WO2023028987A1 - 无线通信的方法和终端设备 - Google Patents

无线通信的方法和终端设备 Download PDF

Info

Publication number
WO2023028987A1
WO2023028987A1 PCT/CN2021/116444 CN2021116444W WO2023028987A1 WO 2023028987 A1 WO2023028987 A1 WO 2023028987A1 CN 2021116444 W CN2021116444 W CN 2021116444W WO 2023028987 A1 WO2023028987 A1 WO 2023028987A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
resource
terminal device
resources
information
Prior art date
Application number
PCT/CN2021/116444
Other languages
English (en)
French (fr)
Inventor
赵振山
林晖闵
张世昌
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/116444 priority Critical patent/WO2023028987A1/zh
Priority to CN202180099678.8A priority patent/CN117529893A/zh
Publication of WO2023028987A1 publication Critical patent/WO2023028987A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the embodiments of the present application relate to the communication field, and more specifically, relate to a wireless communication method and a terminal device.
  • the transmitter needs to send the Channel State Information Reference Signal (CSI-RS ), to determine the optimal spatial domain transmit filter at the transmitting end, and/or, determine the optimal spatial domain receiving filter at the receiving end.
  • CSI-RS Channel State Information Reference Signal
  • how to specifically configure the CSI-RS resources used to transmit the CSI-RS so as to select the optimal spatial domain transmission filter or the optimal spatial domain reception filter based on the transmitted CSI-RS is a problem that needs to be solved.
  • Embodiments of the present application provide a wireless communication method and a terminal device.
  • CSI-RS resources for transmitting CSI-RS are configured, and CSI-RS is transmitted based on the configured CSI-RS resources, so that CSI-RS can be transmitted based on the transmitted CSI-RS RS selects the optimal spatial domain transmit filter or the optimal spatial domain receive filter.
  • a wireless communication method includes:
  • the first terminal device sends M CSI-RSs to the second terminal device by using the airspace transmission filter
  • one CSI-RS among the M CSI-RS occupies the penultimate time domain symbol and the penultimate time domain symbol among the time domain symbols available for sidelink transmission in a slot, and the M CSI-RS -
  • the RS is used to select a target airspace transmit filter, or the M CSI-RS are used to select a target airspace receive filter, and M is a positive integer.
  • a wireless communication method in a second aspect, includes:
  • one CSI-RS among the M CSI-RS occupies the penultimate time domain symbol and the penultimate time domain symbol among the time domain symbols available for sidelink transmission in a slot, and the M CSI-RS -
  • the RS is used to select a target airspace transmit filter, or the M CSI-RS are used to select a target airspace receive filter, and M is a positive integer.
  • a terminal device configured to execute the method in the first aspect above.
  • the terminal device includes a functional module for executing the method in the first aspect above.
  • a terminal device configured to execute the method in the second aspect above.
  • the terminal device includes a functional module for executing the method in the second aspect above.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the first aspect above.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the second aspect above.
  • an apparatus for implementing the method in any one of the first aspect to the second aspect above.
  • the device includes: a processor, configured to invoke and run a computer program from the memory, so that the device installed with the device executes the method in any one of the above first to second aspects.
  • a computer-readable storage medium for storing a computer program, and the computer program causes a computer to execute the method in any one of the above-mentioned first aspect to the second aspect.
  • a computer program product including computer program instructions, the computer program instructions causing a computer to execute the method in any one of the above first to second aspects.
  • a computer program which, when running on a computer, causes the computer to execute the method in any one of the above first to second aspects.
  • the first terminal device transmits M CSI-RSs to the second terminal device using the airspace transmission filter, and one CSI-RS among the M CSI-RSs occupies the time available for sidelink transmission in one time slot
  • the penultimate time domain symbol and the penultimate time domain symbol in the domain symbols configures the penultimate time domain symbol and the penultimate time domain symbol in the CSI-RS occupied time slot
  • the field symbols make CSI-RS and PSCCH or PSSCH not sent at the same time, which optimizes the transmission efficiency of CSI-RS.
  • FIG. 1 is a schematic diagram of a communication system architecture applied in an embodiment of the present application.
  • Fig. 2 is a schematic diagram of another communication system architecture applied in the embodiment of the present application.
  • Fig. 3 is a schematic diagram of uplink communication within a network coverage provided by the present application.
  • Fig. 4 is a schematic diagram of partial network coverage side communication provided by the present application.
  • Fig. 5 is a schematic diagram of outbound communication provided by the network coverage provided by the present application.
  • Fig. 6 is a schematic diagram of a side communication with a central control node provided by the present application.
  • Fig. 7 is a schematic diagram of unicast sidelink communication provided by the present application.
  • Fig. 8 is a schematic diagram of multicast sideline communication provided by the present application.
  • Fig. 9 is a schematic diagram of broadcast sideline communication provided by the present application.
  • Fig. 10 is a schematic diagram of a time slot structure in NR-V2X provided by the present application.
  • FIG. 11 is a schematic diagram of a time-frequency position of an SL CSI-RS provided by the present application.
  • Fig. 12 is a schematic diagram of not using analog beams and using analog beams according to the present application.
  • FIG. 13 is a schematic diagram of a TCI state for configuring a PDSCH provided by the present application.
  • Fig. 14 is a schematic flowchart of a wireless communication method provided according to an embodiment of the present application.
  • Fig. 15 is a schematic diagram of a CSI-RS symbol in a time slot according to an embodiment of the present application.
  • Fig. 16 is a schematic diagram of CSI-RS symbols in another time slot according to an embodiment of the present application.
  • Fig. 17 is a schematic diagram in which a period of a CSI-RS resource is 2 slots according to an embodiment of the present application.
  • FIG. 18 is a schematic diagram of a bitmap indicating PRBs that can be used to transmit CSI-RSs according to an embodiment of the present application.
  • 19 to 20 are respectively schematic diagrams of determining PRBs that can be used for transmitting CSI-RSs based on a starting frequency domain position and a frequency domain length according to an embodiment of the present application.
  • Fig. 21 is a schematic diagram of time domain resources of a CSI-RS resource set according to an embodiment of the present application.
  • Fig. 22 is a schematic diagram of a PRB that can be used to transmit a CSI-RS according to an embodiment of the present application.
  • Fig. 23 is a schematic block diagram of a terminal device provided according to an embodiment of the present application.
  • Fig. 24 is a schematic block diagram of another terminal device provided according to an embodiment of the present application.
  • Fig. 25 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
  • Fig. 26 is a schematic block diagram of a device provided according to an embodiment of the present application.
  • Fig. 27 is a schematic block diagram of a communication system provided according to an embodiment of the present application.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, such as: Global System of Mobile communication (Global System of Mobile communication, GSM) system, code division multiple access (Code Division Multiple Access, CDMA) system, broadband code division multiple access (Wideband Code Division Multiple Access, WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, Advanced long term evolution (LTE-A) system , New Radio (NR) system, evolution system of NR system, LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed spectrum) on unlicensed spectrum unlicensed spectrum (NR-U) system, Non-Terrestrial Networks (NTN) system, Universal Mobile Telecommunications System (UMTS), Wireless Local Area Networks (WLAN), Wireless Fidelity (Wireless Fidelity, WiFi), fifth-generation communication (5th-Generation, 5G) system or other communication systems, etc.
  • GSM Global System of Mobile
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to everything
  • the communication system in the embodiment of the present application may be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, may also be applied to a dual connectivity (Dual Connectivity, DC) scenario, and may also be applied to an independent (Standalone, SA) deployment Web scene.
  • Carrier Aggregation, CA Carrier Aggregation
  • DC Dual Connectivity
  • SA independent deployment Web scene
  • the communication system in the embodiment of the present application may be applied to an unlicensed spectrum, where the unlicensed spectrum may also be considered as a shared spectrum; or, the communication system in the embodiment of the present application may also be applied to a licensed spectrum, where, Licensed spectrum can also be considered as non-shared spectrum.
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, wherein the terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • user equipment User Equipment, UE
  • access terminal user unit
  • user station mobile station
  • mobile station mobile station
  • remote station remote terminal
  • mobile device user terminal
  • terminal wireless communication device
  • wireless communication device user agent or user device
  • the terminal device can be a station (STATION, ST) in a WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital assistant (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, next-generation communication systems such as terminal devices in NR networks, or future Terminal equipment in the evolved public land mobile network (Public Land Mobile Network, PLMN) network, etc.
  • PLMN Public Land Mobile Network
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites) superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
  • a virtual reality (Virtual Reality, VR) terminal device an augmented reality (Augmented Reality, AR) terminal Equipment
  • wireless terminal equipment in industrial control wireless terminal equipment in self driving
  • wireless terminal equipment in remote medical wireless terminal equipment in smart grid
  • wireless terminal equipment in transportation safety wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the network device may be a device for communicating with the mobile device, and the network device may be an access point (Access Point, AP) in WLAN, a base station (Base Transceiver Station, BTS) in GSM or CDMA , or a base station (NodeB, NB) in WCDMA, or an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and an NR network A network device or a base station (gNB) in a network device or a network device in a future evolved PLMN network or a network device in an NTN network.
  • AP Access Point
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • Evolutional Node B, eNB or eNodeB evolved base station
  • LTE Long Term Evolution
  • eNB evolved base station
  • gNB base station
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network equipment may be a satellite or a balloon station.
  • the satellite can be a low earth orbit (low earth orbit, LEO) satellite, a medium earth orbit (medium earth orbit, MEO) satellite, a geosynchronous earth orbit (geosynchronous earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) satellite. ) Satellite etc.
  • the network device may also be a base station installed on land, water, and other locations.
  • the network device may provide services for a cell, and the terminal device communicates with the network device through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device ( For example, a cell corresponding to a base station), the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell), and the small cell here may include: a metro cell (Metro cell), a micro cell (Micro cell), a pico cell ( Pico cell), Femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the transmission resources for example, frequency domain resources, or spectrum resources
  • the cell may be a network device (
  • the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell)
  • the small cell here may include: a metro cell (Metro cell), a micro cell (Micro
  • the "indication" mentioned in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated, configuration and is configuration etc.
  • predefined or “preconfigured” can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices).
  • the application does not limit its specific implementation.
  • pre-defined may refer to defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, may include the LTE protocol, the NR protocol, and related protocols applied to future communication systems, which is not limited in the present application.
  • Fig. 1 is a schematic diagram of a communication system to which the embodiment of the present application is applicable.
  • the transmission resources of the vehicle-mounted terminals (vehicle-mounted terminal 121 and vehicle-mounted terminal 122 ) are allocated by the base station 110 , and the vehicle-mounted terminals transmit data on the sidelink according to the resources allocated by the base station 110 .
  • the base station 110 may allocate resources for a single transmission to the terminal, or may allocate resources for semi-static transmission to the terminal.
  • Fig. 2 is a schematic diagram of another communication system to which the embodiment of the present application is applicable.
  • the vehicle-mounted terminals (vehicle-mounted terminal 131 and vehicle-mounted terminal 132 ) autonomously select transmission resources on sidelink resources for data transmission.
  • the vehicle-mounted terminal may select transmission resources randomly, or select transmission resources by listening.
  • side communication according to the network coverage of the communicating terminal, it can be divided into network coverage inner communication, as shown in Figure 3; part of the network coverage side communication, as shown in Figure 4 ; and network coverage outer line communication, as shown in FIG. 5 .
  • Figure 3 In inline communication within the network coverage, all terminals performing sideline communication are within the coverage of the base station. Therefore, the above-mentioned terminals can perform sideline communication based on the same sideline configuration by receiving configuration signaling from the base station .
  • FIG 4 In the case of partial network coverage for sidelink communication, some terminals performing sidelink communication are located within the coverage of the base station. These terminals can receive configuration signaling from the base station and perform sidelink communication according to the configuration of the base station. However, terminals located outside the network coverage cannot receive the configuration signaling from the base station. In this case, the terminals outside the network coverage will use the pre-configuration information and the physical The information carried in the Physical Sidelink Broadcast Channel (PSBCH) determines the sidelink configuration for sidelink communication.
  • PSBCH Physical Sidelink Broadcast Channel
  • Figure 5 For outbound communication under network coverage, all terminals performing side communication are located outside the network coverage, and all terminals determine side communication according to pre-configuration information to perform side communication.
  • FIG. 6 For side communication with a central control node, multiple terminals form a communication group.
  • a central control node in the communication group which can also be called a cluster head terminal (Cluster Header, CH).
  • the central control node has the following One of the functions: responsible for the establishment of communication groups; joining and leaving of group members; performing resource coordination, allocating side transmission resources for other terminals, receiving side communication feedback information from other terminals; performing resource coordination with other communication groups, etc.
  • device-to-device communication is based on a sidelink (Sidelink, SL) transmission technology based on device to device (D2D), and the communication data in the traditional cellular system is received or sent through the base station.
  • the method is different.
  • the Internet of Vehicles system adopts the method of terminal-to-terminal direct communication, so it has higher spectral efficiency and lower transmission delay.
  • Two transmission modes are defined in 3GPP, which are respectively recorded as: the first mode (sidelink resource allocation mode 1) and the second mode (sidelink resource allocation mode 2).
  • the first mode the transmission resources of the terminal are allocated by the base station, and the terminal sends data on the sidelink according to the resources allocated by the base station; the base station can allocate resources for a single transmission to the terminal, and can also allocate semi-static transmission to the terminal H. As shown in FIG. 3 , the terminal is located within the coverage of the network, and the network allocates transmission resources for sidelink transmission to the terminal.
  • the second mode the terminal selects a resource from the resource pool for data transmission.
  • the terminal is located outside the coverage of the cell, and the terminal independently selects transmission resources from the pre-configured resource pool for sidelink transmission; or, as shown in Figure 3, the terminal independently selects transmission resources from the resource pool configured by the network Make sideways transfers.
  • New Radio-Vehicle to Everything NR-V2X
  • NR-V2X New Radio-Vehicle to Everything
  • it supports automatic driving, so it puts forward higher requirements for data interaction between vehicles, such as higher throughput, lower Latency, higher reliability, larger coverage, more flexible resource allocation, etc.
  • unicast transmission there is only one terminal at the receiving end, as shown in Figure 7, unicast transmission is performed between UE1 and UE2; for multicast transmission, the receiving end is all terminals in a communication group, or in a certain All terminals within the transmission distance, as shown in Figure 8, UE1, UE2, UE3, and UE4 form a communication group, in which UE1 sends data, and other terminal devices in the group are receiving end terminals; for broadcast transmission mode, its receiving The terminal is any terminal around the transmitting terminal. As shown in FIG. 9 , UE1 is the transmitting terminal, and other terminals around it, UE2-UE6 are all receiving terminals.
  • the time slot structure in NR-V2X is shown in Figure 10.
  • (a) in Figure 10 indicates that the time slot does not include the physical sidelink feedback channel (Physical Sidelink Feedback Channel, PSFCH) time slot structure; the diagram in Figure 10 ( b) shows the slot structure including PSFCH.
  • PSFCH Physical Sidelink Feedback Channel
  • the Physical Sidelink Control Channel starts from the second sidelink symbol of the time slot in the time domain and occupies 2 or 3 Orthogonal frequency division multiplexing (Orthogonal frequency- division multiplexing (OFDM) symbols can occupy ⁇ 10, 12 15, 20, 25 ⁇ physical resource blocks (physical resource blocks, PRBs) in the frequency domain.
  • Orthogonal frequency division multiplexing Orthogonal frequency division multiplexing (Orthogonal frequency- division multiplexing (OFDM) symbols can occupy ⁇ 10, 12 15, 20, 25 ⁇ physical resource blocks (physical resource blocks, PRBs) in the frequency domain.
  • OFDM Orthogonal frequency division multiplexing
  • the number of PRBs occupied by PSCCH must be less than or equal to the number of PRBs contained in a sub-channel in the resource pool , so as not to impose additional restrictions on PSSCH resource selection or allocation.
  • the PSSCH also starts from the second side row symbol of the time slot, the last time domain symbol in the time slot is a guard interval (Guard Period, GP) symbol, and the remaining symbols are mapped to the PSSCH.
  • the first side row symbol in this time slot is the repetition of the second side row symbol.
  • the receiving terminal uses the first side row symbol as an automatic gain control (AGC) symbol. Data is generally not used for data demodulation.
  • the PSSCH occupies M subchannels in the frequency domain, and each subchannel includes N consecutive PRBs. As shown in (a) in Figure 10.
  • the second-to-last symbol and the third-to-last symbol in the time slot are used for PSFCH channel transmission, and the data on the third-to-last symbol is the repetition of the data on the second-to-last symbol.
  • One time-domain symbol before the PSFCH channel is used as a GP symbol, as shown in (b) in FIG. 10 .
  • SL CSI-RS is supported in NR-V2X, and SL CSI-RS can be sent when the following three conditions are met:
  • the UE sends the corresponding PSSCH, that is, the UE cannot only send SL CSI-RS;
  • High-level signaling activates reporting of side channel state information (Channel State Information, CSI);
  • the corresponding bit in the second-order SCI sent by the UE triggers the reporting of the side CSI.
  • the maximum number of ports supported by the SL CSI-RS is 2.
  • the SL CSI-RS of different ports are in the same Orthogonal frequency-division multiplexing (OFDM) symbol of two adjacent resource elements ( Resource Element (RE) is multiplexed by code division, and the average number of REs occupied by the SLCSI-RS of each port in a PRB is 1, that is, the density is 1. Therefore, the SL CSI-RS can only appear on one OFDM symbol at most in one PRB, and the specific position of this OFDM symbol is determined by the transmitting terminal.
  • the position of the OFDM symbol where the SL CSI-RS is located is indicated by the first symbol (sl-CSI-RS-FirstSymbol) parameter of the side row CSI-RS in PC5-Radio Resource Control (RRC).
  • RRC PC5-Radio Resource Control
  • the position of the first RE occupied by the SL CSI-RS in a PRB is indicated by the side row CSI-RS frequency domain allocation (sl-CSI-RS-FreqAllocation) parameter in PC5-RRC, if the SL CSI-RS is a port , the parameter is a bitmap with a length of 12, corresponding to 12 REs in one PRB. If the SL CSI-RS has two ports, this parameter is a bitmap with a length of 6. In this case, the SL CSI-RS occupies two REs of 2f(1) and 2f(1)+1, where f(1 ) represents the index of the bit whose value is 1 in the above bitmap.
  • sl-CSI-RS-FreqAllocation side row CSI-RS frequency domain allocation
  • the frequency domain position of the SL CSI-RS is also determined by the transmitting terminal, but the determined frequency domain position of the SL CSI-RS cannot conflict with a phase tracking reference signal (Phase Tracking Reference Signal, PT-RS).
  • Figure 11 shows a schematic diagram of the time-frequency location of SL CSI-RS.
  • Design goals for NR or 5G systems include large-bandwidth communications in high-frequency bands, such as frequency bands above 6 GHz. When the operating frequency becomes higher, the path loss in the transmission process will increase, thereby affecting the coverage capability of the high-frequency system.
  • an effective technical solution is based on a massive antenna array (Massive MIMO) to form a shaped beam with greater gain, overcome propagation loss, and ensure system coverage.
  • Mass MIMO massive antenna array
  • the millimeter-wave antenna array due to the shorter wavelength, smaller antenna element spacing and smaller aperture, allows more physical antenna elements to be integrated in a limited-sized two-dimensional antenna array.
  • Due to the limited size of the millimeter-wave antenna array from Considering factors such as hardware complexity, cost overhead, and power consumption, digital beamforming cannot be used, but analog beamforming is usually used, which can reduce the complexity of device implementation while enhancing network coverage.
  • a cell uses a wider beam (beam) to cover the entire cell. Therefore, at each moment, the terminal equipment within the coverage of the cell has the opportunity to obtain the transmission resources allocated by the system.
  • NR/5G multi-beam (Multi-beam) system covers the entire cell through different beams, that is, each beam covers a small range, and the effect of multiple beams covering the entire cell is achieved through time sweeping (sweeping) .
  • Fig. 12 shows a schematic diagram of a system without beamforming and with beamforming.
  • (a) in Figure 12 is a traditional LTE and NR system without beamforming, and
  • (b) in Figure 12 is an NR system using beamforming:
  • the LTE/NR network side uses a wide beam to cover the entire cell, and users 1-5 can receive network signals at any time.
  • the network side in (b) in Figure 12 uses narrower beams (such as beams 1-4 in the figure), and uses different beams to cover different areas in the cell at different times, for example, at time 1,
  • the NR network side covers the area where user 1 is located through beam 1; at time 2, the NR network side covers the area where user 2 is located through beam 2; at time 3, the NR network side covers the area where user 3 and user 4 are located through beam 3; At time 4, the NR network side uses beam 4 to cover the area where user 5 is located.
  • Analog beamforming can be used not only for network-side devices, but also for terminals. At the same time, analog beamforming can not only be used for signal transmission (called transmit beam), but also can be used for signal reception (called receive beam).
  • SS block Synchronization Signal block
  • CSI-RS Channel State Information Reference Signal
  • the physical downlink control channel Physical Downlink Control Channel, PDCCH
  • the physical downlink shared channel Physical Downlink Shared Channel, PDSCH
  • omnidirectional antennas or near-omnidirectional antennas are used to receive signals sent by different downlink transmission beams of the base station.
  • corresponding beam indication information (beam indication) is needed to assist the terminal device to determine the related information of the transmitting beam on the network side, or the corresponding receiving beam related information on the terminal side.
  • the beam indication information does not directly indicate the beam itself, but through the quasi-co-located (QCL) assumption between signals (such as the QCL assumption of QCL type "QCL-TypeD") Make instructions.
  • QCL quasi-co-located
  • determining the statistical characteristics of receiving corresponding channels/signals is also based on the QCL quasi-co-location assumption.
  • the characteristics of the transmission environment corresponding to the data transmission can be used to improve the reception algorithm.
  • the statistical properties of the channel can be used to optimize the design and parameters of the channel estimator.
  • these characteristics corresponding to data transmission are represented by QCL status (QCL-Info).
  • TRP Transmission Reception Point
  • panel panel
  • beam beam
  • TCI Transmission Configuration Indicator
  • a TCI state can contain the following configurations:
  • TCI state identifier used to identify a TCI state
  • a QCL information contains the following information:
  • QCL type (type) configuration which can be one of QCL-Type A, QCL-TypeB, QCL-TypeC or QCL-TypeD;
  • the QCL reference signal configuration includes the cell identification (ID) where the reference signal is located, the Band Width Part (BWP) identification (ID) and the identification of the reference signal (which can be a CSI-RS resource identification or a synchronization signal block index).
  • ID the cell identification
  • BWP Band Width Part
  • ID the identification of the reference signal (which can be a CSI-RS resource identification or a synchronization signal block index).
  • the QCL type of at least one QCL information must be one of QCL-TypeA, QCL-TypeB, and QCL-TypeC, and the QCL type of the other QCL information must be QCL-Type d.
  • 'QCL-TypeA' ⁇ Doppler shift (Doppler shift), Doppler spread (Doppler spread), average delay (average delay), delay spread (delay spread) ⁇ ;
  • 'QCL-TypeB' ⁇ Doppler shift (Doppler shift), Doppler spread (Doppler spread) ⁇ ;
  • 'QCL-TypeC' ⁇ Doppler shift (Doppler shift), average delay (average delay) ⁇ ;
  • the network side can indicate the corresponding TCI state for the downlink signal or downlink channel.
  • the terminal can assume that the target downlink signal is consistent with the reference
  • the large-scale parameters of the SSB or reference CSI-RS resources are the same, and the large-scale parameters are determined by the QCL type configuration.
  • the terminal can adopt and receive the reference SSB or reference CSI-RS resource.
  • the receiving beam that is, the Spatial Rx parameter
  • the target downlink channel (or downlink signal) and its reference SSB or reference CSI-RS resource are sent by the same TRP or the same panel or the same beam on the network side. If the transmission TRP or transmission panel or transmission beam of two downlink signals or downlink channels are different, different TCI states are usually configured.
  • control resource set (Control Resource Set, CORESET) TCI status.
  • the available TCI state set is indicated by RRC signaling, and some of the TCI states are activated by MAC layer signaling, and finally activated by the TCI state indication field in the downlink control information (Downlink Control Information, DCI)
  • DCI Downlink Control Information
  • One or two TCI states are indicated in the TCI state for the PDSCH scheduled by the DCI.
  • the case of two TCI states is mainly for scenarios where multiple TRPs are similar.
  • the network device indicates N candidate TCI states through RRC signaling, activates K TCI states through MAC signaling, and finally indicates 1 from the activated TCI states through the TCI state indication field in DCI One or two TCI states to use.
  • the millimeter wave frequency band can be used in the sidewalk transmission system to increase the transmission rate of the sidewalk communication system, and in the sidewalk millimeter wave transmission, the transmitter needs to send CSI-RS to determine the optimal airspace transmission filter of the transmitter, and /or, determine the optimal spatial domain receiving filter at the receiving end.
  • the transmitter needs to send CSI-RS to determine the optimal airspace transmission filter of the transmitter, and /or, determine the optimal spatial domain receiving filter at the receiving end.
  • how to specifically configure the CSI-RS resources used to transmit CSI-RS to select the optimal spatial domain transmit filter (transmit beam) or the optimal spatial domain receive filter (receive beam) based on the transmitted CSI-RS is a need. solved problem.
  • each CSI-RS must be sent together with the PSSCH.
  • the sender and the receiver have not yet determined the optimal airspace transmit filter and the spacespace receive filter, so normal data transmission is usually not performed, therefore, in The PSSCH sent during the selection process of the spatial domain transmit filter and the spatial domain receive filter usually does not carry normal sidelink data, but usually only fills redundant bits, padding bits, etc., which will reduce transmission efficiency.
  • the sender when the sender works in mode 2 (namely the above-mentioned second mode), the sender determines transmission resources based on interception, and due to mechanisms such as re-evaluation and pre-emption, the sender may Resource reselection is performed, so the receiving end cannot accurately know the resources for sending CSI-RS at the sending end, and in the process of determining the spatial receiving filter, the receiving end needs to use different spatial receiving filters to receive the CSI-RS sent by the sending end , therefore, the receiving end needs to accurately know the resource location occupied by the CSI-RS sent by the sending end.
  • this application proposes a scheme for transmitting CSI-RS on the side.
  • the transmitting end uses a spatial transmission filter to transmit M CSI-RSs to the receiving end, and one CSI-RS among the M CSI-RSs occupies one
  • the second-to-last time-domain symbol and the third-to-last time-domain symbol among the time-domain symbols that can be used for sidelink transmission in the time slot, that is, the penultimate time-domain symbol in the time-domain symbols occupied by the CSI-RS is configured in this embodiment of the application
  • the two time-domain symbols and the penultimate time-domain symbol make the CSI-RS and PSCCH or PSSCH not be sent at the same time, which optimizes the transmission efficiency of the CSI-RS.
  • the receiving end can determine the slot positions of the subsequent multiple CSI-RS based on the slot where the first CSI-RS is located, so that corresponding receiving beams can be determined in advance and received.
  • FIG. 14 is a schematic flowchart of a wireless communication method 200 according to an embodiment of the present application. As shown in FIG. 14 , the wireless communication method 200 may include at least part of the following content:
  • the first terminal device transmits M CSI-RSs to the second terminal device using a spatial transmission filter; wherein, one CSI-RS among the M CSI-RSs occupies a time domain available for sidelink transmission in one time slot
  • the penultimate time domain symbol and the penultimate time domain symbol in the symbol, the M CSI-RS are used to select the target spatial domain transmit filter, or the M CSI-RS are used to select the target spatial domain receive filter , M is a positive integer;
  • the second terminal device receives the M CSI-RSs transmitted by the first terminal device using a spatial domain transmission filter.
  • the first terminal device is a sending end device
  • the second terminal device is a receiving end device
  • the optimal airspace transmission filter of the first terminal device may be selected based on the CSI-RS sent by the first terminal device, or the optimal filter of the second terminal device may be selected based on the CSI-RS sent by the first terminal device.
  • Superior Spatial Receive Filter may be selected based on the CSI-RS sent by the first terminal device.
  • the transmitting end uses different beams to send CSI-RS in turn, and the receiving end uses the same receiving beam to receive and transmit CSI-RS respectively.
  • multiple CSI-RS sent by the terminal and measure the detected CSI-RS, select the CSI-RS with the best measurement result and its corresponding resource information (such as CSI-RS resource index or CSI-RS corresponding time slot information) is fed back to the sending end, and the sending beam corresponding to the CSI-RS resource is the optimal sending beam for the receiving end.
  • resource information such as CSI-RS resource index or CSI-RS corresponding time slot information
  • the sending end uses the same beam to send the CSI-RS
  • the sending end uses the optimal receiving beam for the receiving end
  • the optimal transmit beam sends CSI-RS
  • the receiving end uses different receiving beams in turn to receive the CSI-RS sent by the transmitting end, and performs measurement, and selects the beam corresponding to the receiving beam with the best measurement result as the optimal beam of the receiving end.
  • the sending end uses the optimal sending beam to perform lateral transmission
  • the receiving end can use the corresponding optimal receiving beam to perform corresponding reception.
  • the sending end adopts the above process for different sending beams respectively, and can respectively determine the optimal receiving beam corresponding to each sending beam. Therefore, when the sending end is performing sidewalk transmission, the sending end can indicate the sending beam used for the sidewalk transmission, and the receiving end can determine the corresponding optimal receiving beam, and use the optimal receiving beam for sidewalking. take over.
  • the millimeter wave frequency band is used in the sidelink transmission system.
  • the sending end usually uses beamforming Line transmission.
  • the spatial domain transmission filter may also be called a transmission beam (transmission beam) or a spatial relationship (Spatial relation) or a spatial configuration (spatial setting) or a spatial transmission parameter (SpatialTX parameter).
  • a spatial domain receive filter may also be called a reception beam (reception beam) or a spatial reception parameter (SpatialRX parameter).
  • the spatial domain transmit filter and the spatial domain receive filter are collectively referred to as a spatial domain filter
  • the spatial domain transmit filter may also be referred to as a transmitting end spatial domain filter
  • the spatial domain receiving filter may also be referred to as a receiving end spatial domain filter or a receiving end spatial domain filter. beam.
  • a "slot” may also be other time units, for example, a mini-slot, a frame, a subframe, a time-domain symbol, an absolute time, or a relative time.
  • the "time domain symbol” may also be other time units, for example, mini-slot, frame, subframe, time slot, absolute time, and relative time. This application is not limited to this.
  • the CSI-RSs in the M CSI-RSs are side row CSI-RSs.
  • sending M CSI-RSs may also be expressed as "sending M CSI-RS resources", which is not limited in this application. That is, in this embodiment of the present application, the first terminal device sending the CSI-RS may also be expressed as the first terminal device sending the CSI-RS resource, that is, the two are equivalent expressions. Similarly, the CSI-RS measurement result is equivalent to the CSI-RS resource measurement result.
  • the value of M when the M CSI-RS are used to select the target spatial domain transmit filter can be the same as the value of M when the M CSI-RS are used to select the target spatial domain receive filter, or different, this application does not limit it.
  • the first terminal device sending the M CSI-RSs to the second terminal device using a spatial domain transmission filter may refer to: the first terminal device transmits the M CSI-RSs using different spatial domain transmission filters, For example, the M CSI-RSs correspond to different spatial transmission filters; or, the first terminal device does not use the same spatial transmission filter to transmit the M CSI-RSs, for example, sending the M CSI-RSs uses at least Two different spatial domain transmit filters are used.
  • the first terminal device transmits M CSI-RSs to the second terminal device using M different spatial domain transmission filters, where each spatial domain transmission filter corresponds to one CSI-RS.
  • the first terminal device uses K spatial domain transmission filters to transmit M CSI-RSs to the second terminal device, where K is less than M and K is greater than 1, that is, the M CSI-RS There are at least two CSI-RSs among the RSs that are transmitted through different spatial transmission filters.
  • the corresponding repetition in the configuration information of the CSI-RS resource or CSI-RS resource set corresponding to the M CSI-RS takes a first value, and the first value is used to indicate that the first terminal device does not use the same spatial domain transmission filter to transmit the CSI-RS. In other words, the first value is used to instruct the first terminal device to use different spatial domain transmission filters to transmit the CSI-RS.
  • the first value may be off (off), indicating that the M CSI-RSs sent by the first terminal device are used to select a target airspace transmission filter.
  • the corresponding repetition in the configuration information of the CSI-RS resource or CSI-RS resource set corresponding to the M CSI-RS takes a second value, and the second value is used to indicate that the first terminal device uses the same spatial domain transmission filter to transmit the CSI-RS.
  • the second value may be on (on), indicating that the M CSI-RSs sent by the first terminal device are used to select a target spatial domain receiving filter.
  • the penultimate time domain symbol is a time domain symbol occupied by the CSI-RS.
  • the data on the third-to-last time-domain symbol is a repetition of the data on the second-to-last time-domain symbol, or, the data on the third-to-last time-domain symbol is the same as the second-to-last time-domain symbol
  • the data on each time domain symbol is the same.
  • the penultimate time domain symbol is an AGC symbol.
  • the penultimate time-domain symbol is a time-domain symbol occupied by the CSI-RS.
  • the data on the second-to-last time-domain symbol is a repetition of the data on the third-to-last time-domain symbol, or, the data on the third-to-last time-domain symbol is the same as the second-to-last time-domain symbol
  • the data on each time domain symbol is the same.
  • the penultimate time domain symbol is an AGC symbol.
  • a time domain symbol before the penultimate time domain symbol is a GP symbol
  • a time domain symbol after the penultimate time domain symbol is a GP symbol
  • the penultimate time domain symbol and the penultimate time domain symbol are used to transmit CSI-RS, and one time domain symbol before the penultimate time domain symbol is a GP symbol, and a time-domain symbol after the penultimate time-domain symbol is a GP symbol.
  • the terminal transmitting PSCCH and/or PSSCH and the terminal transmitting CSI-RS in one slot may be different terminals. It should be understood that FIG. 15 only exemplarily shows the time slot structure including CSI-RS resources, but does not specifically reflect the relationship between CSI-RS resources, PSCCH and PSSCH in the frequency domain.
  • the CSI-RS occupies the penultimate time-domain symbol and the penultimate time-domain symbol of the time-domain symbols that can be used for sidelink transmission , as shown in Figure 16, the last 3 time domain symbols in the time slot cannot be used for sidelink transmission, and the remaining 11 time domain symbols can be used for sidelink transmission.
  • the first terminal device determines the CSI-RS resource or CSI-RS resource set corresponding to the M CSI-RS according to the CSI-RS resource configuration information.
  • the CSI-RS resource configuration information may include part or all of the CSI-RS resource configuration information in the resource pool configuration information or the side BWP configuration information, or the CSI-RS resource configuration information is Determined based on the resource pool configuration information or the CSI-RS resource configuration information in the side BWP configuration information, or the CSI-RS resource configuration information is determined from the CSI-RS resource configuration information in the resource pool configuration information or the side BWP configuration information information obtained.
  • the first terminal device may send the CSI-RS resource configuration information to the second terminal device, so that the second terminal device may determine the M CSI-RS resource configuration information based on the CSI-RS resource configuration information.
  • the CSI-RS resource configuration information includes but not limited to at least one of the following:
  • the cycle of CSI-RS resources, the time slot offset of CSI-RS resources, the minimum time interval, the time interval between two adjacent CSI-RSs, the indication information of frequency domain resources that can be used to transmit CSI-RS, each CSI-RS The frequency domain resources included in RS resources, the minimum frequency domain resource size included in each CSI-RS resource, the interval between adjacent PRBs mapping CSI-RS, the indication information of the frequency domain position of CSI-RS resources in a PRB, CSI -RS density, indicating information for indicating the number of CSI-RS resources multiplexed by means of code division multiplexing (CDM), code division multiplexing type, and scrambling code identifier.
  • CDM code division multiplexing
  • the period of the CSI-RS resource included in the CSI-RS resource configuration information may be represented by the number of time slots.
  • the period of the CSI-RS resource is P, which means that every P time slot includes a time slot for transmitting CSI-RS, or means that every P time slot includes a time slot for CSI-RS Gap.
  • P ⁇ 1,2,4,8 ⁇ , which means that every 1/2/4/8 time slots includes a time slot for transmitting CSI-RS.
  • the time slot offset of the CSI-RS resource included in the CSI-RS resource configuration information may be represented by the number of time slots.
  • the time slot offset of the CSI-RS resource indicates the time slot offset of the first time slot including CSI-RS relative to the first time domain position, where the first time domain position includes SFN#0 The first slot in , or the first slot in DFN#0.
  • the minimum time interval included in the CSI-RS resource configuration information may be represented by the number of time slots.
  • the minimum time interval indicates the minimum time interval between the CSI-RS and its associated first indication information, where the first indication information is used to instruct the first terminal device to send the CSI-RS, or the first indication information It is used to indicate that the first terminal device will send a CSI-RS.
  • the minimum time interval indicates the minimum time interval between the CSI-RS and its associated SCI or PSCCH, where the SCI or PSCCH is used to indicate sending the CSI-RS.
  • the minimum time interval is equal to 0.
  • the minimum time interval is not included in the CSI-RS resource configuration information. That is, if the minimum time interval is not included in the CSI-RS resource configuration information, the default value is 0, which means that the first indication information and the first CSI-RS among the M CSI-RS are within in the same time slot.
  • the first indication information may be SCI.
  • the cycle of CSI-RS resources is 2 slots
  • the minimum time interval represents the minimum time interval between the first CSI-RS in at least one CSI-RS associated with the SCI and the time slot where the SCI is located.
  • the time interval between the two adjacent CSI-RSs included in the CSI-RS resource configuration information is represented by the number of time slots, or, the two adjacent CSI-RSs included in the CSI-RS resource configuration information
  • the time interval of the RS is represented by the number of cycles of the CSI-RS resource.
  • the SCI is sent at time slot n to indicate the transmission of 4 CSI-RS
  • the first determined CSI-RS is located in the time slot n+2
  • the time slots of the four CSI-RSs can be determined as: n+2; n+6; n+10; n+14.
  • the transmission end when the sending end instructs to send CSI-RS through SCI (or indication information), in the process of determining the spatial domain transmission filter (transmission beam) or the spatial domain reception filter (reception beam), the transmission end will send multiple CSI -RS.
  • the time domain position of the first CSI-RS can be determined through SCI (or indication information), and further, the time interval between two adjacent CSI-RSs can be determined according to the time interval between two adjacent CSI-RSs, The time domain positions of multiple CSI-RSs can be determined.
  • the time interval between two adjacent CSI-RSs is the time interval of one CSI-RS resource. cycle. That is, the sending end sends CSI-RSs respectively in consecutive CSI-RS resource periods. For example, the sending end does not configure the time interval between two adjacent CSI-RSs, the period of the CSI-RS resource is 2 slots, and the SCI is sent at slot n to indicate the sending of 4 CSI-RSs, the first determined CSI-RS The RS is located in the time slot n+2. Further, the time slots of the four CSI-RSs can be determined as: n+2; n+4; n+6; n+8.
  • the number of time slots refers to the number of logical time slots in the resource pool.
  • the frequency-domain resource indication information that can be used to transmit CSI-RS resources included in the CSI-RS resource configuration information is used to determine the information of PRBs that can be used to transmit CSI-RS.
  • the information of the PRB that can be used to transmit the CSI-RS is indicated by a bitmap, wherein each bit in the bitmap corresponds to a PRB, and the length of the bitmap is according to at least one of the following Determine: the number of PRBs included in the sidelink carrier, the number of PRBs included in the sidelink BWP, and the number of PRBs included in the resource pool.
  • the system includes 30 PRBs, among which, PRB4, PRB9, PRB14, PRB19, PRB24, and PRB29 have been allocated for PSFCH transmission, and the available PRBs for CSI-RS can be indicated through a 30-bit long bitmap , as shown in Figure 18, the bits in the bitmap take 0 to indicate PRBs that are not available for CSI-RS, and the bits in the bitmap take 1 to indicate PRBs that are available for CSI-RS, where CSI-RS is available PRB includes PRB 0, PRB 1, PRB 2, PRB 5, PRB 6, PRB 7, PRB 10, PRB 11, PRB 12, PRB 15, PRB 16, PRB 17, PRB 20, PRB 21, PRB 22, PRB 25, PRB 26, PRB 27.
  • the information of the PRBs that can be used to transmit the CSI-RS is determined by the starting frequency domain position and frequency domain length that can be used to transmit the CSI-RS.
  • the frequency domain resources used for transmitting PSFCH and/or sidelink positioning reference signals included in the frequency domain resources determined based on the starting frequency domain position and the frequency domain length are not used for transmitting CSI-RS.
  • the frequency domain length is used to indicate the number of PRBs available for CSI-RS transmission.
  • the frequency domain resource indication information that can be used to transmit CSI-RS resources can indicate the frequency domain start position and frequency domain length respectively, or the frequency domain resource indication information that can be used to transmit CSI-RS resources can jointly indicate the frequency domain start position and frequency domain length.
  • the resource indicator value (resource indicator value, RIV) can be determined according to the frequency domain starting position and the frequency domain length, and the frequency domain resource indication information that can be used to transmit CSI-RS resources includes the RIV value, according to the RIV value. Determine the corresponding frequency domain starting position and frequency domain length.
  • the end position of the frequency domain can be determined by the frequency domain start position and frequency domain length, if in the frequency domain start If there is a PRB used to transmit PSFCH between the position and the end position, the PRB used to transmit PSFCH is not used to transmit CSI-RS; that is, the PRB used to transmit CSI-RS does not include the PRB configured to transmit PSFCH.
  • the system includes 30 PRBs, of which PRB4, PRB9, PRB14, PRB19, PRB24, and PRB29 have been allocated for PSFCH transmission, then the starting PRB can be configured as PRB6, and the frequency domain length is 10 PRBs, so , the determined PRB range is from PRB6 to PRB15. Since it includes PRB9 and PRB14 that have been used for PSFCH transmission, these two PRBs (PRB9 and PRB14) cannot be used to transmit CSI-RS, but can be used to transmit CSI-RS PRB Includes PRBs with indices ⁇ 6, 7, 8, 10, 11, 12, 13, 15 ⁇ .
  • the frequency domain length is used to indicate the total number of PRBs used for CSI-RS, if the CSI-RS frequency is determined If the domain resource process includes the PRB used to transmit PSFCH, skip the PRB used to transmit PSFCH, and judge whether the next PRB is a PRB that can be used for CSI-RS, until the number of PRBs indicated by the frequency domain length is determined .
  • the system includes 30 PRBs, of which PRB4, PRB9, PRB14, PRB19, PRB24, and PRB29 have been allocated for PSFCH transmission, then the starting PRB can be configured as PRB6, and the frequency domain length is 10 PRBs.
  • PRBs that can be used for CSI-RS resources are determined, and PRB9 and PRB14 are used to transmit PSFCH. Therefore, these two PRBs (PRB9 and PRB14) cannot be used to transmit CSI-RS resources, skip these two PRBs (PRB9 and PRB14), continue to judge whether other PRBs are available, therefore, the final 10 PRBs that can be used to transmit CSI-RS include the index ⁇ 6,7,8,10,11,12,13,1516,17 ⁇ PRB.
  • the frequency domain resources included in each CSI-RS resource included in the CSI-RS resource configuration information may be represented by the number of PRBs, for example, each CSI-RS resource occupies 12 PRBs.
  • the frequency domain resources included in each CSI-RS resource may be represented by the number of subchannels.
  • the frequency domain resources included in each CSI-RS resource may be represented by the number of PRBs available for CSI-RS transmission.
  • the size of frequency domain resources available for CSI-RS transmission determined according to the CSI-RS resource configuration information should be divisible by the size of frequency domain resources included in each CSI-RS. Therefore, the configured frequency domain resources available for CSI-RS transmission can transmit an integer number of CSI-RSs, and the frequency domain resources occupied by each CSI-RS are of the same size.
  • the size of the frequency domain occupied by the CSI-RS can be determined based on the size of the frequency domain of the associated PSSCH.
  • the CSI-RS since the CSI-RS is not sent simultaneously with the PSCCH/PSSCH, it is necessary to additionally determine the size of the frequency domain resource occupied by the CSI-RS.
  • the interval between adjacent PRBs that map CSI-RS included in the CSI-RS resource configuration information is used to determine the interval between two adjacent PRBs among multiple PRBs mapped by one CSI-RS, where , the interval between two adjacent PRBs is represented by the number of PRBs available for transmitting CSI-RS.
  • a CSI-RS is not mapped to all PRBs in the frequency domain resources occupied by the CSI-RS, and configuration information may be used to indicate the interval between adjacent PRBs where the CSI-RS is mapped.
  • the first PRB mapped to the CSI-RS is PRB2
  • the interval between adjacent PRBs mapped to the CSI-RS is 4 PRBs
  • the CSI-RS is mapped to PRB2, PRB6, PRB10, PRB14, etc.
  • the CSI-RS resource configuration information does not include the interval between adjacent PRBs to which CSI-RSs are mapped, one CSI-RS occupies adjacent PRBs that can be used for CSI-RS transmission.
  • the interval between adjacent PRBs for CSI-RS mapping is not configured, its default value is 1 PRB, that is, the CSI-RS occupies adjacent PRBs that can be used for CSI-RS mapping.
  • the indication information of the frequency domain position of the CSI-RS resource in the one PRB included in the CSI-RS resource configuration information is used to indicate the frequency domain position of the CSI-RS resource in one PRB. Specifically, for example, it may indicate which REs are used to transmit the CSI-RS in one PRB. For example, REs that can be used to transmit CSI-RSs in a PRB are indicated in the form of a bitmap.
  • the indication information of the frequency domain position of the CSI-RS resource in the one PRB is associated with the CSI-RS resource set, that is, the RE in the PRB occupied by all the CSI-RS in one CSI-RS resource set same.
  • the resource of CSI-RS can be distinguished by the time slot information of the CSI-RS , at this time, the REs occupied by all the CSI-RS resources in one CSI-RS resource set in one PRB may be the same.
  • the M CSI-RSs sent by the first terminal device occupy the same REs in the PRB.
  • the CSI-RS density included in the CSI-RS resource configuration information is used to indicate the number of REs occupied by the CSI-RS of each CSI-RS port in each PRB. If the CSI-RS density is 2, it means that in each PRB, the CSI-RS of each antenna port occupies 2 REs. When the CSI-RS density is less than 1, PRB information for mapping CSI-RS is also included. For example, if the CSI-RS density is 0.5, that is, each antenna port occupies 1 RE in every 2 PRBs, and further, an indication information is included to indicate the PRB information for mapping CSI-RS in every 2 PRBs, such as an odd number (or Even number) CSI-RS is mapped on the PRB.
  • the indication information included in the CSI-RS resource configuration information for indicating the number of CSI-RS resources to be multiplexed by means of CDM may specifically indicate: for the same time-frequency resource, it can be performed by code division The number of multiplexed CSI-RS resources.
  • the code division multiplexing type included in the CSI-RS resource configuration information is used to determine the CSI-RS pattern, that is, the CSI-RS pattern in one PRB.
  • the code division multiplexing type includes: CDM, or, CDM and frequency-division multiplexing (Frequency-division multiplexing, FDM).
  • multiple CSI-RS resources can be multiplexed in one PRB through CDM and/or FDM, and the CSI-RS resource configuration information can determine the multiplexing mode and/or Reuse patterns.
  • FDM2 means that 2 CSI-RS can be multiplexed by FDM.
  • 2 FDM multiplexed CSI-RS resources in one PRB occupy adjacent subcarriers or REs, and one of the CSI-RS
  • the subcarriers or REs occupied by resources are determined according to the parameter sideline CSI-RS frequency domain allocation (sl-CSI-RS-FreqAllocation).
  • sl-CSI-RS-FreqAllocation the parameter sideline CSI-RS frequency domain allocation
  • the CSI-RS in the first CSI-RS resource determined according to sl-CSI-RS-FreqAllocation is located at subcarrier index 2
  • the CSI-RS in the second CSI-RS resource is located at subcarrier 3.
  • CDM2 indicates that 2 CSI-RSs can be multiplexed by means of CDM.
  • 2 CDM multiplexed CSI-RS resources in one PRB occupy the same subcarrier or RE, and the occupied subcarrier or RE is determined according to sl-CSI-RS-FreqAllocation.
  • the CSI-RS in the first CSI-RS resource is located at subcarrier indexes 2 and 3
  • the CSI-RS in the second CSI-RS resource is also located at subcarrier 2 and 3.
  • Two CSI-RSs are multiplexed through CDM.
  • the scrambling code identifier included in the CSI-RS resource configuration information is used to generate a CSI-RS sequence.
  • the CSI-RS sequence is generated by the Gold sequence, and the scrambling code is used to determine the initialization of the Gold sequence for generating the CSI-RS sequence.
  • the CSI-RS sequence is generated by:
  • the pseudo-random sequence c(n) is:
  • x 1 (n+31) (x 1 (n+3)+x 1 (n)) mod 2
  • x 2 (n+31) (x 2 (n+3)+x 2 (n+2)+x 2 (n+1)+x 2 (n)) mod 2
  • N C 1600
  • the second m sequence x 2 (n) is expressed as
  • c init is determined according to at least one of the following information:
  • the time slot information associated with the CSI-RS is the time slot information associated with the CSI-RS
  • Time-domain symbol information where the CSI-RS is located
  • n ID is determined by at least one of the following:
  • Source identification information such as the source identification information carried in SCI
  • Destination identification information such as the destination identification information carried in the SCI; may be a receiving terminal identification, a group identification, an intra-group identification of a terminal, and the like.
  • the CSI-RS resource configuration information further includes at least one of the following:
  • the corresponding repetition field in the configuration information of the CSI-RS resource or CSI-RS resource set corresponding to the M CSI-RS takes the first value to indicate that the first terminal device does not use the same spatial domain transmission filter to transmit CSI - RS
  • the CSI-RS resource corresponding to the M CSI-RS or the corresponding repetition field in the configuration information of the CSI-RS resource set takes the second value to instruct the first terminal device to use the same spatial domain transmission filter to transmit CSI -RS.
  • the indication information used to indicate the QCL type is used to indicate the QCL type between the CSI-RS resources in the CSI-RS resource set; or, the indication information used to indicate the QCL type is used to indicate whether it is a QCL -TypeD relationship, its value is true (TRUE) or false (FALSE).
  • the possible values of the indication information used to indicate the QCL type include: ⁇ QCL-TypeA, QCL-TypeB, QCL-TypeC, QCL-TypeD ⁇ , when the value is QCL-TypeD, it means that the CSI-RS All CSI-RS resources in the resource set have a QCL-TypeD relationship.
  • the CSI report value is one of the following: CSI-RS resource indication (CSI-RS Resource Indicator, CRI), CRI and reference signal receiving power (Reference Signal Receiving Power, RSRP) ('cri-RSRP '), CRI and Signal to Interference plus Noise Ratio (Signal to Interference plus Noise Ratio, SINR) ('cri-SINR'), time slot indication information, time slot indication information and RSRP, time slot indication information and SINR, no report or empty ('none').
  • the time slot indication information is used to indicate the time slot where the CSI-RS is located. It should be understood that the amount of CSI reported refers to the amount reported by the second terminal to the first terminal.
  • the CSI-RS resource configuration information includes: at least one first CSI-RS resource set whose parameter repetition (repetition) is set to off, and/or at least one parameter repetition (repetition) set to the first CSI-RS resource set of on Two sets of CSI-RS resources.
  • the first set of CSI-RS resources is used to determine the spatial domain transmission filter
  • the second set of CSI-RS resources is used to determine the spatial domain reception filter.
  • two CSI-RS resource sets are configured in the CSI-RS resource configuration information, the repetition (repetition) field of the first CSI-RS resource set is off, and the repetition field of the second CSI-RS resource set is on.
  • the sending end sends indication information to the receiving end indicating to use the CSI-RS resource set whose repetition (repetition) field is off, the receiving end can assume that the sending end uses a different spatial domain transmission filter to send the CSI-RS.
  • the receiving end can according to The CSI-RS performs measurement and feeds back the preferred CSI-RS resource index and/or measurement results, so that the transmitting end can determine the preferred transmitting side airspace transmission filter; when the repetition (repetition) field is on, the receiving end can assume that the transmission
  • the terminal uses the same spatial domain transmission filter to transmit CSI-RS, therefore, the receiving terminal can use different receiving side spatial domain receiving filters to receive CSI-RS respectively, and measure the CSI-RS, and select the optimal receiving side according to the measurement results
  • the spatial domain receiving filter is used to realize the selection process of the receiving side spatial domain receiving filter.
  • two CSI-RS resource sets are configured in the CSI-RS resource configuration information, and the CSI report amount associated with the CSI-RS resource set is configured, and the CSI report amount associated with the first CSI-RS resource set is configured.
  • the reporting quantity is 'cri-RSRP', and the CSI reporting quantity associated with the second CSI-RS resource set is 'none'.
  • the sending end sends an indication message to the receiving end indicating that the CSI reporting amount is 'cri-RSRP', it means that the sending end will send the CSI-RS resources in the first CSI-RS resource set, and the receiving end can assume that the The terminal uses different spatial domain transmission filters to transmit CSI-RS, therefore, the receiving terminal can perform measurement according to the CSI-RS, and feed back the preferred CSI-RS resource index and/or measurement results, so that the transmitting terminal can determine the preferred transmitting side airspace Sending filter; when the sending end sends indication information to the receiving end indicating that the amount of CSI reporting is 'none', it means that the sending end will send the CSI-RS resources in the second CSI-RS resource set.
  • the receiving end It can be assumed that the transmitting end uses the same spatial domain transmitting filter to transmit CSI-RS. Therefore, the receiving end can use different receiving side spatial domain receiving filters to receive CSI-RS respectively, and measure the CSI-RS, and select the optimal one according to the measurement results.
  • the receiving side spatial domain receiving filter so as to realize the selection process of the receiving side spatial domain receiving filter.
  • the CSI-RS resource configuration information includes one or more of the following parameters:
  • the number of antenna ports for example, indicating that the number of CSI-RS antenna ports is ⁇ 1,2,4,8 ⁇ , etc.;
  • the CSI-RS density is used to indicate the number of REs occupied by the CSI-RS of each antenna port in each PRB. If the density is 2, it means that in each PRB, the CSI-RS of each antenna port occupies 2 REs.
  • the CSI-RS resource configuration information may further include PRB information used to indicate the mapping of the CSI-RS resources. For example, when the density is 0.5, that is, when each antenna port occupies 1 RE in every 2 PRBs, the CSI-RS resource configuration information may also include PRB information that maps a CSI-RS resource in every 2 PRBs, such as an odd number ( or even) PRBs are mapped to CSI-RS resources.
  • the value of the repetition field of the CSI-RS resource set may indicate the use of the CSI-RS resource set, for example, whether it is used to determine a target transmission beam or a target reception beam.
  • the index of the CSI-RS resource set may indicate the use of the CSI-RS resource set, for example, whether it is used to determine a target transmission beam or a target reception beam.
  • the configuration information of the CSI-RS resource set includes index information and repeated fields of the CSI-RS resource set.
  • the corresponding CSI-RS resource set can be determined through the index of the CSI-RS resource set, and further, the value of the repeated field in the CSI-RS resource set can be determined.
  • the transmitting terminal when determining a target transmission beam, may use a CSI-RS resource set with repetition set to off, and when determining a target receiving beam, the transmitting terminal may use a CSI-RS resource set with repetition being on.
  • the resource pool configuration information or the side BWP configuration information includes configuration information of the first CSI-RS resource set and configuration information of the second CSI-RS resource set. Wherein, the repetition of the first CSI-RS resource set is off, and the repetition of the second CSI-RS resource set is on.
  • the first terminal device when it is necessary to determine the target transmission beam, the first terminal device indicates the index of the first CSI-RS resource set, or indicates the use of the first CSI-RS resource set, for example, the first terminal device can use different transmission beams to respectively transmit the For the M1 CSI-RS resources in the first CSI-RS resource set, the second terminal device measures the received CSI-RS resources respectively, and reports or feeds back the CSI according to the measurement results, and the first terminal device according to the second terminal The CSI report or feedback of the device selects the target transmission beam.
  • the first terminal device When determining to receive the beam, the first terminal device indicates the index of the second CSI-RS resource set, or indicates to use the second CSI-RS resource set. For example, the first terminal device uses the same transmission beam to respectively transmit M2 CSI-RS resources in the second CSI-RS resource set, and the second terminal device uses different reception beams to receive and measure the CSI-RS resources , according to the measurement results to select the target receiving beam.
  • the usage of the CSI-RS resource set may be indicated through the configuration of the CSI reporting amount corresponding to the CSI-RS resource set, for example, whether it is used to determine a target transmission beam or a target reception beam. For example, when determining the target transmission beam, the transmitting terminal uses a CSI-RS resource set whose CSI reporting amount is not 'none', and when determining the target receiving beam, the transmitting terminal uses a CSI-RS resource set whose CSI reporting amount is 'none' .
  • the resource pool configuration information or the side row BWP configuration information configures two CSI-RS resource sets, and configures the CSI reporting amount associated with the CSI-RS resource set, and the CSI report amount associated with the first CSI-RS resource set
  • the CSI reporting quantity is 'cri-RSRP'
  • the CSI reporting quantity associated with the second CSI-RS resource set is 'none'.
  • the first terminal device when the first terminal device indicates to the second terminal device that the amount of CSI reporting is 'cri-RSRP', it means that the first terminal device will send the CSI-RS resources in the first CSI-RS resource set.
  • the second terminal device may assume that the first terminal device uses a different transmission beam to transmit CSI-RS resources. Therefore, the second terminal device measures the CSI-RS resources and performs CSI reporting or feedback, so that the first terminal device can be based on CSI reporting or feedback determines the target transmission beam.
  • the first terminal device When the first terminal device indicates to the second terminal device that the amount of CSI reporting is 'none', it means that the first terminal device will send the CSI-RS resources in the second CSI-RS resource set.
  • the second terminal The device may assume that the first terminal device uses the same transmit beam to transmit CSI-RS resources, therefore, the second terminal device may use different receive beams to receive the CSI-RS resources respectively, and measure the CSI-RS resources, and select The target receives the beam.
  • both the first terminal device and the second terminal device can obtain the resource pool configuration information or sideline BWP configuration information. That is, the first terminal device and the second terminal device have the same understanding of the CSI-RS resource configuration information.
  • CSI-RS resources in different time slots have the same frequency domain resources; and/or, CSI-RS resources in different time slots have the same code domain resources; and/or, in different time slots
  • the CSI-RS resources have the same sequence.
  • CSI-RS resources in different time slots have different frequency domain resources, and/or, CSI-RS resources in different time slots have different code domain resources, and/or, in different time slots
  • the CSI-RS resources have different sequences.
  • the first terminal device sends second indication information to the second terminal device
  • the second indication information is used to indicate that the CSI-RS sent by the first terminal device is used to select a spatial domain transmission filter for the first terminal device to transmit sidelink data; or, the second indication information is used to Instructing the CSI-RS sent by the first terminal device to select a spatial receiving filter for the second terminal device to receive sidelink data; or, the second indication information is used to indicate the CSI sent by the first terminal device - RS is used to measure channel state information.
  • the channel state information may include but not limited to at least one of the following:
  • CQI Channel Quality Indicator
  • RI Rank Indication
  • PMI Precoding Matrix Indicator
  • the second indication information is carried by one of the following:
  • PC5-RRC signaling SCI, Media Access Control Control Element (MAC CE), sideline feedback information.
  • SCI SCI
  • MAC CE Media Access Control Control Element
  • the first terminal device when the second indication information is carried by SCI or MACCE, the first terminal device indicates activation of sidelink feedback.
  • the sequence corresponding to one CSI-RS among the M CSI-RS is determined according to at least one of the following information:
  • CSI-RS resource set identifier CSI-RS resource identifier, CRC sequence generated based on SCI, source identifier information, destination identifier information, scrambling code identifier;
  • the SCI is the SCI associated with the CSI-RS
  • the source identification information is used to indicate the identification information of the terminal sending the CSI-RS
  • the destination identification information is used to indicate the identification information of the terminal receiving the CSI-RS
  • the scrambling code The identifier is determined according to the scrambling code identifier information included in the CSI-RS resource configuration information corresponding to the CSI-RS.
  • the source identification information is determined according to the source identification information in the SCI associated with the CSI-RS
  • the destination identification information is determined according to the destination identification information in the SCI associated with the CSI-RS.
  • different frequency domain resources including different CSI-RS resource sets, different PRBs, different PRB
  • the CSI-RS resources are distinguished by at least one of methods such as RE positions), different code domain resources, and different sequences.
  • the CSI-RS resource configuration information includes the following parameters:
  • T_gap indicates the time interval between two adjacent CSI-RSs sent by the first terminal device.
  • the first CSI-RS is located in time slot 4, so the subsequent CSI-RS are located in time slots respectively 6.
  • the penultimate time domain symbol among the time domain symbols available for sideline transmission in each slot is used to transmit CSI-RS, and the data on the penultimate third time domain symbol is the data on the penultimate second symbol.
  • the third last time domain symbol may be an AGC symbol, and the first last time domain symbol and the fourth last time domain symbol may be GP symbols.
  • the CSI-RS resource configuration information also includes the following parameters:
  • the frequency-domain resource indication information of the CSI-RS resource indicates the PRB available for CSI-RS transmission through a bitmap
  • the system includes 30 PRBs, of which PRB4, PRB9, PRB14, PRB19, PRB24, and PRB29 have been allocated for PSFCH transmission, and the frequency domain resource indication information of CSI-RS resources is passed through 30 bits
  • the long bitmap indicates PRBs available for CSI-RS, and as shown in FIG. 22 , a total of 18 PRBs are available for CSI-RS transmission. Since each CSI-RS includes 6 PRBs, 3 CSI-RSs can be carried in a frequency division manner. Further, according to the parameter sl-CSI-RS-FreqAllocation, the REs or subcarriers used to bear the CSI-RS in the PRB of each CSI-RS can be determined.
  • the CSI-RS resource configuration information also includes the following parameters:
  • the CSI-RS resource configuration information is used to configure two CSI-RS resource sets, each CSI-RS resource set includes multiple CSI-RS resources, and specifically determine the configuration parameters of the CSI-RS resources.
  • Example 1 further, the CSI-RS resource configuration information also includes the following configuration parameters:
  • Repetition set this parameter to off in the CSI-RS resource set marked as 0, and set this parameter to on in the CSI-RS resource set marked as 1.
  • each CSI-RS resource set is also configured with its associated CSI report configuration identifier (CSI-ReportConfigId): for a CSI-RS resource set with an identifier of 0, its associated CSI-ReportConfigId is 'cir- RSRP'; for the CSI-RS resource set identified as 1, the CSI-ReportConfigId associated with it is 'none'.
  • CSI-ReportConfigId CSI report configuration identifier
  • the first terminal device uses the spatial domain transmission filter to transmit M CSI-RSs to the second terminal device, and one CSI-RS among the M CSI-RSs occupies one time slot available for the side
  • the second-to-last time-domain symbol and the third-to-last time-domain symbol in the time-domain symbols for row transmission that is, by configuring the second-to-last time-domain symbol and the third-to-last time-domain symbol in the slot occupied by the CSI-RS
  • the field symbols make CSI-RS and PSCCH or PSSCH not sent at the same time, which optimizes the transmission efficiency of CSI-RS.
  • the second terminal device may determine the slot positions of the subsequent multiple CSI-RS based on the slot where the first CSI-RS is located, so that the corresponding spatial domain receiving filter may be determined and received in advance.
  • the first terminal device only needs to indicate the resource position occupied by the first CSI-RS to determine the resource positions occupied by all CSI-RS.
  • the CSI-RS resources and PSFCH resources Can be reused to improve resource utilization.
  • CSI-RS resources and PSFCH resources can be multiplexed in the same slot.
  • PSFCH resources are not included in the slots of the CSI-RS.
  • Fig. 23 shows a schematic block diagram of a terminal device 300 according to an embodiment of the present application.
  • the terminal device 300 is a first terminal device.
  • the terminal device 300 includes:
  • a communication unit 310 configured to use a spatial domain transmission filter to transmit M CSI-RSs to a second terminal device;
  • one CSI-RS among the M CSI-RS occupies the penultimate time domain symbol and the penultimate time domain symbol among the time domain symbols available for sidelink transmission in a slot, and the M CSI-RS -
  • the RS is used to select a target airspace transmit filter, or the M CSI-RS are used to select a target airspace receive filter, and M is a positive integer.
  • the data on the third-to-last time-domain symbol is a repetition of the data on the second-to-last time-domain symbol, or, the data on the third-to-last time-domain symbol is the same as the second-to-last time-domain symbol
  • the data on each time domain symbol is the same.
  • a time domain symbol before the penultimate time domain symbol is a guard interval GP symbol, and/or, a time domain symbol after the penultimate time domain symbol is a GP symbol.
  • the terminal device 300 further includes: a processing unit 320, wherein the processing unit 320 is configured to determine the CSI-RS resource or CSI-RS corresponding to the M CSI-RS according to the CSI-RS resource configuration information Collection of resources.
  • the CSI-RS resource configuration information includes at least one of the following:
  • the cycle of CSI-RS resources, the time slot offset of CSI-RS resources, the minimum time interval, the time interval between two adjacent CSI-RSs, the indication information of frequency domain resources that can be used to transmit CSI-RS, each CSI-RS The frequency domain resources included in RS resources, the minimum frequency domain resource size included in each CSI-RS resource, the interval between PRBs of adjacent physical resource blocks that map CSI-RS, and the indication of the frequency domain position of CSI-RS resources within a PRB Information, CSI-RS density, indication information used to indicate the number of CSI-RS resources multiplexed by way of code division multiplexing, code division multiplexing type, scrambling code identifier.
  • the time slot offset of the CSI-RS resource represents the time slot offset of the first time slot including the CSI-RS relative to the first time domain position, wherein the first time domain position includes The first slot in SFN#0 or the first slot in DFN#0.
  • the minimum time interval represents a minimum time interval between a CSI-RS and its associated first indication information, where the first indication information is used to instruct the first terminal device to send a CSI-RS.
  • the minimum time interval is equal to 0.
  • the time interval between two adjacent CSI-RSs is represented by the number of time slots, or the time interval between two adjacent CSI-RSs is represented by the number of periods of CSI-RS resources.
  • the time interval between two adjacent CSI-RSs is the time interval of one CSI-RS resource. cycle.
  • the frequency-domain resource indication information that can be used to transmit CSI-RS resources is used to determine information of PRBs that can be used to transmit CSI-RS.
  • the information of the PRB that can be used to transmit the CSI-RS is indicated by a bitmap, wherein each bit in the bitmap corresponds to a PRB, and the length of the bitmap is according to at least one of the following Determine: the number of PRBs included in the sidelink carrier, the number of PRBs included in the sidelink bandwidth part BWP, and the number of PRBs included in the resource pool.
  • the information of the PRBs that can be used to transmit the CSI-RS is determined by the starting frequency domain position and frequency domain length that can be used to transmit the CSI-RS.
  • the frequency domain resources used to transmit the physical sidelink feedback channel PSFCH and/or the sidelink positioning reference signal included in the frequency domain resources determined based on the starting frequency domain position and the frequency domain length are not used for transmission CSI-RS.
  • the interval between adjacent PRBs where the CSI-RS is mapped is used to determine the interval between two adjacent PRBs among the multiple PRBs mapped by one CSI-RS, where the interval between the two adjacent PRBs is The interval of is represented by the number of PRBs available for transmission of CSI-RS.
  • the CSI-RS resource configuration information does not include the interval between adjacent PRBs to which CSI-RSs are mapped, one CSI-RS occupies adjacent PRBs that can be used for CSI-RS transmission.
  • the indication information of the frequency domain position of the CSI-RS resource in one PRB is used to indicate the frequency domain position of the CSI-RS resource in one PRB.
  • the M CSI-RS sent by the first terminal device occupy the same REs in the PRB.
  • the code division multiplexing type includes: code division multiplexing CDM, or CDM and frequency division multiplexing FDM.
  • the scrambling code identifier is used to generate a CSI-RS sequence.
  • the CSI-RS resource configuration information further includes at least one of the following:
  • the index of the CSI-RS resource corresponding to the M CSI-RS, the index of the CSI-RS resource set corresponding to the M CSI-RS, the CSI-RS resource set corresponding to the M CSI-RS and the channel state information CSI report The corresponding relationship of quantity, the quantity of CSI-RS resources included in the CSI-RS resource set corresponding to the M CSI-RS, is used to indicate the indication information of the quasi-co-site QCL type, and the second terminal device sends the first The number of CSI-RS resources reported or fed back by the terminal device, the value of the corresponding repeated field in the configuration information of the CSI-RS resources corresponding to the M CSI-RS or the CSI-RS resource set;
  • the corresponding repetition field in the configuration information of the CSI-RS resource or CSI-RS resource set corresponding to the M CSI-RS takes the first value to indicate that the first terminal device does not use the same spatial domain transmission filter to transmit CSI - RS
  • the CSI-RS resource corresponding to the M CSI-RS or the corresponding repetition field in the configuration information of the CSI-RS resource set takes the second value to instruct the first terminal device to use the same spatial domain transmission filter to transmit CSI -RS.
  • CSI-RS resources in different time slots have the same frequency domain resources; and/or, CSI-RS resources in different time slots have the same code domain resources; and/or, in different time slots
  • the CSI-RS resources have the same sequence.
  • CSI-RS resources in different time slots have different frequency domain resources, and/or, CSI-RS resources in different time slots have different code domain resources, and/or, in different time slots
  • the CSI-RS resources have different sequences.
  • the corresponding repetition in the configuration information of the CSI-RS resource or CSI-RS resource set corresponding to the M CSI-RS takes a first value, and the first value is used to indicate that the first terminal device does not use the same spatial domain transmission filter to transmit CSI-RS;
  • the corresponding repetition field in the configuration information of the CSI-RS resource or CSI-RS resource set corresponding to the M CSI-RS takes the second value,
  • the second value is used to instruct the first terminal device to use the same spatial domain transmission filter to transmit the CSI-RS.
  • the communication unit 310 is further configured to send second indication information to the second terminal device
  • the second indication information is used to indicate that the CSI-RS sent by the first terminal device is used to select a spatial domain transmission filter for the first terminal device to transmit sidelink data; or, the second indication information is used to Instructing the CSI-RS sent by the first terminal device to select a spatial receiving filter for the second terminal device to receive sidelink data; or, the second indication information is used to indicate the CSI sent by the first terminal device - RS is used to measure channel state information.
  • the communication unit 310 is further configured to send the first lateral configuration information to the second terminal device;
  • the first side row configuration information includes at least one of the following:
  • the index of the CSI-RS resource corresponding to the M CSI-RS, the index of the CSI-RS resource set corresponding to the M CSI-RS, the CSI-RS resource set corresponding to the M CSI-RS and the channel state information CSI report The corresponding relationship of the amount, the number of CSI-RS resources included in the CSI-RS resource set corresponding to the M CSI-RS, the value of the M, the indication information used to indicate the QCL type, the period of the CSI-RS resource, The time slot offset of the CSI-RS resource, the minimum time interval, the time interval between two adjacent CSI-RSs among the M CSI-RSs, used to indicate the frequency domain occupied by the CSI-RSs among the M CSI-RSs Resource indication information, frequency domain resources included in each CSI-RS resource corresponding to the M CSI-RS, minimum frequency domain resource size included in each CSI-RS resource corresponding to the M CSI-RS, mapping CSI-RS The interval between adjacent PRBs of the RS is used to indicate the
  • the corresponding repetition field in the configuration information of the CSI-RS resource or CSI-RS resource set corresponding to the M CSI-RS takes the first value to indicate that the first terminal device does not use the same spatial domain transmission filter to transmit CSI - RS
  • the CSI-RS resource corresponding to the M CSI-RS or the corresponding repetition field in the configuration information of the CSI-RS resource set takes the second value to instruct the first terminal device to use the same spatial domain transmission filter to transmit CSI -RS.
  • the CSI reporting amount includes at least one of the following:
  • the slot indication information is used to indicate the time slot where the CSI-RS is located.
  • the sequence corresponding to one CSI-RS among the M CSI-RS is determined according to at least one of the following information:
  • CSI-RS resource set identifier CSI-RS resource identifier, cyclic redundancy check CRC sequence generated based on SCI, source identification information, destination identification information, scrambling code identification;
  • the SCI is the SCI associated with the CSI-RS
  • the source identification information is used to indicate the identification information of the terminal sending the CSI-RS
  • the destination identification information is used to indicate the identification information of the terminal receiving the CSI-RS
  • the scrambling code The identifier is determined according to the scrambling code identifier information included in the CSI-RS resource configuration information corresponding to the CSI-RS.
  • the source identification information is determined according to the source identification information in the SCI associated with the CSI-RS
  • the destination identification information is determined according to the destination identification information in the SCI associated with the CSI-RS.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • terminal device 300 may correspond to the first terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 300 are respectively in order to realize the The corresponding process of the first terminal device in the method 200 is shown, and for the sake of brevity, details are not repeated here.
  • Fig. 24 shows a schematic block diagram of a terminal device 400 according to an embodiment of the present application.
  • the terminal device 400 is a second terminal device.
  • the terminal device 400 includes:
  • a communication unit 410 configured to receive M CSI-RSs transmitted by the first terminal device using a spatial domain transmission filter
  • one CSI-RS among the M CSI-RS occupies the penultimate time domain symbol and the penultimate time domain symbol among the time domain symbols available for sidelink transmission in a slot, and the M CSI-RS -
  • the RS is used to select a target airspace transmit filter, or the M CSI-RS are used to select a target airspace receive filter, and M is a positive integer.
  • the data on the third-to-last time-domain symbol is a repetition of the data on the second-to-last time-domain symbol, or, the data on the third-to-last time-domain symbol is the same as the second-to-last time-domain symbol
  • the data on each time domain symbol is the same.
  • a time domain symbol before the penultimate time domain symbol is a guard interval GP symbol, and/or, a time domain symbol after the penultimate time domain symbol is a GP symbol.
  • the CSI-RS resources or CSI-RS resource sets corresponding to the M CSI-RS are determined based on CSI-RS resource configuration information.
  • the CSI-RS resource configuration information includes at least one of the following:
  • the cycle of CSI-RS resources, the time slot offset of CSI-RS resources, the minimum time interval, the time interval between two adjacent CSI-RSs, the indication information of frequency domain resources that can be used to transmit CSI-RS, each CSI-RS The frequency domain resources included in RS resources, the minimum frequency domain resource size included in each CSI-RS resource, the interval between PRBs of adjacent physical resource blocks that map CSI-RS, and the indication of the frequency domain position of CSI-RS resources within a PRB Information, CSI-RS density, indication information used to indicate the number of CSI-RS resources multiplexed by way of code division multiplexing, code division multiplexing type, scrambling code identifier.
  • the time slot offset of the CSI-RS resource represents the time slot offset of the first time slot including the CSI-RS relative to the first time domain position, wherein the first time domain position includes The first slot in SFN#0 or the first slot in DFN#0.
  • the minimum time interval represents a minimum time interval between a CSI-RS and its associated first indication information, where the first indication information is used to instruct the first terminal device to send a CSI-RS.
  • the minimum time interval is equal to 0.
  • the time interval between two adjacent CSI-RSs is represented by the number of time slots, or the time interval between two adjacent CSI-RSs is represented by the number of periods of CSI-RS resources.
  • the time interval between two adjacent CSI-RSs is the time interval of one CSI-RS resource. cycle.
  • the frequency-domain resource indication information that can be used to transmit CSI-RS resources is used to determine information of PRBs that can be used to transmit CSI-RS.
  • the information of the PRB that can be used to transmit the CSI-RS is indicated by a bitmap, wherein each bit in the bitmap corresponds to a PRB, and the length of the bitmap is according to at least one of the following Determine: the number of PRBs included in the sidelink carrier, the number of PRBs included in the sidelink bandwidth part BWP, and the number of PRBs included in the resource pool.
  • the information of the PRBs that can be used to transmit the CSI-RS is determined by the starting frequency domain position and frequency domain length that can be used to transmit the CSI-RS.
  • the frequency domain resources used to transmit the physical sidelink feedback channel PSFCH and/or the sidelink positioning reference signal included in the frequency domain resources determined based on the starting frequency domain position and the frequency domain length are not used for transmission CSI-RS.
  • the interval between adjacent PRBs where the CSI-RS is mapped is used to determine the interval between two adjacent PRBs among the multiple PRBs mapped by one CSI-RS, where the interval between the two adjacent PRBs is The interval of is represented by the number of PRBs available for transmission of CSI-RS.
  • the CSI-RS resource configuration information does not include the interval between adjacent PRBs to which CSI-RSs are mapped, one CSI-RS occupies adjacent PRBs that can be used for CSI-RS transmission.
  • the indication information of the frequency domain position of the CSI-RS resource in one PRB is used to indicate the frequency domain position of the CSI-RS resource in one PRB.
  • the M CSI-RS sent by the first terminal device occupy the same REs in the PRB.
  • the code division multiplexing type includes: code division multiplexing CDM, or CDM and frequency division multiplexing FDM.
  • the scrambling code identifier is used to generate a CSI-RS sequence.
  • the CSI-RS resource configuration information further includes at least one of the following:
  • the index of the CSI-RS resource corresponding to the M CSI-RS, the index of the CSI-RS resource set corresponding to the M CSI-RS, the CSI-RS resource set corresponding to the M CSI-RS and the channel state information CSI report The corresponding relationship of quantity, the quantity of CSI-RS resources included in the CSI-RS resource set corresponding to the M CSI-RS, is used to indicate the indication information of the quasi-co-site QCL type, and the second terminal device sends the first The number of CSI-RS resources reported or fed back by the terminal device, the value of the corresponding repeated field in the configuration information of the CSI-RS resources corresponding to the M CSI-RS or the CSI-RS resource set;
  • the corresponding repetition field in the configuration information of the CSI-RS resource or CSI-RS resource set corresponding to the M CSI-RS takes the first value to indicate that the first terminal device does not use the same spatial domain transmission filter to transmit CSI - RS
  • the CSI-RS resource corresponding to the M CSI-RS or the corresponding repetition field in the configuration information of the CSI-RS resource set takes the second value to instruct the first terminal device to use the same spatial domain transmission filter to transmit CSI -RS.
  • the CSI-RS resources in different time slots have the same frequency domain resources; and/or, the CSI-RS resources in different time slots have the same code domain resources; and/or, in different time slots
  • the CSI-RS resources have the same sequence.
  • CSI-RS resources in different time slots have different frequency domain resources, and/or, CSI-RS resources in different time slots have different code domain resources, and/or, in different time slots
  • the CSI-RS resources have different sequences.
  • the corresponding repetition in the configuration information of the CSI-RS resource or CSI-RS resource set corresponding to the M CSI-RS takes a first value, and the first value is used to indicate that the first terminal device does not use the same spatial domain transmission filter to transmit CSI-RS;
  • the corresponding repetition field in the configuration information of the CSI-RS resource or CSI-RS resource set corresponding to the M CSI-RS takes the second value,
  • the second value is used to instruct the first terminal device to use the same spatial domain transmission filter to transmit the CSI-RS.
  • the communication unit 410 is further configured to receive second indication information sent by the first terminal device
  • the second indication information is used to indicate that the CSI-RS sent by the first terminal device is used to select a spatial domain transmission filter for the first terminal device to transmit sidelink data; or, the second indication information is used to Instructing the CSI-RS sent by the first terminal device to select a spatial receiving filter for the second terminal device to receive sidelink data; or, the second indication information is used to indicate the CSI sent by the first terminal device - RS is used to measure channel state information.
  • the communication unit 410 is also configured to receive the first side row configuration information sent by the first terminal device;
  • the first side row configuration information includes at least one of the following:
  • the index of the CSI-RS resource corresponding to the M CSI-RS, the index of the CSI-RS resource set corresponding to the M CSI-RS, the CSI-RS resource set corresponding to the M CSI-RS and the channel state information CSI report The corresponding relationship of the amount, the number of CSI-RS resources included in the CSI-RS resource set corresponding to the M CSI-RS, the value of the M, the indication information used to indicate the QCL type, the period of the CSI-RS resource, The time slot offset of the CSI-RS resource, the minimum time interval, the time interval between two adjacent CSI-RSs among the M CSI-RSs, used to indicate the frequency domain occupied by the CSI-RSs among the M CSI-RSs Resource indication information, frequency domain resources included in each CSI-RS resource corresponding to the M CSI-RS, minimum frequency domain resource size included in each CSI-RS resource corresponding to the M CSI-RS, mapping CSI-RS The interval between adjacent PRBs of the RS is used to indicate the
  • the corresponding repetition field in the configuration information of the CSI-RS resource or CSI-RS resource set corresponding to the M CSI-RS takes the first value to indicate that the first terminal device does not use the same spatial domain transmission filter to transmit CSI - RS
  • the CSI-RS resource corresponding to the M CSI-RS or the corresponding repetition field in the configuration information of the CSI-RS resource set takes the second value to instruct the first terminal device to use the same spatial domain transmission filter to transmit CSI -RS.
  • the CSI reporting amount includes at least one of the following: CSI-RS resource indication CRI, CRI and reference signal received power RSRP, CRI and signal-to-interference and noise ratio SINR, time slot indication information, time slot indication information and RSRP , time slot indication information and SINR are not reported; wherein, the time slot indication information is used to indicate the time slot where the CSI-RS is located.
  • the sequence corresponding to one CSI-RS among the M CSI-RS is determined according to at least one of the following information:
  • CSI-RS resource set identifier CSI-RS resource identifier, cyclic redundancy check CRC sequence generated based on SCI, source identification information, destination identification information, scrambling code identification;
  • the SCI is the SCI associated with the CSI-RS
  • the source identification information is used to indicate the identification information of the terminal sending the CSI-RS
  • the destination identification information is used to indicate the identification information of the terminal receiving the CSI-RS
  • the scrambling code The identifier is determined according to the scrambling code identifier information included in the CSI-RS resource configuration information corresponding to the CSI-RS.
  • the source identification information is determined according to the source identification information in the SCI associated with the CSI-RS
  • the destination identification information is determined according to the destination identification information in the SCI associated with the CSI-RS.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system-on-chip.
  • terminal device 400 may correspond to the second terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 400 are respectively in order to realize the The corresponding process of the second terminal device in the method 200 is shown, and for the sake of brevity, details are not repeated here.
  • FIG. 25 is a schematic structural diagram of a communication device 500 provided by an embodiment of the present application.
  • the communication device 500 shown in FIG. 25 includes a processor 510, and the processor 510 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the communication device 500 may further include a memory 520 .
  • the processor 510 can invoke and run a computer program from the memory 520, so as to implement the method in the embodiment of the present application.
  • the memory 520 may be an independent device independent of the processor 510 , or may be integrated in the processor 510 .
  • the communication device 500 may further include a transceiver 530, and the processor 510 may control the transceiver 530 to communicate with other devices, specifically, to send information or data to other devices, or Receive messages or data from other devices.
  • the transceiver 530 may include a transmitter and a receiver.
  • the transceiver 530 may further include antennas, and the number of antennas may be one or more.
  • the communication device 500 may specifically be the terminal device of the embodiment of the present application, and the communication device 500 may implement the corresponding processes implemented by the first terminal device in each method of the embodiment of the present application. For brevity, in This will not be repeated here.
  • the communication device 500 may specifically be the terminal device in the embodiment of the present application, and the communication device 500 may implement the corresponding process implemented by the second terminal device in each method of the embodiment of the present application. For the sake of brevity, in This will not be repeated here.
  • Fig. 26 is a schematic structural diagram of a device according to an embodiment of the present application.
  • the apparatus 600 shown in FIG. 26 includes a processor 610, and the processor 610 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the device 600 may further include a memory 620 .
  • the processor 610 can invoke and run a computer program from the memory 620, so as to implement the method in the embodiment of the present application.
  • the memory 620 may be an independent device independent of the processor 610 , or may be integrated in the processor 610 .
  • the device 600 may further include an input interface 630 .
  • the processor 610 can control the input interface 630 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.
  • the device 600 may further include an output interface 640 .
  • the processor 610 can control the output interface 640 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the device can be applied to the terminal device in the embodiment of the present application, and the device can realize the corresponding process implemented by the first terminal device in each method of the embodiment of the present application, for the sake of brevity, no longer repeat.
  • the device can be applied to the terminal device in the embodiment of the present application, and the device can realize the corresponding process implemented by the second terminal device in each method of the embodiment of the present application, for the sake of brevity, no longer repeat.
  • the device mentioned in the embodiment of the present application may also be a chip.
  • it may be a system-on-a-chip, a system-on-a-chip, a system-on-a-chip, or a system-on-a-chip.
  • FIG. 27 is a schematic block diagram of a communication system 700 provided by an embodiment of the present application. As shown in FIG. 27 , the communication system 700 includes a first terminal device 710 and a second terminal device 720 .
  • the first terminal device 710 can be used to realize the corresponding functions realized by the first terminal device in the above method
  • the second terminal device 720 can be used to realize the corresponding functions realized by the second terminal device in the above method , for the sake of brevity, it is not repeated here.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM, SLDRAM Direct Memory Bus Random Access Memory
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is, the memory in the embodiments of the present application is intended to include, but not be limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the first terminal device in the methods of the embodiments of the present application, in order It is concise and will not be repeated here.
  • the computer-readable storage medium can be applied to the terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the second terminal device in the methods of the embodiments of the present application, in order It is concise and will not be repeated here.
  • the embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the first terminal device in the methods of the embodiments of the present application.
  • the computer program instructions cause the computer to execute the corresponding processes implemented by the first terminal device in the methods of the embodiments of the present application.
  • the computer program product can be applied to the terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the second terminal device in the methods of the embodiments of the present application.
  • the computer program instructions cause the computer to execute the corresponding processes implemented by the second terminal device in the methods of the embodiments of the present application.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the terminal device in the embodiment of the present application.
  • the computer program executes the corresponding method implemented by the first terminal device in each method of the embodiment of the present application. For the sake of brevity, the process will not be repeated here.
  • the computer program can be applied to the terminal device in the embodiment of the present application.
  • the computer program executes the corresponding method implemented by the second terminal device in each method of the embodiment of the present application. For the sake of brevity, the process will not be repeated here.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种无线通信的方法和终端设备,配置了用于传输CSI-RS的CSI-RS资源,基于所配置的CSI-RS资源传输CSI-RS,从而可以基于发送的CSI-RS选取最优空域发送滤波器或最优空域接收滤波器。该无线通信的方法,包括:第一终端设备使用空域发送滤波器向第二终端设备发送M个CSI-RS;其中,该M个CSI-RS中的一个CSI-RS占用一个时隙中可用于侧行传输的时域符号中的倒数第二个时域符号和倒数第三个时域符号,该M个CSI-RS用于选取目标空域发送滤波器,或者,该M个CSI-RS用于选取目标空域接收滤波器,M为正整数。

Description

无线通信的方法和终端设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种无线通信的方法和终端设备。
背景技术
为了提升侧行通信***的传输速率,考虑在侧行传输***中使用毫米波频段,而在侧行毫米波传输中,发送端需要发送信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS),以确定发送端的最优空域发送滤波器,和/或,确定接收端的最优空域接收滤波器。然而,具体如何配置用于传输CSI-RS的CSI-RS资源,以基于发送的CSI-RS选取最优空域发送滤波器或最优空域接收滤波器,是一个需要解决的问题。
发明内容
本申请实施例提供了一种无线通信的方法和终端设备,配置了用于传输CSI-RS的CSI-RS资源,基于所配置的CSI-RS资源传输CSI-RS,从而可以基于发送的CSI-RS选取最优空域发送滤波器或最优空域接收滤波器。
第一方面,提供了一种无线通信的方法,该方法包括:
第一终端设备使用空域发送滤波器向第二终端设备发送M个CSI-RS;
其中,该M个CSI-RS中的一个CSI-RS占用一个时隙中可用于侧行传输的时域符号中的倒数第二个时域符号和倒数第三个时域符号,该M个CSI-RS用于选取目标空域发送滤波器,或者,该M个CSI-RS用于选取目标空域接收滤波器,M为正整数。
第二方面,提供了一种无线通信的方法,该方法包括:
第二终端设备接收第一终端设备使用空域发送滤波器发送的M个CSI-RS;
其中,该M个CSI-RS中的一个CSI-RS占用一个时隙中可用于侧行传输的时域符号中的倒数第二个时域符号和倒数第三个时域符号,该M个CSI-RS用于选取目标空域发送滤波器,或者,该M个CSI-RS用于选取目标空域接收滤波器,M为正整数。
第三方面,提供了一种终端设备,用于执行上述第一方面中的方法。
具体地,该终端设备包括用于执行上述第一方面中的方法的功能模块。
第四方面,提供了一种终端设备,用于执行上述第二方面中的方法。
具体地,该终端设备包括用于执行上述第二方面中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面中的方法。
第六方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面中的方法。
第七方面,提供了一种装置,用于实现上述第一方面至第二方面中的任一方面中的方法。
具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第二方面中的任一方面中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
通过上述技术方案,第一终端设备使用空域发送滤波器向第二终端设备发送M个CSI-RS,且M个CSI-RS中的一个CSI-RS占用一个时隙中可用于侧行传输的时域符号中的倒数第二个时域符号和倒数第三个时域符号,也即,本申请实施例配置了CSI-RS占用时隙中的倒数第二个时域符号和倒数第三个时域符号,使CSI-RS与PSCCH或PSSCH不同时发送,优化了CSI-RS的传输效率。
附图说明
图1是本申请实施例应用的一种通信***架构的示意性图。
图2是本申请实施例应用的另一种通信***架构的示意性图。
图3是本申请提供的一种网络覆盖范围内侧行通信的示意性图。
图4是本申请提供的一种部分网络覆盖侧行通信的示意性图。
图5是本申请提供的一种网络覆盖外侧行通信的示意性图。
图6是本申请提供的一种存在中央控制节点的侧行通信的示意性图。
图7是本申请提供的一种单播侧行通信的示意性图。
图8是本申请提供的一种组播侧行通信的示意性图。
图9是本申请提供的一种广播侧行通信的示意性图。
图10是本申请提供的一种NR-V2X中的时隙结构的示意性图。
图11是本申请提供的一种SL CSI-RS时频位置的示意性图。
图12是本申请提供的一种不使用模拟波束和使用模拟波束的示意性图。
图13是本申请提供的一种配置PDSCH的TCI状态的示意性图。
图14是根据本申请实施例提供的一种无线通信的方法的示意性流程图。
图15是根据本申请实施例提供的一种时隙中CSI-RS符号的示意性图。
图16是根据本申请实施例提供的另一种时隙中CSI-RS符号的示意性图。
图17是根据本申请实施例提供的一种CSI-RS资源的周期为2个时隙的示意性图。
图18是根据本申请实施例提供的一种比特位图指示可用于传输CSI-RS的PRB的示意性图。
图19至20分别是根据本申请实施例提供的基于起始频域位置和频域长度确定可用于传输CSI-RS的PRB的示意性图。
图21是根据本申请实施例提供的一种CSI-RS资源集合的时域资源的示意性图。
图22是根据本申请实施例提供的一种可用于传输CSI-RS的PRB的示意性图。
图23是根据本申请实施例提供的一种终端设备的示意性框图。
图24是根据本申请实施例提供的另一种终端设备的示意性框图。
图25是根据本申请实施例提供的一种通信设备的示意性框图。
图26是根据本申请实施例提供的一种装置的示意性框图。
图27是根据本申请实施例提供的一种通信***的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信***,例如:全球移动通讯(Global System of Mobile communication,GSM)***、码分多址(Code Division Multiple Access,CDMA)***、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)***、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)***、先进的长期演进(Advanced long term evolution,LTE-A)***、新空口(New Radio,NR)***、NR***的演进***、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)***、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)***、非地面通信网络(Non-Terrestrial Networks,NTN)***、通用移动通信***(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)***或其他通信***等。
通常来说,传统的通信***支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信***将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信***。
可选地,本申请实施例中的通信***可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
可选地,本申请实施例中的通信***可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信***也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数 字助理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信***例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备或者基站(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
应理解,本文中术语“***”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,“预定义”或“预配置”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信***中的相关协议,本申请对此不做限定。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以下相关技 术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
图1是本申请实施例适用的一种通信***的示意图。车载终端(车载终端121和车载终端122)的传输资源是由基站110分配的,车载终端根据基站110分配的资源在侧行链路上进行数据的发送。具体地,基站110可以为终端分配单次传输的资源,也可以为终端分配半静态传输的资源。
图2是本申请实施例适用的另一种通信***的示意图。车载终端(车载终端131和车载终端132)在侧行链路的资源上自主选取传输资源进行数据传输。可选地,车载终端可以随机选取传输资源,或者通过侦听的方式选取传输资源。
需要说明的是,在侧行通信中,根据进行通信的终端所处的网络覆盖情况,可以分为网络覆盖内侧行通信,如图3所示;部分网络覆盖侧行通信,如图4所示;及网络覆盖外侧行通信,如图5所示。
图3:在网络覆盖内侧行通信中,所有进行侧行通信的终端均处于基站的覆盖范围内,从而,上述终端均可以通过接收基站的配置信令,基于相同的侧行配置进行侧行通信。
图4:在部分网络覆盖侧行通信情况下,部分进行侧行通信的终端位于基站的覆盖范围内,这部分终端能够接收到基站的配置信令,而且根据基站的配置进行侧行通信。而位于网络覆盖范围外的终端,无法接收基站的配置信令,在这种情况下,网络覆盖范围外的终端将根据预配置(pre-configuration)信息及位于网络覆盖范围内的终端发送的物理侧行广播信道(Physical Sidelink Broadcast Channel,PSBCH)中携带的信息确定侧行配置,进行侧行通信。
图5:对于网络覆盖外侧行通信,所有进行侧行通信的终端均位于网络覆盖范围外,所有终端均根据预配置(pre-configuration)信息确定侧行配置进行侧行通信。
图6:对于有中央控制节点的侧行通信,多个终端构成一个通信组,该通信组内具有中央控制节点,又可以称为组头终端(Cluster Header,CH),该中央控制节点具有以下功能之一:负责通信组的建立;组成员的加入、离开;进行资源协调,为其他终端分配侧行传输资源,接收其他终端的侧行反馈信息;与其他通信组进行资源协调等功能。
需要说明的是,设备到设备通信是基于终端到终端(Device to Device,D2D)的一种侧行链路(Sidelink,SL)传输技术,与传统的蜂窝***中通信数据通过基站接收或者发送的方式不同,车联网***采用终端到终端直接通信的方式,因此具有更高的频谱效率以及更低的传输时延。在3GPP定义了两种传输模式,分别记为:第一模式(sidelink resource allocation mode 1)和第二模式(sidelink resource allocation mode 2)。
第一模式:终端的传输资源是由基站分配的,终端根据基站分配的资源在侧行链路上进行数据的发送;基站可以为终端分配单次传输的资源,也可以为终端分配半静态传输的资源。如图3所示,终端位于网络覆盖范围内,网络为终端分配侧行传输使用的传输资源。
第二模式:终端在资源池中选取一个资源进行数据的传输。如图5所示,终端位于小区覆盖范围外,终端在预配置的资源池中自主选取传输资源进行侧行传输;或者,如图3所示,终端在网络配置的资源池中自主选取传输资源进行侧行传输。
在新空口-车辆到其他设备(New Radio-Vehicle to Everything,NR-V2X)中,支持自动驾驶,因此对车辆之间数据交互提出了更高的要求,如更高的吞吐量、更低的时延、更高的可靠性、更大的覆盖范围、更灵活的资源分配等。
在LTE-V2X中,支持广播传输方式,在NR-V2X中,引入了单播和组播的传输方式。对于单播传输,其接收端终端只有一个终端,如图7所示,UE1、UE2之间进行单播传输;对于组播传输,其接收端是一个通信组内的所有终端,或者是在一定传输距离内的所有终端,如图8所示,UE1、UE2、UE3和UE4构成一个通信组,其中UE1发送数据,该组内的其他终端设备都是接收端终端;对于广播传输方式,其接收端是发送端终端周围的任意一个终端,如图9所示,UE1是发送端终端,其周围的其他终端,UE2-UE6都是接收端终端。
为便于更好的理解本申请实施例,对本申请相关的NR-V2X***帧结构进行说明。
NR-V2X中的时隙结构图10所示,图10中的(a)表示时隙中不包括物理侧行反馈信道(Physical Sidelink Feedback Channel,PSFCH)的时隙结构;图10中的图(b)表示包括PSFCH的时隙结构。
NR-V2X中物理侧行控制信道(Physical Sidelink Control Channel,PSCCH)在时域上从该时隙的第二个侧行符号开始,占用2个或3个正交频分复用(Orthogonal frequency-division multiplexing,OFDM)符号,在频域上可以占用{10,12 15,20,25}个物理资源块(physical resource block,PRB)。为了降低UE对PSCCH的盲检测的复杂度,在一个资源池内只允许配置一个PSCCH符号个数和PRB个数。另外,因为子信道为NR-V2X中物理侧行共享信道(Physical Sidelink Shared Channel,PSSCH)资源分配的最小粒度,PSCCH占用的PRB个数必须小于或等于资源池内一个子信道中包含的PRB个数, 以免对PSSCH资源选择或分配造成额外的限制。PSSCH在时域上也是从该时隙的第二个侧行符号开始,该时隙中的最后一个时域符号为保护间隔(Guard Period,GP)符号,其余符号映射PSSCH。该时隙中的第一个侧行符号是第二个侧行符号的重复,通常接收端终端将第一个侧行符号用作自动增益控制(Auto gain control,AGC)符号,该符号上的数据通常不用于数据解调。PSSCH在频域上占据M个子信道,每个子信道包括N个连续的PRB。如图10中的(a)所示。
当时隙中包含PSFCH信道时,该时隙中倒数第二个符号和倒数第三个符号用作PSFCH信道传输,并且倒数第三个符号上的数据是倒数第二个符号上数据的重复,在PSFCH信道之前的一个时域符号用作GP符号,如图10中的(b)所示。
为便于更好的理解本申请实施例,对本申请相关的侧行(Sidelink,SL)CSI-RS进行说明。
NR-V2X中支持SL CSI-RS,SL CSI-RS可以在满足以下3个条件时发送:
UE发送对应的PSSCH,也就是说,UE不能只发送SL CSI-RS;
高层信令激活了侧行信道状态信息(Channel State Information,CSI)上报;
在高层信令激活了侧行CSI上报的情况下,UE发送的第二阶SCI中的相应比特触发了侧行CSI上报。
SL CSI-RS支持的最大端口数为2,两个端口时不同端口的SL CSI-RS在同一个正交频分复用(Orthogonal frequency-division multiplexing,OFDM)符号的相邻两个资源元素(Resource Element,RE)上通过码分的方式复用,在一个PRB内每个端口的SLCSI-RS占用的RE平均数量为1,即密度为1。所以,在一个PRB内SL CSI-RS最多只会出现在一个OFDM符号上,这个OFDM符号的具***置由发送端终端确定。SL CSI-RS所在的OFDM符号的位置由PC5-无线资源控制(Radio Resource Control,RRC)中的侧行CSI-RS第一个符号(sl-CSI-RS-FirstSymbol)参数指示。
SL CSI-RS在一个PRB内占用的第一个RE的位置由PC5-RRC中的侧行CSI-RS频域分配(sl-CSI-RS-FreqAllocation)参数指示,如果SL CSI-RS为一个端口,该参数为长度为12的比特位图,对应一个PRB内的12个RE。如果SL CSI-RS为两个端口,该参数为长度为6的比特位图,在这种情况下SL CSI-RS占用2f(1)和2f(1)+1两个RE,其中f(1)表示值为1的比特在上述比特位图中的索引。SL CSI-RS的频域位置也是由发送终端确定,但是确定的SL CSI-RS的频域位置不能和相位跟踪参考信号(Phase Tracking Reference Signal,PT-RS)发生冲突。图11给出了一种SL CSI-RS时频位置示意图,在图11中,SL CSI-RS端口数为2,sl-CSI-RS-FirstSymbol为8,sl-CSI-RS-FreqAllocation为[b 5,b 4,b 3,b 2,b 1,b 0]=[0,0,0,1,0,0],也即,f(1)=2,2f(1)=4和2f(1)+1=5,SL CSI-RS占用RE#4和RE#5。
为便于更好的理解本申请实施例,对本申请相关的多波束***进行说明。
NR或5G***的设计目标包括高频段(例如6GHz以上的频段)的大带宽通信。当工作频率变高时,传输过程中的路径损耗会增大,从而影响高频***的覆盖能力。为了能够有效地保证高频段NR***的覆盖,一种有效的技术方案便是基于大规模天线阵列(Massive MIMO),以形成增益更大的赋形波束,克服传播损耗,确保***覆盖。
毫米波天线阵列,由于波长更短,天线阵子间距以及孔径更小,可以让更多的物理天线阵子集成在一个有限大小的二维天线阵列中,同时,由于毫米波天线阵列的尺寸有限,从硬件复杂度、成本开销以及功耗等因素考虑,无法采用数字波束赋形方式,而是通常采用模拟波束赋形方式,在增强网络覆盖同时,也可以降低设备的实现复杂度。
一个小区(扇区)使用一个较宽的波束(beam)来覆盖整个小区。因此在每个时刻,小区覆盖范围内终端设备都有机会获得***分配的传输资源。
NR/5G的多波束(Multi-beam)***通过不同的beam来覆盖整个小区,即每个beam覆盖一个较小的范围,通过时间上的扫描(sweeping)来实现多个beam覆盖整个小区的效果。
图12示出了不使用波束赋形和使用波束赋形***的示意图。图12中的(a)是传统的、不使用波束赋形的LTE和NR***,图12中的(b)是使用波束赋形的NR***:
在图12中的(a)中,LTE/NR网络侧使用一个宽的波束来覆盖整个小区,用户1-5在任何时刻都可以接收到网络信号。
与此相反,图12中的(b)中网络侧使用较窄的波束(例如图中的波束1-4),在不同的时刻使用不同波束来覆盖小区中的不同区域,例如在时刻1,NR网络侧通过波束1覆盖用户1所在的区域;在时刻2,NR网络侧通过波束2覆盖用户2所在的区域;在时刻3,NR网络侧通过波束3覆盖用户3和用户4所在的区域;在时刻4,NR网络侧通过波束4覆盖用户5所在的区域。
图12中的(b)中,由于网络使用较窄的波束,发射能量可以更集中,因此可以覆盖更远的距离; 同时由于波束较窄,每个波束只能覆盖小区中的部分区域,因此模拟波束赋形是“以时间换空间”。
模拟波束赋形不仅可以用于网络侧设备,也同样可以用于终端。同时,模拟波束赋形不仅可以用于信号的发送(称为发送波束),同样也可以用于信号的接收(称为接收波束)。
不同的波束(beam)通过上面承载的不同信号来进行识别。
一些不同波束(beam)上传输不同的同步信号块(Synchronization Signal block,SS block),终端设备可以通过不同的SS block来分辨出不同的波束(beam)。
一些不同的波束(beam)上传输不同的信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS),终端设备通过CSI-RS信号/CSI-RS资源来识别出不同的波束(beam)。
在一个多波束(multi-beam)***中,物理下行控制信道(Physical Downlink Control Channel,PDCCH)和物理下行共享信道(Physical Downlink Shared Channel,PDSCH)可以通过不同的下行发送波束来传输。
对于载频在6GHz以下***,终端侧一般没有模拟波束,因此采用全向天线(或者接近全向的天线)来接收基站不同下行发送波束发送的信号。
对于毫米波***,终端侧可能会有模拟波束,需要使用对应的下行接收波束去接收对应的下行发送波束发送的信号。此时,需要相应的波束指示信息(beam indication)来协助终端设备确定网络侧的发送波束相关信息,或者终端侧对应的接收波束相关信息。
在NR协议中,波束指示信息不是直接指示波束本身,而是通过信号之间的准共站址(Quasi-co-located,QCL)假设(如QCL类型为“QCL-TypeD”的QCL假设)来进行指示。在终端侧,确定接收相应的信道/信号的统计特性,也是基于QCL准共址假设。
为便于更好的理解本申请实施例,对本申请相关的下行传输的QCL准共址指示/假设进行说明。
终端在进行信号接收时,为了提高接收性能,可以利用数据传输所对应的传输环境的特性来改进接收算法。例如可以利用信道的统计特性来优化信道估计器的设计和参数。在NR***中,数据传输所对应的这些特性通过QCL状态(QCL-Info)来表示。
下行传输如果来自不同的传输接收点(Transmission Reception Point,TRP)/天线阵列块(panel)/波束(beam),则数据传输所对应的传输环境的特性可能也会有变化,因此在NR***中,网络侧在传输下行控制信道或数据信道,会通过传输配置指示(Transmission Configuration Indicator,TCI)状态将对应的QCL状态信息指示给终端。
一个TCI状态可以包含如下配置:
TCI状态标识(ID),用于标识一个TCI状态;
QCL信息1;
QCL信息2(可选)。
其中,一个QCL信息又包含如下信息:
QCL类型(type)配置,可以是QCL-Type A,QCL-TypeB,QCL-TypeC或QCL-TypeD中的一个;
QCL参考信号配置,包括参考信号所在的小区标识(ID),带宽部分(Band Width Part,BWP)标识(ID)以及参考信号的标识(可以是CSI-RS资源标识或同步信号块索引)。
其中,如果QCL信息1和QCL信息2都配置了,至少一个QCL信息的QCL类型必须为QCL-TypeA,QCL-TypeB,QCL-TypeC中的一个,另一个QCL信息的QCL类型必须为QCL-Type D。
其中,不同QCL类型配置的定义如下:
'QCL-TypeA':{多普勒频移(Doppler shift),多普勒扩展(Doppler spread),平均时延(average delay),延时扩展(delay spread)};
'QCL-TypeB':{多普勒频移(Doppler shift),多普勒扩展(Doppler spread)};
'QCL-TypeC':{多普勒频移(Doppler shift),平均时延(average delay)};
'QCL-TypeD':{空间接收参数(Spatial Rx parameter)}。
在NR***中,网络侧可以为下行信号或下行信道指示相应的TCI状态。
如果网络侧通过TCI状态配置目标下行信道或目标下行信号的QCL参考信号为参考SSB或参考CSI-RS资源,且QCL类型配置为TypeA,TypeB或TypeC,则终端可以假设该目标下行信号与该参考SSB或参考CSI-RS资源的大尺度参数是相同的,该大尺度参数通过QCL类型配置来确定。
类似的,如果网络侧通过TCI状态配置目标下行信道或下行信号的QCL参考信号为参考SSB或参考CSI-RS资源,且QCL类型配置为TypeD,则终端可以采用与接收该参考SSB或参考CSI-RS资源相同的接收波束(即Spatial Rx parameter),来接收所述目标下行信道或目标下行信号。通常的,目标下行信道(或下行信号)与它的参考SSB或参考CSI-RS资源在网络侧由同一个TRP或者同一个 panel或者相同的波束来发送。如果两个下行信号或下行信道的传输TRP或传输panel或发送波束不同,通常会配置不同的TCI状态。
对于下行控制信道,可以通过无线资源控制(Radio Resource Control,RRC)信令或者RRC信令+媒体接入控制(Media Access Control,MAC)信令的方式来指示对应控制资源集(Control Resource Set,CORESET)的TCI状态。
对于下行数据信道,可用的TCI状态集合通过RRC信令来指示,并通过MAC层信令来激活其中部分TCI状态,最后通过下行控制信息(Downlink Control Information,DCI)中的TCI状态指示域从激活的TCI状态中指示一个或两个TCI状态,用于所述DCI调度的PDSCH。2个TCI状态的情况主要是针对多个TRP类似的场景。例如,如图13所示,网络设备通过RRC信令指示N个候选的TCI状态,并通过MAC信令激活K个TCI状态,最后通过DCI中的TCI状态指示域从激活的TCI状态中指示1个或2个使用的TCI状态。
为便于更好的理解本申请实施例,对本申请存在的技术问题进行说明。
侧行传输***中可以使用毫米波频段,以提升侧行通信***的传输速率,而在侧行毫米波传输中,发送端需要发送CSI-RS,以确定发送端的最优空域发送滤波器,和/或,确定接收端的最优空域接收滤波器。然而,具体如何配置用于传输CSI-RS的CSI-RS资源,以基于发送的CSI-RS选取最优空域发送滤波器(发送波束)或最优空域接收滤波器(接收波束),是一个需要解决的问题。
如果一个时隙中只发送一个CSI-RS,则每传输一次CSI-RS都需要一个时隙,且每个CSI-RS都要和PSSCH一起发送,在确定空域发送滤波器(发送波束)或空域接收滤波器(接收波束)的过程中,需要发送多个CSI-RS,会导致较大的传输时延。在空域发送滤波器和空域接收滤波器的选取过程中,发送端和接收端还没有确定最优的空域发送滤波器和空域接收滤波器,因此,通常不会进行正常的数据传输,因此,在空域发送滤波器和空域接收滤波器的选取过程中发送的PSSCH通常不会承载正常的侧行数据,而通常只会填充冗余比特、填充比特等,会降低传输效率。
另外,当发送端工作在模式2(即上述第二模式)时,发送端基于侦听确定传输资源,由于重评估(re-evaluation)以及预抢占(pre-emption)等机制有可能导致发送端进行资源重选,因此接收端无法准确获知发送端发送CSI-RS的资源,而在确定空域接收滤波器的过程中,接收端需要使用不同的空域接收滤波器分别接收发送端发送的CSI-RS,因此,需要接收端准确获知发送端发送的CSI-RS占用的资源位置。
基于上述问题,本申请提出了一种发送侧行CSI-RS的方案,发送端使用空域发送滤波器向接收端发送M个CSI-RS,且M个CSI-RS中的一个CSI-RS占用一个时隙中可用于侧行传输的时域符号中的倒数第二个时域符号和倒数第三个时域符号,也即,本申请实施例中配置了CSI-RS占用时隙中的倒数第二个时域符号和倒数第三个时域符号,使CSI-RS与PSCCH或PSSCH不同时发送,优化了CSI-RS的传输效率。另外,接收端可以基于第一个CSI-RS所在的时隙确定后续的多个CSI-RS所在的时隙位置,从而可以提前确定相应的接收波束并进行接收。
以下通过具体实施例详述本申请的技术方案。
图14是根据本申请实施例的无线通信的方法200的示意性流程图,如图14所示,该无线通信的方法200可以包括如下内容中的至少部分内容:
S210,第一终端设备使用空域发送滤波器向第二终端设备发送M个CSI-RS;其中,该M个CSI-RS中的一个CSI-RS占用一个时隙中可用于侧行传输的时域符号中的倒数第二个时域符号和倒数第三个时域符号,该M个CSI-RS用于选取目标空域发送滤波器,或者,该M个CSI-RS用于选取目标空域接收滤波器,M为正整数;
S220,该第二终端设备接收该第一终端设备使用空域发送滤波器发送的该M个CSI-RS。
在本申请实施例中,该第一终端设备为发送端设备,该第二终端设备为接收端设备。
在本申请实施例中,可以基于第一终端设备发送的CSI-RS选取第一终端设备的最优空域发送滤波器,或者,基于第一终端设备发送的CSI-RS选取第二终端设备的最优空域接收滤波器。
在一些实施例中,在确定发送端的最优发送波束(最优空域发送滤波器)的过程中,例如,发送端使用不同的波束轮流发送CSI-RS,接收端使用相同的接收波束分别接收发送端发送的多个CSI-RS,并且对检测到的CSI-RS进行测量,选取具有最优测量结果的CSI-RS并将其对应的资源信息(如CSI-RS资源索引或CSI-RS所对应的时隙信息)反馈给发送端,该CSI-RS资源对应的发送波束即是对接收端最优的发送波束。
在一些实施例中,在确定接收端的最优接收波束(最优空域接收滤波器)的过程中,例如,发送端使用相同的波束发送CSI-RS,优选的,发送端使用对该接收端最优的发送波束发送CSI-RS,接收端轮流使用不同的接收波束接收该发送端发送的CSI-RS,并进行测量,选取具有最优测量结果的接 收波束对应的波束为接收端的最优波束。当发送端使用该最优发送波束进行侧行传输时,该接收端可以使用与其对应的最优接收波束进行相应的接收。可选的,发送端针对不同的发送波束分别采用上述过程,可以分别确定与各个发送波束相对应的最优的接收波束。因此,当发送端在进行侧行传输时,发送端可以指示该侧行传输使用的发送波束,接收端即可确定与之对应的最优的接收波束,并利用该最优接收波束进行侧行接收。
在本申请实施例中,为了提升侧行通信***的传输速率,在侧行传输***中使用毫米波频段,在侧行毫米波传输中,发送端通常使用波束赋形(beamforming)的方式进行侧行传输。
在一些实施例中,空域发送滤波器(spatial domain transmission filter)也可以称为发送波束(transmissionbeam)或者空间关系(Spatial relation)或者空间配置(spatial setting)或者空间发送参数(SpatialTXparameter)。
在一些实施例中,空域接收滤波器(spatial domain receive filter)也可以称为接收波束(receptionbeam)或者空间接收参数(SpatialRXparameter)。
在一些实施例中,空域发送滤波器和空域接收滤波器统称为空域滤波器,空域发送滤波器也可以称为发送端空域滤波器,空域接收滤波器也可以称为接收端空域滤波器或接收波束。
在本申请实施例中,“时隙”也可以是其他的时间单元,例如,微时隙、帧、子帧、时域符号、绝对时间、相对时间。同理,在本申请实施例中,“时域符号”也可以是其他的时间单元,例如,微时隙、帧、子帧、时隙、绝对时间、相对时间。本申请对此并不限定。
在一些实施例中,该M个CSI-RS中的CSI-RS为侧行CSI-RS。
在一些实施例中,在上述S210中,“发送M个CSI-RS”也可以表述为“发送M个CSI-RS资源”,本申请对此并不限定。也即,在本申请实施例中,第一终端设备发送CSI-RS也可以表述为第一终端设备发送CSI-RS资源,即二者是等价表述。类似地,CSI-RS的测量结果和CSI-RS资源的测量结果等价。
在一些实施例中,该M个CSI-RS用于选取目标空域发送滤波器时M的取值与该M个CSI-RS用于选取目标空域接收滤波器时M的取值可以相同,也可以不同,本申请对此并不限定。
在一些实施例中,该第一终端设备使用空域发送滤波器向第二终端设备发送M个CSI-RS可以指:该第一终端设备使用不同的空域发送滤波器发送该M个CSI-RS,例如该M个CSI-RS分别对应不同的空域发送滤波器;或者,该第一终端设备不是使用相同的空域发送滤波器发送该M个CSI-RS,例如,发送该M个CSI-RS至少使用了两个不同的空域发送滤波器。
作为示例,在上述S210中,该第一终端设备使用M个不同的空域发送滤波器向该第二终端设备发送M个CSI-RS,其中,每个空域发送滤波器对应一个CSI-RS。
作为示例,在上述S210中,该第一终端设备使用K个空域发送滤波器向该第二终端设备发送M个CSI-RS,其中,K小于M,并且K大于1,即该M个CSI-RS中存在至少两个CSI-RS是通过不同的空域发送滤波器发送的。
在一些实施例中,在该M个CSI-RS用于选取目标空域发送滤波器的情况下,该M个CSI-RS对应的CSI-RS资源或CSI-RS资源集合的配置信息中对应的重复(repetition)字段取第一值,该第一值用于指示该第一终端设备不是使用相同的空域发送滤波器发送CSI-RS。换言之,该第一值用于指示该第一终端设备使用不同的空域发送滤波器发送CSI-RS。
在一些实施例中,该第一值可以为关闭(off),表示该第一终端设备发送的该M个CSI-RS用于选取目标空域发送滤波器。
在一些实施例中,在该M个CSI-RS用于选取目标空域接收滤波器的情况下,该M个CSI-RS对应的CSI-RS资源或CSI-RS资源集合的配置信息中对应的重复字段取第二值,该第二值用于指示该第一终端设备使用相同的空域发送滤波器发送CSI-RS。
在一些实施例中,该第二值可以为打开(on),表示该第一终端设备发送的该M个CSI-RS用于选取目标空域接收滤波器。
在一些实施例中,该倒数第二个时域符号为CSI-RS占用的时域符号。
在一些实施例中,该倒数第三个时域符号上的数据是该倒数第二个时域符号上的数据的重复,或者,该倒数第三个时域符号上的数据与该倒数第二个时域符号上的数据相同。例如,该倒数第三个时域符号为AGC符号。
在一些实施例中,该倒数第三个时域符号为CSI-RS占用的时域符号。
在一些实施例中,该倒数第二个时域符号上的数据是该倒数第三个时域符号上的数据的重复,或者,该倒数第三个时域符号上的数据与该倒数第二个时域符号上的数据相同。例如,该倒数第三个时域符号为AGC符号。
在一些实施例中,该倒数第三个时域符号之前的一个时域符号为GP符号,和/或,该倒数第二个时域符号之后的一个时域符号为GP符号。
具体例如,如图15所示,一个时隙中,倒数第二个时域符号和倒数第三个时域符号用于传输CSI-RS,该倒数第三个时域符号之前的一个时域符号为GP符号,该倒数第二个时域符号之后的一个时域符号为GP符号。在一些实施例中,一个时隙中发送PSCCH和/或PSSCH的终端与发送CSI-RS的终端可以是不同的终端。应理解,图15中只是示例性的给出了包括CSI-RS资源的时隙结构,而没有具体体现CSI-RS资源和PSCCH、PSSCH在频域上的关系。
具体例如,当一个时隙中只有部分时域符号可用于侧行传输时,CSI-RS占用可用于侧行传输的时域符号中的倒数第二个时域符号和倒数第三个时域符号,如图16所示,时隙中最后3个时域符号不可用于侧行传输,其余11个时域符号可以用于侧行传输。
在一些实施例中,该第一终端设备根据CSI-RS资源配置信息,确定该M个CSI-RS对应的CSI-RS资源或CSI-RS资源集合。
在一些实施例中,该CSI-RS资源配置信息可以包括资源池配置信息或侧行BWP配置信息中的CSI-RS资源配置信息中的部分或者全部信息,或者,该CSI-RS资源配置信息是基于资源池配置信息或侧行BWP配置信息中的CSI-RS资源配置信息确定的,或者,该CSI-RS资源配置信息是从资源池配置信息或侧行BWP配置信息中的CSI-RS资源配置信息获取的。
在一些实施例中,该第一终端设备可以将该CSI-RS资源配置信息发送至该第二终端设备,以使该第二终端设备可以基于该CSI-RS资源配置信息确定该M个CSI-RS对应的CSI-RS资源或CSI-RS资源集合。
在一些实施例中,该CSI-RS资源配置信息包括但不限于以下至少之一:
CSI-RS资源的周期,CSI-RS资源的时隙偏移,最小时间间隔,相邻两个CSI-RS的时间间隔,可用于传输CSI-RS的频域资源的指示信息,每个CSI-RS资源包括的频域资源,每个CSI-RS资源包括的最小频域资源大小,映射CSI-RS的相邻PRB的间隔,一个PRB内的CSI-RS资源的频域位置的指示信息,CSI-RS密度,用于指示通过码分复用(code division multiplexing,CDM)的方式复用的CSI-RS资源的数量的指示信息,码分复用类型,扰码标识。
在一些实施例中,该CSI-RS资源配置信息包括的CSI-RS资源的周期可以通过时隙数量表示。具体例如,该CSI-RS资源的周期为P,即表示每P个时隙中包括一个用于传输CSI-RS的时隙,或,表示每P个时隙中有一个包括CSI-RS的时隙。例如,P={1,2,4,8},即表示每1/2/4/8个时隙中包括一个用于传输CSI-RS的时隙。
在一些实施例中,该CSI-RS资源配置信息包括的CSI-RS资源的时隙偏移可以通过时隙数量表示。具体例如,该CSI-RS资源的时隙偏移表示第一个包括CSI-RS的时隙相对于第一时域位置的时隙偏移量,其中,该第一时域位置包括SFN#0中的第一个时隙或DFN#0中的第一个时隙。例如,该CSI-RS资源的时隙偏移为2个时隙,当P=4时,即每4个时隙中有一个包括CSI-RS的时隙,在一个SFN周期内,第一个包括CSI-RS的时隙位于时隙2。
在一些实施例中,该CSI-RS资源配置信息包括的最小时间间隔可以通过时隙数量表示。具体例如,该最小时间间隔表示CSI-RS与其关联的第一指示信息之间的最小时间间隔,该第一指示信息用于指示该第一终端设备发送CSI-RS,或者,该第一指示信息用于指示该第一终端设备将会发送CSI-RS。具体又例如,该最小时间间隔表示CSI-RS与其关联的SCI或PSCCH之间的最小时间间隔,其中,SCI或PSCCH用于指示发送CSI-RS。
在一些实施例中,若该第一指示信息与该M个CSI-RS中的第一个CSI-RS在同一个时隙中,该最小时间间隔等于0。或者,若该第一指示信息与该M个CSI-RS中的第一个CSI-RS在同一个时隙中,则该CSI-RS资源配置信息中不包括该最小时间间隔。也即,如果CSI-RS资源配置信息中不包括该最小时间间隔,则缺省的取值为0,即表示该第一指示信息与该M个CSI-RS中的第一个CSI-RS在同一个时隙中。
在一些实施例中,该第一指示信息可以是SCI。
具体例如,最小时间间隔k=2,在时隙n中发送SCI,该SCI指示第一终端设备发送CSI-RS,则该CSI-RS的时隙是位于时隙n+2或时隙n+2之后的位于资源池中的第一个包括CSI-RS的时隙。如图17所示,CSI-RS资源的周期为2个时隙,最小时间间隔k=2,当在时隙0或时隙1中发送的SCI指示发送CSI-RS时,其第一个CSI-RS位于时隙3,同理,在时隙2/3发送的SCI指示发送CSI-RS时,其第一个CSI-RS位于时隙5,以此类推。可选的,该最小时间间隔表示与该SCI相关联的至少一个CSI-RS中的第一个CSI-RS与SCI所在时隙之间的最小时间间隔。
在一些实施例中,该CSI-RS资源配置信息包括的该相邻两个CSI-RS的时间间隔通过时隙数量表 示,或者,该CSI-RS资源配置信息包括的该相邻两个CSI-RS的时间间隔通过CSI-RS资源的周期数量表示。
在一些实施例中,该相邻两个CSI-RS的时间间隔为T,则T={1,2,4,8}个时隙,或,CSI-RS资源的周期P=2个时隙,则T={1,2,3,4}个CSI-RS资源周期。
具体例如,发送端发送的相邻两个CSI-RS资源的时间间隔T=4个时隙,在时隙n发送SCI指示发送4个CSI-RS,确定的第一个CSI-RS位于时隙n+2,进一步的,结合该相邻两个CSI-RS的时间间隔,即可确定4个CSI-RS的时隙分别为:n+2;n+6;n+10;n+14。
具体的,当发送端通过SCI(或指示信息)指示发送CSI-RS时,在确定空域发送滤波器(发送波束)或空域接收滤波器(接收波束)的过程中,发送端会发送多个CSI-RS。通过SCI(或指示信息)可以确定第一个CSI-RS的时域位置,进一步的,根据该相邻两个CSI-RS的时间间隔可以确定相邻两个CSI-RS之间的时间间隔,即可确定多个CSI-RS的时域位置。
在一些实施例中,在该CSI-RS资源配置信息中不包括该相邻两个CSI-RS的时间间隔的情况下,该相邻两个CSI-RS的时间间隔为一个CSI-RS资源的周期。也即,发送端在连续的CSI-RS资源周期中分别发送CSI-RS。例如,发送端没有配置相邻两个CSI-RS的时间间隔,CSI-RS资源的周期为2个时隙,在时隙n发送SCI指示发送4个CSI-RS,确定的第一个CSI-RS位于时隙n+2,进一步的,即可确定4个CSI-RS的时隙分别为:n+2;n+4;n+6;n+8。
需要说明的是,在本申请实施例中,时隙的数量是指在资源池中的逻辑时隙的数量。
在一些实施例中,该CSI-RS资源配置信息包括的该可用于传输CSI-RS资源的频域资源指示信息用于确定可用于传输CSI-RS的PRB的信息。
在一些实施例中,该可用于传输CSI-RS的PRB的信息通过比特位图指示,其中,该比特位图中的每个比特位对应一个PRB,该比特位图的长度根据以下至少之一确定:侧行载波包括的PRB数量、侧行BWP包括的PRB数量、资源池包括的PRB数量。例如,如图18所示,***包括30个PRB,其中,PRB4、PRB9、PRB14、PRB19、PRB24、PRB29已经分配用于PSFCH传输,可以通过30比特长的比特位图指示CSI-RS可用的PRB,如图18中所示,比特位图中的比特位取0表示CSI-RS不可用的PRB,比特位图中的比特位取1表示CSI-RS可用的PRB,其中,CSI-RS可用的PRB包括PRB 0、PRB 1、PRB 2、PRB 5、PRB 6、PRB 7、PRB 10、PRB 11、PRB 12、PRB 15、PRB 16、PRB 17、PRB 20、PRB 21、PRB 22、PRB 25、PRB 26、PRB 27。
在一些实施例中,该可用于传输CSI-RS的PRB的信息通过可用于传输CSI-RS的起始频域位置和频域长度确定。
在一些实施例中,基于该起始频域位置和该频域长度确定的频域资源内包括的用于传输PSFCH和/或侧行定位参考信号的频域资源不用于传输CSI-RS。
在一些实施例中,该频域长度用于指示可用于CSI-RS传输的PRB数。
具体例如,该可用于传输CSI-RS资源的频域资源指示信息可以分别指示频域起始位置和频域长度,或者,该可用于传输CSI-RS资源的频域资源指示信息可以联合指示频域起始位置和频域长度。例如,根据频域起始位置和频域长度可以确定资源指示值(resource indicator value,RIV),该可用于传输CSI-RS资源的频域资源指示信息中包括RIV值,根据该RIV值即可确定相应的频域起始位置和频域长度。
在一些实施例中,在通过频域起始位置和频域长度确定的频域资源的情况下,可以通过频域起始位置和频域长度确定频域的结束位置,如果在频域起始位置和结束位置之间包括用于传输PSFCH的PRB,则该用于传输PSFCH的PRB不用于传输CSI-RS;即用于传输CSI-RS的PRB不包括被配置用于传输PSFCH的PRB。具体如图19所示,***包括30个PRB,其中PRB4、PRB9、PRB14、PRB19、PRB24、PRB29已经分配用于PSFCH传输,则可以配置起始PRB为PRB6,频域长度为10个PRB,因此,确定的PRB范围为PRB6至PRB15,由于其中包括已经用于PSFCH传输的PRB9、PRB14,因此,这两个PRB(PRB9和PRB14)不能用于传输CSI-RS,可用于传输CSI-RS的PRB包括索引为{6,7,8,10,11,12,13,15}的PRB。
在一些实施例中,在通过频域起始位置和频域长度确定的频域资源的情况下,频域长度用于指示用于CSI-RS的总的PRB数,如果在确定CSI-RS频域资源过程中包括用于传输PSFCH的PRB,则跳过该用于传输PSFCH的PRB,判断下一个PRB是否是可用于CSI-RS的PRB,直至确定出频域长度所指示的PRB个数为止。如图20所示,***包括30个PRB,其中PRB4、PRB9、PRB14、PRB19、PRB24、PRB29已经分配用于PSFCH传输,则可以配置起始PRB为PRB6,频域长度为10个PRB。从PRB6开始确定可用于CSI-RS资源的PRB,其中PRB9、PRB14用于传输PSFCH,因此,这两个PRB(PRB9和PRB14)不能用于传输CSI-RS资源,跳过这两个PRB(PRB9和PRB14),继续判断 其他的PRB是否可用,因此,最终确定的可用于传输CSI-RS的10个PRB包括索引为{6,7,8,10,11,12,13,1516,17}的PRB。
在一些实施例中,该CSI-RS资源配置信息包括的每个CSI-RS资源包括的频域资源可以通过PRB的数量表示,例如,每个CSI-RS资源占据12个PRB。或者,每个CSI-RS资源包括的频域资源可以通过子信道的数量表示,例如,每个CSI-RS资源包括的频域资源为N个子信道,其中子信道是PSSCH资源分配的粒度,N大于或等于1;优选的,N=1。
在一些实施例中,每个CSI-RS资源包括的频域资源可以通过可用于CSI-RS传输的PRB数量表示。
可选的,根据CSI-RS资源配置信息确定的可用于CSI-RS传输的频域资源大小应该可以被每个CSI-RS包括的频域资源大小整除。从而使得所配置的可用于CSI-RS传输的频域资源可以传输整数个CSI-RS,并且每个CSI-RS占用的频域资源大小相同。
需要说明的是,当CSI-RS和PSCCH/PSSCH一起发送时,CSI-RS占用的频域大小可以基于其关联的PSSCH的频域大小确定。在本申请实施例中,由于CSI-RS没有和PSCCH/PSSCH同时发送,需要额外确定CSI-RS占用的频域资源的大小。
在一些实施例中,该CSI-RS资源配置信息包括的该映射CSI-RS的相邻PRB的间隔用于确定一个CSI-RS映射的多个PRB中相邻两个PRB之间的间隔,其中,该相邻两个PRB之间的间隔通过可用于传输CSI-RS的PRB的数量表示。
具体例如,一个CSI-RS并不是映射到该CSI-RS占用的频域资源中的所有PRB上,可以通过配置信息指示映射CSI-RS的相邻的PRB的间隔。例如,CSI-RS映射的第一个PRB为PRB2,映射CSI-RS的相邻PRB的间隔为4个PRB,则CSI-RS映射到PRB2、PRB6、PRB10、PRB14等。
在一些实施例中,在该CSI-RS资源配置信息中不包括该映射CSI-RS的相邻PRB的间隔的情况下,一个CSI-RS占据相邻的可用于CSI-RS传输的PRB。当该映射CSI-RS的相邻PRB的间隔没有配置时,其缺省值为1个PRB,即CSI-RS占用相邻的可用于CSI-RS映射的PRB。
在一些实施例中,该CSI-RS资源配置信息包括的该一个PRB内的CSI-RS资源的频域位置的指示信息用于指示一个PRB内的CSI-RS资源的频域位置。具体例如,可以指示在一个PRB内哪些RE用于传输CSI-RS。例如,通过比特位图的形式指示一个PRB可以用于传输CSI-RS的RE。
在一些实施例中,该一个PRB内的CSI-RS资源的频域位置的指示信息与CSI-RS资源集合相关联,即一个CSI-RS资源集合内所有的CSI-RS占用的PRB内的RE相同。
需要说明的是,由于不同的CSI-RS是在不同的时隙中传输的,一个时隙中只传输一个CSI-RS,因此,可以通过CSI-RS所在时隙信息来区别CSI-RS的资源,此时,一个CSI-RS资源集合内的所有的CSI-RS资源在一个PRB内占据的RE可以是相同的。在一些实施例中,该第一终端设备发送的M个CSI-RS在PRB内占用的RE相同。
在一些实施例中,该CSI-RS资源配置信息包括的CSI-RS密度用于指示每个PRB内每个CSI-RS端口的CSI-RS占据的RE个数。如CSI-RS密度为2,即表示每个PRB内,每个天线端口的CSI-RS占据2个RE。当CSI-RS密度小于1时,还包括用于映射CSI-RS的PRB信息。如CSI-RS密度为0.5,即每2个PRB内每个天线端口占据1个RE,进一步的,还包括一个指示信息来指示每2个PRB中映射CSI-RS的PRB信息,如奇数(或偶数)PRB上映射CSI-RS。
在一些实施例中,该CSI-RS资源配置信息包括的用于指示通过CDM的方式复用的CSI-RS资源的数量的指示信息具体可以指示:对于相同的时频资源,可以通过码分进行复用的CSI-RS资源的数量。
在一些实施例中,该CSI-RS资源配置信息包括的码分复用类型用于确定CSI-RS的图案,即在一个PRB内的CSI-RS的图案。
在一些实施例中,该码分复用类型包括:CDM,或者,CDM和频分复用(Frequency-division multiplexing,FDM)。
具体例如,多个CSI-RS资源之间可以通过CDM和/或FDM的方式复用在一个PRB内,通过该CSI-RS资源配置信息可以确定多个CSI-RS资源的复用方式和/或复用图案。
例如,FDM2表示可以通过FDM的方式复用2个CSI-RS,具体的,在一个PRB内的2个FDM复用的CSI-RS资源占据相邻的子载波或RE,其中的一个CSI-RS资源占据的子载波或RE根据参数侧行CSI-RS频域分配(sl-CSI-RS-FreqAllocation)确定。例如根据sl-CSI-RS-FreqAllocation确定的第一个CSI-RS资源中的CSI-RS位于子载波索引2,则第二个CSI-RS资源中的CSI-RS位于子载波3。
又例如,CDM2表示可以通过CDM的方式复用2个CSI-RS,具体的,在一个PRB内的2个CDM复用的CSI-RS资源占据相同的子载波或RE,其占据的子载波或RE根据sl-CSI-RS-FreqAllocation确 定。例如根据sl-CSI-RS-FreqAllocation确定的第一个CSI-RS资源中的CSI-RS位于子载波索引2和3,则第二个CSI-RS资源中的CSI-RS也位于子载波2和3,两个CSI-RS之间通过CDM方式复用。
在一些实施例中,该CSI-RS资源配置信息包括的该扰码标识用于生成CSI-RS序列。CSI-RS序列由Gold序列生成,该扰码标识用于确定生成CSI-RS序列的Gold序列的初始化。
例如,CSI-RS序列由下式生成:
Figure PCTCN2021116444-appb-000001
其中,伪随机序列c(n)为:
c(n)=(x 1(n+N C)+x 2(n+N C))mod 2
x 1(n+31)=(x 1(n+3)+x 1(n))mod 2
x 2(n+31)=(x 2(n+3)+x 2(n+2)+x 2(n+1)+x 2(n))mod 2
其中,N C=1600,第一个m序列x 1(n)的初始化参数x 1(0)=1,x 1(n)=0,n=1,2,...,30。第二个m序列x 2(n)表示为
Figure PCTCN2021116444-appb-000002
在一些实施例中,c init根据如下信息中的至少一种确定:
CSI-RS关联的时隙信息;
CSI-RS所在的时域符号信息;
标识信息n ID
例如,
Figure PCTCN2021116444-appb-000003
Figure PCTCN2021116444-appb-000004
表示CSI-RS所在的时隙对应的无线帧内的时隙号,l表示时隙内的OFDM序号。
在一些实施例中,n ID的取值由以下中的至少一种决定:
高层配置参数,即扰码标识(ScramblingID);
CSI-RS资源集合标识;
CSI-RS资源标识;
基于SCI生成的CRC序列;
源标识信息,如SCI中携带的源标识信息;
目的标识信息,如SCI中携带的目的标识信息;可以是接收端标识、组标识、终端的组内标识等。
在一些实施例中,该CSI-RS资源配置信息还包括以下至少之一:
该M个CSI-RS对应的CSI-RS资源的索引,该M个CSI-RS对应的CSI-RS资源集合的索引,该M个CSI-RS对应的CSI-RS资源集合与信道状态信息(Channel State Information,CSI)上报量的对应关系,该M个CSI-RS对应的CSI-RS资源集合中包括的CSI-RS资源的数量,用于指示准共站址(Quasi Co-Location,QCL)类型的指示信息,该第二终端设备向该第一终端设备上报或反馈的CSI-RS资源的数量,该M个CSI-RS对应的CSI-RS资源或CSI-RS资源集合的配置信息中对应的重复字段的取值;
其中,该M个CSI-RS对应的CSI-RS资源或CSI-RS资源集合的配置信息中对应的重复字段取第一值用于指示该第一终端设备不是使用相同的空域发送滤波器发送CSI-RS,该M个CSI-RS对应的CSI-RS资源或CSI-RS资源集合的配置信息中对应的重复字段取第二值用于指示该第一终端设备使用相同的空域发送滤波器发送CSI-RS。
在一些实施例中,用于指示QCL类型的指示信息用于指示CSI-RS资源集合中的CSI-RS资源之间的QCL类型;或者,用于指示QCL类型的指示信息用于指示是否是QCL-TypeD关系,其取值为真(TRUE)或假(FALSE)。例如,该用于指示QCL类型的指示信息可能的取值包括:{QCL-TypeA,QCL-TypeB,QCL-TypeC,QCL-TypeD},当其取值为QCL-TypeD,即表示该CSI-RS资源集合中的所有CSI-RS资源之间具有QCL-TypeD的关系。
在一些实施例中,CSI上报量取值为以下之一:CSI-RS资源指示(CSI-RS Resource Indicator,CRI),CRI和参考信号接收功率(Reference Signal Receiving Power,RSRP)('cri-RSRP'),CRI和信号干扰噪声比(Signal to Interference plus Noise Ratio,SINR)('cri-SINR'),时隙指示信息,时隙指示信息和RSRP,时隙指示信息和SINR,不上报或空('none')。其中,时隙指示信息用于指示CSI-RS所在的时隙。应理解,该CSI上报量是指第二终端向第一终端上报的。
在一些实施例中,该CSI-RS资源配置信息包括:至少一个参数重复(repetition)置为off的第一 CSI-RS资源集合,和/或,至少一个参数重复(repetition)置为on的第二CSI-RS资源集合。其中,第一CSI-RS资源集合用于确定空域发送滤波器,第二CSI-RS资源集合用于确定空域接收滤波器。
例如,该CSI-RS资源配置信息中配置了两个CSI-RS资源集合,第一个CSI-RS资源集合的重复(repetition)字段为off,第二个CSI-RS资源集合的repetition为on。当发送端向接收端发送指示信息指示使用重复(repetition)字段为off的CSI-RS资源集合时,接收端可以假设发送端使用不同的空域发送滤波器发送CSI-RS,因此,接收端可以根据CSI-RS进行测量,并反馈优选的CSI-RS资源索引和/或测量结果,从而使得发送端确定优选的发送侧空域发送滤波器;当重复(repetition)字段为on时,接收端可以假设发送端使用相同的空域发送滤波器发送CSI-RS,因此,接收端可以使用不同的接收侧空域接收滤波器分别接收CSI-RS,并对CSI-RS进行测量,根据测量结果选取最优的接收侧空域接收滤波器,从而实现对接收侧空域接收滤波器的选取过程。
又例如,该CSI-RS资源配置信息中配置了两个CSI-RS资源集合,并且配置了与CSI-RS资源集合相关联的CSI上报量,与第一个CSI-RS资源集合相关联的CSI上报量为'cri-RSRP',与第二个CSI-RS资源集合相关联的CSI上报量为'none'。当发送端向接收端发送指示信息指示CSI上报量为'cri-RSRP'时,即表示发送端将会发送第一个CSI-RS资源集合中的CSI-RS资源,此时接收端可以假设发送端使用不同的空域发送滤波器发送CSI-RS,因此,接收端可以根据CSI-RS进行测量,并反馈优选的CSI-RS资源索引和/或测量结果,从而使得发送端确定优选的发送侧空域发送滤波器;当发送端向接收端发送指示信息指示CSI上报量为'none'时,即表示发送端将会发送第二个CSI-RS资源集合中的CSI-RS资源,此时,接收端可以假设发送端使用相同的空域发送滤波器发送CSI-RS,因此,接收端可以使用不同的接收侧空域接收滤波器分别接收CSI-RS,并对CSI-RS进行测量,根据测量结果选取最优的接收侧空域接收滤波器,从而实现对接收侧空域接收滤波器的选取过程。
在一些实施例中,该CSI-RS资源配置信息包括以下参数中的一种或多种:
天线端口数,例如,指示CSI-RS天线端口数为{1,2,4,8}等;
CSI-RS密度。
在一些实施例中,该CSI-RS密度用于指示每个PRB内每个天线端口的CSI-RS占据的RE个数。如密度为2,即表示每个PRB内,每个天线端口的CSI-RS占据2个RE。
在一些实施例中,当CSI-RS密度小于1时,该CSI-RS资源配置信息还可以包括用于指示映射CSI-RS资源的PRB信息。例如,密度为0.5,即每2个PRB内每个天线端口占据1个RE时,该CSI-RS资源配置信息还可以包括每2个PRB中映射一个CSI-RS资源的PRB信息,如奇数(或偶数)PRB上映射CSI-RS资源。
在一些实施例中,可以通过CSI-RS资源集合的重复字段的取值指示该CSI-RS资源集合的用途,例如是用于确定目标发送波束还是用于确定目标接收波束。
在一些实施例中,可以通过CSI-RS资源集合的索引指示该CSI-RS资源集合的用途,例如是用于确定目标发送波束还是用于确定目标接收波束。在CSI-RS资源集合的配置信息中包括CSI-RS资源集合的索引信息和重复字段。通过CSI-RS资源集合的索引可以确定相应的CSI-RS资源集合,进一步的,可以确定该CSI-RS资源集合中的重复字段的取值。
例如确定目标发送波束时,发送端终端可以使用repetition为off的CSI-RS资源集合,确定目标接收波束时,发送端终端可以使用repetition为on的CSI-RS资源集合。
在一些实施例中,资源池配置信息或侧行BWP配置信息包括第一CSI-RS资源集合的配置信息和第二CSI-RS资源集合的配置信息。其中,所述第一CSI-RS资源集合的repetition为off,所述第二CSI-RS资源集合的repetition为on。
则当需要确定目标发送波束时,第一终端设备指示第一CSI-RS资源集合的索引,或指示使用第一CSI-RS资源集合,例如,第一终端设备可以使用不同的发送波束分别发送该第一CSI-RS资源集合中的M1个CSI-RS资源,第二终端设备分别对接收的CSI-RS资源进行测量,并根据测量结果进行CSI上报或反馈,第一终端设备根据该第二终端设备的CSI上报或反馈进行目标发送波束的选取。
当确定接收波束时,第一终端设备指示第二CSI-RS资源集合的索引,或指示使用第二CSI-RS资源集合。例如第一终端设备使用相同的发送波束分别发送该第二CSI-RS资源集合中的M2个CSI-RS资源,第二终端设备分别使用不同的接收波束进行接收,并对CSI-RS资源进行测量,根据测量结果进行目标接收波束的选取。
在本申请另一些实施例中,可以通过CSI-RS资源集合对应的CSI上报量配置指示该CSI-RS资源集合的用途,例如是用于确定目标发送波束还是用于确定目标接收波束。例如,确定目标发送波束时,发送端终端使用CSI上报量不为'none'的CSI-RS资源集合,确定目标接收波束时,发送端终端使用CSI上报量为'none'的CSI-RS资源集合。
例如,资源池配置信息或侧行BWP配置信息配置了两个CSI-RS资源集合,并且配置了与CSI-RS资源集合相关联的CSI上报量,与第一个CSI-RS资源集合相关联的CSI上报量为'cri-RSRP',与第二个CSI-RS资源集合相关联的CSI上报量为'none'。
则当第一终端设备向第二终端设备指示CSI上报量为'cri-RSRP'时,即表示第一终端设备将会发送第一个CSI-RS资源集合中的CSI-RS资源,此时,第二终端设备可以假设第一终端设备使用不同的发送波束发送CSI-RS资源,因此,第二终端设备对CSI-RS资源进行测量,并进行CSI上报或反馈,从而使得第一终端设备可以根据CSI上报或反馈确定目标发送波束。
当第一终端设备向第二终端设备指示CSI上报量为'none'时,即表示第一终端设备将会发送第二个CSI-RS资源集合中的CSI-RS资源,此时,第二终端设备可以假设第一终端设备使用相同的发送波束发送CSI-RS资源,因此,第二终端设备可以使用不同的接收波束分别接收CSI-RS资源,并对CSI-RS资源进行测量,根据测量结果选取目标接收波束。
在本申请实施例中,该第一终端设备和该第二终端设备均可以获知该资源池配置信息或侧行BWP配置信息。即第一终端设备和第二终端设备对于CSI-RS资源配置信息的理解一致。
在一些实施例中,不同时隙内的CSI-RS资源具有相同的频域资源;和/或,不同时隙内的CSI-RS资源具有相同的码域资源;和/或,不同时隙内的CSI-RS资源具有相同的序列。
在一些实施例中,不同时隙内的CSI-RS资源具有不同的频域资源,和/或,不同时隙内的CSI-RS资源具有不同的码域资源,和/或,不同时隙内的CSI-RS资源具有不同的序列。
在一些实施例中,该第一终端设备向该第二终端设备发送第二指示信息;
其中,该第二指示信息用于指示该第一终端设备发送的CSI-RS用于选取用于该第一终端设备进行侧行数据发送的空域发送滤波器;或者,该第二指示信息用于指示该第一终端设备发送的CSI-RS用于选取用于该第二终端设备进行侧行数据接收的空域接收滤波器;或者,该第二指示信息用于指示该第一终端设备发送的CSI-RS用于测量信道状态信息。
在一些实施例中,该信道状态信息可以包括但不限于以下至少之一:
信道质量指示(Channel Quantity Indicator,CQI),秩指示(Rank Indication,RI),预编码矩阵指示(Precoding Matrix Indicator,PMI)。
在一些实施例中,该第二指示信息通过以下之一承载:
PC5-RRC信令,SCI,媒体接入控制控制元素(Media Access Control Control Element,MAC CE),侧行反馈信息。
在一些实施方式中,当所述第二指示信息通过SCI或MACCE承载时,该第一终端设备指示激活侧行反馈。
在一些实施例中,该M个CSI-RS中的一个CSI-RS对应的序列根据以下信息中的至少一种确定:
CSI-RS资源集合标识,CSI-RS资源标识,基于SCI生成的CRC序列,源标识信息,目的标识信息,扰码标识;
其中,该SCI是该CSI-RS关联的SCI,该源标识信息用于指示发送该CSI-RS的终端标识信息,该目的标识信息用于指示接收该CSI-RS的终端标识信息,该扰码标识根据该CSI-RS对应的CSI-RS资源配置信息中包括的扰码标识信息确定。
在一些实施例中,该源标识信息根据该CSI-RS关联的SCI中的源标识信息确定,该目的标识信息根据该CSI-RS关联的SCI中的目的标识信息确定。
在本申请实施例中,为了区分不同时隙内传输的CSI-RS资源是是不同的资源,可以通过具有不同频域资源(包括不同的CSI-RS资源集合、不同的PRB、不同的PRB内的RE位置)、不同的码域资源、不同的序列等方式中的至少一种来区分CSI-RS资源。
以下通过实施例1和实施例2描述本申请中的方案。
实施例1,该CSI-RS资源配置信息包括以下参数:
CSI-RS资源的周期P:例如,P=1个时隙;
CSI-RS资源的时隙偏移T_offset:例如,T_offset=0;
最小时间间隔k:例如,k=2;
第一终端设备发送的相邻两个CSI-RS的时间间隔T_gap;例如,T_gap=2个时隙。
在实施例1中,根据上述参数确定的CSI-RS资源集合的时域资源如图21所示,CSI-RS资源的周期P=1即表示每个时隙都包括CSI-RS资源,因此,相应的T_offset=0;参数k=2表示承载指示发送CSI-RS的信息所在的时隙与第一个CSI-RS所在的时隙之间的最小时间间隔,如果在时隙2发送的SCI用于指示发送CSI-RS,并且发送4个CSI-RS,则第一个CSI-RS位于时隙4。T_gap表示第一终端设备发送的相邻两个CSI-RS之间的时间间隔,由于T_gap=2个时隙,第一个CSI-RS位于时隙4, 因此后续的CSI-RS分别位于时隙6、时隙8和时隙10。在每个时隙中的可用于侧行传输的时域符号中的倒数第二个时域符号用于传输CSI-RS,倒数第三个时域符号上的数据是倒数第二个符号上的数据的重复,倒数第三个时域符号可以是AGC符号,倒数第一个个时域符号和倒数第四个时域符号为GP符号。
进一步地,在实施例1中,该CSI-RS资源配置信息还包括以下参数:
CSI-RS资源的频域资源指示信息,通过比特位图指示可用于CSI-RS传输的PRB;
每个CSI-RS占用的频域资源N_RB,例如,N_RB=6;
天线端口数(antennaPort),例如,antennaPort=1;
用于指示一个PRB内的CSI-RS资源的频域位置的指示信息(如sl-CSI-RS-FreqAllocation)为12比特长的比特位图[b 11,b 10,b 9,b 8,b 7,b 6,b 5,b 4,b 3,b 2,b 1,b 0]=[0,0,0,0,0,0,0,0,0,1,0,0];
CSI-RS密度Density,例如,Density=1;即表示每个天线端口在每个PRB内占据1个RE。
在实施例1中,如图22所示,***包括30个PRB,其中PRB4、PRB9、PRB14、PRB19、PRB24、PRB29已经分配用于PSFCH传输,CSI-RS资源的频域资源指示信息通过30比特长的位图指示CSI-RS可用的PRB,如图22中所示,共计18个PRB可用于CSI-RS传输。由于每个CSI-RS包括6个PRB,因此,可以通过频分的方式承载3个CSI-RS。进一步的,根据参数sl-CSI-RS-FreqAllocation可以确定每个CSI-RS的PRB内用于承载CSI-RS的RE或子载波。
进一步地,在实施例1中,该CSI-RS资源配置信息还包括以下参数:
用于指示可以通过码分复用的方式复用CSI-RS资源的个数CS_num;CS_num=2,即表示可以通过码分的方式复用2个CSI-RS资源;
扰码标识(ScramblingID):ScramblingID=100。
在实施例1中,如图22所示,由于一个CSI-RS资源占据6个PRB,每个PRB有一个RE用于映射CSI-RS,因此,CSI-RS序列的长度为6,根据参数CS_num可以确定通过CDM的方式复用2个CSI-RS资源,并且根据扰码标识ScramblingID=100生成CSI-RS序列。
实施例2,该CSI-RS资源配置信息用于配置2个CSI-RS资源集合,每个CSI-RS资源集合中包括多个CSI-RS资源,具体的确定CSI-RS资源的配置参数上述实施例1,进一步的,该CSI-RS资源配置信息中还包括如下配置参数:
CSI-RS资源集合标识(CSI-RS-ResourceSetId):两个CSI-RS资源集合的标识分别为CSI-RS-ResourceSetId=0和CSI-RS-ResourceSetId=1;
重复(repetition);标识为0的CSI-RS资源集合中该参数置为off,标识为1的CSI-RS资源集合中该参数置为on。
在实施例2中,每个CSI-RS资源集合还配置了与其关联的CSI上报配置标识(CSI-ReportConfigId):对于标识为0的CSI-RS资源集合,与其关联的CSI-ReportConfigId为'cir-RSRP';对于标识为1的CSI-RS资源集合,与其关联的CSI-ReportConfigId为'none'。
因此,在本申请实施例中,第一终端设备使用空域发送滤波器向第二终端设备发送M个CSI-RS,且M个CSI-RS中的一个CSI-RS占用一个时隙中可用于侧行传输的时域符号中的倒数第二个时域符号和倒数第三个时域符号,也即,通过配置CSI-RS占用时隙中的倒数第二个时域符号和倒数第三个时域符号,使CSI-RS与PSCCH或PSSCH不同时发送,优化了CSI-RS的传输效率。另外,第二终端设备可以基于第一个CSI-RS所在的时隙确定后续的多个CSI-RS所在的时隙位置,从而可以提前确定相应的空域接收滤波器并进行接收。
进一步地,在本申请实施例中,第一终端设备只需要指示第一个CSI-RS占用的资源位置,即可确定所有的CSI-RS占用的资源位置,另外,CSI-RS资源和PSFCH资源可以复用,提高资源利用率。
在一些实施例中,CSI-RS资源和PSFCH资源可以复用在同一时隙中。
在一些实施例中,在CSI-RS的时隙中不包括PSFCH资源。
上文结合图14至图22,详细描述了本申请的方法实施例,下文结合图23至图24,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图23示出了根据本申请实施例的终端设备300的示意性框图。该终端设备300为第一终端设备,如图23所示,该终端设备300包括:
通信单元310,用于使用空域发送滤波器向第二终端设备发送M个CSI-RS;
其中,该M个CSI-RS中的一个CSI-RS占用一个时隙中可用于侧行传输的时域符号中的倒数第二个时域符号和倒数第三个时域符号,该M个CSI-RS用于选取目标空域发送滤波器,或者,该M个CSI-RS用于选取目标空域接收滤波器,M为正整数。
在一些实施例中,该倒数第三个时域符号上的数据是该倒数第二个时域符号上的数据的重复,或 者,该倒数第三个时域符号上的数据与该倒数第二个时域符号上的数据相同。
在一些实施例中,该倒数第三个时域符号之前的一个时域符号为保护间隔GP符号,和/或,该倒数第二个时域符号之后的一个时域符号为GP符号。
在一些实施例中,该终端设备300还包括:处理单元320,其中,该处理单元320用于根据CSI-RS资源配置信息,确定该M个CSI-RS对应的CSI-RS资源或CSI-RS资源集合。
在一些实施例中,该CSI-RS资源配置信息包括以下至少之一:
CSI-RS资源的周期,CSI-RS资源的时隙偏移,最小时间间隔,相邻两个CSI-RS的时间间隔,可用于传输CSI-RS的频域资源的指示信息,每个CSI-RS资源包括的频域资源,每个CSI-RS资源包括的最小频域资源大小,映射CSI-RS的相邻物理资源块PRB的间隔,一个PRB内的CSI-RS资源的频域位置的指示信息,CSI-RS密度,用于指示通过码分复用的方式复用的CSI-RS资源的数量的指示信息,码分复用类型,扰码标识。
在一些实施例中,该CSI-RS资源的时隙偏移表示第一个包括CSI-RS的时隙相对于第一时域位置的时隙偏移量,其中,该第一时域位置包括SFN#0中的第一个时隙或DFN#0中的第一个时隙。
在一些实施例中,该最小时间间隔表示CSI-RS与其关联的第一指示信息之间的最小时间间隔,该第一指示信息用于指示该第一终端设备发送CSI-RS。
在一些实施例中,若该第一指示信息与该M个CSI-RS中的第一个CSI-RS在同一个时隙中,该最小时间间隔等于0。
在一些实施例中,该相邻两个CSI-RS的时间间隔通过时隙数量表示,或者,该相邻两个CSI-RS的时间间隔通过CSI-RS资源的周期数量表示。
在一些实施例中,在该CSI-RS资源配置信息中不包括该相邻两个CSI-RS的时间间隔的情况下,该相邻两个CSI-RS的时间间隔为一个CSI-RS资源的周期。
在一些实施例中,该可用于传输CSI-RS资源的频域资源指示信息用于确定可用于传输CSI-RS的PRB的信息。
在一些实施例中,该可用于传输CSI-RS的PRB的信息通过比特位图指示,其中,该比特位图中的每个比特位对应一个PRB,该比特位图的长度根据以下至少之一确定:侧行载波包括的PRB数量、侧行带宽部分BWP包括的PRB数量、资源池包括的PRB数量。
在一些实施例中,该可用于传输CSI-RS的PRB的信息通过可用于传输CSI-RS的起始频域位置和频域长度确定。
在一些实施例中,基于该起始频域位置和该频域长度确定的频域资源内包括的用于传输物理侧行反馈信道PSFCH和/或侧行定位参考信号的频域资源不用于传输CSI-RS。
在一些实施例中,该映射CSI-RS的相邻PRB的间隔用于确定一个CSI-RS映射的多个PRB中相邻两个PRB之间的间隔,其中,该相邻两个PRB之间的间隔通过可用于传输CSI-RS的PRB的数量表示。
在一些实施例中,在该CSI-RS资源配置信息中不包括该映射CSI-RS的相邻PRB的间隔的情况下,一个CSI-RS占据相邻的可用于CSI-RS传输的PRB。
在一些实施例中,该一个PRB内的CSI-RS资源的频域位置的指示信息用于指示一个PRB内的CSI-RS资源的频域位置。
在一些实施例中,该第一终端设备发送的该M个CSI-RS在PRB内占用的RE相同。
在一些实施例中,该码分复用类型包括:码分复用CDM,或者,CDM和频分复用FDM。
在一些实施例中,该扰码标识用于生成CSI-RS序列。
在一些实施例中,该CSI-RS资源配置信息还包括以下至少之一:
该M个CSI-RS对应的CSI-RS资源的索引,该M个CSI-RS对应的CSI-RS资源集合的索引,该M个CSI-RS对应的CSI-RS资源集合与信道状态信息CSI上报量的对应关系,该M个CSI-RS对应的CSI-RS资源集合中包括的CSI-RS资源的数量,用于指示准共站址QCL类型的指示信息,该第二终端设备向该第一终端设备上报或反馈的CSI-RS资源的数量,该M个CSI-RS对应的CSI-RS资源或CSI-RS资源集合的配置信息中对应的重复字段的取值;
其中,该M个CSI-RS对应的CSI-RS资源或CSI-RS资源集合的配置信息中对应的重复字段取第一值用于指示该第一终端设备不是使用相同的空域发送滤波器发送CSI-RS,该M个CSI-RS对应的CSI-RS资源或CSI-RS资源集合的配置信息中对应的重复字段取第二值用于指示该第一终端设备使用相同的空域发送滤波器发送CSI-RS。
在一些实施例中,不同时隙内的CSI-RS资源具有相同的频域资源;和/或,不同时隙内的CSI-RS资源具有相同的码域资源;和/或,不同时隙内的CSI-RS资源具有相同的序列。
在一些实施例中,不同时隙内的CSI-RS资源具有不同的频域资源,和/或,不同时隙内的CSI-RS资源具有不同的码域资源,和/或,不同时隙内的CSI-RS资源具有不同的序列。
在一些实施例中,在该M个CSI-RS用于选取目标空域发送滤波器的情况下,该M个CSI-RS对应的CSI-RS资源或CSI-RS资源集合的配置信息中对应的重复字段取第一值,该第一值用于指示该第一终端设备不是使用相同的空域发送滤波器发送CSI-RS;
在该M个CSI-RS用于选取目标空域接收滤波器的情况下,该M个CSI-RS对应的CSI-RS资源或CSI-RS资源集合的配置信息中对应的重复字段取第二值,该第二值用于指示该第一终端设备使用相同的空域发送滤波器发送CSI-RS。
在一些实施例中,该通信单元310还用于向该第二终端设备发送第二指示信息;
其中,该第二指示信息用于指示该第一终端设备发送的CSI-RS用于选取用于该第一终端设备进行侧行数据发送的空域发送滤波器;或者,该第二指示信息用于指示该第一终端设备发送的CSI-RS用于选取用于该第二终端设备进行侧行数据接收的空域接收滤波器;或者,该第二指示信息用于指示该第一终端设备发送的CSI-RS用于测量信道状态信息。
在一些实施例中,该通信单元310还用于向该第二终端设备发送第一侧行配置信息;
其中,该第一侧行配置信息包括以下至少之一:
该M个CSI-RS对应的CSI-RS资源的索引,该M个CSI-RS对应的CSI-RS资源集合的索引,该M个CSI-RS对应的CSI-RS资源集合与信道状态信息CSI上报量的对应关系,该M个CSI-RS对应的CSI-RS资源集合中包括的CSI-RS资源的数量,该M的取值,用于指示QCL类型的指示信息,CSI-RS资源的周期,CSI-RS资源的时隙偏移,最小时间间隔,该M个CSI-RS中相邻两个CSI-RS的时间间隔,用于指示该M个CSI-RS中的CSI-RS占用的频域资源的指示信息,该M个CSI-RS对应的每个CSI-RS资源包括的频域资源,该M个CSI-RS对应的每个CSI-RS资源包括的最小频域资源大小,映射CSI-RS的相邻PRB的间隔,用于指示一个PRB内的CSI-RS资源的频域位置的指示信息,CSI-RS密度,用于指示通过码分复用的方式复用的CSI-RS资源的数量,码分复用类型,扰码标识,该第二终端设备向该第一终端设备上报或反馈的CSI-RS资源的数量,该M个CSI-RS对应的CSI-RS资源或CSI-RS资源集合的配置信息中对应的重复字段的取值;
其中,该M个CSI-RS对应的CSI-RS资源或CSI-RS资源集合的配置信息中对应的重复字段取第一值用于指示该第一终端设备不是使用相同的空域发送滤波器发送CSI-RS,该M个CSI-RS对应的CSI-RS资源或CSI-RS资源集合的配置信息中对应的重复字段取第二值用于指示该第一终端设备使用相同的空域发送滤波器发送CSI-RS。
在一些实施例中,该CSI上报量包括以下至少之一:
CSI-RS资源指示CRI,CRI和参考信号接收功率RSRP,CRI和信号干扰噪声比SINR,时隙指示信息,时隙指示信息和RSRP,时隙指示信息和SINR,不上报;其中,所述时隙指示信息用于指示CSI-RS所在的时隙。
在一些实施例中,该M个CSI-RS中的一个CSI-RS对应的序列根据以下信息中的至少一种确定:
CSI-RS资源集合标识,CSI-RS资源标识,基于SCI生成的循环冗余码校验CRC序列,源标识信息,目的标识信息,扰码标识;
其中,该SCI是该CSI-RS关联的SCI,该源标识信息用于指示发送该CSI-RS的终端标识信息,该目的标识信息用于指示接收该CSI-RS的终端标识信息,该扰码标识根据该CSI-RS对应的CSI-RS资源配置信息中包括的扰码标识信息确定。
在一些实施例中,该源标识信息根据该CSI-RS关联的SCI中的源标识信息确定,该目的标识信息根据该CSI-RS关联的SCI中的目的标识信息确定。
在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上***的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的终端设备300可对应于本申请方法实施例中的第一终端设备,并且终端设备300中的各个单元的上述和其它操作和/或功能分别为了实现图14所示方法200中第一终端设备的相应流程,为了简洁,在此不再赘述。
图24示出了根据本申请实施例的终端设备400的示意性框图。该终端设备400为第二终端设备,如图24所示,该终端设备400包括:
通信单元410,用于接收第一终端设备使用空域发送滤波器发送的M个CSI-RS;
其中,该M个CSI-RS中的一个CSI-RS占用一个时隙中可用于侧行传输的时域符号中的倒数第二个时域符号和倒数第三个时域符号,该M个CSI-RS用于选取目标空域发送滤波器,或者,该M个CSI-RS用于选取目标空域接收滤波器,M为正整数。
在一些实施例中,该倒数第三个时域符号上的数据是该倒数第二个时域符号上的数据的重复,或者,该倒数第三个时域符号上的数据与该倒数第二个时域符号上的数据相同。
在一些实施例中,该倒数第三个时域符号之前的一个时域符号为保护间隔GP符号,和/或,该倒数第二个时域符号之后的一个时域符号为GP符号。
在一些实施例中,该M个CSI-RS对应的CSI-RS资源或CSI-RS资源集合为基于CSI-RS资源配置信息确定的。
在一些实施例中,该CSI-RS资源配置信息包括以下至少之一:
CSI-RS资源的周期,CSI-RS资源的时隙偏移,最小时间间隔,相邻两个CSI-RS的时间间隔,可用于传输CSI-RS的频域资源的指示信息,每个CSI-RS资源包括的频域资源,每个CSI-RS资源包括的最小频域资源大小,映射CSI-RS的相邻物理资源块PRB的间隔,一个PRB内的CSI-RS资源的频域位置的指示信息,CSI-RS密度,用于指示通过码分复用的方式复用的CSI-RS资源的数量的指示信息,码分复用类型,扰码标识。
在一些实施例中,该CSI-RS资源的时隙偏移表示第一个包括CSI-RS的时隙相对于第一时域位置的时隙偏移量,其中,该第一时域位置包括SFN#0中的第一个时隙或DFN#0中的第一个时隙。
在一些实施例中,该最小时间间隔表示CSI-RS与其关联的第一指示信息之间的最小时间间隔,该第一指示信息用于指示该第一终端设备发送CSI-RS。
在一些实施例中,若该第一指示信息与该M个CSI-RS中的第一个CSI-RS在同一个时隙中,该最小时间间隔等于0。
在一些实施例中,该相邻两个CSI-RS的时间间隔通过时隙数量表示,或者,该相邻两个CSI-RS的时间间隔通过CSI-RS资源的周期数量表示。
在一些实施例中,在该CSI-RS资源配置信息中不包括该相邻两个CSI-RS的时间间隔的情况下,该相邻两个CSI-RS的时间间隔为一个CSI-RS资源的周期。
在一些实施例中,该可用于传输CSI-RS资源的频域资源指示信息用于确定可用于传输CSI-RS的PRB的信息。
在一些实施例中,该可用于传输CSI-RS的PRB的信息通过比特位图指示,其中,该比特位图中的每个比特位对应一个PRB,该比特位图的长度根据以下至少之一确定:侧行载波包括的PRB数量、侧行带宽部分BWP包括的PRB数量、资源池包括的PRB数量。
在一些实施例中,该可用于传输CSI-RS的PRB的信息通过可用于传输CSI-RS的起始频域位置和频域长度确定。
在一些实施例中,基于该起始频域位置和该频域长度确定的频域资源内包括的用于传输物理侧行反馈信道PSFCH和/或侧行定位参考信号的频域资源不用于传输CSI-RS。
在一些实施例中,该映射CSI-RS的相邻PRB的间隔用于确定一个CSI-RS映射的多个PRB中相邻两个PRB之间的间隔,其中,该相邻两个PRB之间的间隔通过可用于传输CSI-RS的PRB的数量表示。
在一些实施例中,在该CSI-RS资源配置信息中不包括该映射CSI-RS的相邻PRB的间隔的情况下,一个CSI-RS占据相邻的可用于CSI-RS传输的PRB。
在一些实施例中,该一个PRB内的CSI-RS资源的频域位置的指示信息用于指示一个PRB内的CSI-RS资源的频域位置。
在一些实施例中,该第一终端设备发送的该M个CSI-RS在PRB内占用的RE相同。
在一些实施例中,该码分复用类型包括:码分复用CDM,或者,CDM和频分复用FDM。
在一些实施例中,该扰码标识用于生成CSI-RS序列。
在一些实施例中,该CSI-RS资源配置信息还包括以下至少之一:
该M个CSI-RS对应的CSI-RS资源的索引,该M个CSI-RS对应的CSI-RS资源集合的索引,该M个CSI-RS对应的CSI-RS资源集合与信道状态信息CSI上报量的对应关系,该M个CSI-RS对应的CSI-RS资源集合中包括的CSI-RS资源的数量,用于指示准共站址QCL类型的指示信息,该第二终端设备向该第一终端设备上报或反馈的CSI-RS资源的数量,该M个CSI-RS对应的CSI-RS资源或CSI-RS资源集合的配置信息中对应的重复字段的取值;
其中,该M个CSI-RS对应的CSI-RS资源或CSI-RS资源集合的配置信息中对应的重复字段取第一值用于指示该第一终端设备不是使用相同的空域发送滤波器发送CSI-RS,该M个CSI-RS对应的CSI-RS资源或CSI-RS资源集合的配置信息中对应的重复字段取第二值用于指示该第一终端设备使用相同的空域发送滤波器发送CSI-RS。
在一些实施例中,不同时隙内的CSI-RS资源具有相同的频域资源;和/或,不同时隙内的CSI-RS 资源具有相同的码域资源;和/或,不同时隙内的CSI-RS资源具有相同的序列。
在一些实施例中,不同时隙内的CSI-RS资源具有不同的频域资源,和/或,不同时隙内的CSI-RS资源具有不同的码域资源,和/或,不同时隙内的CSI-RS资源具有不同的序列。
在一些实施例中,在该M个CSI-RS用于选取目标空域发送滤波器的情况下,该M个CSI-RS对应的CSI-RS资源或CSI-RS资源集合的配置信息中对应的重复字段取第一值,该第一值用于指示该第一终端设备不是使用相同的空域发送滤波器发送CSI-RS;
在该M个CSI-RS用于选取目标空域接收滤波器的情况下,该M个CSI-RS对应的CSI-RS资源或CSI-RS资源集合的配置信息中对应的重复字段取第二值,该第二值用于指示该第一终端设备使用相同的空域发送滤波器发送CSI-RS。
在一些实施例中,该通信单元410还用于接收该第一终端设备发送的第二指示信息;
其中,该第二指示信息用于指示该第一终端设备发送的CSI-RS用于选取用于该第一终端设备进行侧行数据发送的空域发送滤波器;或者,该第二指示信息用于指示该第一终端设备发送的CSI-RS用于选取用于该第二终端设备进行侧行数据接收的空域接收滤波器;或者,该第二指示信息用于指示该第一终端设备发送的CSI-RS用于测量信道状态信息。
在一些实施例中,该通信单元410还用于接收该第一终端设备发送的第一侧行配置信息;
其中,该第一侧行配置信息包括以下至少之一:
该M个CSI-RS对应的CSI-RS资源的索引,该M个CSI-RS对应的CSI-RS资源集合的索引,该M个CSI-RS对应的CSI-RS资源集合与信道状态信息CSI上报量的对应关系,该M个CSI-RS对应的CSI-RS资源集合中包括的CSI-RS资源的数量,该M的取值,用于指示QCL类型的指示信息,CSI-RS资源的周期,CSI-RS资源的时隙偏移,最小时间间隔,该M个CSI-RS中相邻两个CSI-RS的时间间隔,用于指示该M个CSI-RS中的CSI-RS占用的频域资源的指示信息,该M个CSI-RS对应的每个CSI-RS资源包括的频域资源,该M个CSI-RS对应的每个CSI-RS资源包括的最小频域资源大小,映射CSI-RS的相邻PRB的间隔,用于指示一个PRB内的CSI-RS资源的频域位置的指示信息,CSI-RS密度,用于指示通过码分复用的方式复用的CSI-RS资源的数量,码分复用类型,扰码标识,该第二终端设备向该第一终端设备上报或反馈的CSI-RS资源的数量,该M个CSI-RS对应的CSI-RS资源或CSI-RS资源集合的配置信息中对应的重复字段的取值;
其中,该M个CSI-RS对应的CSI-RS资源或CSI-RS资源集合的配置信息中对应的重复字段取第一值用于指示该第一终端设备不是使用相同的空域发送滤波器发送CSI-RS,该M个CSI-RS对应的CSI-RS资源或CSI-RS资源集合的配置信息中对应的重复字段取第二值用于指示该第一终端设备使用相同的空域发送滤波器发送CSI-RS。
在一些实施例中,该CSI上报量包括以下至少之一:CSI-RS资源指示CRI,CRI和参考信号接收功率RSRP,CRI和信号干扰噪声比SINR,时隙指示信息,时隙指示信息和RSRP,时隙指示信息和SINR,不上报;其中,所述时隙指示信息用于指示CSI-RS所在的时隙。
在一些实施例中,该M个CSI-RS中的一个CSI-RS对应的序列根据以下信息中的至少一种确定:
CSI-RS资源集合标识,CSI-RS资源标识,基于SCI生成的循环冗余码校验CRC序列,源标识信息,目的标识信息,扰码标识;
其中,该SCI是该CSI-RS关联的SCI,该源标识信息用于指示发送该CSI-RS的终端标识信息,该目的标识信息用于指示接收该CSI-RS的终端标识信息,该扰码标识根据该CSI-RS对应的CSI-RS资源配置信息中包括的扰码标识信息确定。
在一些实施例中,该源标识信息根据该CSI-RS关联的SCI中的源标识信息确定,该目的标识信息根据该CSI-RS关联的SCI中的目的标识信息确定。
在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上***的输入输出接口。
应理解,根据本申请实施例的终端设备400可对应于本申请方法实施例中的第二终端设备,并且终端设备400中的各个单元的上述和其它操作和/或功能分别为了实现图14所示方法200中第二终端设备的相应流程,为了简洁,在此不再赘述。
图25是本申请实施例提供的一种通信设备500示意性结构图。图25所示的通信设备500包括处理器510,处理器510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图25所示,通信设备500还可以包括存储器520。其中,处理器510可以从存储器520中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器520可以是独立于处理器510的一个单独的器件,也可以集成在处理器510中。
在一些实施例中,如图25所示,通信设备500还可以包括收发器530,处理器510可以控制该 收发器530与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器530可以包括发射机和接收机。收发器530还可以进一步包括天线,天线的数量可以为一个或多个。
在一些实施例中,该通信设备500具体可为本申请实施例的终端设备,并且该通信设备500可以实现本申请实施例的各个方法中由第一终端设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该通信设备500具体可为本申请实施例的终端设备,并且该通信设备500可以实现本申请实施例的各个方法中由第二终端设备实现的相应流程,为了简洁,在此不再赘述。
图26是本申请实施例的装置的示意性结构图。图26所示的装置600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图26所示,装置600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
在一些实施例中,该装置600还可以包括输入接口630。其中,处理器610可以控制该输入接口630与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
在一些实施例中,该装置600还可以包括输出接口640。其中,处理器610可以控制该输出接口640与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
在一些实施例中,该装置可应用于本申请实施例中的终端设备,并且该装置可以实现本申请实施例的各个方法中由第一终端设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该装置可应用于本申请实施例中的终端设备,并且该装置可以实现本申请实施例的各个方法中由第二终端设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,本申请实施例提到的装置也可以是芯片。例如可以是***级芯片,***芯片,芯片***或片上***芯片等。
图27是本申请实施例提供的一种通信***700的示意性框图。如图27所示,该通信***700包括第一终端设备710和第二终端设备720。
其中,该第一终端设备710可以用于实现上述方法中由第一终端设备实现的相应的功能,以及该第二终端设备720可以用于实现上述方法中由第二终端设备实现的相应的功能,为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的***和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double  data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第一终端设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第二终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由第一终端设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由第二终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
在一些实施例中,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由第一终端设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由第二终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。针对这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (65)

  1. 一种无线通信的方法,其特征在于,包括:
    第一终端设备使用空域发送滤波器向第二终端设备发送M个信道状态信息参考信号CSI-RS;
    其中,所述M个CSI-RS中的一个CSI-RS占用一个时隙中可用于侧行传输的时域符号中的倒数第二个时域符号和倒数第三个时域符号,所述M个CSI-RS用于选取目标空域发送滤波器,或者,所述M个CSI-RS用于选取目标空域接收滤波器,M为正整数。
  2. 如权利要求1所述的方法,其特征在于,所述倒数第三个时域符号上的数据是所述倒数第二个时域符号上的数据的重复,或者,所述倒数第三个时域符号上的数据与所述倒数第二个时域符号上的数据相同。
  3. 如权利要求1或2所述的方法,其特征在于,所述倒数第三个时域符号之前的一个时域符号为保护间隔GP符号,和/或,所述倒数第二个时域符号之后的一个时域符号为GP符号。
  4. 如权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备根据CSI-RS资源配置信息,确定所述M个CSI-RS对应的CSI-RS资源或CSI-RS资源集合。
  5. 如权利要求4所述的方法,其特征在于,所述CSI-RS资源配置信息包括以下至少之一:
    CSI-RS资源的周期,CSI-RS资源的时隙偏移,最小时间间隔,相邻两个CSI-RS的时间间隔,可用于传输CSI-RS的频域资源的指示信息,每个CSI-RS资源包括的频域资源,每个CSI-RS资源包括的最小频域资源大小,映射CSI-RS的相邻物理资源块PRB的间隔,一个PRB内的CSI-RS资源的频域位置的指示信息,CSI-RS密度,用于指示通过码分复用的方式复用的CSI-RS资源的数量的指示信息,码分复用类型,扰码标识。
  6. 如权利要求5所述的方法,其特征在于,
    所述CSI-RS资源的时隙偏移表示第一个包括CSI-RS的时隙相对于第一时域位置的时隙偏移量,其中,所述第一时域位置包括SFN#0中的第一个时隙或DFN#0中的第一个时隙。
  7. 如权利要求5所述的方法,其特征在于,
    所述最小时间间隔表示CSI-RS与其关联的第一指示信息之间的最小时间间隔,所述第一指示信息用于指示所述第一终端设备发送CSI-RS。
  8. 如权利要求7所述的方法,其特征在于,
    若所述第一指示信息与所述M个CSI-RS中的第一个CSI-RS在同一个时隙中,所述最小时间间隔等于0。
  9. 如权利要求5所述的方法,其特征在于,
    所述相邻两个CSI-RS的时间间隔通过时隙数量表示,或者,所述相邻两个CSI-RS的时间间隔通过CSI-RS资源的周期数量表示。
  10. 如权利要求5所述的方法,其特征在于,
    在所述CSI-RS资源配置信息中不包括所述相邻两个CSI-RS的时间间隔的情况下,所述相邻两个CSI-RS的时间间隔为一个CSI-RS资源的周期。
  11. 如权利要求5所述的方法,其特征在于,
    所述可用于传输CSI-RS资源的频域资源指示信息用于确定可用于传输CSI-RS的PRB的信息。
  12. 如权利要求11所述的方法,其特征在于,所述可用于传输CSI-RS的PRB的信息通过比特位图指示,其中,所述比特位图中的每个比特位对应一个PRB,所述比特位图的长度根据以下至少之一确定:侧行载波包括的PRB数量、侧行带宽部分BWP包括的PRB数量、资源池包括的PRB数量。
  13. 如权利要求11所述的方法,其特征在于,所述可用于传输CSI-RS的PRB的信息通过可用于传输CSI-RS的起始频域位置和频域长度确定。
  14. 如权利要求13所述的方法,其特征在于,
    基于所述起始频域位置和所述频域长度确定的频域资源内包括的用于传输物理侧行反馈信道PSFCH和/或侧行定位参考信号的频域资源不用于传输CSI-RS。
  15. 如权利要求5所述的方法,其特征在于,
    所述映射CSI-RS的相邻PRB的间隔用于确定一个CSI-RS映射的多个PRB中相邻两个PRB之间的间隔,其中,所述相邻两个PRB之间的间隔通过可用于传输CSI-RS的PRB的数量表示。
  16. 如权利要求5所述的方法,其特征在于,
    在所述CSI-RS资源配置信息中不包括所述映射CSI-RS的相邻PRB的间隔的情况下,一个CSI-RS占据相邻的可用于CSI-RS传输的PRB。
  17. 如权利要求5所述的方法,其特征在于,所述一个PRB内的CSI-RS资源的频域位置的指示 信息用于指示一个PRB内的CSI-RS资源的频域位置。
  18. 如权利要求17所述的方法,其特征在于,所述第一终端设备发送的所述M个CSI-RS在PRB内占用的RE相同。
  19. 如权利要求5所述的方法,其特征在于,所述码分复用类型包括:
    码分复用CDM,或者,CDM和频分复用FDM。
  20. 如权利要求5所述的方法,其特征在于,所述扰码标识用于生成CSI-RS序列。
  21. 如权利要求4至20中任一项所述的方法,其特征在于,所述CSI-RS资源配置信息还包括以下至少之一:
    所述M个CSI-RS对应的CSI-RS资源的索引,所述M个CSI-RS对应的CSI-RS资源集合的索引,所述M个CSI-RS对应的CSI-RS资源集合与信道状态信息CSI上报量的对应关系,所述M个CSI-RS对应的CSI-RS资源集合中包括的CSI-RS资源的数量,用于指示准共站址QCL类型的指示信息,所述第二终端设备向所述第一终端设备上报或反馈的CSI-RS资源的数量,所述M个CSI-RS对应的CSI-RS资源或CSI-RS资源集合的配置信息中对应的重复字段的取值;
    其中,所述M个CSI-RS对应的CSI-RS资源或CSI-RS资源集合的配置信息中对应的重复字段取第一值用于指示所述第一终端设备不是使用相同的空域发送滤波器发送CSI-RS,所述M个CSI-RS对应的CSI-RS资源或CSI-RS资源集合的配置信息中对应的重复字段取第二值用于指示所述第一终端设备使用相同的空域发送滤波器发送CSI-RS。
  22. 如权利要求1至21中任一项所述的方法,其特征在于,
    不同时隙内的CSI-RS资源具有相同的频域资源;和/或,不同时隙内的CSI-RS资源具有相同的码域资源;和/或,不同时隙内的CSI-RS资源具有相同的序列。
  23. 如权利要求1至21中任一项所述的方法,其特征在于,
    不同时隙内的CSI-RS资源具有不同的频域资源,和/或,不同时隙内的CSI-RS资源具有不同的码域资源,和/或,不同时隙内的CSI-RS资源具有不同的序列。
  24. 如权利要求1至23中任一项所述的方法,其特征在于,
    在所述M个CSI-RS用于选取目标空域发送滤波器的情况下,所述M个CSI-RS对应的CSI-RS资源或CSI-RS资源集合的配置信息中对应的重复字段取第一值,所述第一值用于指示所述第一终端设备不是使用相同的空域发送滤波器发送CSI-RS;
    在所述M个CSI-RS用于选取目标空域接收滤波器的情况下,所述M个CSI-RS对应的CSI-RS资源或CSI-RS资源集合的配置信息中对应的重复字段取第二值,所述第二值用于指示所述第一终端设备使用相同的空域发送滤波器发送CSI-RS。
  25. 如权利要求1至24任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备向所述第二终端设备发送第二指示信息;
    其中,所述第二指示信息用于指示所述第一终端设备发送的CSI-RS用于选取用于所述第一终端设备进行侧行数据发送的空域发送滤波器;或者,所述第二指示信息用于指示所述第一终端设备发送的CSI-RS用于选取用于所述第二终端设备进行侧行数据接收的空域接收滤波器;或者,所述第二指示信息用于指示所述第一终端设备发送的CSI-RS用于测量信道状态信息。
  26. 如权利要求1至25中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备向所述第二终端设备发送第一侧行配置信息;
    其中,所述第一侧行配置信息包括以下至少之一:
    所述M个CSI-RS对应的CSI-RS资源的索引,所述M个CSI-RS对应的CSI-RS资源集合的索引,所述M个CSI-RS对应的CSI-RS资源集合与信道状态信息CSI上报量的对应关系,所述M个CSI-RS对应的CSI-RS资源集合中包括的CSI-RS资源的数量,所述M的取值,用于指示QCL类型的指示信息,CSI-RS资源的周期,CSI-RS资源的时隙偏移,最小时间间隔,所述M个CSI-RS中相邻两个CSI-RS的时间间隔,用于指示所述M个CSI-RS中的CSI-RS占用的频域资源的指示信息,所述M个CSI-RS对应的每个CSI-RS资源包括的频域资源,所述M个CSI-RS对应的每个CSI-RS资源包括的最小频域资源大小,映射CSI-RS的相邻PRB的间隔,用于指示一个PRB内的CSI-RS资源的频域位置的指示信息,CSI-RS密度,用于指示通过码分复用的方式复用的CSI-RS资源的数量,码分复用类型,扰码标识,所述第二终端设备向所述第一终端设备上报或反馈的CSI-RS资源的数量,所述M个CSI-RS对应的CSI-RS资源或CSI-RS资源集合的配置信息中对应的重复字段的取值;
    其中,所述M个CSI-RS对应的CSI-RS资源或CSI-RS资源集合的配置信息中对应的重复字段取第一值用于指示所述第一终端设备不是使用相同的空域发送滤波器发送CSI-RS,所述M个CSI-RS对应的CSI-RS资源或CSI-RS资源集合的配置信息中对应的重复字段取第二值用于指示所述第一终端 设备使用相同的空域发送滤波器发送CSI-RS。
  27. 如权利要求21或26所述的方法,其特征在于,所述CSI上报量包括以下至少之一:
    CSI-RS资源指示CRI,CRI和参考信号接收功率RSRP,CRI和信号干扰噪声比SINR,时隙指示信息,时隙指示信息和RSRP,时隙指示信息和SINR,不上报;
    其中,所述时隙指示信息用于指示CSI-RS所在的时隙。
  28. 如权利要求1至27中任一项所述的方法,其特征在于,
    所述M个CSI-RS中的一个CSI-RS对应的序列根据以下信息中的至少一种确定:
    CSI-RS资源集合标识,CSI-RS资源标识,基于SCI生成的循环冗余码校验CRC序列,源标识信息,目的标识信息,扰码标识;
    其中,所述SCI是所述CSI-RS关联的SCI,所述源标识信息用于指示发送所述CSI-RS的终端标识信息,所述目的标识信息用于指示接收所述CSI-RS的终端标识信息,所述扰码标识根据所述CSI-RS对应的CSI-RS资源配置信息中包括的扰码标识信息确定。
  29. 如权利要求28所述的方法,其特征在于,
    所述源标识信息根据所述CSI-RS关联的SCI中的源标识信息确定,所述目的标识信息根据所述CSI-RS关联的SCI中的目的标识信息确定。
  30. 一种无线通信的方法,其特征在于,包括:
    第二终端设备接收第一终端设备使用空域发送滤波器发送的M个信道状态信息参考信号CSI-RS;
    其中,所述M个CSI-RS中的一个CSI-RS占用一个时隙中可用于侧行传输的时域符号中的倒数第二个时域符号和倒数第三个时域符号,所述M个CSI-RS用于选取目标空域发送滤波器,或者,所述M个CSI-RS用于选取目标空域接收滤波器,M为正整数。
  31. 如权利要求30所述的方法,其特征在于,所述倒数第三个时域符号上的数据是所述倒数第二个时域符号上的数据的重复,或者,所述倒数第三个时域符号上的数据与所述倒数第二个时域符号上的数据相同。
  32. 如权利要求30或31所述的方法,其特征在于,所述倒数第三个时域符号之前的一个时域符号为保护间隔GP符号,和/或,所述倒数第二个时域符号之后的一个时域符号为GP符号。
  33. 如权利要求30至32中任一项所述的方法,其特征在于,
    所述M个CSI-RS对应的CSI-RS资源或CSI-RS资源集合为基于CSI-RS资源配置信息确定的。
  34. 如权利要求33所述的方法,其特征在于,所述CSI-RS资源配置信息包括以下至少之一:
    CSI-RS资源的周期,CSI-RS资源的时隙偏移,最小时间间隔,相邻两个CSI-RS的时间间隔,可用于传输CSI-RS的频域资源的指示信息,每个CSI-RS资源包括的频域资源,每个CSI-RS资源包括的最小频域资源大小,映射CSI-RS的相邻物理资源块PRB的间隔,一个PRB内的CSI-RS资源的频域位置的指示信息,CSI-RS密度,用于指示通过码分复用的方式复用的CSI-RS资源的数量的指示信息,码分复用类型,扰码标识。
  35. 如权利要求34所述的方法,其特征在于,
    所述CSI-RS资源的时隙偏移表示第一个包括CSI-RS的时隙相对于第一时域位置的时隙偏移量,其中,所述第一时域位置包括SFN#0中的第一个时隙或DFN#0中的第一个时隙。
  36. 如权利要求34所述的方法,其特征在于,
    所述最小时间间隔表示CSI-RS与其关联的第一指示信息之间的最小时间间隔,所述第一指示信息用于指示所述第一终端设备发送CSI-RS。
  37. 如权利要求36所述的方法,其特征在于,
    若所述第一指示信息与所述M个CSI-RS中的第一个CSI-RS在同一个时隙中,所述最小时间间隔等于0。
  38. 如权利要求34所述的方法,其特征在于,
    所述相邻两个CSI-RS的时间间隔通过时隙数量表示,或者,所述相邻两个CSI-RS的时间间隔通过CSI-RS资源的周期数量表示。
  39. 如权利要求34所述的方法,其特征在于,
    在所述CSI-RS资源配置信息中不包括所述相邻两个CSI-RS的时间间隔的情况下,所述相邻两个CSI-RS的时间间隔为一个CSI-RS资源的周期。
  40. 如权利要求34所述的方法,其特征在于,
    所述可用于传输CSI-RS资源的频域资源指示信息用于确定可用于传输CSI-RS的PRB的信息。
  41. 如权利要求40所述的方法,其特征在于,所述可用于传输CSI-RS的PRB的信息通过比特位图指示,其中,所述比特位图中的每个比特位对应一个PRB,所述比特位图的长度根据以下至少之 一确定:侧行载波包括的PRB数量、侧行带宽部分BWP包括的PRB数量、资源池包括的PRB数量。
  42. 如权利要求40所述的方法,其特征在于,所述可用于传输CSI-RS的PRB的信息通过可用于传输CSI-RS的起始频域位置和频域长度确定。
  43. 如权利要求42所述的方法,其特征在于,
    基于所述起始频域位置和所述频域长度确定的频域资源内包括的用于传输物理侧行反馈信道PSFCH和/或侧行定位参考信号的频域资源不用于传输CSI-RS。
  44. 如权利要求34所述的方法,其特征在于,
    所述映射CSI-RS的相邻PRB的间隔用于确定一个CSI-RS映射的多个PRB中相邻两个PRB之间的间隔,其中,所述相邻两个PRB之间的间隔通过可用于传输CSI-RS的PRB的数量表示。
  45. 如权利要求34所述的方法,其特征在于,
    在所述CSI-RS资源配置信息中不包括所述映射CSI-RS的相邻PRB的间隔的情况下,一个CSI-RS占据相邻的可用于CSI-RS传输的PRB。
  46. 如权利要求34所述的方法,其特征在于,所述一个PRB内的CSI-RS资源的频域位置的指示信息用于指示一个PRB内的CSI-RS资源的频域位置。
  47. 如权利要求46所述的方法,其特征在于,所述第一终端设备发送的所述M个CSI-RS在PRB内占用的RE相同。
  48. 如权利要求34所述的方法,其特征在于,所述码分复用类型包括:
    码分复用CDM,或者,CDM和频分复用FDM。
  49. 如权利要求34所述的方法,其特征在于,所述扰码标识用于生成CSI-RS序列。
  50. 如权利要求33至49中任一项所述的方法,其特征在于,所述CSI-RS资源配置信息还包括以下至少之一:
    所述M个CSI-RS对应的CSI-RS资源的索引,所述M个CSI-RS对应的CSI-RS资源集合的索引,所述M个CSI-RS对应的CSI-RS资源集合与信道状态信息CSI上报量的对应关系,所述M个CSI-RS对应的CSI-RS资源集合中包括的CSI-RS资源的数量,用于指示准共站址QCL类型的指示信息,所述第二终端设备向所述第一终端设备上报或反馈的CSI-RS资源的数量,所述M个CSI-RS对应的CSI-RS资源或CSI-RS资源集合的配置信息中对应的重复字段的取值;
    其中,所述M个CSI-RS对应的CSI-RS资源或CSI-RS资源集合的配置信息中对应的重复字段取第一值用于指示所述第一终端设备不是使用相同的空域发送滤波器发送CSI-RS,所述M个CSI-RS对应的CSI-RS资源或CSI-RS资源集合的配置信息中对应的重复字段取第二值用于指示所述第一终端设备使用相同的空域发送滤波器发送CSI-RS。
  51. 如权利要求30至50中任一项所述的方法,其特征在于,
    不同时隙内的CSI-RS资源具有相同的频域资源;和/或,不同时隙内的CSI-RS资源具有相同的码域资源;和/或,不同时隙内的CSI-RS资源具有相同的序列。
  52. 如权利要求30至50中任一项所述的方法,其特征在于,
    不同时隙内的CSI-RS资源具有不同的频域资源,和/或,不同时隙内的CSI-RS资源具有不同的码域资源,和/或,不同时隙内的CSI-RS资源具有不同的序列。
  53. 如权利要求30至52中任一项所述的方法,其特征在于,
    在所述M个CSI-RS用于选取目标空域发送滤波器的情况下,所述M个CSI-RS对应的CSI-RS资源或CSI-RS资源集合的配置信息中对应的重复字段取第一值,所述第一值用于指示所述第一终端设备不是使用相同的空域发送滤波器发送CSI-RS;
    在所述M个CSI-RS用于选取目标空域接收滤波器的情况下,所述M个CSI-RS对应的CSI-RS资源或CSI-RS资源集合的配置信息中对应的重复字段取第二值,所述第二值用于指示所述第一终端设备使用相同的空域发送滤波器发送CSI-RS。
  54. 如权利要求30至53任一项所述的方法,其特征在于,所述方法还包括:
    所述第二终端设备接收所述第一终端设备发送的第二指示信息;
    其中,所述第二指示信息用于指示所述第一终端设备发送的CSI-RS用于选取用于所述第一终端设备进行侧行数据发送的空域发送滤波器;或者,所述第二指示信息用于指示所述第一终端设备发送的CSI-RS用于选取用于所述第二终端设备进行侧行数据接收的空域接收滤波器;或者,所述第二指示信息用于指示所述第一终端设备发送的CSI-RS用于测量信道状态信息。
  55. 如权利要求30至54中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二终端设备接收所述第一终端设备发送的第一侧行配置信息;
    其中,所述第一侧行配置信息包括以下至少之一:
    所述M个CSI-RS对应的CSI-RS资源的索引,所述M个CSI-RS对应的CSI-RS资源集合的索引,所述M个CSI-RS对应的CSI-RS资源集合与信道状态信息CSI上报量的对应关系,所述M个CSI-RS对应的CSI-RS资源集合中包括的CSI-RS资源的数量,所述M的取值,用于指示QCL类型的指示信息,CSI-RS资源的周期,CSI-RS资源的时隙偏移,最小时间间隔,所述M个CSI-RS中相邻两个CSI-RS的时间间隔,用于指示所述M个CSI-RS中的CSI-RS占用的频域资源的指示信息,所述M个CSI-RS对应的每个CSI-RS资源包括的频域资源,所述M个CSI-RS对应的每个CSI-RS资源包括的最小频域资源大小,映射CSI-RS的相邻PRB的间隔,用于指示一个PRB内的CSI-RS资源的频域位置的指示信息,CSI-RS密度,用于指示通过码分复用的方式复用的CSI-RS资源的数量,码分复用类型,扰码标识,所述第二终端设备向所述第一终端设备上报或反馈的CSI-RS资源的数量,所述M个CSI-RS对应的CSI-RS资源或CSI-RS资源集合的配置信息中对应的重复字段的取值;
    其中,所述M个CSI-RS对应的CSI-RS资源或CSI-RS资源集合的配置信息中对应的重复字段取第一值用于指示所述第一终端设备不是使用相同的空域发送滤波器发送CSI-RS,所述M个CSI-RS对应的CSI-RS资源或CSI-RS资源集合的配置信息中对应的重复字段取第二值用于指示所述第一终端设备使用相同的空域发送滤波器发送CSI-RS。
  56. 如权利要求50或55所述的方法,其特征在于,所述CSI上报量包括以下至少之一:
    CSI-RS资源指示CRI,CRI和参考信号接收功率RSRP,CRI和信号干扰噪声比SINR,时隙指示信息,时隙指示信息和RSRP,时隙指示信息和SINR,不上报;
    其中,所述时隙指示信息用于指示CSI-RS所在的时隙。
  57. 如权利要求30至56中任一项所述的方法,其特征在于,所述M个CSI-RS中的一个CSI-RS对应的序列根据以下信息中的至少一种确定:
    CSI-RS资源集合标识,CSI-RS资源标识,基于SCI生成的循环冗余码校验CRC序列,源标识信息,目的标识信息,扰码标识;
    其中,所述SCI是所述CSI-RS关联的SCI,所述源标识信息用于指示发送所述CSI-RS的终端标识信息,所述目的标识信息用于指示接收所述CSI-RS的终端标识信息,所述扰码标识根据所述CSI-RS对应的CSI-RS资源配置信息中包括的扰码标识信息确定。
  58. 如权利要求57所述的方法,其特征在于,
    所述源标识信息根据所述CSI-RS关联的SCI中的源标识信息确定,所述目的标识信息根据所述CSI-RS关联的SCI中的目的标识信息确定。
  59. 一种终端设备,其特征在于,所述终端设备为第一终端设备,所述终端设备包括:
    通信单元,用于使用空域发送滤波器向第二终端设备发送M个信道状态信息参考信号CSI-RS;
    其中,所述M个CSI-RS中的一个CSI-RS占用一个时隙中可用于侧行传输的时域符号中的倒数第二个时域符号和倒数第三个时域符号,所述M个CSI-RS用于选取目标空域发送滤波器,或者,所述M个CSI-RS用于选取目标空域接收滤波器,M为正整数。
  60. 一种终端设备,其特征在于,所述终端设备为第二终端设备,所述终端设备包括:
    通信单元,用于接收第一终端设备使用空域发送滤波器发送的M个信道状态信息参考信号CSI-RS;
    其中,所述M个CSI-RS中的一个CSI-RS占用一个时隙中可用于侧行传输的时域符号中的倒数第二个时域符号和倒数第三个时域符号,所述M个CSI-RS用于选取目标空域发送滤波器,或者,所述M个CSI-RS用于选取目标空域接收滤波器,M为正整数。
  61. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至29中任一项所述的方法,或者,执行如权利要求30至58中任一项所述的方法。
  62. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至29中任一项所述的方法,或者,执行如权利要求30至58中任一项所述的方法。
  63. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至29中任一项所述的方法,或者,执行如权利要求30至58中任一项所述的方法。
  64. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至29中任一项所述的方法,或者,执行如权利要求30至58中任一项所述的方法。
  65. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至29中任一项所述的方法,或者,执行如权利要求30至58中任一项所述的方法。
PCT/CN2021/116444 2021-09-03 2021-09-03 无线通信的方法和终端设备 WO2023028987A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/116444 WO2023028987A1 (zh) 2021-09-03 2021-09-03 无线通信的方法和终端设备
CN202180099678.8A CN117529893A (zh) 2021-09-03 2021-09-03 无线通信的方法和终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/116444 WO2023028987A1 (zh) 2021-09-03 2021-09-03 无线通信的方法和终端设备

Publications (1)

Publication Number Publication Date
WO2023028987A1 true WO2023028987A1 (zh) 2023-03-09

Family

ID=85410774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116444 WO2023028987A1 (zh) 2021-09-03 2021-09-03 无线通信的方法和终端设备

Country Status (2)

Country Link
CN (1) CN117529893A (zh)
WO (1) WO2023028987A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020056180A1 (en) * 2018-09-12 2020-03-19 Intel Corporation Device and method for sounding reference signal triggering and configuration in a new radio network
CN111181710A (zh) * 2019-12-31 2020-05-19 展讯通信(上海)有限公司 通信方法及装置
US20200374858A1 (en) * 2019-05-24 2020-11-26 Qualcomm Incorporated Sidelink communication across frequency bands
WO2021044382A1 (en) * 2019-09-05 2021-03-11 Lenovo (Singapore) Pte. Ltd. Determining an antenna panel for sidelink transmission
US20210105055A1 (en) * 2019-10-03 2021-04-08 Hyukjin Chae Sidelink channel state information acquisition
WO2021062978A1 (zh) * 2019-09-30 2021-04-08 Oppo广东移动通信有限公司 数据传输的方法和设备
CN112713974A (zh) * 2019-10-25 2021-04-27 成都华为技术有限公司 资源映射方法、设备及存储介质
WO2021101196A1 (ko) * 2019-11-22 2021-05-27 삼성전자 주식회사 무선 통신 시스템에서 사이드링크의 빔 운용을 위한 장치 및 방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020056180A1 (en) * 2018-09-12 2020-03-19 Intel Corporation Device and method for sounding reference signal triggering and configuration in a new radio network
US20200374858A1 (en) * 2019-05-24 2020-11-26 Qualcomm Incorporated Sidelink communication across frequency bands
WO2021044382A1 (en) * 2019-09-05 2021-03-11 Lenovo (Singapore) Pte. Ltd. Determining an antenna panel for sidelink transmission
WO2021062978A1 (zh) * 2019-09-30 2021-04-08 Oppo广东移动通信有限公司 数据传输的方法和设备
US20210105055A1 (en) * 2019-10-03 2021-04-08 Hyukjin Chae Sidelink channel state information acquisition
CN112713974A (zh) * 2019-10-25 2021-04-27 成都华为技术有限公司 资源映射方法、设备及存储介质
WO2021101196A1 (ko) * 2019-11-22 2021-05-27 삼성전자 주식회사 무선 통신 시스템에서 사이드링크의 빔 운용을 위한 장치 및 방법
CN111181710A (zh) * 2019-12-31 2020-05-19 展讯通信(上海)有限公司 通信方法及装置

Also Published As

Publication number Publication date
CN117529893A (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
WO2018059292A1 (en) System and method for d2d communication
WO2018141272A1 (zh) 终端、网络设备和通信方法
WO2021232382A1 (zh) 侧行反馈资源配置方法、终端设备和网络设备
US20230063901A1 (en) Sidelink feedback method and terminal device
WO2022016342A1 (zh) 信道加扰方法和终端设备
WO2023028987A1 (zh) 无线通信的方法和终端设备
WO2023028988A1 (zh) 无线通信的方法和终端设备
WO2021159413A1 (zh) 下行传输方法和终端设备
WO2023023946A1 (zh) 无线通信的方法和终端设备
WO2023142016A1 (zh) 无线通信的方法及终端设备
WO2023019466A1 (zh) 无线通信的方法和终端设备
WO2023019465A1 (zh) 无线通信的方法和终端设备
US20240244449A1 (en) Wireless communication method and device
EP4391404A1 (en) Wireless communication method, first terminal device, and second terminal device
US20240244587A1 (en) Wireless communication method and terminal device
WO2023019463A1 (zh) 无线通信的方法和设备
WO2023115296A1 (zh) 无线通信方法、第一终端设备和第二终端设备
WO2023102813A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022077346A1 (zh) 信道传输的方法、终端设备和网络设备
WO2023035184A1 (zh) 无线通信的方法和终端设备
WO2024026772A1 (zh) 无线通信的方法和终端设备
WO2023115335A1 (zh) 一种侧行传输方法及装置、终端设备
WO2023122905A1 (zh) 无线通信的方法及终端设备
WO2023035185A1 (zh) 无线通信的方法和终端设备
WO2023197158A1 (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21955521

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180099678.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE