WO2023032812A1 - Bearing and rotary device - Google Patents

Bearing and rotary device Download PDF

Info

Publication number
WO2023032812A1
WO2023032812A1 PCT/JP2022/032081 JP2022032081W WO2023032812A1 WO 2023032812 A1 WO2023032812 A1 WO 2023032812A1 JP 2022032081 W JP2022032081 W JP 2022032081W WO 2023032812 A1 WO2023032812 A1 WO 2023032812A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
shaft
bearing
rotating device
permanent magnet
Prior art date
Application number
PCT/JP2022/032081
Other languages
French (fr)
Japanese (ja)
Inventor
啓佐敏 竹内
喬大 壬生
秀明 高柳
Original Assignee
有限会社宮脇工房
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社宮脇工房 filed Critical 有限会社宮脇工房
Priority to JP2023515214A priority Critical patent/JPWO2023032812A1/ja
Publication of WO2023032812A1 publication Critical patent/WO2023032812A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M103/00Lubricating compositions characterised by the base-material being an inorganic material
    • C10M103/02Carbon; Graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication

Definitions

  • the present invention relates to a bearing for a shaft that rotates around a rotating shaft and a rotating device that includes the shaft.
  • the shaft that rotates around the rotation axis and the bearing that supports the shaft are broadly classified into two loads. One of them is the load in the thrust direction (thrust load), and the other is the load in the radial direction (radial load).
  • FIG. 12 is a diagram showing an example of a conventional rotating device 900 .
  • a thrust bearing 990 is arranged on one end side (vertical side) of a shaft 100, and a rotating body 500 is attached to the other end side of the shaft 100.
  • the rotating device 900 is configured such that the rotating body 500 and the shaft 100 rotate around the rotation axis RA while the thrust bearing 990 receives the load of the rotating body 500 and the shaft 100 in the gravitational direction.
  • Reference numeral 300 is a radial bearing.
  • the thrust bearings that receive these loads are also required to have a structure capable of withstanding a large load. is used.
  • the contact area with the shaft 100 is also large, so the frictional resistance due to the load in the thrust direction is also large, and when the rotating body 500 and the shaft 100 rotate, it becomes a large load (rotational load). also resulted in energy loss.
  • the tenon portion (5) which is a part of the shaft (1), is inserted into the bearing (6) on the side that receives the load, and the tenon portion (5) and the bearing (6) are inserted.
  • the bearings (6) are in contact with each other. Therefore, when the shaft (1) and the rotating body (not shown) try to rotate, frictional resistance is generated between the tenon portion (5) and the bearing (6).
  • a rotational load is applied due to this frictional resistance, which in turn causes energy loss due to the frictional resistance.
  • a bearing capable of reducing the frictional resistance generated when a shaft rotates, and a rotating device equipped with the bearing.
  • Another object of the present invention is to provide a rotary device capable of reducing the load (rotational load) caused by frictional resistance during rotation, and thus reducing energy loss.
  • Another object of the present invention is to provide a bearing with less frictional resistance than a ball bearing for radial loads.
  • the thrust bearing and the radial bearing are collectively referred to as the "bearing”, but the single “thrust bearing” or the single “radial bearing” may be simply referred to as the "bearing”.
  • a rotating device that includes a rotating portion that rotates about a rotating shaft and a fixed portion that is relatively fixed with respect to the rotation of the rotating portion.
  • the rotating part has a shaft that rotates about the rotating shaft, and a first permanent magnet that is provided with a bearing that supports the shaft and is provided on at least one end side of the shaft.
  • the first permanent magnet is magnetized on the shaft side and the opposite shaft side.
  • the fixed portion is magnetized such that the side facing the first permanent magnet has the same polarity as the magnetic pole on the opposite side of the first permanent magnet, and magnetic repulsion occurs between the fixed portion and the first permanent magnet. It has a second permanent magnet provided on the rotating shaft so as to be in a non-contact state with the rotating shaft.
  • a shaft configured to rotate about a rotating shaft, and a thrust bearing disposed on at least one end side of the shaft and receiving a load in a thrust direction parallel to the rotating shaft.
  • a rotating device is provided.
  • the thrust bearing has a first surface connected to one end of the shaft and provided with a first magnetic pole, and a second surface opposite to the first surface and provided with a second magnetic pole.
  • a first permanent magnet configured to coaxially rotate together; a third surface facing the second surface of the first permanent magnet and having a second magnetic pole; and a third surface.
  • a second permanent magnet having a fourth face on which the first magnetic pole is located on the opposite side and fixed to a given fixed part.
  • the member is present even at the position of the rotation axis, and the second magnetic pole is arranged so that the lines of magnetic force are concentrated at the position of the rotation axis.
  • the second magnetic pole is arranged so that the member exists even at the position of the rotation axis and the lines of magnetic force are concentrated at the position of the rotation axis.
  • the rotating device of the present invention it is possible to reduce the frictional resistance generated when the shaft rotates. In addition, it is possible to reduce the load (rotational load) caused by the frictional resistance during rotation, thereby reducing the energy loss.
  • a bearing that receives the radial load of a shaft that rotates about its axis of rotation.
  • a bearing comprises a receiving member that receives the radial load of the shaft, a magnet having positive and negative magnetic poles, and a magnetic lubricant containing magnetic particles that are affected by the magnetic lines of force between the positive and negative magnetic poles.
  • a magnetic lubricant is disposed between the shaft and the receiving member.
  • the bearing of the present invention it is possible to reduce the frictional resistance generated when the shaft rotates. According to the present invention, it is possible to provide a bearing with less frictional resistance than a ball bearing.
  • FIG. 7 is a diagram shown for explaining a rotating device 710 according to an application; It is a figure shown in order to demonstrate the rotation apparatus 711 which concerns on an application example.
  • FIG. 7 is a diagram shown for explaining a rotating device 710 according to an application; It is a figure shown in order to demonstrate the rotation apparatus 711 which concerns on an application example.
  • FIG. 11 is a diagram shown for explaining a rotating device 712 according to an application example; It is a figure shown in order to demonstrate the rotation apparatus 720 which concerns on a modification. It is a figure shown in order to demonstrate the rotation apparatus 721 which concerns on a modification.
  • FIG. 9 is a diagram showing an example of a conventional rotating device 900;
  • FIG. 10 is a diagram shown for explaining a bearing 301 according to Embodiment B1;
  • FIG. 10 is a cross-sectional view for explaining actions and effects of the bearing 301 according to Embodiment B1.
  • FIG. 4 is a diagram illustrating how the receiving member 10a made of cast iron and the magnetic lubricant 50 blend together. It is a figure shown in order to demonstrate the bearing 302 which concerns on Embodiment B2.
  • FIG. 7 is a diagram shown for explaining a rotating device 750 according to an application;
  • FIG. 11 is a diagram shown for explaining a rotating device 751 according to an application;
  • FIG. 11 is a diagram shown for explaining a rotating device 752 according to an application;
  • FIG. 11 is a diagram for explaining a rotating device 753 according to an application;
  • FIG. 11 is a diagram shown for explaining a rotating device 754 according to an application;
  • FIG. 1 is a diagram for explaining a rotating device 1 according to Embodiment A1.
  • a rotating device 1 As shown in FIG. 1, a rotating device 1 according to Embodiment A1 includes a "rotating part (reference numerals omitted)" that rotates about a rotation axis RA, and a relatively fixed state with respect to the rotation of the rotating part. It is provided with a fixed part (reference numerals omitted).
  • the rotating portion has a shaft 100 that rotates around a rotation axis RA, and a first permanent magnet 210 that is provided with a bearing portion 217 that supports the shaft 100 and that is provided on at least one end side of the shaft 100 .
  • the first permanent magnet 210 is attached to the shaft side (the side on which the shaft 100 is provided or arranged) and the opposite shaft side (the side opposite to the side on which the shaft 100 is arranged). magnetized.
  • the stationary part has a second permanent magnet 220 .
  • the second permanent magnet 220 is magnetized so that the side facing the first permanent magnet 210 has the same polarity as the magnetic pole on the opposite axis side of the first permanent magnet 210 (in other words, the second permanent magnet 220 constituting the rotating portion).
  • the first permanent magnet 210 and the second permanent magnet 220 constituting the fixed portion are magnetized so that their opposing surfaces have the same polarity), and the first permanent magnet 210 and the first permanent magnet 210 magnetically repel each other. It is provided on the shaft 100 so as to be in non-contact with the first permanent magnet 210 .
  • the "axis-side surface” of the first permanent magnet 210 can be called the "first surface 211", and the “opposite-axis surface” can be called the “second surface 212". can.
  • “the surface on the side facing the first permanent magnet 210" of the second permanent magnet 220 is referred to as “the third surface 221”, and “the surface opposite to the side facing the first permanent magnet 210". This can be rephrased as “fourth surface 222". Furthermore, reverse paraphrasing is also mutually possible.
  • the rotating device 1 when viewed from another point of view, it can be said that it is broadly divided into the shaft 100 and the thrust bearing 200 .
  • the detailed description of each component of the “rotating portion”, the “fixed portion”, the shaft 100 and the thrust bearing 200 will be continued below.
  • the shaft 100 is also called a shaft, and is configured to rotate about the rotation axis RA.
  • a rotating body (not shown) is attached to the shaft 100 .
  • the rotating body rotates integrally with the shaft 100 around the rotation axis RA.
  • the thrust bearing 200 receives a load in the thrust direction TD parallel to the rotation axis RA.
  • a load in the thrust direction TD is also called an axial load.
  • the load is the load due to the shaft 100, the rotating body, and the like.
  • the thrust bearing 200 is arranged on at least one end side 100a of the shaft 100 described above.
  • the thrust bearing 200 comprises a first permanent magnet 210 connected to one end side 100a of the shaft 100, and a second permanent magnet 220 arranged on the opposite side of the first permanent magnet 210 to the side on which the shaft 100 is arranged.
  • the first permanent magnet 210 has a first surface 211 on which a first magnetic pole (the S pole in the example of the drawing; the same applies hereinafter) and a second magnetic pole (the example in the drawing) located on the opposite side of the first surface 211 has a second surface 212 on which an N pole is arranged.
  • the first permanent magnet 210 is configured to rotate integrally with the shaft 100 coaxially with the rotation axis RA of the shaft 100 .
  • the second permanent magnet 220 is positioned to face the second surface 212 of the first permanent magnet 210 and has a third surface 221 on which the second magnetic pole (N pole) is arranged, and a side opposite to the third surface 221. and has a fourth surface 222 on which a first magnetic pole (south pole) is arranged.
  • a second permanent magnet 220 is fixed to a given fixed part.
  • the first permanent magnet 210 and the second permanent magnet 220 are arranged coaxially so that the second surface 212, which is the load-side facing surface 215, and the third surface 221, which is the receiving-side facing surface 225, face each other. They are arranged to constitute one thrust bearing 200 .
  • the first magnetic pole and the second magnetic pole are magnetic poles having polarities opposite to each other.
  • the first magnetic pole is the S pole and the second magnetic pole is the N pole.
  • the first permanent magnet 210 is preferably configured such that the center of the first magnetic pole (S pole) arranged in the first permanent magnet 210 is substantially coaxial with the rotation axis RA.
  • the second permanent magnet 220 is preferably configured such that the center of the first magnetic pole (S pole) arranged in the second permanent magnet 220 is substantially coaxial with the rotation axis RA.
  • the position of the rotation axis RA is not an air gap/space, and the member (the member of the permanent magnet) is present even at the position of the rotation axis RA.
  • the second magnetic pole (N pole) is arranged so that the lines of magnetic force are concentrated at the position of the rotation axis RA.
  • the position of the rotation axis RA is not an air gap/space, and the member (permanent magnet member) exists even at the position of the rotation axis RA,
  • the second magnetic pole (N pole) is arranged so that the lines of magnetic force are concentrated at the position of the rotation axis RA.
  • the second surface 212 and the third surface 221 are surfaces orthogonal to the rotation axis RA, and are circular when viewed along the rotation axis RA.
  • the second surface 212 and the third surface 221 are each flat, have the same area of the opposing surfaces, and are described as surfaces having the same shape, but are not limited to this.
  • the first permanent magnet 210 and the second permanent magnet 220 may be made of different materials or may have different structures.
  • the shaft 100 and the thrust bearing 200 are preferably arranged so that the direction in which the rotating shaft RA extends is substantially the same as the vertical direction.
  • the “vertical direction” refers to a direction parallel to the direction of gravitational acceleration (the direction of gravity g; see FIG. 1).
  • the shaft 100 will move toward the first permanent magnet 210.
  • the second surface 212 of the second permanent magnet 220 and the third surface 221 of the second permanent magnet 220 are spaced apart from each other with a gap GP1 so that the second surface 212 floats vertically upward (in the opposite direction to the direction of gravity g) and rotates. is preferably configured to
  • the second permanent magnet 220 is provided on the rotation axis RA, and the first permanent magnet 210 facing the second permanent magnet 220 is also provided on the rotation axis RA. ing. Therefore, the magnetic lines of force are concentrated at the position of the rotation axis RA, and the repulsive force between the first permanent magnet 210 and the second permanent magnet 220 is maximized near the rotation axis RA. Therefore, the rotating part can be smoothly rotated around the rotation axis RA, which can contribute to the reduction of energy loss.
  • the second surface 212 and the third surface 221 each have the same polarity as the magnetic field lines so that the lines of magnetic force are concentrated at the position of the rotation axis RA.
  • Two magnetic poles are arranged to face each other. Therefore, a magnetic repulsive force (repulsive force) is generated between the second surface 212 and the third surface 221, and the repulsive force causes the first permanent magnet 210 to levitate away from the second permanent magnet 220 with the gap GP1. .
  • the frictional resistance (frictional resistance by the thrust bearing 200) generated when the first permanent magnet 210, the shaft 100, and the rotating body rotate is almost equal to 0, and the load (rotational load) caused by the frictional resistance during rotation can also be reduced. And, as a result, energy loss can be reduced.
  • the rotating device 1 is configured such that the mutual magnetic lines of force are concentrated at the position of the rotation axis RA, the repulsive force between the first permanent magnet 210 and the second permanent magnet 220 becomes maximum near the rotation axis RA. . Therefore, the first permanent magnet 210, the shaft 100, and the rotating body can be smoothly rotated about the rotation axis RA, which contributes to the reduction of energy loss.
  • the shaft 100 and the thrust bearing 200 are arranged such that the direction in which the rotation axis RA extends is substantially the same as the vertical direction, the rotation of the shaft 100 and the rotating body is reduced compared to the case where the shaft 100 and the rotating body are placed horizontally or diagonally. Loss of body rotational energy can be further reduced.
  • FIG. 2 is a diagram for explaining the rotating device 2 according to Embodiment A2.
  • 2(a) is a schematic cross-sectional view corresponding to FIG. 1
  • FIG. 2(b) is an exploded perspective view of the first permanent magnet 210 and the first yoke 230
  • FIG. 2(c). 4] is a perspective view when the second permanent magnet 220 and the second yoke 240 are disassembled.
  • the rotating device 2 according to Embodiment A2 basically has the same configuration as the rotating device 1 according to Embodiment A1, but further includes a first yoke 230 and a second yoke 240. ' is different from the rotating device 1 according to the embodiment A1.
  • a thrust bearing 200′ according to Embodiment A2 includes a first yoke 230 paired with a first permanent magnet 210 to form a magnetic circuit, and a second permanent magnet 220 paired with the first yoke 230 to form a magnetic circuit. and a second yoke 240 forming a magnetic circuit (see FIG. 2(a)).
  • the first yoke 230 and the second yoke 240 are each made of a soft magnetic material.
  • the first yoke 230 is a bottomed cylinder having a cylindrical body portion 232 open on one side and a bottom portion 234 connected to the other side of the cylindrical body portion 232. shaped.
  • the first yoke 230 coaxially accommodates the first permanent magnet 210 inside so as to surround the first surface 211 and the side surface 213 of the first permanent magnet 210 with the bottom portion 234 and the cylindrical body portion 232 .
  • An inner bottom surface 236 of the bottom portion 234 is in contact with the first surface 211 of the first permanent magnet 210 .
  • the space between the inner wall surface 235 of the tubular body 232 and the side surface 213 of the first permanent magnet 210 is filled with an air layer (space) or a non-magnetic material 290 (see also FIG. 1(a)).
  • the first permanent magnet 210 and the shaft 100 are connected in some way.
  • the first permanent magnet 210 is housed in the first yoke 230 and integrated, and the bottom 234 of the first yoke 230 and the one end side of the shaft 100 are connected to be integrally connected as a whole.
  • the rim surface 237 on the opening side of the cylindrical body portion 232 of the first yoke 230 and the second surface 212 of the first permanent magnet 210 form a "load-side facing surface 215" that is substantially the same plane.
  • the second yoke 240 has, as shown in FIG. It has a cylindrical bottom.
  • the second yoke 240 accommodates the second permanent magnet 220 inside so as to surround the fourth surface 222 and the side surface 223 of the second permanent magnet 220 with the bottom portion 244 and the cylindrical body portion 242 .
  • An inner bottom surface 246 of the bottom portion 244 contacts the fourth surface 222 of the second permanent magnet 220 .
  • the space between the inner wall surface 245 of the tubular body 242 and the side surface 223 of the second permanent magnet 220 is filled with an air layer (space) or a non-magnetic material 290 (see also FIG. 1(a)).
  • the second yoke 240 and the second permanent magnet 220 are somehow fixed to a given fixture.
  • the rim surface 247 of the cylindrical body portion 242 of the second yoke 240 and the third surface 221 of the second permanent magnet 220 form a "receiving side facing surface 225" that is substantially the same plane.
  • the set of the first permanent magnet 210 and the first yoke 230 and the set of the second permanent magnet 220 and the second yoke 240 are coaxially arranged such that the load side facing surface 215 and the receiving side facing surface 225 face each other. are arranged to constitute one thrust bearing 200'.
  • the inner bottom surface 236 of the bottom portion 234 contacts the first surface 211 of the first permanent magnet 210, and the inner wall surface 235 of the cylindrical body portion 232 and the first yoke 230 contact each other.
  • a space between the permanent magnet 210 and the side surface 213 is filled with an air layer (space) or a non-magnetic material 290 .
  • the first yoke 230 is magnetically coupled with the first permanent magnet 210 to form part of a magnetic circuit.
  • the magnetic lines of force emitted from the second magnetic pole (N pole) of the second surface 212 of the first permanent magnet 210 toward the gap GP1 reach the edge surface 237 of the first yoke 230.
  • the lines of magnetic force gather in a converging manner, pass through the inside of the first yoke, and reach the first magnetic pole (S pole) on the first surface of the first permanent magnet 210 .
  • the inner bottom surface 246 of the bottom portion 244 is in contact with the fourth surface 222 of the second permanent magnet 220, and the inner wall surface 245 of the cylindrical body portion 242 and the side surface 223 of the second permanent magnet 220 are in contact with each other.
  • the space is filled with an air layer (space) or a non-magnetic material 290 .
  • the second yoke 240 is magnetically coupled with the second permanent magnet 220 to form part of the magnetic circuit.
  • the magnetic lines of force emitted from the second magnetic pole (N pole) of the third surface 221 of the second permanent magnet 220 toward the gap GP1 reach the edge surface 247 of the second yoke 240.
  • the magnetic lines of force converge and gather, passing through the inside of the second yoke and reaching the first magnetic pole (S pole) on the fourth surface of the second permanent magnet 220 .
  • the magnetic lines of force can be passed through the first permanent magnet 210 and the first yoke 230, and the second permanent magnet 220 and the second yoke 240 intensively and at high density.
  • the repulsive force between the receiving side facing surface 225 can be further increased. Therefore, the thrust bearing 200' can cope with a heavy object having a larger mass, and even if the shaft 100 and the rotating body have a larger mass, the rotational load can be reduced, and the energy loss caused by the frictional resistance during rotation can be reduced. can be reduced.
  • the rotating device 2 according to the embodiment A2 has basically the same configuration as the rotating device 1 according to the embodiment A1, except that the first yoke 230 and the second yoke 240 are provided. Therefore, among the effects of the rotating device 1 according to the embodiment A1, the corresponding effects are similarly obtained.
  • FIG. 3 is a diagram for explaining the rotating device 3 according to Embodiment A3.
  • the rotating device 3 according to the embodiment A3 basically has the same configuration as the rotating device 1 according to the embodiment A1 and the rotating device 2 according to the embodiment A2. and the rotating device 2 according to Embodiment A2.
  • the rotating device 3 according to Embodiment A3 further includes a radial bearing 300 that receives a load in the radial direction RD (direction perpendicular to the shaft 100).
  • a ball bearing may be employed as the radial bearing 300, and the ball bearings may be arranged at two locations along the rotation axis RA direction of the shaft 100 so as to receive a load in the radial direction RD.
  • Good see reference numerals 300a and 300b in FIG. 3
  • the radial bearing 300 instead of a ball bearing, a so-called slide bush or linear bush that can cope with both the rotation of the shaft 100 and the axial slide in the radial direction RD may be employed.
  • the radial bearing 300 may be configured such that the magnetic fluid is applied in the radial direction RD.
  • the shaft 100 and the rotating body can be rotated more stably, and energy loss can be further reduced. can do.
  • the rotating device 3 according to the embodiment A3 has basically the same configuration as the rotating device 1 according to the embodiment A1 and the rotating device 2 according to the embodiment A2 except that the radial bearing 300 is provided. Therefore, the rotating device 1 according to the embodiment A1 and the rotating device 2 according to the embodiment A2 have the same effect.
  • FIG. 4 is a diagram shown for explaining the rotating device 4 according to Embodiment A4.
  • the rotating device 4 according to Embodiment A4 basically has the same configuration as each of the rotating devices 1 to 3 according to Embodiments A1 to A3, but is different from Embodiments A1 to A3 in that another thrust bearing 400 is further provided. It is different from each rotating device 1 to 3 according to.
  • the rotating device 4 according to Embodiment A4 has the same configuration as the thrust bearing 200 arranged on the one end side (lower side of the drawing) on the other end side (upper side of the drawing) of the shaft 100 as well.
  • Another thrust bearing 400 is arranged with a At this time, a given rotating body (here, turbine 530 as an example) is configured to be mounted on shaft 100 and arranged between thrust bearing 200 and another thrust bearing 400 .
  • Another thrust bearing 400 basically has the same configuration as the thrust bearing 200, and includes a first permanent magnet 410 connected to the other end side of the shaft 100 and a pair of the first permanent magnet 410.
  • a first yoke 430 forming a magnetic circuit with a second permanent magnet 420 indirectly fixed to a given fixing portion; and a second yoke 440 forming a magnetic circuit in pair with the second permanent magnet 420 and have.
  • a gap GP2 is provided between the first permanent magnet 410 and the second permanent magnet 420 .
  • a given rotating body is attached to the shaft 100 and arranged between the thrust bearing 200 and another thrust bearing 400 . That is, the shaft 100 and the rotating body (turbine 530) are sandwiched between the thrust bearing 200 on one end side of the shaft 100 and another thrust bearing 400 on the other end side, and rotate in a floating state in the thrust direction.
  • the thrust bearing 200 and the other thrust bearing 400 bear the load of the shaft 100 and the rotating body in such a manner that they are pinched from one end side and the other end side by a force directed toward the center due to repulsive force. .
  • the rotating body is the turbine 530
  • the load in the thrust direction fluctuates due to fluctuations in the flow of fluid. It is possible to prevent the body (turbine 530) from wobbling and shifting in the thrust direction. Therefore, stable rotation can be maintained, and energy loss due to shift in the thrust direction can be suppressed.
  • the rotating device 4 according to Embodiment A4 has basically the same configuration as the rotating devices 1 to 3 according to Embodiments A1 to A3 except that another thrust bearing 400 is further provided. Therefore, among the effects of the rotating devices 1 to 3 according to the embodiments A1 to A3, the corresponding effects are similarly obtained.
  • FIG. 5 is a diagram for explaining the rotating device 5 (aspect 1) according to Embodiment A5.
  • FIG. 6 is a diagram for explaining the rotating device 6 (aspect 2) according to Embodiment A5.
  • the rotating devices 5 and 6 according to Embodiment A5 basically have the same configuration as the rotating devices 1 to 4 according to Embodiments A1 to A4, except that a magnetic detection unit 600 is provided. It differs from each rotating device 1 to 4 according to A1 to A4.
  • the rotating devices 5 and 6 are positioned above the receiving side facing surface 225 including the third surface 221 of the second permanent magnet 220 (the third surface 221 of the second permanent magnet 220, the edge surface 247 of the second yoke 240, or the end surface formed by the air layer/non-magnetic material 290 filling the gap), or above the load-side facing surface 215 including the second surface 212 of the first permanent magnet 210 (the second surface of the first permanent magnet 210 212, the edge surface 237 of the first yoke 230, or the end surface formed by the air layer/non-magnetic material 290 filling the gap).
  • any magnetism detector 600 may be employed as long as it can relatively detect the intensity of the magnetic flux density.
  • FIG. 5(a) shows a sectional view of the rotating device 5.
  • FIG. FIG. 5(b) is a graph showing the relationship between the load in the thrust direction TD (horizontal axis) and the magnetic flux density (vertical axis) detected by the magnetic detector 600.
  • FIG. FIG. 5(c) is a diagram schematically showing the state of magnetic lines of force (magnetic flux density) when the load in the thrust direction TD is relatively light, and FIG. It is a figure which shows typically the mode of a magnetic force line (magnetic flux density).
  • the magnetic detection section 600 is arranged on the receiving side facing surface 225 and near the rotation axis RA.
  • the load in the thrust direction TD shown in FIG. 5(c) is relatively light (the gap is GP1)
  • the load in the thrust direction TD shown in FIG. 5(d) is relatively heavy (the gap is GP1').
  • the rotation device 5 detects the change in the magnetic flux density with the magnetism detection unit 600, thereby detecting the displacement of the separation distances GP1 and GP1' between the receiving-side facing surface 225 and the load-side facing surface 215. It is possible to detect the load in the thrust direction TD. Furthermore, it becomes possible to indirectly measure the weight of the load LD.
  • FIG. 6(a) shows a sectional view of the rotating device 6.
  • FIG. FIG. 6(b) is a graph showing the relationship between the load in the thrust direction TD (horizontal axis) and the magnetic flux density (vertical axis) detected by the magnetic detector 600.
  • the magnetic detector 600 is arranged on the receiving side facing surface 225 and near the edge of the second yoke 240 (rim surface 247). .
  • the magnetic flux density increases at the position where the magnetic detector 600 is arranged, contrary to the rotation device 5.
  • FIG. 6(b) >>.
  • the relationship between the change in load and the change in magnetic flux density is different from that in the case of the rotating device 5, but in any case, the rotating device 6 detects the change in the magnetic flux density with the magnetism detecting section 600, thereby detecting the receiving side opposing magnetic flux density.
  • the load in the thrust direction TD can be detected. Furthermore, the weight of the load LD is indirectly measured, and the maximum rotation speed of the shaft 100 is controlled according to the weight. It becomes possible to
  • the rotating devices 5 and 6 according to Embodiment A5 have basically the same configuration as the rotating devices 1 to 4 according to Embodiments A1 to A4, except that the magnetic detector 600 is provided. Therefore, among the effects of the rotating devices 1 to 4 according to the embodiments A1 to A4, the corresponding effects are similarly obtained.
  • FIG. 7 is a diagram for explaining a rotating device 710 according to an application.
  • FIG. 8 is a diagram for explaining a rotating device 711 according to an application.
  • FIG. 9 is a diagram for explaining a rotating device 712 according to an application.
  • the direction of the rotation axis RA can be the same as the direction of gravity g, and a flywheel 510 as a rotating body 500 can be provided on the other end side of the shaft 100 .
  • Each rotating device of the present invention has a very small rotating load and a small energy loss due to frictional resistance during rotation. is.
  • a rotor 520 of an electric device such as a motor can also be applied as the rotating body 500 of the present invention. Even an electric device as a heavy object with a relatively large mass can be levitated and rotated against the gravity g as the rotating device of the present invention, thereby reducing the rotational load and energy loss.
  • Reference numeral 522 denotes a permanent magnet belonging to the rotor 520
  • reference numeral 524 denotes a coil belonging to the stator
  • reference numeral 526 denotes a back yoke.
  • a turbine 530 used for vertical wind power generation can also be applied as the rotating body 500 in the present invention.
  • Even the turbine 530 which is a heavy object with a relatively large mass, can be levitated and rotated against the gravity g as the rotating device of the present invention, thereby reducing the rotational load and energy loss. .
  • Embodiment A4 another thrust bearing 400 is configured such that the surface (outer surface) of the first yoke 430 on the side opposite to the inner bottom surface 236 is connected to the other end of the shaft 100. (See Figure 4).
  • the invention is not limited to this.
  • the rotating device 720 according to the modified example, as shown in FIG. may be configured.
  • the second yoke 940 and the second permanent magnet 920 are fixed to a given fixed portion
  • the first yoke 930 and the first permanent magnet 910 are on the rotating side
  • the second yoke 940 and the second permanent magnet 920 are It is placed on the side opposite to the gravitational force g.
  • Embodiment A2 the configuration in which the inner bottom surface 236 of the first yoke 230 is in contact with the first surface 211 of the first permanent magnet 210 has been described.
  • the present invention is not limited to this. That is, it may be configured to have a small gap between the inner bottom surface 236 and the first surface 211 . Even with such a configuration, since the lines of magnetic force generated with the first magnetic pole of the first permanent magnet 210 as the terminal/start end still pass through the inside of the first yoke 230, the inner bottom surface 236 and the first surface 211 It is possible to obtain the same action and effect as when the two contact with each other. Such configurations are also equivalents of the present invention. In addition, the same is true between the inner bottom surface 246 of the second yoke 240 and the fourth surface 222 of the second permanent magnet 220 .
  • the first magnetic pole is the S pole
  • the second magnetic pole is the N pole.
  • the invention is not limited to this.
  • Each embodiment may be applied with the first magnetic pole as the N pole and the second magnetic pole as the S pole.
  • bearings 301 to 305, etc. in which a magnetic lubricant 50 (such as a magnetic fluid), which will be described later in embodiments B1 to B5, etc., are introduced as a radial bearing 300, and these radial bearings are used as thrust bearings according to the present invention. They can be combined as appropriate.
  • FIG. 13 is a diagram for explaining a bearing 301 (radial bearing) according to Embodiment B1.
  • 13(a) is a cross-sectional view of the bearing 301 cut along a virtual plane including the rotation axis RA
  • FIG. 13(b) is an enlarged view of the area surrounded by the dashed line A in FIG. 13(a).
  • 13(c) is a perspective view of the magnet 30.
  • FIG. 13 shows a state in which the shaft 100 (described later) is not inserted into the bearing 301 (the same applies to FIGS. 16 to 19 described later).
  • Axis 100 The bearing 301 according to the embodiment B1 absorbs a load (radial load) in the radial direction RD of the shaft 100 rotating about the rotation axis RA (in other words, the shaft 100 rotating around the rotation axis RA; see FIG. 14). It is the bearing that receives it.
  • Axle 100 also referred to as a shaft, is configured to rotate about an axis of rotation RA.
  • a rotating body is attached to the shaft 100 . The rotating body rotates together with the shaft 100 around the rotation axis RA.
  • the bearing 301 includes receiving members 10 -1 and 10 -2 (hereinafter sometimes simply referred to as the receiving member 10), a magnet 30, and a magnetic lubricant 50. ing.
  • the receiving member 10 is a member that receives the radial load of the shaft 100 .
  • the receiving member 10 exemplified in Embodiment B1 has an annular shape that is flattened and compressed in the thrust direction TD.
  • Such an annular inner peripheral surface serves as a broadly defined “contact portion 14 ” that contacts the shaft 100 directly or indirectly via the magnetic lubricant 50 .
  • the contact portion 14 serves as a so-called “receiving wall” that temporarily receives the radial load.
  • the receiving member 10 is made of a soft magnetic material and constitutes a part of a magnetic path of magnetic lines of force (a magnetic circuit having the magnet 30 as a magnetomotive force source). It is configured to retain the agent 50 (described later).
  • the receiving member 10 has a base portion 11 and a projecting portion 12 projecting toward the rotation axis RA.
  • the contact portion 14 (receiving wall) described above is provided on the tip side of the projecting portion 12 . As shown in FIG. 13B, the contact portion 14 is formed at the tip of the projecting portion 12 projecting from the position of the inner surface 34 of the magnet 30 toward the rotation axis RA by the reference sign PR.
  • At least the contact portion 14 of the receiving member 10 is made of cast iron.
  • cast iron is used not only for the contact portion 14 but also for the projecting portion 12 and the entire receiving member 10 .
  • Magnet 30 is a magnetomotive force source on the magnetic circuit in the bearing 301, and has a positive magnetic pole 31 (N pole) and a negative magnetic pole 32 (S pole). Magnet 30 is a permanent magnet. However, without being limited to this, the magnet 30 may be composed of an electromagnet.
  • the magnet 30 of embodiment B1 has a thick, substantially cylindrical shape having an inner surface 34, an outer surface 35, an upper surface 36 and a lower surface 37.
  • the magnet 30 of Embodiment B1 is a so-called axially anisotropic magnet, the entire upper surface 36 of which is a positive magnetic pole 31 (N pole), and the entire lower surface 37 of which is a negative magnetic pole 32 (S pole).
  • the arrangement relationship between the upper surface 36/lower surface 37 and the positive magnetic pole 31/negative magnetic pole 32 can be changed as appropriate.
  • the magnet 30 is arranged such that the magnetic axis connecting the pair of positive magnetic poles 31 and negative magnetic poles 32 coincides with the thrust direction TD (in addition to the case where it completely coincides, practically it also includes the case where it roughly coincides). and can be obtained, for example, by axial gap magnetization.
  • the magnet 30 is arranged so as to be sandwiched between two receiving members 10 -1 and 10 -2 arranged so that the ribs 16 of the receiving member 10 face each other.
  • the magnet 30 is arranged outside the rib 16 and restricted from moving inward by the rib 16 .
  • the upper surface 36 of the magnet 30 is in contact with the rib 16 side surface of the receiving member 10-1
  • the lower surface 37 is in contact with the rib 16 side surface of the receiving member 10-2 .
  • a magnetic circuit is composed of the magnet 30 and the receiving members 10 -1 and 10 -2 .
  • the magnetic lines of force emitted from the positive magnetic pole 31 of the magnet 30 are arranged inside the upper receiving member 10-1 , the space where the contact portion 14, the magnetic lubricant 50, and the shaft 100 are arranged, and the lower side.
  • the magnetic lubricant 50 belonging to the receiving member 10-2 and the contact portion 14 are sequentially connected to the inside of the receiving member 10-2 arranged on the lower side, and finally, it is drawn back by the negative magnetic pole 32 of the magnet 30. (see arrow in FIG. 13(a)).
  • the magnetic lines of force emitted or drawn from the contact portion 14 are oriented toward the rotation axis RA and intersect the contact portion 14 (surface of the receiving wall).
  • Case 60 Furthermore, in the bearing 301 of Embodiment B1, a case 60 (non-magnetic member) made of a non-magnetic material is provided on the outermost periphery.
  • the case 60 is arranged at a position in the radial direction RD opposite to the position where the magnetic lubricant 50 is arranged (the side where the shaft 100 is arranged) when viewed from the magnet 30, and 10 are provided so as to be in contact with the outer surfaces (no reference numerals) of .
  • the lines of magnetic force emitted from the positive magnetic pole 31 of the magnet 30 are directed not to the outside but to the inside (where the magnetic lubricant is arranged).
  • the magnetic lubricant 50 can be more strongly restrained in the vicinity of the contact portion 14 .
  • the magnetic lubricant 50 is a fluid material containing magnetic particles 51 that are affected by the lines of magnetic force between the positive magnetic pole 31 and the negative magnetic pole 32 of the magnet 30 .
  • a so-called magnetic fluid is used as the magnetic lubricant 50 .
  • a magnetic fluid is a fluid in which a large number of ferromagnetic fine particles coated with a surfactant are dispersed in a base liquid.
  • a magnetic fluid whose base liquid is a liquid whose main component is oil is used. That is, the magnetic lubricant contains a lubricating oily component.
  • the magnetic lubricant 50 used in the example of Embodiment B1 contains lubricating carbon particles 55 (see FIG. 15B described later).
  • the carbon particles 55 in the magnetic lubricant 50 may be those supplied from the cavities of the receiving member 10a made of cast iron, as described later in detail, or particles made of carbon or the like are mixed in the magnetic lubricant 50 in advance. Anything is fine.
  • the magnetic lubricant 50 is arranged between the shaft 100 and the receiving member 10 (see FIGS. 13 to 15). Since the magnetic lubricant 50 contains magnetic particles that are affected by the lines of magnetic force, when placed between the shaft 100 and the receiving member 10, the magnetic lubricant 50 is restrained by the lines of magnetic force generated through the receiving member, resulting in contact. It stays in place by adhering to portion 14 (the face of the receiving wall).
  • the receiving member 10 is made of a soft magnetic material
  • the magnet 30, the receiving member 10 and the shaft 100 constitute a magnetic circuit
  • the magnetic lubricant 50 is present in the magnetic path of this magnetic circuit. are placed.
  • FIG. 14 is a sectional view for explaining functions and effects of the bearing 301 according to Embodiment B1.
  • FIG. 15 is a diagram showing how the receiving member 10a made of cast iron and the magnetic lubricant 50 blend together.
  • FIG. 15(a) is a cross-sectional view showing the shaft 100 near the receiving member 10-2 and the receiving member 10-2 (10a), and
  • FIG. 15(b) is surrounded by the dashed line B in FIG.
  • FIG. 3 is an enlarged cross-sectional view showing an enlarged region that is cut off;
  • a bearing 301 according to Embodiment B1 includes a receiving member 10 that receives the radial load of a shaft 100, a magnet 30 that has a positive magnetic pole 31 and a negative magnetic pole 32, and a magnetic field affected by the magnetic lines of force between the positive magnetic pole 31 and the negative magnetic pole 32. a magnetic lubricant 50 containing body particles 51 , the magnetic lubricant 50 being arranged between the shaft 100 and the receiving member 10 .
  • magnetic lubricant 50 is arranged between the shaft 100 and the receiving member 10 in this manner, magnetic lubrication is provided between the outer peripheral surface of the shaft 100 and the portion of the receiving member 10 that serves as the wall that receives the radial load.
  • a liquid film an “oil film” when an oily component is contained
  • the agent 50 intervenes, and a state (non-contact state) in which the shaft 100 does not directly contact the receiving member 10 can be created. Since the rigid bodies do not rub against each other, no frictional resistance is generated by them.
  • the shaft 100 is always in contact with the liquid film, but since the material forming the liquid film is the magnetic lubricant 50 with high lubricity, the frictional resistance between the shaft 100 and the magnetic lubricant 50 is extremely small. Therefore, the overall frictional resistance that the shaft 100 receives when the shaft 100 rotates can be made extremely small.
  • the magnetic lubricant contains magnetic particles that are affected by the magnetic lines of force between the positive and negative magnetic poles. constrained above. Therefore, even when the shaft rotates or the load fluctuates, the magnetic lubricant remains at a predetermined location between the shaft and the receiving member, and the magnetic lubricant does not decrease due to leakage or scattering. It is possible to continuously and stably interpose the above-described liquid film at a predetermined location.
  • a radial load can be received without providing a ball bearing or the like.
  • friction loss or loss due to heat generation
  • the loss of energy inherent in the shaft 100 and the rotating device associated with the shaft 100 can be greatly reduced.
  • the bearing 301 according to Embodiment B1 has a simple mechanical structure and is excellent in wear resistance and durability because the radial load is received by the liquid film (oil film). Furthermore, since the bearing 301 has a simple mechanical structure, it can be constructed at a low cost, and an economically advantageous bearing can be obtained.
  • the receiving member 10 has a contact portion 14 (receiving wall) that contacts the shaft 100 directly or indirectly via the magnetic lubricant 50, and the contact portion 14 is formed at the tip of the protruding portion 12 that protrudes closer to the rotation axis RA than the position of the inner side surface 34 of the magnet 30 .
  • the inner side surface 34 of the magnet 30 is arranged outside the contact portion 14 of the receiving member 10 (at a position farther from the rotation axis RA).
  • the magnetic lubricant 50 of Embodiment B1 contains lubricating carbon particles 55 . This point will be described below with reference to FIG. Carbon particles such as carbon are generally said to have self-lubricating properties. It is also exhibited in the magnetic lubricant 50, and the magnetic lubricant 50 becomes more slippery.
  • cast iron is said to have a higher carbon content than general steel.
  • a receiving member 10a made of cast iron is adopted as the receiving member 10, and at least the contact portion 14a such as the base portion 11a and the projecting portion 12a is also made of cast iron.
  • the magnetic lubricant 50 enters into many cavities 18a present in the cast iron, and the contact area between the magnetic lubricant 50 and the cast iron receiving member 10a (contact portion 14a) increases, making it easier for them to get along with each other.
  • the rotation of the shaft 100 causes the magnetic lubricant 50 to convect appropriately, so that the carbon particles 55 contained in the cast iron are likely to be mixed into the magnetic lubricant 50 .
  • the cast iron cavities 18 a contain a large amount of carbon particles 55 , the carbon particles 55 are even more likely to mix into the magnetic lubricant 50 .
  • the carbon particles 55 are mixed in the magnetic lubricant 50, the lubricating properties of the carbon particles 55 themselves are exhibited in the magnetic lubricant 50, and the magnetic lubricant 50 becomes more slippery. Therefore, with the configuration as described above, the frictional resistance of the bearing 301 is further reduced.
  • FIG. 16 is a diagram shown for explaining the bearing 302 according to Embodiment B2.
  • FIG. 16(a) is a sectional view of the bearing 302
  • FIG. 16(b) is a perspective view of the magnets 30-1 and 30-2 .
  • the bearing 302 according to the embodiment B2 basically has the same configuration as the bearing 301 according to the embodiment B1. is different from the bearing 301 according to
  • a bearing 302 according to Embodiment B2 includes two substantially cylindrical axially anisotropic magnets 30 . Both magnets 30 -1 and 30 -2 are rotated so that the surfaces in the thrust direction TD (upper surface 36 or lower surface 37) face each other with magnetic poles of the same polarity (the positive magnetic pole 31 or N pole in the example shown). arranged along the axis RA.
  • the receiving member 10 -2 in contact with the magnet 30 -1 placed above and the receiving member 10 -2 in contact with the magnet 30 -2 placed below are shared by the magnets 30 -1 and 30 -2 . It is common. Further, the case 60 (non-magnetic member) made of non-magnetic material is also used in common at positions corresponding to both magnets.
  • the receiving member 10-2 serves as a common magnetic path in which magnetic lines of force emitted/drawn from both magnets 30-1 and 30-2 join. is omitted), the magnetic lubricant 50 can be bound more strongly. Therefore, the bearing 302 according to Embodiment B2 is a more robust bearing that is resistant to increases and fluctuations in radial load.
  • the bearing 302 according to Embodiment B2 has more contact portions 14 than Embodiment B1 (three locations for the receiving members 10 ⁇ 1 , 10 ⁇ 2 , and 10 ⁇ 3 ), and the shaft 100 has a long section. Since it can receive a radial load at , it can contribute to rotation with less shake.
  • the bearing 302 according to Embodiment B2 has basically the same configuration as the bearing 301 according to Embodiment B1, except for the fact that it has a plurality of magnets. Therefore, among the effects of the bearing 301 according to the embodiment B1, the corresponding effects are similarly obtained.
  • FIG. 17 is a diagram for explaining the bearing 303 according to Embodiment B3.
  • 17(a) is a cross-sectional view of the bearing 303 ⁇ cross-sectional view taken along line DD of FIG. 17(b)>>, and
  • FIG. 2 is a plan view of the time (the receiving member 10-1 is not drawn).
  • a bearing 303 according to Embodiment B3 basically has the same configuration as the bearing 301 according to Embodiment B1, but differs from the bearing 301 according to Embodiment B1 in the magnet configuration.
  • the magnet 30a of the embodiment B3 has a magnetic axis that connects a pair of positive magnetic poles 31 -n and negative magnetic poles 32 -n (where n is a natural number and contains an index number; the same applies hereinafter). It has a plurality of axially anisotropic poles configured to coincide with the thrust direction TD. That is, the magnet 30a includes at least two poles MPn defined by a pair of positive magnetic poles 31 -n and negative magnetic poles 32 -n .
  • the magnet 30a illustrated in FIG. 17 includes eight poles MP1 to MP8 obtained by equally dividing 360 degrees around the rotation axis RA into eight.
  • the poles MP(n) and MP(n+1) adjacent to each other are arranged with the same magnetic poles (positive magnetic pole/negative magnetic pole) with respect to the surface (upper surface or lower surface) in contact with the same receiving member 10.
  • a non-magnetic material member 75 partitions between the MPs.
  • the magnet 30a of embodiment B3 can be manufactured by axial gap magnetization. Moreover, since the magnet 30a can be prepared as an assembly of divided magnets corresponding to the respective poles MP1 to MP8, it can be said that the bearing is excellent in manufacturability when constructing a bearing having a large diameter.
  • the bearing 303 according to Embodiment B3 has basically the same configuration as the bearing 301 according to Embodiment B1 except for the magnet configuration. Therefore, among the effects of the bearing 301 according to the embodiment B1, the corresponding effects are similarly obtained.
  • FIG. 18 is a diagram for explaining the bearing 304 according to Embodiment B4.
  • 18(a) is a cross-sectional view of the bearing 304 ⁇ cross-sectional view taken along line FF of FIG. 18(b)>>, and
  • FIG. 2 is a plan view of the time (the receiving member 10-1 is not drawn).
  • the bearing 304 according to the embodiment B4 basically has the same configuration as the bearing 303 according to the embodiment B3. It is different from the bearing 303 according to
  • a bearing 304 according to Embodiment B4 includes two axially anisotropic multipolar magnets 30a described in Embodiment B3. Both magnets 30a -1 and 30a -2 are arranged such that magnetic poles of the same polarity face each other within the same section SCn. Looking at FIG. 18(a), both negative magnetic poles (S poles) face each other in the left section SC1, and both negative magnetic poles (S poles) face each other in the right section SC5 so as to sandwich the receiving member 10-2 . It is arranged in such a way that
  • the receiving member 10 -2 in contact with the upper magnet 30a -1 and the receiving member 10-2 in contact with the lower magnet 30a -2 are shared by the magnets 30a -1 and 30a -2 . It is common. Further, the case 60 (non-magnetic member) made of non-magnetic material is also used in common at positions corresponding to both magnets.
  • the inner diameter of the upper magnet 30a -1 is larger than the inner diameter of the lower magnet 30a -2 .
  • the inner diameter of the upper receiving member 10-1 is larger than the inner diameter of the lower receiving member 10-3 .
  • a counterbore hole 15 opening upward is provided in the vicinity of the projecting portion 12 of the middle receiving member 10-2 . Since the bearing 304 according to the embodiment B4 has such a configuration, it bears a stepped shaft having a thin outer diameter and a thick outer diameter depending on the position in the longitudinal direction, as indicated by reference numeral 110. can also
  • the bearing 304 according to Embodiment B4 has basically the same configuration as the bearing 303 according to Embodiment B3, except for the fact that it has a plurality of magnets 30a. Therefore, among the effects of the bearing 303 according to the embodiment B3, the corresponding effects are similarly obtained.
  • FIG. 19 is a diagram shown for explaining the bearing 305 according to Embodiment B5.
  • FIG. 19(a) is a cross-sectional view of the bearing 305 cut along a virtual plane including the rotation axis RA
  • FIG. 19(b) is an enlarged view of the area surrounded by the dashed line G in FIG. 19(a). It is an enlarged sectional view
  • FIG.19(c) is a perspective view of the magnet 30b.
  • a bearing 305 according to Embodiment B5 basically has the same configuration as the bearing 301 according to Embodiment B1, but differs from the bearing 301 according to Embodiment B1 in the magnet configuration.
  • the magnet 30b of embodiment B5 is a radially anisotropic magnet configured such that the magnetic axis connecting the pair of positive magnetic poles 31 and negative magnetic poles 32 coincides with the radial direction RD.
  • the magnet 30b can be manufactured with radial gap magnetization.
  • the upper receiving member 10b (identical reference numeral) having the upper contact portion 14-1 and the lower receiving member 10b (identical reference numeral) having the lower contact portion 14-2 ) are continuously configured (combined) through the transition portion 17 . Therefore, the crossover portion 17 also constitutes a part of the magnetic path (see the arrows indicating the lines of magnetic force in FIG. 20(a)).
  • the bearing 305 the position where the magnet 30b is arranged and the position in the thrust direction TD where the magnetic lubricant 50 is arranged along the direction parallel to the magnetic axis (the direction perpendicular to the rotation axis RA).
  • a spacer 70 non-magnetic member made of a non-magnetic material is provided between them.
  • the bearing 305 according to Embodiment B5 has basically the same configuration as the bearing 301 according to Embodiment B1 except for the magnet configuration. Therefore, among the effects of the bearing 301 according to the embodiment B1, the corresponding effects are similarly obtained.
  • FIG. 20 is a diagram shown for explaining a rotating device 750 according to an application.
  • FIG. 21 is a diagram for explaining a rotating device 751 according to an application.
  • FIG. 22 is a diagram for explaining a rotating device 752 according to an application.
  • FIG. 23 is a diagram for explaining a rotating device 753 according to an application.
  • FIG. 24 is a diagram for explaining a rotating device 754 according to an application.
  • the bearing according to each embodiment can be applied appropriately.
  • 303, 305 may be arranged to receive a radial load.
  • a rotating device 751 shown in FIG. 301, 302, 303, 305 may be arranged.
  • Each bearing of the present invention has a very small coefficient of friction and a small energy loss due to frictional resistance, so it is suitable for application to a device that retains energy by the flywheels 510, 510'.
  • the bearing according to each embodiment can also be applied to a rotating device in which the rotor 520 of the vertical power generator is connected to the shaft 100, like the rotating device 752 shown in FIG.
  • Reference numeral 522 denotes a permanent magnet belonging to the rotor 520
  • reference numeral 524 denotes a coil belonging to the stator
  • reference numeral 526 denotes a coil back yoke.
  • the bearing 304 according to the embodiment B4 which is compatible with a stepped shaft, is arranged, and at other positions, the bearings 301, 302, 303 according to any one of the embodiments B1, B2, B3, B5 are arranged.
  • , 305 can be arranged.
  • the bearing (radial bearing) according to the present invention can be applied not only to a power generator but also as a bearing that receives the radial load of the main shaft of a motor.
  • the bearing according to each embodiment can also be applied to a rotating device using a vertical wind turbine blade 530 and a non-contact thrust bearing 200, like a rotating device 753 shown in FIG. .
  • the non-contact thrust bearing 200 includes a first permanent magnet 210 and a second permanent magnet 220 which are magnetized so that the surfaces facing each other have the same polarity and are arranged on the rotation axis RA.
  • one end of the shaft 100 is connected to the first permanent magnet 210 and the second permanent magnet 210, so that the first permanent magnet 210 and the second permanent magnet are configured to be in a non-contact state while keeping an appropriate gap therebetween by magnetic repulsion.
  • the bearings 301, 302, 303, and 305 of any one of the embodiments B1, B2, B3, and B5 may be arranged so as to support the side surface of the shaft 100. .
  • the bearing according to each embodiment can also be applied to a rotating device, such as a rotating device 754 shown in FIG. It is possible.
  • the configuration of the upper thrust bearing 400 is basically the same as that of the lower thrust bearing 200 .
  • the bearings 301, 302, 303, and 305 of any one of the embodiments B1, B2, B3, and B5 may be arranged so as to support the side surface of the shaft 100. .
  • a rotating device 753, 754 having a vane 530 (which can be translated as a turbine 530) provided with radial load bearings 301, 302, 303, 305 and non-contact thrust bearings 200, 400 as shown here:
  • the non-contact thrust bearings 200, 400 are disclosed in detail in Japanese Patent Application No. 2021-140044, which is a prior application invented by the inventors. In the present application, the contents of the prior application are incorporated as they are.
  • the rotating device 753 of FIG. 23 in this application corresponds to the application example (3) of the prior application, and the rotating device 754 of FIG. 24 corresponds to Embodiment 4 of the prior application, and the same reference numerals are used. . Therefore, the detailed description of the thrust bearings 200 and 400 of this application example can be applied to this application example by citing the contents of the prior application as they are.
  • Embodiment B5 An embodiment using a radially anisotropic magnet as the magnet has been described in Embodiment B5.
  • the magnet 30b used in the bearing 305 according to Embodiment B5 has one pole defined by a pair of the positive magnetic pole 31 and the negative magnetic pole 32.
  • the radial anisotropic magnet can also be configured so that the poles defined by the pair of the positive magnetic pole 31 and the negative magnetic pole 32 are multipolar, as in the contents of Embodiments B3 and B4. .
  • the magnet is a radially anisotropic magnet configured so that the magnetic axis connecting the pair of positive magnetic poles 31 and negative magnetic poles 32 is aligned with the radial direction. At least two poles MP defined by the negative magnetic pole 32 are included.
  • the magnetic lubricant 50 may contain a water-soluble liquid. By doing so, the viscosity of the magnetic lubricant as a whole can be easily lowered, so an improvement in lubricity can be expected.
  • each embodiment has been described on the assumption that at least the contact portion 14 is made of cast iron.
  • the invention is not limited to this.
  • carbon steel may be used for the contact portion 14 (at least the contact portion may be made of carbon steel).
  • a magnetic material containing ceramic may be used for the contact portion 14 .
  • the contact portion 14 may be made of a mixture of iron powder and ceramic particles.
  • Embodiment A1 It is possible to further increase the repulsive force in ⁇ A5, or further increase the retention amount of the magnetic lubricant 50 in Embodiments B1 to B5.
  • Cylindrical body 234 Bottom 235 Inner wall 236, 936 Inner bottom 237 Rim surface 240, 440, 940 Second yoke 242 Cylindrical body 244 Bottom 245 Inner wall surface 246 Inner bottom surface 247 Mouth surface 290 Air layer or nonmagnetic material 300, 301, 302, 303, 304, 305 (radial) bearing 500 Rotating body 501, 502, 503 , 504, 510, 510′ flywheel 520 rotor 522 permanent magnet belonging to rotor 524 coil belonging to stator 526 coil back yoke 530 vane (turbine) 600 magnetism detector

Abstract

A rotary device 1 comprises: a rotary part; and a fixed part. The rotary part has a shaft 100, and a first permanent magnet 210 provided with a bearing part 217 and provided on at least one end side of the shaft 100. The fixed part has a second permanent magnet 220 in which a side facing the first permanent magnet 210 is magnetized so as to have the same polarity as a magnetic pole on the opposite shaft side of the first permanent magnet 210, and which is provided on a rotary shaft in a non-contact state with the first permanent magnet 210 resulting from mutual magnetic force repulsion executed with the first permanent magnet 210. The first permanent magnet 210 and the second permanent magnet 220 constitute a thrust bearing. Meanwhile, a radial bearing is provided with a reception member 10 that receives a radial load, a magnet 30, and a magnetic lubricant 50 that contains magnetic body particles 51 affected by lines of magnetic force between a positive magnetic pole 31 and a negative magnetic pole 32 of the magnet 30. The magnetic lubricant 50 is disposed between the shaft 100 and the reception member 10. According to the present invention, friction resistance generated during shaft rotation can be reduced.

Description

軸受及び回転装置Bearings and rotating devices
 本発明は、回転軸の周りを回転する軸についての軸受及び当該軸を備えた回転装置に関する。 The present invention relates to a bearing for a shaft that rotates around a rotating shaft and a rotating device that includes the shaft.
 回転軸の周りを回転する軸及び当該軸を支える軸受は、大きく分類して2つの荷重がかかる。その1つはスラスト方向の荷重(スラスト荷重)であり、もう1つはラジアル方向の荷重(ラジアル荷重)である。  The shaft that rotates around the rotation axis and the bearing that supports the shaft are broadly classified into two loads. One of them is the load in the thrust direction (thrust load), and the other is the load in the radial direction (radial load).
 A.スラスト荷重を受けるスラスト軸受
 図12は従来の回転装置900の一例を示す図である。図12に示すように、従来の回転装置900では、軸100の一端側(鉛直方向の側)にはスラスト軸受990が配置され、軸100の他端側には回転体500が取り付けられている。回転装置900は、スラスト軸受990で回転体500及び軸100の重力方向の荷重を受けながら、回転体500及び軸100が回転軸RAの回りを回転するように構成されている。なお符号300はラジアル軸受である。
A. Thrust Bearing Under Thrust Load FIG. 12 is a diagram showing an example of a conventional rotating device 900 . As shown in FIG. 12, in a conventional rotating device 900, a thrust bearing 990 is arranged on one end side (vertical side) of a shaft 100, and a rotating body 500 is attached to the other end side of the shaft 100. . The rotating device 900 is configured such that the rotating body 500 and the shaft 100 rotate around the rotation axis RA while the thrust bearing 990 receives the load of the rotating body 500 and the shaft 100 in the gravitational direction. Reference numeral 300 is a radial bearing.
 しかし、質量が大きな回転体500及び軸100を扱う場合には、それらの荷重を受けるスラスト軸受についても大きな荷重に耐えられる構造が要求されるため、結果的にサイズの大きい大規模なスラスト軸受990が用いられている。大規模なスラスト軸受990では、軸100との接触面積も大きいことからスラスト方向の荷重による摩擦抵抗も大きくなり、回転体500及び軸100が回転する際には大きな負荷(回転負荷)となり、更にはそれによるエネルギー損失も生じていた。 However, when handling the rotating body 500 and the shaft 100 having a large mass, the thrust bearings that receive these loads are also required to have a structure capable of withstanding a large load. is used. In the large-scale thrust bearing 990, the contact area with the shaft 100 is also large, so the frictional resistance due to the load in the thrust direction is also large, and when the rotating body 500 and the shaft 100 rotate, it becomes a large load (rotational load). also resulted in energy loss.
 この問題を解決するため、永久磁石を用いた軸受による回転装置も提案されている(例えば特許文献1及び2参照)。
 本明細書による図示は省略するが、特許文献1に記載された回転装置では、荷重を担う側(上側)の永久磁石(3)と荷重を受ける側(下側)の永久磁石(10)とが互いに同じ磁極Sが対向するようにして配置されている。同じ磁極Sを対向させることによって磁気的な反発力(斥力)を生じさせ、かかる斥力により軸(1)を浮かせてスラスト荷重による摩擦抵抗の低減を図っている。
In order to solve this problem, rotating devices using bearings using permanent magnets have also been proposed (see, for example, Patent Documents 1 and 2).
Although illustration in this specification is omitted, in the rotating device described in Patent Document 1, the permanent magnet (3) on the side that bears the load (upper side) and the permanent magnet (10) on the side that receives the load (lower side) are arranged so that the same magnetic poles S face each other. By opposing the same magnetic poles S, a magnetic repulsive force (repulsive force) is generated, and the repulsive force floats the shaft (1) to reduce the frictional resistance due to the thrust load.
実公昭59-27536号公報Japanese Utility Model Publication No. 59-27536 特開平7-325165号公報JP-A-7-325165 特開2018-91358号公報JP 2018-91358 A
 しかしながら特許文献1に記載された回転装置においては、軸(1)の一部であるホゾ部(5)が荷重を受ける側の軸受(6)に嵌挿されており、ホゾ部(5)と軸受(6)とが互いに接触している。このため、軸(1)及び回転体(図示なし)が回転しようとすると、ホゾ部(5)と軸受(6)との間に摩擦抵抗が生じる。軸(1)及び回転体が回転すると、この摩擦抵抗に起因した回転負荷がかかることとなり、ひいては摩擦抵抗によるエネルギー損失も生じることとなる。
 特に、回転体が蓄電用フライホイール、風力発電用タービン等である場合のように、軸及び回転体が重量物の場合には、かかる接触による摩擦抵抗に起因した回転負荷は無視できない大きなものとなる。よって、軸及び回転体が重量物になればなるほど、かかる接触による摩擦抵抗の低減が求められる。
However, in the rotating device described in Patent Document 1, the tenon portion (5), which is a part of the shaft (1), is inserted into the bearing (6) on the side that receives the load, and the tenon portion (5) and the bearing (6) are inserted. The bearings (6) are in contact with each other. Therefore, when the shaft (1) and the rotating body (not shown) try to rotate, frictional resistance is generated between the tenon portion (5) and the bearing (6). When the shaft (1) and the rotating body rotate, a rotational load is applied due to this frictional resistance, which in turn causes energy loss due to the frictional resistance.
In particular, when the shaft and the rotating body are heavy, such as when the rotating body is a flywheel for power storage, a turbine for wind power generation, etc., the rotational load caused by the frictional resistance due to such contact cannot be ignored. Become. Therefore, the heavier the shaft and rotating body, the more the frictional resistance due to such contact is required to be reduced.
 B.ラジアル荷重を受けるラジアル軸受
 他方、シャフトなどの軸をラジアル方向で受ける軸受として、ボールベアリングが活用されている。
B. Radial bearings that receive radial loads On the other hand, ball bearings are used as bearings that receive shafts and other shafts in the radial direction.
 しかし、ボールベアリングは、機構上の摩擦抵抗があるため、軸の回転数が上がると、これに伴い発熱が大きくなっていくという問題がある。軸の回転数が例えば1000rpmを超えると発熱量が2次関数的に増加して無視できないレベルに達すると言われている。このため、昨今では、油冷などの方法により熱を逃がしてボールベアリングの温度上昇を抑制している。ただ、この方法では温度上昇の抑制に限界もあり、かつまた、外付けされる冷却システムも大掛かりとなり、そのためのスペースや重量も増すこととなる。
 また、上記した温度上昇の問題に限らず、軸と一体に回転している回転体(フライホイール等)が元々持っているエネルギーが摩擦抵抗により損失してしまうという問題もある。さらに、ボールベアリングは機構を必要とすることから、機械的な耐久性の点でも問題が残る。こうしたことから、近年ではボールベアリングに変わる軸受が求められている。
However, since ball bearings have mechanical frictional resistance, there is a problem that as the rotation speed of the shaft increases, heat generation increases accordingly. It is said that when the rotation speed of the shaft exceeds, for example, 1000 rpm, the amount of heat generated increases quadratically and reaches a level that cannot be ignored. For this reason, in recent years, a method such as oil cooling is used to release heat to suppress the temperature rise of the ball bearing. However, with this method, there is a limit to how much the temperature rise can be suppressed, and the externally attached cooling system becomes large-scaled, resulting in an increase in space and weight.
In addition to the problem of temperature rise described above, there is also the problem that the energy originally possessed by a rotating body (such as a flywheel) that rotates integrally with the shaft is lost due to frictional resistance. Furthermore, since ball bearings require a mechanism, there remains a problem in terms of mechanical durability. For these reasons, in recent years there has been a demand for bearings that can replace ball bearings.
 ところで、従来より、回転装置に対し磁性流体を適用する動きがみられる(例えば特許文献3及び非特許文献1参照)。
 特許文献3の軸受に適用された磁性流体、及び、非特許文献1のシャフトに当てられた磁性流体は、いずれも機構の中に水、埃、塵等が入らぬようシール目的で用いられている。しかし、一方でラジアル荷重については依然としてボールベアリングが受けており、上記した発熱・エネルギーの損失・耐久性の問題は解消できていない。
By the way, conventionally, there has been a movement to apply a magnetic fluid to a rotating device (see, for example, Patent Document 3 and Non-Patent Document 1).
Both the magnetic fluid applied to the bearing of Patent Document 3 and the magnetic fluid applied to the shaft of Non-Patent Document 1 are used for the purpose of sealing to prevent water, dirt, dust, etc. from entering the mechanism. there is On the other hand, however, the radial load is still received by the ball bearing, and the problems of heat generation, energy loss, and durability described above have not been resolved.
 そこで本発明は上記した事情に鑑みてなされたものであり、軸が回転する際に生ずる摩擦抵抗を低減することができる軸受及び当該軸受を備えた回転装置を提供することを目的とする。
 また、スラスト荷重にあっては、回転時の摩擦抵抗に起因した負荷(回転負荷)を低減することができ、ひいてはエネルギー損失を低減することができる回転装置を提供することを目的とする。さらに、ラジアル荷重にあっては、ボールベアリングよりも摩擦抵抗の小さい軸受を提供することを目的とする。なお、本明細書において、スラスト軸受及びラジアル軸受を包括的に「軸受」というものとするが、「スラスト軸受」単体又は「ラジアル軸受」単体のことを単に「軸受」ということもある。
SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a bearing capable of reducing the frictional resistance generated when a shaft rotates, and a rotating device equipped with the bearing.
Another object of the present invention is to provide a rotary device capable of reducing the load (rotational load) caused by frictional resistance during rotation, and thus reducing energy loss. Another object of the present invention is to provide a bearing with less frictional resistance than a ball bearing for radial loads. In this specification, the thrust bearing and the radial bearing are collectively referred to as the "bearing", but the single "thrust bearing" or the single "radial bearing" may be simply referred to as the "bearing".
 本発明の一態様によれば、回転軸を中心に回転する回転部と、回転部の回転に対し相対的に固定状態となっている固定部と、を備えた回転装置が提供される。
 回転部は、回転軸を中心に回転する軸と、軸を支える軸受部が設けられ軸の少なくも一端側に設けられた第1永久磁石と、を有する。第1永久磁石は軸側と反軸側とに着磁されている。固定部は、第1永久磁石に面した側が第1永久磁石の反軸側の磁極と同極となるよう着磁されており、第1永久磁石との間で互いに磁力反発し第1永久磁石と非接触状態となるようにして回転軸上に設けられた第2永久磁石を有している。
According to one aspect of the present invention, a rotating device is provided that includes a rotating portion that rotates about a rotating shaft and a fixed portion that is relatively fixed with respect to the rotation of the rotating portion.
The rotating part has a shaft that rotates about the rotating shaft, and a first permanent magnet that is provided with a bearing that supports the shaft and is provided on at least one end side of the shaft. The first permanent magnet is magnetized on the shaft side and the opposite shaft side. The fixed portion is magnetized such that the side facing the first permanent magnet has the same polarity as the magnetic pole on the opposite side of the first permanent magnet, and magnetic repulsion occurs between the fixed portion and the first permanent magnet. It has a second permanent magnet provided on the rotating shaft so as to be in a non-contact state with the rotating shaft.
 本発明の別の一態様によれば、回転軸を中心として回転するよう構成された軸と、軸の少なくとも一端側に配置され、回転軸に平行なスラスト方向の荷重を受けるスラスト軸受と、を備えた回転装置が提供される。
 スラスト軸受は、軸の一端側に接続され第1磁極が配された第1面、及び、第1面とは反対側に位置し第2磁極が配された第2面を有し、軸と一体となって同軸に回転するよう構成された第1永久磁石と、第1永久磁石の第2面に対向するように位置し第2磁極が配された第3面、及び、第3面とは反対側に位置し第1磁極が配された第4面を有し、所与の固定部に固定される第2永久磁石と、を具備する。
 回転装置において、第1永久磁石の第2面上では、回転軸の位置においてもその部材が存在し、かつ、回転軸の位置において磁力線が集中するように第2磁極が配されており、第2永久磁石の第3面上では、回転軸の位置においてもその部材が存在し、かつ、回転軸の位置において磁力線が集中するように第2磁極が配されている。
According to another aspect of the present invention, a shaft configured to rotate about a rotating shaft, and a thrust bearing disposed on at least one end side of the shaft and receiving a load in a thrust direction parallel to the rotating shaft are provided. A rotating device is provided.
The thrust bearing has a first surface connected to one end of the shaft and provided with a first magnetic pole, and a second surface opposite to the first surface and provided with a second magnetic pole. a first permanent magnet configured to coaxially rotate together; a third surface facing the second surface of the first permanent magnet and having a second magnetic pole; and a third surface. a second permanent magnet having a fourth face on which the first magnetic pole is located on the opposite side and fixed to a given fixed part.
In the rotating device, on the second surface of the first permanent magnet, the member is present even at the position of the rotation axis, and the second magnetic pole is arranged so that the lines of magnetic force are concentrated at the position of the rotation axis. On the third surface of the two permanent magnets, the second magnetic pole is arranged so that the member exists even at the position of the rotation axis and the lines of magnetic force are concentrated at the position of the rotation axis.
 本発明の回転装置によれば、軸が回転する際に生ずる摩擦抵抗を低減することができる。また、回転時の摩擦抵抗に起因した負荷(回転負荷)を低減することができ、ひいてはエネルギー損失を低減することができる。 According to the rotating device of the present invention, it is possible to reduce the frictional resistance generated when the shaft rotates. In addition, it is possible to reduce the load (rotational load) caused by the frictional resistance during rotation, thereby reducing the energy loss.
 本発明の更に別の一態様によれば、回転軸の周りを回転する軸のラジアル荷重を受ける軸受が提供される。かかる軸受は、軸のラジアル荷重を受ける受け部材と、正磁極及び負磁極を有する磁石と、正磁極及び負磁極の間の磁力線の影響を受ける磁性体粒子を含有した磁気潤滑剤とを備えており、磁気潤滑剤が軸と受け部材との間に配置されている。 According to yet another aspect of the present invention, there is provided a bearing that receives the radial load of a shaft that rotates about its axis of rotation. Such a bearing comprises a receiving member that receives the radial load of the shaft, a magnet having positive and negative magnetic poles, and a magnetic lubricant containing magnetic particles that are affected by the magnetic lines of force between the positive and negative magnetic poles. A magnetic lubricant is disposed between the shaft and the receiving member.
 本発明の軸受によれば、軸が回転する際に生ずる摩擦抵抗を低減することができる。本発明によれば、ボールベアリングよりも摩擦抵抗の小さい軸受を提供することができる。 According to the bearing of the present invention, it is possible to reduce the frictional resistance generated when the shaft rotates. According to the present invention, it is possible to provide a bearing with less frictional resistance than a ball bearing.
実施形態A1に係る回転装置1を説明するために示す図である。It is a figure shown in order to demonstrate the rotation apparatus 1 which concerns on Embodiment A1. 実施形態A2に係る回転装置2を説明するために示す図である。It is a figure shown in order to demonstrate the rotation apparatus 2 which concerns on Embodiment A2. 実施形態A3に係る回転装置3を説明するために示す図である。It is a figure shown in order to demonstrate the rotation apparatus 3 which concerns on Embodiment A3. 実施形態A4に係る回転装置4を説明するために示す図である。It is a figure shown in order to demonstrate the rotation apparatus 4 which concerns on Embodiment A4. 実施形態A5に係る回転装置5(態様1)を説明するために示す図である。It is a figure shown in order to demonstrate the rotation apparatus 5 (aspect 1) which concerns on Embodiment A5. 実施形態A5に係る回転装置6(態様2)を説明するために示す図である。It is a figure shown in order to demonstrate the rotation apparatus 6 (aspect 2) which concerns on Embodiment A5. 応用例に係る回転装置710を説明するために示す図である。FIG. 7 is a diagram shown for explaining a rotating device 710 according to an application; 応用例に係る回転装置711を説明するために示す図である。It is a figure shown in order to demonstrate the rotation apparatus 711 which concerns on an application example. 応用例に係る回転装置712を説明するために示す図である。FIG. 11 is a diagram shown for explaining a rotating device 712 according to an application example; 変形例に係る回転装置720を説明するために示す図である。It is a figure shown in order to demonstrate the rotation apparatus 720 which concerns on a modification. 変形例に係る回転装置721を説明するために示す図である。It is a figure shown in order to demonstrate the rotation apparatus 721 which concerns on a modification. 従来の回転装置900の一例を示す図である。FIG. 9 is a diagram showing an example of a conventional rotating device 900; 実施形態B1に係る軸受301を説明するために示す図である。FIG. 10 is a diagram shown for explaining a bearing 301 according to Embodiment B1; 実施形態B1に係る軸受301の作用・効果について説明する断面図である。FIG. 10 is a cross-sectional view for explaining actions and effects of the bearing 301 according to Embodiment B1. 鋳鉄による受け部材10aと磁気潤滑剤50とが馴染む様子を描いた図である。FIG. 4 is a diagram illustrating how the receiving member 10a made of cast iron and the magnetic lubricant 50 blend together. 実施形態B2に係る軸受302を説明するために示す図である。It is a figure shown in order to demonstrate the bearing 302 which concerns on Embodiment B2. 実施形態B3に係る軸受303を説明するために示す図である。It is a figure shown in order to demonstrate the bearing 303 which concerns on Embodiment B3. 実施形態B4に係る軸受304を説明するために示す図である。It is a figure shown in order to demonstrate the bearing 304 which concerns on Embodiment B4. 実施形態B5に係る軸受305を説明するために示す図である。It is a figure shown in order to demonstrate the bearing 305 which concerns on Embodiment B5. 応用例に係る回転装置750を説明するために示す図である。FIG. 7 is a diagram shown for explaining a rotating device 750 according to an application; 応用例に係る回転装置751を説明するために示す図である。FIG. 11 is a diagram shown for explaining a rotating device 751 according to an application; 応用例に係る回転装置752を説明するために示す図である。FIG. 11 is a diagram shown for explaining a rotating device 752 according to an application; 応用例に係る回転装置753を説明するために示す図である。FIG. 11 is a diagram for explaining a rotating device 753 according to an application; 応用例に係る回転装置754を説明するために示す図である。FIG. 11 is a diagram shown for explaining a rotating device 754 according to an application;
 以下、本発明に係る軸受及び回転装置について図を参照しながら説明する。始めにスラスト軸受について説明を行い、次いでラジアル軸受について説明を行う。
 なお、各図に共通する符号については当該符号について既に説明した内容を他の図の説明においても援用できることから、他の図における説明を省略する。また、各図面は一例を示した模式図であり必ずしも実際の寸法、比率等を厳密に反映したものではない。明細書において「上」,「下」と表記したものは説明の便宜上のものであり、本発明を実施する際には天地を逆にしたり、鉛直方向の軸と一致しない配置とすることも可能である。
Hereinafter, a bearing and a rotating device according to the present invention will be described with reference to the drawings. First, the thrust bearing will be explained, and then the radial bearing will be explained.
It should be noted that, with respect to the reference numerals common to each drawing, the description of the reference numerals already explained can be used in the explanation of the other drawings, so the explanation of the other drawings will be omitted. Each drawing is a schematic diagram showing an example, and does not necessarily strictly reflect actual dimensions, ratios, and the like. The terms “upper” and “lower” in the specification are for convenience of explanation, and when carrying out the present invention, it is possible to turn it upside down or arrange it so that it does not match the vertical axis. is.
A.スラスト軸受について
[実施形態A1]
1.実施形態A1に係る回転装置1の構成
 図1は、実施形態A1に係る回転装置1を説明するために示す図である。
A. Regarding thrust bearings [Embodiment A1]
1. Configuration of Rotating Device 1 According to Embodiment A1 FIG. 1 is a diagram for explaining a rotating device 1 according to Embodiment A1.
 図1に示すように、実施形態A1に係る回転装置1は、回転軸RAを中心に回転する「回転部(符号省略)」と、該回転部の回転に対し相対的に固定状態となっている「固定部(符号省略)と、を備えている。
 回転部は、回転軸RAを中心に回転する軸100と、軸100を支える軸受部217が設けられ軸100の少なくも一端側に設けられた第1永久磁石210と、を有している。
 このとき、第1永久磁石210は軸側(軸100が設けられた側又は配置された側をいう)と反軸側(軸100が配置された側とは反対の側をいう)とに着磁されている。
 固定部は、第2永久磁石220を有している。
 この第2永久磁石220は、第1永久磁石210に面した側が第1永久磁石210の反軸側の磁極と同極となるよう着磁されており(別言すると、回転部を構成する第1永久磁石210と固定部を構成する第2永久磁石220との間では、互いに対向する面で同極となるよう着磁されている)、第1永久磁石210との間で互いに磁力反発し第1永久磁石210と非接触状態となるようにして軸100上に設けられている。
As shown in FIG. 1, a rotating device 1 according to Embodiment A1 includes a "rotating part (reference numerals omitted)" that rotates about a rotation axis RA, and a relatively fixed state with respect to the rotation of the rotating part. It is provided with a fixed part (reference numerals omitted).
The rotating portion has a shaft 100 that rotates around a rotation axis RA, and a first permanent magnet 210 that is provided with a bearing portion 217 that supports the shaft 100 and that is provided on at least one end side of the shaft 100 .
At this time, the first permanent magnet 210 is attached to the shaft side (the side on which the shaft 100 is provided or arranged) and the opposite shaft side (the side opposite to the side on which the shaft 100 is arranged). magnetized.
The stationary part has a second permanent magnet 220 .
The second permanent magnet 220 is magnetized so that the side facing the first permanent magnet 210 has the same polarity as the magnetic pole on the opposite axis side of the first permanent magnet 210 (in other words, the second permanent magnet 220 constituting the rotating portion). The first permanent magnet 210 and the second permanent magnet 220 constituting the fixed portion are magnetized so that their opposing surfaces have the same polarity), and the first permanent magnet 210 and the first permanent magnet 210 magnetically repel each other. It is provided on the shaft 100 so as to be in non-contact with the first permanent magnet 210 .
 なお、本明細書において、第1永久磁石210における「軸側の面」のことを「第1面211」と、「反軸側の面」のことを「第2面212」と言い換えることができる。また、第2永久磁石220における「第1永久磁石210に面した側の面」のことを「第3面221」と、「第1永久磁石210に面した側とは反対側の面」のことを「第4面222」と言い換えることができる。さらに、逆の言い換えについても相互に可能である。 In this specification, the "axis-side surface" of the first permanent magnet 210 can be called the "first surface 211", and the "opposite-axis surface" can be called the "second surface 212". can. In addition, "the surface on the side facing the first permanent magnet 210" of the second permanent magnet 220 is referred to as "the third surface 221", and "the surface opposite to the side facing the first permanent magnet 210". This can be rephrased as "fourth surface 222". Furthermore, reverse paraphrasing is also mutually possible.
 参考までに、実施形態A1に係る回転装置1を別の観点でみると、大きく分けて軸100とスラスト軸受200とを備えているとも言える。
 以下、「回転部」、「固定部」、軸100、スラスト軸受200の構成要件ごとの詳しい説明を続ける。
For reference, when the rotating device 1 according to Embodiment A1 is viewed from another point of view, it can be said that it is broadly divided into the shaft 100 and the thrust bearing 200 .
The detailed description of each component of the “rotating portion”, the “fixed portion”, the shaft 100 and the thrust bearing 200 will be continued below.
 軸100は、シャフトとも呼ばれ、回転軸RAを中心として回転するように構成されている。軸100には回転体(図示を省略)が取り付けられる。回転体は、軸100と一体になって回転軸RAを中心に回転する。 The shaft 100 is also called a shaft, and is configured to rotate about the rotation axis RA. A rotating body (not shown) is attached to the shaft 100 . The rotating body rotates integrally with the shaft 100 around the rotation axis RA.
 スラスト軸受200は、回転軸RAに平行な方向であるスラスト方向TDの荷重を受ける。スラスト方向TDの荷重はアキシャル荷重などともいう。荷重は軸100,回転体等による荷重である。スラスト軸受200は、上記した軸100の少なくとも一端側100aに配置されている。 The thrust bearing 200 receives a load in the thrust direction TD parallel to the rotation axis RA. A load in the thrust direction TD is also called an axial load. The load is the load due to the shaft 100, the rotating body, and the like. The thrust bearing 200 is arranged on at least one end side 100a of the shaft 100 described above.
 スラスト軸受200は、軸100の一端側100aに接続された第1永久磁石210と、第1永久磁石210からみて軸100が配置された側とは反対側に配置された第2永久磁石220とを具備している。
 第1永久磁石210は、第1磁極(図の例ではS極。以下同様)が配された第1面211、及び、第1面211とは反対側に位置し第2磁極(図の例ではN極。以下同様)が配された第2面212を有している。第1永久磁石210は、軸100と一体となって軸100の回転軸RAと同軸上で回転するよう構成されている。
 第2永久磁石220は、第1永久磁石210の第2面212に対向するように位置し第2磁極(N極)が配された第3面221、及び、第3面221とは反対側に位置し第1磁極(S極)が配された第4面222を有している。第2永久磁石220は、所与の固定部に固定される。
The thrust bearing 200 comprises a first permanent magnet 210 connected to one end side 100a of the shaft 100, and a second permanent magnet 220 arranged on the opposite side of the first permanent magnet 210 to the side on which the shaft 100 is arranged. is equipped with
The first permanent magnet 210 has a first surface 211 on which a first magnetic pole (the S pole in the example of the drawing; the same applies hereinafter) and a second magnetic pole (the example in the drawing) located on the opposite side of the first surface 211 has a second surface 212 on which an N pole is arranged. The first permanent magnet 210 is configured to rotate integrally with the shaft 100 coaxially with the rotation axis RA of the shaft 100 .
The second permanent magnet 220 is positioned to face the second surface 212 of the first permanent magnet 210 and has a third surface 221 on which the second magnetic pole (N pole) is arranged, and a side opposite to the third surface 221. and has a fourth surface 222 on which a first magnetic pole (south pole) is arranged. A second permanent magnet 220 is fixed to a given fixed part.
 第1永久磁石210と第2永久磁石220とは、荷重側対向面215である第2面212、及び、受け側対向面225である第3面221が互いに対向するようして、同軸的に配置されて1つのスラスト軸受200を構成している。 The first permanent magnet 210 and the second permanent magnet 220 are arranged coaxially so that the second surface 212, which is the load-side facing surface 215, and the third surface 221, which is the receiving-side facing surface 225, face each other. They are arranged to constitute one thrust bearing 200 .
 なお、第1磁極と第2磁極とは互いに逆の極性を有する磁極同士となっている。実施形態A1では仮に第1磁極をS極とし第2磁極をN極として図示及び説明をしている。
 また、第1永久磁石210は、第1永久磁石210に配される第1磁極(S極)の中心が回転軸RAと略同軸となるように構成されていることが好ましい。同様に、第2永久磁石220は、第2永久磁石220に配される第1磁極(S極)の中心が回転軸RAと略同軸となるように構成されていることが好ましい。
The first magnetic pole and the second magnetic pole are magnetic poles having polarities opposite to each other. In the embodiment A1, it is assumed that the first magnetic pole is the S pole and the second magnetic pole is the N pole.
Also, the first permanent magnet 210 is preferably configured such that the center of the first magnetic pole (S pole) arranged in the first permanent magnet 210 is substantially coaxial with the rotation axis RA. Similarly, the second permanent magnet 220 is preferably configured such that the center of the first magnetic pole (S pole) arranged in the second permanent magnet 220 is substantially coaxial with the rotation axis RA.
 ここで、第1永久磁石210の第2面212の上では、回転軸RAの位置は空隙/空間となっておらず、回転軸RAの位置においてもその部材(永久磁石の部材)が存在し、かつ、回転軸RAの位置において磁力線が集中するように第2磁極(N極)が配されている。
 また、第2永久磁石220の第3面221の上では、回転軸RAの位置は空隙/空間となっておらず、回転軸RAの位置においてもその部材(永久磁石の部材)が存在し、かつ、回転軸RAの位置において磁力線が集中するように第2磁極(N極)が配されている。
Here, on the second surface 212 of the first permanent magnet 210, the position of the rotation axis RA is not an air gap/space, and the member (the member of the permanent magnet) is present even at the position of the rotation axis RA. Moreover, the second magnetic pole (N pole) is arranged so that the lines of magnetic force are concentrated at the position of the rotation axis RA.
In addition, on the third surface 221 of the second permanent magnet 220, the position of the rotation axis RA is not an air gap/space, and the member (permanent magnet member) exists even at the position of the rotation axis RA, In addition, the second magnetic pole (N pole) is arranged so that the lines of magnetic force are concentrated at the position of the rotation axis RA.
 実施形態A1において、第2面212及び第3面221は、回転軸RA上に直交する面であり、回転軸RAに沿ってみたときには円形となっている。ここでの第2面212及び第3面221は、それぞれ平坦であり対向面の面積は同じとなっており互いに同一形状の面として説明しているが、これに限定されるものではない。なお、第1永久磁石210と第2永久磁石220とは、互いに異なる材料のものであったり互いに異なる構造のものとして設定してもよい。 In the embodiment A1, the second surface 212 and the third surface 221 are surfaces orthogonal to the rotation axis RA, and are circular when viewed along the rotation axis RA. Here, the second surface 212 and the third surface 221 are each flat, have the same area of the opposing surfaces, and are described as surfaces having the same shape, but are not limited to this. The first permanent magnet 210 and the second permanent magnet 220 may be made of different materials or may have different structures.
 実施形態A1の回転装置1の使用態様の1つとして、軸100及びスラスト軸受200は回転軸RAの延びる方向が鉛直方向と略同じ方向となるように配置されていることが好ましい。ここで「鉛直方向」とは、重力加速度が向かう方向(重力gが向かう方向。図1参照)と平行な方向をいうものとする。 As one mode of use of the rotating device 1 of Embodiment A1, the shaft 100 and the thrust bearing 200 are preferably arranged so that the direction in which the rotating shaft RA extends is substantially the same as the vertical direction. Here, the “vertical direction” refers to a direction parallel to the direction of gravitational acceleration (the direction of gravity g; see FIG. 1).
 また、回転装置1の使用態様の1つとして、軸100に所与の回転体が取り付けられて当該軸100に対しスラスト方向TDの荷重が課せられたとき、軸100が、第1永久磁石210の第2面212と第2永久磁石220の第3面221との間がギャップGP1をもって離間するようにして鉛直上向き(重力gが向かう方向とは逆の方向)に浮上して、回転するように構成されていることが好ましい。 Further, as one mode of use of the rotating device 1, when a given rotating body is attached to the shaft 100 and a load in the thrust direction TD is applied to the shaft 100, the shaft 100 will move toward the first permanent magnet 210. The second surface 212 of the second permanent magnet 220 and the third surface 221 of the second permanent magnet 220 are spaced apart from each other with a gap GP1 so that the second surface 212 floats vertically upward (in the opposite direction to the direction of gravity g) and rotates. is preferably configured to
2.実施形態A1に係る回転装置2の作用・効果
(1)実施形態A1に係る回転装置1において、回転部を構成する第1永久磁石210と固定部を構成する第2永久磁石220との間では互いに対向する面で同極となるようそれぞれ着磁されている。このため、互いに対向する面の間に磁気的な反発力(斥力)が生じ、
第2永久磁石220は第1永久磁石との間で互いに磁力反発し、第2永久磁石220は第1永久磁石と非接触状態となる。したがって、回転部が回転したときに生ずる摩擦抵抗をほぼ0とすることができ、回転時の摩擦抵抗に起因した負荷(回転負荷)も低減することができる。そして、ひいてはエネルギー損失の低減を図ることができる。
2. Functions and Effects of Rotating Device 2 According to Embodiment A1 (1) In the rotating device 1 according to Embodiment A1, between the first permanent magnet 210 forming the rotating portion and the second permanent magnet 220 forming the fixed portion, The surfaces facing each other are magnetized to have the same polarity. Therefore, a magnetic repulsive force (repulsive force) is generated between the surfaces facing each other,
The second permanent magnet 220 magnetically repels the first permanent magnet, and the second permanent magnet 220 is out of contact with the first permanent magnet. Therefore, the frictional resistance generated when the rotating portion rotates can be made almost zero, and the load (rotational load) caused by the frictional resistance during rotation can also be reduced. And, as a result, energy loss can be reduced.
 また、回転装置1においては、第2永久磁石220は回転軸RA上に設けられており、かつ、第2永久磁石220と対向している第1永久磁石210についても回転軸RA上に設けられている。よって、回転軸RAの位置で互いの磁力線が集中するようになっており、第1永久磁石210及び第2永久磁石220の間の斥力は回転軸RA付近で最大となる。したがって、回転軸RAを中心に回転部を滑らかに回転させることができ、エネルギー損失の低減に寄与することができる。 Further, in the rotating device 1, the second permanent magnet 220 is provided on the rotation axis RA, and the first permanent magnet 210 facing the second permanent magnet 220 is also provided on the rotation axis RA. ing. Therefore, the magnetic lines of force are concentrated at the position of the rotation axis RA, and the repulsive force between the first permanent magnet 210 and the second permanent magnet 220 is maximized near the rotation axis RA. Therefore, the rotating part can be smoothly rotated around the rotation axis RA, which can contribute to the reduction of energy loss.
(2)また別の観点から説明すると、実施形態A1に係る回転装置1においては、第2面212及び第3面221が、それぞれ回転軸RAの位置で磁力線が集中するように同じ極性の第2磁極が配されて対面している。このため、第2面212及び第3面221の間には磁気的な反発力(斥力)が生じ、かかる斥力により第1永久磁石210はギャップGP1をもって第2永久磁石220から離間して浮上する。第1永久磁石210は第2永久磁石220との間で非接触となるため、第1永久磁石210、軸100及び回転体が回転したときに生ずる摩擦抵抗(スラスト軸受200による摩擦抵抗)をほぼ0とすることができ、回転時の摩擦抵抗に起因した負荷(回転負荷)も低減することができる。そして、ひいてはエネルギー損失の低減を図ることができる。 (2) Explained from another point of view, in the rotating device 1 according to Embodiment A1, the second surface 212 and the third surface 221 each have the same polarity as the magnetic field lines so that the lines of magnetic force are concentrated at the position of the rotation axis RA. Two magnetic poles are arranged to face each other. Therefore, a magnetic repulsive force (repulsive force) is generated between the second surface 212 and the third surface 221, and the repulsive force causes the first permanent magnet 210 to levitate away from the second permanent magnet 220 with the gap GP1. . Since the first permanent magnet 210 is out of contact with the second permanent magnet 220, the frictional resistance (frictional resistance by the thrust bearing 200) generated when the first permanent magnet 210, the shaft 100, and the rotating body rotate is almost equal to 0, and the load (rotational load) caused by the frictional resistance during rotation can also be reduced. And, as a result, energy loss can be reduced.
 また、回転装置1は、回転軸RAの位置で互いの磁力線が集中するよう構成されているため、第1永久磁石210及び第2永久磁石220の間の斥力は回転軸RA付近で最大となる。したがって、回転軸RAを中心に第1永久磁石210、軸100及び回転体を滑らかに回転させることができ、エネルギー損失の低減に寄与することができる。 Further, since the rotating device 1 is configured such that the mutual magnetic lines of force are concentrated at the position of the rotation axis RA, the repulsive force between the first permanent magnet 210 and the second permanent magnet 220 becomes maximum near the rotation axis RA. . Therefore, the first permanent magnet 210, the shaft 100, and the rotating body can be smoothly rotated about the rotation axis RA, which contributes to the reduction of energy loss.
 上記のとおり実施形態A1に係る回転装置1によれば、回転時の摩擦抵抗に起因した負荷(回転負荷)を低減することができ、ひいては、エネルギー損失を低減することができる As described above, according to the rotating device 1 according to Embodiment A1, it is possible to reduce the load (rotational load) caused by the frictional resistance during rotation, which in turn reduces the energy loss.
(3)回転装置1では、スラスト方向TDの荷重が集中する回転軸RAの位置で斥力が最大になることから、回転軸RA付近で効率的に斥力を発生させることができる。このため、たとえ軸100及び回転体が重量物であったとしても、大掛かりな構造を採用せずとも、斥力を適宜調節することにより比較的容易に非接触の軸受を実現でき、かつ、回転時の摩擦抵抗に起因した負荷(回転負荷)を低減しエネルギー損失を低減することができる。 (3) In the rotating device 1, since the repulsive force is maximized at the position of the rotating shaft RA where the load in the thrust direction TD concentrates, the repulsive force can be efficiently generated near the rotating shaft RA. Therefore, even if the shaft 100 and the rotating body are heavy, a non-contact bearing can be relatively easily realized by appropriately adjusting the repulsive force without adopting a large-scale structure. It is possible to reduce the load (rotational load) caused by the frictional resistance of and reduce the energy loss.
(4)実施形態A1に係る回転装置1において、軸100及びスラスト軸受200を、回転軸RAの延びる方向を鉛直方向と略同じ方向となるように配置すると、軸100及び回転体は重力gに反発して浮上することとなるため、スラスト方向TDの軸受の摩擦抵抗・回転負荷を低減することができる。またこの場合に、軸100及び回転体は、鉛直方向(重力g)と同じ方向を中心に回転することから、回転軸RAが鉛直方向とは異なる方向にセッティングされている場合(横置き・斜め置きされている場合)に比べて、より安定的な回転を得ることができ、かつ、ラジアル方向RDの軸受の摩擦抵抗についても極めて小さくすることができる。
 よって、軸100及びスラスト軸受200を回転軸RAの延びる方向が鉛直方向と略同じ方向となるように配置することにより、軸100及び回転体を横置き・斜め置き等する場合に比べて、回転体の回転エネルギーの損失を更に抑えることができる。
(4) In the rotating device 1 according to Embodiment A1, when the shaft 100 and the thrust bearing 200 are arranged so that the direction in which the rotating shaft RA extends is substantially the same as the vertical direction, the shaft 100 and the rotating body are subjected to gravity g. Since it repels and floats, it is possible to reduce the frictional resistance and rotational load of the bearing in the thrust direction TD. Further, in this case, since the shaft 100 and the rotating body rotate about the same direction as the vertical direction (gravity g), when the rotation axis RA is set in a direction different from the vertical direction (horizontal, oblique ), more stable rotation can be obtained, and the frictional resistance of the bearing in the radial direction RD can be made extremely small.
Therefore, by arranging the shaft 100 and the thrust bearing 200 such that the direction in which the rotation axis RA extends is substantially the same as the vertical direction, the rotation of the shaft 100 and the rotating body is reduced compared to the case where the shaft 100 and the rotating body are placed horizontally or diagonally. Loss of body rotational energy can be further reduced.
[実施形態A2]
 図2は、実施形態A2に係る回転装置2を説明するために示す図である。図2(a)は図1に対応した模式的な断面図であり、図2(b)は第1永久磁石210及び第1ヨーク230を分解したときの斜視図であり、図2(c)は第2永久磁石220及び第2ヨーク240を分解したときの斜視図である。
[Embodiment A2]
FIG. 2 is a diagram for explaining the rotating device 2 according to Embodiment A2. 2(a) is a schematic cross-sectional view corresponding to FIG. 1, FIG. 2(b) is an exploded perspective view of the first permanent magnet 210 and the first yoke 230, and FIG. 2(c). 4] is a perspective view when the second permanent magnet 220 and the second yoke 240 are disassembled. [Fig.
 実施形態A2に係る回転装置2は基本的には実施形態A1に係る回転装置1と同様の構成を有するが、第1ヨーク230及び第2ヨーク240を更に具備し、これらも含めてスラスト軸受200’を構成している点において実施形態A1に係る回転装置1と異なる。 The rotating device 2 according to Embodiment A2 basically has the same configuration as the rotating device 1 according to Embodiment A1, but further includes a first yoke 230 and a second yoke 240. ' is different from the rotating device 1 according to the embodiment A1.
1.実施形態A2に係る回転装置2の構成
 実施形態A2のスラスト軸受200’は、第1永久磁石210と対になって磁気回路を構成する第1ヨーク230と、第2永久磁石220と対になって磁気回路を構成する第2ヨーク240とを更に具備する《図2(a)参照》。
 第1ヨーク230及び第2ヨーク240は、それぞれ軟磁性体からなる。
1. Configuration of Rotating Device 2 According to Embodiment A2 A thrust bearing 200′ according to Embodiment A2 includes a first yoke 230 paired with a first permanent magnet 210 to form a magnetic circuit, and a second permanent magnet 220 paired with the first yoke 230 to form a magnetic circuit. and a second yoke 240 forming a magnetic circuit (see FIG. 2(a)).
The first yoke 230 and the second yoke 240 are each made of a soft magnetic material.
 第1ヨーク230は、図2(b)に示すように、一方の側が開口した筒状胴部232と該筒状胴部232の他方の側に連成された底部234とを有する有底円筒形をなしている。
 第1ヨーク230は、底部234及び筒状胴部232により第1永久磁石210の第1面211及び側面213を取り囲むようにして内部に同軸的に第1永久磁石210を収容している。底部234の内底面236は、第1永久磁石210の第1面211と当接している。筒状胴部232の内壁面235と第1永久磁石210の側面213との間は空気層(空間)又は非磁性体290で埋められている《図1(a)も併せて参照》。
 第1永久磁石210と軸100とは何等かの形で結合されている。ここでは、第1永久磁石210が第1ヨーク230に収容されて一体になりつつ、第1ヨーク230の底部234と軸100の一端側が接続され、全体として一体的に接続されている。
 第1ヨーク230の筒状胴部232の開口側の口縁面237と第1永久磁石210の第2面212とにより略同一の平面である「荷重側対向面215」を形成している。
As shown in FIG. 2(b), the first yoke 230 is a bottomed cylinder having a cylindrical body portion 232 open on one side and a bottom portion 234 connected to the other side of the cylindrical body portion 232. shaped.
The first yoke 230 coaxially accommodates the first permanent magnet 210 inside so as to surround the first surface 211 and the side surface 213 of the first permanent magnet 210 with the bottom portion 234 and the cylindrical body portion 232 . An inner bottom surface 236 of the bottom portion 234 is in contact with the first surface 211 of the first permanent magnet 210 . The space between the inner wall surface 235 of the tubular body 232 and the side surface 213 of the first permanent magnet 210 is filled with an air layer (space) or a non-magnetic material 290 (see also FIG. 1(a)).
The first permanent magnet 210 and the shaft 100 are connected in some way. Here, the first permanent magnet 210 is housed in the first yoke 230 and integrated, and the bottom 234 of the first yoke 230 and the one end side of the shaft 100 are connected to be integrally connected as a whole.
The rim surface 237 on the opening side of the cylindrical body portion 232 of the first yoke 230 and the second surface 212 of the first permanent magnet 210 form a "load-side facing surface 215" that is substantially the same plane.
 同様に第2ヨーク240は、図2(c)に示すように、一方の側が開口した筒状胴部242と該筒状胴部242の他方の側に連成された底部244とを有する有底円筒形をなしている。
 第2ヨーク240は、底部244及び筒状胴部242により第2永久磁石220の第4面222及び側面223を取り囲むようにして内部に第2永久磁石220を収容している。底部244の内底面246は第2永久磁石220の第4面222と当接している。筒状胴部242の内壁面245と第2永久磁石220の側面223との間は空気層(空間)又は非磁性体290で埋められている《図1(a)も併せて参照》。
 第2ヨーク240及び第2永久磁石220は何等かの形で所与の固定部に固定される。
 第2ヨーク240の筒状胴部242の口縁面247と第2永久磁石220の第3面221とにより略同一の平面である「受け側対向面225」を形成している。
Similarly, the second yoke 240 has, as shown in FIG. It has a cylindrical bottom.
The second yoke 240 accommodates the second permanent magnet 220 inside so as to surround the fourth surface 222 and the side surface 223 of the second permanent magnet 220 with the bottom portion 244 and the cylindrical body portion 242 . An inner bottom surface 246 of the bottom portion 244 contacts the fourth surface 222 of the second permanent magnet 220 . The space between the inner wall surface 245 of the tubular body 242 and the side surface 223 of the second permanent magnet 220 is filled with an air layer (space) or a non-magnetic material 290 (see also FIG. 1(a)).
The second yoke 240 and the second permanent magnet 220 are somehow fixed to a given fixture.
The rim surface 247 of the cylindrical body portion 242 of the second yoke 240 and the third surface 221 of the second permanent magnet 220 form a "receiving side facing surface 225" that is substantially the same plane.
 第1永久磁石210及び第1ヨーク230のセットと、第2永久磁石220及び第2ヨーク240のセットとは、荷重側対向面215及び受け側対向面225が互いに対向するようして、同軸的に配置されて1つのスラスト軸受200’を構成している。 The set of the first permanent magnet 210 and the first yoke 230 and the set of the second permanent magnet 220 and the second yoke 240 are coaxially arranged such that the load side facing surface 215 and the receiving side facing surface 225 face each other. are arranged to constitute one thrust bearing 200'.
2.実施形態A2に係る回転装置2の作用・効果
 第1ヨーク230において、底部234の内底面236は第1永久磁石210の第1面211と当接すると共に筒状胴部232の内壁面235と第1永久磁石210の側面213との間は空気層(空間)又は非磁性体290で埋められている。こうして第1ヨーク230は第1永久磁石210と磁気的に結合して磁気回路の一部を構成している。
 このような構成となっているため、第1永久磁石210の第2面212の第2磁極(N極)からギャップGP1に向けて放出された磁力線は、第1ヨーク230の口縁面237に収束するようにして集まり、当該磁力線は第1ヨークの内部を通過して第1永久磁石210の第1面の第1磁極(S極)に至ることとなる。
2. Functions and Effects of the Rotating Device 2 According to Embodiment A2 In the first yoke 230, the inner bottom surface 236 of the bottom portion 234 contacts the first surface 211 of the first permanent magnet 210, and the inner wall surface 235 of the cylindrical body portion 232 and the first yoke 230 contact each other. A space between the permanent magnet 210 and the side surface 213 is filled with an air layer (space) or a non-magnetic material 290 . In this way, the first yoke 230 is magnetically coupled with the first permanent magnet 210 to form part of a magnetic circuit.
With such a configuration, the magnetic lines of force emitted from the second magnetic pole (N pole) of the second surface 212 of the first permanent magnet 210 toward the gap GP1 reach the edge surface 237 of the first yoke 230. The lines of magnetic force gather in a converging manner, pass through the inside of the first yoke, and reach the first magnetic pole (S pole) on the first surface of the first permanent magnet 210 .
 同様に第2ヨーク240においても、底部244の内底面246は第2永久磁石220の第4面222と当接すると共に筒状胴部242の内壁面245と第2永久磁石220の側面223との間は空気層(空間)又は非磁性体290で埋められている。こうして第2ヨーク240は第2永久磁石220と磁気的に結合して磁気回路の一部を構成している。
 このような構成となっているため、第2永久磁石220の第3面221の第2磁極(N極)からギャップGP1に向けて放出された磁力線は、第2ヨーク240の口縁面247に収束するようにして集まり、当該磁力線は第2ヨークの内部を通過して第2永久磁石220の第4面の第1磁極(S極)に至ることとなる。
Similarly, in the second yoke 240 as well, the inner bottom surface 246 of the bottom portion 244 is in contact with the fourth surface 222 of the second permanent magnet 220, and the inner wall surface 245 of the cylindrical body portion 242 and the side surface 223 of the second permanent magnet 220 are in contact with each other. The space is filled with an air layer (space) or a non-magnetic material 290 . In this way, the second yoke 240 is magnetically coupled with the second permanent magnet 220 to form part of the magnetic circuit.
With such a configuration, the magnetic lines of force emitted from the second magnetic pole (N pole) of the third surface 221 of the second permanent magnet 220 toward the gap GP1 reach the edge surface 247 of the second yoke 240. The magnetic lines of force converge and gather, passing through the inside of the second yoke and reaching the first magnetic pole (S pole) on the fourth surface of the second permanent magnet 220 .
 このように磁力線を、第1永久磁石210及び第1ヨーク230、並びに、第2永久磁石220及び第2ヨーク240にそれぞれ集中的に高密度で通過させることができるため、荷重側対向面215~受け側対向面225《図2(a)参照》の間の斥力を更に高めることができる。したがって、より質量が大きい重量物でも対応できるスラスト軸受200’とすることができ、より質量の大きな軸100及び回転体であっても回転負荷を低減し、回転時の摩擦抵抗に起因したエネルギー損失の低減を図ることができる。 In this manner, the magnetic lines of force can be passed through the first permanent magnet 210 and the first yoke 230, and the second permanent magnet 220 and the second yoke 240 intensively and at high density. The repulsive force between the receiving side facing surface 225 (see FIG. 2(a)) can be further increased. Therefore, the thrust bearing 200' can cope with a heavy object having a larger mass, and even if the shaft 100 and the rotating body have a larger mass, the rotational load can be reduced, and the energy loss caused by the frictional resistance during rotation can be reduced. can be reduced.
 実施形態A2に係る回転装置2は、第1ヨーク230及び第2ヨーク240を備える以外の点においては、実施形態A1に係る回転装置1と基本的に同様の構成を有する。そのため、実施形態A1に係る回転装置1が有する効果のうち該当する効果を同様に有する。 The rotating device 2 according to the embodiment A2 has basically the same configuration as the rotating device 1 according to the embodiment A1, except that the first yoke 230 and the second yoke 240 are provided. Therefore, among the effects of the rotating device 1 according to the embodiment A1, the corresponding effects are similarly obtained.
[実施形態A3]
 図3は、実施形態A3に係る回転装置3を説明するために示す図である。
 実施形態A3に係る回転装置3は基本的には実施形態A1に係る回転装置1及び実施形態A2に係る回転装置2と同様の構成を有するが、ラジアル軸受300を更に備えた点において実施形態A1に係る回転装置1及び実施形態A2に係る回転装置2とは異なる。
[Embodiment A3]
FIG. 3 is a diagram for explaining the rotating device 3 according to Embodiment A3.
The rotating device 3 according to the embodiment A3 basically has the same configuration as the rotating device 1 according to the embodiment A1 and the rotating device 2 according to the embodiment A2. and the rotating device 2 according to Embodiment A2.
 実施形態A3に係る回転装置3は、ラジアル方向RD(軸100に垂直な方向)の荷重を受けるラジアル軸受300を更に備える。例えば図3に示すように、ラジアル軸受300としてボールベアリングを採用し、当該ボールベアリングを軸100の回転軸RA方向の2箇所に配置することによりラジアル方向RDの荷重を受けるように構成してもよい(図3の符号300a,300b参照)。
 ラジアル軸受300としては、ボールベアリングの代わりに、軸100の回転とラジアル方向RDへの軸方向のスライドにも対応できるいわゆるスライドブッシュやリニアブッシュを採用してもよい。また、それらの他、磁性流体をラジアル方向RDに当てがうようにしてラジアル軸受300を構成してもよい。
The rotating device 3 according to Embodiment A3 further includes a radial bearing 300 that receives a load in the radial direction RD (direction perpendicular to the shaft 100). For example, as shown in FIG. 3, a ball bearing may be employed as the radial bearing 300, and the ball bearings may be arranged at two locations along the rotation axis RA direction of the shaft 100 so as to receive a load in the radial direction RD. Good (see reference numerals 300a and 300b in FIG. 3).
As the radial bearing 300, instead of a ball bearing, a so-called slide bush or linear bush that can cope with both the rotation of the shaft 100 and the axial slide in the radial direction RD may be employed. In addition to these, the radial bearing 300 may be configured such that the magnetic fluid is applied in the radial direction RD.
 このように、実施形態A1又はA2に係る回転装置1又は2に対して、更にラジアル軸受300を設けることにより、軸100及び回転体は更に安定した回転を得ることができ、エネルギー損失をより低減することができる。 Thus, by further providing the radial bearing 300 to the rotating device 1 or 2 according to Embodiment A1 or A2, the shaft 100 and the rotating body can be rotated more stably, and energy loss can be further reduced. can do.
 実施形態A3に係る回転装置3は、ラジアル軸受300を備える以外の点においては、実施形態A1に係る回転装置1及び実施形態A2に係る回転装置2と基本的に同様の構成を有する。そのため、実施形態A1に係る回転装置1及び実施形態A2に係る回転装置2が有する効果のうち該当する効果を同様に有する。 The rotating device 3 according to the embodiment A3 has basically the same configuration as the rotating device 1 according to the embodiment A1 and the rotating device 2 according to the embodiment A2 except that the radial bearing 300 is provided. Therefore, the rotating device 1 according to the embodiment A1 and the rotating device 2 according to the embodiment A2 have the same effect.
[実施形態A4]
 図4は、実施形態A4に係る回転装置4を説明するために示す図である。
 実施形態A4に係る回転装置4は基本的には実施形態A1~A3に係る各回転装置1~3と同様の構成を有するが、別のスラスト軸受400を更に備えた点において実施形態A1~A3に係る各回転装置1~3とは異なる。
[Embodiment A4]
FIG. 4 is a diagram shown for explaining the rotating device 4 according to Embodiment A4.
The rotating device 4 according to Embodiment A4 basically has the same configuration as each of the rotating devices 1 to 3 according to Embodiments A1 to A3, but is different from Embodiments A1 to A3 in that another thrust bearing 400 is further provided. It is different from each rotating device 1 to 3 according to.
 実施形態A4に係る回転装置4は、図4に示すように、軸100の他端側(図面の上側)においても、一端側(図面の下側)に配置されたスラスト軸受200と同様の構成を有する別のスラスト軸受400が配置されている。このとき、所与の回転体(ここでは一例としてタービン530)は、軸100に取り付けられて、スラスト軸受200と別のスラスト軸受400との間に配置されるよう構成されている。
 別のスラスト軸受400の構成は、基本的にスラスト軸受200と同様の構成を取っており、軸100の他端側に接続された第1永久磁石410及び該第1永久磁石410と対になって磁気回路を構成する第1ヨーク430と、所与の固定部に間接的に固定された第2永久磁石420及び該第2永久磁石420と対になって磁気回路を構成する第2ヨーク440と、を備えている。第1永久磁石410と第2永久磁石420との間はギャップGP2をもって離間されている。
As shown in FIG. 4, the rotating device 4 according to Embodiment A4 has the same configuration as the thrust bearing 200 arranged on the one end side (lower side of the drawing) on the other end side (upper side of the drawing) of the shaft 100 as well. Another thrust bearing 400 is arranged with a At this time, a given rotating body (here, turbine 530 as an example) is configured to be mounted on shaft 100 and arranged between thrust bearing 200 and another thrust bearing 400 .
Another thrust bearing 400 basically has the same configuration as the thrust bearing 200, and includes a first permanent magnet 410 connected to the other end side of the shaft 100 and a pair of the first permanent magnet 410. a first yoke 430 forming a magnetic circuit with a second permanent magnet 420 indirectly fixed to a given fixing portion; and a second yoke 440 forming a magnetic circuit in pair with the second permanent magnet 420 and have. A gap GP2 is provided between the first permanent magnet 410 and the second permanent magnet 420 .
 実施形態A4に係る回転装置4によれば、所与の回転体が、軸100に取り付けられて、スラスト軸受200と別のスラスト軸受400との間に配置されるよう構成されている。
 つまり、軸100及び回転体(タービン530)は、軸100の一端側のスラスト軸受200及び他端側の別のスラスト軸受400によって挟まれ、スラスト方向ではフローティング状態で回転することとなる。別の言い方をすると、スラスト軸受200及び別のスラスト軸受400は、一端側及び他端側からそれぞれ斥力により中央に向かうような力で挟み込むようにして軸100や回転体の荷重を軸受している。
 例えば回転体がタービン530だったときに、流体の流れ方の変動等によりスラスト方向(図では上下方向)の荷重が変動するが、このような荷重の変動があったときでも、軸100及び回転体(タービン530)がスラスト方向にぐらつきながらシフトするのを抑えることができる。そのため安定した回転を持続することができ、スラスト方向のシフトによるエネルギー損失を抑えることができる。
According to the rotating device 4 according to Embodiment A4, a given rotating body is attached to the shaft 100 and arranged between the thrust bearing 200 and another thrust bearing 400 .
That is, the shaft 100 and the rotating body (turbine 530) are sandwiched between the thrust bearing 200 on one end side of the shaft 100 and another thrust bearing 400 on the other end side, and rotate in a floating state in the thrust direction. In other words, the thrust bearing 200 and the other thrust bearing 400 bear the load of the shaft 100 and the rotating body in such a manner that they are pinched from one end side and the other end side by a force directed toward the center due to repulsive force. .
For example, when the rotating body is the turbine 530, the load in the thrust direction (vertical direction in the figure) fluctuates due to fluctuations in the flow of fluid. It is possible to prevent the body (turbine 530) from wobbling and shifting in the thrust direction. Therefore, stable rotation can be maintained, and energy loss due to shift in the thrust direction can be suppressed.
 実施形態A4に係る回転装置4は、別のスラスト軸受400を更に備えた以外の点において実施形態A1~A3に係る各回転装置1~3と基本的に同様の構成を有する。そのため、実施形態A1~A3に係る各回転装置1~3が有する効果のうち該当する効果を同様に有する。 The rotating device 4 according to Embodiment A4 has basically the same configuration as the rotating devices 1 to 3 according to Embodiments A1 to A3 except that another thrust bearing 400 is further provided. Therefore, among the effects of the rotating devices 1 to 3 according to the embodiments A1 to A3, the corresponding effects are similarly obtained.
[実施形態A5]
 図5は、実施形態A5に係る回転装置5(態様1)を説明するために示す図である。
 図6は、実施形態A5に係る回転装置6(態様2)を説明するために示す図である。
 実施形態A5に係る回転装置5,6は基本的には実施形態A1~A4に係る各回転装置1~4と同様の構成を有するが、磁気検出部600が配設されている点において実施形態A1~A4に係る各回転装置1~4とは異なる。すなわち、回転装置5,6は、第2永久磁石220の第3面221を含む受け側対向面225の上(第2永久磁石220の第3面221,第2ヨーク240の口縁面247,またはその間を埋める空気層/非磁性体290がなす端面のいずれか)、又は、第1永久磁石210の第2面212を含む荷重側対向面215の上(第1永久磁石210の第2面212,第1ヨーク230の口縁面237,またはその間を埋める空気層/非磁性体290がなす端面のいずれか)のいずれかにおいて磁気検出部600が配設されており、かかる磁気検出部600が、受け側対向面225と荷重側対向面215との離間距離GP1の変位を検出するように構成されている。
 なお、磁気検出部600は、磁束密度の濃淡を相対的に検出することができれば如何なるものを採用してもよい。
[Embodiment A5]
FIG. 5 is a diagram for explaining the rotating device 5 (aspect 1) according to Embodiment A5.
FIG. 6 is a diagram for explaining the rotating device 6 (aspect 2) according to Embodiment A5.
The rotating devices 5 and 6 according to Embodiment A5 basically have the same configuration as the rotating devices 1 to 4 according to Embodiments A1 to A4, except that a magnetic detection unit 600 is provided. It differs from each rotating device 1 to 4 according to A1 to A4. That is, the rotating devices 5 and 6 are positioned above the receiving side facing surface 225 including the third surface 221 of the second permanent magnet 220 (the third surface 221 of the second permanent magnet 220, the edge surface 247 of the second yoke 240, or the end surface formed by the air layer/non-magnetic material 290 filling the gap), or above the load-side facing surface 215 including the second surface 212 of the first permanent magnet 210 (the second surface of the first permanent magnet 210 212, the edge surface 237 of the first yoke 230, or the end surface formed by the air layer/non-magnetic material 290 filling the gap). is configured to detect the displacement of the separation distance GP1 between the receiving side facing surface 225 and the load side facing surface 215 .
It should be noted that any magnetism detector 600 may be employed as long as it can relatively detect the intensity of the magnetic flux density.
(1)図5(a)は回転装置5の断面図を示す。図5(b)はスラスト方向TDの荷重(横軸)と磁気検出部600が検出した磁束密度(縦軸)との関係を示すグラフである。図5(c)はスラスト方向TDの荷重が比較的軽いときの磁力線(磁束密度)の様子を模式的に示す図であり、図5(d)はスラスト方向TDの荷重が比較的重いときの磁力線(磁束密度)の様子を模式的に示す図である。 (1) FIG. 5(a) shows a sectional view of the rotating device 5. FIG. FIG. 5(b) is a graph showing the relationship between the load in the thrust direction TD (horizontal axis) and the magnetic flux density (vertical axis) detected by the magnetic detector 600. FIG. FIG. 5(c) is a diagram schematically showing the state of magnetic lines of force (magnetic flux density) when the load in the thrust direction TD is relatively light, and FIG. It is a figure which shows typically the mode of a magnetic force line (magnetic flux density).
 回転装置5においては、図5(a)に示すように、磁気検出部600は受け側対向面225の上であって回転軸RA付近に配設されている。
 図5(c)に示すスラスト方向TDの荷重が比較的軽いときから(ギャップはGP1)、図5(d)に示すスラスト方向TDの荷重が比較的重いとき(ギャップはGP1’)に移行すると、磁気検出部600が配置された位置では磁束密度0点(B=0点)が近づくため、その分、磁束密度は減衰することとなる《図5(b)も併せて参照》。
 この原理を活用することにより、回転装置5は、磁気検出部600で磁束密度の変化を検出することにより、受け側対向面225と荷重側対向面215との離間距離GP1,GP1’の変位を検出し、これによりスラスト方向TDの荷重を検出することができる。さらには間接的に荷重LDの重量を測定することも可能となる。
In the rotating device 5, as shown in FIG. 5(a), the magnetic detection section 600 is arranged on the receiving side facing surface 225 and near the rotation axis RA.
When the load in the thrust direction TD shown in FIG. 5(c) is relatively light (the gap is GP1), the load in the thrust direction TD shown in FIG. 5(d) is relatively heavy (the gap is GP1'). At the position where the magnetic detection unit 600 is arranged, the magnetic flux density approaches 0 (B=0), so the magnetic flux density is attenuated accordingly (see also FIG. 5(b)).
By utilizing this principle, the rotation device 5 detects the change in the magnetic flux density with the magnetism detection unit 600, thereby detecting the displacement of the separation distances GP1 and GP1' between the receiving-side facing surface 225 and the load-side facing surface 215. It is possible to detect the load in the thrust direction TD. Furthermore, it becomes possible to indirectly measure the weight of the load LD.
(2)図6(a)は回転装置6の断面図を示す。図6(b)はスラスト方向TDの荷重(横軸)と磁気検出部600が検出した磁束密度(縦軸)との関係を示すグラフである。 (2) FIG. 6(a) shows a sectional view of the rotating device 6. FIG. FIG. 6(b) is a graph showing the relationship between the load in the thrust direction TD (horizontal axis) and the magnetic flux density (vertical axis) detected by the magnetic detector 600. FIG.
 回転装置6においては、図6(a)に示すように、磁気検出部600は受け側対向面225の上であって第2ヨーク240の縁(口縁面247)付近に配設されている。
 スラスト方向TDの荷重が比較的軽いときから、スラスト方向TDの荷重が比較的重いときに移行すると、磁気検出部600が配置された位置では回転装置5とは逆に磁束密度が増加することとなる《図6(b)参照》。
 荷重の変化と磁束密度の変化との関係は、回転装置5の場合とは異なるが、いずれにしても回転装置6は、磁気検出部600で磁束密度の変化を検出することにより、受け側対向面225と荷重側対向面215との離間距離の変位を検出し、これによりスラスト方向TDの荷重を検出することができる。さらには間接的に荷重LDの重量を測定し、重量に応じて軸100の最大回転数制御を行ったり、地震、天災による異常な重量を測定することで安全を維持するための回転抑制を行ったりすることが可能となる。
In the rotating device 6, as shown in FIG. 6(a), the magnetic detector 600 is arranged on the receiving side facing surface 225 and near the edge of the second yoke 240 (rim surface 247). .
When the load in the thrust direction TD shifts from a relatively light load in the thrust direction TD to a relatively heavy load in the thrust direction TD, the magnetic flux density increases at the position where the magnetic detector 600 is arranged, contrary to the rotation device 5. <<Refer to FIG. 6(b)>>.
The relationship between the change in load and the change in magnetic flux density is different from that in the case of the rotating device 5, but in any case, the rotating device 6 detects the change in the magnetic flux density with the magnetism detecting section 600, thereby detecting the receiving side opposing magnetic flux density. By detecting the displacement of the distance between the surface 225 and the load-side facing surface 215, the load in the thrust direction TD can be detected. Furthermore, the weight of the load LD is indirectly measured, and the maximum rotation speed of the shaft 100 is controlled according to the weight. It becomes possible to
 実施形態A5に係る回転装置5,6は磁気検出部600が配設されている以外の点において実施形態A1~A4に係る各回転装置1~4と基本的に同様の構成を有する。そのため、実施形態A1~A4に係る各回転装置1~4が有する効果のうち該当する効果を同様に有する。 The rotating devices 5 and 6 according to Embodiment A5 have basically the same configuration as the rotating devices 1 to 4 according to Embodiments A1 to A4, except that the magnetic detector 600 is provided. Therefore, among the effects of the rotating devices 1 to 4 according to the embodiments A1 to A4, the corresponding effects are similarly obtained.
[応用例]
 図7は、応用例に係る回転装置710を説明するために示す図である。図8は、応用例に係る回転装置711を説明するために示す図である。図9は、応用例に係る回転装置712を説明するために示す図である。
[Application example]
FIG. 7 is a diagram for explaining a rotating device 710 according to an application. FIG. 8 is a diagram for explaining a rotating device 711 according to an application. FIG. 9 is a diagram for explaining a rotating device 712 according to an application.
(1)各実施形態に係る回転装置は適宜の応用が可能である。例えば図7に示すように、回転軸RAの方向を重力gの向く方向と同じとし、軸100の他端側に回転体500としてのフライホイール510を設けるといった応用をすることができる。本発明の各回転装置は、回転負荷が極めて小さく、かつ、回転時の摩擦抵抗に起因したエネルギー損失も小さいことから、例えばフライホイール510を回転体500として畜エネルギーを行うような応用には好適である。 (1) Appropriate applications are possible for the rotating device according to each embodiment. For example, as shown in FIG. 7, the direction of the rotation axis RA can be the same as the direction of gravity g, and a flywheel 510 as a rotating body 500 can be provided on the other end side of the shaft 100 . Each rotating device of the present invention has a very small rotating load and a small energy loss due to frictional resistance during rotation. is.
(2)また、図8に示すように、モータ等の電動装置のロータ520を本発明における回転体500として応用することもできる。比較的質量の大きな重量物としての電動装置であっても、本発明の回転装置として重力gに逆らうように浮上させて回転させることにより、回転負荷を低減しかつエネルギー損失を低減することができる。
 なお、符号522はロータ520に属する永久磁石であり、符号524はステータに属するコイルであり、符号526はバックヨークを示している。
(2) As shown in FIG. 8, a rotor 520 of an electric device such as a motor can also be applied as the rotating body 500 of the present invention. Even an electric device as a heavy object with a relatively large mass can be levitated and rotated against the gravity g as the rotating device of the present invention, thereby reducing the rotational load and energy loss. .
Reference numeral 522 denotes a permanent magnet belonging to the rotor 520, reference numeral 524 denotes a coil belonging to the stator, and reference numeral 526 denotes a back yoke.
(3)また、図9に示すように、例えば垂直型の風力発電に用いるタービン530を本発明における回転体500として応用することもできる。比較的質量の大きな重量物としてのタービン530であっても、本発明の回転装置として重力gに逆らうように浮上させて回転させることにより、回転負荷を低減しかつエネルギー損失を低減することができる。 (3) Further, as shown in FIG. 9, for example, a turbine 530 used for vertical wind power generation can also be applied as the rotating body 500 in the present invention. Even the turbine 530, which is a heavy object with a relatively large mass, can be levitated and rotated against the gravity g as the rotating device of the present invention, thereby reducing the rotational load and energy loss. .
 以上、本発明(スラスト軸受)を上記の実施形態に基づいて説明したが、本発明は上記の実施形態に限定されるものではない。その趣旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば、次のような変形も可能である。 Although the present invention (thrust bearing) has been described above based on the above embodiments, the present invention is not limited to the above embodiments. It can be implemented in various aspects without departing from the spirit thereof, and for example, the following modifications are also possible.
(1)実施形態A4においては、別のスラスト軸受400は、軸100の他端側に、第1ヨーク430の内底面236とは逆側の面(外側の面)が接続された構成となっている(図4参照)。しかしながら、本発明はこれに限定されるものではない。例えば、変形例に係る回転装置720では、図10に示すように、別のスラスト軸受901を、軸100の他端側に、第1ヨーク930の内底面936(内側の面)が接続された構成としてもよい。このとき、第2ヨーク940及び第2永久磁石920は所与の固定部に固定され、第1ヨーク930及び第1永久磁石910は回転側として、第2ヨーク940及び第2永久磁石920からみて重力gとは反対の側に配置される。 (1) In Embodiment A4, another thrust bearing 400 is configured such that the surface (outer surface) of the first yoke 430 on the side opposite to the inner bottom surface 236 is connected to the other end of the shaft 100. (See Figure 4). However, the invention is not limited to this. For example, in the rotating device 720 according to the modified example, as shown in FIG. may be configured. At this time, the second yoke 940 and the second permanent magnet 920 are fixed to a given fixed portion, the first yoke 930 and the first permanent magnet 910 are on the rotating side, and the second yoke 940 and the second permanent magnet 920 are It is placed on the side opposite to the gravitational force g.
(2)また、図11に示すように、上記変形例に係る回転装置720の別のスラスト軸受901のみを取り出して単独のスラスト軸受として応用することも可能である(変形例に係る回転装置721)。 (2) As shown in FIG. 11, it is also possible to take out only another thrust bearing 901 of the rotating device 720 according to the modification and apply it as a single thrust bearing (the rotating device 721 according to the modification). ).
(3)実施形態A2においては、第1ヨーク230の内底面236が第1永久磁石210の第1面211と当接している構成を示して説明した。しかしながら、本発明においてはこれに限定されるものではない。すなわち、内底面236と第1面211との間に小さなギャップを有するように構成してもよい。このような構成となったとしても、第1永久磁石210の第1磁極を終端/始端として生じる磁力線が第1ヨーク230内部を通過することに変わりがないため、内底面236と第1面211とが当接する場合と同様の作用・効果を奏することができる。このような構成も本発明の均等物である。
 なお、第2ヨーク240の内底面246と第2永久磁石220の第4面222との間においても同様である。
(3) In Embodiment A2, the configuration in which the inner bottom surface 236 of the first yoke 230 is in contact with the first surface 211 of the first permanent magnet 210 has been described. However, the present invention is not limited to this. That is, it may be configured to have a small gap between the inner bottom surface 236 and the first surface 211 . Even with such a configuration, since the lines of magnetic force generated with the first magnetic pole of the first permanent magnet 210 as the terminal/start end still pass through the inside of the first yoke 230, the inner bottom surface 236 and the first surface 211 It is possible to obtain the same action and effect as when the two contact with each other. Such configurations are also equivalents of the present invention.
In addition, the same is true between the inner bottom surface 246 of the second yoke 240 and the fourth surface 222 of the second permanent magnet 220 .
(4)各実施形態においては、第1磁極をS極とし第2磁極をN極として図示及び説明を行った。しかしながら、本発明はこれに限定されるものではない。第1磁極をN極とし第2磁極をS極として各実施形態を適用してもよい。 (4) In each embodiment, the first magnetic pole is the S pole, and the second magnetic pole is the N pole. However, the invention is not limited to this. Each embodiment may be applied with the first magnetic pole as the N pole and the second magnetic pole as the S pole.
(5)各実施形態では、軸100及び第1永久磁石210が回転し、第2永久磁石220が固定する関係を想定して説明したが、これは相対的な関係を説明したものであり、本発明はこれに限定されるものではない。逆に、軸100及び第1永久磁石210を固定し、第2永久磁石220が回転するような関係の使用のされ方をしてもよい。このとき、本明細書の説明及び請求項において「回転する」は「固定する」に、「回転部」は「固定部」に、「固定部」は「回転部」などと読み替えて適用することができる。 (5) In each embodiment, the description was given on the assumption that the shaft 100 and the first permanent magnet 210 rotate and the second permanent magnet 220 is fixed. The invention is not limited to this. Conversely, the shaft 100 and the first permanent magnet 210 may be fixed and the second permanent magnet 220 may be rotated. At this time, in the description and claims of this specification, "rotate" should be read as "fixed", "rotating part" should be read as "fixed part", and "fixed part" should be read as "rotating part". can be done.
(6)これまで述べてきた各実施形態や応用例において、ラジアル軸受300としてボールベアリングを採用した場合を想定して説明を行った。しかしながら、本発明はこれに限定されるものではない。例えば、後ほど実施形態B1~B5等で述べる磁気潤滑剤50(磁性流体など)が配置された軸受301~305等をラジアル軸受300として導入して、これらのラジアル軸受を本発明に係るスラスト軸受と適宜に組み合わせることができる。 (6) In each of the embodiments and application examples described so far, the description has been given assuming that a ball bearing is employed as the radial bearing 300 . However, the invention is not limited to this. For example, bearings 301 to 305, etc., in which a magnetic lubricant 50 (such as a magnetic fluid), which will be described later in embodiments B1 to B5, etc., are introduced as a radial bearing 300, and these radial bearings are used as thrust bearings according to the present invention. They can be combined as appropriate.
B.ラジアル軸受について
[実施形態B1]
1.実施形態B1に係る軸受301の構成
 図13は、実施形態B1に係る軸受301(ラジアル軸受)を説明するために示す図である。図13(a)は、軸受301を回転軸RAを含む仮想面で切断したときの断面図であり、図13(b)は図13(a)の破線Aで囲まれた領域を拡大した拡大断面図であり、図13(c)は磁石30の斜視図である。なお、図13においては軸受301に対して軸100(後述)が挿入されていない状態を示している(以降説明する図16~図19においても同様)。
B. Radial bearing [Embodiment B1]
1. Configuration of Bearing 301 According to Embodiment B1 FIG. 13 is a diagram for explaining a bearing 301 (radial bearing) according to Embodiment B1. 13(a) is a cross-sectional view of the bearing 301 cut along a virtual plane including the rotation axis RA, and FIG. 13(b) is an enlarged view of the area surrounded by the dashed line A in FIG. 13(a). 13(c) is a perspective view of the magnet 30. FIG. 13 shows a state in which the shaft 100 (described later) is not inserted into the bearing 301 (the same applies to FIGS. 16 to 19 described later).
(1)軸100
 実施形態B1に係る軸受301は、回転軸RAを中心軸として回転する軸100(別言すると回転軸RAの周りを回転する軸100。図14参照)のラジアル方向RDの荷重(ラジアル荷重)を受ける軸受である。軸100は、シャフトとも呼ばれ、回転軸RAを中心として回転するように構成されている。軸100には回転体が取り付けられる。回転体は軸100と一体になって回転軸RAの周りを回転する。
(1) Axis 100
The bearing 301 according to the embodiment B1 absorbs a load (radial load) in the radial direction RD of the shaft 100 rotating about the rotation axis RA (in other words, the shaft 100 rotating around the rotation axis RA; see FIG. 14). It is the bearing that receives it. Axle 100, also referred to as a shaft, is configured to rotate about an axis of rotation RA. A rotating body is attached to the shaft 100 . The rotating body rotates together with the shaft 100 around the rotation axis RA.
(2)軸受301の全体構成 
 図13(a)に示すように、軸受301は、受け部材10-1,10-2(以下、単に受け部材10と表記することがある)と、磁石30と、磁気潤滑剤50とを備えている。
(2) Overall configuration of bearing 301
As shown in FIG. 13(a), the bearing 301 includes receiving members 10 -1 and 10 -2 (hereinafter sometimes simply referred to as the receiving member 10), a magnet 30, and a magnetic lubricant 50. ing.
(3)受け部材10
 受け部材10は、軸100のラジアル荷重を受ける部材である。
 実施形態B1で例示した受け部材10は、スラスト方向TDに扁平圧縮された円環形状を呈している。かかる円環形状の内周面が、軸100に対して直接的に又は磁気潤滑剤50を介して間接的に接触する広義の「接触部14」となる。かかる接触部14は、ラジアル荷重を一次的に受ける、いわば「受け壁」となる。
(3) Receiving member 10
The receiving member 10 is a member that receives the radial load of the shaft 100 .
The receiving member 10 exemplified in Embodiment B1 has an annular shape that is flattened and compressed in the thrust direction TD. Such an annular inner peripheral surface serves as a broadly defined “contact portion 14 ” that contacts the shaft 100 directly or indirectly via the magnetic lubricant 50 . The contact portion 14 serves as a so-called "receiving wall" that temporarily receives the radial load.
 受け部材10は、軟磁性体からなり、磁力線の磁路(磁石30を起磁力源とする磁気回路)の一部を構成しており、かかる磁路を通じて繋がる磁力線により接触部14付近で磁気潤滑剤50を滞留させる(後述)よう構成されている。 The receiving member 10 is made of a soft magnetic material and constitutes a part of a magnetic path of magnetic lines of force (a magnetic circuit having the magnet 30 as a magnetomotive force source). It is configured to retain the agent 50 (described later).
 受け部材10は、基部11と回転軸RA側に突出した突出部12とを有している。突出部12の先端側には上記した接触部14(受け壁)が設けられている。
 図13(b)に示すように、接触部14は、磁石30の内側面34の位置よりも更に回転軸RA寄りに符号PR分だけ突出している突出部12の先端に形成されている。
The receiving member 10 has a base portion 11 and a projecting portion 12 projecting toward the rotation axis RA. The contact portion 14 (receiving wall) described above is provided on the tip side of the projecting portion 12 .
As shown in FIG. 13B, the contact portion 14 is formed at the tip of the projecting portion 12 projecting from the position of the inner surface 34 of the magnet 30 toward the rotation axis RA by the reference sign PR.
 受け部材10の少なくとも接触部14には鋳鉄が用いられている。実施形態B1の例では、接触部14のみならず、突出部12ひいては受け部材10全体において鋳鉄が用いられている。 At least the contact portion 14 of the receiving member 10 is made of cast iron. In the example of Embodiment B1, cast iron is used not only for the contact portion 14 but also for the projecting portion 12 and the entire receiving member 10 .
(4)磁石30
 磁石30は、軸受301における磁気回路上での起磁力源となるもので、正磁極31(N極)及び負磁極32(S極)を有する。磁石30は永久磁石である。但し、これに限定されることなく、磁石30を電磁石で構成してもよい。
(4) Magnet 30
The magnet 30 is a magnetomotive force source on the magnetic circuit in the bearing 301, and has a positive magnetic pole 31 (N pole) and a negative magnetic pole 32 (S pole). Magnet 30 is a permanent magnet. However, without being limited to this, the magnet 30 may be composed of an electromagnet.
 図13(c)に示すように、実施形態B1の磁石30は内側面34、外側面35、上面36及び下面37を有する厚みのある略円筒形状を呈している。
 実施形態B1の磁石30は、いわゆるアキシャル異方性の磁石であり、その上面36は全面に渡って正磁極31(N極)となっており、下面37は全面に渡って負磁極32(S極)となっている。なお、上面36/下面37と、正磁極31/負磁極32の配置関係は適宜変更が可能である。
 磁石30は、一対の正磁極31及び負磁極32を互いに結ぶ磁軸がスラスト方向TDと一致(完全に一致している場合のほか、実用上、概略一致している場合も含まれる)するように構成されており、例えば、アキシャルギャップ着磁で得ることができる。
As shown in FIG. 13(c), the magnet 30 of embodiment B1 has a thick, substantially cylindrical shape having an inner surface 34, an outer surface 35, an upper surface 36 and a lower surface 37. As shown in FIG.
The magnet 30 of Embodiment B1 is a so-called axially anisotropic magnet, the entire upper surface 36 of which is a positive magnetic pole 31 (N pole), and the entire lower surface 37 of which is a negative magnetic pole 32 (S pole). The arrangement relationship between the upper surface 36/lower surface 37 and the positive magnetic pole 31/negative magnetic pole 32 can be changed as appropriate.
The magnet 30 is arranged such that the magnetic axis connecting the pair of positive magnetic poles 31 and negative magnetic poles 32 coincides with the thrust direction TD (in addition to the case where it completely coincides, practically it also includes the case where it roughly coincides). and can be obtained, for example, by axial gap magnetization.
 磁石30は、受け部材10のリブ16を互いに対向するように並べられた2個の受け部材10-1,10-2の間に、挟み込まれるようにして配置されている。磁石30は、リブ16の外側に配置され、リブ16により内側への移動が規制されている。
 磁石30の上面36は受け部材10―1のリブ16側の面と接触しており、下面37は受け部材10-2のリブ16側の面と接触している。
 磁石30及び受け部材10-1,10-2により磁気回路が構成されている。すなわち、磁石30の正磁極31から発せられた磁力線が、上側に配置された受け部材10-1の内部、接触部14及び磁気潤滑剤50、軸100が配置される空間、下側に配置された受け部材10-2に属する磁気潤滑剤50及び接触部14、下側に配置された受け部材10-2の内部と順次繋がり、最後は磁石30の負磁極32に引き込まれて戻るようになっている《図13(a)の矢印を参照》。
 接触部14から発せられる又は引き込まれる磁力線は、回転軸RA側に向かうような方向となっており、接触部14(受け壁の面)に対して交差している。
The magnet 30 is arranged so as to be sandwiched between two receiving members 10 -1 and 10 -2 arranged so that the ribs 16 of the receiving member 10 face each other. The magnet 30 is arranged outside the rib 16 and restricted from moving inward by the rib 16 .
The upper surface 36 of the magnet 30 is in contact with the rib 16 side surface of the receiving member 10-1 , and the lower surface 37 is in contact with the rib 16 side surface of the receiving member 10-2 .
A magnetic circuit is composed of the magnet 30 and the receiving members 10 -1 and 10 -2 . That is, the magnetic lines of force emitted from the positive magnetic pole 31 of the magnet 30 are arranged inside the upper receiving member 10-1 , the space where the contact portion 14, the magnetic lubricant 50, and the shaft 100 are arranged, and the lower side. The magnetic lubricant 50 belonging to the receiving member 10-2 and the contact portion 14 are sequentially connected to the inside of the receiving member 10-2 arranged on the lower side, and finally, it is drawn back by the negative magnetic pole 32 of the magnet 30. (see arrow in FIG. 13(a)).
The magnetic lines of force emitted or drawn from the contact portion 14 are oriented toward the rotation axis RA and intersect the contact portion 14 (surface of the receiving wall).
(5)ケース60
 更に実施形態B1の軸受301においては、最外周に非磁性体の材料からなるケース60(非磁性体部材)が設けられている。ケース60は、磁石30からみて磁気潤滑剤50が配置された位置(軸100が配置される側)とは反対側のラジアル方向RD上の位置に配置され、磁石30の外側面35及び受け部材10の外側面(符号なし)にそれぞれ接するようにして設けられている。
 非磁性体部材であるケース60を、このように磁石30及び受け部材10の外周側に設けることにより、磁石30の正磁極31から発せられた磁力線を外側ではなく内側(磁気潤滑剤が配置された側)に誘導することができ、接触部14付近ではより強く磁気潤滑剤50を拘束することができる。
(5) Case 60
Furthermore, in the bearing 301 of Embodiment B1, a case 60 (non-magnetic member) made of a non-magnetic material is provided on the outermost periphery. The case 60 is arranged at a position in the radial direction RD opposite to the position where the magnetic lubricant 50 is arranged (the side where the shaft 100 is arranged) when viewed from the magnet 30, and 10 are provided so as to be in contact with the outer surfaces (no reference numerals) of .
By providing the case 60, which is a non-magnetic member, on the outer peripheral side of the magnet 30 and the receiving member 10 in this way, the lines of magnetic force emitted from the positive magnetic pole 31 of the magnet 30 are directed not to the outside but to the inside (where the magnetic lubricant is arranged). The magnetic lubricant 50 can be more strongly restrained in the vicinity of the contact portion 14 .
(6)磁気潤滑剤50
 磁気潤滑剤50は、磁石30の正磁極31及び負磁極32の間の磁力線の影響を受ける磁性体粒子51を含有した流動性のある材料である。実施形態B1の例では、磁気潤滑剤50としていわゆる磁性流体を用いる。磁性流体は、界面活性剤に覆われた強磁性微粒子がベース液の中に数多く分散してなる流体である。
(6) Magnetic Lubricant 50
The magnetic lubricant 50 is a fluid material containing magnetic particles 51 that are affected by the lines of magnetic force between the positive magnetic pole 31 and the negative magnetic pole 32 of the magnet 30 . In the example of embodiment B1, a so-called magnetic fluid is used as the magnetic lubricant 50 . A magnetic fluid is a fluid in which a large number of ferromagnetic fine particles coated with a surfactant are dispersed in a base liquid.
 また、実施形態B1の例では、オイルを主成分とする液体をベース液とした磁性流体を用いる。すなわち、磁気潤滑剤には潤滑性ある油性成分が含有されている。 Further, in the example of Embodiment B1, a magnetic fluid whose base liquid is a liquid whose main component is oil is used. That is, the magnetic lubricant contains a lubricating oily component.
 さらに、実施形態B1の例で用いる磁気潤滑剤50には、潤滑性ある炭素粒子55が含有されている《後述する図15(b)参照》。
 磁気潤滑剤50内の炭素粒子55は、詳細は後述するように鋳鉄による受け部材10aの巣から供給されたものでもよいし、カーボン等でなる粒子を予め磁気潤滑剤50に混入しておいたものでもよい。
Further, the magnetic lubricant 50 used in the example of Embodiment B1 contains lubricating carbon particles 55 (see FIG. 15B described later).
The carbon particles 55 in the magnetic lubricant 50 may be those supplied from the cavities of the receiving member 10a made of cast iron, as described later in detail, or particles made of carbon or the like are mixed in the magnetic lubricant 50 in advance. Anything is fine.
 実施形態B1において、磁気潤滑剤50は、軸100と受け部材10との間に配置されている(図13~図15参照)。かかる磁気潤滑剤50は、磁力線の影響を受ける磁性体粒子を含有しているので、軸100と受け部材10と軸との間に配置されると、受け部材を通じて生じる磁力線により拘束されて、接触部14(受け壁の面)に付着するようにして配置場所に留まる。 In embodiment B1, the magnetic lubricant 50 is arranged between the shaft 100 and the receiving member 10 (see FIGS. 13 to 15). Since the magnetic lubricant 50 contains magnetic particles that are affected by the lines of magnetic force, when placed between the shaft 100 and the receiving member 10, the magnetic lubricant 50 is restrained by the lines of magnetic force generated through the receiving member, resulting in contact. It stays in place by adhering to portion 14 (the face of the receiving wall).
 実施形態B1に係る軸受301において、受け部材10は軟磁性体からなり、磁石30、受け部材10及び軸100が磁気回路を構成しており、この磁気回路の磁路内に磁気潤滑剤50が配置されている。 In the bearing 301 according to Embodiment B1, the receiving member 10 is made of a soft magnetic material, the magnet 30, the receiving member 10 and the shaft 100 constitute a magnetic circuit, and the magnetic lubricant 50 is present in the magnetic path of this magnetic circuit. are placed.
2.実施形態B1に係る軸受301の作用・効果
 図14は、実施形態B1に係る軸受301の作用・効果について説明する断面図である。図15は、鋳鉄による受け部材10aと磁気潤滑剤50とが馴染む様子を描いた図である。図15(a)は受け部材10-2付近の軸100及び受け部材10-2(10a)の様子を示した断面図であり、図15(b)は図15(a)の破線Bで囲まれた領域を拡大した拡大断面図である。
2. Functions and Effects of Bearing 301 According to Embodiment B1 FIG. 14 is a sectional view for explaining functions and effects of the bearing 301 according to Embodiment B1. FIG. 15 is a diagram showing how the receiving member 10a made of cast iron and the magnetic lubricant 50 blend together. FIG. 15(a) is a cross-sectional view showing the shaft 100 near the receiving member 10-2 and the receiving member 10-2 (10a), and FIG. 15(b) is surrounded by the dashed line B in FIG. FIG. 3 is an enlarged cross-sectional view showing an enlarged region that is cut off;
(1)軸受301に対し軸100を挿入すると、図14に示すような状態となる。軸100が挿入されたときにも、起磁力源たる磁石30及び磁路の一部を構成する受け部材10により、図1の状態と同様、磁気回路が形成される(図14の矢印で示した磁力線を参照)。
 実施形態B1に係る軸受301は、軸100のラジアル荷重を受ける受け部材10と、正磁極31及び負磁極32を有する磁石30と、正磁極31及び負磁極32の間の磁力線の影響を受ける磁性体粒子51を含有した磁気潤滑剤50とを備え、磁気潤滑剤50が、軸100と受け部材10との間に配置されている。
(1) When the shaft 100 is inserted into the bearing 301, the state shown in FIG. 14 is obtained. Even when the shaft 100 is inserted, a magnetic circuit is formed by the magnet 30 as the magnetomotive force source and the receiving member 10 forming part of the magnetic path, as in the state of FIG. magnetic field lines).
A bearing 301 according to Embodiment B1 includes a receiving member 10 that receives the radial load of a shaft 100, a magnet 30 that has a positive magnetic pole 31 and a negative magnetic pole 32, and a magnetic field affected by the magnetic lines of force between the positive magnetic pole 31 and the negative magnetic pole 32. a magnetic lubricant 50 containing body particles 51 , the magnetic lubricant 50 being arranged between the shaft 100 and the receiving member 10 .
 このように、磁気潤滑剤50が軸100と受け部材10との間に配置されているので、軸100の外周面とラジアル荷重を受ける壁になる受け部材10の部位との間に、磁気潤滑剤50による液膜(油性成分が含有されているときには「油膜」)が介在することとなり、軸100が受け部材10に直接接触しない状態(非接触状態)を作ることができる。剛体同士の擦り合わせが無くなるため、それらによる摩擦抵抗は生じない。
 逆に、軸100は液膜に対して常に接触することとなるが、液膜を構成する材は潤滑性に富んだ磁気潤滑剤50であるため、軸100及び磁気潤滑剤50による摩擦抵抗は極めて小さい。したがって、軸100が回転する際の軸100が受ける総体としての摩擦抵抗も極めて小さくすることができる。
Since the magnetic lubricant 50 is arranged between the shaft 100 and the receiving member 10 in this manner, magnetic lubrication is provided between the outer peripheral surface of the shaft 100 and the portion of the receiving member 10 that serves as the wall that receives the radial load. A liquid film (an “oil film” when an oily component is contained) by the agent 50 intervenes, and a state (non-contact state) in which the shaft 100 does not directly contact the receiving member 10 can be created. Since the rigid bodies do not rub against each other, no frictional resistance is generated by them.
Conversely, the shaft 100 is always in contact with the liquid film, but since the material forming the liquid film is the magnetic lubricant 50 with high lubricity, the frictional resistance between the shaft 100 and the magnetic lubricant 50 is extremely small. Therefore, the overall frictional resistance that the shaft 100 receives when the shaft 100 rotates can be made extremely small.
 また、磁気潤滑剤は正磁極及び負磁極の間の磁力線の影響を受ける磁性体粒子を含有しているものであるため、磁気潤滑剤は上記磁石を起磁力源とした磁気回路(磁路)上に拘束されている。したがって、軸が回転した時でも荷重が変動した時でも、磁気潤滑剤は軸と受け部材との間の所定の場所に留まり続けることとなり、漏洩、飛散等により磁気潤滑剤が減ることも無く、持続的に安定して上記した液膜を所定の場所に介在させることができる。 In addition, the magnetic lubricant contains magnetic particles that are affected by the magnetic lines of force between the positive and negative magnetic poles. constrained above. Therefore, even when the shaft rotates or the load fluctuates, the magnetic lubricant remains at a predetermined location between the shaft and the receiving member, and the magnetic lubricant does not decrease due to leakage or scattering. It is possible to continuously and stably interpose the above-described liquid film at a predetermined location.
 以上より、実施形態B1に係る軸受301によればボールベアリングよりも摩擦抵抗の小さい軸受を提供することができる。 As described above, according to the bearing 301 according to Embodiment B1, it is possible to provide a bearing with less frictional resistance than a ball bearing.
 また、実施形態B1に係る軸受301によればボールベアリング等を備えずともラジアル荷重を受けることができる。つまり、軸受内に機械的な可動部(ボールベアリングの玉など)が無いため摩擦損失(又は発熱による損失)が極めて小さいものとなる。したがって、軸100及び軸100に付随した回転装置が元々持っているエネルギーの損失も大幅に抑制することができる。 Further, according to the bearing 301 according to Embodiment B1, a radial load can be received without providing a ball bearing or the like. In other words, since there are no mechanical moving parts (balls of ball bearings, etc.) in the bearing, friction loss (or loss due to heat generation) is extremely small. Therefore, the loss of energy inherent in the shaft 100 and the rotating device associated with the shaft 100 can be greatly reduced.
 また、実施形態B1に係る軸受301は、機械的な構造も単純であり、かつ、ラジアル荷重を液膜(油膜)で受けるため耐摩耗性や耐久性に優れたものとなる。さらに、軸受301は機械的な構造が単純であるため安価に構成することができ、経済的にも有利な軸受を得ることができる。 In addition, the bearing 301 according to Embodiment B1 has a simple mechanical structure and is excellent in wear resistance and durability because the radial load is received by the liquid film (oil film). Furthermore, since the bearing 301 has a simple mechanical structure, it can be constructed at a low cost, and an economically advantageous bearing can be obtained.
(2)実施形態B1に係る軸受301において、受け部材10は、軸100に、直接的に又は磁気潤滑剤50を介して間接的に接触する接触部14(受け壁)を有し、接触部14は磁石30の内側面34の位置よりも更に回転軸RA寄りに突出している突出部12の先端に形成されている。逆にいうと、磁石30の内側面34は、受け部材10の接触部14よりも外側に(回転軸RAから遠い位置に)配置されている。 (2) In the bearing 301 according to Embodiment B1, the receiving member 10 has a contact portion 14 (receiving wall) that contacts the shaft 100 directly or indirectly via the magnetic lubricant 50, and the contact portion 14 is formed at the tip of the protruding portion 12 that protrudes closer to the rotation axis RA than the position of the inner side surface 34 of the magnet 30 . Conversely, the inner side surface 34 of the magnet 30 is arranged outside the contact portion 14 of the receiving member 10 (at a position farther from the rotation axis RA).
 このような構成となっているため、軸100からのラジアル荷重は接触部14で受け止られ、その一方で磁石30にはラジアル荷重が掛からない。軸100からのラジアル荷重による機械的応力が掛からないので磁石30の損壊を防止することができる。 With this configuration, the radial load from the shaft 100 is received by the contact portion 14, while the magnet 30 is not subjected to the radial load. Damage to the magnet 30 can be prevented because no mechanical stress is applied due to the radial load from the shaft 100 .
(3)実施形態B1の磁気潤滑剤50には、潤滑性ある炭素粒子55が含有されている。
 この点について、図15を参照しながら以下説明する。
 カーボン等の炭素粒子は一般に自己潤滑性を有していると言われており、磁気潤滑剤50中にかかる炭素粒子55が混入していると《図15(b)参照》、かかる潤滑性が磁気潤滑剤50の中でも発揮され、磁気潤滑剤50は更に滑りやすいものとなる。
(3) The magnetic lubricant 50 of Embodiment B1 contains lubricating carbon particles 55 .
This point will be described below with reference to FIG.
Carbon particles such as carbon are generally said to have self-lubricating properties. It is also exhibited in the magnetic lubricant 50, and the magnetic lubricant 50 becomes more slippery.
 ところで、鋳鉄は一般的な鋼に比べて炭素量が多いと言われている。
 図15に示すように、実施形態B1では受け部材10として鋳鉄による受け部材10aが採用されており、基部11a,突出部12aなど、少なくとも接触部14aにも鋳鉄が用いられている。
 そのため、鋳鉄に数多く存在する巣18aに磁気潤滑剤50が入り込み、磁気潤滑剤50と鋳鉄による受け部材10a(接触部14a)との接触面積が増えて互いに馴染みやすい状況となっている。接触面積が増えた中で、軸100の回転によって磁気潤滑剤50も適宜対流することから、鋳鉄が有していた炭素粒子55も磁気潤滑剤50の中に混入しやすい。特に、鋳鉄の巣18aには炭素粒子55が多く含まれていることから、なおさら炭素粒子55が磁気潤滑剤50に混入しやすい。
 磁気潤滑剤50の中に炭素粒子55が混入すると、炭素粒子55自身が備えている潤滑性が磁気潤滑剤50の中でも発揮され、磁気潤滑剤50は更に滑りやすいものとなる。
 したがって、以上のような構成とすることで、軸受301は摩擦抵抗が一層小さなものとなる。
By the way, cast iron is said to have a higher carbon content than general steel.
As shown in FIG. 15, in Embodiment B1, a receiving member 10a made of cast iron is adopted as the receiving member 10, and at least the contact portion 14a such as the base portion 11a and the projecting portion 12a is also made of cast iron.
As a result, the magnetic lubricant 50 enters into many cavities 18a present in the cast iron, and the contact area between the magnetic lubricant 50 and the cast iron receiving member 10a (contact portion 14a) increases, making it easier for them to get along with each other. As the contact area increases, the rotation of the shaft 100 causes the magnetic lubricant 50 to convect appropriately, so that the carbon particles 55 contained in the cast iron are likely to be mixed into the magnetic lubricant 50 . In particular, since the cast iron cavities 18 a contain a large amount of carbon particles 55 , the carbon particles 55 are even more likely to mix into the magnetic lubricant 50 .
When the carbon particles 55 are mixed in the magnetic lubricant 50, the lubricating properties of the carbon particles 55 themselves are exhibited in the magnetic lubricant 50, and the magnetic lubricant 50 becomes more slippery.
Therefore, with the configuration as described above, the frictional resistance of the bearing 301 is further reduced.
[実施形態B2]
 図16は、実施形態B2に係る軸受302を説明するために示す図である。図16(a)は軸受302の断面図であり、図16(b)は磁石30-1,30-2の斜視図である。
[Embodiment B2]
FIG. 16 is a diagram shown for explaining the bearing 302 according to Embodiment B2. FIG. 16(a) is a sectional view of the bearing 302, and FIG. 16(b) is a perspective view of the magnets 30-1 and 30-2 .
 実施形態B2に係る軸受302は、基本的には実施形態B1に係る軸受301と同様の構成を有するが、起磁力源たる磁石を複数(ここでは2個)備えている点などにおいて実施形態B1に係る軸受301と異なる。 The bearing 302 according to the embodiment B2 basically has the same configuration as the bearing 301 according to the embodiment B1. is different from the bearing 301 according to
 図16に示すように、実施形態B2に係る軸受302は、略円筒形状のアキシャル異方性の磁石30を2個備えている。双方の磁石30-1,30-2は、スラスト方向TDの面(上面36又は下面37)が互いに同じ極性の磁極(図の例では正磁極31たるN極)が対向するようにして、回転軸RAに沿って配列されている。
 上に配置された磁石30-1と当接する受け部材10-2、及び、下に配置された磁石30-2と当接する受け部材10-2は、磁石30-1,30-2で共有する共通のものである。また、非磁性体でなるケース60(非磁性体部材)も双方の磁石に対応した位置で共通のものが用いられている。
As shown in FIG. 16, a bearing 302 according to Embodiment B2 includes two substantially cylindrical axially anisotropic magnets 30 . Both magnets 30 -1 and 30 -2 are rotated so that the surfaces in the thrust direction TD (upper surface 36 or lower surface 37) face each other with magnetic poles of the same polarity (the positive magnetic pole 31 or N pole in the example shown). arranged along the axis RA.
The receiving member 10 -2 in contact with the magnet 30 -1 placed above and the receiving member 10 -2 in contact with the magnet 30 -2 placed below are shared by the magnets 30 -1 and 30 -2 . It is common. Further, the case 60 (non-magnetic member) made of non-magnetic material is also used in common at positions corresponding to both magnets.
 受け部材10-2は、双方の磁石30-1,30-2から発せられた/引き込まれる磁力線が合流する共通の磁路となることから、受け部材10-2における接触部14(符号の図示は省略)においては、より強力に磁気潤滑剤50を拘束することができる。したがって、実施形態B2に係る軸受302は、ラジアル荷重の増加・変動等にも強い、よりロバストな軸受となる。 The receiving member 10-2 serves as a common magnetic path in which magnetic lines of force emitted/drawn from both magnets 30-1 and 30-2 join. is omitted), the magnetic lubricant 50 can be bound more strongly. Therefore, the bearing 302 according to Embodiment B2 is a more robust bearing that is resistant to increases and fluctuations in radial load.
 また、実施形態B2に係る軸受302は、実施形態B1よりも接触部14の箇所が増やされており(受け部材10-1,10-2,10-3による3箇所)、軸100の長い区間でラジアル荷重を受けることができるため、ブレの少ない回転に寄与することができる。 In addition, the bearing 302 according to Embodiment B2 has more contact portions 14 than Embodiment B1 (three locations for the receiving members 10 −1 , 10 −2 , and 10 −3 ), and the shaft 100 has a long section. Since it can receive a radial load at , it can contribute to rotation with less shake.
 実施形態B2に係る軸受302は、磁石を複数備えている点など以外の点においては、実施形態B1に係る軸受301と基本的に同様の構成を有する。そのため、実施形態B1に係る軸受301が有する効果のうち該当する効果を同様に有する。 The bearing 302 according to Embodiment B2 has basically the same configuration as the bearing 301 according to Embodiment B1, except for the fact that it has a plurality of magnets. Therefore, among the effects of the bearing 301 according to the embodiment B1, the corresponding effects are similarly obtained.
[実施形態B3]
 図17は、実施形態B3に係る軸受303を説明するために示す図である。図17(a)は軸受303の断面図《図17(b)のD-D断面図》であり、図17(b)は、図17(a)の矢印Cに沿って軸受303を視たときの平面図である(受け部材10-1は描いていない)。
[Embodiment B3]
FIG. 17 is a diagram for explaining the bearing 303 according to Embodiment B3. 17(a) is a cross-sectional view of the bearing 303 <<cross-sectional view taken along line DD of FIG. 17(b)>>, and FIG. 2 is a plan view of the time (the receiving member 10-1 is not drawn).
 実施形態B3に係る軸受303は、基本的には実施形態B1に係る軸受301と同様の構成を有するが、磁石の構成において実施形態B1に係る軸受301と異なる。 A bearing 303 according to Embodiment B3 basically has the same configuration as the bearing 301 according to Embodiment B1, but differs from the bearing 301 according to Embodiment B1 in the magnet configuration.
 図17(b)に示すように、実施形態B3の磁石30aは、一対の正磁極31-n及び負磁極32-n(nは自然数でインデックス番号が入る。以下同様)を互いに結ぶ磁軸がスラスト方向TDと一致するように構成されたアキシャル異方性の極を複数有する。すなわち、磁石30aは、一対の正磁極31-n及び負磁極32-nで定義される極MPnが少なくとも2極以上含まれている。図17で例示した磁石30aにおいては、回転軸RAを中心に360度を8等分割した8個の極MP1~MP8が含まれている。
 互いに隣接した極MP(n),MP(n+1)との間では、同じ受け部材10に当接する面(上面又は下面)に対して、同じ磁極(正磁極/負磁極)で配置され、各極MP間は非磁性体部材75で仕切られている。
As shown in FIG. 17(b), the magnet 30a of the embodiment B3 has a magnetic axis that connects a pair of positive magnetic poles 31 -n and negative magnetic poles 32 -n (where n is a natural number and contains an index number; the same applies hereinafter). It has a plurality of axially anisotropic poles configured to coincide with the thrust direction TD. That is, the magnet 30a includes at least two poles MPn defined by a pair of positive magnetic poles 31 -n and negative magnetic poles 32 -n . The magnet 30a illustrated in FIG. 17 includes eight poles MP1 to MP8 obtained by equally dividing 360 degrees around the rotation axis RA into eight.
The poles MP(n) and MP(n+1) adjacent to each other are arranged with the same magnetic poles (positive magnetic pole/negative magnetic pole) with respect to the surface (upper surface or lower surface) in contact with the same receiving member 10. A non-magnetic material member 75 partitions between the MPs.
 実施形態B3の磁石30aは、アキシャルギャップ着磁で製造することができる。また、各極MP1~MP8に対応した分割磁石の集合体として磁石30aを準備することもできるため、径の大きな軸受を構成する場合などは製造性に優れた軸受であるとも言える。 The magnet 30a of embodiment B3 can be manufactured by axial gap magnetization. Moreover, since the magnet 30a can be prepared as an assembly of divided magnets corresponding to the respective poles MP1 to MP8, it can be said that the bearing is excellent in manufacturability when constructing a bearing having a large diameter.
 実施形態B3に係る軸受303は、磁石の構成以外の点においては、実施形態B1に係る軸受301と基本的に同様の構成を有する。そのため、実施形態B1に係る軸受301が有する効果のうち該当する効果を同様に有する。 The bearing 303 according to Embodiment B3 has basically the same configuration as the bearing 301 according to Embodiment B1 except for the magnet configuration. Therefore, among the effects of the bearing 301 according to the embodiment B1, the corresponding effects are similarly obtained.
[実施形態B4]
 図18は、実施形態B4に係る軸受304を説明するために示す図である。図18(a)は軸受304の断面図《図18(b)のF-F断面図》であり、図18(b)は、図18(a)の矢印Eに沿って軸受304を視たときの平面図である(受け部材10-1は描いていない)。
[Embodiment B4]
FIG. 18 is a diagram for explaining the bearing 304 according to Embodiment B4. 18(a) is a cross-sectional view of the bearing 304 <<cross-sectional view taken along line FF of FIG. 18(b)>>, and FIG. 2 is a plan view of the time (the receiving member 10-1 is not drawn).
 実施形態B4に係る軸受304は、基本的には実施形態B3に係る軸受303と同様の構成を有するが、起磁力源たる磁石を複数(ここでは2個)備えている点などにおいて実施形態B3に係る軸受303と異なる。 The bearing 304 according to the embodiment B4 basically has the same configuration as the bearing 303 according to the embodiment B3. It is different from the bearing 303 according to
 図18に示すように、実施形態B4に係る軸受304は、実施形態B3で説明したアキシャル異方性の多極の磁石30aを2個備えている。
 双方の磁石30a-1,30a-2は、同じセクションSCn内で同じ極性の磁極が対向するようにして配列されている。図18(a)をみると、受け部材10-2を挟むようにして、左側のセクションSC1では双方の負磁極(S極)が対向し、右側のセクションSC5では双方の負磁極(S極)が対向するようにして配置されている。
As shown in FIG. 18, a bearing 304 according to Embodiment B4 includes two axially anisotropic multipolar magnets 30a described in Embodiment B3.
Both magnets 30a -1 and 30a -2 are arranged such that magnetic poles of the same polarity face each other within the same section SCn. Looking at FIG. 18(a), both negative magnetic poles (S poles) face each other in the left section SC1, and both negative magnetic poles (S poles) face each other in the right section SC5 so as to sandwich the receiving member 10-2 . It is arranged in such a way that
 上に配置された磁石30a-1と当接する受け部材10-2、及び、下に配置された磁石30a-2と当接する受け部材10-2は、磁石30a-1,30a-2で共有する共通のものである。また、非磁性体でなるケース60(非磁性体部材)も双方の磁石に対応した位置で共通のものが用いられている。 The receiving member 10 -2 in contact with the upper magnet 30a -1 and the receiving member 10-2 in contact with the lower magnet 30a -2 are shared by the magnets 30a -1 and 30a -2 . It is common. Further, the case 60 (non-magnetic member) made of non-magnetic material is also used in common at positions corresponding to both magnets.
 2つの磁石30a-1,30a-2に挟まれた受け部材10-2が共通の磁路となること、及びそれによる作用・効果等については実施形態B2に係る軸受302と同様であることから、かかる説明を援用する。 Since the receiving member 10-2 sandwiched between the two magnets 30a -1 and 30a - 2 forms a common magnetic path, and the actions and effects thereof are the same as those of the bearing 302 according to Embodiment B2. , which incorporates such description.
 また、実施形態B4に係る軸受304は、図18(a)に示すように、上の磁石30a-1の内径は下の磁石30a-2の内径よりも大きくなっている。また、上段の受け部材10-1の内径は、下段の受け部材10-3の内径よりも大きくなっている。さらに、中段の受け部材10-2の突出部12付近には上に向けて開口した座ぐり穴15が設けられている。
 実施形態B4に係る軸受304はこのような構成となっているため、符号110で示すような、長手方向の位置によって細い外径と太い外径を有する段の付いた軸(シャフト)を軸受することもできる。
Further, in the bearing 304 according to Embodiment B4, as shown in FIG. 18(a), the inner diameter of the upper magnet 30a -1 is larger than the inner diameter of the lower magnet 30a -2 . The inner diameter of the upper receiving member 10-1 is larger than the inner diameter of the lower receiving member 10-3 . Further, a counterbore hole 15 opening upward is provided in the vicinity of the projecting portion 12 of the middle receiving member 10-2 .
Since the bearing 304 according to the embodiment B4 has such a configuration, it bears a stepped shaft having a thin outer diameter and a thick outer diameter depending on the position in the longitudinal direction, as indicated by reference numeral 110. can also
 実施形態B4に係る軸受304は、磁石30aを複数備えている点など以外の点においては、実施形態B3に係る軸受303と基本的に同様の構成を有する。そのため、実施形態B3に係る軸受303が有する効果のうち該当する効果を同様に有する。 The bearing 304 according to Embodiment B4 has basically the same configuration as the bearing 303 according to Embodiment B3, except for the fact that it has a plurality of magnets 30a. Therefore, among the effects of the bearing 303 according to the embodiment B3, the corresponding effects are similarly obtained.
[実施形態B5]
 図19は、実施形態B5に係る軸受305を説明するために示す図である。図19(a)は、軸受305を、回転軸RAを含む仮想面で切断したときの断面図であり、図19(b)は図19(a)の破線Gで囲まれた領域を拡大した拡大断面図であり、図19(c)は磁石30bの斜視図である。
[Embodiment B5]
FIG. 19 is a diagram shown for explaining the bearing 305 according to Embodiment B5. FIG. 19(a) is a cross-sectional view of the bearing 305 cut along a virtual plane including the rotation axis RA, and FIG. 19(b) is an enlarged view of the area surrounded by the dashed line G in FIG. 19(a). It is an enlarged sectional view, and FIG.19(c) is a perspective view of the magnet 30b.
 実施形態B5に係る軸受305は、基本的には実施形態B1に係る軸受301と同様の構成を有するが、磁石の構成において実施形態B1に係る軸受301と異なる。 A bearing 305 according to Embodiment B5 basically has the same configuration as the bearing 301 according to Embodiment B1, but differs from the bearing 301 according to Embodiment B1 in the magnet configuration.
 図19に示すように、実施形態B5の磁石30bは、一対の正磁極31及び負磁極32を互いに結ぶ磁軸がラジアル方向RDと一致するように構成されたラジアル異方性の磁石である。磁石30bは、ラジアルギャップ着磁で製造することができる。 As shown in FIG. 19, the magnet 30b of embodiment B5 is a radially anisotropic magnet configured such that the magnetic axis connecting the pair of positive magnetic poles 31 and negative magnetic poles 32 coincides with the radial direction RD. The magnet 30b can be manufactured with radial gap magnetization.
 このような磁石30bを用いると、図19(a)に示すように、磁石30bの内側面34に配置された磁極《図では正磁極31(N極)》からは、磁力線が回転軸RAに向かって発せられる/引き込まれる。この点では実施形態B1に係る軸受301とは異なる。ただ、受け部材10も含めて磁路が形成され、受け部材10の接触部14-1,14-2付近で磁気潤滑剤50が拘束される点は同様な構成及び作用を有している。 When such a magnet 30b is used, as shown in FIG. 19(a), from the magnetic pole (positive magnetic pole 31 (north pole) in the figure)) arranged on the inner surface 34 of the magnet 30b, the line of magnetic force is directed to the rotation axis RA. To be emitted/pulled in. This point is different from the bearing 301 according to Embodiment B1. However, a magnetic path is formed including the receiving member 10, and the magnetic lubricant 50 is restrained in the vicinity of the contact portions 14-1 and 14-2 of the receiving member 10, and has the same configuration and action.
 実施形態B5に係る軸受305においては、上に位置する接触部14-1を有する上の受け部材10b(符号共通)と、下に位置する接触部14-2を有する下の受け部材10b(符号共通)と、が渡り部17を通じて連続的に構成(連成)されている。したがって、渡り部17も磁路の一部を構成している《図20(a)の磁力線を示す矢印を参照》。 In the bearing 305 according to Embodiment B5, the upper receiving member 10b (identical reference numeral) having the upper contact portion 14-1 and the lower receiving member 10b (identical reference numeral) having the lower contact portion 14-2 ) are continuously configured (combined) through the transition portion 17 . Therefore, the crossover portion 17 also constitutes a part of the magnetic path (see the arrows indicating the lines of magnetic force in FIG. 20(a)).
 また、軸受305においては、磁軸に平行な方向(回転軸RAに直交する方向)に沿って、磁石30bが配置された位置と磁気潤滑剤50が配置されたスラスト方向TD上の位置との間に非磁性体の材料からなるスペーサー70(非磁性体部材)が設けられている。 Further, in the bearing 305, the position where the magnet 30b is arranged and the position in the thrust direction TD where the magnetic lubricant 50 is arranged along the direction parallel to the magnetic axis (the direction perpendicular to the rotation axis RA). A spacer 70 (non-magnetic member) made of a non-magnetic material is provided between them.
 その他の構成《例えば図19(b)で示す接触部14の位置と磁石の内側面の位置との関係など》については、基本的に実施形態B1と同様であるため説明を援用し、ここでの説明を省略する。実施形態B5に係る軸受305は、磁石の構成以外の点においては、実施形態B1に係る軸受301と基本的に同様の構成を有する。そのため、実施形態B1に係る軸受301が有する効果のうち該当する効果を同様に有する。 Other configurations <<for example, the relationship between the position of the contact portion 14 and the position of the inner surface of the magnet shown in FIG. is omitted. The bearing 305 according to Embodiment B5 has basically the same configuration as the bearing 301 according to Embodiment B1 except for the magnet configuration. Therefore, among the effects of the bearing 301 according to the embodiment B1, the corresponding effects are similarly obtained.
[応用例]
 図20は応用例に係る回転装置750を説明するために示す図である。図21は応用例に係る回転装置751を説明するために示す図である。図22は応用例に係る回転装置752を説明するために示す図である。図23は応用例に係る回転装置753を説明するために示す図である。図24は応用例に係る回転装置754を説明するために示す図である。
 なお、応用例で図示する本発明の軸受はブラックボックスとして描いているが、細部の構成は上記してきた対応する実施形態の構成と同様となっている。
[Application example]
FIG. 20 is a diagram shown for explaining a rotating device 750 according to an application. FIG. 21 is a diagram for explaining a rotating device 751 according to an application. FIG. 22 is a diagram for explaining a rotating device 752 according to an application. FIG. 23 is a diagram for explaining a rotating device 753 according to an application. FIG. 24 is a diagram for explaining a rotating device 754 according to an application.
Although the bearing of the present invention illustrated in the application example is drawn as a black box, the detailed configuration is the same as the configuration of the corresponding embodiment described above.
(1)各実施形態に係る軸受は適宜の応用が可能である。例えば図20で示す垂直側の回転装置750のように、下部にフライホイール510を設けた軸100の側面を補助するようにして、実施形態B1,B2,B3,B5のいずれかの軸受301,302,303,305を配置し、ラジアル荷重を受けてもよい。同様に、図21に示す回転装置751のように、上部にフライホイール510’を設けた軸100の側面を補助するようにして、実施形態B1,B2,B3,B5のいずれかの軸受301,301,302,303,305を配置してもよい。
 本発明の各軸受は、摩擦係数が極めて小さく、かつ、摩擦抵抗に起因したエネルギー損失も小さいことから、フライホイール510,510’によりエネルギーを保持しておく装置への応用には好適である。
(1) The bearing according to each embodiment can be applied appropriately. For example, like the vertical rotating device 750 shown in FIG. 302, 303, 305 may be arranged to receive a radial load. Similarly, like a rotating device 751 shown in FIG. 301, 302, 303, 305 may be arranged.
Each bearing of the present invention has a very small coefficient of friction and a small energy loss due to frictional resistance, so it is suitable for application to a device that retains energy by the flywheels 510, 510'.
(2)各実施形態に係る軸受は、図22で示す回転装置752のように、垂直側の発電装置のロータ520を軸100に接続した回転装置への応用も可能である。なお、符号522はロータ520に属する永久磁石であり、符号524はステータに属するコイルであり、符号526はコイルバックヨークを示している。ロータ520の基に近い位置では段差のある軸に対応可能な実施形態B4に係る軸受304を配置し、その他の位置では実施形態B1,B2,B3,B5のいずれかの軸受301,302,303,305を配置することができる。なお、本発明に係る軸受(ラジアル軸受)は、発電装置に限らずモータの主軸のラジアル荷重を受ける軸受としても適用可能である。 (2) The bearing according to each embodiment can also be applied to a rotating device in which the rotor 520 of the vertical power generator is connected to the shaft 100, like the rotating device 752 shown in FIG. Reference numeral 522 denotes a permanent magnet belonging to the rotor 520, reference numeral 524 denotes a coil belonging to the stator, and reference numeral 526 denotes a coil back yoke. At a position near the base of the rotor 520, the bearing 304 according to the embodiment B4, which is compatible with a stepped shaft, is arranged, and at other positions, the bearings 301, 302, 303 according to any one of the embodiments B1, B2, B3, B5 are arranged. , 305 can be arranged. Note that the bearing (radial bearing) according to the present invention can be applied not only to a power generator but also as a bearing that receives the radial load of the main shaft of a motor.
(3)各実施形態に係る軸受は、図23に示す回転装置753のように、垂直型の風力発電用の羽根530、非接触のスラスト軸受200を使った回転装置への応用も可能である。
 非接触のスラスト軸受200は、互いに対向する面が同極となるように着磁された第1永久磁石210と第2永久磁石220が回転軸RA上に配置され、第1永久磁石210の側に軸100の一端が接続されて、第1永久磁石210及び第2永久磁石の間で互いに磁力反発して適宜の間隔を置きながら非接触状態となるよう構成されている。
 このようにスラスト荷重の軸受をしたうえで、軸100の側面を補助するようにして、実施形態B1,B2,B3,B5のいずれかの軸受301,302,303,305を配置してもよい。
(3) The bearing according to each embodiment can also be applied to a rotating device using a vertical wind turbine blade 530 and a non-contact thrust bearing 200, like a rotating device 753 shown in FIG. .
The non-contact thrust bearing 200 includes a first permanent magnet 210 and a second permanent magnet 220 which are magnetized so that the surfaces facing each other have the same polarity and are arranged on the rotation axis RA. , one end of the shaft 100 is connected to the first permanent magnet 210 and the second permanent magnet 210, so that the first permanent magnet 210 and the second permanent magnet are configured to be in a non-contact state while keeping an appropriate gap therebetween by magnetic repulsion.
In addition to supporting the thrust load in this way, the bearings 301, 302, 303, and 305 of any one of the embodiments B1, B2, B3, and B5 may be arranged so as to support the side surface of the shaft 100. .
 また、各実施形態に係る軸受は、図24に示す回転装置754のように、図23の回転装置753に対し羽根530の上方にも非接触のスラスト軸受400を設けた回転装置への応用も可能である。上方のスラスト軸受400の構成についても基本的に下方のスラスト軸受200と同様の構成となっている。
 このようにスラスト荷重の軸受をしたうえで、軸100の側面を補助するようにして、実施形態B1,B2,B3,B5のいずれかの軸受301,302,303,305を配置してもよい。
Moreover, the bearing according to each embodiment can also be applied to a rotating device, such as a rotating device 754 shown in FIG. It is possible. The configuration of the upper thrust bearing 400 is basically the same as that of the lower thrust bearing 200 .
In addition to supporting the thrust load in this way, the bearings 301, 302, 303, and 305 of any one of the embodiments B1, B2, B3, and B5 may be arranged so as to support the side surface of the shaft 100. .
 図23及び図24に示した回転装置753,754においては、上記したスラスト軸受200,400が設けられているので、回転軸RAに沿った軸100に上下変動があったとしても、第1永久磁石210/410と第2永久磁石220/220との間の磁力反発によって適宜の間隔を置きながら非接触状態を維持することができる。このため、上部の羽根530の回転方向の摩擦抵抗の低減のみならず、上下方向に対しても摩擦抵抗を軽減できる効果も持ち合わせている。
 したがって、ここで示したようなラジアル荷重の軸受301,302,303,305及び非接触のスラスト軸受200,400が設けられた羽根530(タービン530と換言可能)を有する回転装置753,754は、同じ仕様のものが地球上の様々な標高の場所で設置されることが想定される場合であったり、地球上の様々な標高・緯度・経度の場所の間を行き来することが想定される場合など、重量や磁力の変異によって軸100が上下変動しうる場合の用途にも適応できる。
Since the above-described thrust bearings 200 and 400 are provided in the rotating devices 753 and 754 shown in FIGS. Due to the magnetic repulsion between the magnets 210/410 and the second permanent magnets 220/220, the non-contact state can be maintained while providing an appropriate distance. Therefore, not only the frictional resistance in the rotation direction of the upper blade 530 is reduced, but also the frictional resistance in the vertical direction can be reduced.
Therefore, a rotating device 753, 754 having a vane 530 (which can be translated as a turbine 530) provided with radial load bearings 301, 302, 303, 305 and non-contact thrust bearings 200, 400 as shown here: When it is assumed that products with the same specifications will be installed at various altitudes on the earth, or when it is assumed that they will come and go between places at various altitudes, latitudes, and longitudes on the earth. For example, it can be applied to applications where the shaft 100 can move up and down due to variations in weight and magnetic force.
 なお、非接触のスラスト軸受200,400については、発明者らが発明した先願である特願2021-140044で詳しく開示している。本願においてはかかる先願の内容がそのまま取り込まれる。本願における図23の回転装置753は先願の応用例(3)に対応し、図24の回転装置754は先願の実施形態4に対応しており、符号についても同様の符号を用いている。したがって、本応用例のスラスト軸受200,400の詳細な説明は、先願の内容をそのまま援用して本応用例に適用することができる。 The non-contact thrust bearings 200, 400 are disclosed in detail in Japanese Patent Application No. 2021-140044, which is a prior application invented by the inventors. In the present application, the contents of the prior application are incorporated as they are. The rotating device 753 of FIG. 23 in this application corresponds to the application example (3) of the prior application, and the rotating device 754 of FIG. 24 corresponds to Embodiment 4 of the prior application, and the same reference numerals are used. . Therefore, the detailed description of the thrust bearings 200 and 400 of this application example can be applied to this application example by citing the contents of the prior application as they are.
 以上、本発明(ラジアル軸受)を上記の実施形態に基づいて説明したが、本発明は上記の実施形態に限定されるものではない。その趣旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば、次のような変形も可能である。 Although the present invention (radial bearing) has been described above based on the above embodiments, the present invention is not limited to the above embodiments. It can be implemented in various aspects without departing from the spirit thereof, and for example, the following modifications are also possible.
(1)磁石としてラジアル異方性の磁石を用いた実施形態は、実施形態B5で説明した。
実施形態B5に係る軸受305で用いられている磁石30bは、一対の正磁極31及び負磁極32で定義される極が一つの場合であった。しなしながら、本発明はこれに限定されるものではない。ラジアル異方性の磁石についても、実施形態B3及び実施形態B4の内容と同様に、一対の正磁極31及び負磁極32で定義される極が多極となるように構成することも可能である。
 このとき、磁石は、一対の正磁極31及び負磁極32を互いに結ぶ磁軸がラジアル方向と一致するように構成されたラジアル異方性の磁石であり、磁石には、一対の正磁極31及び負磁極32で定義される極MPが少なくとも2極以上含まれている構成となる。
(1) An embodiment using a radially anisotropic magnet as the magnet has been described in Embodiment B5.
The magnet 30b used in the bearing 305 according to Embodiment B5 has one pole defined by a pair of the positive magnetic pole 31 and the negative magnetic pole 32. FIG. However, the present invention is not limited to this. The radial anisotropic magnet can also be configured so that the poles defined by the pair of the positive magnetic pole 31 and the negative magnetic pole 32 are multipolar, as in the contents of Embodiments B3 and B4. .
At this time, the magnet is a radially anisotropic magnet configured so that the magnetic axis connecting the pair of positive magnetic poles 31 and negative magnetic poles 32 is aligned with the radial direction. At least two poles MP defined by the negative magnetic pole 32 are included.
(2)各実施形態においては、潤滑性ある油性成分が含有されている磁気潤滑剤50を用いることを想定して説明を行った。しかしながら、本発明はこれに限定されるものではない。磁気潤滑剤50は水溶性のある液体を含有したものであってもよい。こうすることにより、磁気潤滑剤全体としての粘度を低くし易くなるため潤滑性向上が期待できる。 (2) Each embodiment has been described on the assumption that the magnetic lubricant 50 containing a lubricating oily component is used. However, the invention is not limited to this. The magnetic lubricant 50 may contain a water-soluble liquid. By doing so, the viscosity of the magnetic lubricant as a whole can be easily lowered, so an improvement in lubricity can be expected.
(3)各実施形態においては、少なくとも接触部14には鋳鉄が用いられていることを想定して説明を行った。しかしながら、本発明はこれに限定されるものではない。例えば、接触部14に炭素鋼が用いられていてもよい(少なくとも接触部は炭素鋼でなってもよい)。また、接触部14には、セラミックを含有した磁性材料が用いられていてもよい。具体的には、例えば鉄粉にセラミックの粒子を混ぜたもので接触部14を構成してもよい。 (3) Each embodiment has been described on the assumption that at least the contact portion 14 is made of cast iron. However, the invention is not limited to this. For example, carbon steel may be used for the contact portion 14 (at least the contact portion may be made of carbon steel). A magnetic material containing ceramic may be used for the contact portion 14 . Specifically, for example, the contact portion 14 may be made of a mixture of iron powder and ceramic particles.
 なお、磁石においては磁石配列による高磁束密度化技術があり、代表的なハルバッハ磁石配列や特許第5381072号:図3の磁石配列を、本発明の各磁極に用いることで同形状において実施形態A1~A5における反発力を更に高めたり、実施形態B1~B5の磁気潤滑剤50の滞留量を更に増加させたりすることができる。 In addition, there is a technique for increasing the magnetic flux density by magnet arrangement in magnets, and a typical Halbach magnet arrangement or Japanese Patent No. 5381072: By using the magnet arrangement of FIG. 3 for each magnetic pole of the present invention, Embodiment A1 It is possible to further increase the repulsive force in ˜A5, or further increase the retention amount of the magnetic lubricant 50 in Embodiments B1 to B5.
1,2,3,4,5,6,710,711,712,720,721,750,751,752,753,754,900…回転装置、10,10a,10b…受け部材、11,11a…(受け部材の)基部、12,12a…(受け部材の)突出部、14,14a…接触部、15…座ぐり穴、16…リブ、17…渡り部、18a…鋳鉄の巣、30,30a,30b…磁石、31…正磁極、32…負磁極、34…(磁石の)内側面、35…(磁石の)外側面、36…(磁石の)上面、37…(磁石の)下面、50…磁気潤滑剤、51…磁性体粒子、55…炭素粒子、60…ケース、70…スペーサー、100…軸、100a…(軸の)一端側、200,200’,400,901,990…スラスト軸受、210,410,910…第1永久磁石、211…第1面、212…第2面、213…(第1永久磁石の)側面、215…荷重側対向面、217…軸受部、220,420,920…第2永久磁石、221…第3面、222…第4面、223…(第2永久磁石の)側面、225…受け側対向面、230,430,930…第1ヨーク、232…筒状胴部、234…底部、235…内壁面、236,936…内底面、237…口縁面、240,440,940…第2ヨーク、242…筒状胴部、244…底部、245…内壁面、246…内底面、247…口縁面、290…空気層又は非磁性体、300,301,302,303,304,305…(ラジアル)軸受、500…回転体、501,502,503,504、510,510’ …フライホイール、520…ロータ、522…ロータに属する永久磁石、524…ステータに属するコイル、526…コイルバックヨーク、530…羽根(タービン)、600…磁気検出部
 

 
1, 2, 3, 4, 5, 6, 710, 711, 712, 720, 721, 750, 751, 752, 753, 754, 900... rotating device, 10, 10a, 10b... receiving member, 11, 11a... Base portion (of receiving member) 12, 12a Projecting portion (of receiving member) 14, 14a Contact portion 15 Counterbored hole 16 Rib 17 Bridge portion 18a Cast iron cavity 30, 30a , 30b... magnet, 31... positive magnetic pole, 32... negative magnetic pole, 34... inner surface (of magnet), 35... outer surface (of magnet), 36... upper surface (of magnet), 37... lower surface (of magnet), 50 ... Magnetic lubricant 51 ... Magnetic particles 55 ... Carbon particles 60 ... Case 70 ... Spacer 100 ... Shaft 100a ... One end side (of the shaft) 200, 200', 400, 901, 990 ... Thrust bearing , 210, 410, 910... First permanent magnet 211... First surface 212... Second surface 213... Side surface (of first permanent magnet) 215... Load side facing surface 217... Bearing portion 220, 420 , 920... Second permanent magnet 221... Third surface 222... Fourth surface 223... Side surface (of the second permanent magnet) 225... Receiving side facing surface 230, 430, 930... First yoke 232... Cylindrical body 234 Bottom 235 Inner wall 236, 936 Inner bottom 237 Rim surface 240, 440, 940 Second yoke 242 Cylindrical body 244 Bottom 245 Inner wall surface 246 Inner bottom surface 247 Mouth surface 290 Air layer or nonmagnetic material 300, 301, 302, 303, 304, 305 (radial) bearing 500 Rotating body 501, 502, 503 , 504, 510, 510′ flywheel 520 rotor 522 permanent magnet belonging to rotor 524 coil belonging to stator 526 coil back yoke 530 vane (turbine) 600 magnetism detector

Claims (31)

  1.  回転軸を中心に回転する回転部と、該回転部の回転に対し相対的に固定状態となっている固定部と、を備えた回転装置であって、
     前記回転部は、前記回転軸を中心に回転する軸と、前記軸を支える軸受部が設けられ前記軸の少なくも一端側に設けられた第1永久磁石と、を有し、
     前記第1永久磁石は軸側と反軸側とに着磁され、
     前記固定部は、前記第1永久磁石に面した側が前記第1永久磁石の前記反軸側の磁極と同極となるよう着磁されており、前記第1永久磁石との間で互いに磁力反発し前記第1永久磁石と非接触状態となるようにして前記回転軸上に設けられた第2永久磁石を有している、
     ことを特徴とする回転装置。
    A rotating device comprising a rotating part that rotates about a rotating shaft and a fixed part that is relatively fixed with respect to the rotation of the rotating part,
    The rotating part has a shaft that rotates about the rotating shaft, and a first permanent magnet that is provided with a bearing that supports the shaft and is provided at least on one end side of the shaft,
    The first permanent magnet is magnetized on the shaft side and the opposite shaft side,
    The fixing portion is magnetized such that the side facing the first permanent magnet has the same pole as the magnetic pole of the first permanent magnet on the opposite side of the axis, and magnetic repulsion is caused between the fixing portion and the first permanent magnet. and a second permanent magnet provided on the rotating shaft so as to be in a non-contact state with the first permanent magnet,
    A rotating device characterized by:
  2.  回転軸を中心として回転するよう構成された軸と、
     前記軸の少なくとも一端側に配置され、前記回転軸に平行なスラスト方向の荷重を受けるスラスト軸受と、
     を備えた回転装置であって、
     前記スラスト軸受は、
     前記軸の前記一端側に接続され第1磁極が配された第1面、及び、前記第1面とは反対側に位置し第2磁極が配された第2面を有し、前記軸と一体となって同軸に回転するよう構成された第1永久磁石と、
     前記第1永久磁石の前記第2面に対向するように位置し前記第2磁極が配された第3面、及び、前記第3面とは反対側に位置し前記第1磁極が配された第4面を有し、所与の固定部に固定される第2永久磁石と、
     を具備し、
     前記第1永久磁石の前記第2面上では、前記回転軸の位置においてもその部材が存在し、かつ、前記回転軸の位置において磁力線が集中するように前記第2磁極が配されており、
     前記第2永久磁石の前記第3面上では、前記回転軸の位置においてもその部材が存在し、かつ、前記回転軸の位置において磁力線が集中するように前記第2磁極が配されている、
     ことを特徴とする回転装置。
    a shaft configured to rotate about an axis of rotation;
    a thrust bearing disposed on at least one end side of the shaft and receiving a load in a thrust direction parallel to the rotating shaft;
    A rotating device comprising
    The thrust bearing is
    It has a first surface connected to the one end side of the shaft and having a first magnetic pole disposed thereon, and a second surface opposite to the first surface and having a second magnetic pole disposed thereon. a first permanent magnet configured to coaxially rotate together;
    A third surface on which the second magnetic pole is arranged so as to face the second surface of the first permanent magnet, and a third surface on which the first magnetic pole is arranged on the side opposite to the third surface. a second permanent magnet having a fourth face and fixed to a given fixed portion;
    and
    On the second surface of the first permanent magnet, the second magnetic pole is arranged so that the member exists even at the position of the rotation axis, and the magnetic lines of force are concentrated at the position of the rotation axis,
    On the third surface of the second permanent magnet, the member is present even at the position of the rotation axis, and the second magnetic pole is arranged so that magnetic lines of force are concentrated at the position of the rotation axis.
    A rotating device characterized by:
  3.  請求項2に記載の回転装置において、
     前記スラスト軸受は、前記第1永久磁石と対になって磁気回路を構成する第1ヨークと、前記第2永久磁石と対になって磁気回路を構成する第2ヨークと、を更に具備し、
     前記第1ヨークは、軟磁性体からなり、一方の側が開口した筒状胴部と該筒状胴部の他方の側に連成された底部とを有する有底円筒形をなしており、前記底部及び前記筒状胴部により前記第1永久磁石の前記第1面及び側面を取り囲むようにして内部に同軸的に前記第1永久磁石を収容しており、
     前記底部の内底面は前記第1永久磁石の前記第1面と当接すると共に、前記筒状胴部の内壁面と前記第1永久磁石の前記側面との間は空気層又は非磁性体で埋められており、
     前記第1ヨークの前記筒状胴部の開口側の端面と前記第1永久磁石の前記第2面とにより略同一の平面を形成しており、
     前記第2ヨークは、軟磁性体からなり、一方の側が開口した筒状胴部と該筒状胴部の他方の側に連成された底部とを有する有底円筒形をなしており、前記底部及び前記筒状胴部により前記第2永久磁石の前記第4面及び側面を取り囲むようにして内部に前記第2永久磁石を収容しており、
     前記底部の内底面は前記第2永久磁石の前記第4面と当接すると共に、前記筒状胴部の内壁面と前記第2永久磁石の前記側面との間は空気層又は非磁性体で埋められており、
     前記第2ヨークの前記筒状胴部の開口側の端面と前記第2永久磁石の前記第3面とにより略同一の平面を形成している、
     ことを特徴とする回転装置。
    3. The rotating device according to claim 2,
    The thrust bearing further comprises a first yoke that forms a magnetic circuit in pair with the first permanent magnet, and a second yoke that forms a magnetic circuit in pair with the second permanent magnet,
    The first yoke is made of a soft magnetic material and has a bottomed cylindrical shape having a cylindrical body portion with one side open and a bottom portion connected to the other side of the cylindrical body portion, and The first permanent magnet is coaxially accommodated inside such that the first surface and side surfaces of the first permanent magnet are surrounded by the bottom and the cylindrical body,
    The inner bottom surface of the bottom portion contacts the first surface of the first permanent magnet, and the space between the inner wall surface of the cylindrical body and the side surface of the first permanent magnet is filled with an air layer or a non-magnetic material. and
    substantially the same plane is formed by the end surface of the first yoke on the opening side of the cylindrical body and the second surface of the first permanent magnet,
    The second yoke is made of a soft magnetic material and has a bottomed cylindrical shape having a cylindrical body portion with one side open and a bottom portion connected to the other side of the cylindrical body portion, and The second permanent magnet is accommodated inside such that the bottom and the cylindrical body surround the fourth surface and the side surface of the second permanent magnet,
    The inner bottom surface of the bottom portion is in contact with the fourth surface of the second permanent magnet, and the space between the inner wall surface of the cylindrical body and the side surface of the second permanent magnet is filled with an air layer or a non-magnetic material. and
    The end face of the second yoke on the opening side of the cylindrical body and the third face of the second permanent magnet form substantially the same plane,
    A rotating device characterized by:
  4.  請求項2又は3に記載の回転装置において、
     前記軸及び前記スラスト軸受は前記回転軸の延びる方向が鉛直方向と略同じ方向となるように配置されている、
     ことを特徴とする請求項1又は2に記載の回転装置。
    In the rotating device according to claim 2 or 3,
    The shaft and the thrust bearing are arranged so that the direction in which the rotating shaft extends is substantially the same as the vertical direction.
    3. The rotating device according to claim 1 or 2, characterized in that:
  5.  請求項4に記載の回転装置において、
     前記軸に所与の回転体が取り付けられて当該軸に対しスラスト方向の荷重が課せられたとき、
     前記軸が、前記第1磁石の前記第2面と前記第2磁石の前記第3面との間が離間するようにして鉛直上向きに浮上して、回転するように構成されている、
     ことを特徴とする回転装置。
    5. The rotating device according to claim 4,
    When a given rotating body is attached to the shaft and a load in the thrust direction is applied to the shaft,
    The shaft is configured to levitate vertically upward and rotate while the second surface of the first magnet and the third surface of the second magnet are separated from each other.
    A rotating device characterized by:
  6.  請求項2~5のいずれかに記載の回転装置において、
     前記回転軸に垂直なラジアル方向の荷重を受けるラジアル軸受を更に備えた、
     ことを特徴とする回転装置。
    In the rotating device according to any one of claims 2 to 5,
    Further comprising a radial bearing that receives a load in a radial direction perpendicular to the rotating shaft,
    A rotating device characterized by:
  7.  請求項2~6のいずれかに記載の回転装置において、
     前記軸の他端側においても、前記一端側に配置された前記スラスト軸受と同様の構成を有する別のスラスト軸受が配置されており、
     前記スラスト軸受と前記別のスラスト軸受との間に、所与の回転体が前記軸に取り付けられて配置されるよう構成されている、
     ことを特徴とする回転装置。
    In the rotating device according to any one of claims 2 to 6,
    Another thrust bearing having a configuration similar to that of the thrust bearing arranged on the one end side is arranged on the other end side of the shaft,
    Between the thrust bearing and the other thrust bearing, a given rotating body is arranged attached to the shaft,
    A rotating device characterized by:
  8.  請求項2~7のいずれかに記載の回転装置において、
     前記第2永久磁石の前記第3面を含む受け側対向面の上、又は、前記第1永久磁石の前記第2面を含む荷重側対向面の上のいずれかにおいて磁気検出部が配設されており、
     前記磁気検出部が、前記受け側対向面と前記荷重側対向面との離間距離の変位を検出する、
     ことを特徴とする回転装置。
    In the rotating device according to any one of claims 2 to 7,
    A magnetic detector is disposed on either the receiving side facing surface including the third surface of the second permanent magnet or the load side facing surface including the second surface of the first permanent magnet. and
    The magnetic detection unit detects a displacement of a separation distance between the receiving-side facing surface and the load-side facing surface.
    A rotating device characterized by:
  9.  請求項1に記載の回転装置において、
     前記回転軸に垂直なラジアル方向の荷重を受けるラジアル軸受を更に備え、
     前記ラジアル軸受は、
     前記軸のラジアル荷重を受ける受け部材と、
     正磁極及び負磁極を有する磁石と、
     前記正磁極及び前記負磁極の間の磁力線の影響を受ける磁性体粒子を含有した磁気潤滑剤と、を備え、
     前記磁気潤滑剤が、前記軸と前記受け部材との間に配置されてなる、
     ことを特徴とする回転装置。
    The rotating device according to claim 1, wherein
    further comprising a radial bearing that receives a load in a radial direction perpendicular to the rotating shaft;
    The radial bearing is
    a receiving member that receives the radial load of the shaft;
    a magnet having a positive magnetic pole and a negative magnetic pole;
    a magnetic lubricant containing magnetic particles that are affected by the magnetic lines of force between the positive magnetic pole and the negative magnetic pole;
    wherein the magnetic lubricant is disposed between the shaft and the receiving member;
    A rotating device characterized by:
  10.  請求項6に記載の回転装置において、
     前記ラジアル軸受は、
     前記軸のラジアル荷重を受ける受け部材と、
     正磁極及び負磁極を有する磁石と、
     前記正磁極及び前記負磁極の間の磁力線の影響を受ける磁性体粒子を含有した磁気潤滑剤と、を備え、
     前記磁気潤滑剤が、前記軸と前記受け部材との間に配置されてなる、
     ことを特徴とする回転装置。
    7. The rotating device according to claim 6,
    The radial bearing is
    a receiving member that receives the radial load of the shaft;
    a magnet having a positive magnetic pole and a negative magnetic pole;
    a magnetic lubricant containing magnetic particles that are affected by the magnetic lines of force between the positive magnetic pole and the negative magnetic pole;
    wherein the magnetic lubricant is disposed between the shaft and the receiving member;
    A rotating device characterized by:
  11.  請求項10に記載の回転装置において、
     前記受け部材は、前記軸に対して、直接的に又は前記磁気潤滑剤を介して間接的に接触する接触部を有し、
     前記接触部は、前記磁石の内側面の位置よりも更に前記回転軸寄りに突出している突出部の先端に形成されている、
     ことを特徴とする回転装置。
    11. A rotating device according to claim 10, wherein
    The receiving member has a contact portion that contacts the shaft directly or indirectly via the magnetic lubricant,
    The contact portion is formed at the tip of a protrusion that protrudes closer to the rotation shaft than the position of the inner surface of the magnet,
    A rotating device characterized by:
  12.  請求項10又は請求項11に記載の回転装置において、
     前記磁石は、一対の前記正磁極及び前記負磁極を互いに結ぶ磁軸がスラスト方向と一致するように構成され、
     前記磁石には、一対の前記正磁極及び前記負磁極で定義される極が少なくとも2極以上含まれている、
    ことを特徴とする回転装置。
    In the rotating device according to claim 10 or claim 11,
    the magnet is configured such that a magnetic axis connecting the pair of the positive magnetic pole and the negative magnetic pole is aligned with the thrust direction;
    The magnet includes at least two poles defined by a pair of the positive magnetic pole and the negative magnetic pole,
    A rotating device characterized by:
  13.  請求項12に記載の回転装置において、
     前記磁石からみて前記磁気潤滑剤が配置された位置とは反対側のラジアル方向上の位置に、非磁性体の材料からなる非磁性体部材が設けられていることを特徴とする回転装置。
    13. A rotating device according to claim 12, wherein
    A rotating device comprising a non-magnetic member made of a non-magnetic material at a radial position opposite to a position where the magnetic lubricant is arranged when viewed from the magnet.
  14.  請求項10又は請求項11に記載の回転装置において、
     前記磁石は、一対の前記正磁極及び前記負磁極を互いに結ぶ磁軸がラジアル方向と一致するように構成され、
     前記磁石には、一対の前記正磁極及び前記負磁極で定義される極が少なくとも2極以上含まれている、
    ことを特徴とする回転装置。
    In the rotating device according to claim 10 or claim 11,
    The magnet is configured such that a magnetic axis connecting the pair of the positive magnetic pole and the negative magnetic pole is aligned with the radial direction,
    The magnet includes at least two poles defined by a pair of the positive magnetic pole and the negative magnetic pole,
    A rotating device characterized by:
  15.  請求項14に記載の回転装置において、
     前記磁軸に平行な方向に沿って、前記磁石が配置された位置と前記磁気潤滑剤が配置されたスラスト方向上の位置との間に、非磁性体の材料からなる非磁性体部材が設けられていることを特徴とする回転装置。
    15. A rotating device according to claim 14, wherein
    A non-magnetic member made of a non-magnetic material is provided between the position where the magnet is arranged and the position in the thrust direction where the magnetic lubricant is arranged along the direction parallel to the magnetic axis. A rotating device characterized by being
  16.  請求項10~15のいずれかに記載の回転装置において、
     前記磁気潤滑剤には、潤滑性ある油性成分が含有されていることを特徴とする回転装置。
    In the rotating device according to any one of claims 10 to 15,
    A rotating device, wherein the magnetic lubricant contains an oily component having lubricating properties.
  17.  請求項10~16のいずれかに記載の回転装置において、
     前記磁気潤滑剤には、潤滑性ある炭素粒子が含有されていることを特徴とする回転装置。
    In the rotating device according to any one of claims 10 to 16,
    The rotating device, wherein the magnetic lubricant contains lubricating carbon particles.
  18.  請求項11~17のいずれかに記載の回転装置において、
     前記接触部には鋳鉄が用いられていることを特徴とする回転装置。
    In the rotating device according to any one of claims 11 to 17,
    The rotating device, wherein cast iron is used for the contact portion.
  19.  請求項11~17のいずれかに記載の回転装置において、
     前記接触部には炭素鋼が用いられていることを特徴とする回転装置。
    In the rotating device according to any one of claims 11 to 17,
    The rotating device, wherein carbon steel is used for the contact portion.
  20.  請求項11~19のいずれかに記載の回転装置において、
     前記接触部には、セラミックを含有した磁性材料が用いられていることを特徴とする回転装置。
    In the rotating device according to any one of claims 11 to 19,
    A rotating device, wherein a magnetic material containing ceramic is used for the contact portion.
  21.  回転軸の周りを回転する軸のラジアル荷重を受ける軸受であって、
     前記軸のラジアル荷重を受ける受け部材と、
     正磁極及び負磁極を有する磁石と、
     前記正磁極及び前記負磁極の間の磁力線の影響を受ける磁性体粒子を含有した磁気潤滑剤と、を備え、
     前記磁気潤滑剤が、前記軸と前記受け部材との間に配置されてなる、
     ことを特徴とする軸受。
    A bearing that receives the radial load of a shaft that rotates about an axis of rotation,
    a receiving member that receives the radial load of the shaft;
    a magnet having a positive magnetic pole and a negative magnetic pole;
    a magnetic lubricant containing magnetic particles that are affected by the magnetic lines of force between the positive magnetic pole and the negative magnetic pole;
    wherein the magnetic lubricant is disposed between the shaft and the receiving member;
    A bearing characterized by:
  22.  請求項21に記載の軸受において、
     前記受け部材は、前記軸に対して、直接的に又は前記磁気潤滑剤を介して間接的に接触する接触部を有し、
     前記接触部は、前記磁石の内側面の位置よりも更に前記回転軸寄りに突出している突出部の先端に形成されている、
     ことを特徴とする軸受。
    22. A bearing according to claim 21, wherein
    The receiving member has a contact portion that contacts the shaft directly or indirectly via the magnetic lubricant,
    The contact portion is formed at the tip of a protrusion that protrudes closer to the rotation shaft than the position of the inner surface of the magnet,
    A bearing characterized by:
  23.  請求項21又は請求項22に記載の軸受において、
     前記磁石は、一対の前記正磁極及び前記負磁極を互いに結ぶ磁軸がスラスト方向と一致するように構成され、
     前記磁石には、一対の前記正磁極及び前記負磁極で定義される極が少なくとも2極以上含まれている、
    ことを特徴とする軸受。
    A bearing according to claim 21 or claim 22,
    the magnet is configured such that a magnetic axis connecting the pair of the positive magnetic pole and the negative magnetic pole is aligned with the thrust direction;
    The magnet includes at least two poles defined by a pair of the positive magnetic pole and the negative magnetic pole,
    A bearing characterized by:
  24.  請求項23に記載の軸受において、
     前記磁石からみて前記磁気潤滑剤が配置された位置とは反対側のラジアル方向上の位置に、非磁性体の材料からなる非磁性体部材が設けられていることを特徴とする軸受。
    24. A bearing according to claim 23, wherein
    A bearing according to claim 1, wherein a non-magnetic member made of a non-magnetic material is provided at a position in the radial direction opposite to the position where the magnetic lubricant is arranged when viewed from the magnet.
  25.  請求項21又は請求項22に記載の軸受において、
     前記磁石は、一対の前記正磁極及び前記負磁極を互いに結ぶ磁軸がラジアル方向と一致するように構成され、
     前記磁石には、一対の前記正磁極及び前記負磁極で定義される極が少なくとも2極以上含まれている、
    ことを特徴とする軸受。
    A bearing according to claim 21 or claim 22,
    The magnet is configured such that a magnetic axis connecting the pair of the positive magnetic pole and the negative magnetic pole is aligned with the radial direction,
    The magnet includes at least two poles defined by a pair of the positive magnetic pole and the negative magnetic pole,
    A bearing characterized by:
  26.  請求項25に記載の軸受において、
     前記磁軸に平行な方向に沿って、前記磁石が配置された位置と前記磁気潤滑剤が配置されたスラスト方向上の位置との間に、非磁性体の材料からなる非磁性体部材が設けられていることを特徴とする軸受。
    26. A bearing according to claim 25, wherein
    A non-magnetic member made of a non-magnetic material is provided between the position where the magnet is arranged and the position in the thrust direction where the magnetic lubricant is arranged along the direction parallel to the magnetic axis. A bearing characterized by being
  27.  請求項21~26のいずれかに記載の軸受において、
     前記磁気潤滑剤には、潤滑性ある油性成分が含有されていることを特徴とする軸受。
    In the bearing according to any one of claims 21-26,
    A bearing, wherein the magnetic lubricant contains an oily component with lubricating properties.
  28.  請求項21~27のいずれかに記載の軸受において、
     前記磁気潤滑剤には、潤滑性ある炭素粒子が含有されていることを特徴とする軸受。
    In the bearing according to any one of claims 21-27,
    A bearing, wherein the magnetic lubricant contains lubricating carbon particles.
  29.  請求項22~28のいずれかに記載の軸受において、
     前記接触部には鋳鉄が用いられていることを特徴とする軸受。
    In the bearing according to any one of claims 22-28,
    A bearing, wherein the contact portion is made of cast iron.
  30.  請求項22~28のいずれかに記載の軸受において、
     前記接触部には炭素鋼が用いられていることを特徴とする軸受。
    In the bearing according to any one of claims 22-28,
    A bearing, wherein the contact portion is made of carbon steel.
  31.  請求項22~30のいずれかに記載の軸受において、
     前記接触部には、セラミックを含有した磁性材料が用いられていることを特徴とする軸受。
     
     

     
    In the bearing according to any one of claims 22-30,
    A bearing, wherein a magnetic material containing ceramic is used for the contact portion.



PCT/JP2022/032081 2021-08-30 2022-08-25 Bearing and rotary device WO2023032812A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023515214A JPWO2023032812A1 (en) 2021-08-30 2022-08-25

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-140044 2021-08-30
JP2021140044 2021-08-30
JP2021-205736 2021-12-20
JP2021205736 2021-12-20

Publications (1)

Publication Number Publication Date
WO2023032812A1 true WO2023032812A1 (en) 2023-03-09

Family

ID=85412673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032081 WO2023032812A1 (en) 2021-08-30 2022-08-25 Bearing and rotary device

Country Status (2)

Country Link
JP (1) JPWO2023032812A1 (en)
WO (1) WO2023032812A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49128950U (en) * 1973-03-07 1974-11-06
JPS56113825A (en) * 1980-02-07 1981-09-08 Nippon Telegr & Teleph Corp <Ntt> Magnetic bearing
JPS58131426A (en) * 1982-01-29 1983-08-05 Tohoku Metal Ind Ltd Magnetic bearing device
JPS60143925U (en) * 1984-03-02 1985-09-24 セイコー精機株式会社 Rotating shaft support device
JPH01229819A (en) * 1988-03-04 1989-09-13 Mitsui Eng & Shipbuild Co Ltd Carbon system including magnetic fine particle and production thereof
JPH01163213U (en) * 1988-05-06 1989-11-14
JPH046667A (en) * 1990-04-25 1992-01-10 Hitachi Ltd Rotary equipment and motor or its bearing component
JPH04119220A (en) * 1990-09-05 1992-04-20 Ibiden Co Ltd Dynamic pressure bearing
JPH07317765A (en) * 1994-05-27 1995-12-08 Sankyo Seiki Mfg Co Ltd Fluid bearing device
JP2005532516A (en) * 2002-07-10 2005-10-27 ターボコー インク. Thrust load relaxation device for rotor bearing system using permanent magnet

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49128950U (en) * 1973-03-07 1974-11-06
JPS56113825A (en) * 1980-02-07 1981-09-08 Nippon Telegr & Teleph Corp <Ntt> Magnetic bearing
JPS58131426A (en) * 1982-01-29 1983-08-05 Tohoku Metal Ind Ltd Magnetic bearing device
JPS60143925U (en) * 1984-03-02 1985-09-24 セイコー精機株式会社 Rotating shaft support device
JPH01229819A (en) * 1988-03-04 1989-09-13 Mitsui Eng & Shipbuild Co Ltd Carbon system including magnetic fine particle and production thereof
JPH01163213U (en) * 1988-05-06 1989-11-14
JPH046667A (en) * 1990-04-25 1992-01-10 Hitachi Ltd Rotary equipment and motor or its bearing component
JPH04119220A (en) * 1990-09-05 1992-04-20 Ibiden Co Ltd Dynamic pressure bearing
JPH07317765A (en) * 1994-05-27 1995-12-08 Sankyo Seiki Mfg Co Ltd Fluid bearing device
JP2005532516A (en) * 2002-07-10 2005-10-27 ターボコー インク. Thrust load relaxation device for rotor bearing system using permanent magnet

Also Published As

Publication number Publication date
JPWO2023032812A1 (en) 2023-03-09

Similar Documents

Publication Publication Date Title
Samanta et al. Magnetic bearing configurations: Theoretical and experimental studies
IE56198B1 (en) Magnetic bearing for the triaxial positional stabilization of bodies
JP2005237192A (en) Magnetic bearing motor and bearing structure thereof
CN102588433B (en) A kind of permanent-magnet suspension bearing and mounting structure thereof
CN101000070A (en) Permanent magnetism and turbine composite bearing
CN101571161B (en) Magnetic sliding bearing
Ochoński Sliding bearings lubricated with magnetic fluids
CN100543324C (en) Hydrodynamic bearing apparatus and the whirligig that uses it
CN110332235B (en) Passive permanent magnet repulsion type magnetic bearing structure
WO2023032812A1 (en) Bearing and rotary device
JPWO2013137252A1 (en) Magnetic gear device
Han et al. Integrated radial/thrust magnetic bearing without thrust disk for a high‐speed driving system
TWI484106B (en) Hybrid type of magnet bearing system
JPS599312A (en) Magnetic bearing applied with magnetic fluid
CN109681525B (en) Magnetic suspension bearing and motor
JP2009192041A (en) Thrust force generation device, electromagnetic machine applying thrust force generation device
US20040227421A1 (en) Magnetic suspension bearing
CN101070878A (en) Permanent-magnet and turbine composite bearing
Samanta et al. A simplified optilviization approach for permanent magnetic journal bearing
Bekinal et al. Friction-free permanent magnet bearings for rotating shafts: A comprehensive review
CN201187529Y (en) Magnetic slide bearing
CN201982504U (en) Permanent magnet suspension bearing and mounting structure thereof
CN111609036A (en) Magnetic fluid bearing
Prusa et al. Design of passive magnetic axial bearing for seal-less pump
RU214414U1 (en) Non-contact bearing on a passive magnetic suspension of increased reliability

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023515214

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864396

Country of ref document: EP

Kind code of ref document: A1