WO2023122905A1 - 无线通信的方法及终端设备 - Google Patents

无线通信的方法及终端设备 Download PDF

Info

Publication number
WO2023122905A1
WO2023122905A1 PCT/CN2021/141770 CN2021141770W WO2023122905A1 WO 2023122905 A1 WO2023122905 A1 WO 2023122905A1 CN 2021141770 W CN2021141770 W CN 2021141770W WO 2023122905 A1 WO2023122905 A1 WO 2023122905A1
Authority
WO
WIPO (PCT)
Prior art keywords
pssch
sent
reference signal
terminal device
dmrs
Prior art date
Application number
PCT/CN2021/141770
Other languages
English (en)
French (fr)
Inventor
张世昌
赵振山
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/141770 priority Critical patent/WO2023122905A1/zh
Priority to CN202180103620.6A priority patent/CN118339894A/zh
Publication of WO2023122905A1 publication Critical patent/WO2023122905A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiments of the present application relate to the communication field, and more specifically, relate to a wireless communication method and a terminal device.
  • Embodiments of the present application provide a wireless communication method and terminal equipment, which can realize effective multiplexing of reference signals used for absolute positioning and/or relative positioning and at least one side channel, and reduce the impact of transmission of positioning reference signals on channel detection. The effect of listening, and can provide effective positioning information.
  • a wireless communication method includes:
  • the first terminal device sends at least one reference signal and at least one side channel to the second terminal device within the first time unit;
  • the at least one reference signal is used for absolute positioning and/or relative positioning.
  • a wireless communication method in a second aspect, includes:
  • the second terminal device receives at least one reference signal and at least one side channel sent by the first terminal device within the first time unit; wherein the at least one reference signal is used for absolute positioning and/or relative positioning.
  • a terminal device configured to execute the method in the first aspect above.
  • the terminal device includes a functional module for executing the method in the first aspect above.
  • a terminal device configured to execute the method in the second aspect above.
  • the terminal device includes a functional module for executing the method in the second aspect above.
  • a fifth aspect provides a terminal device, including a processor and a memory; the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory to execute the method in the first aspect above.
  • a terminal device including a processor and a memory; the memory is used to store a computer program, and the processor is used to invoke and run the computer program stored in the memory to execute the method in the second aspect above.
  • an apparatus for implementing the method in any one of the first aspect to the second aspect above.
  • the device includes: a processor, configured to invoke and run a computer program from the memory, so that the device installed with the device executes the method in any one of the above first to second aspects.
  • a computer-readable storage medium for storing a computer program, and the computer program causes a computer to execute the method in any one of the above-mentioned first aspect to the second aspect.
  • a computer program product including computer program instructions, the computer program instructions causing a computer to execute the method in any one of the above first to second aspects.
  • a computer program which, when running on a computer, causes the computer to execute the method in any one of the above first to second aspects.
  • the first terminal device sends at least one reference signal and at least one side channel to the second terminal device within the first time unit; wherein the at least one reference signal is used for absolute positioning and/or relative positioning. That is to say, the embodiment of the present application can realize the effective multiplexing of the reference signal used for absolute positioning and/or relative positioning and at least one side channel, reduce the influence of the transmission of the positioning reference signal on channel detection, and provide effective positioning information.
  • Fig. 1 is a schematic diagram of a communication system architecture provided by the present application.
  • Fig. 2 is a schematic diagram of another communication system architecture provided by the present application.
  • Fig. 3 is a schematic diagram of uplink communication within a network coverage provided by the present application.
  • Fig. 4 is a schematic diagram of partial network coverage side communication provided by the present application.
  • Fig. 5 is a schematic diagram of outbound communication provided by the network coverage provided by the present application.
  • Fig. 6 is a schematic diagram of a side communication with a central control node provided by the present application.
  • Fig. 7 is a schematic diagram of unicast sidelink communication provided by the present application.
  • Fig. 8 is a schematic diagram of multicast sideline communication provided by the present application.
  • Fig. 9 is a schematic diagram of broadcast sideline communication provided by the present application.
  • Fig. 10 is a schematic diagram of part of symbols in a time slot used for sidelink transmission provided by the present application.
  • FIG. 11 is a schematic diagram of a PSCCH and PSSCH time slot structure provided by the present application.
  • Fig. 12 is a schematic diagram of time domain positions of 4 DMRS symbols in a 13-symbol PSSCH provided by the present application.
  • FIG. 13 is a schematic diagram of a PSSCH DMRS frequency domain location provided by the present application.
  • Fig. 14 is a schematic interaction flowchart of a wireless communication method provided according to an embodiment of the present application.
  • 15 to 17 are respectively schematic diagrams of at least one reference signal provided according to embodiments of the present application.
  • Fig. 18 is a schematic diagram of an OFDM symbol used for PRS transmission located in front of a sidelink communication OFDM symbol according to an embodiment of the present application.
  • Fig. 19 is a schematic block diagram of a terminal device provided according to an embodiment of the present application.
  • Fig. 20 is a schematic block diagram of another terminal device provided according to an embodiment of the present application.
  • Fig. 21 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
  • Fig. 22 is a schematic block diagram of a device provided according to an embodiment of the present application.
  • Fig. 23 is a schematic block diagram of a communication system provided according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced long term evolution
  • NR New Radio
  • NTN Non-Terrestrial Networks
  • UMTS Universal Mobile Telecommunications System
  • WLAN Wireless Local Area Networks
  • IoT Internet of Things
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to everything
  • the communication system in the embodiment of the present application may be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, may also be applied to a dual connectivity (Dual Connectivity, DC) scenario, and may also be applied to an independent (Standalone, SA) deployment Web scene.
  • Carrier Aggregation, CA Carrier Aggregation
  • DC Dual Connectivity
  • SA independent deployment Web scene
  • the communication system in the embodiment of the present application may be applied to an unlicensed spectrum, where the unlicensed spectrum may also be considered as a shared spectrum; or, the communication system in the embodiment of the present application may also be applied to a licensed spectrum, where, Licensed spectrum can also be considered as non-shared spectrum.
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, wherein the terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • user equipment User Equipment, UE
  • access terminal user unit
  • user station mobile station
  • mobile station mobile station
  • remote station remote terminal
  • mobile device user terminal
  • terminal wireless communication device
  • wireless communication device user agent or user device
  • the terminal device can be a station (STATION, ST) in a WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital assistant (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, next-generation communication systems such as terminal devices in NR networks, or future Terminal equipment in the evolved public land mobile network (Public Land Mobile Network, PLMN) network, etc.
  • PLMN Public Land Mobile Network
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites) superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city or wireless terminal equipment in smart home, vehicle communication equipment, wireless communication chip/application-specific integrated circuit (application specific integrated circuit, ASIC)/system-on-chip (System on Chip, SoC), etc.
  • a virtual reality (Virtual Reality, VR) terminal device an augmented reality (Augmented Reality, AR) terminal Equipment
  • wireless terminal equipment in industrial control wireless terminal equipment in self driving
  • wireless terminal equipment in remote medical wireless terminal equipment in smart grid
  • wireless terminal equipment in transportation safety wireless terminal equipment in smart city or wireless terminal equipment in smart home
  • vehicle communication equipment wireless communication chip/application-specific integrated circuit (application specific integrated circuit, ASIC
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the network device may be a device for communicating with the mobile device, and the network device may be an access point (Access Point, AP) in WLAN, a base station (Base Transceiver Station, BTS) in GSM or CDMA , or a base station (NodeB, NB) in WCDMA, or an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and an NR network A network device or a base station (gNB) in a network device or a network device in a future evolved PLMN network or a network device in an NTN network.
  • AP Access Point
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • Evolutional Node B, eNB or eNodeB evolved base station
  • LTE Long Term Evolution
  • eNB evolved base station
  • gNB base station
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network equipment may be a satellite or a balloon station.
  • the satellite can be a low earth orbit (low earth orbit, LEO) satellite, a medium earth orbit (medium earth orbit, MEO) satellite, a geosynchronous earth orbit (geosynchronous earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) satellite. ) Satellite etc.
  • the network device may also be a base station installed on land, water, and other locations.
  • the network device may provide services for a cell, and the terminal device communicates with the network device through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device ( For example, a cell corresponding to a base station), the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell), and the small cell here may include: a metro cell (Metro cell), a micro cell (Micro cell), a pico cell ( Pico cell), Femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the transmission resources for example, frequency domain resources, or spectrum resources
  • the cell may be a network device (
  • the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell)
  • the small cell here may include: a metro cell (Metro cell), a micro cell (Micro
  • the "indication" mentioned in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated, configuration and is configuration etc.
  • predefined or “preconfigured” can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices).
  • the application does not limit its specific implementation.
  • pre-defined may refer to defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, may include the LTE protocol, the NR protocol, and related protocols applied to future communication systems, which is not limited in the present application.
  • Fig. 1 is a schematic diagram of a communication system to which the embodiment of the present application is applicable.
  • the transmission resources of the vehicle-mounted terminals (vehicle-mounted terminal 121 and vehicle-mounted terminal 122 ) are allocated by the base station 110 , and the vehicle-mounted terminals transmit data on the sidelink according to the resources allocated by the base station 110 .
  • the base station 110 may allocate resources for a single transmission to the terminal, or may allocate resources for semi-static transmission to the terminal.
  • Fig. 2 is a schematic diagram of another communication system to which the embodiment of the present application is applicable.
  • the vehicle-mounted terminals (vehicle-mounted terminal 131 and vehicle-mounted terminal 132 ) autonomously select transmission resources on sidelink resources for data transmission.
  • the vehicle-mounted terminal may select transmission resources randomly, or select transmission resources by listening.
  • side communication according to the network coverage of the communicating terminal, it can be divided into network coverage inner communication, as shown in Figure 3; part of the network coverage side communication, as shown in Figure 4 ; and network coverage outer line communication, as shown in FIG. 5 .
  • Figure 3 In inline communication within network coverage, all terminals performing sideline communication are within the coverage of the base station. Therefore, the above-mentioned terminals can perform sideline communication based on the same sideline configuration by receiving configuration signaling from the base station .
  • FIG 4 In the case of partial network coverage for sidelink communication, some terminals performing sidelink communication are located within the coverage of the base station. These terminals can receive configuration signaling from the base station and perform sidelink communication according to the configuration of the base station. However, terminals outside the network coverage cannot receive the configuration signaling from the base station. In this case, the terminals outside the network coverage will use the pre-configuration information and the physical The information carried in the Physical Sidelink Broadcast Channel (PSBCH) determines the sidelink configuration for sidelink communication.
  • PSBCH Physical Sidelink Broadcast Channel
  • Figure 5 For outbound communication under network coverage, all terminals performing side communication are located outside the network coverage, and all terminals determine side communication according to pre-configuration information to perform side communication.
  • FIG. 6 For side communication with a central control node, multiple terminals form a communication group.
  • a central control node in the communication group which can also be called a cluster head terminal (Cluster Header, CH).
  • the central control node has the following One of the functions: responsible for the establishment of communication groups; joining and leaving of group members; performing resource coordination, allocating side transmission resources for other terminals, receiving side communication feedback information from other terminals; performing resource coordination with other communication groups, etc.
  • device-to-device communication is based on a sidelink (Sidelink, SL) transmission technology based on device to device (D2D), and the communication data in the traditional cellular system is received or sent through the base station.
  • the method is different.
  • the Internet of Vehicles system adopts the method of terminal-to-terminal direct communication, so it has higher spectral efficiency and lower transmission delay.
  • Two transmission modes are defined in 3GPP, which are respectively recorded as: the first mode (sidelink resource allocation mode 1) and the second mode (sidelink resource allocation mode 2).
  • the first mode the transmission resources of the terminal are allocated by the base station, and the terminal sends data on the sidelink according to the resources allocated by the base station; the base station can allocate resources for a single transmission to the terminal, and can also allocate semi-static transmission to the terminal H. As shown in FIG. 3 , the terminal is located within the coverage of the network, and the network allocates transmission resources for sidelink transmission to the terminal.
  • the second mode the terminal selects a resource from the resource pool for data transmission.
  • the terminal is located outside the coverage of the cell, and the terminal independently selects transmission resources from the pre-configured resource pool for sidelink transmission; or, as shown in Figure 3, the terminal independently selects transmission resources from the resource pool configured by the network Make sideways transfers.
  • the second mode resource selection is performed in the following two steps:
  • Step 1 The terminal takes all available resources in the resource selection window as resource set A.
  • the terminal sends data in some time slots in the listening window but does not listen, all resources of these time slots in the corresponding time slots in the selection window are excluded.
  • the terminal uses the value set of the "resource reservation period (resource reservation period)" field in the resource pool configuration used to determine the corresponding time slot in the selection window.
  • the terminal detects the Physical Sidelink Control Channel (PSCCH) within the listening window, measure the Reference Signal Received Power (RSRP) of the PSCCH or the physical sidelink shared channel scheduled by the PSCCH (Physical Sidelink Shared Channel, PSSCH) RSRP, if the measured RSRP is greater than the sideline RSRP (SL-RSRP) threshold, and the reserved resources are determined according to the resource reservation information in the sideline control information transmitted in the PSCCH.
  • the corresponding resources are excluded from set A. If the remaining resources in resource set A are less than X% of all resources in resource set A before resource exclusion, raise the SL-RSRP threshold by 3 decibels (dB), and perform step 1 again.
  • the above possible values of X are ⁇ 20, 35, 50 ⁇ , and the terminal determines the parameter X from the value set according to the priority of the data to be sent.
  • the above SL-RSRP threshold is related to the priority carried in the PSCCH sensed by the terminal and the priority of the data to be sent by the terminal.
  • the terminal takes the remaining resources after resource exclusion in the set A as a set of candidate resources.
  • Step 2 The terminal randomly selects several resources from the candidate resource set as sending resources for its initial transmission and retransmission.
  • New Radio-Vehicle to Everything New Radio-Vehicle to Everything
  • NR-V2X New Radio-Vehicle to Everything
  • unicast transmission there is only one terminal at the receiving end, as shown in Figure 7, unicast transmission is performed between UE1 and UE2; for multicast transmission, the receiving end is all terminals in a communication group, or in a certain All terminals within the transmission distance, as shown in Figure 8, UE1, UE2, UE3, and UE4 form a communication group, in which UE1 sends data, and other terminal devices in the group are receiving end terminals; for broadcast transmission mode, its receiving The terminal is any terminal around the transmitting terminal. As shown in FIG. 9 , UE1 is the transmitting terminal, and other terminals around it, UE2-UE6 are all receiving terminals.
  • a resource pool is introduced in the sideline transmission system.
  • the so-called resource pool is a collection of transmission resources. Whether it is the transmission resource configured by the network or the transmission resource independently selected by the terminal, it is a resource in the resource pool.
  • Resource pools can be configured through pre-configuration or network configuration, and one or more resource pools can be configured.
  • the resource pool is further divided into a sending resource pool and a receiving resource pool.
  • the sending resource pool means that the transmission resources in the resource pool are used to send sidelink data;
  • the receiving resource pool means that the terminal receives sidelink data on the transmission resources in the resource pool.
  • the PSSCH and its associated PSCCH are transmitted in the same time slot, and the PSCCH occupies 2 time-domain symbols, or, the PSCCH occupies 3 time-domain symbols.
  • the time domain resource allocation of NR-V2X takes time slot as the allocation granularity.
  • sl-startSLsymbols sideline start sideline symbols
  • sl-lengthSLsymbols sideline length sideline symbols
  • PSSCH and PSCCH can only use the rest of the time domain symbols, but if a physical sidelink feedback channel (Physical Sidelink Feedback Channel, PSFCH) transmission resource is configured in a time slot, PSSCH and PSCCH cannot occupy the time domain symbol used for PSFCH transmission, and the automatic gain control (Auto gain control, AGC) and GP symbols before this symbol.
  • PSFCH Physical Sidelink Feedback Channel
  • PSCCH In NR-V2X, there are initially PSCCH, PSSCH, and possibly PSFCH in a sidelink slot, as shown in Figure 11. It can be seen that in a time slot, the first Orthogonal frequency-division multiplexing (OFDM) symbol is fixedly used for AGC, and on the AGC symbol, the UE copies the information sent on the second symbol. At the end of the time slot, a symbol is reserved for transceiving switching, which is used for the UE to switch from the sending (or receiving) state to the receiving (or sending) state. In the remaining OFDM symbols, PSCCH can occupy two or three OFDM symbols starting from the second side row symbol.
  • OFDM Orthogonal frequency-division multiplexing
  • the PSCCH can be frequency-division multiplexed with the PSSCH on the OFDM symbol where the PSCCH is located. use.
  • the demodulation reference signal (Demodulation Reference Signal, DMRS) of PSSCH in NR-V2X draws on the design in the NR Uu interface, and adopts multiple time-domain PSSCH DMRS patterns.
  • the number of available DMRS patterns is related to the number of PSSCH symbols in the resource pool.
  • available DMRS patterns and each The positions of DMRS symbols are shown in Table 1.
  • FIG. 12 shows a schematic diagram of time domain positions of 4 DMRS symbols when the PSSCH has 13 symbols.
  • the specific time-domain DMRS pattern used is selected by the sending UE and indicated in the first-order Sidelink Control Information (SCI).
  • SCI Sidelink Control Information
  • CRC Cyclical Redundancy Check
  • NR physical downlink shared channel Physical Downlink Shared Channel, PDSCH
  • Physical Uplink shared channel Physical Uplink Shared Channel, PUSCH
  • DMRS frequency domain type 1 supports 4 DMRS ports
  • DMRS frequency domain type 2 supports 6 DMRS ports.
  • double DMRS symbols the number of supported ports is doubled.
  • the 3rd Generation Partnership Project (The 3rd Generation Partnership Project, 3GPP) radio access network (Radio Access Network, RAN) on "NR positioning enhancement” and "in-coverage, partial coverage and out-of-coverage NR positioning use cases and requirements" Were studied.
  • the study “Scenarios and Requirements for In-Coverage, Partial-Coverage and Out-of-Coverage NR Positioning Use Cases” focuses on V2X and public safety use cases. Positioning accuracy requirements are formulated for Industrial Internet of Things (IIOT) usage in out-of-coverage scenarios.
  • 3GPP needs to research and develop sidelink positioning solutions to support the use cases, scenarios and requirements identified in these activities.
  • the present application proposes a solution for sending reference signals for positioning.
  • the first terminal device sends at least one reference signal and at least one side channel to the second terminal device within the first time unit; wherein the at least one reference signal is used for absolute positioning and/or relative positioning. That is to say, the embodiment of the present application can realize the effective multiplexing of the reference signal used for absolute positioning and/or relative positioning and at least one side channel, reduce the influence of the transmission of the positioning reference signal on channel detection, and provide effective positioning information.
  • FIG. 14 is a schematic flowchart of a wireless communication method 200 according to an embodiment of the present application. As shown in FIG. 14 , the wireless communication method 200 may include at least part of the following content:
  • the first terminal device sends at least one reference signal and at least one side channel to the second terminal device within a first time unit; where the at least one reference signal is used for absolute positioning and/or relative positioning;
  • the second terminal device receives the at least one reference signal and the at least one side channel sent by the first terminal device within the first time unit.
  • the first terminal device may send the at least one reference signal and the at least one side channel within the first time unit. That is to say, the embodiment of the present application can realize the effective multiplexing of the reference signal used for absolute positioning and/or relative positioning and at least one side channel, reduce the influence of the transmission of the positioning reference signal on channel detection, and provide effective positioning information.
  • the at least one reference signal is used for absolute positioning and/or relative positioning. That is, after receiving the at least one reference signal, the second terminal device may perform absolute positioning and/or relative positioning based on the at least one reference signal.
  • all the reference signals in the at least one reference signal are used for absolute positioning, that is, the second terminal device can determine its global positioning coordinates based on the at least one reference signal.
  • all the reference signals in the at least one reference signal are used for relative positioning, that is, the second terminal device can determine its distance and/or direction relative to the first terminal device based on the at least one reference signal .
  • the at least one reference signal includes reference signal 1 and reference signal 2, wherein reference signal 1 is used for absolute positioning, and reference signal 2 is used for relative positioning. That is, the second terminal device can determine its global positioning coordinates based on the reference signal 1 , and the second terminal device can determine its distance and/or direction relative to the first terminal device based on the reference signal 2 .
  • the at least one reference signal includes a reference signal 3, where the reference signal 3 is used for absolute positioning and relative positioning. That is, the second terminal device can determine its global positioning coordinates based on the reference signal 3 , and the second terminal device can determine its distance and/or direction relative to the first terminal device based on the reference signal 3 .
  • the time unit is a slot or a subframe. That is, the first time unit may be a time slot or a subframe. Preferably, the first time unit is a time slot. In addition, other time units in the embodiments of the present application may also be time slots or subframes, and the second time units mentioned in subsequent embodiments may also be time slots or subframes. Preferably, the second time unit is a time slot. Certainly, the time unit may also be symbols, or frames, or milliseconds (ms), etc., which are not limited in the present application.
  • the at least one side channel includes but is not limited to at least one of the following: PSSCH, PSCCH, PSFCH.
  • the first terminal device may be a backward terminal, that is, a terminal compatible with previous protocol versions.
  • the resource pool used for sending the reference signal for positioning may be the same as the resource pool used for sending the PSCCH/PSSCH, that is, the reference signal for positioning and the PSCCH/PSSCH may be sent in the same time slot. PSSCH.
  • the first terminal device sends redundancy information to the second terminal device on the first resource within the first time unit.
  • the sending of the redundant information by the first terminal device may ensure the sending bandwidth and sending cycle of the at least one side channel (such as PSSCH) sent in the first time unit.
  • the first terminal device when the data to be transmitted within the first time unit is less than a preset value, the first terminal device sends the second terminal device Send redundant information.
  • the preset value is stipulated by the agreement, or the preset value is configured by the network device, or the preset value is determined by the first terminal device, or the preset value is determined by the first terminal device and the The second terminal device is determined through negotiation.
  • the first resource is determined by the first terminal device based on the transmission requirement of the at least one reference signal.
  • the value range of the frequency domain resource occupied by the at least one reference signal is stipulated or preconfigured by the protocol, or the value range of the frequency domain resource occupied by the at least one reference signal is configured by the network device.
  • the value range of the transmission cycle corresponding to the at least one reference signal is stipulated or pre-configured by the protocol, or the value range of the transmission cycle corresponding to the at least one reference signal is configured by the network device.
  • the value range of the number of reference signal transmissions in each period in the transmission period corresponding to the at least one reference signal is stipulated or pre-configured by the protocol, or, each transmission period in the transmission period corresponding to the at least one reference signal
  • the value range of the number of times the reference signal is sent within a period is configured by the network device.
  • the base station may allocate specific transmission resources (that is, first resources) to the first terminal device, and allow the first terminal device to use part or all of the specific transmission resources to transmit redundant information. For example, if the first terminal device uses the lowest code rate to send the data in the buffer and still not enough to occupy the specific sending resource, then the first terminal device is allowed to use additional resources to send redundant information.
  • the first terminal device works in the mode 2 (Mode 2) resource pool (that is, the resource pool determined based on the above-mentioned second mode). If the resource pool allows terminals with accurate geographical location information to send redundant information, or allows terminals with relative positioning requirements to send redundant information in the resource pool, then the first terminal device can perform resource selection according to the positioning reference signal
  • the transmission requirements determine the size of frequency domain resources occupied, the transmission period and the number of transmissions in each period.
  • the value ranges of one or more of the resource size, the sending period, and the number of times of sending in each period can be configured, pre-configured or agreed upon by the base station.
  • the first terminal device uses the selected resource to send, if the first terminal device uses the lowest code rate to send the data in the buffer and is still not enough to occupy the sending resource, the first terminal device allows sending redundant information.
  • the bandwidth, period, and number of times of the PSSCH DMRS sent can also be guaranteed when the terminal does not have enough data to send, so as to ensure accurate positioning. accuracy.
  • PSSCH DMRS may be: DMRS sent through the PSSCH.
  • the at least one side channel at least includes a PSSCH
  • the at least one reference signal is a DMRS sent through the PSSCH. That is, part or all of the PSSCH DMRS can be used as reference signals for positioning.
  • the PSSCH satisfies at least one of the following:
  • the channel bandwidth occupied by the PSSCH is not less than W;
  • the PSSCH is sent periodically;
  • the PSSCH is sent periodically, and the number of times the PSSCH is sent in each period is not less than N;
  • the PSSCH is sent by selecting resources in the resource pool, and the value of the sideline resource reselection counter (SL_RESOURCE_RESELECTION_COUNTER) is not less than C;
  • the PSSCH is sent through authorized resources configured by the network device;
  • W, N and C are all positive integers, and the values of W, N and C are stipulated or pre-configured by the protocol, or the values of W, N and C are configured by the network device.
  • SL_RESOURCE_RESELECTION_COUNTER indicates the number of cycles that the first terminal device can use the resource after reselecting the resource according to Mode 2. For example, if the value of W is not less than 24 PRBs and the PSSCH is sent periodically, the DMRS of the PSSCH can be used as a positioning reference signal.
  • the PSSCH carries the first indication information
  • the PSCCH used to schedule the PSSCH carries the first indication information
  • the first indication information is used to indicate the at least one Reference signals are used for absolute and/or relative positioning.
  • the second terminal device may acquire the at least one reference signal based on the first indication information, and perform absolute positioning and/or relative positioning according to the at least one reference signal.
  • the DMRS sent through the PSSCH is used for absolute positioning
  • the first terminal device has accurate geographic location information (for example, can receive accurate GNSS signals)
  • it can indicate the The DMRS of the PSSCH
  • the DMRS of the PSSCH may be used for absolute positioning, or the DMRS of the PSSCH may be used for absolute positioning by scheduling the PSCCH of the PSSCH.
  • the DMRS of the scheduled PSSCH indicated by 1 bit in the PSCCH scheduling the PSSCH can be used for absolute positioning.
  • the first terminal device may indicate through the PSSCH that the DMRS of the PSSCH can be used for relative positioning, or the first terminal device may indicate the PSSCH through the PSCCH of the PSSCH DMRS can be used for relative positioning.
  • the at least one side channel includes at least PSSCH
  • the at least one reference signal includes M 1 first-type reference signals and M 2 second-type reference signals, and M 1 and M 2 are both positive integers;
  • the M 1 first-type reference signals are DMRSs sent through the PSSCH
  • the M 2 second-type reference signals are positioning reference signals (positioning reference signals, PRSs) sent within the time-frequency range of the PSSCH.
  • the reference signal that can be used for positioning includes the DMRS sent through the PSSCH, in addition, it can also include other reference signals, such as the PRS sent in the time-frequency range of the PSSCH .
  • the PSSCH satisfies at least one of the following:
  • the channel bandwidth occupied by the PSSCH is not less than W;
  • the PSSCH is sent periodically;
  • the PSSCH is sent periodically, and the number of times the PSSCH is sent in each period is not less than N;
  • the PSSCH is sent by selecting resources in the resource pool, and the value of the sideline resource reselection counter (SL_RESOURCE_RESELECTION_COUNTER) is not less than C;
  • the PSSCH is sent through authorized resources configured by the network device;
  • W, N and C are all positive integers, and the values of W, N and C are stipulated or pre-configured by the protocol, or the values of W, N and C are configured by the network device.
  • SL_RESOURCE_RESELECTION_COUNTER indicates the number of cycles that the first terminal device can use the resource after reselecting the resource according to Mode 2. For example, if the value of W is not less than 24 PRBs and the PSSCH is sent periodically, the DMRS of the PSSCH can be used as a positioning reference signal.
  • the PSSCH carries the first indication information
  • the PSCCH used to schedule the PSSCH carries the first indication information
  • the first indication information is used to indicate the at least one Reference signals are used for absolute and/or relative positioning.
  • one bit indicates that the scheduled PSSCH includes a reference signal for positioning in the PSCCH that schedules the PSSCH.
  • the second terminal device may acquire the at least one reference signal based on the first indication information, and perform absolute positioning and/or relative positioning according to the at least one reference signal.
  • Example 1 the M 2 reference signals of the second type are sent through OFDM symbols adjacent to one or more DMRS symbols of the PSSCH.
  • the resource element (Resource Element, RE) occupied by the PRS sent on adjacent symbols is different from the RE occupied by the DMRS.
  • RE Resource Element
  • a DMRS on a DMRS symbol occupies an odd number of REs
  • a PRS on an adjacent symbol occupies an even number of REs.
  • An example is shown in FIG. 15 .
  • the DMRS sequence sent on adjacent symbols is the same as the PRS sequence.
  • the DMRS sequence sent on one OFDM symbol and the PRS sequence sent on its adjacent OFDM symbol may be the same.
  • the DMRS density used for positioning in the frequency domain can be guaranteed, and at the same time, the DMRS at the DMRS position determined according to the existing rules can be kept unchanged, thereby avoiding the impact on the backward terminal channel detection.
  • Example 1 when the first terminal device performs rate matching (rate matching) on the PSSCH, regardless of the number of REs occupied by the PRS, when performing resource mapping on the PSSCH modulation symbols, it should be mapped to the PRS REs PSSCH modulation symbols are punctured.
  • the second terminal device may determine whether the PSSCH contains a reference signal for positioning according to the corresponding indication information in the PSCCH or PSSCH sent by the first terminal device, and if it contains the reference signal for positioning , the second terminal device may calculate positioning information according to the DMRS of the PSSCH sent by the first terminal device and the additionally sent PRS.
  • the M 2 reference signals are sent through K OFDM symbols, the K OFDM symbols are obtained by adjusting the RE positions occupied by the DMRS on the K DMRS symbols, and the K DMRS symbols are related to the The DMRS symbols occupied by the M1 first-type reference signals are different, and K is a positive integer.
  • the DMRS sent on the K DMRS symbols are not used for channel sensing; and/or, the DMRS sent through the PSCCH in the first time unit is used for channel sensing.
  • Example 2 if the first terminal device sends a reference signal for absolute positioning or relative positioning, and the PSSCH time domain sent at the same time contains multiple DMRS symbols, then the DMRS position on one or more DMRS symbols can be changed.
  • the position of the RE is occupied, and the DMRS sent on other OFDM symbols is combined as a positioning reference signal.
  • the position of the DMRS occupied RE on the i-th DMRS symbol remains unchanged, and the position of the DMRS occupied RE on the i+1 th DMRS symbol is increased by one relative to the RE position of the original DMRS.
  • 3 DMRS symbols are transmitted in the PSSCH, and on each DMRS symbol, the REs occupied by the DMRS are RE#0, RE#2, RE#4, RE#6, and RE#8 in one PRB and RE#10, the RE position occupied by the DMRS transmitted on the first DMRS symbol and the third DMRS symbol remains unchanged, and the RE position occupied by the DMRS transmitted on the second DMRS symbol is increased by 1 relative to the initial position, namely RE# 1. RE#3, RE#5, RE#7, RE#9 and RE#11. Since the DMRS sent on the second DMRS symbol changes, the backward terminal cannot use the DMRS for channel sensing.
  • the resource pool should be configured to use the DMRS of the PSCCH for channel sensing. Therefore, the DMRS density used for positioning in the frequency domain can be guaranteed.
  • Example 3 the M 2 reference signals of the second type are sent through REs not occupied by the DMRS in the DMRS symbols occupied by the M 1 reference signals of the first type.
  • Example 3 the DMRS sequence and the PRS sequence sent on the same DMRS symbol are the same.
  • Example 3 if the first terminal device transmits a reference signal for absolute positioning or relative positioning, the first terminal device is on REs that are not occupied by DMRS in one or more DMRS symbols of the simultaneously transmitted PSSCH Send an additional PRS, and combine the DMRS sent on the OFDM symbol as a positioning reference signal.
  • three DMRS symbols are transmitted in the PSSCH.
  • the REs occupied by the DMRS are RE#0, RE#2, RE#4, RE#6, RE#8 and RE#8 in one PRB.
  • RE#10 on the REs not occupied by the DMRS, namely RE#1, RE#3, RE#5, RE#7, RE#9 and RE#11, the first terminal device sends an additional PRS.
  • Example 3 when the first terminal device performs rate matching (rate matching) on the PSSCH, regardless of the number of REs occupied by the additionally sent PRS, when performing resource mapping on the PSSCH modulation symbols, it should be mapped to the PRS PSSCH modulation symbols on REs are punctured.
  • the DMRS sequence sent on the DMRS symbol and the PRS sequence sent on the symbol may be the same. In this way, the DMRS density used for positioning in the frequency domain can be guaranteed, and at the same time, the DMRS at the DMRS position determined according to the existing rules can be kept unchanged, thereby avoiding the impact on the backward terminal channel detection.
  • the first terminal device when performing rate matching on the PSSCH, does not consider the number of REs occupied by the M 2 reference signals of the second type; and/or, when modulating the PSSCH When the symbols are resource mapped, the first terminal device punctures the PSSCH modulation symbols mapped to the REs occupied by the M 2 reference signals of the second type.
  • the at least one side channel includes at least PSSCH
  • the at least one reference signal includes M 3 third-type reference signals and M 4 fourth-type reference signals, and M 3 and M 4 are both positive integers; where , the M 3 type-3 reference signals are DMRS sent through the PSSCH, and the M 4 type-4 reference signals are PRS sent outside the time-frequency range of the PSSCH. That is to say, in Embodiment 3, the reference signal that can be used for positioning includes the DMRS sent through the PSSCH. In addition, other reference signals can also be included, such as those sent outside the time-frequency range of the PSSCH. PRS.
  • the PSSCH satisfies at least one of the following:
  • the channel bandwidth occupied by the PSSCH is not less than W;
  • the PSSCH is sent periodically;
  • the PSSCH is sent periodically, and the number of times the PSSCH is sent in each period is not less than N;
  • the PSSCH is sent by selecting resources in the resource pool, and the value of the sideline resource reselection counter (SL_RESOURCE_RESELECTION_COUNTER) is not less than C;
  • the PSSCH is sent through authorized resources configured by the network device;
  • W, N and C are all positive integers, and the values of W, N and C are stipulated or pre-configured by the protocol, or the values of W, N and C are configured by the network device.
  • SL_RESOURCE_RESELECTION_COUNTER indicates the number of cycles that the first terminal device can use the resource after reselecting the resource according to Mode 2. For example, if the value of W is not less than 24 PRBs and the PSSCH is sent periodically, the DMRS of the PSSCH can be used as a positioning reference signal.
  • the PSSCH carries the first indication information
  • the PSCCH used to schedule the PSSCH carries the first indication information
  • the first indication information is used to indicate the at least one Reference signals are used for absolute and/or relative positioning.
  • one bit indicates that the scheduled PSSCH includes a reference signal for positioning in the PSCCH that schedules the PSSCH.
  • the second terminal device may acquire the at least one reference signal based on the first indication information, and perform absolute positioning and/or relative positioning according to the at least one reference signal.
  • Example 4 the M 4 fourth-type reference signals are sent through the first OFDM symbol used for sidelinks in the first time unit.
  • the M 4 reference signals of the fourth type are sent through REs at odd-numbered positions on the first OFDM symbol used for the side row in the first time unit, or, the M 4 The fourth type of reference signal is sent through REs at even positions on the first OFDM symbol used for the side row in the first time unit.
  • the PRS is located in the first OFDM symbol used for the side row in the time slot, that is, the AGC symbol, and the first terminal device can send the comb-shaped PRS on the AGC symbol, for example, only in odd or The PRS is sent on the even-numbered REs, so that the second terminal device can perform AGC adjustment on the first half symbol of the first OFDM symbol used for sidelink, and use the second half symbol for positioning measurement.
  • example 5 the M 4 reference signals of the fourth type are sent through the second resource in the first time unit; wherein, the second resource is distributed in the first time unit in the first period Within at least one OFDM symbol.
  • the at least one OFDM symbol does not overlap with the OFDM symbol used for sideline transmission in the first time unit, or the at least one OFDM symbol is at most the same as the OFDM symbol used for sidelink transmission in the first time unit
  • One OFDM symbol among OFDM symbols transmitted in rows overlaps.
  • the index of the first OFDM symbol used for PRS transmission in the first time unit is not greater than the index of the first OFDM symbol used for sidelink in the first time unit.
  • the first period is stipulated or preconfigured by the protocol, or the first period is configured by the network device; and/or, the at least one OFDM symbol is stipulated or preconfigured by the protocol, or, the At least one OFDM symbol is configured by a network device.
  • the first time unit is a time slot
  • the resources transmitted by the PRS appear in one or more OFDM symbols in the time slot at a certain period
  • the one or more OFDM symbols are configured for the backward terminal to send
  • the OFDM symbols of are not overlapped at all, or overlap with at most one of them.
  • the period of the resources used for PRS transmission and the OFDM symbols in the time slot are configured or pre-configured by the base station, and the index of the first OFDM symbol that can be used for PRS transmission in a time slot is not greater than the index of the first OFDM symbol that can be used for PRS transmission in the time slot.
  • the first OFDM symbol configured by sl-startSLsymbols for the sideline.
  • the starting point of the OFDM symbol used for PRS transmission is configured by the side row PRS start side symbol (sl-PRS-startSLsymbols), and the configuration starts from sl-PRS-startSLsymbols by the side row PRS length symbol (sl-PRS-LengthSymbols) Number of OFDM symbols continuously used for PRS transmission.
  • sl-PRS-startSLsymbols 0
  • sl-PRS-startSLsymbols 3.
  • Example 5 in the case that no transmission resource dedicated to PRS is configured in the second time unit in the resource pool, the PSCCH is allowed to be sent on the OFDM symbols configured for PRS transmission in the second time unit and/or PSSCH.
  • the OFDM symbols configured in the time slot that can be used for PRS transmission can be used to identify the terminal PSCCH and/or PSSCH transmission of the configured signaling
  • the backward terminal still uses the OFDM symbols configured by the two parameters sl-startSLsymbols and sl-LengthSymbols to send the side channel.
  • the PRS is always sent together with the PSSCH, and the PRB occupied by the PRS is the same as the PRB occupied by the PSSCH sent together.
  • the first terminal device sends at least one reference signal and at least one side channel to the second terminal device within the first time unit; where the at least one reference signal is used for absolute positioning and/or relative position. That is to say, the embodiment of the present application can realize the effective multiplexing of the reference signal used for absolute positioning and/or relative positioning and at least one side channel, reduce the influence of the transmission of the positioning reference signal on channel detection, and provide effective positioning information.
  • the reference signal used for positioning may be the DMRS of the PSSCH, or the reference signal used for positioning may be the DMRS of the PSSCH and other reference signals additionally sent.
  • Other signals sent additionally can be sent within the time-frequency range of the PSSCH, occupying symbols where the DMRS is located or symbols adjacent to the DMRS; or, other signals sent additionally are located in time slots different from the side row symbols used by the backward terminal superior.
  • effective multiplexing of reference signals used for positioning and channels such as PSCCH, PSSCH, and PSFCH can be realized, the impact of transmission of positioning reference signals on backward terminal channel detection can be reduced, and effective positioning information can be provided .
  • Fig. 19 shows a schematic block diagram of a terminal device 300 according to an embodiment of the present application.
  • the terminal device 300 is a first terminal device.
  • the terminal device 300 includes:
  • the communication unit 310 is configured to send at least one reference signal and at least one side channel to the second terminal device within a first time unit; wherein the at least one reference signal is used for absolute positioning and/or relative positioning.
  • the communication unit 310 is further configured to send redundant information to the second terminal device on the first resource within the first time unit.
  • the communication unit 310 is specifically used for:
  • the first resource is determined by the first terminal device based on the transmission requirement of the at least one reference signal.
  • the value range of the frequency domain resource occupied by the at least one reference signal is stipulated or preconfigured by the protocol, or the value range of the frequency domain resource occupied by the at least one reference signal is configured by the network device; and/ or,
  • the value range of the transmission cycle corresponding to the at least one reference signal is stipulated or pre-configured by the protocol, or the value range of the transmission cycle corresponding to the at least one reference signal is configured by the network device; and/or,
  • the value range of the number of reference signal transmissions in each period in the transmission period corresponding to the at least one reference signal is stipulated or pre-configured by the protocol, or, the transmission of the reference signal in each period in the transmission period corresponding to the at least one reference signal
  • the value range of the number of times is configured by the network device.
  • the at least one side channel at least includes a physical side channel shared channel PSSCH, and the at least one reference signal is a demodulation reference signal DMRS sent through the PSSCH.
  • the at least one side channel includes at least PSSCH
  • the at least one reference signal includes M 1 first-type reference signals and M 2 second-type reference signals, M 1 and M 2 are positive integers ;
  • the M 1 first-type reference signals are DMRS sent through the PSSCH
  • the M 2 second-type reference signals are positioning reference signals PRS sent within the time-frequency range of the PSSCH.
  • the M 2 reference signals of the second type are sent through OFDM symbols adjacent to one or more DMRS symbols of the PSSCH.
  • resource elements RE occupied by PRS transmitted on adjacent symbols are different from REs occupied by DMRS.
  • the DMRS sequence transmitted on adjacent symbols is the same as the PRS sequence.
  • the M 2 reference signals are sent through K OFDM symbols, the K OFDM symbols are obtained by adjusting the RE positions occupied by the DMRS on the K DMRS symbols, and the K DMRS symbols and the M 1 The DMRS symbols occupied by the first type of reference signal are different, and K is a positive integer.
  • the DMRS sent on the K DMRS symbols are not used for channel sensing; and/or,
  • the DMRS sent through the physical sidelink control channel PSCCH in the first time unit is used for channel sensing.
  • the M 2 reference signals of the second type are sent through REs not occupied by the DMRS among the DMRS symbols occupied by the M 1 reference signals of the first type.
  • the DMRS sequence and the PRS sequence transmitted on the same DMRS symbol are the same.
  • the terminal device 300 further includes: a processing unit 320;
  • the processing unit 320 When performing rate matching on the PSSCH, the processing unit 320 is configured not to consider the number of REs occupied by the M 2 reference signals of the second type; and/or,
  • the processing unit 320 When performing resource mapping on the PSSCH modulation symbols, the processing unit 320 is configured to puncture the PSSCH modulation symbols mapped to the REs occupied by the M 2 reference signals of the second type.
  • the at least one side channel includes at least PSSCH
  • the at least one reference signal includes M 3 third-type reference signals and M 4 fourth-type reference signals, M 3 and M 4 are positive integers ;
  • the M 3 type-3 reference signals are DMRSs sent through the PSSCH
  • the M 4 type-4 reference signals are PRSs sent outside the time-frequency range of the PSSCH.
  • the M 4 Type 4 reference signals are sent through the first OFDM symbol used for the side row in the first time unit.
  • the M 4 reference signals of the fourth type are sent through REs at odd positions on the first side row OFDM symbol in the first time unit, or, the M 4 fourth types of reference signals The reference signal is sent through REs at even positions on the first side row OFDM symbol in the first time unit.
  • the M 4 fourth type reference signals are sent through the second resource in the first time unit
  • the second resource is distributed in at least one OFDM symbol in the first time unit with a first period.
  • the at least one OFDM symbol does not overlap with the OFDM symbols used for sidelink transmission in the first time unit, or the at least one OFDM symbol overlaps with the OFDM symbols used for sidelink transmission in the first time unit at most One of the OFDM symbols overlaps.
  • the index of the first OFDM symbol used for PRS transmission in the first time unit is not greater than the index of the first OFDM symbol used for sidelink in the first time unit.
  • the first period is stipulated or preconfigured by the protocol, or, the first period is configured by the network device; and/or, the at least one OFDM symbol is stipulated or preconfigured by the protocol, or, the at least one OFDM Symbols are configured by network devices.
  • the transmission of PSCCH and/or PSSCH if no transmission resource dedicated to PRS is configured in the second time unit in the resource pool, the transmission of PSCCH and/or PSSCH.
  • the PSSCH satisfies at least one of the following:
  • the channel bandwidth occupied by the PSSCH is not less than W;
  • the PSSCH is sent periodically;
  • the PSSCH is sent periodically, and the number of times the PSSCH is sent in each period is not less than N;
  • the PSSCH is sent by selecting resources in the resource pool, and the value of the sidelink resource reselection counter is not less than C;
  • the PSSCH is sent through authorized resources configured by the network device;
  • W, N and C are all positive integers, and the values of W, N and C are stipulated or pre-configured by the protocol, or the values of W, N and C are configured by the network device.
  • the PSSCH carries the first indication information, or, the PSCCH used to schedule the PSSCH carries the first indication information; wherein, the first indication information is used to indicate that the at least one reference signal is used for Absolute and/or relative positioning.
  • the at least one sidelink channel includes at least one of the following: PSSCH, PSCCH, and physical sidelink feedback channel PSFCH.
  • the time unit is a slot or a subframe.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • terminal device 300 may correspond to the first terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 300 are to realize the For the sake of brevity, the corresponding flow of the first terminal device in the method 200 shown in FIG. 18 will not be repeated here.
  • Fig. 20 shows a schematic block diagram of a terminal device 400 according to an embodiment of the present application.
  • the terminal device 400 is a second terminal device.
  • the terminal device 400 includes:
  • the communication unit 410 is configured to receive at least one reference signal and at least one side channel sent by the first terminal device within a first time unit; wherein the at least one reference signal is used for absolute positioning and/or relative positioning.
  • the communication unit 410 is further configured to receive redundant information sent by the first terminal device on the first resource within the first time unit.
  • the redundancy information is sent by the first terminal device when the data to be transmitted within the first time unit is less than a preset value.
  • the first resource is determined by the first terminal device based on the transmission requirement of the at least one reference signal.
  • the value range of the frequency domain resource occupied by the at least one reference signal is stipulated or preconfigured by the protocol, or the value range of the frequency domain resource occupied by the at least one reference signal is configured by the network device; and/ or,
  • the value range of the transmission cycle corresponding to the at least one reference signal is stipulated or pre-configured by the protocol, or the value range of the transmission cycle corresponding to the at least one reference signal is configured by the network device; and/or,
  • the value range of the number of reference signal transmissions in each period in the transmission period corresponding to the at least one reference signal is stipulated or pre-configured by the protocol, or, the transmission of the reference signal in each period in the transmission period corresponding to the at least one reference signal
  • the value range of the number of times is configured by the network device.
  • the at least one side channel at least includes a physical side channel shared channel PSSCH, and the at least one reference signal is a demodulation reference signal DMRS sent through the PSSCH.
  • the at least one side channel includes at least PSSCH
  • the at least one reference signal includes M 1 first-type reference signals and M 2 second-type reference signals, M 1 and M 2 are positive integers ;
  • the M 1 first-type reference signals are DMRS sent through the PSSCH
  • the M 2 second-type reference signals are positioning reference signals PRS sent within the time-frequency range of the PSSCH.
  • the M 2 reference signals of the second type are sent through OFDM symbols adjacent to one or more DMRS symbols of the PSSCH.
  • resource elements RE occupied by PRS transmitted on adjacent symbols are different from REs occupied by DMRS.
  • the DMRS sequence transmitted on adjacent symbols is the same as the PRS sequence.
  • the M 2 reference signals are sent through K OFDM symbols, the K OFDM symbols are obtained by adjusting the RE positions occupied by the DMRS on the K DMRS symbols, and the K DMRS symbols and the M 1 The DMRS symbols occupied by the first type of reference signal are different, and K is a positive integer.
  • the DMRS sent on the K DMRS symbols are not used for channel sensing; and/or,
  • the DMRS sent through the physical sidelink control channel PSCCH in the first time unit is used for channel sensing.
  • the M 2 reference signals of the second type are sent through REs not occupied by the DMRS among the DMRS symbols occupied by the M 1 reference signals of the first type.
  • the DMRS sequence and the PRS sequence transmitted on the same DMRS symbol are the same.
  • the number of REs occupied by the M 2 second-type reference signals is not considered; and/or, when performing resource mapping on the modulation symbols of the PSSCH, mapped to the The PSSCH modulation symbols on the REs occupied by the M 2 reference signals of the second type are punctured.
  • the at least one side channel includes at least PSSCH
  • the at least one reference signal includes M 3 third-type reference signals and M 4 fourth-type reference signals, M 3 and M 4 are positive integers ;
  • the M 3 type-3 reference signals are DMRSs sent through the PSSCH
  • the M 4 type-4 reference signals are PRSs sent outside the time-frequency range of the PSSCH.
  • the M 4 Type 4 reference signals are sent through the first OFDM symbol used for the side row in the first time unit.
  • the M 4 reference signals of the fourth type are sent through REs at odd positions on the first side row OFDM symbol in the first time unit, or, the M 4 fourth types of reference signals The reference signal is sent through REs at even positions on the first side row OFDM symbol in the first time unit.
  • the M 4 fourth type reference signals are sent through the second resource in the first time unit
  • the second resource is distributed in at least one OFDM symbol in the first time unit with a first period.
  • the at least one OFDM symbol does not overlap with the OFDM symbols used for sidelink transmission in the first time unit, or the at least one OFDM symbol overlaps with the OFDM symbols used for sidelink transmission in the first time unit at most One of the OFDM symbols overlaps.
  • the index of the first OFDM symbol used for PRS transmission in the first time unit is not greater than the index of the first OFDM symbol used for sidelink in the first time unit.
  • the first period is stipulated or preconfigured by the protocol, or, the first period is configured by the network device; and/or, the at least one OFDM symbol is stipulated or preconfigured by the protocol, or, the at least one OFDM Symbols are configured by network devices.
  • the transmission of PSCCH and/or PSSCH if no transmission resource dedicated to PRS is configured in the second time unit in the resource pool, the transmission of PSCCH and/or PSSCH.
  • the PSSCH satisfies at least one of the following:
  • the channel bandwidth occupied by the PSSCH is not less than W;
  • the PSSCH is sent periodically;
  • the PSSCH is sent periodically, and the number of times the PSSCH is sent in each period is not less than N;
  • the PSSCH is sent by selecting resources in the resource pool, and the value of the sidelink resource reselection counter is not less than C;
  • the PSSCH is sent through authorized resources configured by the network device;
  • W, N and C are all positive integers, and the values of W, N and C are stipulated or pre-configured by the protocol, or the values of W, N and C are configured by the network device.
  • the PSSCH carries the first indication information, or, the PSCCH used to schedule the PSSCH carries the first indication information; wherein, the first indication information is used to indicate that the at least one reference signal is used for Absolute and/or relative positioning.
  • the at least one sidelink channel includes at least one of the following: PSSCH, PSCCH, and physical sidelink feedback channel PSFCH.
  • the time unit is a slot or a subframe.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system-on-chip.
  • terminal device 400 may correspond to the second terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 400 are to realize the For the sake of brevity, the corresponding process of the second terminal device in the method 200 shown in FIG. 18 will not be repeated here.
  • FIG. 21 is a schematic structural diagram of a communication device 500 provided by an embodiment of the present application.
  • the communication device 500 shown in FIG. 21 includes a processor 510, and the processor 510 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the communication device 500 may further include a memory 520 .
  • the processor 510 can invoke and run a computer program from the memory 520, so as to implement the method in the embodiment of the present application.
  • the memory 520 may be an independent device independent of the processor 510 , or may be integrated in the processor 510 .
  • the communication device 500 may further include a transceiver 530, and the processor 510 may control the transceiver 530 to communicate with other devices, specifically, to send information or data to other devices, or Receive information or data from other devices.
  • the transceiver 530 may include a transmitter and a receiver.
  • the transceiver 530 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 500 may specifically be the first terminal device in the embodiment of the present application, and the communication device 500 may implement the corresponding processes implemented by the first terminal device in each method of the embodiment of the present application, for the sake of brevity , which will not be repeated here.
  • the communication device 500 may specifically be the second terminal device in the embodiment of the present application, and the communication device 500 may implement the corresponding processes implemented by the second terminal device in each method of the embodiment of the present application, for the sake of brevity , which will not be repeated here.
  • Fig. 22 is a schematic structural diagram of a device according to an embodiment of the present application.
  • the apparatus 600 shown in FIG. 22 includes a processor 610, and the processor 610 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the device 600 may further include a memory 620 .
  • the processor 610 can invoke and run a computer program from the memory 620, so as to implement the method in the embodiment of the present application.
  • the memory 620 may be an independent device independent of the processor 610 , or may be integrated in the processor 610 .
  • the device 600 may further include an input interface 630 .
  • the processor 610 can control the input interface 630 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.
  • the device 600 may further include an output interface 640 .
  • the processor 610 can control the output interface 640 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the device can be applied to the first terminal device in the embodiment of the present application, and the device can implement the corresponding processes implemented by the first terminal device in the methods of the embodiments of the present application. For the sake of brevity, here No longer.
  • the device can be applied to the second terminal device in the embodiment of the present application, and the device can implement the corresponding process implemented by the second terminal device in each method of the embodiment of the present application. For the sake of brevity, here No longer.
  • the device mentioned in the embodiment of the present application may also be a chip.
  • it may be a system-on-a-chip, a system-on-a-chip, a system-on-a-chip, or a system-on-a-chip.
  • FIG. 23 is a schematic block diagram of a communication system 700 provided by an embodiment of the present application. As shown in FIG. 23 , the communication system 700 includes a first terminal device 710 and a second terminal device 720 .
  • the first terminal device 710 can be used to realize the corresponding functions realized by the first terminal device in the above method
  • the second terminal device 720 can be used to realize the corresponding functions realized by the second terminal device in the above method , for the sake of brevity, it is not repeated here.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, and the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM, SLDRAM Direct Memory Bus Random Access Memory
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is, the memories in the embodiments of the present application are intended to include, but are not limited to, these and any other suitable types of memories.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the first terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the first terminal device in the various methods of the embodiments of the present application , for the sake of brevity, it is not repeated here.
  • the computer-readable storage medium can be applied to the second terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the second terminal device in the various methods of the embodiments of the present application , for the sake of brevity, it is not repeated here.
  • the embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the first terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the first terminal device in the various methods of the embodiments of the present application, For the sake of brevity, details are not repeated here.
  • the computer program product can be applied to the second terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the second terminal device in each method of the embodiment of the present application, For the sake of brevity, details are not repeated here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the first terminal device in the embodiment of the present application.
  • the computer program executes each method in the embodiment of the present application to be realized by the first terminal device For the sake of brevity, the corresponding process will not be repeated here.
  • the computer program can be applied to the second terminal device in the embodiment of the present application.
  • the computer program executes each method in the embodiment of the present application to be realized by the second terminal device.
  • the corresponding process will not be repeated here.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本申请实施例提供了一种无线通信的方法及终端设备,可以实现用于绝对定位和/或相对定位的参考信号与至少一个侧行信道的有效复用,减少定位参考信号的发送对信道侦听的影响,并可提供有效的定位信息。该无线通信的方法,包括:第一终端设备在第一时间单元内向第二终端设备发送至少一个参考信号和至少一个侧行信道;其中,该至少一个参考信号用于绝对定位和/或相对定位。

Description

无线通信的方法及终端设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种无线通信的方法及终端设备。
背景技术
在侧行通信中,为了实现基于侧行链路的定位,需要在侧行链路上发送有效的定位参考信号,然而,侧行链路上还可能存在终端设备发送的侧行信道,在这种情况下,如何发送定位参考信号,是一个需要解决的问题。
发明内容
本申请实施例提供了一种无线通信的方法及终端设备,可以实现用于绝对定位和/或相对定位的参考信号与至少一个侧行信道的有效复用,减少定位参考信号的发送对信道侦听的影响,并可提供有效的定位信息。
第一方面,提供了一种无线通信的方法,该方法包括:
第一终端设备在第一时间单元内向第二终端设备发送至少一个参考信号和至少一个侧行信道;
其中,该至少一个参考信号用于绝对定位和/或相对定位。
第二方面,提供了一种无线通信的方法,该方法包括:
第二终端设备接收第一终端设备在第一时间单元内发送的至少一个参考信号和至少一个侧行信道;其中,该至少一个参考信号用于绝对定位和/或相对定位。
第三方面,提供了一种终端设备,用于执行上述第一方面中的方法。
具体地,该终端设备包括用于执行上述第一方面中的方法的功能模块。
第四方面,提供了一种终端设备,用于执行上述第二方面中的方法。
具体地,该终端设备包括用于执行上述第二方面中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器;该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面中的方法。
第六方面,提供了一种终端设备,包括处理器和存储器;该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面中的方法。
第七方面,提供了一种装置,用于实现上述第一方面至第二方面中的任一方面中的方法。
具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第二方面中的任一方面中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
通过上述技术方案,第一终端设备在第一时间单元内向第二终端设备发送至少一个参考信号和至少一个侧行信道;其中,该至少一个参考信号用于绝对定位和/或相对定位。也即,本申请实施例可以实现用于绝对定位和/或相对定位的参考信号与至少一个侧行信道的有效复用,减少定位参考信号的发送对信道侦听的影响,并可提供有效的定位信息。
附图说明
图1是本申请提供的一种通信***架构的示意性图。
图2是本申请提供的另一种通信***架构的示意性图。
图3是本申请提供的一种网络覆盖范围内侧行通信的示意性图。
图4是本申请提供的一种部分网络覆盖侧行通信的示意性图。
图5是本申请提供的一种网络覆盖外侧行通信的示意性图。
图6是本申请提供的一种存在中央控制节点的侧行通信的示意性图。
图7是本申请提供的一种单播侧行通信的示意性图。
图8是本申请提供的一种组播侧行通信的示意性图。
图9是本申请提供的一种广播侧行通信的示意性图。
图10是本申请提供的一种一个时隙中部分符号用于侧行传输的示意图。
图11是本申请提供的一种PSCCH和PSSCH时隙结构的示意图。
图12是本申请提供的一种13个符号PSSCH时4个DMRS符号的时域位置的示意图。
图13是本申请提供的一种PSSCH DMRS频域位置示意图。
图14是根据本申请实施例提供的一种无线通信的方法的示意***互流程图。
图15至17分别是根据本申请实施例提供的至少一个参考信号的示意性图。
图18是根据本申请实施例提供的用于PRS发送的OFDM符号位于侧行通信OFDM符号前的示意性图。
图19是根据本申请实施例提供的一种终端设备的示意性框图。
图20是根据本申请实施例提供的另一种终端设备的示意性框图。
图21是根据本申请实施例提供的一种通信设备的示意性框图。
图22是根据本申请实施例提供的一种装置的示意性框图。
图23是根据本申请实施例提供的一种通信***的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信***,例如:全球移动通讯(Global System of Mobile communication,GSM)***、码分多址(Code Division Multiple Access,CDMA)***、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)***、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)***、先进的长期演进(Advanced long term evolution,LTE-A)***、新无线(New Radio,NR)***、NR***的演进***、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)***、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)***、非地面通信网络(Non-Terrestrial Networks,NTN)***、通用移动通信***(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、物联网(internet of things,IoT)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)***或其他通信***等。
通常来说,传统的通信***支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信***将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信***。
可选地,本申请实施例中的通信***可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
可选地,本申请实施例中的通信***可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信***也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信***例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备、车载通信设备、无线通信芯片/专用集成电路(application specific integrated  circuit,ASIC)/***级芯片(System on Chip,SoC)等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备或者基站(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
应理解,本文中术语“***”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,“预定义”或“预配置”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信***中的相关协议,本申请对此不做限定。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
图1是本申请实施例适用的一种通信***的示意图。车载终端(车载终端121和车载终端122)的传输资源是由基站110分配的,车载终端根据基站110分配的资源在侧行链路上进行数据的发送。具体地,基站110可以为终端分配单次传输的资源,也可以为终端分配半静态传输的资源。
图2是本申请实施例适用的另一种通信***的示意图。车载终端(车载终端131和车载终端132)在侧行链路的资源上自主选取传输资源进行数据传输。可选地,车载终端可以随机选取传输资源,或者通过侦听的方式选取传输资源。
需要说明的是,在侧行通信中,根据进行通信的终端所处的网络覆盖情况,可以分为网络覆盖内侧行通信,如图3所示;部分网络覆盖侧行通信,如图4所示;及网络覆盖外侧行通信,如图5所示。
图3:在网络覆盖内侧行通信中,所有进行侧行通信的终端均处于基站的覆盖范围内,从而,上述终端均可以通过接收基站的配置信令,基于相同的侧行配置进行侧行通信。
图4:在部分网络覆盖侧行通信情况下,部分进行侧行通信的终端位于基站的覆盖范围内,这部分终端能够接收到基站的配置信令,而且根据基站的配置进行侧行通信。而位于网络覆盖范围外的终端,无法接收基站的配置信令,在这种情况下,网络覆盖范围外的终端将根据预配置(pre-configuration)信息及位于网络覆盖范围内的终端发送的物理侧行广播信道(Physical Sidelink Broadcast Channel,PSBCH)中携带的信息确定侧行配置,进行侧行通信。
图5:对于网络覆盖外侧行通信,所有进行侧行通信的终端均位于网络覆盖范围外,所有终端均根据预配置(pre-configuration)信息确定侧行配置进行侧行通信。
图6:对于有中央控制节点的侧行通信,多个终端构成一个通信组,该通信组内具有中央控制节点,又可以称为组头终端(Cluster Header,CH),该中央控制节点具有以下功能之一:负责通信组的建立;组成员的加入、离开;进行资源协调,为其他终端分配侧行传输资源,接收其他终端的侧行反馈信息;与其他通信组进行资源协调等功能。
需要说明的是,设备到设备通信是基于终端到终端(Device to Device,D2D)的一种侧行链路(Sidelink,SL)传输技术,与传统的蜂窝***中通信数据通过基站接收或者发送的方式不同,车联网***采用终端到终端直接通信的方式,因此具有更高的频谱效率以及更低的传输时延。在3GPP定义了两种传输模式,分别记为:第一模式(sidelink resource allocation mode 1)和第二模式(sidelink resource allocation mode 2)。
第一模式:终端的传输资源是由基站分配的,终端根据基站分配的资源在侧行链路上进行数据的发送;基站可以为终端分配单次传输的资源,也可以为终端分配半静态传输的资源。如图3所示,终端位于网络覆盖范围内,网络为终端分配侧行传输使用的传输资源。
第二模式:终端在资源池中选取一个资源进行数据的传输。如图5所示,终端位于小区覆盖范围外,终端在预配置的资源池中自主选取传输资源进行侧行传输;或者,如图3所示,终端在网络配置的资源池中自主选取传输资源进行侧行传输。
在一些实施例中,第二模式资源选择按照以下两个步骤进行:
步骤1:终端将资源选择窗内所有的可用资源作为资源集合A。
如果终端在侦听窗内某些时隙发送数据,没有进行侦听,则这些时隙在选择窗内对应的时隙上的全部资源被排除掉。终端利用所用资源池配置中的“资源预留周期(resource reservation period)”域的取值集合确定选择窗内对应的时隙。
如果终端在侦听窗内侦听到物理侧行控制信道(Physical Sidelink Control Channel,PSCCH),测量该PSCCH的参考信号接收功率(Reference Signal Received Power,RSRP)或者该PSCCH调度的物理侧行共享信道(Physical Sidelink Shared Channel,PSSCH)的RSRP,如果测量的RSRP大于侧行RSRP(SL-RSRP)阈值,并且根据该PSCCH中传输的侧行控制信息中的资源预留信息确定其预留的资源在资源选择窗内,则从集合A中排除对应资源。如果资源集合A中剩余资源不足资源集合A进行资源排除前全部资源的X%,则将SL-RSRP阈值抬升3分贝(dB),重新执行步骤1。上述X可能的取值为{20,35,50},终端根据待发送数据的优先级从该取值集合中确定参数X。同时,上述SL-RSRP阈值与终端侦听到的PSCCH中携带的优先级以及终端待发送数据的优先级有关。终端将集合A中经资源排除后的剩余资源作为候选资源集合。
步骤2:终端从候选资源集合中随机选择若干资源,作为其初次传输以及重传的发送资源。
在新无线-车辆到其他设备(New Radio-Vehicle to Everything,NR-V2X)中,支持自动驾驶,因此对车辆之间数据交互提出了更高的要求,如更高的吞吐量、更低的时延、更高的可靠性、更大的覆盖范围、更灵活的资源分配等。
在LTE-V2X中,支持广播传输方式,在NR-V2X中,引入了单播和组播的传输方式。对于单播传输,其接收端终端只有一个终端,如图7所示,UE1、UE2之间进行单播传输;对于组播传输,其接收端是一个通信组内的所有终端,或者是在一定传输距离内的所有终端,如图8所示,UE1、UE2、UE3和UE4构成一个通信组,其中UE1发送数据,该组内的其他终端设备都是接收端终端;对于广播传输方式,其接收端是发送端终端周围的任意一个终端,如图9所示,UE1是发送端终端,其周围的其他终端,UE2-UE6都是接收端终端。
在侧行传输***中引入了资源池,所谓资源池即传输资源的集合,无论是网络配置的传输资源还是终端自主选取的传输资源,都是资源池中的资源。可以通过预配置或网络配置的方式配置资源池,可以配置一个或多个资源池。资源池又分为发送资源池和接收资源池。发送资源池即该资源池中的传输资源用于发送侧行数据;接收资源池即终端在该资源池中的传输资源上接收侧行数据。
为便于更好的理解本申请实施例,对本申请相关的NR-V2X中时隙结构进行说明。
在NR-V2X中,PSSCH和其关联的PSCCH在相同的时隙中传输,PSCCH占据2个时域符号,或者,PSCCH占据3个时域符号。NR-V2X的时域资源分配以时隙为分配粒度。通过侧行起始侧行符号(sl-startSLsymbols)和侧行长度侧行符号(sl-lengthSLsymbols)配置一个时隙中用于侧行传输的时域符号的起点和长度,这部分符号中的最后一个符号用作保护间隔(Guard Period,GP),PSSCH和PSCCH只能使用其余的时域符号,但是如果一个时隙中配置了物理侧行反馈信道(Physical Sidelink Feedback Channel,PSFCH)传输资源,PSSCH和PSCCH不能占用用于PSFCH传输的时域符号,以及该符号之前的自动增益控制(Auto gain control,AGC)和GP符号。
如图10所示,网络配置sl-StartSymbol=3,sl-LengthSymbols=11,即一个时隙中从符号索引3开始的11个时域符号可用于侧行传输,该时隙中有PSFCH传输资源,该PSFCH占据符号11和符号12,其中符号11作为PSFCH的AGC符号,符号10、13分别用作GP,可用于PSSCH传输的时域符号为符号3至符号9,PSCCH占据3个时域符号,即符号4、5、6,符号3通常用作AGC符号。
NR-V2X中一个侧行时隙内初存在PSCCH,PSSCH,还可能存在PSFCH,如图11所示。可以看到,在一个时隙内,第一个正交频分复用(Orthogonal frequency-division multiplexing,OFDM)符号固定用于AGC,在AGC符号上,UE复制第二个符号上发送的信息。而时隙的最后留有一个符号用于收发转换,用于UE从发送(或接收)状态转换到接收(或发送)状态。在剩余的OFDM符号中,PSCCH可以占用从第二个侧行符号开始的两个或三个OFDM符号,在频域上,PSCCH占据的物理资源块(physical resource block,PRB)个数在一个PSSCH的子带范围内,如果PSCCH占用的PRB个数小于PSSCH的一个子信道的大小,或者,PSSCH的频域资源包括多个子信道,则在PSCCH所在的OFDM符号上,PSCCH可以和PSSCH频分复用。
NR-V2X中PSSCH的解调参考信号(Demodulation Reference Signal,DMRS)借鉴了NR Uu接口中的设计,采用了多个时域PSSCH DMRS图案。在一个资源池内,可采用的DMRS图案的个数和资源池内PSSCH的符号数有关,对于特定的PSSCH符号数(包括第一个AGC符号)和PSCCH符号数,可用的DMRS图案以及图案内每个DMRS符号的位置如表1所示。图12中给出了PSSCH为13个符号数时4个DMRS符号的时域位置示意图。
表1
Figure PCTCN2021141770-appb-000001
如果资源池内配置了多个时域DMRS图案,则具体采用的时域DMRS图案由发送UE选择,并在第一阶侧行控制信息(Sidelink Control Information,SCI)中予以指示。这样的设计允许高速运动的UE选择高密度的DMRS图案,从而保证信道估计的精度,而对于低速运动的UE,则可以采用低密度的DMRS图案,从而提高频谱效率。
PSSCH DMRS序列的生成方式和PSCCH DMRS序列的生成方式几乎完全相同,唯一的区别在于伪随机序列c(m)的初始化公式c init中,
Figure PCTCN2021141770-appb-000002
p i为调度该PSSCH的PSCCH的第i位循环冗余码校验(Cyclical Redundancy Check,CRC),L=24,为PSCCH CRC的比特位数。
NR物理下行共享信道(Physical Downlink Shared Channel,PDSCH)和物理上行共享信道(Physical Uplink Shared Channel,PUSCH)中支持两种频域DMRS图案,即DMRS频域类型1和DMRS频域类型2,而且对于每一种频域类型,均存在单DMRS符号和双DMRS符号两种不同类型。单符号DMRS频域类型1支持4个DMRS端口,单符号DMRS频域类型2可以支持6个DMRS端口,双DMRS符号情况下,支持的端口数均翻倍。然而,在NR-V2X中,由于PSSCH最多只需要支持两个DMRS端口,所以,仅支持单符号的DMRS频域类型1,如图13所示,资源元素(Resource Element,RE)#0、RE#2、RE#4、RE#6、RE#8、RE#10上对应端口0/端口1。
为便于更好的理解本申请实施例,对本申请相关的基于侧行链路的定位进行说明。
第三代合作伙伴计划(The 3rd Generation Partnership Project,3GPP)无线接入网(Radio Access Network,RAN)对“NR定位增强”和“覆盖内、部分覆盖和覆盖外NR定位用例的场景和要求”进行了研究。“覆盖内、部分覆盖和覆盖外NR定位用例的场景和要求”研究集中于V2X和公共安全用例。针对覆盖范围外场景中的工业物联网(Industrial Internet of Things,IIOT)使用情况制定了定位精度要求。3GPP需要研究和开发侧行链路定位解决方案,以支持在这些活动中确定的用例、场景和需求。
为便于更好的理解本申请实施例,对本申请所解决的问题进行说明。
为了实现基于侧行链路的定位,需要在侧行链路上发送有效的定位参考信号,然而,目前侧行链路上可能存在后向终端发送的侧行信道和信号,在这种情况下,如何发送定位参考信号,尚无有效解决方案。
基于上述问题,本申请提出了一种发送用于定位的参考信号的方案。第一终端设备在第一时间单元内向第二终端设备发送至少一个参考信号和至少一个侧行信道;其中,该至少一个参考信号用于绝对定位和/或相对定位。也即,本申请实施例可以实现用于绝对定位和/或相对定位的参考信号与至少一个侧行信道的有效复用,减少定位参考信号的发送对信道侦听的影响,并可提供有效的定位信息。
以下通过具体实施例详述本申请的技术方案。
图14是根据本申请实施例的无线通信的方法200的示意性流程图,如图14所示,该无线通信的方法200可以包括如下内容中的至少部分内容:
S210,第一终端设备在第一时间单元内向第二终端设备发送至少一个参考信号和至少一个侧行信道;其中,该至少一个参考信号用于绝对定位和/或相对定位;
S220,该第二终端设备接收该第一终端设备在该第一时间单元内发送的该至少一个参考信号和该至少一个侧行信道。
在本申请实施例中,该第一终端设备可以在该第一时间单元内发送该至少一个参考信号和该至少一个侧行信道。也即,本申请实施例可以实现用于绝对定位和/或相对定位的参考信号与至少一个侧行信道的有效复用,减少定位参考信号的发送对信道侦听的影响,并可提供有效的定位信息。
在本申请实施例中,该至少一个参考信号用于绝对定位和/或相对定位。也即,该第二终端设备在接收到该至少一个参考信号之后,可以基于该至少一个参考信号进行绝对定位和/或相对定位。
例如,该至少一个参考信号中的参考信号均用于绝对定位,也即,该第二终端设备可以基于该至少一个参考信号确定其全球定位坐标。
又例如,该至少一个参考信号中的参考信号均用于相对定位,也即,该第二终端设备可以基于该至少一个参考信号确定其相对于该第一终端设备之间的距离和/或方向。
再例如,该至少一个参考信号包括参考信号1和参考信号2,其中,参考信号1用于绝对定位,参考信号2用于相对定位。也即,该第二终端设备可以基于该参考信号1确定其全球定位坐标,以及该第二终端设备可以基于该参考信号2确定其相对于该第一终端设备之间的距离和/或方向。
再例如,该至少一个参考信号包括参考信号3,其中,参考信号3用于绝对定位和相对定位。也即,该第二终端设备可以基于该参考信号3确定其全球定位坐标,以及该第二终端设备可以基于该参考信号3确定其相对于该第一终端设备之间的距离和/或方向。
在一些实施例中,该时间单元为时隙或子帧。也即,该第一时间单元可以是时隙或子帧。优选地,该第一时间单元是时隙。此外,本申请实施例中的其他时间单元也可以为时隙或子帧,如后续实施例提及的第二时间单元也可以是时隙或子帧。优选地,该第二时间单元是时隙。当然,该时间单元也可以是符号,或帧,或毫秒(ms)等,本申请对此并不限定。
在一些实施例中,该至少一个侧行信道包括但不限于以下至少之一:PSSCH,PSCCH,PSFCH。
在本申请实施例中,该第一终端设备可以是后向终端,即可以兼容之前协议版本的终端。具体地,对于后向终端,发送用于定位的参考信号的资源池可以与用于发送PSCCH/PSSCH的资源池相同,即,可能在相同的时隙内发送用于定位的参考信号和PSCCH/PSSCH。
在一些实施例中,该第一终端设备在该第一时间单元内的第一资源上向该第二终端设备发送冗余信息。具体地,该第一终端设备发送冗余信息可以保证该第一时间单元内发送的该至少一个侧行信道(如PSSCH)的发送带宽和发送周期等。
在一些实施例中,在该第一时间单元内待传输的数据少于预设值的情况下,该第一终端设备在该第一时间单元内的该第一资源上向该第二终端设备发送冗余信息。
具体例如,该预设值由协议约定,或者,该预设值由网络设备配置,或者,该预设值由该第一终端设备确定,或者,该预设值由该第一终端设备与该第二终端设备协商确定。
在一些实施例中,该第一资源由该第一终端设备基于该至少一个参考信号的发送需求确定。
在一些实施例中,该至少一个参考信号占用的频域资源的取值范围由协议约定或预配置,或者,该至少一个参考信号占用的频域资源的取值范围由网络设备配置。
在一些实施例中,该至少一个参考信号对应的发送周期的取值范围由协议约定或预配置,或者,该至少一个参考信号对应的发送周期的取值范围由网络设备配置。
在一些实施例中,该至少一个参考信号对应的发送周期中每个周期内参考信号的发送次数的取值范围由协议约定或预配置,或者,该至少一个参考信号对应的发送周期中每个周期内参考信号的发送次数的取值范围由网络设备配置。
在本申请实施例中,如果第一终端设备在模式1(Mode 1)资源池内(即基于上述第一模式确定的资源池),而且基站配置了定位状态上报,则如果第一终端设备具有准确的地理位置信息应将该定位状态上报基站。或者,如果基站配置了相对定位需求上报,则当第一终端设备存在相对定位需求时,可以将该相对定位需求上报基站。基站可以为第一终端设备分配特定的发送资源(即第一资源),允许第一终端设备采用该特定的发送资源的部分或全部发送冗余信息。例如,如果第一终端设备采用最低的码率发送缓存中的数据时依然不足以占满该特定的发送资源,则第一终端设备允许使用额外的资源发送冗余信息。
在本申请实施例中,如果第一终端设备工作在模式2(Mode 2)资源池内(即基于上述第二模式确定的资源池)。如果该资源池内允许具备准确地理位置信息的终端发送冗余信息,或者,该资源池内允许具有相对定位需求的终端发送冗余信息,则第一终端设备在执行资源选择时,可以根据定位参考信号的发送需求确定占用的频域资源的大小,发送周期和每个周期内的发送次数。较优的,该资源大小,发送周期,和每个周期内的发送次数中的一个或多个的取值范围可以由基站配置,预配置或协议约定。第一终端设备使用所选择的资源发送时,如果第一终端设备采用最低的码率发送缓存中的数据时依然不足以占满该发送资源,则第一终端设备允许发送冗余信息。
在本申请实施例中,通过允许符合定位信号发送条件的终端发送冗余信息,可以在终端没有足够数据需要发送时,也能够保证发送的PSSCH DMRS的带宽,周期,次数等,以保证定位的准确性。
需要说明的是,PSSCH DMRS可以是:通过PSSCH发送的DMRS。
实施例1,该至少一个侧行信道至少包括PSSCH,且该至少一个参考信号为通过该PSSCH发送的DMRS。也即,可以将PSSCH DMRS中的部分或者全部作为用于定位的参考信号。
在实施例1的一些实现方式中,该PSSCH满足以下至少之一:
该PSSCH占用的信道带宽不小于W;
该PSSCH为周期性发送;
该PSSCH为周期性发送,且在每个周期内PSSCH的发送次数不小于N;
该PSSCH通过在资源池内选取资源的方式发送,且侧行资源重选计数器(SL_RESOURCE_RESELECTION_COUNTER)的值不小于C;
该PSSCH通过网络设备配置的授权资源发送;
其中,W、N和C均为正整数,且W、N和C的值由协议约定或预配置,或者,W、N和C的值由网络设备配置。
需要说明的是,资源池内选取资源的方式可以是上述第二模式。SL_RESOURCE_RESELECTION_COUNTER表示第一终端设备根据Mode 2进行资源重选后可以使用该资源的周期数。例如,如果W的值不小于24个PRB,且该PSSCH为周期性发送,则该PSSCH的DMRS可以作为定位参考信号。
在实施例1的一些实现方式中,该PSSCH中承载有第一指示信息,或者,用于调度该PSSCH的PSCCH中承载有第一指示信息;其中,该第一指示信息用于指示该至少一个参考信号用于绝对定位和/或相对定位。具体地,该第二终端设备可以基于该第一指示信息获取该至少一个参考信号,以及根据该至少一个参考信号进行绝对定位和/或相对定位。
具体例如,在实施例1中,如果通过PSSCH发送的DMRS用于绝对定位,在第一终端设备具有 准确的地理位置信息时(例如,能够接受到准确的GNSS信号),可以通过该PSSCH指示该PSSCH的DMRS可以用于绝对定位,或者,可以通过调度该PSSCH的PSCCH指示该PSSCH的DMRS可以用于绝对定位。例如,在调度该PSSCH的PSCCH中通过1个比特指示被调度的PSSCH的DMRS可以用于绝对定位。或者,如果通过PSSCH发送的DMRS用于相对定位,该第一终端设备可以通过该PSSCH指示该PSSCH的DMRS可以用于相对定位,或者,该第一终端设备可以通过调度该PSSCH的PSCCH指示该PSSCH的DMRS可以用于相对定位。
实施例2,该至少一个侧行信道至少包括PSSCH,且该至少一个参考信号包括M 1个第一类参考信号和M 2个第二类参考信号,M 1和M 2均为正整数;其中,该M 1个第一类参考信号为通过该PSSCH发送的DMRS,该M 2个第二类参考信号为该PSSCH的时频范围内发送的定位参考信号(positioning reference signals,PRS)。也即,在实施例2中,可以用于定位的参考信号包括通过PSSCH发送的DMRS,除此之外,还可以包含其它的参考信号,如还可以包含该PSSCH的时频范围内发送的PRS。
在实施例2的一些实现方式中,该PSSCH满足以下至少之一:
该PSSCH占用的信道带宽不小于W;
该PSSCH为周期性发送;
该PSSCH为周期性发送,且在每个周期内PSSCH的发送次数不小于N;
该PSSCH通过在资源池内选取资源的方式发送,且侧行资源重选计数器(SL_RESOURCE_RESELECTION_COUNTER)的值不小于C;
该PSSCH通过网络设备配置的授权资源发送;
其中,W、N和C均为正整数,且W、N和C的值由协议约定或预配置,或者,W、N和C的值由网络设备配置。
需要说明的是,资源池内选取资源的方式可以是上述第二模式。SL_RESOURCE_RESELECTION_COUNTER表示第一终端设备根据Mode 2进行资源重选后可以使用该资源的周期数。例如,如果W的值不小于24个PRB,且该PSSCH为周期性发送,则该PSSCH的DMRS可以作为定位参考信号。
在实施例2的一些实现方式中,该PSSCH中承载有第一指示信息,或者,用于调度该PSSCH的PSCCH中承载有第一指示信息;其中,该第一指示信息用于指示该至少一个参考信号用于绝对定位和/或相对定位。例如,在调度该PSSCH的PSCCH中通过1个比特指示被调度的PSSCH中包含用于定位的参考信号。具体地,该第二终端设备可以基于该第一指示信息获取该至少一个参考信号,以及根据该至少一个参考信号进行绝对定位和/或相对定位。
在实施例2中,示例1,该M 2个第二类参考信号通过与该PSSCH的一个或多个DMRS符号相邻的OFDM符号发送。
可选地,在示例1中,相邻符号上发送的PRS占用的资源元素(Resource Element,RE)与DMRS所占用的RE不同。例如,DMRS符号上的DMRS占用奇数RE,与其相邻的符号上的PRS占用偶数RE,一个示例如图15所示。
可选地,在示例1中,相邻符号上发送的DMRS序列与PRS序列相同。例如,一个OFDM符号上发送的DMRS序列和与其相邻的OFDM符号上发送的PRS序列可以相同。通过这种方式,可以保证频域上用于定位的DMRS密度,同时保证根据现有规则确定的DMRS位置上的DMRS不变,从而避免对后向终端信道侦听的影响。
可选地,在示例1中,在第一终端设备对PSSCH进行速率匹配(rate matching)时,不考虑PRS占用的RE数,在对PSSCH调制符号进行资源映射时,应对映射到PRS RE上的PSSCH调制符号进行打孔(puncture)。
可选地,在示例1中,第二终端设备可以根据第一终端设备发送的PSCCH或PSSCH中的相应指示信息确定PSSCH中是否包含用于定位的参考信号,如果其中包含用于定位的参考信号,则第二终端设备可以根据第一终端设备发送的PSSCH的DMRS及额外发送的PRS计算定位信息。
在实施例2中,示例2,该M 2个参考信号通过K个OFDM符号发送,该K个OFDM符号通过调整K个DMRS符号上DMRS所占用的RE位置得到,且该K个DMRS符号与该M 1个第一类参考信号占用的DMRS符号不同,K为正整数。
可选地,在示例2中,该K个DMRS符号上发送的DMRS不用于信道侦听;和/或,该第一时间单元内通过PSCCH发送的DMRS用于信道侦听。
具体地,在示例2中,如果第一终端设备发送用于绝对定位或相对定位的参考信号,而且同时发送的PSSCH时域包含多个DMRS符号,则可以改变一个或多个DMRS符号上DMRS所占用RE的位置,并联合其它OFDM符号上发送的DMRS作为定位参考信号。例如,第i个DMRS符号上的 DMRS占用RE位置不变,第i+1个DMRS符号上的DMRS占用RE相对于原DMRS的RE位置加一。例如,如图16所示,PSSCH中发送3个DMRS符号,每个DMRS符号上,DMRS占用的RE为一个PRB内的RE#0、RE#2、RE#4、RE#6、RE#8和RE#10,第一个DMRS符号和第三个DMRS符号上发送的DMRS占用的RE位置不变,第二个DMRS符号上发送的DMRS占用的RE位置相对于初始位置加1,即RE#1、RE#3、RE#5、RE#7、RE#9和、RE#11。由于第二个DMRS符号上发送的DMRS发生变化,后向终端不能利用该DMRS进行信道侦听,较优的,在这种情况下,该资源池应配置为通过PSCCH的DMRS进行信道侦听。从而可以保证频域上用于定位的DMRS密度。
在实施例2中,示例3,该M 2个第二类参考信号通过该M 1个第一类参考信号占用的DMRS符号中未被DMRS占用的RE发送。
可选地,在示例3中,同一DMRS符号上发送的DMRS序列与PRS序列相同。
具体地,在示例3中,如果第一终端设备发送用于绝对定位或相对定位的参考信号,则第一终端设备在同时发送的PSSCH的一个或多个DMRS符号中未被DMRS占用的RE上发送额外的PRS,并联合该OFDM符号上发送的DMRS作为定位参考信号。例如如图17所示,PSSCH中发送3个DMRS符号,每个DMRS符号上,DMRS占用的RE为一个PRB内的RE#0、RE#2、RE#4、RE#6、RE#8和RE#10,在未被DMRS占用的RE上,即RE#1、RE#3、RE#5、RE#7、RE#9和RE#11,第一终端设备发送额外的PRS。
可选地,在示例3中,在第一终端设备对PSSCH进行速率匹配(rate matching)时,不考虑额外发送的PRS占用的RE数,在对PSSCH调制符号进行资源映射时,应对映射到PRS RE上的PSSCH调制符号进行打孔(puncture)。
在示例3中,DMRS符号上发送的DMRS序列和该符号上发送的PRS序列可以相同。通过这种方式,可以保证频域上用于定位的DMRS密度,同时保证根据现有规则确定的DMRS位置上的DMRS不变,从而避免对后向终端信道侦听的影响。
在实施例2的一些实现方式中,在对该PSSCH进行速率匹配时,该第一终端设备不考虑该M 2个第二类参考信号占用的RE数;和/或,在对该PSSCH的调制符号进行资源映射时,该第一终端设备对映射到该M 2个第二类参考信号占用的RE上的PSSCH调制符号进行打孔。
实施例3,该至少一个侧行信道至少包括PSSCH,且该至少一个参考信号包括M 3个第三类参考信号和M 4个第四类参考信号,M 3和M 4均为正整数;其中,该M 3个第三类参考信号为通过该PSSCH发送的DMRS,该M 4个第四类参考信号为该PSSCH的时频范围之外发送的PRS。也即,在实施例3中,可以用于定位的参考信号包括通过PSSCH发送的DMRS,除此之外,还可以包含其它的参考信号,如还可以包含该PSSCH的时频范围之外发送的PRS。
在实施例3的一些实现方式中,该PSSCH满足以下至少之一:
该PSSCH占用的信道带宽不小于W;
该PSSCH为周期性发送;
该PSSCH为周期性发送,且在每个周期内PSSCH的发送次数不小于N;
该PSSCH通过在资源池内选取资源的方式发送,且侧行资源重选计数器(SL_RESOURCE_RESELECTION_COUNTER)的值不小于C;
该PSSCH通过网络设备配置的授权资源发送;
其中,W、N和C均为正整数,且W、N和C的值由协议约定或预配置,或者,W、N和C的值由网络设备配置。
需要说明的是,资源池内选取资源的方式可以是上述第二模式。SL_RESOURCE_RESELECTION_COUNTER表示第一终端设备根据Mode 2进行资源重选后可以使用该资源的周期数。例如,如果W的值不小于24个PRB,且该PSSCH为周期性发送,则该PSSCH的DMRS可以作为定位参考信号。
在实施例3的一些实现方式中,该PSSCH中承载有第一指示信息,或者,用于调度该PSSCH的PSCCH中承载有第一指示信息;其中,该第一指示信息用于指示该至少一个参考信号用于绝对定位和/或相对定位。例如,在调度该PSSCH的PSCCH中通过1个比特指示被调度的PSSCH中包含用于定位的参考信号。具体地,该第二终端设备可以基于该第一指示信息获取该至少一个参考信号,以及根据该至少一个参考信号进行绝对定位和/或相对定位。
在实施例3中,示例4,该M 4个第四类参考信号通过该第一时间单元内的第一个用于侧行的OFDM符号发送。
可选地,在示例4中,该M 4个第四类参考信号通过该第一时间单元内的该第一个用于侧行的OFDM符号上奇数位置的RE发送,或者,该M 4个第四类参考信号通过该第一时间单元内的该第一 个用于侧行的OFDM符号上偶数位置的RE发送。
具体地,在示例4中,PRS位于时隙内第一个用于侧行的OFDM符号,即AGC符号,第一终端设备可以在AGC符号上发送梳齿状的PRS,例如,仅在奇数或偶数RE上发送PRS,从而第二终端设备可以在该第一个用于侧行的OFDM符号的开始半个符号上进行AGC调整,而利用后半个符号用于定位测量。
在实施例3中,示例5,该M 4个第四类参考信号通过该第一时间单元内的第二资源发送;其中,该第二资源以第一周期分布于该第一时间单元内的至少一个OFDM符号内。
可选地,在示例5中,该至少一个OFDM符号与该第一时间单元内用于侧行传输的OFDM符号不重叠,或者,该至少一个OFDM符号至多与该第一时间单元内用于侧行传输的OFDM符号中的一个OFDM符号重叠。
可选地,在示例5中,该第一时间单元内第一个用于PRS发送的OFDM符号的索引不大于该第一时间单元内第一个用于侧行的OFDM符号的索引。
可选地,在示例5中,该第一周期由协议约定或预配置,或者,该第一周期由网络设备配置;和/或,该至少一个OFDM符号由协议约定或预配置,或者,该至少一个OFDM符号由网络设备配置。
具体的,该第一时间单元为时隙,PRS发送的资源以一定的周期出现在时隙内的一个或多个OFDM符号内,该一个或多个OFDM符号与配置给后向终端侧行发送的OFDM符号完全不重叠,或至多与其中的一个OFDM符号重叠。较优的,用于PRS发送的资源的周期和时隙内的OFDM符号由基站配置或预配置,且一个时隙内第一个可以用于PRS发送的OFDM符号索引不大于该时隙内由sl-startSLsymbols配置的第一个用于侧行的OFDM符号。例如,由侧行PRS起始侧行符号(sl-PRS-startSLsymbols)配置用于PRS发送的OFDM的符号起点,由侧行PRS长度符号(sl-PRS-LengthSymbols)配置从sl-PRS-startSLsymbols开始连续用于PRS发送的OFDM符号个数。例如,如图18所示,sl-PRS-startSLsymbols=0,sl-PRS-startSLsymbols=3。
可选地,在示例5中,在资源池内的第二时间单元内未配置专用于PRS的发送资源的情况下,在该第二时间单元内配置的可用于PRS发送的OFDM符号上允许发送PSCCH和/或PSSCH。
具体地,如果一个资源池内的一个时隙没有配置PRS的发送资源,则在时隙内配置的可用于PRS发送的OFDM符号可以用于能够识别该配置信令的终端PSCCH和/或PSSCH的发送,后向终端依然使用sl-startSLsymbols和sl-LengthSymbols这两个参数配置的OFDM符号发送侧行信道。例如,如果一个资源池内专用PRS的周期为10个时隙,位于索引为第#0,#10,#20,…的时隙上,则在这些时隙上由sl-PRS-startSLsymbols=0和sl-PRS-startSLsymbols配置的OFDM符号用于发送专用PRS,在其它时隙上,这些OFDM符号用于发送PSCCH和/或PSSCH。
可选地,在示例5中,PRS总是和PSSCH一起发送,PRS占用的PRB和一同发送的PSSCH占用的PRB相同。
因此,在本申请实施例中,第一终端设备在第一时间单元内向第二终端设备发送至少一个参考信号和至少一个侧行信道;其中,该至少一个参考信号用于绝对定位和/或相对定位。也即,本申请实施例可以实现用于绝对定位和/或相对定位的参考信号与至少一个侧行信道的有效复用,减少定位参考信号的发送对信道侦听的影响,并可提供有效的定位信息。
在本申请实施例中,用于定位的参考信号可以为PSSCH的DMRS,或者,用于定位的参考信号可以为PSSCH的DMRS和额外发送的其它参考信号。额外发送的其它信号可以在PSSCH的时频范围内发送,占用与DMRS所在的符号或与DMRS相邻的符号;或者,额外发送的其它信号位于时隙内不同于后向终端使用的侧行符号上。根据本申请提出的方法,可以实现用于定位的参考信号和PSCCH、PSSCH、PSFCH等信道的有效复用,减少定位参考信号的发送对后向终端信道侦听的影响,并提供有效的定位信息。
上文结合图14至图18,详细描述了本申请的方法实施例,下文结合图19至图20,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图19示出了根据本申请实施例的终端设备300的示意性框图。该终端设备300为第一终端设备,如图19所示,该终端设备300包括:
通信单元310,用于在第一时间单元内向第二终端设备发送至少一个参考信号和至少一个侧行信道;其中,该至少一个参考信号用于绝对定位和/或相对定位。
在一些实施例中,该通信单元310还用于在该第一时间单元内的第一资源上向该第二终端设备发送冗余信息。
在一些实施例中,该通信单元310具体用于:
在该第一时间单元内待传输的数据少于预设值的情况下,在该第一时间单元内的该第一资源上向 该第二终端设备发送冗余信息。
在一些实施例中,该第一资源由该第一终端设备基于该至少一个参考信号的发送需求确定。
在一些实施例中,该至少一个参考信号占用的频域资源的取值范围由协议约定或预配置,或者,该至少一个参考信号占用的频域资源的取值范围由网络设备配置;和/或,
该至少一个参考信号对应的发送周期的取值范围由协议约定或预配置,或者,该至少一个参考信号对应的发送周期的取值范围由网络设备配置;和/或,
该至少一个参考信号对应的发送周期中每个周期内参考信号的发送次数的取值范围由协议约定或预配置,或者,该至少一个参考信号对应的发送周期中每个周期内参考信号的发送次数的取值范围由网络设备配置。
在一些实施例中,该至少一个侧行信道至少包括物理侧行共享信道PSSCH,且该至少一个参考信号为通过该PSSCH发送的解调参考信号DMRS。
在一些实施例中,该至少一个侧行信道至少包括PSSCH,且该至少一个参考信号包括M 1个第一类参考信号和M 2个第二类参考信号,M 1和M 2均为正整数;
其中,该M 1个第一类参考信号为通过该PSSCH发送的DMRS,该M 2个第二类参考信号为该PSSCH的时频范围内发送的定位参考信号PRS。
在一些实施例中,该M 2个第二类参考信号通过与该PSSCH的一个或多个DMRS符号相邻的正交频分复用OFDM符号发送。
在一些实施例中,相邻符号上发送的PRS占用的资源元素RE与DMRS所占用的RE不同。
在一些实施例中,相邻符号上发送的DMRS序列与PRS序列相同。
在一些实施例中,该M 2个参考信号通过K个OFDM符号发送,该K个OFDM符号通过调整K个DMRS符号上DMRS所占用的RE位置得到,且该K个DMRS符号与该M 1个第一类参考信号占用的DMRS符号不同,K为正整数。
在一些实施例中,该K个DMRS符号上发送的DMRS不用于信道侦听;和/或,
该第一时间单元内通过物理侧行控制信道PSCCH发送的DMRS用于信道侦听。
在一些实施例中,该M 2个第二类参考信号通过该M 1个第一类参考信号占用的DMRS符号中未被DMRS占用的RE发送。
在一些实施例中,同一DMRS符号上发送的DMRS序列与PRS序列相同。
在一些实施例中,该终端设备300还包括:处理单元320;
在对该PSSCH进行速率匹配时,该处理单元320用于不考虑该M 2个第二类参考信号占用的RE数;和/或,
在对该PSSCH的调制符号进行资源映射时,该处理单元320用于对映射到该M 2个第二类参考信号占用的RE上的PSSCH调制符号进行打孔。
在一些实施例中,该至少一个侧行信道至少包括PSSCH,且该至少一个参考信号包括M 3个第三类参考信号和M 4个第四类参考信号,M 3和M 4均为正整数;
其中,该M 3个第三类参考信号为通过该PSSCH发送的DMRS,该M 4个第四类参考信号为该PSSCH的时频范围之外发送的PRS。
在一些实施例中,该M 4个第四类参考信号通过该第一时间单元内的第一个用于侧行的OFDM符号发送。
在一些实施例中,该M 4个第四类参考信号通过该第一时间单元内的该第一个用于侧行的OFDM符号上奇数位置的RE发送,或者,该M 4个第四类参考信号通过该第一时间单元内的该第一个用于侧行的OFDM符号上偶数位置的RE发送。
在一些实施例中,该M 4个第四类参考信号通过该第一时间单元内的第二资源发送;
其中,该第二资源以第一周期分布于该第一时间单元内的至少一个OFDM符号内。
在一些实施例中,该至少一个OFDM符号与该第一时间单元内用于侧行传输的OFDM符号不重叠,或者,该至少一个OFDM符号至多与该第一时间单元内用于侧行传输的OFDM符号中的一个OFDM符号重叠。
在一些实施例中,该第一时间单元内第一个用于PRS发送的OFDM符号的索引不大于该第一时间单元内第一个用于侧行的OFDM符号的索引。
在一些实施例中,该第一周期由协议约定或预配置,或者,该第一周期由网络设备配置;和/或,该至少一个OFDM符号由协议约定或预配置,或者,该至少一个OFDM符号由网络设备配置。
在一些实施例中,在资源池内的第二时间单元内未配置专用于PRS的发送资源的情况下,在该第二时间单元内配置的可用于PRS发送的OFDM符号上允许发送PSCCH和/或PSSCH。
在一些实施例中,该PSSCH满足以下至少之一:
该PSSCH占用的信道带宽不小于W;
该PSSCH为周期性发送;
该PSSCH为周期性发送,且在每个周期内PSSCH的发送次数不小于N;
该PSSCH通过在资源池内选取资源的方式发送,且侧行资源重选计数器的值不小于C;
该PSSCH通过网络设备配置的授权资源发送;
其中,W、N和C均为正整数,且W、N和C的值由协议约定或预配置,或者,W、N和C的值由网络设备配置。
在一些实施例中,该PSSCH中承载有第一指示信息,或者,用于调度该PSSCH的PSCCH中承载有第一指示信息;其中,该第一指示信息用于指示该至少一个参考信号用于绝对定位和/或相对定位。
在一些实施例中,该至少一个侧行信道包括以下至少之一:PSSCH,PSCCH,物理侧行反馈信道PSFCH。
在一些实施例中,该时间单元为时隙或子帧。
在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上***的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的终端设备300可对应于本申请方法实施例中的第一终端设备,并且终端设备300中的各个单元的上述和其它操作和/或功能分别为了实现图14至图18中所示的方法200中第一终端设备的相应流程,为了简洁,在此不再赘述。
图20示出了根据本申请实施例的终端设备400的示意性框图。该终端设备400为第二终端设备,如图20所示,该终端设备400包括:
通信单元410,用于接收第一终端设备在第一时间单元内发送的至少一个参考信号和至少一个侧行信道;其中,该至少一个参考信号用于绝对定位和/或相对定位。
在一些实施例中,该通信单元410还用于接收该第一终端设备在该第一时间单元内的第一资源上发送的冗余信息。
在一些实施例中,该冗余信息为该第一终端设备在该第一时间单元内待传输的数据少于预设值的情况下发送的。
在一些实施例中,该第一资源由该第一终端设备基于该至少一个参考信号的发送需求确定。
在一些实施例中,该至少一个参考信号占用的频域资源的取值范围由协议约定或预配置,或者,该至少一个参考信号占用的频域资源的取值范围由网络设备配置;和/或,
该至少一个参考信号对应的发送周期的取值范围由协议约定或预配置,或者,该至少一个参考信号对应的发送周期的取值范围由网络设备配置;和/或,
该至少一个参考信号对应的发送周期中每个周期内参考信号的发送次数的取值范围由协议约定或预配置,或者,该至少一个参考信号对应的发送周期中每个周期内参考信号的发送次数的取值范围由网络设备配置。
在一些实施例中,该至少一个侧行信道至少包括物理侧行共享信道PSSCH,且该至少一个参考信号为通过该PSSCH发送的解调参考信号DMRS。
在一些实施例中,该至少一个侧行信道至少包括PSSCH,且该至少一个参考信号包括M 1个第一类参考信号和M 2个第二类参考信号,M 1和M 2均为正整数;
其中,该M 1个第一类参考信号为通过该PSSCH发送的DMRS,该M 2个第二类参考信号为该PSSCH的时频范围内发送的定位参考信号PRS。
在一些实施例中,该M 2个第二类参考信号通过与该PSSCH的一个或多个DMRS符号相邻的正交频分复用OFDM符号发送。
在一些实施例中,相邻符号上发送的PRS占用的资源元素RE与DMRS所占用的RE不同。
在一些实施例中,相邻符号上发送的DMRS序列与PRS序列相同。
在一些实施例中,该M 2个参考信号通过K个OFDM符号发送,该K个OFDM符号通过调整K个DMRS符号上DMRS所占用的RE位置得到,且该K个DMRS符号与该M 1个第一类参考信号占用的DMRS符号不同,K为正整数。
在一些实施例中,该K个DMRS符号上发送的DMRS不用于信道侦听;和/或,
该第一时间单元内通过物理侧行控制信道PSCCH发送的DMRS用于信道侦听。
在一些实施例中,该M 2个第二类参考信号通过该M 1个第一类参考信号占用的DMRS符号中未被DMRS占用的RE发送。
在一些实施例中,同一DMRS符号上发送的DMRS序列与PRS序列相同。
在一些实施例中,在对该PSSCH进行速率匹配时,不考虑该M 2个第二类参考信号占用的RE数;和/或,在对该PSSCH的调制符号进行资源映射时,映射到该M 2个第二类参考信号占用的RE上的PSSCH调制符号执行打孔处理。
在一些实施例中,该至少一个侧行信道至少包括PSSCH,且该至少一个参考信号包括M 3个第三类参考信号和M 4个第四类参考信号,M 3和M 4均为正整数;
其中,该M 3个第三类参考信号为通过该PSSCH发送的DMRS,该M 4个第四类参考信号为该PSSCH的时频范围之外发送的PRS。
在一些实施例中,该M 4个第四类参考信号通过该第一时间单元内的第一个用于侧行的OFDM符号发送。
在一些实施例中,该M 4个第四类参考信号通过该第一时间单元内的该第一个用于侧行的OFDM符号上奇数位置的RE发送,或者,该M 4个第四类参考信号通过该第一时间单元内的该第一个用于侧行的OFDM符号上偶数位置的RE发送。
在一些实施例中,该M 4个第四类参考信号通过该第一时间单元内的第二资源发送;
其中,该第二资源以第一周期分布于该第一时间单元内的至少一个OFDM符号内。
在一些实施例中,该至少一个OFDM符号与该第一时间单元内用于侧行传输的OFDM符号不重叠,或者,该至少一个OFDM符号至多与该第一时间单元内用于侧行传输的OFDM符号中的一个OFDM符号重叠。
在一些实施例中,该第一时间单元内第一个用于PRS发送的OFDM符号的索引不大于该第一时间单元内第一个用于侧行的OFDM符号的索引。
在一些实施例中,该第一周期由协议约定或预配置,或者,该第一周期由网络设备配置;和/或,该至少一个OFDM符号由协议约定或预配置,或者,该至少一个OFDM符号由网络设备配置。
在一些实施例中,在资源池内的第二时间单元内未配置专用于PRS的发送资源的情况下,在该第二时间单元内配置的可用于PRS发送的OFDM符号上允许发送PSCCH和/或PSSCH。
在一些实施例中,该PSSCH满足以下至少之一:
该PSSCH占用的信道带宽不小于W;
该PSSCH为周期性发送;
该PSSCH为周期性发送,且在每个周期内PSSCH的发送次数不小于N;
该PSSCH通过在资源池内选取资源的方式发送,且侧行资源重选计数器的值不小于C;
该PSSCH通过网络设备配置的授权资源发送;
其中,W、N和C均为正整数,且W、N和C的值由协议约定或预配置,或者,W、N和C的值由网络设备配置。
在一些实施例中,该PSSCH中承载有第一指示信息,或者,用于调度该PSSCH的PSCCH中承载有第一指示信息;其中,该第一指示信息用于指示该至少一个参考信号用于绝对定位和/或相对定位。
在一些实施例中,该至少一个侧行信道包括以下至少之一:PSSCH,PSCCH,物理侧行反馈信道PSFCH。
在一些实施例中,该时间单元为时隙或子帧。
在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上***的输入输出接口。
应理解,根据本申请实施例的终端设备400可对应于本申请方法实施例中的第二终端设备,并且终端设备400中的各个单元的上述和其它操作和/或功能分别为了实现图14至图18中所示的方法200中第二终端设备的相应流程,为了简洁,在此不再赘述。
图21是本申请实施例提供的一种通信设备500示意性结构图。图21所示的通信设备500包括处理器510,处理器510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图21所示,通信设备500还可以包括存储器520。其中,处理器510可以从存储器520中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器520可以是独立于处理器510的一个单独的器件,也可以集成在处理器510中。
在一些实施例中,如图21所示,通信设备500还可以包括收发器530,处理器510可以控制该收发器530与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器530可以包括发射机和接收机。收发器530还可以进一步包括天线,天线的数量可 以为一个或多个。
在一些实施例中,该通信设备500具体可为本申请实施例的第一终端设备,并且该通信设备500可以实现本申请实施例的各个方法中由第一终端设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该通信设备500具体可为本申请实施例的第二终端设备,并且该通信设备500可以实现本申请实施例的各个方法中由第二终端设备实现的相应流程,为了简洁,在此不再赘述。
图22是本申请实施例的装置的示意性结构图。图22所示的装置600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图22所示,装置600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
在一些实施例中,该装置600还可以包括输入接口630。其中,处理器610可以控制该输入接口630与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
在一些实施例中,该装置600还可以包括输出接口640。其中,处理器610可以控制该输出接口640与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
在一些实施例中,该装置可应用于本申请实施例中的第一终端设备,并且该装置可以实现本申请实施例的各个方法中由第一终端设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该装置可应用于本申请实施例中的第二终端设备,并且该装置可以实现本申请实施例的各个方法中由第二终端设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,本申请实施例提到的装置也可以是芯片。例如可以是***级芯片,***芯片,芯片***或片上***芯片等。
图23是本申请实施例提供的一种通信***700的示意性框图。如图23所示,该通信***700包括第一终端设备710和第二终端设备720。
其中,该第一终端设备710可以用于实现上述方法中由第一终端设备实现的相应的功能,以及该第二终端设备720可以用于实现上述方法中由第二终端设备实现的相应的功能,为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的***和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这 些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的第一终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第一终端设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的第二终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第二终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的第一终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由第一终端设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的第二终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由第二终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
在一些实施例中,该计算机程序可应用于本申请实施例中的第一终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由第一终端设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序可应用于本申请实施例中的第二终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由第二终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。针对这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (61)

  1. 一种无线通信的方法,其特征在于,包括:
    第一终端设备在第一时间单元内向第二终端设备发送至少一个参考信号和至少一个侧行信道;
    其中,所述至少一个参考信号用于绝对定位和/或相对定位。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备在所述第一时间单元内的第一资源上向所述第二终端设备发送冗余信息。
  3. 如权利要求2所述的方法,其特征在于,所述第一终端设备在所述第一时间单元内的第一资源上向所述第二终端设备发送冗余信息,包括:
    在所述第一时间单元内待传输的数据少于预设值的情况下,所述第一终端设备在所述第一时间单元内的所述第一资源上向所述第二终端设备发送冗余信息。
  4. 如权利要求2或3所述的方法,其特征在于,所述第一资源由所述第一终端设备基于所述至少一个参考信号的发送需求确定。
  5. 如权利要求4所述的方法,其特征在于,
    所述至少一个参考信号占用的频域资源的取值范围由协议约定或预配置,或者,所述至少一个参考信号占用的频域资源的取值范围由网络设备配置;和/或,
    所述至少一个参考信号对应的发送周期的取值范围由协议约定或预配置,或者,所述至少一个参考信号对应的发送周期的取值范围由网络设备配置;和/或,
    所述至少一个参考信号对应的发送周期中每个周期内参考信号的发送次数的取值范围由协议约定或预配置,或者,所述至少一个参考信号对应的发送周期中每个周期内参考信号的发送次数的取值范围由网络设备配置。
  6. 如权利要求1至5中任一项所述的方法,其特征在于,所述至少一个侧行信道至少包括物理侧行共享信道PSSCH,且所述至少一个参考信号为通过所述PSSCH发送的解调参考信号DMRS。
  7. 如权利要求1至5中任一项所述的方法,其特征在于,
    所述至少一个侧行信道至少包括PSSCH,且所述至少一个参考信号包括M 1个第一类参考信号和M 2个第二类参考信号,M 1和M 2均为正整数;
    其中,所述M 1个第一类参考信号为通过所述PSSCH发送的DMRS,所述M 2个第二类参考信号为所述PSSCH的时频范围内发送的定位参考信号PRS。
  8. 如权利要求7所述的方法,其特征在于,所述M 2个第二类参考信号通过与所述PSSCH的一个或多个DMRS符号相邻的正交频分复用OFDM符号发送。
  9. 如权利要求8所述的方法,其特征在于,
    相邻符号上发送的PRS占用的资源元素RE与DMRS所占用的RE不同。
  10. 如权利要求8或9所述的方法,其特征在于,
    相邻符号上发送的DMRS序列与PRS序列相同。
  11. 如权利要求7所述的方法,其特征在于,所述M 2个参考信号通过K个OFDM符号发送,所述K个OFDM符号通过调整K个DMRS符号上DMRS所占用的RE位置得到,且所述K个DMRS符号与所述M 1个第一类参考信号占用的DMRS符号不同,K为正整数。
  12. 如权利要求11所述的方法,其特征在于,
    所述K个DMRS符号上发送的DMRS不用于信道侦听;和/或,
    所述第一时间单元内通过物理侧行控制信道PSCCH发送的DMRS用于信道侦听。
  13. 如权利要求7所述的方法,其特征在于,所述M 2个第二类参考信号通过所述M 1个第一类参考信号占用的DMRS符号中未被DMRS占用的RE发送。
  14. 如权利要求13所述的方法,其特征在于,
    同一DMRS符号上发送的DMRS序列与PRS序列相同。
  15. 如权利要求7至14中任一项所述的方法,其特征在于,所述方法还包括:
    在对所述PSSCH进行速率匹配时,所述第一终端设备不考虑所述M 2个第二类参考信号占用的RE数;和/或,
    在对所述PSSCH的调制符号进行资源映射时,所述第一终端设备对映射到所述M 2个第二类参考信号占用的RE上的PSSCH调制符号进行打孔。
  16. 如权利要求1至5中任一项所述的方法,其特征在于,
    所述至少一个侧行信道至少包括PSSCH,且所述至少一个参考信号包括M 3个第三类参考信号和M 4个第四类参考信号,M 3和M 4均为正整数;
    其中,所述M 3个第三类参考信号为通过所述PSSCH发送的DMRS,所述M 4个第四类参考信号 为所述PSSCH的时频范围之外发送的PRS。
  17. 如权利要求16所述的方法,其特征在于,
    所述M 4个第四类参考信号通过所述第一时间单元内的第一个用于侧行的OFDM符号发送。
  18. 如权利要求17所述的方法,其特征在于,所述M 4个第四类参考信号通过所述第一时间单元内的所述第一个用于侧行的OFDM符号上奇数位置的RE发送,或者,所述M 4个第四类参考信号通过所述第一时间单元内的所述第一个用于侧行的OFDM符号上偶数位置的RE发送。
  19. 如权利要求16所述的方法,其特征在于,
    所述M 4个第四类参考信号通过所述第一时间单元内的第二资源发送;
    其中,所述第二资源以第一周期分布于所述第一时间单元内的至少一个OFDM符号内。
  20. 如权利要求19所述的方法,其特征在于,所述至少一个OFDM符号与所述第一时间单元内用于侧行传输的OFDM符号不重叠,或者,所述至少一个OFDM符号至多与所述第一时间单元内用于侧行传输的OFDM符号中的一个OFDM符号重叠。
  21. 如权利要求19或20所述的方法,其特征在于,
    所述第一时间单元内第一个用于PRS发送的OFDM符号的索引不大于所述第一时间单元内第一个用于侧行的OFDM符号的索引。
  22. 如权利要求19至21中任一项所述的方法,其特征在于,
    所述第一周期由协议约定或预配置,或者,所述第一周期由网络设备配置;和/或,所述至少一个OFDM符号由协议约定或预配置,或者,所述至少一个OFDM符号由网络设备配置。
  23. 如权利要求19至22中任一项所述的方法,其特征在于,
    在资源池内的第二时间单元内未配置专用于PRS的发送资源的情况下,在所述第二时间单元内配置的可用于PRS发送的OFDM符号上允许发送PSCCH和/或PSSCH。
  24. 如权利要求6至23中任一项所述的方法,其特征在于,所述PSSCH满足以下至少之一:
    所述PSSCH占用的信道带宽不小于W;
    所述PSSCH为周期性发送;
    所述PSSCH为周期性发送,且在每个周期内PSSCH的发送次数不小于N;
    所述PSSCH通过在资源池内选取资源的方式发送,且侧行资源重选计数器的值不小于C;
    所述PSSCH通过网络设备配置的授权资源发送;
    其中,W、N和C均为正整数,且W、N和C的值由协议约定或预配置,或者,W、N和C的值由网络设备配置。
  25. 如权利要求6至24中任一项所述的方法,其特征在于,
    所述PSSCH中承载有第一指示信息,或者,用于调度所述PSSCH的PSCCH中承载有第一指示信息;其中,所述第一指示信息用于指示所述至少一个参考信号用于绝对定位和/或相对定位。
  26. 如权利要求1至25中任一项所述的方法,其特征在于,所述至少一个侧行信道包括以下至少之一:PSSCH,PSCCH,物理侧行反馈信道PSFCH。
  27. 如权利要求1至26中任一项所述的方法,其特征在于,
    所述时间单元为时隙或子帧。
  28. 一种无线通信的方法,其特征在于,包括:
    第二终端设备接收第一终端设备在第一时间单元内发送的至少一个参考信号和至少一个侧行信道;其中,所述至少一个参考信号用于绝对定位和/或相对定位。
  29. 如权利要求28所述的方法,其特征在于,所述方法还包括:
    所述第二终端设备接收所述第一终端设备在所述第一时间单元内的第一资源上发送的冗余信息。
  30. 如权利要求29所述的方法,其特征在于,所述冗余信息为所述第一终端设备在所述第一时间单元内待传输的数据少于预设值的情况下发送的。
  31. 如权利要求29或30所述的方法,其特征在于,所述第一资源由所述第一终端设备基于所述至少一个参考信号的发送需求确定。
  32. 如权利要求31所述的方法,其特征在于,
    所述至少一个参考信号占用的频域资源的取值范围由协议约定或预配置,或者,所述至少一个参考信号占用的频域资源的取值范围由网络设备配置;和/或,
    所述至少一个参考信号对应的发送周期的取值范围由协议约定或预配置,或者,所述至少一个参考信号对应的发送周期的取值范围由网络设备配置;和/或,
    所述至少一个参考信号对应的发送周期中每个周期内参考信号的发送次数的取值范围由协议约定或预配置,或者,所述至少一个参考信号对应的发送周期中每个周期内参考信号的发送次数的取值 范围由网络设备配置。
  33. 如权利要求28至32中任一项所述的方法,其特征在于,所述至少一个侧行信道至少包括物理侧行共享信道PSSCH,且所述至少一个参考信号为通过所述PSSCH发送的解调参考信号DMRS。
  34. 如权利要求28至32中任一项所述的方法,其特征在于,
    所述至少一个侧行信道至少包括PSSCH,且所述至少一个参考信号包括M 1个第一类参考信号和M 2个第二类参考信号,M 1和M 2均为正整数;
    其中,所述M 1个第一类参考信号为通过所述PSSCH发送的DMRS,所述M 2个第二类参考信号为所述PSSCH的时频范围内发送的定位参考信号PRS。
  35. 如权利要求34所述的方法,其特征在于,所述M 2个第二类参考信号通过与所述PSSCH的一个或多个DMRS符号相邻的正交频分复用OFDM符号发送。
  36. 如权利要求35所述的方法,其特征在于,
    相邻符号上发送的PRS占用的资源元素RE与DMRS所占用的RE不同。
  37. 如权利要求35或36所述的方法,其特征在于,
    相邻符号上发送的DMRS序列与PRS序列相同。
  38. 如权利要求34所述的方法,其特征在于,所述M 2个参考信号通过K个OFDM符号发送,所述K个OFDM符号通过调整K个DMRS符号上DMRS所占用的RE位置得到,且所述K个DMRS符号与所述M 1个第一类参考信号占用的DMRS符号不同,K为正整数。
  39. 如权利要求38所述的方法,其特征在于,
    所述K个DMRS符号上发送的DMRS不用于信道侦听;和/或,
    所述第一时间单元内通过物理侧行控制信道PSCCH发送的DMRS用于信道侦听。
  40. 如权利要求34所述的方法,其特征在于,所述M 2个第二类参考信号通过所述M 1个第一类参考信号占用的DMRS符号中未被DMRS占用的RE发送。
  41. 如权利要求40所述的方法,其特征在于,
    同一DMRS符号上发送的DMRS序列与PRS序列相同。
  42. 如权利要求34至41中任一项所述的方法,其特征在于,
    在对所述PSSCH进行速率匹配时,不考虑所述M 2个第二类参考信号占用的RE数;和/或,
    在对所述PSSCH的调制符号进行资源映射时,映射到所述M 2个第二类参考信号占用的RE上的PSSCH调制符号执行打孔处理。
  43. 如权利要求28至32中任一项所述的方法,其特征在于,
    所述至少一个侧行信道至少包括PSSCH,且所述至少一个参考信号包括M 3个第三类参考信号和M 4个第四类参考信号,M 3和M 4均为正整数;
    其中,所述M 3个第三类参考信号为通过所述PSSCH发送的DMRS,所述M 4个第四类参考信号为所述PSSCH的时频范围之外发送的PRS。
  44. 如权利要求43所述的方法,其特征在于,
    所述M 4个第四类参考信号通过所述第一时间单元内的第一个用于侧行的OFDM符号发送。
  45. 如权利要求44所述的方法,其特征在于,所述M 4个第四类参考信号通过所述第一时间单元内的所述第一个用于侧行的OFDM符号上奇数位置的RE发送,或者,所述M 4个第四类参考信号通过所述第一时间单元内的所述第一个用于侧行的OFDM符号上偶数位置的RE发送。
  46. 如权利要求43所述的方法,其特征在于,
    所述M 4个第四类参考信号通过所述第一时间单元内的第二资源发送;
    其中,所述第二资源以第一周期分布于所述第一时间单元内的至少一个OFDM符号内。
  47. 如权利要求46所述的方法,其特征在于,所述至少一个OFDM符号与所述第一时间单元内用于侧行传输的OFDM符号不重叠,或者,所述至少一个OFDM符号至多与所述第一时间单元内用于侧行传输的OFDM符号中的一个OFDM符号重叠。
  48. 如权利要求46或47所述的方法,其特征在于,
    所述第一时间单元内第一个用于PRS发送的OFDM符号的索引不大于所述第一时间单元内第一个用于侧行的OFDM符号的索引。
  49. 如权利要求46至48中任一项所述的方法,其特征在于,
    所述第一周期由协议约定或预配置,或者,所述第一周期由网络设备配置;和/或,所述至少一个OFDM符号由协议约定或预配置,或者,所述至少一个OFDM符号由网络设备配置。
  50. 如权利要求46至49中任一项所述的方法,其特征在于,
    在资源池内的第二时间单元内未配置专用于PRS的发送资源的情况下,在所述第二时间单元内 配置的可用于PRS发送的OFDM符号上允许发送PSCCH和/或PSSCH。
  51. 如权利要求33至50中任一项所述的方法,其特征在于,所述PSSCH满足以下至少之一:
    所述PSSCH占用的信道带宽不小于W;
    所述PSSCH为周期性发送;
    所述PSSCH为周期性发送,且在每个周期内PSSCH的发送次数不小于N;
    所述PSSCH通过在资源池内选取资源的方式发送,且侧行资源重选计数器的值不小于C;
    所述PSSCH通过网络设备配置的授权资源发送;
    其中,W、N和C均为正整数,且W、N和C的值由协议约定或预配置,或者,W、N和C的值由网络设备配置。
  52. 如权利要求33至51中任一项所述的方法,其特征在于,
    所述PSSCH中承载有第一指示信息,或者,用于调度所述PSSCH的PSCCH中承载有第一指示信息;其中,所述第一指示信息用于指示所述至少一个参考信号用于绝对定位和/或相对定位。
  53. 如权利要求28至52中任一项所述的方法,其特征在于,所述至少一个侧行信道包括以下至少之一:PSSCH,PSCCH,物理侧行反馈信道PSFCH。
  54. 如权利要求28至53中任一项所述的方法,其特征在于,
    所述时间单元为时隙或子帧。
  55. 一种终端设备,其特征在于,所述终端设备为第一终端设备,所述终端设备包括:
    通信单元,用于在第一时间单元内向第二终端设备发送至少一个参考信号和至少一个侧行信道;
    其中,所述至少一个参考信号用于绝对定位和/或相对定位。
  56. 一种终端设备,其特征在于,所述终端设备为第二终端设备,所述终端设备包括:
    通信单元,用于接收第一终端设备在第一时间单元内发送的至少一个参考信号和至少一个侧行信道;其中,所述至少一个参考信号用于绝对定位和/或相对定位。
  57. 一种终端设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,使得所述终端设备执行如权利要求1至27中任一项所述的方法,或者,使得所述终端设备执行如权利要求28至54中任一项所述的方法。
  58. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至27中任一项所述的方法,或者,执行如权利要求28至54中任一项所述的方法。
  59. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至27中任一项所述的方法,或者,执行如权利要求28至54中任一项所述的方法。
  60. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至27中任一项所述的方法,或者,执行如权利要求28至54中任一项所述的方法。
  61. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至27中任一项所述的方法,或者,执行如权利要求28至54中任一项所述的方法。
PCT/CN2021/141770 2021-12-27 2021-12-27 无线通信的方法及终端设备 WO2023122905A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/141770 WO2023122905A1 (zh) 2021-12-27 2021-12-27 无线通信的方法及终端设备
CN202180103620.6A CN118339894A (zh) 2021-12-27 2021-12-27 无线通信的方法及终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/141770 WO2023122905A1 (zh) 2021-12-27 2021-12-27 无线通信的方法及终端设备

Publications (1)

Publication Number Publication Date
WO2023122905A1 true WO2023122905A1 (zh) 2023-07-06

Family

ID=86996836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141770 WO2023122905A1 (zh) 2021-12-27 2021-12-27 无线通信的方法及终端设备

Country Status (2)

Country Link
CN (1) CN118339894A (zh)
WO (1) WO2023122905A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106303918A (zh) * 2015-11-24 2017-01-04 北京智谷睿拓技术服务有限公司 设备间通信方法、设备间通信资源分配方法、及其装置
CN111213393A (zh) * 2017-08-17 2020-05-29 苹果公司 基于地理位置信息选择用于侧行链路通信的资源
CN111436131A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 侧行参考信号的传输方法和通信装置
CN111656835A (zh) * 2018-02-06 2020-09-11 Oppo广东移动通信有限公司 用户设备及用户设备之间发送和接收定位信号的方法
US20210120519A1 (en) * 2018-07-06 2021-04-22 Vivo Mobile Communication Co., Ltd Method and Device for Configuring and Receiving Positioning Reference Signal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106303918A (zh) * 2015-11-24 2017-01-04 北京智谷睿拓技术服务有限公司 设备间通信方法、设备间通信资源分配方法、及其装置
CN111213393A (zh) * 2017-08-17 2020-05-29 苹果公司 基于地理位置信息选择用于侧行链路通信的资源
CN111656835A (zh) * 2018-02-06 2020-09-11 Oppo广东移动通信有限公司 用户设备及用户设备之间发送和接收定位信号的方法
US20210120519A1 (en) * 2018-07-06 2021-04-22 Vivo Mobile Communication Co., Ltd Method and Device for Configuring and Receiving Positioning Reference Signal
CN111436131A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 侧行参考信号的传输方法和通信装置

Also Published As

Publication number Publication date
CN118339894A (zh) 2024-07-12

Similar Documents

Publication Publication Date Title
US20240090009A1 (en) Wireless communication method and terminal device
US20230354269A1 (en) Wireless communication method and terminal device
US20230345426A1 (en) Resource determination method, first terminal device, and second terminal device
CN115245027A (zh) 资源分配方法和终端
US20230007682A1 (en) Data transmission method, terminal device and network device
WO2023004725A1 (zh) 无线通信方法、第一设备和第二设备
WO2022021008A1 (zh) 确定侧行链路配置授权资源的方法和终端设备
WO2021248456A1 (zh) 无线通信的方法及设备
WO2023122905A1 (zh) 无线通信的方法及终端设备
WO2023206364A1 (zh) 无线通信的方法和终端设备
WO2023279403A1 (zh) 无线通信方法、终端设备和网络设备
WO2022061790A1 (zh) 资源集合的传输方法和终端
WO2023050338A1 (zh) 无线通信的方法和终端设备
WO2023133685A1 (zh) 无线通信的方法及终端设备
WO2023044735A1 (zh) 无线通信的方法和终端设备
WO2024026772A1 (zh) 无线通信的方法和终端设备
WO2023023903A1 (zh) 无线通信方法、第一设备和第二设备
WO2022077346A1 (zh) 信道传输的方法、终端设备和网络设备
WO2023279399A1 (zh) 侧行传输资源的确定方法、发送方法、装置、设备及介质
US20230328695A1 (en) Wireless communication method and terminal device
WO2023123080A1 (zh) 侧行通信方法和设备
WO2024130632A1 (zh) 无线通信的方法、终端设备和网络设备
EP4156744A1 (en) Wireless communication method, terminal device and network device
CN117121592A (zh) 资源选取的方法和终端设备
CN115669093A (zh) 节能的方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969291

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024011496

Country of ref document: BR