WO2023029945A1 - 激光投影设备 - Google Patents

激光投影设备 Download PDF

Info

Publication number
WO2023029945A1
WO2023029945A1 PCT/CN2022/112060 CN2022112060W WO2023029945A1 WO 2023029945 A1 WO2023029945 A1 WO 2023029945A1 CN 2022112060 W CN2022112060 W CN 2022112060W WO 2023029945 A1 WO2023029945 A1 WO 2023029945A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
fluorescent
laser
heat
reflective
Prior art date
Application number
PCT/CN2022/112060
Other languages
English (en)
French (fr)
Inventor
张勇
田有良
Original Assignee
青岛海信激光显示股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111016185.1A external-priority patent/CN113671780A/zh
Priority claimed from CN202111016358.XA external-priority patent/CN113671781B/zh
Priority claimed from CN202111013838.0A external-priority patent/CN113671776B/zh
Application filed by 青岛海信激光显示股份有限公司 filed Critical 青岛海信激光显示股份有限公司
Priority to CN202280052555.3A priority Critical patent/CN117795417A/zh
Publication of WO2023029945A1 publication Critical patent/WO2023029945A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings

Definitions

  • the present disclosure relates to the technical field of projection display, in particular to a laser projection device.
  • the light source components of laser projection equipment include lasers and fluorescent wheels.
  • the laser is configured to emit a laser beam
  • the fluorescent wheel is configured to transmit the laser beam or emit a fluorescent beam with a color different from the laser beam under excitation of the laser beam, so that the light source assembly can provide beams of different colors.
  • the laser projection equipment includes: a light source assembly, an optical machine and a lens.
  • the light source assembly is configured to provide an illumination beam; the optical machine is configured to modulate the illumination beam with an image signal to obtain a projection beam; the lens is configured to project the projection beam into an image.
  • the light source assembly includes: a heat conduction substrate, a package casing, a first light emitting chip, a fluorescent part and a light path guiding assembly.
  • the packaging case is connected to the heat-conducting substrate and includes a light outlet. The light outlet is located on a side of the package housing away from the heat-conducting substrate.
  • the first light-emitting chip is located in the packaging case and connected to the heat-conducting substrate, and is configured to emit a first laser beam.
  • the fluorescent part is located in the packaging case and connected to the heat conducting substrate.
  • the fluorescent part is located on the light-emitting side of the first light-emitting chip, and is configured to emit a fluorescent beam to the light-emitting port under the excitation of at least part of the light in the first laser beam.
  • the optical path guide assembly is located in the package housing and is configured to guide the first laser beam to the fluorescent part. At least part of the light in the fluorescent light beam is emitted from the light outlet along a direction away from the thermally conductive substrate to form at least part of the light in the illumination light beam.
  • FIG. 1 is one of structural diagrams of a laser projection device according to some embodiments
  • FIG. 2 is a timing diagram of a light source assembly in a laser projection device according to some embodiments
  • FIG. 3 is a diagram of an optical path in a laser projection device according to some embodiments.
  • FIG. 4 is a structural diagram of a digital micromirror device according to some embodiments.
  • Fig. 5 is the position figure that a tiny mirror mirror swings in the digital micromirror device among Fig. 4;
  • Fig. 6 is a working principle diagram of a tiny mirror according to some embodiments.
  • FIG. 7 is the second structural diagram of a laser projection device according to some embodiments.
  • Fig. 8 is one of the structural diagrams of a light source assembly in the related art
  • Fig. 9 is the second structural diagram of a light source assembly in the related art.
  • FIG. 10 is a structural diagram of a fluorescent wheel in the related art.
  • Figure 11 is one of the structural diagrams of a light source assembly according to some embodiments.
  • Fig. 12 is the second structural diagram of a light source assembly according to some embodiments.
  • Figure 13 is a block diagram of a color filter assembly according to some embodiments.
  • Figure 14 is one of the structural diagrams of a light emitting device according to some embodiments.
  • 15 is a structural diagram of a fluorescent part according to some embodiments.
  • Fig. 16 is the second structural diagram of a light emitting device according to some embodiments.
  • Fig. 17 is a partial light path diagram of the light emitting device in Fig. 16;
  • Fig. 18 is the third structural diagram of a light emitting device according to some embodiments.
  • Fig. 19 is the fourth structural diagram of a light emitting device according to some embodiments.
  • Fig. 20 is the fifth structural diagram of a light emitting device according to some embodiments.
  • Fig. 21 is a structural diagram of the light combining part in the light emitting device in Fig. 20;
  • Fig. 22 is the sixth structural diagram of a light emitting device according to some embodiments.
  • Fig. 23 is the seventh structural diagram of a light emitting device according to some embodiments.
  • Fig. 24 is the eighth structural diagram of a light emitting device according to some embodiments.
  • Fig. 25 is a ninth structural diagram of a light emitting device according to some embodiments.
  • Light source assembly 1 laser 100; integrated base 101; light-emitting device 10; heat-conducting substrate 11; 131; the first reflective surface 1311; the first bottom surface 1312; the second reflective part 132; the second reflective surface 1321; the second bottom surface 1322; Transparent film 1333; second anti-reflection film 1334; support seat 134; support surface 1341; fourth bottom surface 1342; converging lens 135; fifth bottom surface 135a; first curved surface 135b; second curved surface 135c; A; the center point C of the first curved surface; the normal line L; the side surface 1343 of the support base; the first light-emitting chip 14; the first laser beam S1; the second laser beam S2; the fluorescent part 15; the fluorescent layer 151; The first chip base 171; the second chip base 172; the optical device 18; the second light-emitting chip 19; Color chip 303; drive unit 304; collimator lens 400; uniform light assembly 500;
  • Optical machine 20 Diffusion sheet 2; First lens assembly 3; Fly eye lens group 4; First fly eye lens 41; Second fly eye lens 42; Second lens assembly 5; Digital micromirror device 6; Part 602; Prism assembly 7;
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality” means two or more.
  • connection When describing some embodiments, the expression “connected” and its derivatives may be used. For example, the term “connected” may be used in describing some embodiments to indicate that two or more elements are in direct physical or electrical contact with each other. The embodiments disclosed herein are not necessarily limited by the context herein.
  • parallel As used herein, “parallel”, “perpendicular”, and “equal” include the stated situation and the situation similar to the stated situation, the range of the similar situation is within the acceptable deviation range, wherein the The acceptable deviation ranges are as determined by one of ordinary skill in the art taking into account the measurement in question and errors associated with measurement of the particular quantity (ie, limitations of the measurement system).
  • “parallel” includes absolute parallelism and approximate parallelism, wherein the acceptable deviation range of approximate parallelism can be, for example, a deviation within 5°; Deviation within 5°.
  • “Equal” includes absolute equality and approximate equality, where the difference between the two that may be equal is less than or equal to 5% of either within acceptable tolerances for approximate equality, for example.
  • the laser projection device 1000 includes a light source assembly 1 , an optical engine 20 , and a lens 30 .
  • the light source assembly 1 is configured to provide an illumination beam.
  • the optical machine 20 is configured to use an image signal to modulate the illumination beam provided by the light source assembly 1 to obtain a projection beam.
  • the lens 30 is configured to project the projection light beam on a screen or a wall to form an image.
  • the light source assembly 1, the optical engine 20 and the lens 30 are sequentially connected along the beam propagation direction.
  • one end of the optical machine 20 is connected to the light source assembly 1 , and the light source assembly 1 and the optical machine 20 are arranged along the outgoing direction of the illumination beam of the laser projection device 1000 (refer to the direction M in FIG. 1 ).
  • the other end of the optical machine 20 is connected to the lens 30, and the optical machine 20 and the lens 30 are arranged along the outgoing direction of the projection beam of the laser projection device 1000 (refer to the direction N in FIG. 1 ).
  • the emission direction M of the illumination light beam of the laser projection device 1000 is substantially perpendicular to the emission direction N of the projection light beam of the laser projection device 1000 .
  • Such setting can make the structural arrangement of the laser projection device 1000 reasonable, and avoid the optical path of the laser projection device 1000 in a certain direction (for example, direction M or direction N) from being too long.
  • the light source assembly 1 can sequentially provide three primary color lights (other color lights can also be added on the basis of the three primary color lights). In some other embodiments, the light source assembly 1 can output three primary colors of light at the same time, so as to continuously emit white light.
  • the light source assembly 1 includes a light emitting device, which can emit light of at least one color, such as blue laser.
  • the light source assembly 1 may sequentially output blue, red and green lighting beams.
  • the light source assembly 1 outputs blue laser light in the first time period T1, outputs red laser light in the second time period T2, and outputs green laser light in the third time period T3.
  • the time for the light source assembly 1 to complete a round of sequential output of the primary color light beams is one cycle of the output of the primary color light beams from the light source assembly 1 .
  • the display period of one frame of target image is equal to one cycle of the primary color beam output by the light source assembly 1, which is equal to the first time period The sum of T1, the second time period T2 and the third time period T3.
  • T1 the first time period
  • T2 the second time period
  • T3 the third time period
  • the optical machine 20 includes a digital micromirror device 6 .
  • the digital micromirror device 6 is located at the light output side of the light source assembly 1 , and is configured to use image signals to modulate the illumination beam provided by the light source assembly 1 , and reflect the modulated projection beam to the lens 30 . Since the digital micromirror device 6 can control the projected light beam to display different colors and brightness for different pixels of the image to be displayed to finally form an optical image, the digital micromirror device 6 is also called a light modulation device (or light valve). In addition, according to the number of digital micromirror devices 6 used in the optical machine 20, the optical machine 20 can be divided into a single-chip system, a two-chip system or a three-chip system. For example, only one digital micromirror device 6 is used in the optical machine 20 shown in FIG.
  • the optical machine 20 can be called a single-chip system.
  • the optical machine 20 can be called a three-chip system.
  • the light source assembly 1 can output three primary colors of light at the same time, so as to continuously emit white light.
  • the light modulation device can include many types, such as Liquid Crystal On Silicon (LCOS), Liquid Crystal Display (LCD) or Digital Micromirror Device (Digital Micromirror Device). , DMD). Since in some embodiments of the present disclosure, the optical machine 20 shown in FIG. 3 applies a digital light processing (Digital Light Processing, DLP) projection architecture, therefore, the light modulation device in some embodiments of the present disclosure is a DMD.
  • LCOS Liquid Crystal On Silicon
  • LCD Liquid Crystal Display
  • DMD Digital Micromirror Device
  • the digital micromirror device 6 includes thousands of tiny reflective mirrors 601 that can be individually driven to rotate, and these tiny reflective mirrors 601 are arranged in an array, and each tiny reflective mirror 601 corresponds to of a pixel.
  • each tiny mirror 601 is equivalent to a digital switch, which can swing within the range of ⁇ 12° or ⁇ 17° under the action of external force.
  • FIG. 5 takes an example in which each tiny reflective mirror 601 can swing within a range of ⁇ 12° for illustration.
  • the light reflected by the tiny mirror 601 at a negative deflection angle is called OFF light.
  • the OFF light is ineffective light, which is usually absorbed by the housing of the optical machine 20 or the light absorbing component 602 .
  • the light reflected by the tiny reflector 601 at a positive deflection angle is called ON light.
  • the ON light is an effective light beam that is irradiated by the tiny reflective lens 601 on the surface of the digital micromirror device 6 to receive the illumination beam, and enters the lens 30 through a positive deflection angle, and is used for projection imaging.
  • the open state of the micro-reflector 601 is the state where the micro-reflector 601 is and can be maintained when the illumination beam emitted by the light source assembly 1 is reflected by the micro-reflector 601 and can enter the lens 30, that is, the micro-reflector 601 is at a positive deflection angle. status.
  • the closed state of the tiny reflective mirror 601 is the state where the tiny reflective mirror 601 is and can be maintained when the illumination light beam emitted by the light source assembly 1 is reflected by the tiny reflective mirror 601 and does not enter the lens 30, that is, the tiny reflective mirror 601 is in a negative deflection angle status.
  • the tiny mirror 601 with a deflection angle of ⁇ 12° when the tiny mirror 601 is at +12°, it is in the on state, and when it is at -12°, it is in the off state.
  • the tiny mirror 601 with a deflection angle of ⁇ 17° when the tiny mirror 601 is at +17°, it is in the on state, and when it is at -17°, it is in the off state.
  • the image signal After the image signal is processed, it is converted into digital codes such as 0 and 1, and these digital codes can drive the tiny mirror 601 to swing.
  • the tiny mirrors 601 will switch between the on state and the off state at least once, so as to realize a frame of image according to the duration of the tiny mirrors 601 in the on state and the off state respectively.
  • the gray scale of each pixel in . For example, when a pixel has 256 gray scales from 0 to 255, the tiny reflective mirror 601 corresponding to the pixel with the gray scale of 0 is in the off state during the entire display period of the frame of image, and the micro mirror 601 corresponding to the pixel with the gray scale of 255 is in the off state.
  • the corresponding tiny reflective mirror 601 is in the on state during the entire display period of a frame of image, and the tiny reflective mirror 601 corresponding to the pixel with a gray scale of 127 is in the on state half of the time in the display period of a frame of image, and the other half is in the on state. Time is off. Therefore, by controlling the state of each tiny mirror 601 in the display period of a frame image and the maintenance time of each state in the digital micromirror device 6 through the image signal, the brightness (gray gray) of the corresponding pixel of the tiny mirror 601 can be controlled. order), so as to modulate the illumination beam projected to the digital micromirror device 6 .
  • the optical machine 20 further includes a diffuser 2 , a first lens assembly 3 , a fly lens assembly 4 , a second lens assembly 5 and a prism assembly 7 . It should be noted that the optical machine 20 may also include fewer or more components than those shown in FIG. 3 , which is not limited in the present disclosure.
  • the diffusion sheet 2 is located on the light emitting side of the light source assembly 1 and is configured to diffuse the illumination beam from the light source assembly 1 .
  • the first lens assembly 3 is located on the light emitting side of the diffusion sheet 2 and is configured to converge the illumination beam diffused by the diffusion sheet 2 .
  • the fly lens group 4 is located on the light emitting side of the first lens assembly 3 and is configured to homogenize the illumination beam converged by the first lens assembly 3 .
  • the second lens assembly 5 is located on the light emitting side of the fly lens group 4 and is configured to transmit the illumination beam homogenized by the fly lens group 4 to the prism assembly 7 .
  • the prism assembly 7 reflects the illumination beam to the digital micromirror device 6 .
  • the fly eye lens set 4 includes a first fly eye lens 41 and a second fly eye lens 42 oppositely arranged.
  • the light incident surface of the first fly-eye lens 41 and the light-emitting surface of the second fly-eye lens 42 include tiny lenses arranged in an array.
  • the illuminating light beam converged by the first lens assembly 3 is converged into multiple thin beams (that is, light beams with smaller spots) by different tiny lenses on the light incident surface of the first fly-eye lens 41, and Focuses on the center of each minute lens of the second fly-eye lens 42 .
  • the multiple tiny lenses on the light emitting surface of the second fly-eye lens 42 can diverge the multiple thin beams, so that the multiple thin beams become multiple wide beams (ie, beams with larger spots). Since the light spots of the multiple wide beams overlap with each other, after the illumination beams pass through the first fly-eye lens 41 and the second fly-eye lens 42, the uniformity and illumination brightness are improved.
  • the lens 30 includes a combination of multiple lenses, which are usually divided into groups, such as three-stage front group, middle group and rear group, or two-stage front group and rear group.
  • the front group is the lens group close to the light-emitting side of the laser projection device 1000 (that is, the side of the lens 30 in the direction N away from the optical machine 20 in FIG.
  • the lens 30 is a lens group on the side close to the optical engine 20 in the direction N).
  • the lens 30 may be a zoom lens, or a fixed focus adjustable focus lens, or a fixed focus lens.
  • some embodiments of the present disclosure mainly take the laser projection device 1000 adopting a DLP projection architecture, and the light modulation device in the optical machine 20 is a digital micromirror device 6 as an example for exemplary illustration.
  • the light modulation device in the optical machine 20 is a digital micromirror device 6 as an example for exemplary illustration.
  • a light source assembly of a laser projection device includes multicolor laser devices, that is, a red laser device 0011 , a green laser device 0012 and a blue laser device 0013 .
  • the red laser device 0011, the green laser device 0012 and the blue laser device 0013 can work at the same time.
  • the multicolor laser device outputs three primary colors at the same time; the red laser device 0011, the green laser device 0012 and the blue laser device 0013 can also be divided into At this time, the multi-color laser device sequentially outputs three primary colors of light.
  • the light source assembly also includes an optical path assembly 003 , a color filter wheel 004 and a light focusing assembly 005 .
  • the condensing component 005 is configured to condense the three primary color lights output by the multicolor laser device simultaneously or in time division.
  • the optical path component 003 is configured to guide the three primary colors light converged by the light concentrating component 005 to the color filter wheel 004 .
  • the color filter wheel 004 includes a red color filter, a green color filter and a blue color filter, and a color filter of one color can filter a light beam of that color.
  • red light and blue light in the three primary color lights cannot pass through the red color filter, and the three primary color lights After the primary color light is filtered, only red light remains.
  • the red laser device can withstand a lower working temperature and is more easily damaged, the reliability of the above-mentioned light source assembly is poor.
  • laser devices of three colors need to be installed in the above-mentioned light source assembly at the same time, which is relatively difficult and expensive to manufacture.
  • the light source assembly of the laser projection device includes a single-color laser device (for example, a plurality of blue laser devices 0013) or a two-color laser device (for example, a green laser device 0012 and a blue laser device 0013) device 0013).
  • the light source component can output one primary color light, or output two primary color lights simultaneously or time-sharing.
  • the light source assembly including a monochromatic laser device, and the monochromatic laser device is a blue laser device 0013 as an example
  • the light source assembly also includes a fluorescent wheel 002
  • the optical path assembly 003 includes a first optical path assembly 0031 and a second optical path assembly 0032 .
  • the first optical path component 0031 is configured to focus and collimate the blue laser light converged by the light focusing component 005 and guide it to the fluorescent wheel 002 .
  • the fluorescent wheel 002 includes a transmission area 0021 , a red fluorescent area 0022 , a green fluorescent area 0023 , a fluorescent wheel substrate 0024 and a fluorescent wheel driving part 0025 .
  • the red fluorescent area 0022 is provided with red fluorescent paint, which can generate red fluorescence under the excitation of blue laser;
  • the green fluorescent area 0023 is provided with green fluorescent paint, which can generate green fluorescence under the excitation of blue laser.
  • the red fluorescent paint and the green fluorescent paint are bonded on the fluorescent wheel substrate 0024 through colloid.
  • the fluorescent wheel drive unit 0025 can drive the fluorescent wheel 002 to rotate, so that the position where the blue laser light is irradiated on the fluorescent wheel 002 changes.
  • the fluorescent wheel 002 transmits the blue laser and guides the blue laser to the second optical path assembly 0032, and the second optical path assembly 0032 guides the blue laser to the color filter wheel 004 .
  • the fluorescent wheel 002 When the blue laser is irradiated on the red fluorescent area 0022 or the green fluorescent area 0023, the fluorescent wheel 002 generates red fluorescent light or green fluorescent light, and reflects the red fluorescent light or the green fluorescent light to the first optical path assembly 0031, and the first optical path assembly 0031 The red fluorescence or the green fluorescence is directed to the color filter wheel 004 .
  • the fluorescent wheel 002 will continue to receive high-energy laser irradiation from multiple laser devices. In this way, the operating temperature of the area irradiated by the laser on the fluorescent wheel 002 will rise sharply.
  • the possibility of the excited electrons in the fluorescent paint returning to the ground state through non-radiative decay (that is, the possibility of de-excitation of the fluorescent paint) will increase, resulting in the fluorescent wheel 002
  • the working temperature of the fluorescent wheel 002 is too high (for example, 70 degrees Celsius)
  • the colloid between the fluorescent paint and the fluorescent wheel substrate 0024 will melt at high temperature, causing the fluorescent paint to fall off, and the fluorescent wheel 002 is not working properly, and the reliability of the light source components is still not high.
  • the fluorescent wheel 002 will not be damaged under the continuous irradiation of laser light emitted by less laser devices (for example, one laser device). However, if the number of laser devices in the light source assembly is reduced to achieve a fixed installation of the fluorescent wheel 002 and ensure the normal operation of the fluorescent wheel 002, the brightness of the illumination beam provided by the light source assembly will be reduced, thereby reducing the projection of the laser projection device. The display effect of the image.
  • the inventors of the present disclosure have found through research that: due to the unreasonable installation position of the fluorescent wheel 002 in the light source assembly, the fluorescent wheel 002 needs to withstand the laser irradiation of multiple laser devices when it is fixedly installed. Therefore, it is hindered to realize the miniaturization design of the fluorescent wheel 002 in the light source assembly under the premise of taking into account the reliability and the display effect of the projected image.
  • the embodiment of the present disclosure provides the light source assembly 1 as shown in FIG. 11 , FIG. 12 and FIG. 13 .
  • the light source assembly 1 may include: a laser 100 , an optical path shaping assembly 200 and a color filter assembly 300 .
  • the laser 100 is configured to provide an illumination beam;
  • the optical path shaping component 200 is configured to shrink and homogenize the illumination beam provided by the laser 100, so that the spot of the illumination beam becomes smaller and the energy is uniform;
  • the color filter assembly 300 is configured as The illumination light beam from the optical path shaping component 200 is color-filtered to sequentially output three primary colors (ie, red, green, blue) light. It should be noted that the structure of the laser 100 will be described below.
  • the color filter assembly 300 may include a green color filter 301 , a blue color filter 302 , a red color filter 303 and a driving part 304 .
  • the driving unit 304 is configured to drive the color filter assembly 300 to rotate, so that the illumination light beam emitted by the laser 100 is filtered by color filters of different colors during a display period of one frame of target image.
  • the color filter assembly 300 rotates to the position where the red color filter 303 covers the light spots of the three primary colors of light, Beams of other colors except the red light beam in the three primary colors are blocked, while the red light beam passes through the red color filter 303 and transmits the color filter assembly 300 .
  • the light source assembly 1 further includes a collimating lens 400 .
  • the collimator lens 400 is located at the light exit side of the light path shaping assembly 200 and is configured to converge the illumination beam from the light path shaping assembly 200 .
  • the light source assembly 1 further includes a uniform light assembly 500 .
  • the dodging component 500 is located at the light output side of the color filter component 300 and is configured to evenly light the illumination beam filtered by the color filter component 300 .
  • the dodging component 500 can be a fly-eye lens or a light pipe.
  • the structure of the dodging component 500 can refer to the structure of the above-mentioned fly lens group 4 , which will not be repeated here.
  • the light homogenizing component 500 is a light pipe
  • the light pipe may be a tubular device spliced by four planar reflection sheets, that is, a hollow light pipe. The light beam is reflected multiple times inside the light guide to achieve uniform light effect.
  • the uniform light assembly 500 may also adopt a solid light pipe.
  • the light inlet and the light outlet of the light pipe are rectangles with the same shape and area. Beam homogenization and spot optimization.
  • the uniform light assembly 500 when the uniform light assembly 500 is a light guide, the light source assembly 1 includes a light guide, and the light guide 20 may not be provided with a light guide; when the uniform light assembly 500 is other components except the light guide, the light The machine 20 also includes the above-mentioned light guide for receiving the illumination beam from the light source assembly 1 .
  • the laser 100 includes: an integrated base 101 and a plurality of light emitting devices 10 arrayed on the integrated base 101 .
  • the material of the integrated base 101 may be a heat-conducting material such as a single metal, an alloy material, silicon carbide, aluminum nitride, or heat-conducting ceramics.
  • the integrated base 101 can provide structural support, heat dissipation and electrical connection for multiple light emitting devices 10 .
  • FIG. 11 and FIG. 12 are illustrative illustrations that the light source assembly 1 includes one laser 100 as an example, and the present disclosure does not limit the number of lasers 100 included in the laser projection device 1000 .
  • the laser projection apparatus 1000 may include two lasers 100 or three lasers 100 .
  • the light source assembly 1 includes multiple lasers 100 , the brightness of the illumination light beam provided by the light source assembly 1 can be increased, thereby improving the display effect of the laser projection device 1000 .
  • the structure of the light emitting device 10 will be exemplarily described below mainly with reference to FIG. 14 and FIG. 15 .
  • the light-emitting device 10 includes: a heat-conducting substrate 11 , a packaging case 12 , an optical path guiding component 13 , a first light-emitting chip 14 and a fluorescent part 15 .
  • the encapsulation case 12 is connected to the heat conduction substrate 11 , and the side of the encapsulation case 12 away from the heat conduction substrate 11 includes a light outlet 121 .
  • the first light-emitting chip 14 is located in the packaging case 12 and connected to the heat-conducting substrate 11 , and is configured to emit a first laser beam.
  • the fluorescent part 15 is located in the package housing 12 and connected to the heat-conducting substrate 11.
  • the fluorescent part 15 is located on the light-emitting side of the first light-emitting chip 14, and is configured to emit light to the light-emitting side under the excitation of at least part of the light in the first laser beam.
  • Port 121 emits a fluorescent beam.
  • the light path guide assembly 13 is located in the package housing 12 and is configured to guide the first laser beam to the fluorescent part 15 .
  • At least part of the light in the fluorescent light beam exits from the light outlet 121 along a direction away from the heat-conducting substrate 11 to form at least part of the light in the illumination light beam, and is directed to the light machine 20 .
  • the laser projection device 1000 provided by the embodiment of the present disclosure divides the fluorescent wheel in the related art into a plurality of fluorescent parts 15 and then arranges them in the packaging casing 12 of the light emitting device 10, so that the fluorescent part 15 only needs to bear one light emitting device
  • the laser irradiation in 10 reduces the energy of the laser light transmitted to the fluorescent part 15, thereby reducing the probability of damage such as local burning and fire of the fluorescent part 15, and improving the reliability of the light source assembly. Therefore, on the premise of ensuring reliability, the reduction of components in the light source assembly 1 (for example, the fluorescent wheel driving circuit, the fluorescent wheel driving part 0025, etc.) is realized, and the miniaturization design requirement of the laser projection device 1000 is met.
  • the fluorescent part 15 is arranged on the heat-conducting substrate 11, so that the heat generated by the first laser beam hitting the fluorescent part 15 can be quickly transferred to the entire heat-conducting substrate 11, so that the fluorescent part 15 can quickly dissipate heat, so that The working temperature of the fluorescent part 15 is relatively low, which avoids the problem that the fluorescence excitation efficiency of the fluorescent part 15 decreases due to the high working temperature, and improves the fluorescence excitation efficiency of the fluorescent part 15 .
  • the first light emitting chip 14 includes a semiconductor light emitting element.
  • the semiconductor light emitting element can emit a blue first laser beam. It should be noted that the first light-emitting chip 14 in the embodiment of the present disclosure may also emit first laser beams of other colors, which is not limited in this embodiment of the present disclosure.
  • the energy of the first laser beam irradiated by the first light-emitting chip 14 to the fluorescent portion 15 is less than or equal to 20W. In this way, the energy of the first laser beam received by the fluorescent part 15 is small, which can avoid the problem of excessively high working temperature of the fluorescent part 15 and is beneficial to reduce the probability of damage to the fluorescent part 15 .
  • the energy of the first laser beam irradiated by the first light-emitting chip 14 to the fluorescent part 15 may be higher. Since the fluorescent part 15 in the embodiment of the present disclosure dissipates heat quickly, even if the energy of the first laser beam irradiated to the fluorescent part 15 is high, the fluorescent part 15 can maintain a high fluorescence excitation efficiency.
  • the fluorescent part 15 includes a fluorescent layer 151 connected to the thermally conductive substrate 11 .
  • the fluorescent layer 151 can be excited to generate fluorescent light under the irradiation of the first laser beam.
  • the fluorescent layer 151 may include fluorescent materials of different colors. Exemplarily, when the phosphor layer 151 includes yellow yttrium aluminum garnet phosphor, the phosphor layer 151 may be excited to generate yellow fluorescence under the irradiation of the first laser beam.
  • the phosphor layer 151 may be connected to the heat-conducting substrate 11 by means of mechanical fixing, bonding, welding or high-temperature sintering.
  • the side of the fluorescent layer 151 close to the heat-conducting substrate 11 further includes a metal coating for welding.
  • the fluorescent portion 15 further includes an optical anti-reflection film 152 connected to the fluorescent layer 151 and located on a side of the fluorescent layer 151 away from the thermally conductive substrate 11 .
  • an optical anti-reflection film 152 connected to the fluorescent layer 151 and located on a side of the fluorescent layer 151 away from the thermally conductive substrate 11 .
  • the illumination beam emitted from the light emitting device 10 to the light machine 20 may only include the fluorescent beam emitted from the light outlet 121 .
  • the fluorescent part 15 emits a fluorescent light beam under the excitation of all the first laser beams transmitted to the fluorescent part 15 .
  • the light source assembly 1 may also include a monochromatic light emitting device that only emits laser light.
  • the fluorescent light beam emitted from the light outlet 121 is yellow fluorescent light
  • the laser light emitted by the monochromatic light emitting device is blue laser light, so the illuminating light beam emitted from the light source assembly 1 to the optical machine 20 is a mixed light beam of yellow fluorescent light and blue laser light. , that is, a white beam.
  • the illumination light beam emitted from the light emitting device 10 to the light machine 20 also includes at least part of the first laser light beam.
  • the fluorescent part 15 is configured to emit a fluorescent beam under the excitation of a part of the first laser beam emitted by the first light-emitting chip 14 and transmit another part of the first laser beam.
  • the area of the thermally conductive substrate 11 that is in contact with the fluorescent portion 15 includes a reflective area.
  • At least part of the other part of the light is reflected toward the light outlet 121 .
  • at least a part of the other part of the light is emitted from the light outlet 121 along a direction away from the thermally conductive substrate 11 to form an illumination beam together with at least a part of the fluorescent light, and is directed to the light machine 20 .
  • the first laser beam emitted by the first light-emitting chip 14 of a light-emitting device 10 is blue laser light
  • the fluorescence emitted by the fluorescent part 15 after being excited is yellow fluorescence
  • the light outlet 121 of the light-emitting device 10 The light beam is a mixed light beam of the yellow fluorescent light emitted by the fluorescent part 15 and the blue laser light reflected by the reflective area.
  • the fluorescence excitation ratio of the fluorescent part 15 is related to the thickness of the fluorescent part 15 .
  • the reflective area of the thermally conductive substrate 11 may be a diffuse reflective material layer or a metal reflective layer.
  • the reflective area can evenly light the reflected light beam.
  • the reflection area is a metal reflection layer, the reflection rate of the reflection area to the light beam is higher.
  • the material of the metal reflective layer may be aluminum or silver. It should be noted that when the thermally conductive substrate 11 itself has the function of reflecting light, the entire thermally conductive substrate 11 is a reflection area.
  • optical path guide assembly 13 The structure of the optical path guide assembly 13 will be described exemplarily below mainly with reference to FIG. 16 to FIG. 25 .
  • the light path guiding assembly 13 includes a first reflection part 131 and a second reflection part 132 . At this time, the first laser beam emitted by the first light-emitting chip 14 is reflected by the first reflective part 131 and the second reflective part 132 in sequence, and reaches the fluorescent part 15 .
  • the packaging case 12 further includes: a side plate 122 and a packaging board 123 .
  • a side of the side plate 122 close to the heat-conducting substrate 11 is connected to the heat-conducting substrate 11 , and a side away from the heat-conducting substrate 11 is connected to the packaging board 123 .
  • the light outlet 121 is located on the packaging board 123 .
  • the encapsulation case 12 is configured to protect various components located therein, such as the above-mentioned first light emitting chip 14 and the fluorescent part 15 .
  • the first reflective portion 131 is located in the packaging case 12 and connected to the thermally conductive substrate 11 , and the first reflective portion 131 is located between the first light-emitting chip 14 and the fluorescent portion 15 .
  • the second reflector 132 is located in the packaging case 12 and connected to the packaging case 12 .
  • the second reflector 132 is connected to a side of the package board 123 of the package case 12 that is close to the heat-conducting substrate 11 .
  • the first reflection part 131 is configured to guide the first laser beam emitted by the first light-emitting chip 14 to the second reflection part 132
  • the second reflection part 132 is configured to guide the first laser beam from the first reflection part 131 to the fluorescent part.
  • the fluorescent part 15 is configured to emit the fluorescent light beam to the light outlet 121 under the excitation of at least part of the first laser beam from the second reflective part 132 .
  • the first reflective part 131 has a first reflective surface 1311 on the side close to the first light-emitting chip 14
  • the second reflective part 132 has a second reflective surface 1321 on the side close to the fluorescent part 15 .
  • the first reflective surface 1311 and the second reflective surface 1321 may be flat reflective surfaces or curved reflective surfaces.
  • At least one of the first reflective surface 1311 of the first reflective part 131 and the second reflective surface 1321 of the second reflective part 132 is a curved reflective surface configured to converge
  • the first laser beam emitted by the first light-emitting chip 14, and the transmission direction of the first laser beam emitted by the first light-emitting chip 14 is changed to reduce the degree of diffusion of the first laser beam during transmission, so that the fluorescent part 15 receives
  • the spot of the first laser beam received is smaller and the energy is more concentrated, so as to ensure that the fluorescent part 15 has a higher fluorescence excitation efficiency.
  • the first reflective surface 1311 of the first reflective part 131 and the second reflective surface 1321 of the second reflective part 132 are parabolic reflective surfaces.
  • the first center point A1 of the light-emitting surface of the first light-emitting chip 14 coincides with the first focal point A2 of the first reflective surface 1311
  • multiple divergent beams of the first laser beams emitted by the first light-emitting chip 14 After the light is reflected by the first reflective surface 1311, it becomes a plurality of beams parallel to each other.
  • the second focal point A3 of the second reflective surface 1321 coincides with a point on the surface of the fluorescent part 15 (for example, the second central point A4 in FIG.
  • the multiple beams reflected by the first reflective surface 1311 are parallel to each other. After being reflected by the second reflective surface 1321 , the light converges on the surface of the fluorescent part 15 . In this way, the light spot of the first laser beam received by the fluorescent part 15 is smaller and the energy is more concentrated, so that the fluorescent excitation efficiency of the fluorescent part 15 is higher.
  • the first reflective portion 131 also has a first bottom surface 1312 , and the first bottom surface 1312 is connected to the heat-conducting substrate 11 .
  • the first bottom surface 1312 and the heat-conducting substrate 11 can be soldered and connected by plating a metal film layer on the first bottom surface 1312 .
  • the second reflection part 132 also has a second bottom surface 1322 , and the second bottom surface 1322 is connected to the packaging case 12 .
  • the second bottom surface 1322 can be connected to the packaging case 12 in the same manner as the first bottom surface 1312 , which will not be repeated here.
  • the first reflective part 131 includes a first curved reflector and a first fixing structure.
  • the function of the first curved reflector is the same as that of the above-mentioned first reflective surface 1311 , and the first fixing structure is configured to connect the first curved reflector to the heat-conducting substrate 11 .
  • the second reflector 132 includes a second curved reflector and a second fixing structure. The function of the second curved reflector is the same as that of the above-mentioned second reflective surface 1321 , and the second fixing structure is configured to connect the second curved reflector to the packaging case 12 .
  • the light emitting device 10 includes two first light emitting chips 14, two first reflective parts 131 and two second reflective parts 132, and the two first light emitting chips 14 are respectively Located on both sides of the fluorescent portion 15 , the two first reflective portions 131 are respectively located on both sides of the fluorescent portion 15 , and the two second reflective portions 132 are respectively located on both sides of the fluorescent portion 15 .
  • the intensity of the laser light irradiated on the fluorescent part 15 is higher, and the number of molecules excited by the laser light in the fluorescent part 15 is larger, so that the intensity of the generated fluorescent light beam is higher, and the brightness of the light beam emitted by the light emitting device 10 is higher.
  • two first light emitting chips 14, two first reflective parts 131 and two second reflective parts 132 may be arranged symmetrically.
  • the difference between the light path guide assembly 13 in FIGS. 19 to 21 and the light path guide assembly 13 in FIGS. 16 to 18 is that the light path guide assembly 13 includes a light combiner 133 .
  • the optical path guide assembly 13 only needs to reflect the first laser beam emitted by the first light-emitting chip 14 once to guide the first laser beam to the fluorescent part 15 .
  • the light-combining portion 133 is located in the packaging case 12 and connected to the heat-conducting substrate 11 .
