようとすると姿勢部位13の大きさが非常に大きくなり、その結果、マーカ10の大きさも非常に大きくなってしまう。すなわち、マーカ10の大きさ(または姿勢部位13の大きさ)に物理的な制約がある現実の環境では、感度が高いほど角度の検出範囲は狭くなり、感度が低いほど角度の検出範囲は広くなる。 Here, the sensitivity corresponds to the level of accuracy in detecting the angle of the posture part 13. The higher the sensitivity, the higher the angle detection accuracy, and the lower the sensitivity, the lower the angle detection accuracy. As described above, in the present embodiment, the detectable angle range is limited to a range in which the same interference pattern as when the angle is 0 degree does not appear. On the other hand, the granularity with which changes in the phase of the interference pattern can be detected is determined by parameters that are difficult to change, such as the resolution of the imaging device 105 . Therefore, a configuration in which a small angle change causes a large phase change can detect an angle change with higher accuracy than a configuration in which a large angle change causes a small phase change. Here, the period of the interference pattern is determined by a parameter different from the detectable range of the angle (equation 1, equation 2). Therefore, if the period of the interference pattern is long (that is, the range in which the same interference pattern does not appear when the angle is 0 degrees is wide) and the parameters are designed so that the angle detection range is narrow, a slight angle change can be achieved. It is possible to design the marker 10 whose phase changes greatly at . On the other hand, however, in order to realize the angle detectable range shown in Equation 2, the length of the posture part 13 needs to be sufficiently longer than the period of the interference pattern. Therefore, if a marker with a wide angle detection range and high sensitivity is to be realized, the size of the posture part 13 will become very large, and as a result, the size of the marker 10 will also become very large. That is, in an actual environment where the size of the marker 10 (or the size of the posture part 13) is physically restricted, the higher the sensitivity, the narrower the angle detection range, and the lower the sensitivity, the wider the angle detection range. Become.
 そこで、本実施の形態では、比較的感度の低い姿勢部位13である低感度姿勢部位14と、低感度姿勢部位14よりも感度の高い高感度姿勢部位15との両方をマーカ10に配置することにより、広い検出範囲かつ高い検出精度にて姿勢部位13の角度を検出できるマーカ10を実現する。 Therefore, in the present embodiment, both the low-sensitivity posture part 14, which is the posture part 13 with relatively low sensitivity, and the high-sensitivity posture part 15, which has higher sensitivity than the low-sensitivity posture part 14, are arranged on the marker 10. Thus, the marker 10 capable of detecting the angle of the posture part 13 with a wide detection range and high detection accuracy is realized.
 例えば、図13に示すように、マーカ10は、囲み枠12の外側において、囲み枠12の横方向の辺(例えば図13の紙面における上辺と下辺)に沿って横向きの低感度姿勢部位14及び高感度姿勢部位15を配置し、囲み枠12の縦方向の辺(例えば図13の紙面における左辺と右辺)に沿って縦向きの低感度姿勢部位14及び高感度姿勢部位15を配置した構成であってよい。 For example, as shown in FIG. 13, the marker 10 is positioned outside the enclosing frame 12 along the lateral sides of the enclosing frame 12 (for example, the upper side and the lower side in FIG. 13). A configuration in which a high-sensitivity posture part 15 is arranged, and a low-sensitivity posture part 14 and a high-sensitivity posture part 15 are arranged vertically along the vertical sides of the enclosing frame 12 (for example, the left side and the right side in the plane of FIG. 13). It's okay.
 これにより、検出装置100は、横向きの低感度姿勢部位14A及び高感度姿勢部位15Aを用いて広範囲のヨー角を高精度に検出し、縦向きの低感度姿勢部位14B及び高感度姿勢部位15Bを用いて広範囲のピッチ角を高精度に検出することができる。 As a result, the detection device 100 can detect a wide range of yaw angles with high precision using the low-sensitivity posture part 14A and the high-sensitivity posture part 15A in the horizontal direction, and detect the low-sensitivity posture part 14B and the high-sensitivity posture part 15B in the vertical direction. A wide range of pitch angles can be detected with high accuracy.
 なお、上述した通り、干渉パターンの周期Tは、p1とp2の値の影響を受けるが(式1)、角度の検出範囲はp2の影響を受けない(式2)。そのため、p1とp2の値を適宜調整することによって、マーカ10の素材として屈折率nおよび距離dが均一の素材を用いた場合でも、略同一の周期Tを持ちつつ異なる感度を持つ干渉パターンを発生させるマーカ10を実現することができる。また、マーカ10を複数の素材で構成し、屈折率nまたは距離dを変化させることよって感度を調整してもよい。 As described above, the period T of the interference pattern is affected by the values of p1 and p2 (equation 1), but the angle detection range is not affected by p2 (equation 2). Therefore, by appropriately adjusting the values of p1 and p2, even when a material having a uniform refractive index n and a uniform distance d is used as the material of the marker 10, an interference pattern having substantially the same period T and different sensitivities can be obtained. A generating marker 10 can be implemented. Also, the sensitivity may be adjusted by forming the marker 10 from a plurality of materials and changing the refractive index n or the distance d.
 なお、実施の形態2に係るマーカ10の構成は、図13に示した構成例に限られない。次に、実施の形態2に係るマーカ10の構成のいくつかの変形例について説明する。 The configuration of the marker 10 according to Embodiment 2 is not limited to the configuration example shown in FIG. Next, some modifications of the configuration of marker 10 according to Embodiment 2 will be described.
<マーカの第1の変形例>
 図14は、実施の形態2に係るマーカ10の構成の第1の変形例を示す模式図である。
<First modification of marker>
FIG. 14 is a schematic diagram showing a first modification of the configuration of marker 10 according to the second embodiment.
 図14に示すように、マーカ10は、囲み枠12の外側において、囲み枠12の4辺のそれぞれに沿って低感度姿勢部位14(14A,14B)及び高感度姿勢部位15(15A、15B)を並べて配置した構成であってもよい。つまり、低感度姿勢部位14と高感度姿勢部位15とが隣接して配置されてよい。 As shown in FIG. 14, the marker 10 has low-sensitivity posture parts 14 (14A, 14B) and high-sensitivity posture parts 15 (15A, 15B) along each of the four sides of the enclosing frame 12 outside the enclosing frame 12. may be arranged side by side. That is, the low-sensitivity posture part 14 and the high-sensitivity posture part 15 may be arranged adjacent to each other.
 これによっても、上述した通り、広い検出範囲かつ高い検出精度にて姿勢部位13の角度を検出できるマーカ10を実現できる。 This also makes it possible to realize the marker 10 capable of detecting the angle of the posture part 13 with a wide detection range and high detection accuracy, as described above.
<マーカの第2の変形例>
 図15は、実施の形態2に係るマーカ10の構成の第2の変形例を示す模式図である。
<Second modification of marker>
FIG. 15 is a schematic diagram showing a second modification of the configuration of marker 10 according to the second embodiment.
 図15に示すように、マーカ10は、囲み枠12の外側において、囲み枠12の辺に沿って、低感度及び高感度の両方を検出可能な姿勢部位(以下、低高感度姿勢部位と称する)16を配置した構成であってよい。次に、低高感度姿勢部位16を実現するいくつかの構成例について説明する。 As shown in FIG. 15 , the marker 10 is positioned outside the enclosing frame 12 along the sides of the enclosing frame 12 . ) 16 may be arranged. Next, some configuration examples for realizing the low-sensitivity posture part 16 will be described.
<<低高感度姿勢部位の第1の構成例>>
 図16は、低高感度姿勢部位16の第1の構成例を示す模式図である。図16において、(a)は低高感度姿勢部位16の第1面21をZ軸の正方向から見た図を示し、(b)は低高感度姿勢部位16の第2面22をZ軸の正方向から見た図を示す。
<<First configuration example of low-sensitivity posture part>>
FIG. 16 is a schematic diagram showing a first configuration example of the low-high-sensitivity posture part 16. As shown in FIG. In FIG. 16, (a) shows the first surface 21 of the low-high-sensitivity posture part 16 viewed from the positive direction of the Z-axis, and (b) shows the second surface 22 of the low-high-sensitivity posture part 16 viewed from the Z-axis. shows a view from the positive direction.
 図16(a)に示すように、低高感度姿勢部位16の第1面21は、低感度用の第1のパターン33と、高感度用の第1のパターン34とを有する。図16(b)に示すように、低高感度姿勢部位16の第2面22は、低感度用の第2のパターン35と、高感度用の第2のパターン36とを有する。 As shown in FIG. 16(a), the first surface 21 of the low-sensitivity posture portion 16 has a first pattern 33 for low sensitivity and a first pattern 34 for high sensitivity. As shown in FIG. 16(b), the second surface 22 of the low-sensitivity posture portion 16 has a second pattern 35 for low sensitivity and a second pattern 36 for high sensitivity.
 図16(a)に示すように、低感度用の第1のパターン33、及び、高感度用の第1のパターン34は、それぞれ、図4に示す第1面21における第1のパターン31の短手方向(Y軸方向)のラインに相当する。ただし、図16(a)に示すように、低感度用の第1のパターン33及び高感度用の第1のパターン34は、短手方向(Y軸方向)において互いに重複しないようなパターンであってよい。例えば、図16(a)に示すように、低感度用の第1のパターン33及び高感度用の第1のパターン34は、短手方向(Y軸方向)において互い違いとなる破線のようなパターンである。また、低感度用の第1のパターン33と高感度用の第1のパターン34とは、長手方向(X軸方向)において、互いに異なる周期であってよい。 As shown in FIG. 16(a), the first pattern 33 for low sensitivity and the first pattern 34 for high sensitivity are the first pattern 31 on the first surface 21 shown in FIG. It corresponds to a line in the lateral direction (Y-axis direction). However, as shown in FIG. 16A, the first pattern 33 for low sensitivity and the first pattern 34 for high sensitivity are patterns that do not overlap each other in the lateral direction (Y-axis direction). you can For example, as shown in FIG. 16A, the first pattern 33 for low sensitivity and the first pattern 34 for high sensitivity are patterns like dashed lines alternated in the lateral direction (Y-axis direction). is. Also, the first pattern 33 for low sensitivity and the first pattern 34 for high sensitivity may have different cycles in the longitudinal direction (X-axis direction).
 同様に、図16(b)に示すように、低感度用の第2のパターン35、及び、高感度用の第2のパターン36は、それぞれ、図4に示す第2面22における第2のパターン32の短手方向(Y軸方向)のラインに相当する。ただし、図16(b)に示すように、低感度用の第2のパターン35及び高感度用の第2のパターン36は、短手方向(Y軸方向)において互いに重複しないようなパターンであってよい。例えば、図16(b)に示すように、低感度用の第2のパターン35及び高感度用の第2のパターン36は、短手方向(Y軸方向)において互い違いとなる破線のようなパターンである。また、低感度用の第2のパターン35と高感度用の第2のパターン36とは、長手方向(X軸方向)において、互いに異なる周期であってよい。 Similarly, as shown in FIG. 16(b), the second pattern 35 for low sensitivity and the second pattern 36 for high sensitivity are the second pattern on the second surface 22 shown in FIG. It corresponds to a line in the lateral direction (Y-axis direction) of the pattern 32 . However, as shown in FIG. 16B, the second pattern 35 for low sensitivity and the second pattern 36 for high sensitivity are patterns that do not overlap each other in the lateral direction (Y-axis direction). you can For example, as shown in FIG. 16B, the second pattern 35 for low sensitivity and the second pattern 36 for high sensitivity are patterns like dashed lines alternated in the lateral direction (Y-axis direction). is. Also, the second pattern 35 for low sensitivity and the second pattern 36 for high sensitivity may have different cycles in the longitudinal direction (X-axis direction).
 次に、低感度用の第1のパターン33と低感度用の第2のパターン35との干渉によって観測される低感度用の干渉パターンと、高感度用の第1のパターン34と高感度用の第2のパターン36との干渉によって観測される高感度用に干渉パターンとについて説明する。 Next, an interference pattern for low sensitivity observed by interference between the first pattern 33 for low sensitivity and the second pattern 35 for low sensitivity, and the first pattern 34 for high sensitivity and for high sensitivity The interference pattern for high sensitivity observed by interference with the second pattern 36 of .
 図17は、第1の構成例に係る低高感度姿勢部位16の低感度用の干渉パターン及び高感度用の干渉パターンを示す模式図である。図17(a)は、低感度用の干渉パターンの一例を示し、図17(b)は、高感度用の干渉パターンの一例を示す。 FIG. 17 is a schematic diagram showing a low-sensitivity interference pattern and a high-sensitivity interference pattern of the low-high-sensitivity posture portion 16 according to the first configuration example. FIG. 17(a) shows an example of an interference pattern for low sensitivity, and FIG. 17(b) shows an example of an interference pattern for high sensitivity.
 検出装置100は、撮像画像から、Y軸上にて低感度用の第1のパターン33及び低感度用の第2のパターン35が存在する部分を検出範囲とし、Y軸上にて高感度用の第1のパターン34及び高感度用の第2のパターン36が存在する部分を非検出範囲(つまり検出しない範囲)とする。これにより、検出装置100は、図17(a)に示すような、低感度用の第1のパターン33と低感度用の第2のパターン35との干渉によって観測される低感度用の干渉パターンを検出できる。 The detection apparatus 100 detects a portion of the captured image in which the first pattern 33 for low sensitivity and the second pattern 35 for low sensitivity exist on the Y axis as a detection range. The portion where the first pattern 34 and the second pattern 36 for high sensitivity are present is defined as a non-detection range (that is, a non-detection range). As a result, the detection apparatus 100 detects the interference pattern for low sensitivity observed by the interference between the first pattern 33 for low sensitivity and the second pattern 35 for low sensitivity, as shown in FIG. can be detected.
 加えて、検出装置100は、撮像画像から、Y軸上にて高感度用の第1のパターン34及び高感度用の第2のパターン36が存在する部分を検出範囲とし、低感度用の第1のパターン33及び低感度用の第2のパターン35が存在する部分を非検出範囲(つまり検出しない範囲)とする。これにより、検出装置100は、図17(b)に示すような、高感度用の第1のパターン34と高感度用の第2のパターン36との干渉によって観測される高感度用の干渉パターンを検出できる。 In addition, the detection apparatus 100 detects a portion in which the first high-sensitivity pattern 34 and the second high-sensitivity pattern 36 exist on the Y-axis from the captured image as a detection range. The portion where the pattern 33 of 1 and the second pattern 35 for low sensitivity exist is defined as a non-detection range (that is, a non-detection range). 17(b), the detection device 100 detects an interference pattern for high sensitivity observed by interference between the first pattern 34 for high sensitivity and the second pattern 36 for high sensitivity. can be detected.
 これにより、検出装置100は、低感度用の干渉パターンの計測された位相と基準位相とのずれ、並びに、高感度用の干渉パターンの計測された位相と基準位相とのずれに基づいて、広い検出範囲かつ高い検出精度にて低高感度姿勢部位16の角度を算出できる。 As a result, the detection apparatus 100 detects a wide The angle of the low-high-sensitivity posture part 16 can be calculated within the detection range and with high detection accuracy.
 なお、図16及び図17では、説明をわかり易くするために、低感度用の第1のパターン33及び低感度用の第2のパターン35を薄い市松模様とし、高感度用の第1のパターン34及び高感度用の第2のパターン36を濃い市松模様として描いているが、これらのパターン33、34、35、36はいずれも同一色(例えば黒色)であってもよい。 16 and 17, the first pattern 33 for low sensitivity and the second pattern 35 for low sensitivity are a thin checkered pattern, and the first pattern 34 for high sensitivity and the second pattern 36 for high sensitivity are drawn as dark checkered patterns, but these patterns 33, 34, 35, and 36 may all be of the same color (for example, black).
<<低高感度姿勢部位の第2の構成例>>
 図18は、低高感度姿勢部位16の第2の構成例を示す断面図である。
<<Second configuration example of the low-sensitivity posture part>>
FIG. 18 is a cross-sectional view showing a second configuration example of the low-high-sensitivity posture portion 16. As shown in FIG.
 図18に示すように、低高感度姿勢部位16は、第1面21、第2面22、及び、第3面23を有する。そして、第1面21は、第1のパターン31を有し、第2面22は、第2のパターン32を有し、第3面23は、第3のパターン37を有する。第3のパターン37は、第1のパターン31及び第2のパターン32と同様、低高感度姿勢部位16の短手方向に延びる複数のラインにて構成される縞模様である。第1のパターン31の第1の周期と、第2のパターン32の第2の周期と、第3のパターン37の第3の周期とは、互いに異なる周期であってよい。 As shown in FIG. 18, the low-sensitivity posture part 16 has a first surface 21, a second surface 22 and a third surface 23. The first surface 21 has a first pattern 31 , the second surface 22 has a second pattern 32 , and the third surface 23 has a third pattern 37 . Like the first pattern 31 and the second pattern 32 , the third pattern 37 is a striped pattern composed of a plurality of lines extending in the lateral direction of the low-high-sensitivity posture portion 16 . The first period of the first pattern 31, the second period of the second pattern 32, and the third period of the third pattern 37 may be periods different from each other.
 第1のパターン31及び第2のパターン32は、低感度用の干渉パターンが検出されるように構成され、第2のパターン32及び第3のパターン37は、高感度用の干渉パターンが検出されるように構成されてよい。あるいは、第1のパターン31及び第2のパターン32は、高感度用の干渉パターンが検出されるように構成され、第2のパターン32及び第3のパターン37は、低感度用の干渉パターンが検出されるように構成されてよい。これにより、検出装置100は、撮像画像から、低感度用の干渉パターンと、高感度用の干渉パターンとを検出し、広い検出範囲かつ高い検出精度にて低高感度姿勢部位16の角度を算出できる。 The first pattern 31 and the second pattern 32 are configured to detect an interference pattern for low sensitivity, and the second pattern 32 and the third pattern 37 are configured to detect an interference pattern for high sensitivity. may be configured as follows. Alternatively, the first pattern 31 and the second pattern 32 are configured such that the interference pattern for high sensitivity is detected, and the second pattern 32 and the third pattern 37 are configured for the interference pattern for low sensitivity. may be configured to be detected. As a result, the detection device 100 detects the low-sensitivity interference pattern and the high-sensitivity interference pattern from the captured image, and calculates the angle of the low-high-sensitivity posture part 16 with a wide detection range and high detection accuracy. can.
 なお、第1面21及び第2面22の間の距離d1と、第2面22及び第3面23の間の距離d2とは、共通であってもよいし、異なってもよい。また、第1面21及び第2面22の間の屈折率n1と、第2面22及び第3面23の間の屈折率n2とは、共通であってもよいし、異なってもよい。上述した通り、感度は、式2に記載の任意のパラメータで調整可能であるため、距離又は屈折率を感度の設定に用いるか否かは自由に設計できる。 The distance d1 between the first surface 21 and the second surface 22 and the distance d2 between the second surface 22 and the third surface 23 may be common or different. Further, the refractive index n1 between the first surface 21 and the second surface 22 and the refractive index n2 between the second surface 22 and the third surface 23 may be common or different. As described above, the sensitivity can be adjusted by any parameter described in Equation 2, so whether or not the distance or the refractive index is used to set the sensitivity can be freely designed.
 また、他のパターンの組み合わせにより、低感度用の干渉パターンと高感度用の干渉パターンとが検出されるように設計してもよい。例えば、第1のパターン31及び第2のパターン32で一方の干渉パターンを構成し、第1のパターン31及び第3のパターン37で他方のパターンを構成するようにしてもよい。 In addition, it may be designed so that an interference pattern for low sensitivity and an interference pattern for high sensitivity are detected by combining other patterns. For example, the first pattern 31 and the second pattern 32 may form one interference pattern, and the first pattern 31 and the third pattern 37 may form the other pattern.
<<低高感度姿勢部位の第3の構成例>>
 図19は、低高感度姿勢部位16の第3の構成例を示す断面図である。
<<Third configuration example of low-sensitivity posture part>>
FIG. 19 is a cross-sectional view showing a third configuration example of the low-high-sensitivity posture portion 16. As shown in FIG.
 図19に示すように、第3の構成例に係る低高感度姿勢部位16は、第1面21に低感度用の第1のパターン33と高感度用の第1のパターン34とを有し、第2面22に低感度用の第2のパターン35と高感度用の第2のパターン36とを有する。低感度用の第1のパターン33及び低感度用の第2のパターン35は共通の色であり、高感度用の第1のパターン34及び高感度用の第2のパターン36は共通の色である。そして、低感度用の第1のパターン33及び低感度用の第2のパターン35と、高感度用の第1のパターン34及び高感度用の第2のパターン36とは、互いに異なる色である。例えば、低感度用の第1のパターン33及び低感度用の第2のパターン35を青色とし、高感度用の第1のパターン34及び高感度用の第2のパターン36を緑色とする。 As shown in FIG. 19, the low-high-sensitivity posture part 16 according to the third configuration example has a first pattern 33 for low-sensitivity and a first pattern 34 for high-sensitivity on the first surface 21. , the second surface 22 has a second pattern 35 for low sensitivity and a second pattern 36 for high sensitivity. The first pattern 33 for low sensitivity and the second pattern 35 for low sensitivity have a common color, and the first pattern 34 for high sensitivity and the second pattern 36 for high sensitivity have a common color. be. The first pattern 33 for low sensitivity and the second pattern 35 for low sensitivity and the first pattern 34 for high sensitivity and the second pattern 36 for high sensitivity are of different colors. . For example, the first pattern 33 for low sensitivity and the second pattern 35 for low sensitivity are blue, and the first pattern 34 for high sensitivity and the second pattern 36 for high sensitivity are green.
 この場合、検出装置100は、色分離可能なカラーフィルタを用いて、低感度用の第1のパターン33と低感度用の第2のパターン35との干渉によって観測される低感度用の干渉パターンと、高感度用の第1のパターン34と高感度用の第2のパターン36との干渉によって観測される高感度用の干渉パターンとを分離して検出してよい。例えば、低感度用の第1のパターン33及び低感度用の第2のパターン35が青色であり、高感度用の第1のパターン34及び高感度用の第2のパターン36が緑色である場合、検出装置100は、次の処理を行う。すなわち、検出装置100は、青色を検出するカラーフィルタを用いて、低感度用の第1のパターン33及び低感度用の第2のパターン35を抽出し、低感度用の干渉パターンを検出する。そして、検出装置100は、緑色を検出するカラーフィルタを用いて、高感度用の第1のパターン34及び高感度用の第2のパターン36を抽出し、低感度用の干渉パターンを検出する。 In this case, the detection device 100 uses a color filter capable of color separation to obtain a low-sensitivity interference pattern observed by interference between the low-sensitivity first pattern 33 and the low-sensitivity second pattern 35. and the high-sensitivity interference pattern observed by the interference between the high-sensitivity first pattern 34 and the high-sensitivity second pattern 36 may be detected separately. For example, when the first pattern 33 for low sensitivity and the second pattern 35 for low sensitivity are blue, and the first pattern 34 for high sensitivity and the second pattern 36 for high sensitivity are green , the detection device 100 performs the following processing. That is, the detection device 100 extracts the first pattern 33 for low sensitivity and the second pattern 35 for low sensitivity using a color filter for detecting blue, and detects the interference pattern for low sensitivity. Then, the detection device 100 uses a color filter for detecting green to extract the first pattern 34 for high sensitivity and the second pattern 36 for high sensitivity, and detect the interference pattern for low sensitivity.
 これにより、検出装置100は、低感度用の干渉パターンの計測された位相と基準位相とのずれ、並びに、高感度用の干渉パターンの計測された位相と基準位相とのずれに基づいて、広い検出範囲かつ高い検出精度にて低高感度姿勢部位16の角度を算出できる。 As a result, the detection apparatus 100 detects a wide The angle of the low-high-sensitivity posture part 16 can be calculated within the detection range and with high detection accuracy.
 なお、第1面21は、低感度用の第1のパターン33と高感度用の第1のパターン34とが共通化されたパターンを有してもよい。この場合、検出装置100は、第1面21の共通化されたパターンと、第2面22の低感度用の第2のパターン35との干渉によって観測される干渉パターンを低感度用の干渉パターンとして検出し、第1面21の共通化されたパターンと、第2面22の高感度用の第2のパターン36との干渉によって観測される干渉パターンを高感度用の干渉パターンとして検出してよい。 Note that the first surface 21 may have a pattern in which the first pattern 33 for low sensitivity and the first pattern 34 for high sensitivity are common. In this case, the detection device 100 converts the interference pattern observed by interference between the shared pattern on the first surface 21 and the second pattern 35 for low sensitivity on the second surface 22 into the interference pattern for low sensitivity. , and an interference pattern observed by interference between the shared pattern on the first surface 21 and the second pattern 36 for high sensitivity on the second surface 22 is detected as an interference pattern for high sensitivity. good.
 あるいは、第2面22は、低感度用の第2のパターン34と高感度用の第2のパターン36とが共通化されたパターンを有してもよい。この場合、検出装置100は、第2面22の共通化されたパターンと、第1面21の低感度用の第1のパターン33との干渉によって観測される干渉パターンを低感度用の干渉パターンとして検出し、第2面22の共通化されたパターンと、第1面21の高感度用の第1のパターン34との干渉によって観測される干渉パターンを高感度用の干渉パターンとして検出してよい。 Alternatively, the second surface 22 may have a pattern in which the second pattern 34 for low sensitivity and the second pattern 36 for high sensitivity are common. In this case, the detection device 100 converts the interference pattern observed by interference between the shared pattern on the second surface 22 and the first pattern 33 for low sensitivity on the first surface 21 into the interference pattern for low sensitivity. , and an interference pattern observed by interference between the common pattern on the second surface 22 and the first pattern 34 for high sensitivity on the first surface 21 is detected as an interference pattern for high sensitivity. good.
 また、低感度用の第1のパターン33及び低感度用の第2のパターン35と、高感度用の第1のパターン34及び高感度用の第2のパターン36とは、互いに異なる偏光となるように塗り分けられてもよい。この場合、検出装置100は、偏光分離可能な偏光フィルタを用いて、低感度用の第1のパターン33と低感度用の第2のパターン35との干渉によって観測される低感度用の干渉パターンと、高感度用の第1のパターン34と高感度用の第2のパターン36との干渉によって観測される高感度用の干渉パターンとを分離して検出してよい。 In addition, the first pattern 33 for low sensitivity and the second pattern 35 for low sensitivity, and the first pattern 34 for high sensitivity and the second pattern 36 for high sensitivity have mutually different polarizations. It may be painted differently. In this case, the detection apparatus 100 uses a polarizing filter capable of separating polarized light, and the interference pattern for low sensitivity observed by interference between the first pattern 33 for low sensitivity and the second pattern 35 for low sensitivity is observed. and the high-sensitivity interference pattern observed by the interference between the high-sensitivity first pattern 34 and the high-sensitivity second pattern 36 may be detected separately.
(実施の形態3)
 実施の形態3では、印刷装置を用いて姿勢部位13を製造する方法の一例を説明する。なお、実施の形態3では、実施の形態1又は2にて説明済みの構成要素については同一の参照符号を付し、説明を省略する場合がある。
(Embodiment 3)
Embodiment 3 describes an example of a method of manufacturing the posture part 13 using a printing apparatus. In addition, in Embodiment 3, the same reference numerals are given to the constituent elements that have already been explained in Embodiment 1 or 2, and the explanation may be omitted.
 図20は、実施の形態3に係る印刷装置300及びPC310の構成例を示す図である。 FIG. 20 is a diagram showing a configuration example of the printing device 300 and the PC 310 according to the third embodiment.
 例えば、印刷装置300は、セットされた厚さdの透明なシート(又は平面板)の第1面21(表面)に第1のパターン31を印刷し、第2面22(裏面)に第2のパターン32を印刷する。例えば、印刷装置300のCD又はDVDのラベル印刷機能を利用して、シート(又は平面板)の第1面21及び第2面22にそれぞれ第1のパターン31及び第2のパターン32を印刷する。これにより、印刷装置300を用いて簡単に姿勢部位13を製造することができる。また、近年は、任意の形状のアクリル板等に印刷を行う印刷装置及び印刷サービスも広く提供されているため、これらの印刷装置またはサービスを利用してもよい。 For example, the printing apparatus 300 prints the first pattern 31 on the first surface 21 (front surface) of the set transparent sheet (or plane plate) having a thickness d, and prints the second pattern 31 on the second surface 22 (back surface). pattern 32 is printed. For example, using the CD or DVD label printing function of the printing device 300, the first pattern 31 and the second pattern 32 are printed on the first side 21 and the second side 22 of the sheet (or plane plate), respectively. . Thereby, the posture part 13 can be easily manufactured using the printer 300 . Moreover, in recent years, printing apparatuses and printing services for printing on arbitrary shaped acrylic plates or the like have been widely provided, so these printing apparatuses or services may be used.
 印刷装置300は、PC310に接続されてよい。PC310は、印刷装置300にて第1のパターン31及び第2のパターン32を印刷するための印刷用ソフトウェア311を実行する。印刷用ソフトウェア311は、インターネットを通じて配布されてもよいし、CD、DVD又はUSBメモリといった不揮発性記憶媒体を介して配布されてもよい。 The printing device 300 may be connected to the PC 310 . The PC 310 executes printing software 311 for printing the first pattern 31 and the second pattern 32 on the printing device 300 . The printing software 311 may be distributed via the Internet, or via a non-volatile storage medium such as a CD, DVD, or USB memory.
 なお、PC310は、印刷用ソフトウェア311を実行する装置の一例である。したがって、印刷用ソフトウェア311は、スマートフォン又はタブレット端末といったPC310とは異なる装置によって実行されてもよい。 Note that the PC 310 is an example of a device that executes the printing software 311 . Therefore, the printing software 311 may be executed by a device different from the PC 310, such as a smartphone or tablet terminal.
 印刷用ソフトウェア311は、ユーザが第1のパターン31及び第2のパターン32の印刷に関するパラメータを設定するための機能を提供してもよい。パラメータの例として、マーカ10の大きさ、対応可能な角度、又は、分解能等が挙げられる。ユーザは、印刷装置300の解像度又は精度に応じて、これらのパラメータを設定することにより、所望の姿勢部位13を印刷装置300にて製造することができる。 The printing software 311 may provide a function for the user to set parameters for printing the first pattern 31 and the second pattern 32 . Examples of parameters include the size of the marker 10, the angle that can be handled, or the resolution. By setting these parameters according to the resolution or accuracy of the printing device 300 , the user can manufacture the desired posture part 13 with the printing device 300 .
 印刷用ソフトウェア311は、ユーザが入力したパラメータを、印刷装置300の性能を考慮して自動的に補正してもよい。印刷用ソフトウェア311は、ユーザが入力したパラメータが不適当な場合、警告を出力してもよい。例えば、印刷用ソフトウェア311は、ユーザが入力したパラメータではマーカ10の大きさが小さすぎて、姿勢部位13のパターンがつぶれそうな場合、警告を出力すると共に、適切なマーカ10のサイズを提案してもよい。 The printing software 311 may automatically correct the parameters input by the user in consideration of the performance of the printing device 300 . Printing software 311 may output a warning if the parameters entered by the user are inappropriate. For example, if the size of the marker 10 is too small for the parameters input by the user and the pattern of the posture part 13 is likely to collapse, the printing software 311 outputs a warning and proposes an appropriate marker 10 size. may
 印刷用ソフトウェア311には、シート又は平面板の種類ごとに厚さd及び屈折率nが予め設定されてよい。シート又は平面板は、規格品又は推奨品であってよい。また、印刷用ソフトウェア311は、入力されたパラメータ又は自動的に算出されたパラメータに適切なシート又は平面板を、推奨品としてユーザに提案してもよい。 The thickness d and refractive index n may be set in advance in the printing software 311 for each type of sheet or plane plate. The sheet or plate may be standard or recommended. In addition, the printing software 311 may suggest sheets or flat plates suitable for the input parameters or automatically calculated parameters to the user as recommended products.
(その他の変形例)
 上述した実施の形態では、第1のパターン31、第2のパターン32、第3のパターン37は、それぞれ異なる周期のパターンであるものとして説明した。しかし、これらのパターンは同一の周期を持つパターンであってもよい。具体的には、各パターンの周期が同一であっても、撮像角度の変化に応じて重複する部位が変化する結果、濃淡の変化がパターンとして現れることがあるため、このパターンを干渉パターンとして利用すればよい。また、撮像装置105の特性によっては、各パターンの周期が同一でも、より顕著な干渉パターンが現れることがある。上述した実施の形態では、撮像装置105がマーカ10から十分に遠く、撮像画像に歪みがない状態、すなわち、撮像装置105の画像を構成するそれぞれが、マーカ10に向かって略平行な視線に対応する状態を想定している。しかし、撮像装置105がマーカ10に非常に近かったり、魚眼レンズなどの光学的に特殊な性質を持つレンズを使用したりすることで、放射状の歪みを持つ画像を撮影することができる。この場合、上述した濃淡のパターンが歪みによってさらに強調されるため、より顕著な干渉パターンが現れる。撮像装置105とマーカ10の距離または撮像装置105の光学特性が既知であれば、この干渉パターンの位相のずれを、これらの情報を考慮して分析することで検出装置100の角度を推定することができる。
(Other modifications)
In the above-described embodiment, the first pattern 31, the second pattern 32, and the third pattern 37 are explained as having different cycles. However, these patterns may be patterns having the same period. Specifically, even if the period of each pattern is the same, as a result of the overlapping part changing according to the change of the imaging angle, the change of the light and shade may appear as a pattern, so this pattern is used as the interference pattern. do it. Also, depending on the characteristics of the imaging device 105, even if the periods of the patterns are the same, a more pronounced interference pattern may appear. In the above-described embodiment, the imaging device 105 is sufficiently far from the marker 10 and the captured image is not distorted. It is assumed that the However, if the imaging device 105 is very close to the marker 10 or if a lens with special optical properties such as a fisheye lens is used, an image with radial distortion can be captured. In this case, a more pronounced interference pattern appears because the above-described gray pattern is further emphasized by the distortion. If the distance between the imaging device 105 and the marker 10 or the optical characteristics of the imaging device 105 are known, the angle of the detection device 100 can be estimated by analyzing the phase shift of this interference pattern in consideration of these information. can be done.
 上記の実施の形態において、マーカ10の識別部位11は四角形の囲み枠12に囲まれていたが、識別部位11および囲み枠12の形状は円形など他の形状であってもよいし、囲み枠12を省略してもよい。また、囲み枠12が他の形状である場合に、姿勢部位13の形状をその形状に合わせた上で、囲み枠12に沿って配置してもよい。例えば、囲み枠12が円形の場合に、リング状の姿勢部位13を、囲み枠12の形状に沿うよう、囲み枠12の外側又は内側に配置してよい。このようにすることで、識別部位11、囲み枠12、姿勢部位13を効率的に配置することができる。 In the above-described embodiment, the identifying portion 11 of the marker 10 is surrounded by the rectangular enclosing frame 12, but the identifying portion 11 and the enclosing frame 12 may have other shapes such as a circular shape. 12 may be omitted. Further, when the enclosing frame 12 has another shape, the posture portion 13 may be arranged along the enclosing frame 12 after matching the shape thereof. For example, when the enclosing frame 12 is circular, the ring-shaped posture portion 13 may be arranged outside or inside the enclosing frame 12 so as to follow the shape of the enclosing frame 12 . By doing so, the identification part 11, the enclosing frame 12, and the posture part 13 can be arranged efficiently.
(本開示のまとめ)
 本開示の内容は以下のように表現できる。
(Summary of this disclosure)
The content of the present disclosure can be expressed as follows.
<表現1>
 視点との相対的な姿勢の計測に用いられるマーカ10であって、視点との相対的な姿勢の検出に用いられる姿勢部位13を備える。姿勢部位13は、第1の周期の第1のパターン31を有する第1面21と、第1面21から所定距離離れて第1面21に沿って配置され、第1の周期と異なる第2の周期の第2のパターン32を有する第2面22と、を含む。第1のパターン31と第2のパターン32との重複によって視点から観測される干渉パターンに基づいて、視点との相対的な姿勢が検出される。
 これにより、視点とマーカ10との相対的な姿勢の変化に応じて、姿勢部位13にて観測される干渉パターンが変化するので、その干渉パターンの変化に基づいて、視点とマーカ10との相対的な姿勢を検出できる。また、これにより、特許文献1に開示されるような、部材コストが比較的高いレンチキュラレンズが不要となり、縞模様とレンチキュラレンズとの位置合わせのような高精度な位置合わせも求められないので、マーカ10のコストを低減できる。
<Expression 1>
A marker 10 used for measuring a posture relative to a viewpoint, and having a posture part 13 used for detecting a posture relative to the viewpoint. The posture part 13 includes a first surface 21 having a first pattern 31 with a first period, and a second pattern 31 arranged along the first surface 21 at a predetermined distance from the first surface 21 and having a second pattern 31 different from the first period. and a second surface 22 having a second pattern 32 with a period of . Based on the interference pattern observed from the viewpoint by overlapping the first pattern 31 and the second pattern 32, the orientation relative to the viewpoint is detected.
As a result, the interference pattern observed at the posture part 13 changes in accordance with the change in the relative posture between the viewpoint and the marker 10. Therefore, based on the change in the interference pattern, the relative posture can be detected. In addition, this eliminates the need for a lenticular lens with a relatively high member cost, as disclosed in Patent Document 1, and does not require high-precision alignment such as alignment between the striped pattern and the lenticular lens. The cost of the marker 10 can be reduced.
<表現2>
 表現1において、第1の周期と第2の周期とは、互いに異なる周期であり、干渉パターンは、第1のパターンと第2のパターンとの周期のずれによって視点から観測される。
 これにより、視点とマーカ10との相対的な姿勢の変化に応じて、姿勢部位13にて観測される干渉パターンが変化するので、その干渉パターンの変化に基づいて、視点とマーカ10との相対的な姿勢を検出できる。
<Expression 2>
In Expression 1, the first period and the second period are periods different from each other, and the interference pattern is observed from the viewpoint by the period shift between the first pattern and the second pattern.
As a result, the interference pattern observed at the posture part 13 changes in accordance with the change in the relative posture between the viewpoint and the marker 10. Therefore, based on the change in the interference pattern, the relative posture can be detected.
<表現3>
 表現2において、視点との相対的な姿勢は、干渉パターンの基準とする位相である基準位相(α0)と、視点から観測される干渉パターンの位相(α1)とのずれに基づいて検出されてよい。
 これにより、視点とマーカとの相対的な姿勢の変化に応じて、姿勢部位13にて観測される干渉パターンの位相と基準位相とのずれが変化するので、その干渉パターンの位相(α1)と基準位相(α0)とのずれに基づいて、視点とマーカ10との相対的な姿勢を検出できる。
<Expression 3>
In Expression 2, the orientation relative to the viewpoint is detected based on the difference between the reference phase (α0), which is the phase used as the reference of the interference pattern, and the phase (α1) of the interference pattern observed from the viewpoint. good.
As a result, the difference between the phase of the interference pattern observed at the posture part 13 and the reference phase changes according to the change in the relative posture between the viewpoint and the marker. The relative orientation between the viewpoint and the marker 10 can be detected based on the deviation from the reference phase (α0).
<表現4>
 表現3において、視点との相対的な姿勢は、所定の回転軸を中心とした視線との相対的な角度を含み、第1の周期と第2の周期は、所定の回転軸に垂直な方向の周期であってよい。
 これにより、所定の回転軸を中心とした視線との相対的な角度の変化に応じて、所定の回転軸に垂直な方向に観測される干渉パターンの位相と基準位相とのずれが変化する。
<Expression 4>
In Expression 3, the orientation relative to the viewpoint includes the angle relative to the line of sight about the predetermined rotation axis, and the first period and the second period are the directions perpendicular to the predetermined rotation axis. may be a period of
As a result, the shift between the phase of the interference pattern observed in the direction perpendicular to the predetermined rotation axis and the reference phase changes according to the change in the angle relative to the line of sight about the predetermined rotation axis.
<表現5>
 表現4において、姿勢部位13の所定の回転軸に垂直な方向の長さは、干渉パターンの周期の長さよりも長くてよい。
 これにより、視線との相対的な角度の変化の検出可能範囲(例えば式2)に対応する干渉パターンの位相と基準位相とのずれの移動量が、姿勢部位13の長さに収まるので、姿勢の変化を精度良く観測することができる。
<Expression 5>
In expression 4, the length of the posture part 13 in the direction perpendicular to the predetermined rotation axis may be longer than the length of the period of the interference pattern.
As a result, the amount of displacement between the phase of the interference pattern and the reference phase corresponding to the detectable range of the change in angle relative to the line of sight (for example, Equation 2) falls within the length of the posture part 13. can be observed with high accuracy.
<表現6>
 表現4において、姿勢部位13の主面は長方形であり、第1のパターン及び第2のパターンは、姿勢部位13の長手方向に周期的な縞模様であってよい。
 これにより、第1のパターンの縞模様と第2のパターンの縞模様とのずれによって視点から干渉パターンが観測される。
<Expression 6>
In Expression 4, the main surface of the posture part 13 may be rectangular, and the first pattern and the second pattern may be striped patterns that are periodic in the longitudinal direction of the posture part 13 .
As a result, an interference pattern is observed from a viewpoint due to the shift between the striped pattern of the first pattern and the striped pattern of the second pattern.
<表現7>
 表現4において、姿勢部位13の主面は円形であり、第1のパターン及び第2のパターンは、姿勢部位13の中心から離れる方向に周期的な円状模様であってよい。
 これにより、第1のパターンの円状模様と第2のパターンの円状模様とのずれによって視点から干渉パターンが観測される。
<Expression 7>
In Expression 4, the main surface of the posture part 13 may be circular, and the first pattern and the second pattern may be circular patterns that are periodic in the direction away from the center of the posture part 13 .
As a result, the interference pattern is observed from the point of view due to the deviation between the circular pattern of the first pattern and the circular pattern of the second pattern.
<表現8>
 表現3において、視点との相対的な姿勢は、第1の回転軸を中心とした視線との相対的な角度と、第1の回転軸に垂直な第2の回転軸を中心とした視線との相対的な角度とを含み、第1のパターン及び第2のパターンは、第1の回転軸に垂直な方向の周期を持つ縞模様と、第2の回転軸に垂直な方向の周期を持つ縞模様とを重複した格子模様であってよい。
 これにより、第1のパターンの格子模様と第2のパターンの格子模様とのずれによって視点から干渉パターンが観測される。加えて、第1の回転軸及び第2の回転軸からなる二次元面での干渉パターンのずれの変化を観測することにより、第1の回転軸及び第2の回転軸の両方の角度をまとめて検出できる。
<Expression 8>
In Expression 3, the orientation relative to the viewpoint is the angle relative to the line of sight about the first rotation axis, and the line of sight about the second rotation axis perpendicular to the first rotation axis. wherein the first pattern and the second pattern have a striped pattern with a period perpendicular to the first axis of rotation and a period with a period perpendicular to the second axis of rotation It may be a lattice pattern that overlaps with the striped pattern.
As a result, the interference pattern is observed from the viewpoint due to the deviation between the grid pattern of the first pattern and the grid pattern of the second pattern. In addition, the angles of both the first rotation axis and the second rotation axis can be summarized by observing the change in the interference pattern shift in the two-dimensional plane consisting of the first rotation axis and the second rotation axis. can be detected.
<表現9>
 表現1において、マーカ10は、当該マーカ10の識別に用いられる識別部位11をさらに備えてよい。
 これにより、識別部位11の検出によってマーカ10を識別できる。
<Expression 9>
In Expression 1, the marker 10 may further include an identification portion 11 used for identification of the marker 10 .
Thereby, the marker 10 can be identified by detecting the identification portion 11 .
<表現10>
 表現9において、姿勢部位13は、識別部位11を囲む四角い囲み枠12の外側において、囲み枠12の辺に沿うように配置されてよい。
 これにより、囲み枠12の位置を基準として姿勢部位13を検出できると共に、囲み枠12の形状の歪みと姿勢部位13における干渉パターンの変化とに基づいて、視点とマーカ10との相対的な姿勢を検出できる。
<Expression 10>
In Expression 9, the posture part 13 may be arranged outside the rectangular enclosing frame 12 surrounding the identifying part 11 along the sides of the enclosing frame 12 .
As a result, the posture part 13 can be detected based on the position of the enclosing frame 12, and the relative posture between the viewpoint and the marker 10 can be detected based on the distortion of the shape of the enclosing frame 12 and the change in the interference pattern in the posture part 13. can be detected.
<表現11>
 表現9において、姿勢部位13は、識別部位11を囲む四角い囲み枠12の内側において、囲み枠12の辺に沿うように配置されてよい。
 これにより、囲み枠12の位置を基準として姿勢部位13を検出できると共に、囲み枠12の形状の歪みと姿勢部位13における干渉パターンの変化とに基づいて、視点とマーカ10との相対的な姿勢を検出できる。
<Expression 11>
In Expression 9, the posture part 13 may be arranged inside a rectangular enclosing frame 12 surrounding the identifying part 11 along the sides of the enclosing frame 12 .
As a result, the posture part 13 can be detected based on the position of the enclosing frame 12, and the relative posture between the viewpoint and the marker 10 can be detected based on the distortion of the shape of the enclosing frame 12 and the change in the interference pattern in the posture part 13. can be detected.
<表現12>
 表現1において、第1のパターン31と第2のパターン32とは互いに異なる色であってよい。
 これにより、視点とマーカ10との相対的な姿勢の変化に応じて、姿勢部位13にて異なる色のグラデーションとして観測される干渉パターンが変化するので、その干渉パターンの変化に基づいて、視点とマーカ10との相対的な姿勢を検出できる。
<Expression 12>
In representation 1, the first pattern 31 and the second pattern 32 may be of different colors.
As a result, the interference pattern observed as a gradation of different colors at the posture part 13 changes according to the change in the relative posture between the viewpoint and the marker 10. Therefore, based on the change in the interference pattern, the A relative attitude to the marker 10 can be detected.
<表現13>
 表現3において、姿勢部位13を第1の姿勢部位14とし、マーカ10は、第1の姿勢部位14の干渉パターンとは異なる干渉パターンが観測される第2の姿勢部位15をさらに備え、第1の姿勢部位14の干渉パターンの位相と第2の姿勢部位15の干渉パターンの位相とは、同一の回転軸を中心とした角度に応じて互いに異なる量で移動してよい。
 第1の姿勢部位14と第2の姿勢部位15とでは姿勢の変化に対する干渉パターンの変化の感度が異なるので、第1の姿勢部位14の干渉パターンの変化と第2の姿勢部位15の干渉パターンの変化とを観測することにより、視点とマーカ10との相対的な姿勢を広い検出範囲かつ高い検出精度にて検出できる。
<Expression 13>
In expression 3, the posture part 13 is defined as a first posture part 14, the marker 10 further includes a second posture part 15 where an interference pattern different from the interference pattern of the first posture part 14 is observed, and the first posture part 14 is observed. The phase of the interference pattern of the posture part 14 and the phase of the interference pattern of the second posture part 15 may move by different amounts depending on the angle about the same rotation axis.
Since the first posture part 14 and the second posture part 15 have different sensitivities to the change in the interference pattern with respect to the change in posture, the change in the interference pattern of the first posture part 14 and the interference pattern of the second posture part 15 are different. By observing the change in , the relative attitude between the viewpoint and the marker 10 can be detected in a wide detection range and with high detection accuracy.
<表現14>
 表現13において、第1の姿勢部位14と第2の姿勢部位15とは、略平行に配置されてよい。
 これにより、第1の姿勢部位14の干渉パターンの変化と第2の姿勢部位15の干渉パターンの変化とを観測し、視点とマーカ10との相対的な姿勢を広い検出範囲かつ高い検出精度にて検出できる。
<Expression 14>
In expression 13, the first posture part 14 and the second posture part 15 may be arranged substantially parallel.
As a result, the change in the interference pattern of the first posture part 14 and the change of the interference pattern of the second posture part 15 are observed, and the relative posture between the viewpoint and the marker 10 is detected in a wide detection range and with high detection accuracy. can be detected.
<表現15>
 表現14において、第1の姿勢部位14と第2の姿勢部位15とは、マーカ10を識別する識別部位11を挟んで略平行に配置されてよい。
 これにより、第1の姿勢部位14の干渉パターンの変化と第2の姿勢部位15の干渉パターンの変化とを観測し、視点とマーカ10との相対的な姿勢を広い検出範囲かつ高い検出精度にて検出できる。
<Expression 15>
In representation 14 , first posture part 14 and second posture part 15 may be arranged substantially parallel with identification part 11 for identifying marker 10 interposed therebetween.
As a result, the change in the interference pattern of the first posture part 14 and the change of the interference pattern of the second posture part 15 are observed, and the relative posture between the viewpoint and the marker 10 is detected in a wide detection range and with high detection accuracy. can be detected.
<表現16>
 表現14において、第1の姿勢部位14と第2の姿勢部位15とは、隣接して配置されてよい。
 これにより、第1の姿勢部位14の干渉パターンの変化と第2の姿勢部位15の干渉パターンの変化とを観測し、視点とマーカ10との相対的な姿勢を広い検出範囲かつ高い検出精度にて検出できる。
<Expression 16>
In representation 14, first posture part 14 and second posture part 15 may be arranged adjacent to each other.
As a result, the change in the interference pattern of the first posture part 14 and the change of the interference pattern of the second posture part 15 are observed, and the relative posture between the viewpoint and the marker 10 is detected in a wide detection range and with high detection accuracy. can be detected.
<表現17>
 表現1から16のいずれか1つであって、姿勢部位13は、所定距離(d)の厚さであって光を透過する平面板又はシートであり、第1面21は、平面板又はシートの一方の面であり、第2面22は、平面板又はシートの他方の面であってよい。
 これにより、所定の厚さ(d)を有する透明な平面板又はシートを用いて姿勢部位13を構成できる。
<Expression 17>
16. Any one of expressions 1 through 16, wherein the posture portion 13 is a plane plate or sheet that is a predetermined distance (d) thick and transparent to light, and the first surface 21 is a plane plate or sheet and the second side 22 may be the other side of the plane plate or sheet.
Thereby, the posture part 13 can be configured using a transparent plane plate or sheet having a predetermined thickness (d).
<表現18>
 表現1から17のいずれか1つに記載のマーカ10を用いて視点との相対的な姿勢を計測する検出装置100であって、その視点からマーカ10を撮像する撮像装置105と、撮像装置105によって撮像された画像に含まれる姿勢部位13にて観測される干渉パターンに基づいて、撮像装置105との相対的な姿勢を検出するプロセッサ101と、を備える。
 これにより、検出装置100は、マーカ10を撮像した画像に基づいて、マーカ10との相対的な姿勢を検出できる。
<Expression 18>
A detection device 100 that measures a posture relative to a viewpoint using the marker 10 according to any one of expressions 1 to 17, and an imaging device 105 that captures an image of the marker 10 from the viewpoint, and an imaging device 105 and a processor 101 that detects the relative posture with respect to the imaging device 105 based on the interference pattern observed at the posture part 13 included in the image captured by the processor 101 .
Thereby, the detecting device 100 can detect the relative posture with respect to the marker 10 based on the captured image of the marker 10 .
<表現19>
 表現1から17のいずれか1つに記載のマーカ10を用いて視点との相対的な姿勢を計測する検出方法であって、その視点からマーカ10を撮像し、撮像された画像に含まれる姿勢部位13にて観測される干渉パターンに基づいて、視点との相対的な姿勢を検出する。
 これにより、視点からマーカ10を撮像した画像に基づいて、視点とマーカ10との相対的な姿勢を検出できる。
<Expression 19>
A detection method for measuring an orientation relative to a viewpoint using a marker 10 according to any one of expressions 1 to 17, wherein the marker 10 is imaged from the viewpoint, and the orientation included in the imaged image is determined. Based on the interference pattern observed at the site 13, the orientation relative to the viewpoint is detected.
Accordingly, the relative orientation between the viewpoint and the marker 10 can be detected based on the image of the marker 10 taken from the viewpoint.
 以上、添付図面を参照しながら実施の形態について説明したが、本開示はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例、修正例、置換例、付加例、削除例、均等例に想到し得ることは明らかであり、それらについても本開示の技術的範囲に属すると了解される。また、発明の趣旨を逸脱しない範囲において、上述した実施の形態における各構成要素を任意に組み合わせてもよい。 Although the embodiments have been described above with reference to the accompanying drawings, the present disclosure is not limited to such examples. It is obvious that a person skilled in the art can conceive of various modifications, modifications, substitutions, additions, deletions, and equivalents within the scope of the claims. It is understood that it belongs to the technical scope of the present disclosure. Also, the components in the above-described embodiments may be combined arbitrarily without departing from the spirit of the invention.
 なお、本出願は、2021年9月6日出願の日本特許出願(特願2021-144981)に基づくものであり、その内容は本出願の中に参照として援用される。 This application is based on a Japanese patent application (Japanese Patent Application No. 2021-144981) filed on September 6, 2021, the contents of which are incorporated herein by reference.
 本開示の技術は、姿勢を検出するためのマーカ、及び、当該マーカを検出するための装置に有用である。 The technology of the present disclosure is useful for markers for detecting postures and devices for detecting the markers.
1 検出システム
3 物体
10 マーカ
11 識別部位
12 囲み枠
13、13A、13B 姿勢部位
14、14A、14B 低感度姿勢部位
15、15A、15B 高感度姿勢部位
16 低高感度姿勢部位
21 第1面
22 第2面
23 第3面
31 第1のパターン
32 第2のパターン
33 低感度用の第1のパターン
34 高感度用の第1のパターン
35 低感度用の第2のパターン
36 高感度用の第2のパターン
37 第3のパターン
100 検出装置
101 プロセッサ
102 ROM
103 RAM
104 ストレージ
105 撮像装置
201 画像取得部
202 マーカ検出部
203 位相検出部
204 基準位相検出部
205 基準位相保持部
206 角度算出部
207 姿勢推定部
300 印刷装置
310 PC
311 印刷用ソフトウェア
1 detection system 3 object 10 marker 11 identification part 12 enclosing frames 13, 13A, 13B posture parts 14, 14A, 14B low- sensitivity posture parts 15, 15A, 15B high-sensitivity posture part 16 low-sensitivity posture part 21 first surface 22 second Second surface 23 Third surface 31 First pattern 32 Second pattern 33 First pattern for low sensitivity 34 First pattern for high sensitivity 35 Second pattern for low sensitivity 36 Second pattern for high sensitivity pattern 37 third pattern 100 detector 101 processor 102 ROM
103 RAM
104 Storage 105 Imaging device 201 Image acquisition unit 202 Marker detection unit 203 Phase detection unit 204 Reference phase detection unit 205 Reference phase holding unit 206 Angle calculation unit 207 Posture estimation unit 300 Printing device 310 PC
311 printing software

Claims (19)

  1.  視点との相対的な姿勢の計測に用いられるマーカであって、
     前記視点との相対的な姿勢の検出に用いられる姿勢部位を備え、
     前記姿勢部位は、
     第1の周期の第1のパターンを有する第1面と、
     前記第1面から所定距離離れて前記第1面に沿って配置され、第2の周期の第2のパターンを有する第2面と、を含み、
     前記第1のパターンと前記第2のパターンとの重複によって前記視点から観測される干渉パターンに基づいて、前記視点との相対的な姿勢が検出される、
     マーカ。
    A marker used to measure the orientation relative to the viewpoint,
    a posture part used for detecting a posture relative to the viewpoint;
    The posture part is
    a first surface having a first pattern of a first period;
    a second surface disposed along the first surface at a predetermined distance from the first surface and having a second pattern of a second period;
    An orientation relative to the viewpoint is detected based on an interference pattern observed from the viewpoint by an overlap of the first pattern and the second pattern;
    marker.
  2.  前記第1の周期と前記第2の周期とは、互いに異なる周期であり、
     前記干渉パターンは、前記第1のパターンと前記第2のパターンとの周期のずれによって前記視点から観測される、
     請求項1に記載のマーカ。
    The first period and the second period are different periods,
    The interference pattern is observed from the viewpoint by a period shift between the first pattern and the second pattern.
    A marker according to claim 1 .
  3.  前記視点との相対的な姿勢は、前記干渉パターンの基準とする位相である基準位相と、前記視点から観測される前記干渉パターンの位相とのずれに基づいて検出される、
     請求項2に記載のマーカ。
    The orientation relative to the viewpoint is detected based on a shift between a reference phase, which is a phase used as a reference for the interference pattern, and the phase of the interference pattern observed from the viewpoint.
    3. A marker according to claim 2.
  4.  前記視点との相対的な姿勢は、所定の回転軸を中心とした前記視点との相対的な角度を含み、
     前記第1の周期と前記第2の周期は、前記所定の回転軸に垂直な方向の周期である、
     請求項3に記載のマーカ。
    The orientation relative to the viewpoint includes an angle relative to the viewpoint about a predetermined rotation axis,
    The first period and the second period are periods in a direction perpendicular to the predetermined rotation axis,
    A marker according to claim 3.
  5.  前記姿勢部位の前記所定の回転軸に垂直な方向の長さは、前記干渉パターンの周期の長さよりも長い、
     請求項4に記載のマーカ。
    a length of the posture part in a direction perpendicular to the predetermined rotation axis is longer than a period length of the interference pattern;
    A marker according to claim 4.
  6.  前記姿勢部位の主面は長方形であり、
     前記第1のパターン及び前記第2のパターンは、前記姿勢部位の長手方向に周期的な縞模様である、
     請求項4に記載のマーカ。
    The main surface of the posture part is a rectangle,
    The first pattern and the second pattern are striped patterns that are periodic in the longitudinal direction of the posture part.
    A marker according to claim 4.
  7.  前記姿勢部位の主面は円形であり、
     前記第1のパターン及び前記第2のパターンは、前記姿勢部位の中心から離れる方向に周期的な円状模様である、
     請求項4に記載のマーカ。
    The main surface of the posture part is circular,
    The first pattern and the second pattern are circular patterns that are periodic in a direction away from the center of the posture part,
    A marker according to claim 4.
  8.  前記視点との相対的な姿勢は、第1の回転軸を中心とした前記視点との相対的な角度と、前記第1の回転軸に垂直な第2の回転軸を中心とした前記視点との相対的な角度とを含み、
     前記第1のパターン及び前記第2のパターンは、前記第1の回転軸に垂直な方向の周期を持つ縞模様と、前記第2の回転軸に垂直な方向の周期を持つ縞模様とを重複した格子模様である、
     請求項3に記載のマーカ。
    The attitude relative to the viewpoint includes the angle relative to the viewpoint about a first rotation axis, and the viewpoint about a second rotation axis perpendicular to the first rotation axis. and the relative angles of
    The first pattern and the second pattern overlap a striped pattern having a period perpendicular to the first rotation axis and a striped pattern having a period perpendicular to the second rotation axis. is a grid pattern,
    A marker according to claim 3.
  9.  前記マーカの識別に用いられる識別部位をさらに備える、
     請求項1に記載のマーカ。
    Further comprising an identification site used to identify the marker,
    A marker according to claim 1 .
  10.  前記姿勢部位は、前記識別部位を囲む囲み枠の外側において、前記囲み枠の辺に沿うように配置される、
     請求項9に記載のマーカ。
    The posture part is arranged outside the enclosing frame surrounding the identification part along the sides of the enclosing frame,
    A marker according to claim 9 .
  11.  前記姿勢部位は、前記識別部位を囲む囲み枠の内側において、前記囲み枠の辺に沿うように配置される、
     請求項9に記載のマーカ。
    The posture part is arranged inside a surrounding frame surrounding the identifying part along a side of the surrounding frame.
    A marker according to claim 9 .
  12.  前記第1のパターンと前記第2のパターンとは互いに異なる色である、
     請求項1に記載のマーカ。
    wherein the first pattern and the second pattern are different colors;
    A marker according to claim 1 .
  13.  前記姿勢部位を第1の姿勢部位とし、
     前記第1の姿勢部位の干渉パターンとは異なる干渉パターンが観測される第2の姿勢部位をさらに備え、
     前記第1の姿勢部位の干渉パターンの位相と前記第2の姿勢部位の干渉パターンの位相とは、同一の回転軸を中心とした角度に応じて互いに異なる量で移動する、
     請求項3に記載のマーカ。
    The posture part is defined as a first posture part,
    further comprising a second posture site where an interference pattern different from the interference pattern of the first posture site is observed;
    the phase of the interference pattern of the first posture part and the phase of the interference pattern of the second posture part move by different amounts according to angles about the same rotation axis;
    A marker according to claim 3.
  14.  前記第1の姿勢部位と前記第2の姿勢部位とは、略平行に配置されている
     請求項13に記載のマーカ。
    The marker according to claim 13, wherein the first posture part and the second posture part are arranged substantially parallel to each other.
  15.  前記第1の姿勢部位と前記第2の姿勢部位とは、前記マーカを識別する識別部位を挟んで略平行に配置される、
     請求項14に記載のマーカ。
    The first posture part and the second posture part are arranged substantially parallel to each other with an identification part for identifying the marker interposed therebetween.
    15. A marker according to claim 14.
  16.  前記第1の姿勢部位と前記第2の姿勢部位とは、隣接して配置される、
     請求項14に記載のマーカ。
    The first posture part and the second posture part are arranged adjacent to each other,
    15. A marker according to claim 14.
  17.  前記姿勢部位は、前記所定距離の厚さであって光を透過する平面板又はシートであり、
     前記第1面は、前記平面板又は前記シートの一方の面であり、
     前記第2面は、前記平面板又は前記シートの他方の面である、
     請求項1から16のいずれか一項に記載のマーカ。
    The posture part is a flat plate or sheet having a thickness of the predetermined distance and transmitting light,
    The first surface is one surface of the flat plate or the sheet,
    The second surface is the other surface of the flat plate or the sheet,
    17. A marker according to any one of claims 1-16.
  18.  請求項1に記載のマーカを用いて前記視点との相対的な姿勢を計測する検出装置であって、
     前記視点から前記マーカを撮像する撮像装置と、
     前記撮像装置によって撮像された画像に含まれる前記姿勢部位にて観測される前記干渉パターンに基づいて、前記撮像装置との相対的な姿勢を検出するプロセッサと、を備える、
     検出装置。
    A detection device for measuring an orientation relative to the viewpoint using the marker according to claim 1,
    an imaging device that captures an image of the marker from the viewpoint;
    a processor that detects a posture relative to the imaging device based on the interference pattern observed at the posture part included in the image captured by the imaging device;
    detection device.
  19.  請求項1に記載のマーカを用いて前記視点との相対的な姿勢を計測する検出方法であって、
     前記視点から前記マーカを撮像し、
     前記撮像された画像に含まれる前記姿勢部位にて観測される前記干渉パターンに基づいて、前記視点との相対的な姿勢を検出する、
     検出方法。
    A detection method for measuring an orientation relative to the viewpoint using the marker according to claim 1,
    imaging the marker from the viewpoint;
    detecting a posture relative to the viewpoint based on the interference pattern observed at the posture part included in the captured image;
    Detection method.
PCT/JP2022/032231 2021-09-06 2022-08-26 Marker, detection device, and detection method WO2023032851A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021144981A JP2023038076A (en) 2021-09-06 2021-09-06 Marker, detection device, and, detection method
JP2021-144981 2021-09-06

Publications (1)

Publication Number Publication Date
WO2023032851A1 true WO2023032851A1 (en) 2023-03-09

Family

ID=85412708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032231 WO2023032851A1 (en) 2021-09-06 2022-08-26 Marker, detection device, and detection method

Country Status (2)

Country Link
JP (1) JP2023038076A (en)
WO (1) WO2023032851A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050190988A1 (en) * 2004-03-01 2005-09-01 Mass Institute Of Technology (Mit) Passive positioning sensors
WO2018135063A1 (en) * 2017-01-17 2018-07-26 国立研究開発法人産業技術総合研究所 Marker, and posture estimation method and position and posture estimation method using marker
WO2021157484A1 (en) * 2020-02-06 2021-08-12 大日本印刷株式会社 Marker, method for manufacturing marker, and detection target

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050190988A1 (en) * 2004-03-01 2005-09-01 Mass Institute Of Technology (Mit) Passive positioning sensors
WO2018135063A1 (en) * 2017-01-17 2018-07-26 国立研究開発法人産業技術総合研究所 Marker, and posture estimation method and position and posture estimation method using marker
WO2021157484A1 (en) * 2020-02-06 2021-08-12 大日本印刷株式会社 Marker, method for manufacturing marker, and detection target

Also Published As

Publication number Publication date
JP2023038076A (en) 2023-03-16

Similar Documents

Publication Publication Date Title
CN105678742B (en) A kind of underwater camera scaling method
US9142025B2 (en) Method and apparatus for obtaining depth information using optical pattern
KR101605224B1 (en) Method and apparatus for obtaining depth information using optical pattern
US11575883B2 (en) 3D test chart, adjusting arrangement, forming method and adjusting method thereof
US8593536B2 (en) Image pickup apparatus with calibration function
US20060232830A1 (en) Coordinate input apparatus, control method therefore, and program
JP2012145559A (en) Marker
CA2670357C (en) Interactive input system and method
CN111872544B (en) Calibration method and device for laser light-emitting indication point and galvanometer coaxial vision system
JP6209833B2 (en) Inspection tool, inspection method, stereo camera production method and system
CN102136140B (en) Rectangular pattern-based video image distance detecting method
TWI416385B (en) Method of determining pointing object position for three dimensional interaction display
US20140104612A1 (en) Method for aligning a phase retardation plate with a display panel
US8982101B2 (en) Optical touch system and optical touch-position detection method
CN101271576A (en) Gridiron pattern recognition locating method under complex illumination and surface condition
WO2021254324A1 (en) Method and apparatus for acquiring display element information of tiled screen
JP3975917B2 (en) Position measurement system
CN105844272A (en) Optical fingerprint identification device
EP3769035B1 (en) Replicated dot maps for simplified depth computation using machine learning
JP5493900B2 (en) Imaging device
TWI553532B (en) Optical touch device and sensing method thereof
WO2023032851A1 (en) Marker, detection device, and detection method
JP4603121B2 (en) Optical scale device and optical rotary scale device
CN105078404B (en) Fully automatic eye movement tracking distance measuring calibration instrument based on laser algorithm and use method of calibration instrument
JP5445064B2 (en) Image processing apparatus and image processing program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864435

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE