WO2023032655A1 - Glass fiber manufacturing device and glass fiber manufacturing method - Google Patents

Glass fiber manufacturing device and glass fiber manufacturing method Download PDF

Info

Publication number
WO2023032655A1
WO2023032655A1 PCT/JP2022/030946 JP2022030946W WO2023032655A1 WO 2023032655 A1 WO2023032655 A1 WO 2023032655A1 JP 2022030946 W JP2022030946 W JP 2022030946W WO 2023032655 A1 WO2023032655 A1 WO 2023032655A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
generating member
glass
molten glass
bushing
Prior art date
Application number
PCT/JP2022/030946
Other languages
French (fr)
Japanese (ja)
Inventor
禅 松浦
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2023032655A1 publication Critical patent/WO2023032655A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/08Bushings, e.g. construction, bushing reinforcement means; Spinnerettes; Nozzles; Nozzle plates
    • C03B37/09Bushings, e.g. construction, bushing reinforcement means; Spinnerettes; Nozzles; Nozzle plates electrically heated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a glass fiber manufacturing apparatus and a glass fiber manufacturing method.
  • a manufacturing apparatus for manufacturing glass fibers, which includes a feeder for circulating molten glass, and a bushing disposed below the feeder and having a plurality of nozzles for flowing out the molten glass. be done.
  • a plurality of glass filaments can be formed by causing molten glass to flow out from each nozzle of the bushing.
  • the temperature of the molten glass supplied from the feeder to the bushing is low, it is necessary to heat the molten glass by energizing the bushing to generate heat.
  • the molten glass may not be sufficiently heated in the bushing, or the temperature of the nozzle of the bushing may rise excessively due to the energization, which may result in unstable formation of the glass filaments.
  • An object of the present invention is to provide a glass fiber manufacturing apparatus and a glass fiber manufacturing method that enable stable formation of glass filaments.
  • a glass fiber manufacturing apparatus that solves the above problems includes a feeder for circulating molten glass, a bushing disposed below the feeder and having a plurality of nozzles for flowing out the molten glass, and a heat generating member that generates heat when energized.
  • the heat-generating member has a heat-generating portion arranged in the flow path of the molten glass between the feeder and the bushing.
  • the heat generating portion of the heat generating member may be composed of a plate member provided so as to cross the flow path of the molten glass.
  • the heat generating portion of the heat generating member may have a through hole through which the molten glass flows.
  • the heat generating portion of the heat generating member may have a plurality of through holes provided to form a plurality of circulation portions having different opening ratios.
  • the heat generating member may include a first heat generating member and a second heat generating member arranged downstream of the first heat generating member and spaced apart from the first heat generating member. .
  • the heat generating member includes a first heat generating member and a second heat generating member arranged downstream of the first heat generating member and separated from the first heat generating member,
  • the heat-generating portion of the first heat-generating member and the heat-generating portion of the second heat-generating member are composed of a plate member provided so as to cross the flow path of the molten glass. 2.
  • the heat generating portion of the heat generating member may have a through hole through which the molten glass flows.
  • the first heat-generating member and the second heat-generating member each have a plurality of circulation portions with different opening ratios, and the circulation portion of the first heat-generating member and the second heat-generating member may be arranged so as to have different aperture ratios along the flow direction of the molten glass.
  • the heat-generating member and the bushing may be arranged apart from each other.
  • the glass fiber manufacturing apparatus may further include an insulating member disposed between the heat generating member and the bushing.
  • a glass fiber manufacturing method for solving the above problems is a glass fiber manufacturing method including a forming step of forming a glass filament using a glass fiber manufacturing apparatus, wherein the glass fiber manufacturing apparatus distributes molten glass.
  • a bushing arranged below the feeder and having a plurality of nozzles for flowing out the molten glass; and a heat generating member that generates heat when energized, wherein the heat generating member is located between the feeder and the bushing. and a heat-generating part arranged in the flow path of the molten glass in the molding step, wherein the molten glass is heated by the heat-generating member.
  • FIG. 1 is a cross-sectional view showing a glass fiber manufacturing apparatus according to a first embodiment; FIG. It is a top view which shows a heat-generating member. It is a top view which shows an insulating member.
  • FIG. 5 is a cross-sectional view showing a glass fiber manufacturing apparatus according to a second embodiment; It is a top view which shows a heat-generating member.
  • FIG. 11 is a plan view showing a heat generating member of a modified example;
  • a glass fiber manufacturing apparatus 11 includes a feeder 12 for circulating molten glass MG and a bushing 13 arranged below the feeder 12 .
  • a glass fiber manufacturing apparatus 11 includes a heat generating member 14 that generates heat when energized.
  • the glass fiber manufacturing apparatus 11 of the present embodiment includes an insulating member 15 arranged between the heat generating member 14 and the bushing 13 .
  • the feeder 12 is constructed from a refractory wall.
  • the refractory material constituting the refractory wall include electroformed bricks and dense sintered bricks.
  • electrocast bricks include zirconia-based electrocast bricks, alumina-based electrocast bricks, alumina-zirconia-based electrocast bricks, alumina-zirconia-silica-based electrocast bricks, and the like.
  • Dense sintered bricks include dense zircon bricks, dense chrome bricks, and the like.
  • the feeder 12 has a flow block 12a that forms a channel for flowing down the molten glass MG.
  • the flow block 12a is also made of a refractory material.
  • Glass of molten glass MG includes, for example, E glass (glass having an alkali content of 2% or less), D glass (low dielectric constant glass), AR glass (alkali resistant glass), C glass (acid resistant glass), M Glass (high elastic modulus glass), S glass (high strength, high elastic modulus glass), T glass (high strength, high elastic modulus glass), H glass (high dielectric constant glass), NE glass (low dielectric constant glass) rate glass).
  • the density of glass is, for example, 2.0-3.0 g/cm 3 .
  • the bushing 13 of the glass fiber manufacturing apparatus 11 has a plurality of nozzles N for flowing out the molten glass MG.
  • a glass filament GF can be formed by each nozzle N of the bushing 13 .
  • the bushing 13 includes a bushing body 13a to which molten glass MG is supplied, and a base plate 13b provided at the bottom of the bushing body 13a.
  • the upper portion of the bushing body 13a has a supply port through which the molten glass MG is supplied from the feeder 12. As shown in FIG.
  • the bushing 13 is supported on the feeder 12 by a support member S, for example.
  • the glass fiber manufacturing apparatus 11 of the present embodiment includes a bushing block 16 arranged below the flow block 12a of the feeder 12 .
  • Bushing block 16 forms a flow path for molten glass MG between feeder 12 and bushing 13 . Molten glass MG flowing down the flow path formed by the bushing block 16 is supplied to the bushing main body 13a.
  • the bushing block 16 is constructed, for example, from the non-conductive refractories described above.
  • the bushing main body 13a may have a screen for suppressing accumulation of foreign matter on the base plate 13b, a terminal for energization, or the like.
  • a plurality of nozzles N are provided on the base plate 13b.
  • the number of nozzle holes in the bushing 13 is preferably in the range of 100 or more and 10000 or less. Examples of the shape of the nozzle hole in each nozzle N of the bushing 13 include a circular shape, a flat shape having a major axis and a minor axis, and the like.
  • Materials for the bushing body 13a, the base plate 13b, and the nozzle N include, for example, noble metals or noble metal alloys.
  • Noble metals are gold, silver, platinum, palladium, rhodium, iridium, ruthenium, or osmium.
  • the material of the bushing body 13a, the base plate 13b, and the nozzle N is preferably platinum or a platinum alloy from the viewpoint of enhancing durability. Examples of platinum alloys include platinum rhodium alloys.
  • the heat-generating member 14 of the glass fiber manufacturing apparatus 11 has a heat-generating portion 14 a arranged in the flow path of the molten glass MG between the feeder 12 and the bushing 13 .
  • the heat-generating member 14 also has a terminal 14b for power supply connected to the heat-generating portion 14a.
  • the heat generating member 14 is arranged apart from the bushing 13 . Specifically, the heat generating member 14 is arranged so as not to contact the bushing 13 .
  • the heat-generating portion 14a of the heat-generating member 14 is composed of a plate member provided so as to cross the flow path of the molten glass MG.
  • the heat generating portion 14a has at least one through hole TH through which the molten glass MG flows.
  • the heat generating portion 14a has a plurality of through holes TH formed to form a plurality of circulation portions with different opening ratios.
  • the heat generating portion 14a of this embodiment has two first circulation portions A1, two second circulation portions A2, and one third circulation portion A3. These flow-through portions are such that a third flow-through portion A3 is sandwiched between two second flow-through portions A2, and a third flow-through portion A3 and two second flow-through portions A2 are sandwiched between two first flow-through portions A1. It is located so that it can be
  • the opening ratio of the first circulation portion A1 is RA1 [%]
  • the opening ratio of the second circulation portion A2 is RA2 [%]
  • the opening ratio of the third circulation portion A3 is RA3 [%]
  • RA1 ⁇ RA3 ⁇ RA2 may satisfy the relationship of
  • the aperture ratio RA1 of the first circulation portion A1 is, for example, within a range of 1% or more and 20% or less.
  • the aperture ratio RA2 of the second circulation portion A2 is, for example, within a range of more than 60% and 90% or less.
  • the aperture ratio RA3 of the third circulation portion A3 is, for example, within a range of more than 20% and 60% or less.
  • Examples of the shape of the through hole TH of the heat generating portion 14a include a circular shape, an elliptical shape, a polygonal shape, a slit shape, and the like.
  • the terminals 14b are connected to both sides of the heat generating portion 14a.
  • a pair of terminals 14b are connected to a power source 17, as shown in FIG.
  • the material of the heating member 14 is not particularly limited as long as it can be a resistance heating element, and examples thereof include metals and ceramics.
  • metals include molybdenum, platinum, and platinum alloys.
  • platinum alloys include platinum rhodium alloys.
  • the insulating member 15 of the glass fiber manufacturing apparatus 11 electrically insulates the heating member 14 and the bushing 13 from each other.
  • the overall shape of the insulating member 15 is, for example, a frame shape, and has a flow hole 15a that penetrates vertically. Examples of materials for the insulating member 15 include refractories.
  • the insulating member 15 may have a single-layer structure or a multi-layer structure.
  • the glass fiber manufacturing apparatus 11 includes an applicator (not shown) and a gathering shoe.
  • the applicator applies a liquid sizing agent to a large number of glass filaments GF pulled out from the bushing 13 .
  • the gathering shoe bundles a large number of glass filaments GF coated with a sizing agent.
  • a glass strand is obtained by converging a large number of glass filaments GF with a gathering shoe.
  • the glass strand is wound by a winding device to obtain a cake in which the glass strand is wound.
  • the method for manufacturing glass fibers includes a forming step of forming glass filaments GF using a glass fiber manufacturing apparatus 11 .
  • molten glass MG is supplied from feeder 12 to bushing 13 .
  • the flow path of the molten glass MG from the feeder 12 to the bushing 13 and the inside of the bushing body 13a of the bushing 13 are filled with the molten glass MG.
  • the molten glass MG supplied to the bushing 13 is discharged from the nozzle N of the bushing 13 to form the glass filaments GF.
  • the glass fiber manufacturing device 11 includes the heat generating member 14 described above. According to this configuration, when the temperature of the molten glass MG flowing down from the feeder 12 is low, the molten glass MG is heated by the heating portion 14a of the heating member 14 arranged in the flow path between the feeder 12 and the bushing 13. can be done. Thereby, the molten glass MG heated to a predetermined temperature can be supplied to the bushing 13 . Therefore, the outflow of the molten glass MG from the nozzle N of the bushing 13 can be stabilized.
  • the heat generating portion 14a of the heat generating member 14 can heat the molten glass MG, the temperature of the molten glass MG flowing through the feeder 12 can be intentionally lowered. Therefore, it is also possible to suppress deterioration of the feeder 12 due to the high-temperature molten glass MG.
  • the temperature of the molten glass MG in the bushing 13 can be adjusted to an appropriate temperature. It becomes possible to Further, for example, since it becomes easy to set the temperature of the molten glass MG flowing into the bushing 13 according to the type of glass, it becomes possible to easily cope with the production of various types of glass fibers.
  • a glass strand is obtained by bundling the glass filaments GF obtained in the above molding process.
  • Glass strands are available, for example, as chopped strands cut to length.
  • glass strands can be used as milled fibers, rovings, yarns, mats, cloths, tapes, braids, and the like.
  • Uses of glass strands include, for example, vehicle uses, electronic material uses, building material uses, civil engineering uses, aircraft-related uses, shipbuilding uses, logistics uses, industrial machinery uses, and daily necessities uses.
  • the glass fiber manufacturing apparatus 11 includes a feeder 12 for circulating the molten glass MG, a bushing 13 arranged below the feeder 12 and having a plurality of nozzles N for flowing out the molten glass MG, and heat generated by energization.
  • a heat generating member 14 is provided.
  • the heat-generating member 14 has a heat-generating portion 14 a arranged in the flow path of the molten glass MG between the feeder 12 and the bushing 13 .
  • the outflow of the molten glass MG from the nozzle N of the bushing 13 can be stabilized as described above. Therefore, it is possible to stably form the glass filament GF.
  • the heat-generating portion 14a of the heat-generating member 14 in the glass fiber manufacturing apparatus 11 is composed of a plate member provided so as to cross the flow path of the molten glass MG.
  • the heat generating portion 14a of the heat generating member 14 has a through hole TH through which the molten glass MG flows.
  • the contact area between the heat generating portion 14a of the heat generating member 14 and the molten glass MG can be increased, for example, the molten glass MG can be efficiently heated and the temperature uniformity of the molten glass MG can be improved. It becomes possible to
  • the heat-generating portion 14a of the heat-generating member 14 in the glass fiber manufacturing apparatus 11 has a plurality of through-holes TH formed to form a plurality of circulation portions with different opening ratios. In this case, it becomes possible to complicate the flow of the molten glass MG. Thereby, for example, it becomes possible to improve the uniformity of the temperature of the molten glass MG.
  • the heating member 14 and the bushing 13 are arranged apart. According to this configuration, for example, when both the bushing 13 and the heat generating member 14 are caused to generate heat, the temperatures of both can be controlled individually.
  • the glass fiber manufacturing apparatus 11 further includes an insulating member 15 arranged between the heat generating member 14 and the bushing 13 .
  • an insulating member 15 arranged between the heat generating member 14 and the bushing 13 .
  • the glass fiber manufacturing apparatus 11 of the second embodiment includes a first heat generating member 18 and a second heat generating member 18 arranged downstream of the first heat generating member 18 and spaced apart from the first heat generating member 18 . and a heat generating member 19 .
  • the first heat-generating member 18 has a heat-generating portion 18a arranged in the flow path of the molten glass MG between the feeder 12 and the bushing 13, and a terminal 18b for energization connected to the heat-generating portion 18a.
  • the first heat-generating member 18 has the same configuration as the heat-generating member 14 of the first embodiment, so description thereof will be omitted.
  • the second heat-generating member 19 includes a heat-generating portion 19a arranged in the flow path of the molten glass MG between the feeder 12 and the bushing 13, and a terminal 19b for energization connected to the heat-generating portion 19a. and
  • the heat-generating portion 19a of the second heat-generating member 19 is composed of a plate member provided so as to cross the flow path of the molten glass MG.
  • the heat generating portion 19a of the second heat generating member 19 has at least one through hole TH through which the molten glass MG flows.
  • the heat-generating portion 19a of the second heat-generating member 19 has a plurality of through holes TH formed so as to form a plurality of circulation portions with different opening ratios.
  • the heat generating portion 19a of the second heat generating member 19 has two first circulation portions B1, two second circulation portions B2, and one third circulation portion B3. These flow sections are such that a third flow section B3 is sandwiched between two second flow sections B2, and a third flow section B3 and two second flow sections B2 are sandwiched between two first flow sections B1. It is located so that it can be
  • the first circulation portion B1 of the second heat generating member 19 is arranged downstream of the first circulation portion A1 of the first heat generating member 18.
  • the second circulation portion B ⁇ b>2 of the second heat generating member 19 is arranged downstream of the second circulation portion A ⁇ b>2 of the first heat generating member 18 .
  • the third circulation portion B3 of the second heat generating member 19 is arranged downstream of the third circulation portion A3 of the first heat generating member 18 .
  • the opening ratio of the first circulation portion B1 in the second heat generating member 19 is different from the opening ratio of the first circulation portion A1 in the first heat generating member 18.
  • the opening ratio of the second circulation portion B2 in the second heat generating member 19 is different from the opening ratio of the second circulation portion A2 in the first heat generating member 18 .
  • the aperture ratio of the third circulation portion B3 in the second heat-generating member 19 is different from the aperture ratio of the third circulation portion A3 in the first heat-generating member 18 .
  • the circulation portion of the first heat generating member 18 and the circulation portion of the second heat generating member 19 are arranged so as to have different aperture ratios along the flow direction of the molten glass MG.
  • the opening ratio of the first circulation portion B1 in the second heat generating member 19 is larger than the opening ratio of the first circulation portion A1 in the first heat generating member 18.
  • the opening ratio of the second circulation portion B2 in the second heat generating member 19 is smaller than the opening ratio of the second circulation portion A2 in the first heat generating member 18 .
  • the opening ratio of the third circulation portion B3 in the second heat generating member 19 is larger than the opening ratio of the third circulation portion A3 in the first heat generating member 18. As shown in FIG.
  • the aperture ratio of the first circulation portion B1 is RB1 [%]
  • the aperture ratio of the second circulation portion B2 is RB2 [%]
  • the aperture ratio of the third circulation portion B3 is RB3 [%].
  • the aperture ratio RB1 of the first circulation portion B1 is, for example, within a range of more than 20% and 60% or less.
  • the aperture ratio RB2 of the second circulation portion B2 is, for example, within the range of 1% or more and 20% or less.
  • the aperture ratio RB3 of the third circulation portion B3 is, for example, within a range of more than 60% and 90% or less.
  • the glass fiber manufacturing apparatus 11 includes a bushing block 16 arranged between the first heat generating member 18 and the second heat generating member 19 .
  • This bushing block 16 electrically insulates between the first heat generating member 18 and the second heat generating member 19 .
  • An insulating member 15 is arranged between the second heat generating member 19 and the bushing 13 .
  • the heat-generating members in the glass fiber manufacturing apparatus 11 are the first heat-generating member 18 and the second heat-generating member 19 arranged downstream of the first heat-generating member 18 and spaced from the first heat-generating member 18. contains.
  • the heat generating portion 18a of the first heat generating member 18 and the heat generating portion 19a of the second heat generating member 19 make it possible to further raise the temperature of the molten glass MG in the channel between the feeder 12 and the bushing 13.
  • the molten glass MG heated to a predetermined temperature can be supplied to the bushing 13 . Therefore, the outflow of the molten glass MG from the nozzle N of the bushing 13 can be stabilized. Therefore, it is possible to stably form the glass filament GF.
  • the heat-generating portion 18a of the first heat-generating member 18 and the heat-generating portion 19a of the second heat-generating member 19 in the glass fiber manufacturing apparatus 11 are composed of plate members provided so as to cross the flow path of the molten glass MG. ing.
  • the heat generating portion 18a of the first heat generating member 18 and the heat generating portion 19a of the second heat generating member 19 have through holes TH through which the molten glass MG flows.
  • the contact area between the heat generating portion 18a of the first heat generating member 18 and the molten glass MG and the contact area between the heat generating portion 19a of the second heat generating member 19 and the molten glass MG can be increased. Therefore, for example, it is possible to efficiently heat the molten glass MG and improve the uniformity of the temperature of the molten glass MG.
  • the first heat generating member 18 and the second heat generating member 19 each have a plurality of circulation portions with different opening ratios.
  • the circulation portion of the first heat-generating member 18 and the circulation portion of the second heat-generating member 19 are arranged so as to have different aperture ratios along the flow direction of the molten glass MG. In this case, it becomes possible to make the flow of the molten glass MG more complicated. Thereby, for example, it becomes possible to further improve the uniformity of the temperature of the molten glass MG.
  • the heat generating member 14 of the first embodiment can be changed to the heat generating member 20 shown in FIG.
  • the heat-generating member 20 shown in FIG. 6 includes a plate-like heat-generating portion 20a having no through hole TH, and a terminal 20b for conducting electricity connected to the heat-generating portion 20a.
  • the area inside the two-dot chain line in FIG. 6 is the flow path FP of the molten glass MG, and the molten glass MG flows down around the heat generating portion 20a.
  • At least one of the first heat-generating member 18 and the second heat-generating member 19 of the second embodiment can be changed to the heat-generating member 20 shown in FIG. 6, for example.
  • the shape of the heat generating portion 20a of the heat generating member 20 shown in FIG. 6 can be changed to, for example, a columnar shape or a cylindrical shape.
  • the heat generating portion 14a of the heat generating member 14 of the first embodiment has a plurality of circulation portions with different opening ratios, but the heat generating portion 14a can be changed to a heat generating portion having a constant opening ratio. At least one of the heat generating portion 18a of the first heat generating member 18 and the heat generating portion 19a of the second heat generating member 19 of the second embodiment can be changed to a heat generating portion having a constant aperture ratio.
  • the number of circulation portions having different opening ratios may be two, or may be four or more.
  • the number of circulation portions having different opening ratios may be two, or four or more. There may be.
  • the second heat generating member 19 may be changed to a heat generating member having the same configuration as the first heat generating member 18 .
  • the first heat generating member 18 may be changed to a heat generating member having the same configuration as the second heat generating member 19 . That is, in the second embodiment, the first heat-generating member 18 and the second heat-generating member 19 may be changed to heat-generating members arranged so as to have the same aperture ratio along the flow direction of the molten glass MG. .
  • the glass fiber manufacturing apparatus 11 of the second embodiment may further include a heat generating member between the first heat generating member 18 and the second heat generating member 19 or between the feeder 12 and the first heat generating member 18. good. That is, the number of heat generating members in the glass fiber manufacturing apparatus 11 may be three or more.
  • the heating member 14 and the bushing 13 may be arranged in contact with each other.
  • the second heat generating member 19 and the bushing 13 may be arranged in contact with each other.
  • the insulating member 15 can be omitted.

Abstract

A glass fiber manufacturing device 11 is provided with a feeder 12 that circulates molten glass MG, and a bushing 13 that is positioned below the feeder 12 and has a plurality of nozzles N for discharging the molten glass MG. The glass fiber manufacturing device 11 is provided with a heat-generating member 14 that generates heat by means of energization. The heat-generating member 14 of the glass fiber manufacturing device 11 has a heat-generating part 14a that is positioned in the flow path of the molten glass MG, between the feeder 12 and the bushing 13.

Description

ガラス繊維の製造装置、及びガラス繊維の製造方法Glass fiber manufacturing apparatus and glass fiber manufacturing method
 本発明は、ガラス繊維の製造装置、及びガラス繊維の製造方法に関する。 The present invention relates to a glass fiber manufacturing apparatus and a glass fiber manufacturing method.
 特許文献1に記載されるように、ガラス繊維の製造には、溶融ガラスを流通させるフィーダーと、フィーダーの下方に配置され、溶融ガラスを流出する複数のノズルを有するブッシングとを備える製造装置が用いられる。このようなガラス繊維の製造装置では、ブッシングの各ノズルから溶融ガラスを流出させることで、複数のガラスフィラメントを成形することができる。 As described in Patent Document 1, a manufacturing apparatus is used for manufacturing glass fibers, which includes a feeder for circulating molten glass, and a bushing disposed below the feeder and having a plurality of nozzles for flowing out the molten glass. be done. In such a glass fiber manufacturing apparatus, a plurality of glass filaments can be formed by causing molten glass to flow out from each nozzle of the bushing.
特開2012-091954号公報JP 2012-091954 A
 上記従来のガラス繊維の製造装置では、フィーダーからブッシングに供給される溶融ガラスの温度が低い場合、ブッシングを通電により発熱させることで溶融ガラスを加熱する必要がある。ところが、この場合、ブッシング内で溶融ガラスが十分に加熱されなかったり、通電によりブッシングのノズルの温度が過剰に上昇したりすることで、ガラスフィラメントの成形が不安定になるおそれがあった。 In the above conventional glass fiber manufacturing apparatus, when the temperature of the molten glass supplied from the feeder to the bushing is low, it is necessary to heat the molten glass by energizing the bushing to generate heat. However, in this case, the molten glass may not be sufficiently heated in the bushing, or the temperature of the nozzle of the bushing may rise excessively due to the energization, which may result in unstable formation of the glass filaments.
 本発明の目的は、ガラスフィラメントを安定して成形することを可能にしたガラス繊維の製造装置、及びガラス繊維の製造方法を提供することにある。 An object of the present invention is to provide a glass fiber manufacturing apparatus and a glass fiber manufacturing method that enable stable formation of glass filaments.
 上記課題を解決するガラス繊維の製造装置は、溶融ガラスを流通させるフィーダーと、前記フィーダーの下方に配置され、前記溶融ガラスを流出する複数のノズルを有するブッシングと、通電により発熱する発熱部材とを備え、前記発熱部材は、前記フィーダーと前記ブッシングとの間における前記溶融ガラスの流路に配置される発熱部を有する。 A glass fiber manufacturing apparatus that solves the above problems includes a feeder for circulating molten glass, a bushing disposed below the feeder and having a plurality of nozzles for flowing out the molten glass, and a heat generating member that generates heat when energized. The heat-generating member has a heat-generating portion arranged in the flow path of the molten glass between the feeder and the bushing.
 上記ガラス繊維の製造装置において、前記発熱部材の前記発熱部は、前記溶融ガラスの流路を横切るように設けられる板材から構成されてもよい。前記発熱部材の前記発熱部は、前記溶融ガラスを流通させる貫通孔を有してもよい。 In the above glass fiber manufacturing apparatus, the heat generating portion of the heat generating member may be composed of a plate member provided so as to cross the flow path of the molten glass. The heat generating portion of the heat generating member may have a through hole through which the molten glass flows.
 上記ガラス繊維の製造装置において、前記発熱部材の前記発熱部は、開口率が異なる複数の流通部を形成するように設けられた複数の前記貫通孔を有してもよい。
 上記ガラス繊維の製造装置において、前記発熱部材は、第1発熱部材と、前記第1発熱部材の下流側において前記第1発熱部材と離間して配置される第2発熱部材と、を含んでもよい。
In the glass fiber manufacturing apparatus described above, the heat generating portion of the heat generating member may have a plurality of through holes provided to form a plurality of circulation portions having different opening ratios.
In the above glass fiber manufacturing apparatus, the heat generating member may include a first heat generating member and a second heat generating member arranged downstream of the first heat generating member and spaced apart from the first heat generating member. .
 上記ガラス繊維の製造装置において、前記発熱部材は、第1発熱部材と、前記第1発熱部材の下流側において前記第1発熱部材と離間して配置される第2発熱部材と、を含み、前記第1発熱部材の前記発熱部と前記第2発熱部材の前記発熱部とは、前記溶融ガラスの流路を横切るように設けられる板材から構成され、前記第1発熱部材の前記発熱部と前記第2発熱部材の前記発熱部とは、前記溶融ガラスを流通させる貫通孔を有していてもよい。 In the above glass fiber manufacturing apparatus, the heat generating member includes a first heat generating member and a second heat generating member arranged downstream of the first heat generating member and separated from the first heat generating member, The heat-generating portion of the first heat-generating member and the heat-generating portion of the second heat-generating member are composed of a plate member provided so as to cross the flow path of the molten glass. 2. The heat generating portion of the heat generating member may have a through hole through which the molten glass flows.
 上記ガラス繊維の製造装置において、前記第1発熱部材と前記第2発熱部材とは、それぞれ開口率が異なる複数の流通部を有し、前記第1発熱部材の前記流通部と前記第2発熱部材の前記流通部とは、前記溶融ガラスの流れ方向に沿って互いに異なる開口率となるように配置されてもよい。 In the above glass fiber manufacturing apparatus, the first heat-generating member and the second heat-generating member each have a plurality of circulation portions with different opening ratios, and the circulation portion of the first heat-generating member and the second heat-generating member may be arranged so as to have different aperture ratios along the flow direction of the molten glass.
 上記ガラス繊維の製造装置において、前記発熱部材と前記ブッシングとは離れて配置されてもよい。
 上記ガラス繊維の製造装置は、前記発熱部材と前記ブッシングとの間に配置される絶縁部材をさらに備えてもよい。
In the glass fiber manufacturing apparatus, the heat-generating member and the bushing may be arranged apart from each other.
The glass fiber manufacturing apparatus may further include an insulating member disposed between the heat generating member and the bushing.
 上記課題を解決するガラス繊維の製造方法は、ガラス繊維の製造装置を用いてガラスフィラメントを成形する成形工程を備えるガラス繊維の製造方法であって、前記ガラス繊維の製造装置は、溶融ガラスを流通させるフィーダーと、前記フィーダーの下方に配置され、前記溶融ガラスを流出する複数のノズルを有するブッシングと、通電により発熱する発熱部材と、を備え、前記発熱部材は、前記フィーダーと前記ブッシングとの間における前記溶融ガラスの流路に配置される発熱部を有し、前記成形工程において、前記発熱部材により前記溶融ガラスを加熱する。 A glass fiber manufacturing method for solving the above problems is a glass fiber manufacturing method including a forming step of forming a glass filament using a glass fiber manufacturing apparatus, wherein the glass fiber manufacturing apparatus distributes molten glass. a bushing arranged below the feeder and having a plurality of nozzles for flowing out the molten glass; and a heat generating member that generates heat when energized, wherein the heat generating member is located between the feeder and the bushing. and a heat-generating part arranged in the flow path of the molten glass in the molding step, wherein the molten glass is heated by the heat-generating member.
 本発明によれば、ガラスフィラメントを安定して成形することが可能となる。 According to the present invention, it is possible to stably form glass filaments.
第1実施形態におけるガラス繊維の製造装置を示す断面図である。1 is a cross-sectional view showing a glass fiber manufacturing apparatus according to a first embodiment; FIG. 発熱部材を示す平面図である。It is a top view which shows a heat-generating member. 絶縁部材を示す平面図である。It is a top view which shows an insulating member. 第2実施形態におけるガラス繊維の製造装置を示す断面図である。FIG. 5 is a cross-sectional view showing a glass fiber manufacturing apparatus according to a second embodiment; 発熱部材を示す平面図である。It is a top view which shows a heat-generating member. 変更例の発熱部材を示す平面図である。FIG. 11 is a plan view showing a heat generating member of a modified example;
 (第1実施形態)
 以下、ガラス繊維の製造装置、及びガラス繊維の製造方法の第1実施形態について図面を参照して説明する。なお、図面では、説明の便宜上、構成の一部を誇張又は簡略化して示す場合がある。また、各部分の寸法比率についても、実際と異なる場合がある。
(First embodiment)
Hereinafter, a first embodiment of a glass fiber manufacturing apparatus and a glass fiber manufacturing method will be described with reference to the drawings. In the drawings, for convenience of explanation, part of the configuration may be exaggerated or simplified. Also, the dimensional ratio of each part may differ from the actual one.
 図1に示すように、ガラス繊維の製造装置11は、溶融ガラスMGを流通させるフィーダー12と、フィーダー12の下方に配置されるブッシング13とを備えている。ガラス繊維の製造装置11は、通電により発熱する発熱部材14を備えている。本実施形態のガラス繊維の製造装置11は、発熱部材14とブッシング13との間に配置される絶縁部材15を備えている。 As shown in FIG. 1, a glass fiber manufacturing apparatus 11 includes a feeder 12 for circulating molten glass MG and a bushing 13 arranged below the feeder 12 . A glass fiber manufacturing apparatus 11 includes a heat generating member 14 that generates heat when energized. The glass fiber manufacturing apparatus 11 of the present embodiment includes an insulating member 15 arranged between the heat generating member 14 and the bushing 13 .
 <フィーダー12>
 ガラス繊維の製造装置11のフィーダー12には、図示を省略したガラス溶融炉で得られた溶融ガラスMGが供給される。フィーダー12は、耐火壁から構成されている。耐火壁を構成する耐火物としては、例えば、電鋳煉瓦、デンス焼成煉瓦等が挙げられる。電鋳煉瓦としては、例えば、ジルコニア系電鋳煉瓦、アルミナ系電鋳煉瓦、アルミナ・ジルコニア系電鋳煉瓦、アルミナ・ジルコニア・シリカ系電鋳煉瓦等が挙げられる。デンス焼成煉瓦としては、デンスジルコン煉瓦、デンスクロム煉瓦等が挙げられる。
<Feeder 12>
Molten glass MG obtained in a glass melting furnace (not shown) is supplied to the feeder 12 of the glass fiber manufacturing apparatus 11 . The feeder 12 is constructed from a refractory wall. Examples of the refractory material constituting the refractory wall include electroformed bricks and dense sintered bricks. Examples of electrocast bricks include zirconia-based electrocast bricks, alumina-based electrocast bricks, alumina-zirconia-based electrocast bricks, alumina-zirconia-silica-based electrocast bricks, and the like. Dense sintered bricks include dense zircon bricks, dense chrome bricks, and the like.
 フィーダー12は、溶融ガラスMGを流下させる流路を形成するフローブロック12aを備えている。フローブロック12aも耐火物から構成される。
 溶融ガラスMGのガラスとしては、例えば、Eガラス(アルカリ含有量2%以下のガラス)、Dガラス(低誘電率ガラス)、ARガラス(耐アルカリ性ガラス)、Cガラス(耐酸性のガラス)、Mガラス(高弾性率のガラス)、Sガラス(高強度、高弾性率のガラス)、Tガラス(高強度、高弾性率のガラス)、Hガラス(高誘電率のガラス)、NEガラス(低誘電率のガラス)が挙げられる。ガラスの密度は、例えば、2.0~3.0g/cmである。
The feeder 12 has a flow block 12a that forms a channel for flowing down the molten glass MG. The flow block 12a is also made of a refractory material.
Glass of molten glass MG includes, for example, E glass (glass having an alkali content of 2% or less), D glass (low dielectric constant glass), AR glass (alkali resistant glass), C glass (acid resistant glass), M Glass (high elastic modulus glass), S glass (high strength, high elastic modulus glass), T glass (high strength, high elastic modulus glass), H glass (high dielectric constant glass), NE glass (low dielectric constant glass) rate glass). The density of glass is, for example, 2.0-3.0 g/cm 3 .
 <ブッシング13>
 ガラス繊維の製造装置11のブッシング13は、溶融ガラスMGを流出する複数のノズルNを有している。ブッシング13の各ノズルNによってガラスフィラメントGFを成形することができる。
<Bushing 13>
The bushing 13 of the glass fiber manufacturing apparatus 11 has a plurality of nozzles N for flowing out the molten glass MG. A glass filament GF can be formed by each nozzle N of the bushing 13 .
 ブッシング13は、溶融ガラスMGが供給されるブッシング本体13aと、ブッシング本体13aの底部に設けられたベースプレート13bとを備えている。ブッシング本体13aの上部は、フィーダー12から溶融ガラスMGが供給される供給口を有している。ブッシング13は、例えば支持部材Sによりフィーダー12に支持される。 The bushing 13 includes a bushing body 13a to which molten glass MG is supplied, and a base plate 13b provided at the bottom of the bushing body 13a. The upper portion of the bushing body 13a has a supply port through which the molten glass MG is supplied from the feeder 12. As shown in FIG. The bushing 13 is supported on the feeder 12 by a support member S, for example.
 本実施形態のガラス繊維の製造装置11は、フィーダー12のフローブロック12aの下側に配置されるブッシングブロック16を備えている。ブッシングブロック16は、フィーダー12とブッシング13との間における溶融ガラスMGの流路を形成している。ブッシングブロック16により形成された流路を流下した溶融ガラスMGがブッシング本体13aに供給される。ブッシングブロック16は、例えば、上述した非導電性の耐火物から構成される。 The glass fiber manufacturing apparatus 11 of the present embodiment includes a bushing block 16 arranged below the flow block 12a of the feeder 12 . Bushing block 16 forms a flow path for molten glass MG between feeder 12 and bushing 13 . Molten glass MG flowing down the flow path formed by the bushing block 16 is supplied to the bushing main body 13a. The bushing block 16 is constructed, for example, from the non-conductive refractories described above.
 ブッシング本体13aは、ベースプレート13b上に異物が堆積するのを抑制するスクリーン、通電用のターミナル等を有していてもよい。
 ベースプレート13bには、複数のノズルNが設けられている。ブッシング13におけるノズル孔の数は、100個以上、10000個以下の範囲内であることが好ましい。ブッシング13の各ノズルNにおけるノズル孔の形状は、例えば、円形状、長径と短径とを有する扁平形状等が挙げられる。
The bushing main body 13a may have a screen for suppressing accumulation of foreign matter on the base plate 13b, a terminal for energization, or the like.
A plurality of nozzles N are provided on the base plate 13b. The number of nozzle holes in the bushing 13 is preferably in the range of 100 or more and 10000 or less. Examples of the shape of the nozzle hole in each nozzle N of the bushing 13 include a circular shape, a flat shape having a major axis and a minor axis, and the like.
 ブッシング本体13a、ベースプレート13b、及びノズルNの材料としては、例えば、貴金属又は貴金属合金が挙げられる。貴金属は、金、銀、白金、パラジウム、ロジウム、イリジウム、ルテニウム、又はオスミウムである。ブッシング本体13a、ベースプレート13b、及びノズルNの材料は、耐久性を高めるという観点から、白金、又は白金合金であることが好ましい。白金合金としては、例えば、白金ロジウム合金が挙げられる。 Materials for the bushing body 13a, the base plate 13b, and the nozzle N include, for example, noble metals or noble metal alloys. Noble metals are gold, silver, platinum, palladium, rhodium, iridium, ruthenium, or osmium. The material of the bushing body 13a, the base plate 13b, and the nozzle N is preferably platinum or a platinum alloy from the viewpoint of enhancing durability. Examples of platinum alloys include platinum rhodium alloys.
 <発熱部材14>
 ガラス繊維の製造装置11の発熱部材14は、フィーダー12とブッシング13との間における溶融ガラスMGの流路に配置される発熱部14aを有している。発熱部材14はまた、発熱部14aに接続される通電用のターミナル14bを有している。発熱部材14は、ブッシング13とは離れて配置される。具体的には、発熱部材14は、ブッシング13と接しないように配置される。
<Heat generating member 14>
The heat-generating member 14 of the glass fiber manufacturing apparatus 11 has a heat-generating portion 14 a arranged in the flow path of the molten glass MG between the feeder 12 and the bushing 13 . The heat-generating member 14 also has a terminal 14b for power supply connected to the heat-generating portion 14a. The heat generating member 14 is arranged apart from the bushing 13 . Specifically, the heat generating member 14 is arranged so as not to contact the bushing 13 .
 発熱部材14の発熱部14aは、溶融ガラスMGの流路を横切るように設けられる板材から構成されている。発熱部14aは、溶融ガラスMGを流通させる少なくとも1つの貫通孔THを有している。本実施形態において、発熱部14aは、開口率が異なる複数の流通部を形成するように設けられた複数の貫通孔THを有している。 The heat-generating portion 14a of the heat-generating member 14 is composed of a plate member provided so as to cross the flow path of the molten glass MG. The heat generating portion 14a has at least one through hole TH through which the molten glass MG flows. In the present embodiment, the heat generating portion 14a has a plurality of through holes TH formed to form a plurality of circulation portions with different opening ratios.
 図2に示すように、本実施形態の発熱部14aは、2つの第1流通部A1、2つの第2流通部A2、及び1つの第3流通部A3を有している。これらの流通部は、第3流通部A3が2つの第2流通部A2の間に挟まれ、第3流通部A3及び2つの第2流通部A2が2つの第1流通部A1の間に挟まれるように位置している。 As shown in FIG. 2, the heat generating portion 14a of this embodiment has two first circulation portions A1, two second circulation portions A2, and one third circulation portion A3. These flow-through portions are such that a third flow-through portion A3 is sandwiched between two second flow-through portions A2, and a third flow-through portion A3 and two second flow-through portions A2 are sandwiched between two first flow-through portions A1. It is located so that it can be
 第1流通部A1の開口率をRA1[%]、第2流通部A2の開口率をRA2[%]、第3流通部A3の開口率をRA3[%]とした場合、RA1<RA3<RA2の関係を満たしていてもよい。第1流通部A1の開口率RA1は、例えば、1%以上、20%以下の範囲内である。第2流通部A2の開口率RA2は、例えば、60%を超え、90%以下の範囲内である。第3流通部A3の開口率RA3は、例えば、20%を超え、60%以下の範囲内である。 If the opening ratio of the first circulation portion A1 is RA1 [%], the opening ratio of the second circulation portion A2 is RA2 [%], and the opening ratio of the third circulation portion A3 is RA3 [%], RA1<RA3<RA2 may satisfy the relationship of The aperture ratio RA1 of the first circulation portion A1 is, for example, within a range of 1% or more and 20% or less. The aperture ratio RA2 of the second circulation portion A2 is, for example, within a range of more than 60% and 90% or less. The aperture ratio RA3 of the third circulation portion A3 is, for example, within a range of more than 20% and 60% or less.
 発熱部14aの貫通孔THの形状は、例えば、円形状、楕円形状、多角形状、スリット状等が挙げられる。
 ターミナル14bは、発熱部14aの両側部にそれぞれ接続されている。一対のターミナル14bは、図1に示すように、電源17に接続される。
Examples of the shape of the through hole TH of the heat generating portion 14a include a circular shape, an elliptical shape, a polygonal shape, a slit shape, and the like.
The terminals 14b are connected to both sides of the heat generating portion 14a. A pair of terminals 14b are connected to a power source 17, as shown in FIG.
 発熱部材14の材料としては、抵抗発熱体となり得る材料であれば特に限定されず、例えば、金属、セラミックス等が挙げられる。金属としては、モリブデン、白金、白金合金等が挙げられる。白金合金としては、例えば、白金ロジウム合金が挙げられる。 The material of the heating member 14 is not particularly limited as long as it can be a resistance heating element, and examples thereof include metals and ceramics. Examples of metals include molybdenum, platinum, and platinum alloys. Examples of platinum alloys include platinum rhodium alloys.
 <絶縁部材15>
 図1及び図3に示すように、ガラス繊維の製造装置11の絶縁部材15は、発熱部材14とブッシング13とを電気的に絶縁する。図3に示すように、絶縁部材15の全体形状は、例えば、枠状であり、上下に貫通する流通孔15aを有している。絶縁部材15の材料としては、例えば、耐火物等が挙げられる。なお、絶縁部材15は、単層構造であってもよいし、複層構造であってもよい。
<Insulating member 15>
As shown in FIGS. 1 and 3, the insulating member 15 of the glass fiber manufacturing apparatus 11 electrically insulates the heating member 14 and the bushing 13 from each other. As shown in FIG. 3, the overall shape of the insulating member 15 is, for example, a frame shape, and has a flow hole 15a that penetrates vertically. Examples of materials for the insulating member 15 include refractories. The insulating member 15 may have a single-layer structure or a multi-layer structure.
 <上記以外の構成>
 ガラス繊維の製造装置11は、図示を省略したアプリケーター、及びギャザリングシューを備えている。アプリケーターは、ブッシング13から引き出された多数のガラスフィラメントGFに液体状の集束剤を塗布する。ギャザリングシューは、集束剤が塗布された多数のガラスフィラメントGFを集束させる。多数のガラスフィラメントGFがギャザリングシューにより集束されることで、ガラスストランドが得られる。ガラスストランドは、巻取り装置により巻き取られることで、ガラスストランドが巻回されたケーキが得られる。
<Configuration other than the above>
The glass fiber manufacturing apparatus 11 includes an applicator (not shown) and a gathering shoe. The applicator applies a liquid sizing agent to a large number of glass filaments GF pulled out from the bushing 13 . The gathering shoe bundles a large number of glass filaments GF coated with a sizing agent. A glass strand is obtained by converging a large number of glass filaments GF with a gathering shoe. The glass strand is wound by a winding device to obtain a cake in which the glass strand is wound.
 <ガラス繊維の製造方法>
 次に、ガラス繊維の製造方法を主な作用とともに説明する。
 ガラス繊維の製造方法は、ガラス繊維の製造装置11を用いてガラスフィラメントGFを成形する成形工程を備えている。成形工程では、溶融ガラスMGがフィーダー12からブッシング13に供給される。フィーダー12からブッシング13までの溶融ガラスMGの流路及びブッシング13のブッシング本体13aの内部は、溶融ガラスMGにより満たされている。成形工程では、ブッシング13に供給された溶融ガラスMGがブッシング13のノズルNから流出されることにより、ガラスフィラメントGFが成形される。
<Method for producing glass fiber>
Next, a method for producing glass fibers will be described together with main effects.
The method for manufacturing glass fibers includes a forming step of forming glass filaments GF using a glass fiber manufacturing apparatus 11 . In the molding process, molten glass MG is supplied from feeder 12 to bushing 13 . The flow path of the molten glass MG from the feeder 12 to the bushing 13 and the inside of the bushing body 13a of the bushing 13 are filled with the molten glass MG. In the forming step, the molten glass MG supplied to the bushing 13 is discharged from the nozzle N of the bushing 13 to form the glass filaments GF.
 ガラス繊維の製造装置11は、上記発熱部材14を備えている。この構成によれば、フィーダー12から流下する溶融ガラスMGの温度が低い場合、フィーダー12とブッシング13との間の流路に配置される発熱部材14の発熱部14aにより溶融ガラスMGを加熱することができる。これにより、ブッシング13に所定の温度まで昇温させた溶融ガラスMGを供給することができる。このため、ブッシング13のノズルNからの溶融ガラスMGの流出を安定させることができる。 The glass fiber manufacturing device 11 includes the heat generating member 14 described above. According to this configuration, when the temperature of the molten glass MG flowing down from the feeder 12 is low, the molten glass MG is heated by the heating portion 14a of the heating member 14 arranged in the flow path between the feeder 12 and the bushing 13. can be done. Thereby, the molten glass MG heated to a predetermined temperature can be supplied to the bushing 13 . Therefore, the outflow of the molten glass MG from the nozzle N of the bushing 13 can be stabilized.
 また、発熱部材14の発熱部14aにより溶融ガラスMGを加熱することができるため、フィーダー12に流通する溶融ガラスMGの温度を意図的に低くすることも可能となる。そのため、フィーダー12が高温の溶融ガラスMGにより劣化することを抑えることも可能となる。また、例えば、ノズルNの過剰な温度上昇を抑える必要がある等、ブッシング13に通電して発熱させることに制限がある場合であっても、ブッシング13内の溶融ガラスMGの温度を適切な温度にすることが可能となる。また、例えば、ブッシング13に流入する溶融ガラスMGをガラスのタイプに応じた温度に設定することが容易となるため、様々なタイプのガラス繊維の製造に容易に対応することも可能となる。 Further, since the heat generating portion 14a of the heat generating member 14 can heat the molten glass MG, the temperature of the molten glass MG flowing through the feeder 12 can be intentionally lowered. Therefore, it is also possible to suppress deterioration of the feeder 12 due to the high-temperature molten glass MG. In addition, even if there are restrictions on generating heat by energizing the bushing 13, for example, it is necessary to suppress an excessive temperature rise of the nozzle N, the temperature of the molten glass MG in the bushing 13 can be adjusted to an appropriate temperature. It becomes possible to Further, for example, since it becomes easy to set the temperature of the molten glass MG flowing into the bushing 13 according to the type of glass, it becomes possible to easily cope with the production of various types of glass fibers.
 上記の成形工程で得られたガラスフィラメントGFが集束されることで、ガラスストランドが得られる。ガラスストランドは、例えば、所定の長さに切断されたチョップドストランドとして利用することができる。また、ガラスストランドは、ミルドファイバ、ロービング、ヤーン、マット、クロス、テープ、又は組布等として利用することができる。ガラスストランドの用途としては、例えば、車両用途、電子材料用途、建材用途、土木用途、航空機関連用途、造船用途、物流用途、産業機械用途、及び日用品用途が挙げられる。 A glass strand is obtained by bundling the glass filaments GF obtained in the above molding process. Glass strands are available, for example, as chopped strands cut to length. Also, glass strands can be used as milled fibers, rovings, yarns, mats, cloths, tapes, braids, and the like. Uses of glass strands include, for example, vehicle uses, electronic material uses, building material uses, civil engineering uses, aircraft-related uses, shipbuilding uses, logistics uses, industrial machinery uses, and daily necessities uses.
 <作用及び効果>
 次に、第1実施形態の作用及び効果について説明する。
 (1-1)ガラス繊維の製造装置11は、溶融ガラスMGを流通させるフィーダー12と、フィーダー12の下方に配置され、溶融ガラスMGを流出する複数のノズルNを有するブッシング13と、通電により発熱する発熱部材14とを備えている。発熱部材14は、フィーダー12とブッシング13との間における溶融ガラスMGの流路に配置される発熱部14aを有している。
<Action and effect>
Next, the operation and effects of the first embodiment will be described.
(1-1) The glass fiber manufacturing apparatus 11 includes a feeder 12 for circulating the molten glass MG, a bushing 13 arranged below the feeder 12 and having a plurality of nozzles N for flowing out the molten glass MG, and heat generated by energization. A heat generating member 14 is provided. The heat-generating member 14 has a heat-generating portion 14 a arranged in the flow path of the molten glass MG between the feeder 12 and the bushing 13 .
 この構成によれば、上述したようにブッシング13のノズルNからの溶融ガラスMGの流出を安定させることができる。従って、ガラスフィラメントGFを安定して成形することが可能となる。 According to this configuration, the outflow of the molten glass MG from the nozzle N of the bushing 13 can be stabilized as described above. Therefore, it is possible to stably form the glass filament GF.
 (1-2)ガラス繊維の製造装置11における発熱部材14の発熱部14aは、溶融ガラスMGの流路を横切るように設けられる板材から構成されている。発熱部材14の発熱部14aは、溶融ガラスMGを流通させる貫通孔THを有している。この場合、発熱部材14の発熱部14aと溶融ガラスMGとの接触面積を増大させることができるため、例えば、溶融ガラスMGを効率的に加熱したり、溶融ガラスMGの温度の均一性を高めたりすることが可能となる。 (1-2) The heat-generating portion 14a of the heat-generating member 14 in the glass fiber manufacturing apparatus 11 is composed of a plate member provided so as to cross the flow path of the molten glass MG. The heat generating portion 14a of the heat generating member 14 has a through hole TH through which the molten glass MG flows. In this case, since the contact area between the heat generating portion 14a of the heat generating member 14 and the molten glass MG can be increased, for example, the molten glass MG can be efficiently heated and the temperature uniformity of the molten glass MG can be improved. It becomes possible to
 (1-3)ガラス繊維の製造装置11における発熱部材14の発熱部14aは、開口率が異なる複数の流通部を形成するように設けられた複数の貫通孔THを有している。この場合、溶融ガラスMGの流れを複雑化することが可能となる。これにより、例えば、溶融ガラスMGの温度の均一性を高めることが可能となる。 (1-3) The heat-generating portion 14a of the heat-generating member 14 in the glass fiber manufacturing apparatus 11 has a plurality of through-holes TH formed to form a plurality of circulation portions with different opening ratios. In this case, it becomes possible to complicate the flow of the molten glass MG. Thereby, for example, it becomes possible to improve the uniformity of the temperature of the molten glass MG.
 (1-4)ガラス繊維の製造装置11において、発熱部材14とブッシング13とは離れて配置されている。この構成によれば、例えばブッシング13と発熱部材14の両方を発熱させる場合において、両方の温度を個別に制御することが可能となる。 (1-4) In the glass fiber manufacturing apparatus 11, the heating member 14 and the bushing 13 are arranged apart. According to this configuration, for example, when both the bushing 13 and the heat generating member 14 are caused to generate heat, the temperatures of both can be controlled individually.
 (1-5)ガラス繊維の製造装置11は、発熱部材14とブッシング13との間に配置される絶縁部材15をさらに備えている。この場合、例えば、発熱部材14への通電効率を高めることで発熱部14aを効率的に発熱させることができる。また、例えば、発熱部材14とブッシング13とが溶着することを抑えることで、発熱部材14の交換又はブッシング13を容易に交換することが可能となる。 (1-5) The glass fiber manufacturing apparatus 11 further includes an insulating member 15 arranged between the heat generating member 14 and the bushing 13 . In this case, for example, by increasing the efficiency of energization to the heat generating member 14, the heat generating portion 14a can be efficiently heated. In addition, for example, by suppressing welding between the heat generating member 14 and the bushing 13, it is possible to easily replace the heat generating member 14 or the bushing 13. FIG.
 (第2実施形態)
 ガラス繊維の製造装置11、及びガラス繊維の製造方法の第2実施形態について第1実施形態と異なる点を中心に説明する。
(Second embodiment)
A second embodiment of the glass fiber manufacturing apparatus 11 and the glass fiber manufacturing method will be described, focusing on the points different from the first embodiment.
 図4に示すように、第2実施形態のガラス繊維の製造装置11は、第1発熱部材18と、第1発熱部材18の下流側において第1発熱部材18と離間して配置される第2発熱部材19とを備えている。第1発熱部材18は、フィーダー12とブッシング13との間における溶融ガラスMGの流路に配置される発熱部18aと、発熱部18aに接続される通電用のターミナル18bとを有している。第1発熱部材18は、第1実施形態の発熱部材14と同じ構成を有しているため、説明を省略する。 As shown in FIG. 4 , the glass fiber manufacturing apparatus 11 of the second embodiment includes a first heat generating member 18 and a second heat generating member 18 arranged downstream of the first heat generating member 18 and spaced apart from the first heat generating member 18 . and a heat generating member 19 . The first heat-generating member 18 has a heat-generating portion 18a arranged in the flow path of the molten glass MG between the feeder 12 and the bushing 13, and a terminal 18b for energization connected to the heat-generating portion 18a. The first heat-generating member 18 has the same configuration as the heat-generating member 14 of the first embodiment, so description thereof will be omitted.
 図5に示すように、第2発熱部材19は、フィーダー12とブッシング13との間における溶融ガラスMGの流路に配置される発熱部19aと、発熱部19aに接続される通電用のターミナル19bとを有している。第2発熱部材19の発熱部19aは、溶融ガラスMGの流路を横切るように設けられる板材から構成されている。第2発熱部材19の発熱部19aは、溶融ガラスMGを流通させる少なくとも1つの貫通孔THを有している。本実施形態において、第2発熱部材19の発熱部19aは、開口率が異なる複数の流通部を形成するように設けられた複数の貫通孔THを有している。 As shown in FIG. 5, the second heat-generating member 19 includes a heat-generating portion 19a arranged in the flow path of the molten glass MG between the feeder 12 and the bushing 13, and a terminal 19b for energization connected to the heat-generating portion 19a. and The heat-generating portion 19a of the second heat-generating member 19 is composed of a plate member provided so as to cross the flow path of the molten glass MG. The heat generating portion 19a of the second heat generating member 19 has at least one through hole TH through which the molten glass MG flows. In the present embodiment, the heat-generating portion 19a of the second heat-generating member 19 has a plurality of through holes TH formed so as to form a plurality of circulation portions with different opening ratios.
 第2発熱部材19の発熱部19aは、2つの第1流通部B1、2つの第2流通部B2、及び1つの第3流通部B3を有している。これらの流通部は、第3流通部B3が2つの第2流通部B2の間に挟まれ、第3流通部B3及び2つの第2流通部B2が2つの第1流通部B1の間に挟まれるように位置している。 The heat generating portion 19a of the second heat generating member 19 has two first circulation portions B1, two second circulation portions B2, and one third circulation portion B3. These flow sections are such that a third flow section B3 is sandwiched between two second flow sections B2, and a third flow section B3 and two second flow sections B2 are sandwiched between two first flow sections B1. It is located so that it can be
 第2発熱部材19の第1流通部B1は、第1発熱部材18の第1流通部A1の下流側に配置されている。第2発熱部材19の第2流通部B2は、第1発熱部材18の第2流通部A2の下流側に配置されている。第2発熱部材19の第3流通部B3は、第1発熱部材18の第3流通部A3の下流側に配置されている。 The first circulation portion B1 of the second heat generating member 19 is arranged downstream of the first circulation portion A1 of the first heat generating member 18. The second circulation portion B<b>2 of the second heat generating member 19 is arranged downstream of the second circulation portion A<b>2 of the first heat generating member 18 . The third circulation portion B3 of the second heat generating member 19 is arranged downstream of the third circulation portion A3 of the first heat generating member 18 .
 第2発熱部材19における第1流通部B1の開口率は、第1発熱部材18における第1流通部A1の開口率とは異なる。第2発熱部材19における第2流通部B2の開口率は、第1発熱部材18における第2流通部A2の開口率とは異なる。第2発熱部材19における第3流通部B3の開口率は、第1発熱部材18における第3流通部A3の開口率とは異なる。このように第1発熱部材18の流通部と第2発熱部材19の流通部とは、溶融ガラスMGの流れ方向に沿って互いに異なる開口率となるように配置されている。 The opening ratio of the first circulation portion B1 in the second heat generating member 19 is different from the opening ratio of the first circulation portion A1 in the first heat generating member 18. The opening ratio of the second circulation portion B2 in the second heat generating member 19 is different from the opening ratio of the second circulation portion A2 in the first heat generating member 18 . The aperture ratio of the third circulation portion B3 in the second heat-generating member 19 is different from the aperture ratio of the third circulation portion A3 in the first heat-generating member 18 . In this manner, the circulation portion of the first heat generating member 18 and the circulation portion of the second heat generating member 19 are arranged so as to have different aperture ratios along the flow direction of the molten glass MG.
 詳述すると、第2発熱部材19における第1流通部B1の開口率は、第1発熱部材18における第1流通部A1の開口率よりも大きい。第2発熱部材19における第2流通部B2の開口率は、第1発熱部材18における第2流通部A2の開口率よりも小さい。第2発熱部材19における第3流通部B3の開口率は、第1発熱部材18における第3流通部A3の開口率よりも大きい。 Specifically, the opening ratio of the first circulation portion B1 in the second heat generating member 19 is larger than the opening ratio of the first circulation portion A1 in the first heat generating member 18. The opening ratio of the second circulation portion B2 in the second heat generating member 19 is smaller than the opening ratio of the second circulation portion A2 in the first heat generating member 18 . The opening ratio of the third circulation portion B3 in the second heat generating member 19 is larger than the opening ratio of the third circulation portion A3 in the first heat generating member 18. As shown in FIG.
 第2発熱部材19において、第1流通部B1の開口率をRB1[%]、第2流通部B2の開口率をRB2[%]、第3流通部B3の開口率をRB3[%]とした場合、RB2<RB1<RB3の関係を満たしていてもよい。第1流通部B1の開口率RB1は、例えば、20%を超え、60%以下の範囲内である。第2流通部B2の開口率RB2は、例えば、1%以上、20%以下の範囲内である。第3流通部B3の開口率RB3は、例えば、60%を超え、90%以下の範囲内である。 In the second heat generating member 19, the aperture ratio of the first circulation portion B1 is RB1 [%], the aperture ratio of the second circulation portion B2 is RB2 [%], and the aperture ratio of the third circulation portion B3 is RB3 [%]. In this case, the relationship RB2<RB1<RB3 may be satisfied. The aperture ratio RB1 of the first circulation portion B1 is, for example, within a range of more than 20% and 60% or less. The aperture ratio RB2 of the second circulation portion B2 is, for example, within the range of 1% or more and 20% or less. The aperture ratio RB3 of the third circulation portion B3 is, for example, within a range of more than 60% and 90% or less.
 ガラス繊維の製造装置11は、第1発熱部材18と第2発熱部材19との間に配置されるブッシングブロック16を備えている。このブッシングブロック16は、第1発熱部材18と第2発熱部材19との間を電気的に絶縁している。第2発熱部材19とブッシング13との間には、絶縁部材15が配置されている。 The glass fiber manufacturing apparatus 11 includes a bushing block 16 arranged between the first heat generating member 18 and the second heat generating member 19 . This bushing block 16 electrically insulates between the first heat generating member 18 and the second heat generating member 19 . An insulating member 15 is arranged between the second heat generating member 19 and the bushing 13 .
 次に、第2実施形態の作用及び効果について説明する。
 (2-1)ガラス繊維の製造装置11における発熱部材は、第1発熱部材18と、第1発熱部材18の下流側において第1発熱部材18と離間して配置される第2発熱部材19とを含んでいる。
Next, the action and effect of the second embodiment will be described.
(2-1) The heat-generating members in the glass fiber manufacturing apparatus 11 are the first heat-generating member 18 and the second heat-generating member 19 arranged downstream of the first heat-generating member 18 and spaced from the first heat-generating member 18. contains.
 この場合、第1発熱部材18の発熱部18a及び第2発熱部材19の発熱部19aによって、フィーダー12とブッシング13との間の流路において溶融ガラスMGをより昇温させることが可能となる。これにより、フィーダー12から流下する溶融ガラスMGの温度が非常に低い場合であっても、ブッシング13に所定の温度まで昇温させた溶融ガラスMGを供給することができる。このため、ブッシング13のノズルNからの溶融ガラスMGの流出を安定させることができる。従って、ガラスフィラメントGFを安定して成形することが可能となる。 In this case, the heat generating portion 18a of the first heat generating member 18 and the heat generating portion 19a of the second heat generating member 19 make it possible to further raise the temperature of the molten glass MG in the channel between the feeder 12 and the bushing 13. Thereby, even if the temperature of the molten glass MG flowing down from the feeder 12 is extremely low, the molten glass MG heated to a predetermined temperature can be supplied to the bushing 13 . Therefore, the outflow of the molten glass MG from the nozzle N of the bushing 13 can be stabilized. Therefore, it is possible to stably form the glass filament GF.
 (2-2)ガラス繊維の製造装置11における第1発熱部材18の発熱部18aと第2発熱部材19の発熱部19aとは、溶融ガラスMGの流路を横切るように設けられる板材から構成されている。第1発熱部材18の発熱部18aと第2発熱部材19の発熱部19aとは、溶融ガラスMGを流通させる貫通孔THを有している。 (2-2) The heat-generating portion 18a of the first heat-generating member 18 and the heat-generating portion 19a of the second heat-generating member 19 in the glass fiber manufacturing apparatus 11 are composed of plate members provided so as to cross the flow path of the molten glass MG. ing. The heat generating portion 18a of the first heat generating member 18 and the heat generating portion 19a of the second heat generating member 19 have through holes TH through which the molten glass MG flows.
 この場合、第1発熱部材18の発熱部18aと溶融ガラスMGとの接触面積と、第2発熱部材19の発熱部19aと溶融ガラスMGとの接触面積を増大させることができる。このため、例えば、溶融ガラスMGを効率的に加熱したり、溶融ガラスMGの温度の均一性を高めたりすることが可能となる。 In this case, the contact area between the heat generating portion 18a of the first heat generating member 18 and the molten glass MG and the contact area between the heat generating portion 19a of the second heat generating member 19 and the molten glass MG can be increased. Therefore, for example, it is possible to efficiently heat the molten glass MG and improve the uniformity of the temperature of the molten glass MG.
 (2-3)第1発熱部材18と第2発熱部材19とは、それぞれ開口率が異なる複数の流通部を有している。第1発熱部材18の流通部と第2発熱部材19の流通部とは、溶融ガラスMGの流れ方向に沿って互いに異なる開口率となるように配置されている。この場合、溶融ガラスMGの流れをより複雑化することが可能となる。これにより、例えば、溶融ガラスMGの温度の均一性をより高めることが可能となる。 (2-3) The first heat generating member 18 and the second heat generating member 19 each have a plurality of circulation portions with different opening ratios. The circulation portion of the first heat-generating member 18 and the circulation portion of the second heat-generating member 19 are arranged so as to have different aperture ratios along the flow direction of the molten glass MG. In this case, it becomes possible to make the flow of the molten glass MG more complicated. Thereby, for example, it becomes possible to further improve the uniformity of the temperature of the molten glass MG.
 (変更例)
 本実施形態は、以下のように変更して実施することができる。本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
(Change example)
This embodiment can be implemented with the following modifications. This embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
 ・第1実施形態の発熱部材14を、図6に示される発熱部材20に変更することもできる。図6に示される発熱部材20は、貫通孔THを有しない板状の発熱部20aと、発熱部20aに接続される通電用のターミナル20bとを備えている。図6の二点鎖線の内側の領域が溶融ガラスMGの流路FPであり、溶融ガラスMGは、発熱部20aを回り込むようにして流下する。 · The heat generating member 14 of the first embodiment can be changed to the heat generating member 20 shown in FIG. The heat-generating member 20 shown in FIG. 6 includes a plate-like heat-generating portion 20a having no through hole TH, and a terminal 20b for conducting electricity connected to the heat-generating portion 20a. The area inside the two-dot chain line in FIG. 6 is the flow path FP of the molten glass MG, and the molten glass MG flows down around the heat generating portion 20a.
 ・第2実施形態の第1発熱部材18及び第2発熱部材19の少なくとも一方の発熱部材を、例えば、図6に示される発熱部材20に変更することもできる。
 ・図6に示される発熱部材20の発熱部20aの形状を、例えば、柱状や筒状に変更することもできる。
- At least one of the first heat-generating member 18 and the second heat-generating member 19 of the second embodiment can be changed to the heat-generating member 20 shown in FIG. 6, for example.
- The shape of the heat generating portion 20a of the heat generating member 20 shown in FIG. 6 can be changed to, for example, a columnar shape or a cylindrical shape.
 ・第1実施形態の発熱部材14の発熱部14aは、開口率が異なる複数の流通部を有しているが、この発熱部14aを一定の開口率を有する発熱部に変更することもできる。第2実施形態の第1発熱部材18の発熱部18a及び第2発熱部材19の発熱部19aの少なくとも一方の発熱部を、一定の開口率を有する発熱部に変更することもできる。 - The heat generating portion 14a of the heat generating member 14 of the first embodiment has a plurality of circulation portions with different opening ratios, but the heat generating portion 14a can be changed to a heat generating portion having a constant opening ratio. At least one of the heat generating portion 18a of the first heat generating member 18 and the heat generating portion 19a of the second heat generating member 19 of the second embodiment can be changed to a heat generating portion having a constant aperture ratio.
 ・第1実施形態の発熱部材14の発熱部14aにおいて、開口率が異なる流通部の数は、2つであってもよいし、4つ以上であってもよい。
 ・第2実施形態の第1発熱部材18の発熱部18a及び第2発熱部材19の発熱部19aにおいて、開口率が異なる流通部の数は、2つであってもよいし、4つ以上であってもよい。
- In the heat generating portion 14a of the heat generating member 14 of the first embodiment, the number of circulation portions having different opening ratios may be two, or may be four or more.
- In the heat generating portion 18a of the first heat generating member 18 and the heat generating portion 19a of the second heat generating member 19 of the second embodiment, the number of circulation portions having different opening ratios may be two, or four or more. There may be.
 ・第2実施形態において、例えば、第2発熱部材19を第1発熱部材18と同じ構成の発熱部材に変更してもよい。また、例えば、第1発熱部材18を第2発熱部材19と同じ構成の発熱部材に変更してもよい。すなわち、第2実施形態において、第1発熱部材18と第2発熱部材19とを、溶融ガラスMGの流れ方向に沿って互いに同じ開口率となるように配置される発熱部材に変更してもよい。 · In the second embodiment, for example, the second heat generating member 19 may be changed to a heat generating member having the same configuration as the first heat generating member 18 . Further, for example, the first heat generating member 18 may be changed to a heat generating member having the same configuration as the second heat generating member 19 . That is, in the second embodiment, the first heat-generating member 18 and the second heat-generating member 19 may be changed to heat-generating members arranged so as to have the same aperture ratio along the flow direction of the molten glass MG. .
 ・第2実施形態のガラス繊維の製造装置11は、第1発熱部材18と第2発熱部材19との間、又はフィーダー12と第1発熱部材18との間にさらに発熱部材を備えていてもよい。すなわち、ガラス繊維の製造装置11の発熱部材の数は、3つ以上であってもよい。 The glass fiber manufacturing apparatus 11 of the second embodiment may further include a heat generating member between the first heat generating member 18 and the second heat generating member 19 or between the feeder 12 and the first heat generating member 18. good. That is, the number of heat generating members in the glass fiber manufacturing apparatus 11 may be three or more.
 ・第1実施形態のガラス繊維の製造装置11において、発熱部材14とブッシング13とを接触させて配置してもよい。第2実施形態のガラス繊維の製造装置11において、第2発熱部材19とブッシング13とを接触させて配置してもよい。 · In the glass fiber manufacturing apparatus 11 of the first embodiment, the heating member 14 and the bushing 13 may be arranged in contact with each other. In the glass fiber manufacturing apparatus 11 of the second embodiment, the second heat generating member 19 and the bushing 13 may be arranged in contact with each other.
 ・各実施形態のガラス繊維の製造装置11において、絶縁部材15を省略することもできる。 · In the glass fiber manufacturing apparatus 11 of each embodiment, the insulating member 15 can be omitted.
 11…ガラス繊維の製造装置、12…フィーダー、13…ブッシング、14,20…発熱部材、14a,18a,19a,20a…発熱部、15…絶縁部材、18…第1発熱部材、A1…第1流通部、A2…第2流通部、A3…第3流通部、19…第2発熱部材、B1…第1流通部、B2…第2流通部、B3…第3流通部、GF…ガラスフィラメント、MG…溶融ガラス、N…ノズル、TH…貫通孔。 DESCRIPTION OF SYMBOLS 11... Glass fiber manufacturing apparatus 12... Feeder 13... Bushing 14, 20... Heat-generating member 14a, 18a, 19a, 20a... Heat-generating part 15... Insulating member 18... First heat-generating member A1... First heat-generating member Circulation part A2...Second circulation part A3...Third circulation part 19...Second heat generating member B1...First circulation part B2...Second circulation part B3...Third circulation part GF...Glass filament MG... Molten glass, N... Nozzle, TH... Through hole.

Claims (9)

  1.  溶融ガラスを流通させるフィーダーと、
     前記フィーダーの下方に配置され、前記溶融ガラスを流出する複数のノズルを有するブッシングと、
     通電により発熱する発熱部材と、を備えるガラス繊維の製造装置であって、
     前記発熱部材は、前記フィーダーと前記ブッシングとの間における前記溶融ガラスの流路に配置される発熱部を有する、ガラス繊維の製造装置。
    a feeder for circulating molten glass;
    a bushing disposed below the feeder and having a plurality of nozzles through which the molten glass flows;
    A glass fiber manufacturing apparatus comprising: a heating member that generates heat when energized,
    The apparatus for manufacturing glass fibers, wherein the heat-generating member has a heat-generating portion arranged in a flow path of the molten glass between the feeder and the bushing.
  2.  前記発熱部材の前記発熱部は、前記溶融ガラスの流路を横切るように設けられる板材から構成され、
     前記発熱部材の前記発熱部は、前記溶融ガラスを流通させる貫通孔を有する、請求項1に記載のガラス繊維の製造装置。
    The heat-generating portion of the heat-generating member is composed of a plate member provided so as to cross the flow path of the molten glass,
    2. The apparatus for producing glass fiber according to claim 1, wherein the heat generating portion of the heat generating member has a through hole through which the molten glass flows.
  3.  前記発熱部材の前記発熱部は、開口率が異なる複数の流通部を形成するように設けられた複数の前記貫通孔を有する、請求項2に記載のガラス繊維の製造装置。 The apparatus for producing glass fibers according to claim 2, wherein the heat generating portion of the heat generating member has a plurality of through holes provided to form a plurality of circulation portions with different opening ratios.
  4.  前記発熱部材は、第1発熱部材と、前記第1発熱部材の下流側において前記第1発熱部材と離間して配置される第2発熱部材と、を含む、請求項1から請求項3のいずれか一項に記載のガラス繊維の製造装置。 4. The heat-generating member according to any one of claims 1 to 3, wherein the heat-generating member includes a first heat-generating member and a second heat-generating member arranged downstream of the first heat-generating member and spaced apart from the first heat-generating member. 1. The glass fiber manufacturing apparatus according to claim 1.
  5.  前記発熱部材は、第1発熱部材と、前記第1発熱部材の下流側において前記第1発熱部材と離間して配置される第2発熱部材と、を含み、
     前記第1発熱部材の前記発熱部と前記第2発熱部材の前記発熱部とは、前記溶融ガラスの流路を横切るように設けられる板材から構成され、
     前記第1発熱部材の前記発熱部と前記第2発熱部材の前記発熱部とは、前記溶融ガラスを流通させる貫通孔を有する、請求項1に記載のガラス繊維の製造装置。
    The heat-generating member includes a first heat-generating member and a second heat-generating member arranged downstream of the first heat-generating member and spaced apart from the first heat-generating member,
    The heat-generating part of the first heat-generating member and the heat-generating part of the second heat-generating member are composed of a plate member provided so as to cross the flow path of the molten glass,
    2. The apparatus for producing glass fiber according to claim 1, wherein said heat generating portion of said first heat generating member and said heat generating portion of said second heat generating member have through holes for circulating said molten glass.
  6.  前記第1発熱部材と前記第2発熱部材とは、それぞれ開口率が異なる複数の流通部を有し、
     前記第1発熱部材の前記流通部と前記第2発熱部材の前記流通部とは、前記溶融ガラスの流れ方向に沿って互いに異なる開口率となるように配置される、請求項5に記載のガラス繊維の製造装置。
    the first heat-generating member and the second heat-generating member each have a plurality of circulation portions with different opening ratios,
    The glass according to claim 5, wherein the circulation portion of the first heat-generating member and the circulation portion of the second heat-generating member are arranged so as to have different aperture ratios along the flow direction of the molten glass. Textile manufacturing equipment.
  7.  前記発熱部材と前記ブッシングとは離れて配置される、請求項1から請求項6のいずれか一項に記載のガラス繊維の製造装置。 The apparatus for manufacturing glass fibers according to any one of claims 1 to 6, wherein the heat generating member and the bushing are arranged apart from each other.
  8.  前記発熱部材と前記ブッシングとの間に配置される絶縁部材をさらに備える、請求項1から請求項7のいずれか一項に記載のガラス繊維の製造装置。 The glass fiber manufacturing apparatus according to any one of claims 1 to 7, further comprising an insulating member arranged between the heat generating member and the bushing.
  9.  ガラス繊維の製造装置を用いてガラスフィラメントを成形する成形工程を備えるガラス繊維の製造方法であって、
     前記ガラス繊維の製造装置は、溶融ガラスを流通させるフィーダーと、
     前記フィーダーの下方に配置され、前記溶融ガラスを流出する複数のノズルを有するブッシングと、
     通電により発熱する発熱部材と、を備え、
     前記発熱部材は、前記フィーダーと前記ブッシングとの間における前記溶融ガラスの流路に配置される発熱部を有し、
     前記成形工程において、前記発熱部材により前記溶融ガラスを加熱する、ガラス繊維の製造方法。
    A glass fiber manufacturing method comprising a molding step of molding a glass filament using a glass fiber manufacturing apparatus,
    The glass fiber manufacturing apparatus includes a feeder for distributing molten glass,
    a bushing disposed below the feeder and having a plurality of nozzles through which the molten glass flows;
    a heat-generating member that generates heat when energized,
    The heat-generating member has a heat-generating portion arranged in the flow path of the molten glass between the feeder and the bushing,
    A method for producing glass fibers, wherein the molten glass is heated by the heat-generating member in the molding step.
PCT/JP2022/030946 2021-09-02 2022-08-16 Glass fiber manufacturing device and glass fiber manufacturing method WO2023032655A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-143294 2021-09-02
JP2021143294A JP2023036310A (en) 2021-09-02 2021-09-02 Apparatus and method for manufacturing glass fiber

Publications (1)

Publication Number Publication Date
WO2023032655A1 true WO2023032655A1 (en) 2023-03-09

Family

ID=85411073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030946 WO2023032655A1 (en) 2021-09-02 2022-08-16 Glass fiber manufacturing device and glass fiber manufacturing method

Country Status (3)

Country Link
JP (1) JP2023036310A (en)
TW (1) TW202311181A (en)
WO (1) WO2023032655A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4921262B1 (en) * 1969-10-28 1974-05-30
JPH06127968A (en) * 1992-10-16 1994-05-10 Nippon Electric Glass Co Ltd Glass fiber spinning furnace
US20070227195A1 (en) * 2004-05-14 2007-10-04 Saint-Gobain Vetrotex France S.A. Die For Producing Filaments, In Particular Glass Filaments And The Fibre Drawing System Thereof
JP2008266057A (en) * 2007-04-18 2008-11-06 Tanaka Kikinzoku Kogyo Kk Device for manufacturing glass fiber
JP2011506258A (en) * 2007-12-19 2011-03-03 ユミコア アクチェンゲゼルシャフト ウント コンパニー コマンディートゲゼルシャフト Apparatus for forming melts containing inorganic oxides or minerals with improved heating devices
JP2012091954A (en) * 2010-10-26 2012-05-17 Nippon Electric Glass Co Ltd Bushing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4921262B1 (en) * 1969-10-28 1974-05-30
JPH06127968A (en) * 1992-10-16 1994-05-10 Nippon Electric Glass Co Ltd Glass fiber spinning furnace
US20070227195A1 (en) * 2004-05-14 2007-10-04 Saint-Gobain Vetrotex France S.A. Die For Producing Filaments, In Particular Glass Filaments And The Fibre Drawing System Thereof
JP2008266057A (en) * 2007-04-18 2008-11-06 Tanaka Kikinzoku Kogyo Kk Device for manufacturing glass fiber
JP2011506258A (en) * 2007-12-19 2011-03-03 ユミコア アクチェンゲゼルシャフト ウント コンパニー コマンディートゲゼルシャフト Apparatus for forming melts containing inorganic oxides or minerals with improved heating devices
JP2012091954A (en) * 2010-10-26 2012-05-17 Nippon Electric Glass Co Ltd Bushing

Also Published As

Publication number Publication date
JP2023036310A (en) 2023-03-14
TW202311181A (en) 2023-03-16

Similar Documents

Publication Publication Date Title
US20030177793A1 (en) Bushing for drawing glass fibers
JP5122855B2 (en) Glass fiber production equipment
WO2023032655A1 (en) Glass fiber manufacturing device and glass fiber manufacturing method
JP2010502543A (en) Bushing assembly with cooling support fins
JP5795104B1 (en) Bushing for glass fiber production
JP2023514479A (en) Chip plate and corresponding bushing
US6427492B1 (en) Bushing including a terminal ear
JP5672951B2 (en) Bushing
JP5689132B2 (en) Spinning nozzle arrangement
JP6219828B2 (en) Molten glass filament supply device and manufacturing method thereof
JP7107027B2 (en) BUSHING AND METHOD FOR MANUFACTURING GLASS FIBER
JP2023057737A (en) Apparatus and method for manufacturing glass fiber
RU2217393C1 (en) Multidrawing nozzle feeders for production of mineral fibers out of melt of rock
JP7207593B2 (en) BUSHING AND METHOD FOR MANUFACTURING GLASS FIBER
WO2023047994A1 (en) Bushing device and glass fiber manufacturing method
JP2008069025A (en) Bushing block for glass fiber manufacture and method of manufacturing glass fiber
JP2014094861A (en) Forming nozzle for plate glass
RU2793313C1 (en) Method for manufacturing a device for producing glass or basalt fibre
KR20120113011A (en) Manufacturing devices of mineral fibers
CN108046586A (en) Quartz fibre wire drawing high temperature alloy bushing
TW200930673A (en) Tip plate and bushing delivering filaments, especially glass filaments
JP2022190302A (en) Bushing, manufacturing apparatus of glass fiber, and manufacturing method of glass fiber
JP2022190523A (en) Bushing, manufacturing apparatus of glass fiber, and manufacturing method of glass fiber
CA2778012A1 (en) Transverse row bushings having ceramic supports

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864240

Country of ref document: EP

Kind code of ref document: A1