  • the first light-emitting chip 14 and the light-combining portion 133 are respectively located on opposite sides of the fluorescent portion 15 , and the side of the light-combining portion 133 close to the fluorescent portion 15 has a reflective surface 1331 .
  • the reflective surface 1331 is configured to guide the first laser beam emitted by the first light-emitting chip 14 to the fluorescent part 15 , and guide at least part of the fluorescent beam emitted by the fluorescent part 15 to the light outlet 121 .
  • the light emitting device 10 only emits fluorescent light beams.
  • the reflective surface 1331 is a dichroic film.
  • the dichroic film is capable of reflecting light with a wavelength within a first wavelength range and transmitting light with a wavelength within a second wavelength range.
  • the dichroic film can reflect the blue light beam and transmit the yellow light beam.
  • the light emitting device 10 further includes a second light emitting chip 19 .
  • the second light-emitting chip 19 is located in the packaging case 12 and connected to the heat-conducting substrate 11 , and is located on a side of the light-combining portion 133 away from the fluorescent portion 15 .
  • the second light-emitting chip 19 is configured to emit a second laser beam, and the light combiner 133 is also configured to reflect at least part of the second laser beam to the light outlet 121 .
  • the fluorescent light emitted by the excited fluorescent part 15 is yellow fluorescent light
  • the second laser beam is blue laser light
  • the light emitting device 10 may emit white light beam.
  • the illumination beam of the light emitting device 10 may also include the first laser beam that is transmitted by the fluorescent part 15 and then reflected to the light outlet 121 by the reflection area of the thermally conductive substrate 11 , which is not limited in this disclosure. .
  • first light-emitting chip 14 and the second light-emitting chip 19 in the embodiment of the present disclosure may output laser beams at the same time, or may output laser beams in time division, which is not limited in the present disclosure.
  • the side connected to the heat-conducting substrate 11 is the third bottom surface 1332
  • the side with the reflective surface 1331 is the plane 1330
  • the plane 1330 and the third bottom surface 1332 The first angle ⁇ between them is an obtuse angle.
  • the light-combining portion 133 can be fixed on the heat-conducting substrate 11 through the third bottom surface 1332 .
  • the third bottom surface 1332 of the light-combining part 133 may be coated with a metal film layer, which is used for soldering connection with the heat-conducting substrate 11 to fix the light-combining part 133 .
  • the side of the light-combining portion 133 provided with the reflective surface 1331 may also be a curved surface, which is not limited in the present disclosure.
  • the orthographic projection of the fluorescent part 15 on the heat-conducting substrate 11 is located within the orthographic projection of the reflective surface 1331 on the heat-conducting substrate 11 .
  • the first laser beam emitted by the first light-emitting chip 14 can be guided to the fluorescent part 15 more by the reflective surface 1331
  • the fluorescent beam emitted by the fluorescent part 15 can be guided to the light outlet 121 by the reflective surface 1331 more.
  • the optical axis of the first laser beam S1 emitted by the first light-emitting chip 14 and the optical axis of the second laser beam S2 emitted by the second light-emitting chip 19 are parallel to the third bottom surface 1332 .
  • the first included angle ⁇ is 135 degrees
  • the included angle between the optical axis of the first laser beam S1 and the optical axis of the second laser beam S2 and the plane 1330 is 45 degrees.
  • the optical axis of the first laser beam S1 and the optical axis of the second laser beam S2 can be made perpendicular to the optical axis of the fluorescent beam emitted by the fluorescent part 15, so that the light beam (for example, fluorescent beam) in the light emitting device 10
  • the short optical path makes the structure of the light emitting device 10 relatively compact, which facilitates the miniaturization design of the light emitting device 10 .
  • the color of the light beam emitted by the light emitting device 10 in this embodiment can be realized by adjusting the light intensity of the first laser beam S1 and the light intensity of the second laser beam S2.
  • the light intensity of the first laser beam S1 is greater than the light intensity of the second laser beam S2
  • the light beam emitted by the light emitting device 10 contains relatively more fluorescent light beams and relatively less second laser light beams S2; or
  • the light intensity of the first laser beam S1 is less than or equal to the light intensity of the second laser beam S2
  • the light beam emitted by the light emitting device 10 contains relatively less fluorescent light beams and relatively more second laser light beams S2.
  • the side of the light-combining portion 133 facing the second light-emitting chip 19 has a first anti-reflection film 1333 .
  • the first anti-reflection coating 1333 can reduce the part of the second laser beam S2 reflected by the light combiner 133 , so that the second laser beam S2 is more guided to the light outlet 121 .
  • the side of the light-combining portion 133 facing the second light-emitting chip 19 has a plurality of diffusion microstructures.
  • the plurality of diffusion microstructures may be a plurality of micro-protrusion structures or a plurality of micro-depression structures, and the plurality of diffusion microstructures may homogenize the second laser beam S2.
  • the side of the light-combining portion 133 away from the heat-conducting substrate 11 has a second anti-reflection film 1334 .
  • the second anti-reflection film 1334 can reduce the reflected portion of the fluorescent light beam entering the light combining portion 133 and the second laser beam S2.
  • optical path guide assembly 13 includes a support seat 134 .
  • the optical path guide assembly 13 does not need to reflect the first laser beam at least once to guide the first laser beam to the fluorescent part 15, but changes the emission angle of the first light-emitting chip 14 so that the first laser beam can directly Reach the fluorescent part 15.
  • the support seat 134 is located in the packaging case 12 and connected to the heat-conducting substrate 11 .
  • the support base 134 has a support surface 1341 on the side close to the fluorescent portion 15
  • the support base 134 has a fourth bottom surface 1342 on the side close to the heat conduction substrate 11
  • Angle ⁇ is an acute angle.
  • the first light-emitting chip 14 is located on the supporting surface 1341 of the supporting seat 134 .
  • the first laser beam emitted by the first light-emitting chip 14 can directly reach the fluorescent part 15 .
  • the light emitting device 10 further includes a converging lens 135 . At this time, the first laser beam emitted by the first light-emitting chip 14 reaches the fluorescent part 15 after passing through the converging lens 135 .
  • the converging lens 135 is located on the support surface 1341 , and is located on a side of the first light-emitting chip 14 close to the fluorescent portion 15 .
  • the converging lens 135 is configured to converge the first laser beam emitted by the first light-emitting chip 14 onto the fluorescent part 15 .
  • the light passing through the converging lens 135 can be condensed and collimated by the converging lens 135. Therefore, setting the converging lens 135 can reduce the degree of diffusion of the first laser beam during transmission, so that the fluorescence excitation efficiency of the fluorescent part 15 is higher. .
  • the embodiment of the present disclosure does not limit the number of the above-mentioned converging lenses 135 , for example, the light emitting device 10 includes one, two or three converging lenses 135 .
  • the light emitting device 10 includes a converging lens 135 including a fifth bottom surface 135a, and the converging lens 135 is connected to the supporting surface 1341 through the fifth bottom surface 135a.
  • a converging lens 135 including a fifth bottom surface 135a
  • the converging lens 135 is connected to the supporting surface 1341 through the fifth bottom surface 135a.
  • at least one of the end surface of the converging lens 135 near the end of the first light emitting chip 14 and the end surface of the end far away from the first light emitting chip 14 has a curved surface.
  • the curved surface may be a spherical curved surface or an aspheric curved surface.
  • the end surface of the converging lens 135 close to the first light-emitting chip 14 is a first plane, and the end surface of the end far away from the first light-emitting chip 14 has a first curved surface 135b.
  • the first curved surface 135b protrudes toward a side close to the fluorescent portion 15 .
  • the converging lens 135 may be called a single convex lens.
  • the end surface of the converging lens 135 close to the first light-emitting chip 14 has the second curved surface 135c, and the end surface of the end far away from the first light-emitting chip 14 has the above-mentioned first curved surface 135b.
  • the second curved surface 135c protrudes toward a side close to the first light emitting chip 14 .
  • the converging lens 135 may be called a biconvex lens. Compared with the single-convex lens, when the converging lens 135 is a double-convex lens, the light spot formed by converging the first laser beam on the fluorescent part 15 is smaller, and the converging effect is better.
  • the optical axis A of the first laser beam emitted by the first light-emitting chip 14 is collinear with the normal line L at the center point C of the first curved surface 135 b of the converging lens 135 .
  • the spot of the first laser beam converged by the converging lens 135 can be made smaller and the energy more concentrated, thereby ensuring that the fluorescent part 15 has a higher fluorescence excitation efficiency.
  • the light-emitting device 10 includes two support seats 134 and two first light-emitting chips 14, the two support seats 134 are respectively located on both sides of the fluorescent part 15, and the two first light-emitting chips 14 The chips 14 are respectively located on the supporting surfaces 1341 of the two supporting bases 134 .
  • the intensity of the laser light irradiated on the fluorescent part 15 is higher, and the number of molecules excited by the laser light in the fluorescent part 15 is larger, so that the intensity of the generated fluorescent light beam is higher, and the brightness of the light beam emitted by the light emitting device 10 is higher.
  • the support base 134 is made of thermally conductive material (eg, metal material or ceramic material), and the support base 134 also has a support base side 1343 , and the support base side 1343 is in contact with the packaging case 12 . In this way, the heat generated by the first light emitting chip 14 can also be conducted to the packaging case 12 through the support base 134 , thereby improving the heat dissipation efficiency of the first light emitting chip 14 .
  • the light emitting device 10 further includes a first chip base 171 .
  • the first chip base 171 is located on the heat conduction substrate 11 , and the side of the first chip base 171 away from the heat conduction substrate 11 is connected to the first light emitting chip 14 .
  • the chip base 17 can increase the distance between the first light-emitting chip 14 and the heat-conducting substrate 11 , avoiding the problem of local overheating of the heat-conducting substrate 11 caused by the direct contact of the light-emitting chip 14 with the heat-conducting substrate 11 .
  • the heat generated by the light-emitting chip 14 can be conducted to the heat-conducting substrate 11 through the chip base 17 , so as to ensure the heat dissipation efficiency of the light-emitting chip 14 .
  • the first chip base 171 is connected to the heat-conducting substrate 11 through the supporting seat 134 .
  • the light emitting device 10 further includes a second chip base 172 .
  • the second chip base 172 is located on the supporting base 134 , and the side of the second chip base 172 away from the supporting base 134 is connected to the second light-emitting chip 19 .
  • the function of the second chip base 172 is similar to that of the first chip base 171 , which will not be repeated here.
  • connection method between the above-mentioned converging lens 135 and the support surface 1341, and the connection method between the first chip base 171 or the second chip base 172 and the heat-conducting substrate 11 or the support base 134 can be colloid bonding, mechanical fixing, Sintering silver sintering, welding or bonding, etc.
  • the thermally conductive substrate 11 , the packaging case 12 , the first chip base 171 and the second chip base 172 may be made of thermally conductive materials.
  • the material of the thermally conductive substrate 11 may include simple metal, alloy material, silicon carbide, aluminum nitride, ceramic material or glass body and the like.
  • the material of the packaging case 12 may include metal material or ceramic material.
  • the material of the first chip base 171 and the second chip base 172 may be silicon carbide, aluminum nitride or silicon. In this way, it is beneficial to the overall heat dissipation of the light emitting device 10 .
  • the lighting device 10 further includes an optical device 18 .
  • the optical device 18 is connected to the package housing 12 and located at the light outlet 121 .
  • the optical device 18 is configured to collimate, converge and/or homogenize the light beam at the light outlet 121 .
  • the optical device 18 includes at least one of a fly-eye lens, an aspheric lens, a Fresnel lens, and a spherical mirror.
  • the optical device 18 is a fly-eye lens
  • the optical device 18 is configured to homogenize the light beam at the light outlet 121 .
  • the light emitting device 10 further includes a driving circuit and a pin 111 .
  • the driving circuit is configured to provide a driving current
  • the pin 111 is configured to deliver the driving current to the light emitting chip 14 .
  • the fluorescent part 15 in the light emitting device 10 provided by the embodiment of the present disclosure, by arranging the fluorescent part 15 in the package casing 12, the fluorescent part 15 only needs to withstand the laser irradiation in one light emitting device 10, reducing the transmission to the fluorescent light.
  • the laser energy of the part 15 reduces the probability of the fluorescent part 15 being partially scorched, ignited, etc., and improves the reliability of the light source assembly. Therefore, on the premise of ensuring the reliability, the components in the light source assembly 1 are reduced, and the miniaturization design requirement of the laser projection device 1000 is met.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Projection Apparatus (AREA)

Abstract

一种激光投影设备(1000),涉及显示技术领域。激光投影设备(1000)包括:光源组件(1)、光机(20)和镜头(30)。其中,光源组件(1)中,封装壳体(12)与导热基板(11)连接,且包括出光口(121)。出光口(121)位于封装壳体(12)远离导热基板(11)的一侧。第一发光芯片(14)位于封装壳体(12)内且与导热基板(11)连接,且被配置为发射第一激光光束。荧光部(15)位于封装壳体(12)内且与导热基板(11)连接。荧光部(15)位于第一发光芯片(14)的出光侧,且被配置为在第一激光光束中的至少部分光线的激发作用下,向出光口(121)发出荧光光束。光路导向组件(13)位于封装壳体(12)内,且被配置为将第一激光光束导向荧光部(15)。荧光光束中的至少部分光线沿远离导热基板(11)的方向从出光口(121)出射,以构成照明光束中的至少部分光线。

Description

激光投影设备
本申请要求于2021年08月31日提交的、申请号为202111016358.X的中国专利申请的优先权,于2021年08月31日提交的、申请号为202111013838.0的中国专利申请的优先权,以及于2021年08月31日提交的、申请号为202111016185.1的中国专利申请的优先权;其全部内容通过引用结合在本公开中。
技术领域
本公开涉及投影显示技术领域,尤其涉及一种激光投影设备。
背景技术
目前,激光投影设备的光源组件中包括激光器和荧光轮。激光器被配置为发射激光光束,荧光轮被配置为透射该激光光束或在该激光光束的激发作用下发出颜色不同于该激光光束的荧光光束,从而使该光源组件能够提供不同颜色的光束。
发明内容
本公开一些实施例提供一种激光投影设备。该激光投影设备包括:光源组件、光机和镜头。所述光源组件被配置为提供照明光束;所述光机被配置为利用图像信号对所述照明光束进行调制,以获得投影光束;所述镜头被配置为将所述投影光束投射成像。所述光源组件包括:导热基板、封装壳体、第一发光芯片、荧光部和光路导向组件。所述封装壳体与所述导热基板连接,且包括出光口。所述出光口位于所述封装壳体远离所述导热基板的一侧。所述第一发光芯片位于所述封装壳体内且与所述导热基板连接,且被配置为发射第一激光光束。所述荧光部位于所述封装壳体内且与所述导热基板连接。所述荧光部位于所述第一发光芯片的出光侧,且被配置为在所述第一激光光束中的至少部分光线的激发作用下,向所述出光口发出荧光光束。所述光路导向组件位于所述封装壳体内,且被配置为将所述第一激光光束导向所述荧光部。所述荧光光束中的至少部分光线沿远离所述导热基板的方向从所述出光口出射,以构成所述照明光束中的至少部分光线。
附图说明
图1为根据一些实施例的激光投影设备的结构图之一;
图2为根据一些实施例的激光投影设备中光源组件的时序图;
图3为根据一些实施例的激光投影设备中的光路图;
图4为根据一些实施例的数字微镜器件的结构图;
图5为图4中的数字微镜器件中一个微小反射镜片摆动的位置图;
图6为根据一些实施例的微小反射镜片的工作原理图;
图7为根据一些实施例的激光投影设备的结构图之二;
图8为相关技术中的光源组件的结构图之一;
图9为相关技术中的光源组件的结构图之二;
图10为相关技术中的荧光轮的结构图;
图11为根据一些实施例的光源组件的结构图之一;
图12为根据一些实施例的光源组件的结构图之二;
图13为根据一些实施例的滤色组件的结构图;
图14为根据一些实施例的发光装置的结构图之一;
图15为根据一些实施例的荧光部的结构图;
图16为根据一些实施例的发光装置的结构图之二;
图17为图16中发光装置的局部光路图;
图18为根据一些实施例的发光装置的结构图之三;
图19为根据一些实施例的发光装置的结构图之四;
图20为根据一些实施例的发光装置的结构图之五;
图21为图20中发光装置中的合光部的结构图;
图22为根据一些实施例的发光装置的结构图之六;
图23为根据一些实施例的发光装置的结构图之七;
图24为根据一些实施例的发光装置的结构图之八;
图25为根据一些实施例的发光装置的结构图之九。
附图标记:
激光投影设备1000;
光源组件1;激光器100;集成基座101;发光装置10;导热基板11;管脚111;封装壳体12;侧板122;封装板123;出光口121;光路导向组件13;第一反射部131;第一反射面1311;第一底面1312;第二反射部132;第二反射面1321;第二底面1322;合光部133;平面1330;反光面1331;第三底面1332;第一增透膜1333;第二增透膜1334;支撑座134;支撑面1341;第四底面1342;会聚透镜135;第五底面135a;第一曲面135b;第二曲面135c;第一激光光束的光轴A;第一曲面的中心点C;法线L;支撑座侧面1343;第一发光芯片14;第一激光光束S1;第二激光光束S2;荧光部15;荧光层151;光学增透膜152;第一芯片基座171;第二芯片基座172;光学装置18;第二发光芯片19;光路整形组件200;滤色组件300;绿色滤色片301;蓝色滤色片302;红色滤色片303;驱动部304;准直透镜400;匀光组件500;
光机20;扩散片2;第一透镜组件3;复眼镜组4;第一复眼透镜41;第二复眼透镜42;第二透镜组件5;数字微镜器件6;微小反射镜片601;光吸收部件602;棱镜组件7;
镜头30。
具体实施方式
下面将结合本公开实施例中的附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,然而,所描述的实施例仅仅是本公开的一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施 例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。这里所公开的实施例并不必然限制于本文内容。
如本文所使用的那样,“平行”、“垂直”、“相等”包括所阐述的情况以及与所阐述的情况相近似的情况,该相近似的情况的范围处于可接受偏差范围内,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量***的局限性)所确定。例如,“平行”包括绝对平行和近似平行,其中近似平行的可接受偏差范围例如可以是5°以内偏差;“垂直”包括绝对垂直和近似垂直,其中近似垂直的可接受偏差范围例如也可以是5°以内偏差。“相等”包括绝对相等和近似相等,其中近似相等的可接受偏差范围内例如可以是相等的两者之间的差值小于或等于其中任一者的5%。
本公开一些实施例提供了一种激光投影设备。如图1所示,该激光投影设备1000包括光源组件1,光机20,以及镜头30。该光源组件1被配置为提供照明光束。该光机20被配置为利用图像信号对光源组件1提供的照明光束进行调制以获得投影光束。该镜头30被配置为将投影光束投射在屏幕或墙壁上成像。
光源组件1、光机20和镜头30沿着光束传播方向依次连接。在一些示例中,光机20的一端与光源组件1连接,且光源组件1和光机20沿着激光投影设备1000的照明光束的出射方向(参照图1中的方向M)设置。光机20的另一端与镜头30连接,且光机20和镜头30沿着激光投影设备1000的投影光束的出射方向(参照图1中的方向N)设置。
如图1所示,在一些示例中,激光投影设备1000的照明光束的出射方向M与激光投影设备1000的投影光束的出射方向N大致垂直。这样设置,能够使得激光投影设备1000的结构排布合理,避免该激光投影设备1000在某一方向(例如,方向M或方向N)上的光路过长。
在一些实施例中,光源组件1可以时序性地提供三基色光(也可以在三基色光的基础上增加其他色光)。在另一些实施例中,光源组件1可以同时输出三基色光,以持续发出白光。光源组件1包括发光装置,该发光装置可发出至少一种颜色的光,比如蓝色激光。
在一些示例中,如图2所示,在一帧目标图像的投影过程中,光源组件1可以时序性地输出蓝色、红色和绿色照明光束。示例性地,光源组件1在第一时间段T1内输出蓝色激光,在第二时间段T2内输出红色激光,在第三时间段T3内输出绿色激光。在该示例中,光源组件1完成一轮各基色光束的时序性输出的时间为光源组件1的输出基色光束的一个周期。一帧目标图像的显示周期内,光源组件1进行一轮各基色光束的时序性输出,因此,一帧目标图像的显示周期与光源组件1输出基色光束的一个周期相等,均等于第一时间段T1、第二时间段T2和第三时间段T3的和。在该示例中,由于视觉暂留现象,人眼会将时序性输出的蓝色光束、红色光束和绿色光束进行颜色叠加,因此,人眼感知到的是混合的白光。
光源组件1发出的照明光束进入光机20。参照图3,光机20包括数字微镜器件6。
数字微镜器件6位于光源组件1的出光侧,且被配置为利用图像信号对光源组件1提供的照明光束进行调制,并将调制后得到的投影光束反射至镜头30中。由于数字微镜器件6可以控制投影光束针对待显示图像的不同像素显示不同的颜色和亮度,以最终形成光学图像,因此,数字微镜器件6也被称为光调制器件(或光阀)。此外,根据光机20中使用的数字微镜器件6的数量,可以将光机20分为单片***、双片***或三片***。例如,图3所示的光机20中仅使用了一片数字微镜器件6,因此该光机20可被称为单片***。当光机20中使用了三片数字微镜器件6时,该光机20可以被称为三片***。示例性地,当光机20为三片***时,光源组件1可以同时输出三基色光,以持续发出白光。
需要说明的是,根据投影架构的不同,光调制器件可以包括很多种,比如硅基液晶(Liquid Crystal On Silicon,LCOS),液晶显示器(Liquid Crystal Display,LCD)或者数字微镜器件(Digital Micromirror Device,DMD)。由于在本公开的一些实施例中,图3所示的光机20应用数字光处理(Digital Light Processing,DLP)投影架构,因此,本公开一些实施例中的光调制器件为DMD。
如图4所示,数字微镜器件6包含成千上万个可被单独驱动以转动的微小反射镜片601,这些微小反射镜片601呈阵列排布,每个微小反射镜片601对应待显示图像中的一个像素。如图5所示,在DLP投影架构中,每个微小反射镜片601相当于一个数字开关,在外力作用下可以在±12°或者±17°的范围内摆动。图5以每个微小反射镜片601可以在±12°的范围内摆动为例,进行示例性说明。
如图6所示,微小反射镜片601在负的偏转角度反发射的光,称为OFF光。OFF光为无效光,通常打到光机20的壳体上或者光吸收部件602上吸收掉。微小反射镜片601在正的偏转角度反发射的光,称为ON光。ON光是数字微镜器件6表面的微小反射镜片601接收照明光束照射,并通过正的偏转角度射入镜头30的有效光束,用于投影成像。微小反射镜片601的开状态为光源组件1发出的照明光束经微小反射镜片601反射后可以进入镜头30时,微小反射镜片601所处且可以保持的状态,即微小反射镜片601处于正的偏转角度的状态。微小反射镜片601的关状态为光源组件1发出的照明光束经微小反射镜片601反射后未进入镜头30时,微小反射镜片601所处且可以保持的状态,即微小反射镜片601处于负的偏转角度的状态。
例如,对于偏转角度为±12°的微小反射镜片601,当该微小反射镜片601位于+12°的状态即为开状态,位于-12°的状态即为关状态。而对于偏转角度为±17°的微小反射镜片601,当该微小反射镜片601位于+17°的状态即为开状态,位于-17°的状态即为关状态。图像信号通过处理后被转换成0、1这样的数字代码,这些数字代码可以驱动上述微小反射镜片601摆动。
在一帧图像的显示周期内,部分或全部微小反射镜片601会在开状态和关状态之间切换至少一次,从而根据微小反射镜片601在开状态和关状态分别持续的时间来实现一帧图像中的各个像素的灰阶。例如,当像素具有0~255这256个灰阶时,与灰阶为0的像素对应的微小反射镜片601在该一帧图像的整个显示周期内均处于关状态,与灰阶为255的像素对应的微小反射镜片601在一帧图像的整个显示周期内均处于开状态,而与灰阶为127的像素对应的微小反射镜片601在一帧图像的显示周期内一半时间处于开状态、另一半时间处于关状态。因此,通过图像信号控制数字微镜器件6中每个微小反射镜片601在一帧图像的显示周期内所处的状态以及各状态的维持时间,可以控制该微小反射镜片601对应 像素的亮度(灰阶),从而对投射至数字微镜器件6的照明光束进行调制。
在一些实施例中,继续参照图3,光机20还包括扩散片2,第一透镜组件3,复眼镜组4,第二透镜组件5以及棱镜组件7。需要说明的是,光机20中还可以包括比图3中示出的部件更少或更多的部件,本公开对此不做限制。
在该实施例中,扩散片2位于光源组件1的出光侧,且被配置为扩散来自光源组件1的照明光束。第一透镜组件3位于扩散片2的出光侧,且被配置为会聚经扩散片2扩散的照明光束。复眼镜组4位于第一透镜组件3的出光侧,且被配置为匀化经第一透镜组件3会聚的照明光束。第二透镜组件5位于复眼镜组4的出光侧,且被配置为传输经复眼镜组4匀化的照明光束至棱镜组件7。棱镜组件7将照明光束反射至数字微镜器件6。
在一些实施例中,如图3所示,复眼镜组4包括相对设置的第一复眼透镜41和第二复眼透镜42。第一复眼透镜41的入光面和第二复眼透镜42的出光面包括呈阵列排布的微小透镜。经第一透镜组件3会聚的照明光束经第一复眼透镜41后,被第一复眼透镜41的入光面上不同的微小透镜会聚为多束细光束(即,光斑较小的光束),并聚焦到第二复眼透镜42的各微小透镜的中心。第二复眼透镜42的出光面上的多个微小透镜可以对该多束细光束进行发散,使该多束细光束变为多束宽光束(即,光斑较大的光束)。由于该多束宽光束的光斑相互重叠,因此,照明光束经第一复眼透镜41和第二复眼透镜42后,均匀性和照明亮度得以提高。
如图7所示,镜头30包括多片透镜组合,通常按照群组进行划分,分为前群、中群和后群三段式,或者前群和后群两段式。前群是靠近激光投影设备1000出光侧(即,图7中镜头30在方向N上远离光机20的一侧)的镜片群组,后群是靠近光机20出光侧(即,图7中镜头30在方向N上靠近光机20的一侧)的镜片群组。镜头30可以是变焦镜头,或者为定焦可调焦镜头,或者为定焦镜头。
为了便于叙述,本公开一些实施例主要以激光投影设备1000采用DLP投影架构、光机20中光调制器件为数字微镜器件6为例,进行示例性说明。然而,这并不能理解为对本公开的限制。
如图8所示,在一些相关技术中,激光投影设备的光源组件包括多色激光装置,即,红色激光装置0011、绿色激光装置0012和蓝色激光装置0013。红色激光装置0011、绿色激光装置0012和蓝色激光装置0013可以同时工作,此时,多色激光装置同时输出三基色光;红色激光装置0011、绿色激光装置0012和蓝色激光装置0013也可以分时工作,此时,多色激光装置时序性地输出三基色光。
该光源组件还包括光路组件003、滤色轮004和聚光组件005。其中,聚光组件005被配置为将多色激光装置同时或分时输出的三基色光进行会聚。光路组件003被配置为将聚光组件005会聚后的三基色光导向滤色轮004。滤色轮004包括红色滤色片、绿色滤色片和蓝色滤色片,一个颜色的滤色片可以过滤得到该颜色的光束。例如,当光源组件同时输出三基色光且该三基色光传输至滤色轮004的红色滤色片时,该三基色光中的绿色光和蓝色光不能透过该红色滤色片,该三基色光被过滤后仅剩下红色光。
然而,由于红色激光装置能够承受的工作温度较低、较易损坏,因此,上述光源组件的可靠性较差。此外,上述光源组件中需要同时设置三种颜色的激光装置,制作难度较大、成本较高。
如图9所示,在另一些相关技术中,激光投影设备的光源组件包括单色激光装置(例 如,多个蓝色激光装置0013)或双色激光装置(例如,绿色激光装置0012和蓝色激光装置0013)。此时,光源组件可以输出一种基色光,也可以同时或分时输出两种基色光。
以光源组件包括单色激光装置,且该单色激光装置为蓝色激光装置0013为例,该光源组件还包括荧光轮002,光路组件003包括第一光路组件0031和第二光路组件0032。第一光路组件0031被配置为将聚光组件005会聚后的蓝色激光进行聚焦和准直后导向荧光轮002。如图10所示,荧光轮002包括透射区0021、红色荧光区0022、绿色荧光区0023、荧光轮基板0024和荧光轮驱动部0025。其中,红色荧光区0022设置有红色荧光涂料,可以在蓝色激光的激发作用下产生红色荧光;绿色荧光区0023设置有绿色荧光涂料,可以在蓝色激光的激发作用下产生绿色荧光。红色荧光涂料和绿色荧光涂料通过胶体黏合在荧光轮基板0024上。荧光轮驱动部0025可以驱动荧光轮002旋转,以使蓝色激光照射在荧光轮002上的位置有所变化。当蓝色激光照射在透射区0021时,荧光轮002透过该蓝色激光,并将该蓝色激光导向第二光路组件0032,由第二光路组件0032将该蓝色激光导向滤色轮004。当蓝色激光照射在红色荧光区0022或绿色荧光区0023时,荧光轮002产生红色荧光或绿色荧光,并将该红色荧光或该绿色荧光反射至第一光路组件0031,由第一光路组件0031将该红色荧光或该绿色荧光导向滤色轮004。
上述相关技术虽然能够避免使用红色激光装置、降低制作难度,但仍存在以下技术问题:为使荧光轮002旋转,需要在光源组件中设置荧光轮驱动电路(未在图9中示出)、荧光轮驱动部0025等部件。这些部件体积较大,会占用光源组件中的较多空间,不利于激光投影设备的小型化设计。
然而,若不设置荧光轮驱动电路、荧光轮驱动部0025等部件,将荧光轮002固定设置,则该荧光轮002会持续承受来自多个激光装置的高能激光照射。这样,荧光轮002上被激光照射的区域工作温度会急剧升高。当荧光轮002工作温度较高(例如,50摄氏度)时,荧光涂料中的激发电子通过无辐射衰变返回基态的可能性(即,荧光涂料退激发的可能性)会增加,从而导致荧光轮002的荧光激发效率降低,进一步地,当荧光轮002的工作温度过高(例如,70摄氏度)时,荧光涂料与荧光轮基板0024之间的胶体会在高温下融化,造成荧光涂料脱落,荧光轮002无法正常工作,光源组件的可靠性仍然不高。
若通过加装风扇或其他散热装置辅助上述固定设置的荧光轮002进行散热,会使光源组件中的部件增多,依然不利于激光投影设备的小型化设计。
此外,荧光轮002在较少激光装置(例如,一个激光装置)发出的激光的持续照射下并不会发生损坏。然而,若通过减少光源组件中激光装置的数量,以实现固定设置荧光轮002、并保证该荧光轮002正常工作,会降低光源组件提供的照明光束的亮度,从而降低激光投影设备呈现出的投影图像的显示效果。
针对相关技术中存在的上述技术问题,本公开发明人经研究发现:由于荧光轮002在光源组件中的设置位置不合理,导致荧光轮002在固定设置时需要承受多个激光装置的激光照射,从而阻碍了在兼顾可靠性和投影图像的显示效果的前提下,实现荧光轮002在光源组件中的小型化设计。
基于此,本公开实施例提供了如图11、图12和图13所示的光源组件1。
如图11所示,该光源组件1可以包括:激光器100、光路整形组件200和滤色组件300。激光器100被配置为提供照明光束;光路整形组件200被配置为对激光器100提供的照明光束进行缩束、匀化,以使该照明光束的光斑变小、能量均匀;滤色组件300被配 置为对来自光路整形组件200的照明光束进行滤色,以时序性地输出三基色(即,红色、绿色、蓝色)光。需要说明的是,激光器100的结构将在下文进行说明。
在一些实施例中,如图13所示,滤色组件300可以包括绿色滤色片301、蓝色滤色片302、红色滤色片303和驱动部304。驱动部304被配置为驱动滤色组件300旋转,以使在一帧目标图像的显示周期内,激光器100发出的照明光束得以被不同颜色的滤色片过滤。
在一些示例中,当光源组件1同时输出三基色光(即,激光器100同时输出三基色光)、且滤色组件300转动至红色滤色片303覆盖该三基色光的光斑的位置处时,该三基色光中除红色光束外的其他颜色的光束均被阻挡,而红色光束通过红色滤色片303透射滤色组件300。
在一些实施例中,如图12所示,光源组件1还包括准直透镜400。在一些示例中,准直透镜400位于光路整形组件200的出光侧,且被配置为对来自光路整形组件200的照明光束进行会聚。
在一些实施例中,如图12所示,光源组件1还包括匀光组件500。在一些示例中,匀光组件500位于滤色组件300的出光侧,且被配置为对经滤色组件300滤色后的照明光束进行匀光。匀光组件500可以为复眼透镜或者光导管。
例如,当匀光组件500为复眼透镜时,匀光组件500的结构可以参照上述复眼镜组4的结构,在此不再赘述。或者,当匀光组件500为光导管时,该光导管可以为由四片平面反射片拼接而成的管状器件,即,空心光导管。照明光束在光导管内部多次反射,以达到匀光的效果。当然,该匀光组件500也可以采用实心光导管。例如,光导管的入光口和出光口为形状和面积一致的矩形,照明光束从光导管的入光口进入光导管中,再从光导管的出光***出,在经过光导管的过程中完成光束匀化以及光斑优化。
需要说明的是,当匀光组件500为光导管时,光源组件1中包括了光导管,光机20中可以不设置光导管;当匀光组件500为除光导管以外的其他部件时,光机20还包括上述光导管,用以接收来自光源组件1的照明光束。
在一些实施例中,如图11和图12所示,激光器100包括:集成基座101和阵列排布在该集成基座101上的多个发光装置10。在一些示例中,集成基座101的材料可以为金属单质、合金材料、碳化硅、氮化铝或者导热陶瓷等导热材料。该集成基座101可以为多个发光装置10提供结构支撑、散热和电气连接等作用。
需要说明的是,图11和图12是以光源组件1中包括一个激光器100为例进行的示例性说明,本公开不限制激光投影设备1000中所包括的激光器100的数量。例如,激光投影设备1000可以包括两个激光器100或三个激光器100。当光源组件1中包括多个激光器100时,光源组件1提供的照明光束的亮度得以增加,从而可以提升激光投影设备1000的显示效果。
下面主要结合图14和图15,对发光装置10的结构进行示例性说明。
如图14所示,发光装置10包括:导热基板11、封装壳体12、光路导向组件13、第一发光芯片14和荧光部15。
封装壳体12与导热基板11连接,封装壳体12远离导热基板11的一侧包括出光口121。
第一发光芯片14位于封装壳体12内且与导热基板11连接,且被配置为发射第一激光光束。
荧光部15位于封装壳体12内且与导热基板11连接,荧光部15位于第一发光芯片14的出光侧,且被配置为在第一激光光束中的至少部分光线的激发作用下,向出光口121发射荧光光束。
光路导向组件13位于封装壳体12内,且被配置为将该第一激光光束导向荧光部15。
荧光光束中的至少部分光线沿远离导热基板11的方向从出光口121出射,以构成照明光束中的至少部分光线,射向光机20。
本公开实施例提供的激光投影设备1000,通过将相关技术中的荧光轮拆分为多个荧光部15后设置在发光装置10的封装壳体12中,使得荧光部15仅需承受一个发光装置10中的激光照射,减小了传输至荧光部15的激光的能量,从而降低了荧光部15发生局部烧焦、起火等损坏的概率,提高了光源组件的可靠性。从而,在保证可靠性的前提下,实现了减少光源组件1中的部件(例如,荧光轮驱动电路、荧光轮驱动部0025等),满足了激光投影设备1000的小型化设计需求。此外,将荧光部15设置在导热基板11上,使得第一激光光束打在荧光部15上所产生的热量可以较快地传递至整个导热基板11,以使荧光部15可以快速散热,从而使得荧光部15的工作温度较低,避免了荧光部15由于工作温度过高引起的荧光激发效率下降的问题,提升了荧光部15的荧光激发效率。
在一些实施例中,第一发光芯片14包括半导体发光元件。在一些示例中,该半导体发光元件可以发射蓝色的第一激光光束。需要说明的是,本公开实施例中的第一发光芯片14还可以发射其他颜色的第一激光光束,本公开实施例在此不做限制。
在一些示例中,该第一发光芯片14照射至荧光部15的第一激光光束的能量小于或等于20W。这样,荧光部15接收的第一激光光束的能量较小,可以避免荧光部15出现工作温度过高的问题,有利于降低荧光部15发生损坏的概率。
在另一些示例中,相较于相关技术,该第一发光芯片14照射至荧光部15的第一激光光束的能量可以更高。由于本公开实施例中的荧光部15的散热较快,因此,即使照射至荧光部15的第一激光光束的能量较高,荧光部15也可以保持较高的荧光激发效率。
在一些实施例中,如图15所示,上述荧光部15包括荧光层151,该荧光层151与导热基板11连接。荧光层151可以在第一激光光束的照射下被激发产生荧光。
在一些示例中,荧光层151可以包括不同颜色的荧光材料。示例性地,当荧光层151包括黄色的钇铝石榴石荧光粉时,该荧光层151可以在第一激光光束的照射下被激发产生黄色荧光。
在一些实施例中,荧光层151可以通过机械固定、键合、焊接或高温烧结等方式与导热基板11连接。示例性地,当荧光层151采用焊接方式与导热基板11连接时,荧光层151靠近导热基板11的一侧还包括用于焊接的金属镀膜。
在一些实施例中,如图15所示,上述荧光部15还包括光学增透膜152,该光学增透膜152与荧光层151连接,且位于该荧光层151远离导热基板11的一侧。这样,当第一发光芯片14发射的第一激光光束照射至该荧光部15时,该第一激光光束经光学增透膜152透射至荧光层151。该光学增透膜152可以减少该第一激光光束中被荧光部15反射的部分,使该第一激光光束更多地被导向荧光层151。
在一些实施例中,发光装置10射向光机20的照明光束可以仅包括从出光口121出射的荧光光束。此时,荧光部15在传输至该荧光部15的全部第一激光光束的激发作用下,发出荧光光束。在该实施例中,光源组件1中还可以包括仅出射激光的单色发光装置。在 一些示例中,出光口121出射的荧光光束为黄色荧光,单色发光装置出射的激光为蓝色激光,则光源组件1射向光机20的照明光束为黄色荧光与蓝色激光的混合光束,即,白色光束。
在另一些实施例中,除从出光口121出射的荧光光束外,发光装置10射向光机20的照明光束还包括第一激光光束中的至少部分光线。此时,荧光部15被配置为在第一发光芯片14发出的第一激光光束中的一部分光线的激发作用下发出荧光光束,并透射该第一激光光束中的另一部分光线。在该实施例中,如图14所示,导热基板11中与荧光部15接触的区域包括反射区。
在一些示例中,被荧光部15透射的第一激光光束中的另一部分光线发射至导热基板11的反射区后,该另一部分光线中的至少部分光线被反射向出光口121。这样,该另一部分光线中的至少部分光线沿远离导热基板11的方向从出光口121出射,以与荧光光束中的至少部分光线共同构成照明光束,射向光机20。示例性地,若一个发光装置10的第一发光芯片14发射的第一激光光束为蓝色激光、且荧光部15被激发后发出的荧光为黄色荧光,则该发光装置10的出光口121处的光束为荧光部15发出的黄色荧光与反射区反射的蓝色激光的混合光束。
需要说明的是,荧光部15的荧光激发比例与荧光部15的厚度有关。一般情况下,当荧光部15的材质相同时,荧光部15越厚,则荧光部15在第一激光光束的激发作用下产生的荧光的比例越高;相应地,该第一激光光束中透射荧光部15的光线的比例越低。通过调整荧光部15的厚度,可以调整出光口121处的光束中荧光光束与第一激光光束的比例,从而调整出光口121处的光束颜色。
在一些示例中,导热基板11的反射区可以为漫反射材料层或者金属反射层。当该反射区为漫反射材料层时,该反射区可以对其反射的光束起匀光作用。当该反射区为金属反射层时,该反射区对光束的反射率更高。示例性地,金属反射层的材料可以为铝或者银等。需要说明的是,当导热基板11本身具有反射光线的功能时,整个导热基板11均为反射区。
下面主要结合图16至图25,对光路导向组件13的结构进行示例性说明。
在一些实施例中,光路导向组件13包括第一反射部131和第二反射部132。此时,第一发光芯片14发射的第一激光光束依次经第一反射部131和第二反射部132反射后,到达荧光部15。
在一些实施例中,如图14所示,封装壳体12还包括:侧板122和封装板123。侧板122靠近导热基板11的一侧与导热基板11连接,远离导热基板11的一侧与封装板123连接。上述出光口121位于封装板123上。封装壳体12被配置为保护位于其内部的各个部件,例如上述第一发光芯片14和荧光部15。
在一些实施例中,如图16所示,第一反射部131位于封装壳体12内且与导热基板11连接,且第一反射部131位于第一发光芯片14和荧光部15之间。第二反射部132位于封装壳体12内且与封装壳体12连接。示例性地,第二反射部132与封装壳体12的封装板123靠近导热基板11的一侧连接。
第一反射部131被配置为将第一发光芯片14发射的第一激光光束导向第二反射部132,第二反射部132被配置为将来自第一反射部131的第一激光光束导向荧光部15。荧光部15被配置为在来自第二反射部132的第一激光光束中的至少部分光线的激发作用下,向出光口121发射荧光光束。
在一些示例中,如图16所示,第一反射部131靠近第一发光芯片14的一侧具有第一反射面1311,第二反射部132靠近荧光部15的一侧具有第二反射面1321。第一反射面1311和第二反射面1321可以为平面反射面,也可以为曲面反射面。
示例性地,如图16所示,第一反射部131的第一反射面1311和第二反射部132的第二反射面1321中的至少一个为曲面反射面,该曲面反射面被配置为会聚第一发光芯片14发射的第一激光光束,且改变第一发光芯片14发射的第一激光光束的传输方向,以减少该第一激光光束在传输过程中的扩散程度,从而使得荧光部15接收到的第一激光光束的光斑较小、能量较集中,从而保证该荧光部15具备较高的荧光激发效率。
在一些示例中,如图17所示,第一反射部131的第一反射面1311和第二反射部132的第二反射面1321为抛物反射面。示例性地,当第一发光芯片14的出光面的第一中心点A1与第一反射面1311的第一焦点A2重合时,第一发光芯片14发射的第一激光光束中的多束发散的光线经第一反射面1311反射后,变为多束相互平行的光线。示例性地,当第二反射面1321的第二焦点A3与荧光部15表面的一点(例如,图17中的第二中心点A4)重合时,第一反射面1311反射后的多束相互平行的光线经第二反射面1321反射后,会聚于荧光部15表面。这样,荧光部15接收到的第一激光光束的光斑较小、能量较集中,可以使得荧光部15的荧光激发效率较高。
在一些示例中,如图16所示,第一反射部131还具有第一底面1312,第一底面1312与导热基板11连接。示例性地,可以通过在第一底面1312上镀金属膜层,将第一底面1312和导热基板11焊接连接。第二反射部132还具有第二底面1322,第二底面1322与封装壳体12连接。示例性地,第二底面1322可以和第一底面1312采用相同的方式与封装壳体12连接,在此不再赘述。
在另一些示例中,第一反射部131包括第一曲面反射镜以及第一固定结构。该第一曲面反射镜与上述第一反射面1311的作用相同,该第一固定结构被配置为将第一曲面反射镜连接在导热基板11上。第二反射部132包括第二曲面反射镜以及第二固定结构。该第二曲面反射镜的作用与上述第二反射面1321相同,该第二固定结构被配置为将第二曲面反射镜连接在封装壳体12上。
在另一些实施例中,如图18所示,发光装置10中包括两个第一发光芯片14、两个第一反射部131和两个第二反射部132,两个第一发光芯片14分别位于荧光部15的两侧,两个第一反射部131分别位于荧光部15的两侧,且两个第二反射部132分别位于荧光部15的两侧。这样,照射至荧光部15上的激光强度更高,荧光部15中被激光激发的分子数量更多,从而产生的荧光光束的强度更高,进而发光装置10发射的光束的亮度更高。
例如,两个第一发光芯片14、两个第一反射部131和两个第二反射部132可以对称布置。
图19至图21中的光路导向组件13与图16至图18中的光路导向组件13的区别在于,光路导向组件13包括合光部133。此时,光路导向组件13仅需对第一发光芯片14发射的第一激光光束进行一次反射,即可将该第一激光光束导向荧光部15。
在一些实施例中,如图19所示,合光部133位于封装壳体12内且与导热基板11连接。第一发光芯片14和合光部133分别位于荧光部15的相对两侧,且合光部133靠近荧光部15的一侧具有反光面1331。反光面1331被配置为将第一发光芯片14发射的第一激光光束导向荧光部15,以及将荧光部15发出的荧光光束中的至少部分光线导向出光口121。 此时,该发光装置10仅发出荧光光束。
在一些实施例中,反光面1331为二向色膜。该二向色膜能够反射波长在第一波长范围内的光,且透射波长在第二波长范围内的光。示例性地,该二向色膜可以反射该蓝色光束,并透射黄色光束。
在另一些实施例中,如图20所示,发光装置10还包括第二发光芯片19。该第二发光芯片19位于封装壳体12内且与导热基板11连接,且位于合光部133远离荧光部15的一侧。第二发光芯片19被配置为发射第二激光光束,合光部133还被配置为将第二激光光束中的至少部分光线反射向出光口121。此时,第二激光光束中的至少部分光线沿远离导热基板11的方向从出光口121出射,以与荧光光束中的至少部分光线共同构成照明光束中的至少部分光线,射向光机20。示例性地,若荧光部15被激发后发出的荧光为黄色荧光、且第二激光光束为蓝色激光,则该发光装置10可以发出白色光束。
此外,在该实施例中,发光装置10的照明光束还可以包括被荧光部15透射后,被导热基板11的反射区反射至出光口121处的第一激光光束,本公开对此不做限制。
需要说明的是,本公开实施例中的第一发光芯片14和第二发光芯片19可以同时输出激光光束,也可以分时输出激光光束,本公开对此不做限制。
在一些实施例中,如图21所示,合光部133中,与导热基板11连接的一面为第三底面1332,具有反光面1331的一面为平面1330,且平面1330与第三底面1332之间的第一夹角α为钝角。示例性地,合光部133可以通过第三底面1332固定在导热基板11上。示例性地,合光部133的第三底面1332上可以镀金属膜层,用于与导热基板11焊接连接,以固定合光部133。
需要说明的是,本公开实施例中合光部133中设置反光面1331的一面也可以为曲面,本公开对此不做限制。
在一些实施例中,如图20所示,荧光部15在导热基板11上的正投影,位于反光面1331在导热基板11上的正投影内。这样,第一发光芯片14发射的第一激光光束可以更多地被反光面1331导向荧光部15,而荧光部15发出的荧光光束可以更多地被反光面1331导向出光口121。
在一些实施例中,如图20所示,第一发光芯片14发出的第一激光光束S1的光轴和第二发光芯片19发出的第二激光光束S2的光轴平行于第三底面1332。在上述第一夹角α为135度的情况下,第一激光光束S1的光轴和第二激光光束S2的光轴与平面1330的夹角为45度。这样,可以使得第一激光光束S1的光轴和第二激光光束S2的光轴垂直于荧光部15发出的荧光光束的光轴,从而使得该发光装置10中的光束(例如,荧光光束)的光路较短,进而使得该发光装置10的结构较为紧凑,便于发光装置10的小型化设计。
需要说明的是,该实施例中发光装置10发出的光束的颜色可以通过调节第一激光光束S1的光强和第二激光光束S2的光强实现。示例性地,在第一激光光束S1的光强大于第二激光光束S2的光强的情况下,发光装置10发出的光束中含有相对较多荧光光束和相对较少第二激光光束S2;或者,在第一激光光束S1的光强小于或等于第二激光光束S2的光强的情况下,发光装置10发出的光束中含有相对较少荧光光束和相对较多第二激光光束S2。
在一些实施例中,如图21所示,合光部133朝向第二发光芯片19的一侧具有第一增透膜1333。示例性地,该第一增透膜1333可以减少第二激光光束S2中被合光部133反射 的部分,使该第二激光光束S2更多地被导向出光口121。
在另一些实施例中,合光部133朝向第二发光芯片19的一侧具有多个扩散微结构。示例性地,该多个扩散微结构可以为多个微型的凸起结构或者多个微型的凹陷结构,该多个扩散微结构可以对第二激光光束S2进行匀光。
在一些实施例中,如图21所示,合光部133远离导热基板11的一侧具有第二增透膜1334。该第二增透膜1334可以减少进入合光部133中的荧光光束和第二激光光束S2中被反射的部分。
图22至图25中的光路导向组件13与图16至图21中的光路导向组件13的区别在于,光路导向组件13包括支撑座134。此时,光路导向组件13无需通过对第一激光光束进行至少一次反射以将该第一激光光束导向荧光部15,而是通过改变第一发光芯片14的发射角度,使得第一激光光束可以直接到达荧光部15。
在一些实施例中,如图22所示,支撑座134位于封装壳体12内且与导热基板11连接。支撑座134靠近荧光部15的一侧具有支撑面1341,支撑座134靠近导热基板11的一侧具有第四底面1342,且支撑面1341与支撑座134的第四底面1342之间的第二夹角β为锐角。第一发光芯片14位于支撑座134的支撑面1341上。
在上述实施例中,如图22所示,第一发光芯片14发出的第一激光光束可以直接到达荧光部15。在一些实施例中,如图23所示,发光装置10还包括会聚透镜135。此时,第一发光芯片14发出的第一激光光束经会聚透镜135后到达荧光部15。
该会聚透镜135位于支撑面1341上,且位于第一发光芯片14靠近荧光部15的一侧。会聚透镜135被配置为将第一发光芯片14射出的第一激光光束会聚到荧光部15上。穿过会聚透镜135的光线可以被该会聚透镜135进行会聚和准直,因此,设置会聚透镜135可以减少第一激光光束在传输过程中的扩散程度,从而使得荧光部15的荧光激发效率较高。
需要说明的是,本公开实施例对上述会聚透镜135的个数不做限制,例如,发光装置10包括一个、两个或三个会聚透镜135。
在一些示例中,如图23所示,发光装置10包括一个会聚透镜135,会聚透镜135包括第五底面135a,该会聚透镜135通过第五底面135a与支撑面1341连接。示例性地,会聚透镜135靠近第一发光芯片14的一端的端面和远离第一发光芯片14的一端的端面中的至少一个具有曲面。该曲面可以为球面曲面或者非球面曲面。
例如,如图23所示,会聚透镜135靠近第一发光芯片14的一端的端面为第一平面,且远离第一发光芯片14的一端的端面具有第一曲面135b。第一曲面135b向靠近荧光部15的一侧凸起。此时,会聚透镜135可以称为单凸透镜。
或者,如图24所示,会聚透镜135靠近第一发光芯片14的一端的端面具有第二曲面135c,且远离第一发光芯片14的一端的端面具有上述第一曲面135b。第二曲面135c向靠近第一发光芯片14的一侧凸起。此时,会聚透镜135可以称为双凸透镜。相较于单凸透镜,会聚透镜135为双凸透镜时,将第一激光光束会聚到荧光部15上所形成的光斑更小,会聚效果更好。
在一些实施例中,如图23所示,第一发光芯片14发射的第一激光光束的光轴A与会聚透镜135的第一曲面135b的中心点C处的法线L共线。这样,可以使经会聚透镜135会聚后的第一激光光束的光斑较小、能量较集中,从而保证荧光部15具备较高的荧光激发效率。
在一些实施例中,如图25所示,发光装置10包括两个支撑座134和两个第一发光芯片14,两个支撑座134分别位于荧光部15的两侧,且两个第一发光芯片14分别位于两个支撑座134的支撑面1341上。这样,照射至荧光部15上的激光强度更高,荧光部15中被激光激发的分子数量更多,从而产生的荧光光束的强度更高,进而发光装置10发射的光束的亮度更高。
在一些实施例中,支撑座134由导热材料(例如,金属材料或陶瓷材料)制成,支撑座134还具有支撑座侧面1343,该支撑座侧面1343与封装壳体12接触。这样,第一发光芯片14产生的热量还可以通过支撑座134传导至封装壳体12,从而提高第一发光芯片14的散热效率。
在一些实施例中,如图16所示,发光装置10还包括第一芯片基座171。该第一芯片基座171位于导热基板11上,且该第一芯片基座171远离导热基板11的一侧与第一发光芯片14连接。芯片基座17可以增大第一发光芯片14与导热基板11之间的距离,避免因发光芯片14直接与导热基板11接触而引起的导热基板11局部过热的问题。此外,发光芯片14产生的热量可以通过芯片基座17传导至导热基板11,从而保证发光芯片14的散热效率。
如图23所示,第一芯片基座171通过支撑座134与导热基板11相连。
如图20所示,发光装置10还包括第二芯片基座172。该第二芯片基座172位于支撑座134上,且该第二芯片基座172远离支撑座134的一侧与第二发光芯片19连接。该第二芯片基座172的作用与第一芯片基座171的作用类似,在此不再赘述。
示例性地,上述会聚透镜135与支撑面1341的连接方式,以及第一芯片基座171或第二芯片基座172与导热基板11或支撑座134的连接方式可以为胶体贴合、机械固定、烧结银烧结、焊接或者键合等。
需要说明的是,本公开实施例中导热基板11、封装壳体12、第一芯片基座171和第二芯片基座172可以由导热材料制成。例如,导热基板11的材料可以包括金属单质、合金材料、碳化硅、氮化铝、陶瓷材料或者玻璃体等。封装壳体12的材料可以包括金属材料或者陶瓷材料。第一芯片基座171和第二芯片基座172的材料可以为碳化硅、氮化铝或者硅。这样,有利于发光装置10的整体散热。
在一些实施例中,如图16所示,发光装置10还包括光学装置18。该光学装置18与封装壳体12连接,且位于出光口121处。该光学装置18被配置为对出光口121处的光束进行准直、会聚和/或匀光。示例性地,该光学装置18包括复眼透镜、非球面透镜、菲涅尔透镜、球面镜中的至少一种。例如,当光学装置18为复眼透镜时,该光学装置18被配置为对出光口121处的光束进行匀光。
在一些实施例中,如图14所示,发光装置10还包括驱动电路及管脚111。驱动电路被配置为提供驱动电流,管脚111被配置为将该驱动电流传递至发光芯片14。
综上所述,本公开实施例提供的发光装置10,通过将荧光部15设置在封装壳体12中,使得荧光部15仅需承受一个发光装置10中的激光照射,减小了传输至荧光部15的激光的能量,从而降低了荧光部15发生局部烧焦、起火等损坏的概率,提高了光源组件的可靠性。从而,在保证可靠性的前提下,实现了减少光源组件1中的部件,满足了激光投影设备1000的小型化设计需求。

Claims (20)

  1. 一种激光投影设备,包括:
    光源组件,被配置为提供照明光束;
    光机,被配置为利用图像信号对所述照明光束进行调制,以获得投影光束;和
    镜头,被配置为将所述投影光束投射成像;其中,所述光源组件包括:
    导热基板;
    封装壳体,与所述导热基板连接,且包括出光口;所述出光口位于所述封装壳体远离所述导热基板的一侧;
    第一发光芯片,位于所述封装壳体内且与所述导热基板连接,且被配置为发射第一激光光束;
    荧光部,位于所述封装壳体内且与所述导热基板连接;所述荧光部位于所述第一发光芯片的出光侧,且被配置为在所述第一激光光束中的至少部分光线的激发作用下,向所述出光口发出荧光光束;和
    光路导向组件,位于所述封装壳体内,且被配置为将所述第一激光光束导向所述荧光部;
    所述荧光光束中的至少部分光线沿远离所述导热基板的方向从所述出光口出射,以构成所述照明光束中的至少部分光线。
  2. 根据权利要求1所述的激光投影设备,其中,所述导热基板中与所述荧光部接触的区域为反射区;
    所述荧光部被配置为在所述第一激光光束中的一部分光线的激发作用下发射所述荧光光束,并透射所述第一激光光束中的另一部分光线;
    所述反射区被配置为向所述出光口反射所述另一部分光线中的至少部分光线;
    所述另一部分光线中的所述至少部分光线沿远离所述导热基板的方向从所述出光口出射,以与所述荧光光束中的至少部分光线共同构成所述照明光束。
  3. 根据权利要求1或2所述的激光投影设备,其中,所述光路导向组件包括:
    第一反射部,位于所述封装壳体内且与所述导热基板连接;所述第一反射部位于所述第一发光芯片与所述荧光部之间,且被配置为将所述第一激光光束导向第二反射部;和
    所述第二反射部,位于所述封装壳体内且与所述封装壳体连接,且被配置为将所述第一激光光束导向所述荧光部。
  4. 根据权利要求3所述的激光投影设备,其中,
    所述第一反射部靠近所述第一发光芯片的一侧具有第一反射面,所述第一反射面被配置为将所述第一激光光束反射向所述第二反射部;
    所述第二反射部靠近所述荧光部的一侧具有第二反射面,所述第二反射面被配置为将所述第一激光光束反射向所述荧光部。
  5. 根据权利要求4所述的激光投影设备,其中,所述第一反射面和所述第二反射面中的至少一个为曲面反射面。
  6. 根据权利要求5所述的激光投影设备,其中,所述曲面反射面为抛物反射面。
  7. 根据权利要求4所述的激光投影设备,其中,
    所述第一反射部还具有第一底面,所述第一底面与所述导热基板连接;
    所述第二反射部还具有第二底面,所述第二底面与所述封装壳体连接。
  8. 根据权利要求3至7中任一项所述的激光投影设备,其中,所述光源组件包括两个 所述第一发光芯片、两个所述第一反射部和两个所述第二反射部;两个所述第一发光芯片分别位于所述荧光部的两侧,两个所述第一反射部分别位于所述荧光部的所述两侧,两个所述第二反射部分别位于所述荧光部的所述两侧。
  9. 根据权利要求1或2所述的激光投影设备,其中,所述光路导向组件包括:合光部,位于所述封装壳体内且与所述导热基板连接;所述合光部位于所述荧光部远离所述第一发光芯片的一侧,且所述合光部靠近所述荧光部的一侧具有反光面;其中,
    所述反光面被配置为将所述第一激光光束反射向所述荧光部,以及将所述荧光光束中的至少部分光线透射向所述出光口。
  10. 根据权利要求9所述的激光投影设备,其中,所述合光部中,与所述导热基板连接的一面为第三底面,具有所述反光面的一面为平面,所述第三底面与所述平面之间的第一夹角为钝角。
  11. 根据权利要求9或10所述的激光投影设备,其中,所述荧光部在所述导热基板上的正投影,位于所述反光面在所述导热基板上的正投影内。
  12. 根据权利要求9至11中任一项所述的激光投影设备,其中,所述光源组件还包括:
    第二发光芯片,位于所述封装壳体内且与所述导热基板连接;所述第二发光芯片位于所述合光部远离所述荧光部的一侧,且被配置为发射第二激光光束;
    所述合光部还被配置为将所述第二激光光束中的至少部分光线反射向所述出光口;
    所述第二激光光束中的所述至少部分光线沿远离所述导热基板的方向从所述出光口出射,以与所述荧光光束中的至少部分光线共同构成所述照明光束中的至少部分光线。
  13. 根据权利要求12所述的激光投影设备,其中,所述合光部靠近所述第二发光芯片的一侧具有第一增透膜。
  14. 根据权利要求9至13中任一项所述的激光投影设备,其中,所述合光部远离所述导热基板的一侧具有第二增透膜。
  15. 根据权利要求1或2所述的激光投影设备,其中,所述光路导向组件包括:支撑座,位于所述封装壳体内且与所述导热基板连接;其中,
    所述支撑座靠近所述荧光部的一侧具有支撑面,靠近所述导热基板的一侧具有第四底面,所述支撑面与所述第四底面之间的第二夹角为锐角;所述支撑面被配置为连接所述第一发光芯片。
  16. 根据权利要求15所述的激光投影设备,其中,所述光源组件还包括:
    会聚透镜,与所述支撑面连接,且位于所述第一发光芯片与所述荧光部之间;所述会聚透镜被配置为将所述第一激光光束会聚到所述荧光部上。
  17. 根据权利要求16所述的激光投影设备,其中,所述会聚透镜靠近所述第一发光芯片的一端的端面和远离所述第一发光芯片的一端的端面中的至少一个具有曲面。
  18. 根据权利要求17所述的激光投影设备,其中,所述第一激光光束的光轴与所述曲面的中心点处的法线共线。
  19. 根据权利要求15至18中任一项所述的激光投影设备,其中,所述光源组件包括两个所述支撑座和两个所述第一发光芯片;两个所述支撑座分别位于所述荧光部的两侧,两个所述第一发光芯片分别位于两个所述支撑座上。
  20. 根据权利要求1至19中任一项所述的激光投影设备,其中,所述光源组件还包 括:
    光学装置,与所述封装壳体连接且位于所述出光口处;所述光学装置被配置为对所述出光口处的光束进行准直、会聚或匀光中的至少一种。
PCT/CN2022/112060 2021-08-31 2022-08-12 激光投影设备 WO2023029945A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280052555.3A CN117795417A (zh) 2021-08-31 2022-08-12 激光投影设备

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202111016185.1 2021-08-31
CN202111016185.1A CN113671780A (zh) 2021-08-31 2021-08-31 发光单元、光源***和激光投影设备
CN202111013838.0 2021-08-31
CN202111016358.XA CN113671781B (zh) 2021-08-31 2021-08-31 发光单元、光源***和激光投影设备
CN202111013838.0A CN113671776B (zh) 2021-08-31 2021-08-31 发光单元、光源***和激光投影设备
CN202111016358.X 2021-08-31

Publications (1)

Publication Number Publication Date
WO2023029945A1 true WO2023029945A1 (zh) 2023-03-09

Family

ID=85411947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112060 WO2023029945A1 (zh) 2021-08-31 2022-08-12 激光投影设备

Country Status (2)

Country Link
CN (1) CN117795417A (zh)
WO (1) WO2023029945A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202613126U (zh) * 2012-04-13 2012-12-19 瑞仪光电股份有限公司 照明模块
CN103486542A (zh) * 2012-06-08 2014-01-01 日东电工株式会社 光源装置及照明装置
CN203549686U (zh) * 2013-10-16 2014-04-16 深圳市绎立锐光科技开发有限公司 波长转换装置及相关光源***、投影***
US20160187644A1 (en) * 2014-12-27 2016-06-30 Texas Instruments Incorporated Side-illuminated excitation optics apparatus and systems
CN110658669A (zh) * 2018-06-29 2020-01-07 深圳市绎立锐光科技开发有限公司 光源装置
CN111948890A (zh) * 2019-05-16 2020-11-17 台达电子工业股份有限公司 荧光色轮及使用其的光源***
CN113671780A (zh) * 2021-08-31 2021-11-19 青岛海信激光显示股份有限公司 发光单元、光源***和激光投影设备
CN113671776A (zh) * 2021-08-31 2021-11-19 青岛海信激光显示股份有限公司 发光单元、光源***和激光投影设备
CN113671781A (zh) * 2021-08-31 2021-11-19 青岛海信激光显示股份有限公司 发光单元、光源***和激光投影设备

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202613126U (zh) * 2012-04-13 2012-12-19 瑞仪光电股份有限公司 照明模块
CN103486542A (zh) * 2012-06-08 2014-01-01 日东电工株式会社 光源装置及照明装置
CN203549686U (zh) * 2013-10-16 2014-04-16 深圳市绎立锐光科技开发有限公司 波长转换装置及相关光源***、投影***
US20160187644A1 (en) * 2014-12-27 2016-06-30 Texas Instruments Incorporated Side-illuminated excitation optics apparatus and systems
CN110658669A (zh) * 2018-06-29 2020-01-07 深圳市绎立锐光科技开发有限公司 光源装置
CN111948890A (zh) * 2019-05-16 2020-11-17 台达电子工业股份有限公司 荧光色轮及使用其的光源***
CN113671780A (zh) * 2021-08-31 2021-11-19 青岛海信激光显示股份有限公司 发光单元、光源***和激光投影设备
CN113671776A (zh) * 2021-08-31 2021-11-19 青岛海信激光显示股份有限公司 发光单元、光源***和激光投影设备
CN113671781A (zh) * 2021-08-31 2021-11-19 青岛海信激光显示股份有限公司 发光单元、光源***和激光投影设备

Also Published As

Publication number Publication date
CN117795417A (zh) 2024-03-29

Similar Documents

Publication Publication Date Title
WO2019071951A1 (zh) 复眼透镜组及投影装置
JP2010520498A (ja) 固体光源用色合成器
US20230007218A1 (en) Laser projection apparatus
JP2017111287A (ja) 投射装置
CN118119890A (zh) 激光投影设备
US10634981B2 (en) Light source device and projection type display apparatus
WO2021259276A1 (zh) 光源组件和投影设备
WO2022017144A1 (zh) 激光光源及激光投影设备
US11647171B2 (en) Projection apparatus including an illumination system, a light valve and a projection lens
CN113671780A (zh) 发光单元、光源***和激光投影设备
US11405597B2 (en) Illumination system and projection device
US20230101471A1 (en) Laser projection apparatus
WO2023046197A1 (zh) 激光投影设备
US11768428B2 (en) Laser source and laser projection apparatus
WO2023029945A1 (zh) 激光投影设备
CN113671776B (zh) 发光单元、光源***和激光投影设备
CN113671781B (zh) 发光单元、光源***和激光投影设备
WO2021143444A1 (zh) 复眼透镜组、光源装置及投影设备
WO2021259274A1 (zh) 光源组件和投影设备
JP2023024245A (ja) 波長変換プレート、光源装置および画像投射装置
KR100646264B1 (ko) 프로젝션 시스템의 발광 다이오드(led) 조명장치
WO2023030419A1 (zh) 激光投影设备
US20230359113A1 (en) Laser source and laser projection apparatus
US20230350281A1 (en) Laser source and projection apparatus
US20230119932A1 (en) Laser projection apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863085

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280052555.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE