WO2023028960A1 - 一种数据包传输方法及装置 - Google Patents

一种数据包传输方法及装置 Download PDF

Info

Publication number
WO2023028960A1
WO2023028960A1 PCT/CN2021/116294 CN2021116294W WO2023028960A1 WO 2023028960 A1 WO2023028960 A1 WO 2023028960A1 CN 2021116294 W CN2021116294 W CN 2021116294W WO 2023028960 A1 WO2023028960 A1 WO 2023028960A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
transmission device
data transmission
packet
information
Prior art date
Application number
PCT/CN2021/116294
Other languages
English (en)
French (fr)
Inventor
罗璠
李旭光
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202180100616.4A priority Critical patent/CN117643031A/zh
Priority to PCT/CN2021/116294 priority patent/WO2023028960A1/zh
Publication of WO2023028960A1 publication Critical patent/WO2023028960A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits

Definitions

  • the present application relates to the technical field of communications, and in particular to a data packet transmission method and device.
  • a wireless communication device usually includes a radio frequency module and a baseband module, and the radio frequency module and the baseband module are connected through an interface, and the interface is used to transmit in-phase and quadrature (IQ) data.
  • IQ in-phase and quadrature
  • the radio frequency module uses the digital serial interface to transmit the IQ data of multiple channels to the baseband module
  • the baseband module needs to time the received IQ data of each channel, so as to realize the timing of the IQ data of each channel by the baseband module demodulated correctly.
  • the radio frequency module when it uses the digital serial interface to transmit the IQ data of each channel, it usually adopts a packet transmission structure, that is, the radio frequency module encapsulates one or more data samples in the IQ data of the channel in each packet cycle. transmitted in one data packet.
  • the method includes: preconfiguring the timing information of the channel in the baseband module, and the timing information is used for the baseband module.
  • the radio frequency module sends the first data packet of the channel to the baseband module, and the first data packet includes the first data sample point; the baseband module receives the first data sample point When a data packet is generated, the first data sample in the first data packet is timed according to the preconfigured timing information. Further, when the first data packet also includes other data samples and the baseband module also receives other data packets of the channel sent by the radio frequency module, the baseband module The packet length of (indicating the number of data samples included), and the number of received data packets, timing the other data samples and the data samples in the other data packets.
  • the baseband module determines the subsequent received data packet according to the above packet length and the data of the received data packet The time references of the baseband will all be misplaced, which will cause the baseband module to fail to perform correct timing on the data samples in subsequent received data packets, resulting in poor timing performance.
  • Embodiments of the present application provide a data packet transmission method and device for improving the timing performance of the data transmission device.
  • a data packet transmission method comprising: transmitting a synchronization signal between a first data transmission device and a second data transmission device, for example, the first data transmission device sends a synchronization signal to the second data transmission device, Or receive a synchronization signal from the second data transmission device, the synchronization signal is used to realize the time synchronization between the first data transmission device and the second data transmission device; the first data transmission device sends the first data packet to the second data transmission device,
  • the first data packet includes first data information and first time information, the first time information is time information after time synchronization, and the first time information is used to enable the second data transmission device to realize the timing of the first data information.
  • each data packet transmitted by the first data transmission device to the second data transmission device carries the corresponding time information
  • the time information is time information after time synchronization, so that when the second data transmission device receives the data packet, it can time the data information in the data packet based on the time information carried in the data packet, It can also be referred to as realizing the synchronization of the data information in the data packet based on the time information carried in the data packet, that is, determining the boundary of the data information carried in the data packet, so that the second data transmission device can recover the first data The position of the information in the data stream to which it belongs, so as to realize the correct demodulation of the first data information.
  • each data packet carries the time information corresponding to the data packet, when a packet loss occurs or a wrong packet causes a received packet length error, the second data transmission device can based on the time information in each data packet
  • the timing information determines the position of the currently received data packet in the data stream to which it belongs, so as to avoid the problem that the timing of subsequent received data packets cannot be realized due to packet loss or error in some data packets, so that the timing performance is high.
  • the first time information is used to indicate the receiving time of the first data information in the second data transmission device, and the receiving time may refer to the digital interface in the second data transmission device The time to output the first data message.
  • the second data transmission device by sending the receiving time of the first data information in the second data transmission device to the second data transmission device through the first data packet, it is possible for the second data transmission device to receive the first data packet Then, the timing of the first data information is directly implemented according to the receiving time, thereby improving the timing performance of the first data information.
  • the receiving time is determined according to the sending time of the first data information at the first data transmission device and the data transmission delay, and the data transmission delay is the first data transmission device The transmission delay with the second data transmission device; optionally, the data transmission delay is configured for the first data transmission device.
  • the first data transmission device by configuring the data transmission delay for the first data transmission device, it is possible for the first data transmission device to determine that the first data information is transmitted during the second data transmission according to the sending time and the data transmission delay.
  • the receiving time in the device so as to realize the timing of the first data information according to the receiving time.
  • the first time information is used to indicate the sending time of the first data information in the first data transmission device
  • the sending time may refer to the digital interface in the first data transmission device The time when the first data information is collected.
  • the second data transmission device can, after receiving the first data packet, and determining the receiving time of the first data information in the second data transmission device, so as to realize the timing of the first data information according to the receiving time, and further improve the timing performance of the first data information.
  • the first data information includes a first data sample point and a second data sample point
  • the second data sample point is the next data sample point of the first data sample point
  • the first data sample point The time information is used to enable the second data transmission device to realize the timing of the first data sample point
  • the first time information and the sampling interval between the first data sample point and the second data sample point are used to enable the second data transmission device to realize the timing of the first data sample point. Timing of two data samples.
  • the first data transmission device can enable the second data transmission device to determine according to the time information of the first data sample point and the sampling interval only by carrying the time information of the first data sample point in the first data packet. The time information of each data sample point, so that when a data packet includes multiple data sample points, the transmission amount of time information can be reduced.
  • the method further includes: the first data transmission device sends the second data packet to the second data transmission device A data packet, the second data packet includes second data information and second time information, the second time information is used to enable the second data transmission device to realize the timing of the second data information, the first data packet and the second data packet are one way Two data packets in the data; wherein, the second data packet is the next data packet of the first data packet, the second time information is determined according to the first time information and the packet length of the first data packet, and the first data packet The packet length of is used to indicate the number of data samples included in the first data packet.
  • the first data transmission device can determine the time information to be sent later according to the timing information of the previously sent data packets, thereby ensuring the accuracy of the timing information of different data packets .
  • the second time information is equal to the sum of the first time information and the first product, and the first product is the product of the packet length of the first data packet and the sampling interval of the data sample .
  • the first data transmission device is a radio frequency module and a baseband module
  • the second data transmission device is a baseband module
  • the first data transmission device is the baseband module
  • the second data transmission device is the baseband module.
  • the device is the radio frequency module.
  • a data packet transmission method includes: transmitting a synchronization signal between the second data transmission device and the first data transmission device, for example, the second data transmission device receives the synchronization signal from the first data transmission device , or send a synchronization signal to the first data transmission device, the synchronization signal is used to realize the time synchronization between the first data transmission device and the second data transmission device; the second data transmission device receives the first data packet from the first data transmission device , the first data packet includes first data information and first time information, and the first time information is time information after time synchronization; the second data transmission device realizes the timing of the first data information according to the first time information.
  • each data packet transmitted by the first data transmission device to the second data transmission device carries the corresponding time information, and the time information is time information after time synchronization, so that when the second data transmission device receives the data packet, it can time the data information in the data packet based on the time information carried in the data packet , can also be referred to as realizing the synchronization of the data information in the data packet based on the time information carried in the data packet, that is, determining the boundary of the data information carried in the data packet, so that the second data transmission device can recover the first The position of the data information in the associated data stream, so as to realize the correct demodulation of the first data information.
  • each data packet carries the time information corresponding to the data packet, when a packet loss occurs or a wrong packet causes a received packet length error, the second data transmission device can based on the time information in each data packet
  • the timing information determines the position of the currently received data packet in the data stream to which it belongs, so as to avoid the problem that the timing of subsequent received data packets cannot be realized due to packet loss or error in some data packets, so that the timing performance is high.
  • the first time information is used to indicate the receiving time of the first data information in the second data transmission device, and the receiving time may refer to the digital interface in the second data transmission device
  • the timing of outputting the first data information, and the second data transmission device timing the first data information according to the first time information include: timing the first data information by the second data transmission device according to the receiving time.
  • the first time information is used to indicate the sending time of the first data information in the first data transmission device
  • the sending time may refer to the digital interface in the first data transmission device
  • the second data transmission device realizes the timing of the first data information according to the first time information, including: the second data transmission device timing the first data information according to the sending time and data transmission delay
  • the data transmission delay is the transmission delay between the first data transmission device and the second data transmission device.
  • the data transmission delay is configured for the second data transmission device.
  • the second data transmission device can determine according to the sending time and the data transmission delay that the first data information is transmitted by the second data transmission device The receiving time of the first data information is realized according to the receiving time, thereby improving the timing performance of the first data information.
  • the first data information includes a first data sample point and a second data sample point
  • the second data sample point is the next data sample point of the first data sample point
  • the second data sample point is
  • the data transmission device realizes the timing of the first data information according to the first time information, including: the second data transmission device realizes the timing of the first data sample point according to the first time information; the second data transmission device realizes the timing of the first data sample point according to the first time information and the first
  • the sampling interval between the data sample and the second data sample implements the timing of the second data sample.
  • the first data transmission device can enable the second data transmission device to determine according to the time information of the first data sample point and the sampling interval only by carrying the time information of the first data sample point in the first data packet.
  • the time information of each data sample point so that when a data packet includes multiple data sample points, the transmission amount of time information can be reduced.
  • the method further includes: the second data transmission device receives the packet from the first data transmission device
  • the second data packet including the second data information and the second time information in the second data packet, the first data packet and the second data packet are two data packets in one path of data; the second data transmission device according to the second time information Realize the timing of the second data information; wherein, the second data packet is the next data packet of the first data packet, and the second time information is determined according to the packet length of the first time information and the first data packet, and the first data packet
  • the packet length of is used to indicate the number of data samples included in the first data packet.
  • the second data transmission device can determine the time information to be sent later according to the timing information of the previously sent data packets, thereby ensuring the accuracy of the timing information of different data packets .
  • the second time information is equal to the sum of the first time information and the first product
  • the first product is the product of the packet length of the first data packet and the sampling interval of the data sample .
  • the method further includes: if a packet loss or error occurs in the second data packet, the second data transmission device generates a remedial data packet according to the second time information, and the remedial data packet The packet length is equal to the packet length of the second data packet.
  • the first data transmission device is a radio frequency module and a baseband module
  • the second data transmission device is a baseband module
  • the first data transmission device is the baseband module
  • the second data transmission device is the baseband module.
  • the device is the radio frequency module.
  • a data transmission device in a third aspect, includes: a synchronization unit, used to transmit a synchronization signal with a second data transmission device, and the synchronization signal is used to realize the synchronization of the first data transmission device. and the time synchronization of the second data transmission device; the sending unit is used to send the first data packet to the second data transmission device, the first data packet includes the first data information and the first time information, and the first time information is time synchronization The subsequent time information, the first time information is used to enable the second data transmission device to realize the timing of the first data information.
  • the first time information is used to indicate the receiving time of the first data information in the second data transmission device, and the receiving time may refer to the digital interface in the second data transmission device The time to output the first data message.
  • the receiving time is determined according to the sending time of the first data information at the first data transmission device and the data transmission delay, where the data transmission delay is the first data transmission device Transmission delay with the second data transmission device.
  • the first time information is used to indicate the sending time of the first data information in the first data transmission device, and the sending time may refer to the digital interface in the first data transmission device The time when the first data information is collected.
  • the first data information includes a first data sample point and a second data sample point
  • the second data sample point is the next data sample point of the first data sample point
  • the first data sample point The time information is used to enable the second data transmission device to realize the timing of the first data sample point
  • the first time information and the sampling interval between the first data sample point and the second data sample point are used to enable the second data transmission device to realize the timing of the first data sample point. Timing of two data samples.
  • the sending unit is further configured to: send a second data packet to the second data transmission device, the second data packet includes second data information and second time information, and the second The time information is used to enable the second data transmission device to realize the timing of the second data information, and the first data packet and the second data packet are two data packets in one path of data; wherein, the second data packet is the next data packet of the first data packet
  • the second time information is determined according to the first time information and the packet length of the first data packet, and the packet length of the first data packet is used to indicate the number of data samples included in the first data packet.
  • the second time information is equal to the sum of the first time information and the first product
  • the first product is the product of the packet length of the first data packet and the sampling interval of the data sample .
  • the first data transmission device is a radio frequency module and a baseband module
  • the second data transmission device is a baseband module
  • the first data transmission device is the baseband module
  • the second data transmission device is the baseband module.
  • the device is the radio frequency module.
  • a data transmission device which, as a second data transmission device, includes: a synchronization unit, configured to transmit a synchronization signal with the first data transmission device, and the synchronization signal is used to implement the first data transmission device Time synchronization with the second data transmission device; the receiving unit is used to receive the first data packet from the first data transmission device, the first data packet includes first data information and first time information, and the first time information is time Synchronized time information; a timing unit, configured to realize the timing of the first data information according to the first time information.
  • the first time information is used to indicate the receiving time of the first data information in the second data transmission device, and the receiving time may refer to the digital interface in the second data transmission device
  • the time for outputting the first data information the timing unit is also used for: timing the first data information according to the receiving time.
  • the first time information is used to indicate the sending time of the first data information in the first data transmission device
  • the sending time may refer to the digital interface in the first data transmission device
  • the time at which the first data information is collected, the timing unit is also used for: timing the first data information according to the sending time and the data transmission delay, the data transmission delay is between the first data transmission device and the second data transmission device transmission delay between them.
  • the first data information includes a first data sample point and a second data sample point
  • the second data sample point is the next data sample point of the first data sample point
  • the timing The unit is also used to: realize the timing of the first data sample point according to the first time information; realize the timing of the second data sample point according to the first time information and the sampling interval between the first data sample point and the second data sample point.
  • the receiving unit is further configured to receive a second data packet from the first data transmission device, the second data packet includes second data information and second time information, and the second A data packet and a second data packet are two data packets in one path of data; the timing unit is also used to realize the timing of the second data information according to the second time information; wherein, the second data packet is the timing of the first data packet For the next data packet, the second time information is determined according to the first time information and the packet length of the first data packet, and the packet length of the first data packet is used to indicate the number of data samples included in the first data packet.
  • the second time information is equal to the sum of the first time information and the first product
  • the first product is the product of the packet length of the first data packet and the sampling interval of the data sample .
  • the device further includes: a packet repair unit, configured to generate a salvage data packet according to the second time information if packet loss or error occurs in the second data packet, and the salvage data packet The packet length of is equal to the packet length of the second data packet.
  • the first data transmission device is a radio frequency module and a baseband module
  • the second data transmission device is a baseband module
  • the first data transmission device is the baseband module
  • the second data transmission device is the baseband module.
  • the device is the radio frequency module.
  • a data transmission device in another aspect of the present application, includes: a first transmission interface and a first processor, the first transmission interface and the first processor are used to support the first data transmission The device executes the data packet transmission method provided by the first aspect or any possible implementation manner of the first aspect.
  • a data transmission device in another aspect of the present application, includes: a second transmission interface and a second processor, the second transmission interface and the second processor are used to support the second data transmission The device executes the data packet transmission method provided by the second aspect or any possible implementation manner of the second aspect.
  • a wireless communication device or a data transmission system including a first data transmission device and a second data transmission device, the first data transmission device is used to implement any one of the first aspect or the first aspect
  • the data packet transmission method provided in one possible implementation manner the second data transmission device is configured to execute the second aspect or the data packet transmission method provided in any possible implementation manner of the second aspect.
  • a computer-readable storage medium In another aspect of the present application, a computer-readable storage medium is provided. Instructions are stored in the computer-readable storage medium. When the instructions are run on a device, the device is made to perform the first aspect or any of the first aspects.
  • a data packet transmission method provided by a possible implementation manner.
  • a computer-readable storage medium In another aspect of the present application, a computer-readable storage medium is provided. Instructions are stored in the computer-readable storage medium. When the instructions are run on a device, the device is made to perform the second aspect or any of the second aspects.
  • a data packet transmission method provided by a possible implementation manner.
  • a computer program product includes: a computer program (also referred to as code, or instruction), which, when the computer program is executed, causes the computer to perform the above-mentioned first aspect. Or the data packet transmission method provided by any possible implementation manner of the first aspect.
  • a computer program product includes: a computer program (also referred to as code, or an instruction), which, when the computer program is executed, causes the computer to perform the above-mentioned second aspect. Or the data packet transmission method provided in any possible implementation manner of the second aspect.
  • any data transmission device, wireless communication device or data transmission system, computer-readable storage medium or computer program product provided above is used to implement the corresponding method provided above, therefore, it can achieve For the beneficial effects, reference may be made to the beneficial effects in the corresponding method provided above, which will not be repeated here.
  • FIG. 1 is a schematic structural diagram of a wireless communication device provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a time slice transmission structure provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a packet transmission structure provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a data packet transmission method provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of data transmission between data transmission devices provided in an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of another data packet transmission method provided by the embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a first data transmission device provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another first data transmission device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a second data transmission device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another second data transmission device provided by an embodiment of the present application.
  • At least one means one or more, and “multiple” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • “At least one of the following” or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • At least one item (piece) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple .
  • the embodiments of the present application use words such as "first” and "second” to distinguish the same or similar items with basically the same function and effect.
  • the first threshold and the second threshold are only used to distinguish different thresholds, and their sequence is not limited. Those skilled in the art can understand that words such as “first” and “second” do not limit the quantity and execution order.
  • the technical solutions of the present application can be applied to various wireless communication devices that use digital interfaces for data transmission.
  • the wireless communication device can be deployed on land, including indoors or outdoors, hand-held or vehicle-mounted. It can also be deployed on water (such as ships, etc.). It can also be deployed in the air (for example, on aircraft, balloons and satellites, etc.).
  • the wireless channel device may be a terminal or a base station.
  • the terminal includes but is not limited to: mobile phone (mobile phone), tablet computer, notebook computer, palmtop computer, mobile internet device (mobile internet device, MID), wearable device (such as smart watch, smart bracelet, pedometer etc.), vehicle-mounted equipment (for example, automobiles, bicycles, electric vehicles, airplanes, ships, trains, high-speed rail, etc.), virtual reality (virtual reality, VR) equipment, augmented reality (augmented reality, AR) equipment, industrial control (industrial control ), wireless terminals in smart home equipment (such as refrigerators, TVs, air conditioners, electric meters, etc.), intelligent robots, workshop equipment, wireless terminals in self-driving (self-driving), and remote medical surgery (remote medical surgery) Wireless terminals, wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, or wireless terminals in smart home, flight equipment (eg, intelligent robots, hot air balloons, drones, airplanes), etc.
  • the structure of the wireless communication device will be described in detail below.
  • Fig. 1 is a schematic structural diagram of a wireless communication device provided by an embodiment of the present application, and the wireless communication device is described by taking a terminal as an example.
  • the wireless communication device includes: a radio frequency module and a baseband module, data transmission can be performed between the radio frequency module and the baseband module, and the transmitted data can be in-phase and quadrature (IQ) data.
  • IQ in-phase and quadrature
  • the baseband module has a baseband processing function and can be used for processing baseband signals.
  • the baseband module can be a baseband integrated circuit (BBIC), and the baseband integrated circuit can also be called a baseband chip.
  • the radio frequency module can be used to realize the modulation or demodulation between the baseband signal and the radio frequency signal.
  • the radio frequency module can be a radio frequency integrated circuit (radio frequency integrated circuit, RFIC), and the radio frequency integrated circuit can also be called or a radio frequency chip.
  • the baseband module may be a digital interface baseband module
  • the radio frequency module may be a digital interface radio frequency module.
  • Both the digital interface baseband module and the digital interface radio frequency module may include a timer (timer), a digital interface, a transmit (transmit, TX) processing unit, and a receive (receive, RX) processing unit. This timer can be used to measure time and realize time synchronization between different modules.
  • the transmitting processing unit may include at least one transmitting channel (channel, CH), and the receiving processing unit may include at least one receiving channel, each transmitting channel may be used for transmitting one piece of data, and each receiving channel may be used for receiving one piece of data.
  • the digital interface may include a transmit interface module and a receive interface module.
  • the digital interface may be a digital serializer/deserializer (serdes).
  • the digital interface baseband module is represented as BBIC
  • the digital interface radio frequency module is represented as RFIC
  • at least one transmitting channel in BBIC is represented as TX CH1 to TX CHn
  • at least one receiving channel in BBIC is represented as RX CH1 to RX CHm
  • the timer in the BBIC denote the timer in the BBIC as timer 1
  • the timer in the RFIC is represented as timer 2
  • the transmitting interface module in the digital interface is represented as SerD TX
  • the receiving interface module is represented as SerD RX
  • n and m are positive integers.
  • each transmit channel in the plurality of transmit channels may include a digital to analog converter (digital to analog converter, DAC), a low pass filter (low pass filter, LPF), an up converter and a driver amplifier (driver amplifier, DA) and so on.
  • Each of the plurality of receiving channels may include an analog to digital converter (analog to digital converter, ADC), a low pass filter LPF, a down converter, and the like.
  • the wireless communication device may also include a radio frequency front end module (radio frequency front end module, RF FEM) and an antenna (antenna, ANT).
  • the RF FEM can be used to provide functions such as power amplification or filtering.
  • the RF FEM may also include multiple transmit channels and multiple receive channels.
  • Each of the multiple transmit channels may include a power amplifier (power amplifier, PA), a transmit filter (TX filter), a duplexer (duplexer), and the like.
  • Each of the multiple receiving channels may include a low noise amplifier (low noise amplifier, LNA) and a duplexer, and the duplexer may also be replaced by antenna switches (antenna switches).
  • the ANT can be used to receive or send signals, that is, to realize energy conversion between radio frequency signals and electromagnetic waves.
  • the data when data is transmitted between the radio frequency module and the baseband module, the data may adopt a time slice (chip) transmission structure or a packet transmission structure.
  • the radio frequency module as the transmitting end and the baseband module as the receiving end as an example, the transmission structure of the time slice and the transmission structure of the packet are respectively introduced and described through FIG. 2 and FIG. 3 .
  • the radio frequency module includes 4 transmission channels (channels, CH) respectively denoted as CH1 to CH4 as an example for illustration.
  • CH transmission channels
  • the sampling rate of CH1 and CH2 is the same and there is one data sample point in each time slice.
  • the sampling rate of CH3 is twice the sampling rate of CH1 or CH2, so that CH3 has 2 data samples per time slice.
  • the sampling rate of CH4 is twice the sampling rate of CH3, so that there are 4 data samples in each time slice.
  • the time length of each time slice is TC, and four adjacent time slices are denoted as TC(i-1), TC(i), TC(i+1) and TC(i+2) as an example for illustration.
  • the radio frequency module when the radio frequency module uses the time slice transmission structure to send data to the baseband module, the radio frequency module periodically transfers the data from CH1 to CH4 (that is, one or more data samples of each channel) Send to the baseband module through the digital interface. Specifically, after the radio frequency module collects the data samples of CH1 to CH4 in each time slice, it maps the collected data samples on the digital interface in the order of CH1->CH2->CH3->CH4 , and continuously send the data of CH1 to CH4 to the baseband module with a cycle of one time slice. Each time slice includes 1 data sample point of CH1, 1 data sample point of CH2, 2 data sample points of CH3 and 4 data sample points of CH4.
  • the digital interface in the baseband module stores the received data of one or more time slices in the cache, and reads the data samples in the cache after delaying the preset time T1, according to CH1->CH2 Demapping is performed in the order of ->CH3->CH4, and the corresponding data samples are output to the subsequent processing unit according to the sampling rate of each channel.
  • T1 should be greater than the data transmission delay T0 of the digital interface to ensure that the jitter of the digital interface will not cause the delay fluctuation of each channel, so the total data delay of each channel in CH1 to CH4 is TC+T1.
  • the baseband module can time the received data based on the boundary of each time slice (also called synchronization).
  • the baseband module can still continue to read data from the cache at the corresponding sampling rate and output it to the subsequent processing unit.
  • the link failure of the digital interface recovers, the baseband The timing of each channel of the module still operates normally.
  • the robustness and flexibility of this scheme are poor, so it is not as widely used as the packet transmission structure.
  • the radio frequency module when the radio frequency module uses the packet transmission structure to send data to the baseband module, the radio frequency module needs to encapsulate the data samples of each channel in a data packet for transmission in each packet period.
  • the packet period is 2 time slices (that is, 2TC)
  • the radio frequency module can collect the data samples of CH1 to CH4 in each packet
  • the data sample points of CH1 plus a packet header are encapsulated into a data packet (that is, in each packet cycle, the 2 data samples of CH1 plus a packet header are encapsulated into a data packet, and the 2 data samples of CH2 are added with a packet header
  • Encapsulate into a data packet encapsulate the 4 data samples of CH3 plus the packet header into a data packet, and encapsulate the 8 data samples of CH4 plus the packet header into a data packet
  • the digital interface in the baseband module parses the received data packets of
  • the packet period can be greater than 2 time slices, that is, the data packets of each channel can include more data Sample points to improve the transmission efficiency of data packets.
  • the baseband module realizes the timing of the first data sample point in the channel according to the timing information, and according to the channel
  • the sampling interval of the data sample point, the packet length of the data packet, and the number of received data packets are used to time the subsequent data sample points received by the channel.
  • the baseband module determines the subsequent received data packet according to the above-mentioned packet length and the data of the received data packet The time references of the baseband will all be misplaced, which will cause the baseband module to fail to perform correct timing on the data samples in subsequent received data packets, resulting in poor timing performance.
  • the embodiment of the present application provides a data packet transmission method.
  • data transmission is performed between the radio frequency module and the baseband module, by carrying in each data packet the Time information, so that the receiving end in the radio frequency module and the baseband module can time the data information in the data packet based on the time information, so that when packet loss occurs or an error packet causes the received packet length to be wrong,
  • the receiving end can still time the data information in the data packet based on the time information in the subsequently received data packet, so that the timing performance is improved.
  • FIG. 4 is a schematic flowchart of a data packet transmission method provided by an embodiment of the present application.
  • the method can be used to implement data transmission between two data transmission devices using a packet transmission structure.
  • the method includes the following steps.
  • S201 Transmit a synchronization signal between the first data transmission device and the second data transmission device, where the synchronization signal is used to implement time synchronization between the first data transmission device and the second data transmission device.
  • the first data transmission device and the second data transmission device are devices with digital interfaces, and can use their respective digital interfaces for data transmission.
  • the first data transmission device is a digital interface radio frequency module
  • the second data transmission device is a digital interface baseband module
  • the first data transmission device is a digital interface baseband module
  • the second data transmission device is a digital interface radio frequency module.
  • the above-mentioned first data transmission device and the second data transmission device may belong to the same wireless communication device, or may belong to different wireless communication devices.
  • the first data transmission device may send a synchronization signal to the second data transmission device, and the synchronization signal may be a switch signal or a pulse signal,
  • the second data transmission device receives the synchronization signal, the time synchronization between the first data transmission device and the second data transmission device is realized according to the synchronization signal.
  • the synchronization signal may also be sent by the second data transmission device to the first data transmission device, so that the first data transmission device When the synchronization signal is received, the time synchronization of the first data transmission device and the second data transmission device is realized.
  • the first data transmission device and the second data transmission device belong to the same wireless communication device
  • the first data transmission device is a digital interface baseband module with a first timer
  • the second data transmission device is a digital interface baseband module with a first timer
  • the digital interface baseband module can set the first timer to a preset time (for example, the preset time is 0) after the wireless communication device is powered on, and send the synchronization signal to the second data transmission device, so that When the second data transmission device receives the synchronization signal, it sets the second timer to the preset time, so as to realize time synchronization between the first data transmission device and the second data transmission device.
  • the first data transmission device sends a first data packet to the second data transmission device, the first data packet includes first data information and first time information, the first time information is time information after time synchronization, and the first time The information is used to enable the second data transmission means to implement the timing of the first data information.
  • realizing the timing of the first data information can also be referred to as realizing the synchronization of the first data information, which specifically refers to determining the time boundary of the first data information so that the second data transmission device can recover the first data information in the data stream where it is located. In order to realize the correct demodulation of the first data information.
  • the first time information may be used to indicate the sending time of the first data information in the first data transmission device, and may also be used to indicate the receiving time of the first data information in the second data transmission device. The two cases are described in detail below.
  • the first time information is used to indicate the sending time of the first data information in the first data transmission device, and the sending time may specifically refer to the time when the first data information is collected by the digital interface in the first data transmission device time.
  • the first data transmission device may include a transmission processing unit, a first digital interface and a first timer, and when the first data transmission device needs to send the first data packet to the second data transmission device, The transmitting processing unit sends the first data information to the first digital interface, and when the first digital interface collects the first data information, encapsulates the first data information and the first time information in a data packet to form a first data packet, And send the first data packet to the second data transmission device.
  • the above-mentioned first time information may be the time information of the first data information collected by the first digital interface measured by the first timer.
  • the transmission processing unit may include at least one channel CH1 to CHn
  • the first digital interface may include at least one framing corresponding to the CH1 to CHn one-to-one (framer) units FU1 to FUn, a scheduling unit (scheduler) and at least one transmission lane (lane) L1 to Lw.
  • the above-mentioned framing unit may also be called a packeting unit.
  • each of the channels from CH1 to CHn is used to transmit one channel of data
  • the framing unit corresponding to each channel is used to collect the data transmitted by the channel, and the collected data corresponds to the measured data obtained by the first timer. Time information is encapsulated in a packet.
  • the scheduling unit is used to schedule the data packets obtained by encapsulating the FU1 to FUn into the L1 to Lw, so as to send them to the second data transmission device through the L1 to Lw.
  • the above-mentioned first data packet is a data packet in one data packet transmitted by CH1 in the at least one channel
  • the above-mentioned first time information may be time information when FU1 collects the first data information.
  • the first time information is used to indicate the receiving time of the first data information in the second data transmission device, and the receiving time may specifically refer to the second digital interface in the second data transmission device outputting the first data information time.
  • the second data transmission device may include a second digital interface, a receiving processing unit, and a second timer.
  • the second digital interface decapsulates the The first data packet obtains the first data information and the first time information, and when the time information currently measured by the second timer is consistent with the first time information, outputs the first data information to the receiving process according to the first time information unit.
  • the above-mentioned first time information may be time information when the second digital interface outputs the first data information to the receiving processing unit.
  • the receiving processing unit may include at least one channel CH1 to CHn, and the second digital interface may include at least one deframing channel corresponding to the CH1 to CHn one-to-one.
  • de-framer deframing units DFU1 to DFUn, a distribution unit (distributor) and at least one transmission lane (lane) L1 to Lw.
  • the above deframing unit may also be referred to as an unpacking unit.
  • the L1 to Lw are used to receive the data packet sent by the first data transmission device and transmit it to the distribution unit.
  • the distributing unit is used for distributing the data packets transmitted by the L1 to Lw to DFU1 to DFUn.
  • Each of the channels from CH1 to CHn is used to receive one channel of data, and the deframing unit corresponding to each channel is used to decapsulate the data packet distributed by the distribution unit to obtain the data information in the data packet, and convert the data The information is output to the corresponding channel.
  • the DFU1 is a deframing unit for decapsulating the first data packet
  • the first time information may be the time information when the DFU1 outputs the first data information to CH1.
  • the receiving time is determined according to the sending time of the first data information at the first data transmission device and the data transmission delay.
  • the sending time is consistent with the sending time in the first case above.
  • the data transmission delay may be configured, and the data transmission delay may specifically be a transmission delay between the first data transmission device and the second data transmission device. That is, the first data transmission device may determine the receiving time according to the sending time and the data transmission delay, for example, the first data transmission device may determine the sum of the sending time and the data transmission delay as the receiving time time.
  • the data transmission delay may be measured by those skilled in the art according to actual conditions.
  • the data transmission delay may include the framing delay and scheduling delay of the first digital interface, the deframing delay and distribution delay of the second digital interface, and the delay between the first digital interface and the second digital interface. The transmission delay between the paths.
  • the second data transmission device realizes the timing of the first data information according to the first time information (also referred to as synchronization) may mean that the second digital interface in the second data transmission device determines the first data information according to the first time information time boundary, so as to recover the position of the first data information in the data stream, and ensure that the receiving processing unit in the second data transmission device can realize correct demodulation of the first data information.
  • the first time information is used to indicate the sending time of the first data information in the first data transmission device.
  • the second data transmission device can determine the receiving time of the first data information in the second data transmission device according to the sending time and the data transmission delay, and compare the receiving time with the second timing in the second data transmission device When the time information currently measured by the receiver is consistent, the first data information is timed according to the receiving time.
  • the relevant description about the data transmission delay is consistent with the data transmission delay described in the second case of S202 above. For details, please refer to the description in the second case of S202 above, and the embodiment of the present application will not go into details here. .
  • the second data transmission device may include a second digital interface and a receiving processing unit.
  • the second digital interface can decapsulate the first data packet to obtain the first data information and the sending time, and determine the first data according to the sending time and the data transmission delay The receiving time of the information in the second data transmission device, so as to realize the timing of the first data information according to the receiving time, that is, the second digital interface outputs the first data information to the receiving processing unit according to the receiving time.
  • the first time information is used to indicate the receiving time of the first data information in the second data transmission device.
  • the second data transmission device may realize the timing of the first data information according to the receiving time.
  • the second data transmission device may include a second digital interface, a receiving processing unit and a second timer.
  • the second digital interface can decapsulate the first data packet to obtain the first data information and the receiving time, and compare the receiving time with the time currently measured by the second timer When the information is consistent, the timing of the first data information is realized according to the receiving time, that is, the second digital interface outputs the first data information to the receiving processing unit according to the receiving time.
  • the above-mentioned first data information may include one or more data samples, and the data samples may be IQ data samples (also referred to as IQ samples), and the description of the IQ data samples may refer to related art For clarification, the embodiment of the present application is not described here.
  • the first time information may be the time information corresponding to the first data sample in the one or more data samples, and the first data sample may For the first data sample point among the one or more data sample points, the time information may be the sending time of the first data sample point in the first data transmission device, or the time information of the first data sample point in the second data sample point The time of reception in the transmitting device.
  • the first data information includes the first data sample point D1
  • the first time information is used to indicate the sending time Tt1 of the first data sample point D1 in the first data transmission device
  • the second data transmission When the device receives the first data packet and decapsulates it to obtain the first data sample point D1 and the transmission time Tt1, it can determine the first data sample point D1 in the second data transmission time according to the transmission time Tt1 and the data transmission delay T0
  • the second data transmission device receives the first data
  • the first data sample point D1 and the receiving time Tr1 are obtained by packetizing and decapsulating, the timing of the first data sample point D1 is realized according to the receiving time Tr1 .
  • the second data transmission device may The time information corresponding to the sample point D1 determines the time information corresponding to the second data sample point D2. That is, when the first data information includes multiple data samples, the second data transmission device may determine the time information corresponding to the subsequent data samples according to the time information corresponding to the previous data samples among the multiple data samples .
  • the first data transmission device when the first data transmission device sequentially sends multiple data set packets of the same channel of data to the second data transmission device, the first data transmission device can also determine the data packets sent later according to the time information of the previously sent data packets time information. Exemplarily, as shown in FIG. 6, after the first data transmission device sends the first data packet to the second data transmission device, the method may further include: S204-S205.
  • the first data transmission device sends a second data packet to the second data transmission device, the second data packet includes second data information and second time information, the second time information is determined according to the first time information, and the first The data packet and the second data packet are two data packets in one path of data.
  • the packet lengths of any two data packets in the same path of data are the same, so the packet lengths of the first data packet and the second data packet are the same, and the packet length can be used to indicate the data included in each data packet The number of sample points. For example, if both the first data packet and the second data packet include 4 data samples, then the packet length is equal to 4.
  • the second data packet P2 is a next data packet of the first data packet P1, and the second time information is determined according to the first time information and the packet length Y of the first data packet P1.
  • the first data packet P1 includes the first data sample D1
  • the first time information is used to indicate the sending time Tt1 of the first data sample D1 in the first data transmission device
  • the second data packet P2 includes the third data sample point D3
  • the second time information is used to indicate the sending time Tt3 of the third data sample point D3 in the first data transmission device
  • the first data transmission device can The sampling interval ⁇ T of the points determines this transmission time Tt3.
  • Tt3 Tt1+ ⁇ T ⁇ Y.
  • the first data packet P1 includes the first data sample point D1
  • the first time information is used to indicate the receiving time Tr1 of the first data sample point D1 in the second data transmission device
  • the second data packet P2 includes the third data Sample point D3
  • the second time information is used to indicate the receiving time Tr3 of the third data sample point D3 in the second data transmission device
  • the first data transmission device can according to the receiving time Tr1, the packet length Y, and the data
  • the sampling interval ⁇ T of the samples determines this reception time Tr3.
  • Tr3 Tr1+ ⁇ T ⁇ Y.
  • the sending time Tt3 of the third data sample point D3 in the first data transmission device may also be obtained according to the measurement time of the first timer in the first data transmission device.
  • the second data packet P2 is the W-1th data packet after the first data packet P1, and the second time information is based on the first time information, W-1, and the first data packet P1 Packet length Y is determined.
  • the first data packet P1 includes the first data sample D1
  • the first time information is used to indicate the sending time Tt1 of the first data sample D1 in the first data transmission device
  • the second data packet P2 includes the third data sample Point D3
  • the second time information is used to indicate the sending time Tt3 of the third data sample point D3 in the first data transmission device
  • the first data transmission device can according to the sending time Tt1, W-1, the packet length Y
  • the sampling interval ⁇ T of the data samples determines the sending time Tt3.
  • Tt3 Tt1+ ⁇ T ⁇ Y ⁇ (W ⁇ 1).
  • the first data packet P1 includes the first data sample point D1
  • the first time information is used to indicate the receiving time Tr1 of the first data sample point D1 in the second data transmission device
  • the second data packet P2 includes the third data Sample point D3
  • the second time information is used to indicate the receiving time Tr3 of the third data sample point D3 in the second data transmission device
  • the first data transmission device can according to the receiving time Tr1, W-1, the packet length Y , and the sampling interval ⁇ T of the data samples determines the receiving time Tr3.
  • Tr3 Tr1+ ⁇ T ⁇ Y ⁇ (W-1).
  • the sending time Tt3 of the third data sample point D3 in the first data transmission device may also be obtained according to the measurement time of the first timer in the first data transmission device.
  • the first data transmission device may encapsulate the second data information and the reception time Tr3 plus a header into a data packet, to obtain the second data packet, and send the second data packet to the second data transmission device.
  • the process of the second data transmission device realizing the timing of the second data information according to the second time information is consistent with the above-mentioned process of realizing the timing of the first data information according to the first time information.
  • the process of the second data transmission device realizing the timing of the second data information according to the second time information is consistent with the above-mentioned process of realizing the timing of the first data information according to the first time information.
  • the second data transmission device when the data transmission link where the first data packet and the second data packet are located fails, packet loss occurs, or an error packet causes the packet length received by the second data transmission device to be wrong, the second data transmission device also A salvage data packet may be generated, and the packet length of the salvage data packet is equal to the packet length of the above-mentioned data packet.
  • the second data transmission device when the second data transmission device receives each data packet, the second data transmission device can compare the time information in the data packet with the time information of the data packet calculated locally, if If the two are consistent, it can be determined that no packet loss occurs, and if the two are inconsistent, it can be determined that packet loss occurs.
  • the second data transmission device may generate a remedial data packet with the same packet length as other data packets of the same path of data according to the time information of the data packet obtained by local calculation, and according to the time information obtained by local calculation The information realizes the timing of the data information in the salvage data packet, and the data information of the salvage data packet may be 0.
  • the second data transmission device can locally calculate the second time information according to the first time information, and generate a remedial data packet according to the second time information.
  • the length of the remedial data packet is the same as The packet lengths of the second data packets are equal.
  • the second data transmission device when the second data transmission device receives each data packet, can compare the packet length of the data packet with the preset packet length of the data packet in the path of data, If the two are consistent, it can be determined that no error packet has occurred, and if the two are inconsistent, it can be determined that an error packet has occurred.
  • the second data transmission device may generate a remedial data packet with a packet length equal to that of other data packets of the same path of data according to the time information in the data packet or the time information of the data packet calculated locally , and realize the timing of the data information in the rescue data packet according to the above time information. For example, if an error occurs in the second data packet, the second data transmission device may generate a salvage data packet according to the second time information, and the packet length of the salvage data packet is equal to the packet length of the second data packet.
  • the time information of the data packet obtained by the above local calculation may be the time information measured by the second data transmission device through the second timer, or it may be the time information obtained by the second data transmission device according to the first time information described in S204 above.
  • the data transmission device determines the second time information in a manner similar to that of determining the second time information according to the first time information, which is not specifically limited in this embodiment of the present application.
  • the first data packet or the second data packet may further include verification information, and the verification information in a data packet is used to verify the integrity of the data packet.
  • the verification information may be generated by the first data transmission device according to the second time information and the second data information.
  • the second data transmission device can implement integrity verification of the second data packet according to the verification information.
  • the second data transmission device can realize the timing of the second data packet according to the method described above; if the integrity verification of the second data packet fails, the second data transmission device
  • the second data packet may be retransmitted to and from the first data transmission device, or a salvage data packet corresponding to the second data packet may be generated through the above method for salvaging a data packet.
  • the first data transmission device carries the data in each data packet transmitted to the second data transmission device
  • the time information corresponding to the packet so that the second data transmission device can time the data information in the data packet based on the time information carried in the data packet, which can also be referred to as realizing the data packet based on the time information carried in the data packet
  • the synchronization of the data information in the data packet is to determine the boundary of the data information carried in the data packet, so that the second data transmission device can recover the position of the first data information in the data stream to realize the correctness of the first data information demodulation.
  • each data packet carries the time information corresponding to the data packet, when a packet loss occurs or a wrong packet causes a received packet length error, the second data transmission device can based on the time information in each data packet
  • the timing information determines the position of the currently received data packet in the data stream to which it belongs, so as to avoid the problem that the timing of subsequent received data packets cannot be realized due to packet loss or error in some data packets, so that the timing performance is high.
  • the first data transmission device and the second data transmission device include corresponding functions for performing each function.
  • hardware structures and/or software modules Those skilled in the art should easily realize that the present application can be implemented in the form of hardware or a combination of hardware and computer software in combination with the units and algorithm steps of each example described in the embodiments disclosed herein. Whether a certain function is executed by hardware or computer software drives hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present application.
  • the embodiment of the present application can divide the functional modules of the first data transmission device and the second data transmission device according to the above method example, for example, each functional module can be divided corresponding to each function, or two or more functions can be integrated in a processing module.
  • the above functional modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 7 shows a possible structural diagram of the first data transmission device involved in the above embodiment.
  • the device includes: a synchronization unit 301 and a sending unit 302 .
  • the synchronizing unit 301 is used to support the device to perform S201 in the above method embodiment;
  • the sending unit 302 is used to support the device to perform one or more steps in S202 or S204 in the above method embodiment.
  • the device further includes a packing unit 303 and a timing unit 304.
  • the packing unit 303 can be used to support the device to perform the steps of collecting data samples and packing data packets in the above method embodiments; the timing unit 304 can be used to support The device executes the step of measuring the sending time of the first data sample point or the second data sample point in the first data transmission device in the above method embodiment.
  • the device may further include a transmit processing unit corresponding to at least one transmit channel, and a receive processing unit corresponding to at least one receive channel.
  • the synchronization unit 301, the sending unit 302 and the packaging unit 303 in the embodiment of the present application may be the first transmission interface of the first data transmission device (for example, the first transmission interface is the first A digital interface), the timing unit 304, the transmitting processing unit and the receiving processing unit may be the first processor of the first digital interface.
  • the first data transmission device includes: a first transmission interface 311 and a first processor 312, and the first processor 312 and the first transmission interface 311 are used to support the first data transmission device to perform the above-mentioned Steps of the first data transmission device in the method embodiment.
  • the first data transmission device as an example of RFIC, as shown in FIG.
  • the first data transmission device may include a transmission processing unit, a reception processing unit, a timer 1 and a digital interface.
  • the transmit processing unit in the RFIC can be used to send data to the digital interface
  • the digital interface in the RFIC can be used to support the RFIC to perform one or more of S201, S202 or S204 in the above method embodiments Multiple steps, and/or other technical processes described herein;
  • the counter 1 can be used to measure the sending time of the first data sample point or the second data sample point in the first data transmission device, etc.
  • FIG. 9 shows a possible structural diagram of the second data transmission device involved in the above embodiment.
  • the device includes: a synchronization unit 401 , a receiving unit 402 and a timing unit 403 .
  • the synchronization unit 401 is used to support the device to execute S201 in the above method embodiment
  • the receiving unit 402 is used to support the device to perform one or more steps in receiving the first data packet or the second data packet in the above method embodiment
  • the timing unit 403 is used to support the device to execute one or more steps in S203 or S205 in the above method embodiment.
  • the device further includes a packet supplementation unit 404 and a timing unit 405, the packet supplementation unit 404 can be used to support the device to perform the steps of generating a rescue data packet in the above method embodiment; the timing unit 405 can be used to support the device to perform the above In the method embodiment, the step of measuring the receiving time of the first data sample point or the second data sample point in the second data transmission device.
  • the device may further include a transmit processing unit corresponding to at least one transmit channel, and a receive processing unit corresponding to at least one receive channel.
  • the synchronization unit 401, the receiving unit 402, the timing unit 403 and the supplementary packet unit 404 in the embodiment of the present application may be the second transmission interface of the second data transmission device (for example, the first The second transmission interface is the second digital interface), and the timing unit 405, the transmitting processing unit and the receiving processing unit may be the second processor of the second digital interface.
  • the second data transmission device includes: a second transmission interface 411 and a second processor 412, and the second processor 412 and the second transmission interface 411 are used to support the second data transmission device to perform the above-mentioned Steps of the second data transmission device in the method embodiment.
  • the first data transmission device may include a transmission processing unit, a reception processing unit, a timer 1 and a digital interface.
  • the digital interface in the BBIC can be used to support the BBIC to perform one or more steps in S201, S203 or S205 in the above method embodiments, and/or other technical processes described herein;
  • the counter 2 can be used to measure the steps of receiving time of the first data sample point or the second data sample point in the second data transmission device; the receiving processing unit can be used to receive the data sample output by the digital interface in the BBIC according to the corresponding timing point.
  • the embodiment of the present application also provides a data packet transmission system, the data packet transmission includes a first data transmission device and a second data transmission device; wherein, the first data transmission device can be used for Execute the steps of the first data transmission device in the above method embodiment; the second data transmission device may be used to perform the steps of the second data transmission device in the above method embodiment as shown in FIG. 9 or FIG. 10 .
  • the first data transmission device carries the data in each data packet transmitted to the second data transmission device
  • the time information corresponding to the packet, and the time information is the time information after time synchronization, so that when the second data transmission device receives the data packet, it can update the data information in the data packet based on the time information carried in the data packet
  • Timing can also be referred to as realizing the synchronization of the data information in the data packet based on the time information carried in the data packet, that is, determining the boundaries of the data information carried in the data packet, so that the second data transmission device can recover The position of the first data information in the associated data stream, so as to realize correct demodulation of the first data information.
  • each data packet carries the time information corresponding to the data packet, when a packet loss occurs or a wrong packet causes a received packet length error, the second data transmission device can based on the time information in each data packet
  • the timing information determines the position of the currently received data packet in the data stream to which it belongs, so as to avoid the problem that the timing of subsequent received data packets cannot be realized due to packet loss or error in some data packets, so that the timing performance is high.
  • the disclosed devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be Incorporation or may be integrated into another device, or some features may be omitted, or not implemented.
  • the unit described as a separate component may or may not be physically separated, and the component displayed as a unit may be one physical unit or multiple physical units, that is, it may be located in one place, or may be distributed to multiple different places . Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • a computer-readable storage medium is provided. Instructions are stored in the computer-readable storage medium. When the instructions are run on a device, the device is made to perform the first data transmission in the above method embodiment. device steps.
  • a computer-readable storage medium is provided. Instructions are stored in the computer-readable storage medium. When the instructions are run on a device, the device is made to perform the second data transmission in the above method embodiment. device steps.
  • a computer program product is provided.
  • the device is made to execute the steps of the first data transmission device in the above method embodiment.
  • a computer program product is provided.
  • the device is made to execute the steps of the second data transmission device in the above method embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种数据包传输方法及装置,涉及通信技术领域,用于提高数据传输装置的定时性能。所述方法包括:第一数据传输装置与第二数据传输装置之间传输同步信号,所述同步信号用于实现所述第一数据传输装置和所述第二数据传输装置的时间同步;所述第一数据传输装置向所述第二数据传输装置发送第一数据包,所述第一数据包中包括第一数据信息和第一时间信息,所述第一时间信息用于使所述第二数据传输装置实现所述第一数据信息的定时。

Description

一种数据包传输方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种数据包传输方法及装置。
背景技术
无线通信设备中通常包括射频模块和基带模块,射频模块与基带模块之间通过接口连接,该接口用于传输同相正交(in-phase and quadrature,IQ)数据。随着载波带宽和采样率的不断增大、无线通信设备支持的通道数量和带宽需求的显著增加,上述接口已从传统的模拟接口转换为数字串行接口。当射频模块利用数字串行接口向基带模块传输多个通道的IQ数据时,该基带模块需要对接收到的每个通道的IQ数据进行定时,以实现该基带模块对于每个通道的IQ数据的正确解调。
目前,射频模块在利用数字串行接口传输每个通道的IQ数据时通常采用包传输结构,即射频模块在每个封包周期内将该通道的IQ数据中的一个或者多个数据样点封装在一个数据包中进行传输。具体的,以该射频模块采用包传输结构向该基带模块传输某一通道的IQ数据为例,该方法包括:在该基带模块中预配置该通道的定时信息,该定时信息用于该基带模块实现该IQ数据中第一个数据样点的定时;该射频模块向该基带模块发送该通道的第一数据包,第一数据包中包括第一个数据样点;该基带模块在接收到第一数据包时,根据预配置的定时信息对第一数据包中的第一个数据样点进行定时。进一步的,当第一数据包中还包括其他数据样点、以及该基带模块还接收到该射频模块发送的该通道的其他数据包时,该基带模块根据该数据样点的采样间隔、数据包的包长(用于指示包括的数据样点的数量)、以及已接收数据包的数量,对该其他数据样点和该其他数据包中的数据样点进行定时。
上述技术方案中,当IQ数据的传输链路出现丢包、或者错包导致接收到的包长错误时,该基带模块根据上述包长和已接收数据包的数据确定的后续接收到的数据包的时间基准将全部错位,这样会导致该基带模块无法对后续接收到的数据包中的数据样点进行正确定时,从而定时性能较差。
发明内容
本申请的实施例提供一种数据包传输方法及装置,用于提高数据传输装置的定时性能。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供一种数据包传输方法,该方法包括:第一数据传输装置与第二数据传输装置之间传输同步信号,比如,第一数据传输装置向第二数据传输装置发送同步信号、或者接收来自第二数据传输装置的同步信号,该同步信号用于实现第一数据传输装置和第二数据传输装置的时间同步;第一数据传输装置向第二数据传输装置发送第一数据包,第一数据包中包括第一数据信息和第一时间信息,第一时间信息为时间同步后的时间信息,第一时间信息用于使第二数据传输装置实现第一数据信息的定时。
上述技术方案中,第一数据传输装置与第二数据传输装置在基于同步信号实现时间同步之后,第一数据传输装置在向第二数据传输装置传输的每个数据包中携带了该数据包对 应的时间信息,该时间信息为时间同步后的时间信息,从而第二数据传输装置在接收到该数据包时,能够基于该数据包中携带的时间信息对该数据包中的数据信息进行定时,也可以称为基于该数据包中携带的时间信息实现该数据包中的数据信息的同步,即确定该数据包中携带的数据信息的边界,进而使得第二数据传输装置能够恢复出第一数据信息在所属数据流中的位置,以实现第一数据信息的正确解调。此外,由于每个数据包中都携带了该数据包对应的时间信息,这样在出现丢包、或者错包导致接收到的包长错误时,第二数据传输装置能够基于每个数据包中的定时信息确定当前接收到的数据包在所属数据流中的位置,从而避免因为部分数据包出现丢包或者错包,而导致后续接收到的数据包无法实现定时的问题,从而定时性能高。
在第一方面的一种可能的实现方式中,第一时间信息用于指示第一数据信息在第二数据传输装置中的接收时间,该接收时间可以是指第二数据传输装置中的数字接口输出第一数据信息的时间。上述可能的实现方式中,通过将第一数据信息在第二数据传输装置中的接收时间通过第一数据包发送给第二数据传输装置,能够使得第二数据传输装置在接收到第一数据包后直接根据该接收时间实现第一数据信息的定时,从而提高第一数据信息的定时性能。
在第一方面的一种可能的实现方式中,该接收时间是根据第一数据信息在第一数据传输装置的发送时间和数据传输时延确定的,该数据传输时延为第一数据传输装置与第二数据传输装置之间的传输时延;可选的,该数据传输时延是配置给第一数据传输装置的。上述可能的实现方式中,通过为第一数据传输装置配置该数据传输时延,能够使得第一数据传输装置能够根据该发送时间和该数据传输时延,确定第一数据信息在第二数据传输装置中的接收时间,从而根据该接收时间实现第一数据信息的定时。
在第一方面的一种可能的实现方式中,第一时间信息用于指示第一数据信息在第一数据传输装置中的发送时间,该发送时间可以是指第一数据传输装置中的数字接口收集到第一数据信息的时间。上述可能的实现方式中,通过将该发送时间通过第一数据包发送给第二数据传输装置,能够使得第二数据传输装置在接收到第一数据包后,根据该发送时间和数据传输时延,确定第一数据信息在第二数据传输装置中的接收时间,从而根据该接收时间实现第一数据信息的定时,进而提高第一数据信息的定时性能。
在第一方面的一种可能的实现方式中,第一数据信息包括第一数据样点和第二数据样点,第二数据样点为第一数据样点的下一个数据样点,第一时间信息用于使第二数据传输装置实现第一数据样点的定时,第一时间信息和第一数据样点与第二数据样点之间的采样间隔用于使第二数据传输装置实现第二数据样点的定时。上述可能的实现方式中,第一数据传输装置仅通过在第一数据包中携带第一数据样点的时间信息,能够使得第二数据传输装置根据第一数据样点的时间信息和采样间隔确定每个数据样点的时间信息,从而能够在一个数据包中包括多个数据样点时,降低时间信息的传输量。
在第一方面的一种可能的实现方式中,第一数据传输装置向第二数据传输装置发送第一数据包之后,该方法还包括:第一数据传输装置向第二数据传输装置发送第二数据包,第二数据包中包括第二数据信息和第二时间信息,第二时间信息用于使第二数据传输装置实现第二数据信息的定时,第一数据包和第二数据包为一路数据中的两个数据包;其中,第二数据包是第一数据包的下一个数据包,第二时间信息是根据第一时间信息和第一数据 包的包长确定的,第一数据包的包长用于指示第一数据包中包括的数据样点的数量。上述可能的实现方式中,对于同一路数据中的不同数据包,第一数据传输装置能够根据前面发送的数据包的定时信息确定后面发送的时间信息,从而确保不同数据包的定时信息的准确性。
在第一方面的一种可能的实现方式中,第二时间信息等于第一时间信息与第一乘积之和,第一乘积为第一数据包的包长与该数据样点的采样间隔的乘积。上述可能的实现方式中,提供了一种简单、有效的确定第二时间信息的方式。
在第一方面的一种可能的实现方式中,第一数据传输装置为射频模块和基带模块,第二数据传输装置为基带模块;或者,第一数据传输装置为该基带模块,第二数据传输装置为该射频模块。上述可能的实现方式中,能够在射频模块与基带模块之间传输数据包时,提高数据传输装置的定时性能,从而保证数据的正确解调。
第二方面,提供一种数据包传输方法,该方法包括:第二数据传输装置与第一数据传输装置之间传输同步信号,比如,第二数据传输装置接收来自第一数据传输装置的同步信号、或者向第一数据传输装置发送同步信号,该同步信号用于实现第一数据传输装置和第二数据传输装置的时间同步;第二数据传输装置接收来自第一数据传输装置的第一数据包,第一数据包中包括第一数据信息和第一时间信息,第一时间信息为时间同步后的时间信息;第二数据传输装置根据第一时间信息实现第一数据信息的定时。
上述技术方案中,第二数据传输装置与第一数据传输装置在基于同步信号实现时间同步之后,第一数据传输装置在向第二数据传输装置传输的每个数据包中携带了该数据包对应的时间信息,且该时间信息为时间同步后的时间信息,从而第二数据传输装置在接收到该数据包时,能够基于该数据包中携带的时间信息对该数据包中的数据信息进行定时,也可以称为基于该数据包中携带的时间信息实现该数据包中的数据信息的同步,即确定该数据包中携带的数据信息的边界,进而使得第二数据传输装置能够恢复出第一数据信息在所属数据流中的位置,以实现第一数据信息的正确解调。此外,由于每个数据包中都携带了该数据包对应的时间信息,这样在出现丢包、或者错包导致接收到的包长错误时,第二数据传输装置能够基于每个数据包中的定时信息确定当前接收到的数据包在所属数据流中的位置,从而避免因为部分数据包出现丢包或者错包,而导致后续接收到的数据包无法实现定时的问题,从而定时性能高。
在第二方面的一种可能的实现方式中,第一时间信息用于指示第一数据信息在第二数据传输装置中的接收时间,该接收时间可以是指第二数据传输装置中的数字接口输出第一数据信息的时间,第二数据传输装置根据第一时间信息实现第一数据信息的定时,包括:第二数据传输装置根据该接收时间对第一数据信息进行定时。上述可能的实现方式中,通过将第一数据信息在第二数据传输装置中的接收时间通过第一数据包发送给第二数据传输装置,能够使得第二数据传输装置在接收到第一数据包后直接根据该接收时间实现第一数据信息的定时,从而提高第一数据信息的定时性能。
在第二方面的一种可能的实现方式中,第一时间信息用于指示第一数据信息在第一数据传输装置中的发送时间,该发送时间可以是指第一数据传输装置中的数字接口收集到第一数据信息的时间,第二数据传输装置根据第一时间信息实现第一数据信息的定时,包括:第二数据传输装置根据该发送时间和数据传输时延对第一数据信息进行定时,该数据 传输时延为第一数据传输装置与第二数据传输装置之间的传输时延。可选的,该数据传输时延是配置给第二数据传输装置的。上述可能的实现方式中,通过为第二数据传输装置配置该数据传输时延,能够使得第二数据传输装置能够根据该发送时间和该数据传输时延确定第一数据信息在第二数据传输装置中的接收时间,从而根据该接收时间实现第一数据信息的定时,进而提高第一数据信息的定时性能。
在第二方面的一种可能的实现方式中,第一数据信息包括第一数据样点和第二数据样点,第二数据样点为第一数据样点的下一个数据样点,第二数据传输装置根据第一时间信息实现第一数据信息的定时,包括:第二数据传输装置根据第一时间信息实现第一数据样点的定时;第二数据传输装置根据第一时间信息和第一数据样点与第二数据样点之间的采样间隔实现第二数据样点的定时。上述可能的实现方式中,第一数据传输装置仅通过在第一数据包中携带第一数据样点的时间信息,能够使得第二数据传输装置根据第一数据样点的时间信息和采样间隔确定每个数据样点的时间信息,从而能够在一个数据包中包括多个数据样点时,降低时间信息的传输量。
在第二方面的一种可能的实现方式中,第二数据传输装置接收来自第一数据传输装置的第一数据包之后,该方法还包括:第二数据传输装置接收来自第一数据传输装置的第二数据包,第二数据包中包括第二数据信息和第二时间信息,第一数据包和第二数据包为一路数据中的两个数据包;第二数据传输装置根据第二时间信息实现第二数据信息的定时;其中,第二数据包是第一数据包的下一个数据包,第二时间信息是根据第一时间信息和第一数据包的包长确定的,第一数据包的包长用于指示第一数据包中包括的数据样点的数量。上述可能的实现方式中,对于同一路数据中的不同数据包,第二数据传输装置能够根据前面发送的数据包的定时信息确定后面发送的时间信息,从而确保不同数据包的定时信息的准确性。
在第二方面的一种可能的实现方式中,第二时间信息等于第一时间信息与第一乘积之和,第一乘积为第一数据包的包长与该数据样点的采样间隔的乘积。
在第二方面的一种可能的实现方式中,该方法还包括:若第二数据包出现丢包或错包,第二数据传输装置根据第二时间信息生成补救数据包,该补救数据包的包长与第二数据包的包长相等。上述可能的实现方式中,提供了一种简单、有效的确定第二时间信息的方式。
在第二方面的一种可能的实现方式中,第一数据传输装置为射频模块和基带模块,第二数据传输装置为基带模块;或者,第一数据传输装置为该基带模块,第二数据传输装置为该射频模块。上述可能的实现方式中,能够在射频模块与基带模块之间传输数据包时,提高数据传输装置的定时性能,从而保证数据的正确解调。
第三方面,提供一种数据传输装置,该装置作为第一数据传输装置,包括:同步单元,用于与第二数据传输装置之间传输同步信号,该同步信号用于实现第一数据传输装置和第二数据传输装置的时间同步;发送单元,用于向第二数据传输装置发送第一数据包,第一数据包中包括第一数据信息和第一时间信息,第一时间信息为时间同步后的时间信息,第一时间信息用于使第二数据传输装置实现第一数据信息的定时。
在第三方面的一种可能的实现方式中,第一时间信息用于指示第一数据信息在第二数据传输装置中的接收时间,该接收时间可以是指第二数据传输装置中的数字接口输出第 一数据信息的时间。
在第三方面的一种可能的实现方式中,该接收时间是根据第一数据信息在第一数据传输装置的发送时间和数据传输时延确定的,该数据传输时延为第一数据传输装置与第二数据传输装置之间的传输时延。
在第三方面的一种可能的实现方式中,第一时间信息用于指示第一数据信息在第一数据传输装置中的发送时间,该发送时间可以是指第一数据传输装置中的数字接口收集到第一数据信息的时间。
在第三方面的一种可能的实现方式中,第一数据信息包括第一数据样点和第二数据样点,第二数据样点为第一数据样点的下一个数据样点,第一时间信息用于使第二数据传输装置实现第一数据样点的定时,第一时间信息和第一数据样点与第二数据样点之间的采样间隔用于使第二数据传输装置实现第二数据样点的定时。
在第三方面的一种可能的实现方式中,该发送单元还用于:向第二数据传输装置发送第二数据包,第二数据包中包括第二数据信息和第二时间信息,第二时间信息用于使第二数据传输装置实现第二数据信息的定时,第一数据包和第二数据包为一路数据中的两个数据包;其中,第二数据包是第一数据包的下一个数据包,第二时间信息是根据第一时间信息和第一数据包的包长确定的,第一数据包的包长用于指示第一数据包中包括的数据样点的数量。
在第三方面的一种可能的实现方式中,第二时间信息等于第一时间信息与第一乘积之和,第一乘积为第一数据包的包长与该数据样点的采样间隔的乘积。
在第三方面的一种可能的实现方式中,第一数据传输装置为射频模块和基带模块,第二数据传输装置为基带模块;或者,第一数据传输装置为该基带模块,第二数据传输装置为该射频模块。
第四方面,提供一种数据传输装置,该装置作为第二数据传输装置,包括:同步单元,用于与第一数据传输装置之间传输同步信号,该同步信号用于实现第一数据传输装置和第二数据传输装置的时间同步;接收单元,用于接收来自第一数据传输装置的第一数据包,第一数据包中包括第一数据信息和第一时间信息,第一时间信息为时间同步后的时间信息;定时单元,用于根据第一时间信息实现第一数据信息的定时。
在第四方面的一种可能的实现方式中,第一时间信息用于指示第一数据信息在第二数据传输装置中的接收时间,该接收时间可以是指第二数据传输装置中的数字接口输出第一数据信息的时间,该定时单元还用于:根据该接收时间对第一数据信息进行定时。
在第四方面的一种可能的实现方式中,第一时间信息用于指示第一数据信息在第一数据传输装置中的发送时间,该发送时间可以是指第一数据传输装置中的数字接口收集到第一数据信息的时间,该定时单元还用于:根据该发送时间和数据传输时延对第一数据信息进行定时,该数据传输时延为第一数据传输装置与第二数据传输装置之间的传输时延。
在第四方面的一种可能的实现方式中,第一数据信息包括第一数据样点和第二数据样点,第二数据样点为第一数据样点的下一个数据样点,该定时单元还用于:根据第一时间信息实现第一数据样点的定时;根据第一时间信息和第一数据样点与第二数据样点之间的采样间隔实现第二数据样点的定时。
在第四方面的一种可能的实现方式中,该接收单元,还用于接收来自第一数据传输 装置的第二数据包,第二数据包中包括第二数据信息和第二时间信息,第一数据包和第二数据包为一路数据中的两个数据包;该定时单元,还用于根据第二时间信息实现第二数据信息的定时;其中,第二数据包是第一数据包的下一个数据包,第二时间信息是根据第一时间信息和第一数据包的包长确定的,第一数据包的包长用于指示第一数据包中包括的数据样点的数量。
在第四方面的一种可能的实现方式中,第二时间信息等于第一时间信息与第一乘积之和,第一乘积为第一数据包的包长与该数据样点的采样间隔的乘积。
在第四方面的一种可能的实现方式中,该装置还包括:补包单元,用于若第二数据包出现丢包或错包,根据第二时间信息生成补救数据包,该补救数据包的包长与第二数据包的包长相等。
在第四方面的一种可能的实现方式中,第一数据传输装置为射频模块和基带模块,第二数据传输装置为基带模块;或者,第一数据传输装置为该基带模块,第二数据传输装置为该射频模块。
在本申请的另一方面,提供一种数据传输装置,该装置作为第一数据传输装置包括:第一传输接口和第一处理器,第一传输接口和第一处理器用于支持第一数据传输装置执行第一方面或者第一方面的任一种可能的实现方式所提供的数据包传输方法。
在本申请的另一方面,提供一种数据传输装置,该装置作为第二数据传输装置包括:第二传输接口和第二处理器,第二传输接口和第二处理器用于支持第二数据传输装置执行第二方面或者第二方面的任一种可能的实现方式所提供的数据包传输方法。
在本申请的另一方面,提供一种无线通信设备或者数据传输***,包括第一数据传输装置和第二数据传输装置,第一数据传输装置用于执行第一方面或者第一方面的任一种可能的实现方式所提供的数据包传输方法,第二数据传输装置用于执行第二方面或者第二方面的任一种可能的实现方式所提供的数据包传输方法。
在本申请的另一方面,提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在设备上运行时,使得该设备执行第一方面或者第一方面的任一种可能的实现方式所提供的数据包传输方法。
在本申请的另一方面,提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在设备上运行时,使得该设备执行第二方面或者第二方面的任一种可能的实现方式所提供的数据包传输方法。
在本申请的另一方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序(也可以称为代码,或指令),当该计算机程序被运行时,使得计算机执行上述第一方面或者第一方面的任一种可能的实现方式所提供的数据包传输方法。
在本申请的另一方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序(也可以称为代码,或指令),当该计算机程序被运行时,使得计算机执行上述第二方面或者第二方面中任一种可能实现方式所提供的数据包传输方法。
可以理解地,上述提供的任一种数据传输装置、无线通信设备或者数据传输***、计算机可读存储介质或者计算机程序产品均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种无线通信设备的结构示意图;
图2为本申请实施例提供的一种时间片传输结构的示意图;
图3为本申请实施例提供的一种包传输结构的示意图;
图4为本申请实施例提供的一种数据包传输方法的流程示意图;
图5为本申请实施例提供的一种数据传输装置间传输数据的示意图;
图6为本申请实施例提供的另一种数据包传输方法的流程示意图;
图7为本申请实施例提供的一种第一数据传输装置的结构示意图;
图8为本申请实施例提供的另一种第一数据传输装置的结构示意图;
图9为本申请实施例提供的一种第二数据传输装置的结构示意图;
图10为本申请实施例提供的另一种第二数据传输装置的结构示意图。
具体实施方式
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,本申请实施例采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。例如,第一阈值和第二阈值仅仅是为了区分不同的阈值,并不对其先后顺序进行限定。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请的技术方案可以应用于采用数字接口进行数据传输的各种无线通信设备中。该无线通信设备可以部署在陆地上,包括室内或室外、手持或车载。也可以部署在水面上(如轮船等)。还可以部署在空中(例如飞机、气球和卫星上等)。比如,该无线通道设备可以为终端或者基站。比如,该终端包括但不限于:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备(例如智能手表、智能手环、计步器等)、车载设备(例如,汽车、自行车、电动车、飞机、船舶、火车、高铁等)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、智能家居设备(例如,冰箱、电视、空调、电表等)、智能机器人、车间设备、无人驾驶(self-driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端,或智慧家庭(smart home)中的无线终端、飞行设备(例如,智能机器人、热气球、无人机、飞机)等。下面对该无线通信设备的结构进行详细介绍。
图1为本申请实施例提供的一种无线通信设备的结构示意图,该无线通信设备以终端 为例进行说明。该无线通信设备包括:射频模块和基带模块,该射频模块和该基带模块之间可以进行数据传输,传输的数据可以为同相正交(in-phase and quadrature,IQ)数据。
其中,该基带模块具有基带处理功能,可用于处理基带信号,比如,该基带模块可以为基带集成电路(base band integrated circuit,BBIC),该基带集成电路也可以称为基带芯片。该射频模块可用于实现基带信号与射频信号之间的调制或解调,比如,该射频模块可以为射频集成电路(radio frequency integrated circuit,RFIC),该射频集成电路也可以称为或者射频芯片。
另外,该基带模块可以为数字接口基带模块,该射频模块可以为数字接***频模块。该数字接口基带模块和该数字接***频模块中可以均包括计时器(timer)、数字接口、发射(transmit,TX)处理单元和接收(receive,RX)处理单元。该计时器可用于测量时间,以及实现不同模块之间的时间同步。该发射处理单元可以包括至少一个发射通道(channel,CH),该接收处理单元可以包括至少一个接收通道,每个发射通道可用于发射一路数据,每个接收通道可用于接收一路数据。该数字接口可以包括发射接口模块和接收接口模块。可选地,该数字接口可以为数字串行器/解串器(serializer/deserializer,serdes)。图1中将该数字接口基带模块表示为BBIC,将该数字接***频模块表示为RFIC,将BBIC中的至少一个发射通道表示为TX CH1至TX CHn,将BBIC中的至少一个接收通道表示为RX CH1至RX CHm,将RFIC中的至少一个发射通道表示为TX CH1至TX CHm,将RFIC中的至少一个接收通道表示为RX CH1至RX CHn,将BBIC中的计时器表示为计时器1,将RFIC中的计时器表示为计时器2,将该数字接口中的发射接口模块表示为SerD TX、接收接口模块表示为SerD RX,n和m为正整数。
可选地,该多个发射通道中的每个发射通道可以包括数模转换器(digital to analog converter,DAC)、低通滤波器(low pass filter,LPF)、上转换器和驱动放大器(driver amplifier,DA)等。该多个接收通道中的每个接收通道可以包括模数转换器(analog to digital converter,ADC)、低通滤波器LPF和下转换器等。
进一步的,尽管图1中未示出,该无线通信设备还可以包括射频前端模块(radio frequency front end module,RF FEM)和天线(antenna,ANT)。该RF FEM可用于提供功率放大或滤波等功能。该RF FEM也可以包括多个发射通道和多个接收通道。该多个发射通道中的每个发射通道可以包括功率放大器(power amplifier,PA)、发射滤波器(TX filter)和双工器(duplexer)等。该多个接收通道中的每个接收通道可以包括低噪声放大器(low noise amplifier,LNA)和双工器等,该双工器也可以替换为天线开关(antenna switches)。该ANT可用于实现信号的接收或发送,即实现射频信号与电磁波之间的能量转换。
在上述图1所示的无线通信设备中,当该射频模块和该基带模块之间进行数据传输时,该数据可以采用时间片(chip)传输结构,也可以采用包传输结构。下面以该射频模块为发送端、该基带模块为接收端为例,通过图2和图3分别对该时间片传输结构和该包传输结构进行介绍说明。
下述图2和图3中,以该射频模块包括4个发射通道(channel,CH)且分别表示为CH1至CH4为例进行说明。其中,CH1和CH2的采样率相同且在每个时间片内有1个数据样点。CH3的采样率为CH1或CH2的采样率的两倍,从而CH3在每个时间片内有2个 数据样点。CH4的采样率为CH3的采样率的两倍,从而在每个时间片内有4个数据样点。每个时间片的时间长度为TC,且相邻的四个时间片表示为TC(i-1)、TC(i)、TC(i+1)和TC(i+2)为例进行说明。
如图2所示,当该射频模块采用该时间片传输结构向该基带模块发送数据时,该射频模块周期性地将CH1至CH4的数据(即每个通道的一个或者多个数据样点)通过数字接口发送给该基带模块。具体的,该射频模块在收集到CH1至CH4在每个时间片的数据样点后,将收集到的数据样点在该数字接口处按照CH1->CH2->CH3->CH4的顺序进行映射,并以1个时间片为周期不断的将CH1至CH4的数据发送给该基带模块。每个时间片包括CH1的1个数据样点、CH2的1个数据样点、CH3的2个数据样点和CH4的4个数据样点。相应的,该基带模块中的数字接口将接收到的一个或者多个时间片的数据存储在缓存中,在延时预设时间T1后读取该缓存内的数据样点,按照CH1->CH2->CH3->CH4的顺序进行解映射,并按照每个通道的采样率将对应的数据样点输出至后级的处理单元。上述T1应该大于该数字接口的数据传输时延T0,以确保该数字接口的抖动不会导致各通道的时延波动,这样CH1至CH4中每个通道的数据总时延为TC+T1。
上述采用时间片传输结构进行数据传输时,该基带模块能够基于每个时间片的边界对接收到的数据进行定时(也可以称为同步)。此外,当该数据传输链路受到干扰发生故障时,该基带模块仍能够持续从缓存中按对应采样率读出数据并输出至后级的处理单元,当数字接口的链路故障恢复,该基带模块的各通道的定时仍正常运行。但是,该方案的鲁棒性和灵活性较差,从而应用不及包传输结构广泛。
如图3所示,当该射频模块采用该包传输结构向该基带模块发送数据时,该射频模块需要在每个封包周期内将每个通道的数据样点封装在一个数据包中进行传输。具体的,假设该封包周期为2个时间片(即2TC),该射频模块在分别收集到CH1至CH4在每个封包周期内的数据样点后,可以将每个通道在每个封包周期内的数据样点加上一个包头封装成一个数据包(即在每个封包周期内,将CH1的2个数据样点加上包头封装成一个数据包,将CH2的2个数据样点加上包头封装成一个数据包,将CH3的4个数据样点加上包头封装成一个数据包,将CH4的8个数据样点加上包头封装成一个数据包),并按照调度将不同通道的数据包发送给该基带模块。相应的,该基带模块中的数字接口解析接收到的每个通道的数据包以得到对应通道的数据样点,并按照每个通道的采样率将对应的数据样点输出至后级的处理单元。
需要说明的是,上述以该封包周期为2个时间片为例进行说明,在实际应用中,该封包周期可以大于2个时间片,即每个通道的数据包中可以包括更多数量的数据样点,以提高数据包的传输效率。
上述采用包传输结构进行数据传输时,需要在该基带模块中预配置每个通道的定时信息,该基带模块根据该定时信息实现该通道的中第一个数据样点的定时,并根据该通道的数据样点的采样间隔、数据包的包长、以及已接收数据包的数量,对该通道后续接收到的数据样点进行定时。但是,当该数据传输链路发生故障,而出现丢包、或者错包导致接收到的包长错误时,该基带模块根据上述包长和已接收数据包的数据确定的后续接收到的数据包的时间基准将全部错位,这样会导致该基带模块无法对后续接收到的数据包中的数据样点进行正确定时,从而定时性能较差。
基于此,本申请实施例提供一种数据包传输方法,在该射频模块和该基带模块之间进行数据传输时,通过在每个数据包中携带用于对该数据包中的数据进行定时的时间信息,以使得该射频模块和该基带模块中的接收端能够基于该时间信息对该数据包中的数据信息进行定时,这样在出现丢包、或者错包导致接收到的包长错误时,该接收端仍然能够基于后续接收到的数据包中的时间信息对其数据包中的数据信息进行定时,从而定时性能提高。
图4为本申请实施例提供的一种数据包传输方法的流程示意图,该方法可用于采用包传输结构在两个数据传输装置之间实现数据传输,该方法包括以下几个步骤。
S201:第一数据传输装置与第二数据传输装置之间传输同步信号,该同步信号用于实现第一数据传输装置和第二数据传输装置的时间同步。
其中,第一数据传输装置和第二数据传输装置为具有数字接口的装置,且能够利用各自的数字接口进行数据传输。比如,第一数据传输装置为数字接***频模块,第二数据传输装置为数字接口基带模块;或者,第一数据传输装置为数字接口基带模块、第二数据传输装置为数字接***频模块。上述第一数据传输装置和第二数据传输装置可以属于同一无线通信设备中,也可以属于不同的无线通信设备中。
具体的,当第一数据传输装置与第二数据传输装置之间需要进行数据传输时,第一数据传输装置可以向第二数据传输装置发送同步信号,该同步信号可以为开关信号或者脉冲信号,以使第二数据传输装置接收到该同步信号时,根据该同步信号实现第一数据传输装置和第二数据传输装置的时间同步。
可选地,当第一数据传输装置与第二数据传输装置之间需要进行数据传输时,也可以由第二数据传输装置向第一数据传输装置发送该同步信号,以使第一数据传输装置接收到该同步信号时,实现第一数据传输装置和第二数据传输装置的时间同步。
在一种实施例中,第一数据传输装置和第二数据传输装置属于同一无线通信设备中,第一数据传输装置为具有第一计时器的数字接口基带模块、第二数据传输装置为具有第二计时器的数字接***频模块。该数字接口基带模块可以在该无线通信设备上电后,将第一计时器设置为预设时间(比如,该预设时间为0),并向第二数据传输装置发送该同步信号,以使第二数据传输装置接收到该同步信号时,将第二计时器设置为该预设时间,以实现第一数据传输装置和第二数据传输装置的时间同步。
S202:第一数据传输装置向第二数据传输装置发送第一数据包,第一数据包中包括第一数据信息和第一时间信息,第一时间信息为时间同步后的时间信息,第一时间信息用于使第二数据传输装置实现第一数据信息的定时。
其中,实现第一数据信息的定时也可以称为实现第一数据信息的同步,具体是指确定第一数据信息的时间边界,使得第二数据传输装置能够恢复出第一数据信息在所在数据流中的位置,以实现第一数据信息的正确解调。
另外,第一时间信息可用于指示第一数据信息在第一数据传输装置中的发送时间,也可以用于指示第一数据信息在第二数据传输装置中的接收时间。下面分别对这两种情况进行详细说明。
第一种情况,第一时间信息用于指示第一数据信息在第一数据传输装置中的发送时间,该发送时间具体可以是指第一数据传输装置中的数字接口收集到第一数据信息的时间。
在一种可能的实施例中,第一数据传输装置可以包括发射处理单元、第一数字接口和第一计时器,当第一数据传输装置需要向第二数据传输装置发送第一数据包时,该发射处理单元将第一数据信息发送给第一数字接口,第一数字接口在收集到第一数据信息时将第一数据信息和第一时间信息封装在一个数据包中形成第一数据包,并将第一数据包发送给第二数据传输装置。上述第一时间信息可以是第一计时器测量得到的第一数字接口收集到第一数据信息的时间信息。
示例性的,如图5所示,在第一数据传输装置中,该发射处理单元可以包括至少一个通道CH1至CHn,第一数字接口可以包括与该CH1至CHn一一对应的至少一个组帧(framer)单元FU1至FUn、调度单元(scheduler)和至少一个传输路径(lane)L1至Lw。上述组帧单元也可以称为组包单元。其中,该CH1至CHn中的每个通道用于传输一路数据,与每个通道对应的组帧单元用于收集该通道传输的数据,并将收集到的数据与第一计时器对应测量得到的时间信息封装在一个数据包中。该调度单元用于将该FU1至FUn封装得到的数据包调度至该L1至Lw中,以通过该L1至Lw发送给第二数据传输装置。若上述第一数据包为该至少一个通道中的CH1所传输的一路数据中的一个数据包,则上述第一时间信息可以是FU1收集到第一数据信息的时间信息。
第二种情况,第一时间信息用于指示第一数据信息在第二数据传输装置中的接收时间,该接收时间具体可以是指第二数据传输装置中的第二数字接口输出第一数据信息的时间。
在一种可能的实施例中,第二数据传输装置可以包括第二数字接口、接收处理单元和第二计时器,当第二数据传输装置接收到第一数据包时,第二数字接口解封装第一数据包得到第一数据信息和第一时间信息,并在第二计时器当前测量得到的时间信息与第一时间信息一致时,根据第一时间信息将第一数据信息输出给该接收处理单元。上述第一时间信息可以是第二数字接口将第一数据信息输出给该接收处理单元的时间信息。
示例性的,如图5所示,在第二数据传输装置中,该接收处理单元可以包括至少一个通道CH1至CHn,第二数字接口可以包括与该CH1至CHn一一对应的至少一个解帧(de-framer)单元DFU1至DFUn、分发单元(distributor)和至少一个传输路径(lane)L1至Lw。上述解帧单元也可以称为解包单元。其中,该L1至Lw用于接收第一数据传输装置发送的数据包并传输至分发单元。该分发单元用于将该L1至Lw传输的数据包分发给DFU1至DFUn中。该CH1至CHn中的每个通道用于接收一路数据,与每个通道对应的解帧单元用于对分发单元分发的数据包进行解封装以得到该数据包中的数据信息,并将该数据信息输出至对应的通道中。若上述DFU1为解封装第一数据包的解帧单元,则上述第一时间信息可以是DFU1输出第一数据信息至CH1的时间信息。
在一种可能的实施例中,该接收时间是根据第一数据信息在第一数据传输装置的发送时间和数据传输时延确定的。该发送时间与上述第一种情况下的发送时间一致。该数据传输时延可以是配置的,该数据传输时延具体可以为第一数据传输装置与第二数据传输装置之间的传输时延。也即是,第一数据传输装置可以根据该发送时间和该数据传输时延,确定该接收时间,比如,第一数据传输装置可以将该发送时间和该数据传输时延之和确定为该接收时间。
需要说明的是,该数据传输时延可以是本领域技术人员根据实际情况测量得到的。可选地,该数据传输时延可以包括第一数字接口的组帧时延和调度时延、第二数字接口的解 帧时延和分发时延、以及第一数字接口与第二数字接口之间的路径传输时延。
S203:当第二数据传输装置接收到第一数据包时,根据第一时间信息实现第一数据信息的定时。
其中,第二数据传输装置根据第一时间信息实现第一数据信息的定时(也可以称为同步)可以是指第二数据传输装置中的第二数字接口根据第一时间信息确定第一数据信息的时间边界,以恢复出第一数据信息在所在数据流中的位置,保证第二数据传输装置中的接收处理单元能够实现第一数据信息的正确解调。
相应的,当第一时间信息存在上述两种情况时,第二数据传输装置在不同情况下根据第一时间信息实现第一数据信息的定时的过程会有所不同,下面分别对这两种情况进行描述。
在第一种情况下,即第一时间信息用于指示第一数据信息在第一数据传输装置中的发送时间。此时,第二数据传输装置可以根据该发送时间和数据传输时延确定第一数据信息在第二数据传输装置中的接收时间,并在该接收时间与第二数据传输装置中的第二计时器当前测量得到的时间信息一致时,根据该接收时间对第一数据信息进行定时。关于该数据传输时延的相关描述与上述S202的第二种情况下所描述的数据传输时延一致,具体可以参见上述S202的第二种情况中的描述,本申请实施例在此不再赘述。
在一种实施例中,第二数据传输装置可以包括第二数字接口和接收处理单元。当第二数据传输装置接收到第一数据包时,第二数字接口可以解封装第一数据包得到第一数据信息和该发送时间,并根据该发送时间和该数据传输时延确定第一数据信息在第二数据传输装置中的接收时间,从而根据该接收时间实现第一数据信息的定时,即第二数字接口根据该接收时间将第一数据信息输出至该接收处理单元。
在第二种情况下,即第一时间信息用于指示第一数据信息在第二数据传输装置中的接收时间。此时,第二数据传输装置可以根据该接收时间实现第一数据信息的定时。
在一种实施例中,第二数据传输装置可以包括第二数字接口、接收处理单元和第二计时器。当第二数据传输装置接收到第一数据包时,第二数字接口可以解封装第一数据包得到第一数据信息和该接收时间,并在该接收时间与第二计时器当前测量得到的时间信息一致时,根据该接收时间实现第一数据信息的定时,即第二数字接口根据该接收时间将第一数据信息输出至该接收处理单元。
进一步的,上述第一数据信息可以包括一个或者多个数据样点,该数据样点可以为IQ数据样点(也可以称为IQ样点),关于IQ数据样点的描述可以参考相关技术的阐述,本申请实施例在此不作描述。
其中,当第一数据信息可以包括一个或者多个数据样点时,第一时间信息可以为该一个或者多个数据样点中的第一数据样点对应的时间信息,第一数据样点可以为该一个或者多个数据样点中的第一个数据样点,该时间信息可以为第一数据样点在第一数据传输装置中的发送时间,或者为第一数据样点在第二数据传输装置中的接收时间。
在一种实施例中,若第一数据信息包括第一数据样点D1,第一时间信息用于指示第一数据样点D1在第一数据传输装置中的发送时间Tt1,则第二数据传输装置在接收到第一数据包并解封装得到第一数据样点D1和该发送时间Tt1时,可以根据该发送时间Tt1和该数据传输时延T0确定第一数据样点D1在第二数据传输装置中的接收时间Tr1(比如, Tr1=Tt1+T0),从而根据该接收时间Tr1实现第一数据样点D1的定时。若第一数据信息包括第一数据样点D1,第一时间信息用于指示第一数据样点D1在第二数据传输装置中的接收时间Tr1,则第二数据传输装置在接收到第一数据包并解封装得到第一数据样点D1和该接收时间Tr1时,根据该接收时间Tr1实现第一数据样点D1的定时。
若第一数据信息包括上述第一数据样点D1和第二数据样点D2,第二数据样点D2为第一数据样点D1之后的数据样点,第二数据传输装置可以根据第一数据样点D1对应的时间信息确定第二数据样点D2对应的时间信息。也即是,当第一数据信息包括多个数据样点时,第二数据传输装置可以根据该多个数据样点中前面的数据样点对应的时间信息确定后面的数据样点对应的时间信息。
在一种示例中,假设第二数据样点D2为第一数据样点D1的下一个数据样点,第二数据传输装置在确定第一数据样点D1在第二数据传输装置中的接收时间Tr1后,可以根据该接收时间Tr1和数据样点的采样间隔ΔT,确定第二数据样点D1在第二数据传输装置中的接收时间Tr2,比如,Tr2=Tr1+ΔT。或者,第二数据传输装置在确定第一数据样点D1在第一数据传输装置中的发送时间Tt1后,可以根据该发送时间Tt1、该数据样点的采样间隔ΔT和该数据传输时延T0,确定第二数据样点D2在第二数据传输装置中的接收时间Tr2,比如,Tr2=Tt1+T0+ΔT=Tr1+ΔT。
在另一种示例中,假设第二数据样点D2为第一数据样点D1之后的第X-1个数据样点,第二数据传输装置在确定第一数据样点D1在第二数据传输装置中的接收时间Tr1后,可以根据该接收时间Tr1、X-1、以及数据样点的采样间隔ΔT,确定第二数据样点D2在第二数据传输装置中的接收时间Tr2,比如,Tr2=Tr1+ΔT×(X-1)。或者,第二数据传输装置在确定第一数据样点D1在第一数据传输装置中的发送时间Tt1后,可以根据该发送时间Tt1、X-1、该数据样点的采样间隔ΔT、以及该数据传输时延T0,确定第二数据样点D1在第二数据传输装置中的接收时间Tr2,比如,Tr2=Tt1+T0+ΔT×(X-1)=Tr1+ΔT×(X-1)。
进一步的,当第一数据传输装置依次向第二数据传输装置发送同一路数据的多个数据集包时,第一数据传输装置还可以根据前面发送的数据包的时间信息确定后面发送的数据包的时间信息。示例性的,如图6所示,在第一数据传输装置向第二数据传输装置发送第一数据包之后,该方法还可以包括:S204-S205。
S204:第一数据传输装置向第二数据传输装置发送第二数据包,第二数据包中包括第二数据信息和第二时间信息,第二时间信息是根据第一时间信息确定的,第一数据包和第二数据包为一路数据中的两个数据包。
其中,同一路数据中的任意两个数据包的包长是相同的,从而第一数据包和第二数据包的包长是相同的,该包长可用于指示每个数据包中包括的数据样点的数量。比如,第一数据包和第二数据包中均包括4个数据样点,则该包长等于4。
在一种示例中,第二数据包P2是第一数据包P1的下一个数据包,第二时间信息是根据第一时间信息和第一数据包P1的包长Y确定的。比如,第一数据包P1包括第一数据样点D1,第一时间信息用于指示第一数据样点D1在第一数据传输装置中的发送时间Tt1,第二数据包P2包括第三数据样点D3,第二时间信息用于指示第三数据样点D3在第一数据传输装置中的发送时间Tt3,则第一数据传输装置可以根据该发送时间Tt1、该包长Y、 以及该数据样点的采样间隔ΔT确定该发送时间Tt3。比如,Tt3=Tt1+ΔT×Y。再比如,第一数据包P1包括第一数据样点D1,第一时间信息用于指示第一数据样点D1在第二数据传输装置中的接收时间Tr1,第二数据包P2包括第三数据样点D3,第二时间信息用于指示第三数据样点D3在第二数据传输装置中的接收时间Tr3,则第一数据传输装置可以根据该接收时间Tr1、该包长Y、以及该数据样点的采样间隔ΔT确定该接收时间Tr3。比如,Tr3=Tr1+ΔT×Y。可选地,上述第三数据样点D3在第一数据传输装置中的发送时间Tt3也可以是根据第一数据传输装置中的第一定时器的测量时间得到的。
在另一种示例中,第二数据包P2是第一数据包P1之后的第W-1个数据包,第二时间信息是根据第一时间信息、W-1、以及第一数据包P1的包长Y确定的。比如,第一数据包P1包括第一数据样点D1,第一时间信息用于指示第一数据样点D1在第一数据传输装置中的发送时间Tt1,第二数据包P2包括第三数据样点D3,第二时间信息用于指示第三数据样点D3在第一数据传输装置中的发送时间Tt3,则第一数据传输装置可以根据该发送时间Tt1、W-1、该包长Y、以及该数据样点的采样间隔ΔT确定该发送时间Tt3。比如,Tt3=Tt1+ΔT×Y×(W-1)。再比如,第一数据包P1包括第一数据样点D1,第一时间信息用于指示第一数据样点D1在第二数据传输装置中的接收时间Tr1,第二数据包P2包括第三数据样点D3,第二时间信息用于指示第三数据样点D3在第二数据传输装置中的接收时间Tr3,则第一数据传输装置可以根据该接收时间Tr1、W-1、该包长Y、以及该数据样点的采样间隔ΔT确定该接收时间Tr3。比如,Tr3=Tr1+ΔT×Y×(W-1)。可选地,上述第三数据样点D3在第一数据传输装置中的发送时间Tt3也可以是根据第一数据传输装置中的第一定时器的测量时间得到的。
具体的,当第一数据传输装置在收集到第二数据信息并确定该接收时间Tr3时,第一数据传输装置可以将第二数据信息和该接收时间Tr3加上包头封装在一个数据包中,以得到第二数据包,并将第二数据包发送给第二数据传输装置。
S205:当第二数据传输装置接收到第二数据包时,根据第二时间信息实现第二数据信息的定时。
需要说明的是,第二数据传输装置根据第二时间信息实现第二数据信息的定时的过程与上述根据第一时间信息实现第一数据信息的定时的过程是一致的,具体可以参见上述S203中的描述,本申请实施例在此不再赘述。
进一步的,当上述第一数据包和第二数据包所在的数据传输链路发生故障,出现丢包、或者错包导致第二数据传输装置接收到的包长错误时,第二数据传输装置还可以生成补救数据包,该补救数据包的包长与上述数据包的包长相等。
在一种实施例中,当第二数据传输装置接收到每个数据包时,第二数据传输装置可以将该数据包中的时间信息与本地计算得到的该数据包的时间信息进行比较,若二者一致则可以确定未出现丢包,若二者不一致则可以确定出现了丢包。当确定出现了丢包时,第二数据传输装置可以根据本地计算得到的该数据包的时间信息生成与同一路数据的其他数据包的包长相等的补救数据包,并根据本地计算得到的时间信息实现该补救数据包中的数据信息的定时,该补救数据包的数据信息可以为0。比如,若第二数据包出现丢包,第二数据传输装置可以根据第一时间信息在本地计算得到第二时间信息,并根据第二时间信息生成补救数据包,该补救数据包的包长与第二数据包的包长相等。
在另一种实施例中,当第二数据传输装置接收到每个数据包时,第二数据传输装置可以将该数据包的包长与该路数据中数据包的预设包长进行比较,若二者一致则可以确定未出现错包,若二者不一致则可以确定出现了错包。当确定出现了错包时,第二数据传输装置可以根据该数据包中的时间信息或者本地计算得到的该数据包的时间信息生成与同一路数据的其他数据包的包长相等的补救数据包,并根据上述时间信息实现该补救数据包中的数据信息的定时。比如,若第二数据包出现错包,第二数据传输装置可以根据第二时间信息生成补救数据包,该补救数据包的包长与第二数据包的包长相等。
需要说明的是,上述本地计算得到的该数据包的时间信息可以是第二数据传输装置通过第二计时器测量得到的时间信息,也可以是第二数据传输装置根据上述S204中描述的第一数据传输装置根据第一时间信息确定第二时间信息的类似方式确定的,本申请实施例对此不作具体限制。
可选地,上述第一数据包或第二数据包中还可以包括校验信息,一个数据包中的校验信息用于校验该数据包的完整性。以第二数据包为例,该校验信息可以是第一数据传输装置根据第二时间信息和第二数据信息生成的。相应的,当第二数据传输装置接收到第二数据包时,第二数据传输装置可以根据该校验信息实现第二数据包的完整性校验。若第二数据包的完整性校验成功,第二数据传输装置可以根据上文所描述的方法实现第二数据包的定时;若第二数据包的完整性校验失败,第二数据传输装置与第一数据传输装置之间可以重传第二数据包,也可以通过上述补救数据包的方法生成第二数据包对应的补救数据包。
在本申请实施例中,第二数据传输装置与第一数据传输装置在基于同步信号实现时间同步之后,第一数据传输装置在向第二数据传输装置传输的每个数据包中携带了该数据包对应的时间信息,从而第二数据传输装置能够基于该数据包中携带的时间信息对该数据包中的数据信息进行定时,也可以称为基于该数据包中携带的时间信息实现该数据包中的数据信息的同步,即确定该数据包中携带的数据信息的边界,进而使得第二数据传输装置能够恢复出第一数据信息在所属数据流中的位置,以实现第一数据信息的正确解调。此外,由于每个数据包中都携带了该数据包对应的时间信息,这样在出现丢包、或者错包导致接收到的包长错误时,第二数据传输装置能够基于每个数据包中的定时信息确定当前接收到的数据包在所属数据流中的位置,从而避免因为部分数据包出现丢包或者错包,而导致后续接收到的数据包无法实现定时的问题,从而定时性能高。
上述主要从数据传输装置交互的角度对本申请实施例提供的方案进行了介绍,可以理解的是,第一数据传输装置和第二数据传输装置,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对第一数据传输装置和第二数据传输装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述功能模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅 为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图7示出了上述实施例中所涉及的第一数据传输装置的一种可能的结构示意图。该装置包括:同步单元301和发送单元302。其中,同步单元301用于支持该装置执行上述方法实施例中的S201;发送单元302用于支持该装置执行上述方法实施例中的S202或者S204中的一个或者多个步骤。可选地,该装置还包括封包单元303和计时单元304,该封包单元303可用于支持该装置执行上述方法实施例中收集数据样点并封包得到数据包的步骤;该计时单元304可用于支持该装置执行上述方法实施例中测量第一数据样点或者第二数据样点在第一数据传输装置中的发送时间的步骤。可选地,该装置还可以包括至少一个发射通道对应的发射处理单元、以及至少一个接收通道对应的接收处理单元。
在采用硬件实现的基础上,示例性地,本申请实施例中的同步单元301、发送单元302和封包单元303可以为第一数据传输装置的第一传输接口(比如,第一传输接口为第一数字接口),计时单元304、发射处理单元和接收处理单元可以为第一数字接口的第一处理器。也即是,如图8所示,第一数据传输装置包括:第一传输接口311和第一处理器312,第一处理器312和第一传输接口311用于支持第一数据传输装置执行上述方法实施例中第一数据传输装置的步骤。示例性的,以第一数据传输装置为RFIC为例,如图1所示,第一数据传输装置可以包括发射处理单元、接收处理单元、计时器1和数字接口。在一种实施例中,该RFIC中的发射处理单元可用于向该数字接口发送数据,该RFIC中的数字接口可用于支持该RFIC执行上述方法实施例中的S201、S202或者S204中的一个或者多个步骤,和/或本文所描述的其他技术过程;该计数器1可用于测量第一数据样点或者第二数据样点在第一数据传输装置中的发送时间的步骤等。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用对应各个功能划分各个功能模块的情况下,图9示出了上述实施例中所涉及的第二数据传输装置的一种可能的结构示意图。该装置包括:同步单元401、接收单元402和定时单元403。其中,同步单元401用于支持该装置执行上述方法实施例中的S201;接收单元402用于支持该装置执行上述方法实施例中接收第一数据包或第二数据包中的一个或者多个步骤;定时单元403用于支持该装置执行上述方法实施例中的S203或S205中的一个或者多个步骤。可选地,该装置还包括补包单元404和计时单元405,该补包单元404可用于支持该装置执行上述方法实施例中生成补救数据包的步骤;计时单元405可用于支持该装置执行上述方法实施例中测量第一数据样点或者第二数据样点在第二数据传输装置中的接收时间的步骤。可选地,该装置还可以包括至少一个发射通道对应的发射处理单元、以及至少一个接收通道对应的接收处理单元。
在采用硬件实现的基础上,示例性地,本申请实施例中的同步单元401、接收单元402、定时单元403和补包单元404可以为第二数据传输装置的第二传输接口(比如,第二传输接口为第二数字接口),计时单元405、发射处理单元和接收处理单元可以为第二数字接口的第二处理器。也即是,如图10所示,第二数据传输装置包括:第二传输接口411和第二处理器412,第二处理器412和第二传输接口411用于支持第二数据传输装置执行上述方法实施例中第二数据传输装置的步骤。示例性的,以第一数据传输装置为BBIC为例, 如图1所示,第一数据传输装置可以包括发射处理单元、接收处理单元、计时器1和数字接口。在一种实施例中,该BBIC中的数字接口可用于支持该BBIC执行上述方法实施例中的S201、S203或者S205中的一个或者多个步骤,和/或本文所描述的其他技术过程;该计数器2可用于测量第一数据样点或者第二数据样点在第二数据传输装置中的接收时间的步骤等;该接收处理单元可用于接收该BBIC中的数字接口按照相应定时输出的数据样点。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
本申请实施例还提供一种数据包传输***,该数据包传输包括第一数据传输装置和第二数据传输装置;其中,第一数据传输装置可以如上述图7或图8所示,用于执行上述方法实施例中第一数据传输装置的步骤;第二数据传输装置可以如上述图9或图10所示,用于执行上述方法实施例中第二数据传输装置的步骤。
在本申请实施例中,第二数据传输装置与第一数据传输装置在基于同步信号实现时间同步之后,第一数据传输装置在向第二数据传输装置传输的每个数据包中携带了该数据包对应的时间信息,且该时间信息为时间同步后的时间信息,从而第二数据传输装置在接收到该数据包时,能够基于该数据包中携带的时间信息对该数据包中的数据信息进行定时,也可以称为基于该数据包中携带的时间信息实现该数据包中的数据信息的同步,即确定该数据包中携带的数据信息的边界,进而使得第二数据传输装置能够恢复出第一数据信息在所属数据流中的位置,以实现第一数据信息的正确解调。此外,由于每个数据包中都携带了该数据包对应的时间信息,这样在出现丢包、或者错包导致接收到的包长错误时,第二数据传输装置能够基于每个数据包中的定时信息确定当前接收到的数据包在所属数据流中的位置,从而避免因为部分数据包出现丢包或者错包,而导致后续接收到的数据包无法实现定时的问题,从而定时性能高。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
在本申请的又一方面,提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在设备上运行时,使得该设备执行上述方法实施例中第一数据传输装置的步骤。
在本申请的又一方面,提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在设备上运行时,使得该设备执行上述方法实施例中第二数据传输装置的步骤。
在本申请的又一方面,提供一种计算机程序产品,当该计算机程序产品在设备上 运行时,使得该设备执行上述方法实施例中第一数据传输装置的步骤。
在本申请的又一方面,提供一种计算机程序产品,当该计算机程序产品在设备上运行时,使得该设备执行上述方法实施例中第二数据传输装置的步骤。
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (35)

  1. 一种数据包传输方法,其特征在于,所述方法包括:
    第一数据传输装置与第二数据传输装置之间传输同步信号,所述同步信号用于实现所述第一数据传输装置和所述第二数据传输装置的时间同步;
    所述第一数据传输装置向所述第二数据传输装置发送第一数据包,所述第一数据包中包括第一数据信息和第一时间信息,所述第一时间信息用于使所述第二数据传输装置实现所述第一数据信息的定时。
  2. 根据权利要求1所述的方法,其特征在于,所述第一时间信息用于指示所述第一数据信息在所述第二数据传输装置中的接收时间。
  3. 根据权利要求2所述的方法,其特征在于,所述接收时间是根据所述第一数据信息在所述第一数据传输装置的发送时间和数据传输时延确定的,所述数据传输时延为所述第一数据传输装置与所述第二数据传输装置之间的传输时延。
  4. 根据权利要求1所述的方法,其特征在于,所述第一时间信息用于指示所述第一数据信息在所述第一数据传输装置中的发送时间。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述第一数据信息包括第一数据样点和第二数据样点,所述第二数据样点为所述第一数据样点的下一个数据样点,所述第一时间信息用于使所述第二数据传输装置实现所述第一数据样点的定时,所述第一时间信息和所述第一数据样点与所述第二数据样点之间的采样间隔用于使所述第二数据传输装置实现所述第二数据样点的定时。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述第一数据传输装置向所述第二数据传输装置发送第一数据包之后,所述方法还包括:
    所述第一数据传输装置向所述第二数据传输装置发送第二数据包,所述第二数据包中包括第二数据信息和第二时间信息,所述第二时间信息用于使所述第二数据传输装置实现所述第二数据信息的定时,所述第一数据包和所述第二数据包为一路数据中的两个数据包;
    其中,所述第二数据包是所述第一数据包的下一个数据包,所述第二时间信息是根据所述第一时间信息和所述第一数据包的包长确定的,所述第一数据包的包长用于指示所述第一数据包中包括的数据样点的数量。
  7. 根据权利要求6所述的方法,其特征在于,所述第二时间信息等于所述第一时间信息与第一乘积之和,所述第一乘积为所述第一数据包的包长与所述数据样点的采样间隔的乘积。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述第一数据传输装置为射频模块和基带模块,所述第二数据传输装置为基带模块;或者,
    所述第一数据传输装置为所述基带模块,所述第二数据传输装置为所述射频模块。
  9. 一种数据包传输方法,其特征在于,所述方法包括:
    第二数据传输装置与第一数据传输装置之间传输同步信号,所述同步信号用于实现所述第一数据传输装置和所述第二数据传输装置的时间同步;
    所述第二数据传输装置接收来自所述第一数据传输装置的第一数据包,所述第一数据包中包括第一数据信息和第一时间信息;
    所述第二数据传输装置根据所述第一时间信息实现所述第一数据信息的定时。
  10. 根据权利要求9所述的方法,其特征在于,所述第一时间信息用于指示所述第一数据信息在所述第二数据传输装置中的接收时间,所述第二数据传输装置根据所述第一时间信息实现所述第一数据信息的定时,包括:
    所述第二数据传输装置根据所述接收时间对所述第一数据信息进行定时。
  11. 根据权利要求9所述的方法,其特征在于,所述第一时间信息用于指示所述第一数据信息在所述第一数据传输装置中的发送时间,所述第二数据传输装置根据所述第一时间信息实现所述第一数据信息的定时,包括:
    所述第二数据传输装置根据所述发送时间和数据传输时延对所述第一数据信息进行定时,所述数据传输时延为所述第一数据传输装置与所述第二数据传输装置之间的传输时延。
  12. 根据权利要求9-11任一项所述的方法,其特征在于,所述第一数据信息包括第一数据样点和第二数据样点,所述第二数据样点为所述第一数据样点的下一个数据样点,所述第二数据传输装置根据所述第一时间信息实现所述第一数据信息的定时,包括:
    所述第二数据传输装置根据所述第一时间信息实现所述第一数据样点的定时;
    所述第二数据传输装置根据所述第一时间信息和所述第一数据样点与所述第二数据样点之间的采样间隔实现所述第二数据样点的定时。
  13. 根据权利要求9-12任一项所述的方法,其特征在于,所述第二数据传输装置接收来自所述第一数据传输装置的第一数据包之后,所述方法还包括:
    所述第二数据传输装置接收来自所述第一数据传输装置的第二数据包,所述第二数据包中包括第二数据信息和第二时间信息,所述第一数据包和所述第二数据包为一路数据中的两个数据包;
    所述第二数据传输装置根据所述第二时间信息实现所述第二数据信息的定时;
    其中,所述第二数据包是所述第一数据包的下一个数据包,所述第二时间信息是根据所述第一时间信息和所述第一数据包的包长确定的,所述第一数据包的包长用于指示所述第一数据包中包括的数据样点的数量。
  14. 根据权利要求13所述的方法,其特征在于,所述第二时间信息等于所述第一时间信息与第一乘积之和,所述第一乘积为所述第一数据包的包长与所述数据样点的采样间隔的乘积。
  15. 根据权利要求13或14所述的方法,其特征在于,所述方法还包括:
    若所述第二数据包出现丢包或错包,所述第二数据传输装置根据所述第二时间信息生成补救数据包,所述补救数据包的包长与所述第二数据包的包长相等。
  16. 根据权利要求9-15任一项所述的方法,其特征在于,所述第一数据传输装置为射频模块和基带模块,所述第二数据传输装置为基带模块;或者,
    所述第一数据传输装置为所述基带模块,所述第二数据传输装置为所述射频模块。
  17. 一种数据传输装置,其特征在于,所述装置作为第一数据传输装置,包括:
    同步单元,用于与第二数据传输装置之间传输同步信号,所述同步信号用于实现所述第一数据传输装置和所述第二数据传输装置的时间同步;
    发送单元,用于向所述第二数据传输装置发送第一数据包,所述第一数据包中包括第 一数据信息和第一时间信息,所述第一时间信息用于使所述第二数据传输装置实现所述第一数据信息的定时。
  18. 根据权利要求17所述的装置,其特征在于,所述第一时间信息用于指示所述第一数据信息在所述第二数据传输装置中的接收时间。
  19. 根据权利要求18所述的装置,其特征在于,所述接收时间是根据所述第一数据信息在所述第一数据传输装置的发送时间和数据传输时延确定的,所述数据传输时延为所述第一数据传输装置与所述第二数据传输装置之间的传输时延。
  20. 根据权利要求17所述的装置,其特征在于,所述第一时间信息用于指示所述第一数据信息在所述第一数据传输装置中的发送时间。
  21. 根据权利要求17-20任一项所述的装置,其特征在于,所述第一数据信息包括第一数据样点和第二数据样点,所述第二数据样点为所述第一数据样点的下一个数据样点,所述第一时间信息用于使所述第二数据传输装置实现所述第一数据样点的定时,所述第一时间信息和所述第一数据样点与所述第二数据样点之间的采样间隔用于使所述第二数据传输装置实现所述第二数据样点的定时。
  22. 根据权利要求17-21任一项所述的装置,其特征在于,所述发送单元还用于:
    向所述第二数据传输装置发送第二数据包,所述第二数据包中包括第二数据信息和第二时间信息,所述第二时间信息用于使所述第二数据传输装置实现所述第二数据信息的定时,所述第一数据包和所述第二数据包为一路数据中的两个数据包;
    其中,所述第二数据包是所述第一数据包的下一个数据包,所述第二时间信息是根据所述第一时间信息和所述第一数据包的包长确定的,所述第一数据包的包长用于指示所述第一数据包中包括的数据样点的数量。
  23. 根据权利要求22所述的装置,其特征在于,所述第二时间信息等于所述第一时间信息与第一乘积之和,所述第一乘积为所述第一数据包的包长与所述数据样点的采样间隔的乘积。
  24. 根据权利要求17-23任一项所述的装置,其特征在于,所述第一数据传输装置为射频模块和基带模块,所述第二数据传输装置为基带模块;或者,
    所述第一数据传输装置为所述基带模块,所述第二数据传输装置为所述射频模块。
  25. 一种数据传输装置,其特征在于,所述装置作为第二数据传输装置,包括:
    同步单元,用于与第一数据传输装置之间传输同步信号,所述同步信号用于实现所述第一数据传输装置和所述第二数据传输装置的时间同步;
    接收单元,用于接收来自所述第一数据传输装置的第一数据包,所述第一数据包中包括第一数据信息和第一时间信息;
    定时单元,用于根据所述第一时间信息实现所述第一数据信息的定时。
  26. 根据权利要求25所述的装置,其特征在于,所述第一时间信息用于指示所述第一数据信息在所述第二数据传输装置中的接收时间,所述定时单元还用于:
    根据所述接收时间对所述第一数据信息进行定时。
  27. 根据权利要求25所述的装置,其特征在于,所述第一时间信息用于指示所述第一数据信息在所述第一数据传输装置中的发送时间,所述定时单元还用于:
    根据所述发送时间和数据传输时延对所述第一数据信息进行定时,所述数据传输时延 为所述第一数据传输装置与所述第二数据传输装置之间的传输时延。
  28. 根据权利要求25-27任一项所述的装置,其特征在于,所述第一数据信息包括第一数据样点和第二数据样点,所述第二数据样点为所述第一数据样点的下一个数据样点,所述定时单元还用于:
    根据所述第一时间信息实现所述第一数据样点的定时;
    根据所述第一时间信息和所述第一数据样点与所述第二数据样点之间的采样间隔实现所述第二数据样点的定时。
  29. 根据权利要求25-28任一项所述的装置,其特征在于:
    所述接收单元,还用于接收来自所述第一数据传输装置的第二数据包,所述第二数据包中包括第二数据信息和第二时间信息,所述第一数据包和所述第二数据包为一路数据中的两个数据包;
    所述定时单元,还用于根据所述第二时间信息实现所述第二数据信息的定时;
    其中,所述第二数据包是所述第一数据包的下一个数据包,所述第二时间信息是根据所述第一时间信息和所述第一数据包的包长确定的,所述第一数据包的包长用于指示所述第一数据包中包括的数据样点的数量。
  30. 根据权利要求29所述的装置,其特征在于,所述第二时间信息等于所述第一时间信息与第一乘积之和,所述第一乘积为所述第一数据包的包长与所述数据样点的采样间隔的乘积。
  31. 根据权利要求29或30所述的装置,其特征在于,所述装置还包括:
    补包单元,用于若所述第二数据包出现丢包或错包,根据所述第二时间信息生成补救数据包,所述补救数据包的包长与所述第二数据包的包长相等。
  32. 根据权利要求25-31任一项所述的装置,其特征在于,所述第一数据传输装置为射频模块和基带模块,所述第二数据传输装置为基带模块;或者,
    所述第一数据传输装置为所述基带模块,所述第二数据传输装置为所述射频模块。
  33. 一种数据传输装置,其特征在于,所述装置作为第一数据传输装置,包括:第一传输接口和第一处理器,所述第一处理器通过所述第一传输接口接收或发送数据;所述第一处理器被配置为调用存储器中的程序指令,以实现如权利要求1-8任一项所述的数据包传输方法。
  34. 一种数据传输装置,其特征在于,所述装置作为第二数据传输装置,包括:第二传输接口和第二处理器,所述第二处理器通过所述第二传输接口接收或发送数据;所述第二处理器被配置为调用存储器中的程序指令,以实现如权利要求9-16任一项所述的数据包传输方法。
  35. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述指令在设备上运行时,使得所述设备执行如权利要求1-8或9-16任一项所述的数据包传输方法。
PCT/CN2021/116294 2021-09-02 2021-09-02 一种数据包传输方法及装置 WO2023028960A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180100616.4A CN117643031A (zh) 2021-09-02 2021-09-02 一种数据包传输方法及装置
PCT/CN2021/116294 WO2023028960A1 (zh) 2021-09-02 2021-09-02 一种数据包传输方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/116294 WO2023028960A1 (zh) 2021-09-02 2021-09-02 一种数据包传输方法及装置

Publications (1)

Publication Number Publication Date
WO2023028960A1 true WO2023028960A1 (zh) 2023-03-09

Family

ID=85410768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116294 WO2023028960A1 (zh) 2021-09-02 2021-09-02 一种数据包传输方法及装置

Country Status (2)

Country Link
CN (1) CN117643031A (zh)
WO (1) WO2023028960A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1838561A (zh) * 2005-03-24 2006-09-27 华为技术有限公司 通用公共无线接口中传送基带数据时间标签的方法
CN101098328A (zh) * 2007-06-29 2008-01-02 中兴通讯股份有限公司 一种基带与射频***同步和时延补偿方法
CN101183898A (zh) * 2007-12-27 2008-05-21 中兴通讯股份有限公司 一种实现微微蜂窝基站同步的***、方法及其装置
US20150222464A1 (en) * 2014-02-06 2015-08-06 Stichting Imec Nederland System for direct conversion receivers
CN105812297A (zh) * 2014-12-30 2016-07-27 联芯科技有限公司 基带芯片、基带芯片***、及进行let性能扩展的方法
US20190254013A1 (en) * 2018-06-07 2019-08-15 Intel Corporation Full bandwidth uplink transmission for unlicensed narrowband internet of things

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1838561A (zh) * 2005-03-24 2006-09-27 华为技术有限公司 通用公共无线接口中传送基带数据时间标签的方法
CN101098328A (zh) * 2007-06-29 2008-01-02 中兴通讯股份有限公司 一种基带与射频***同步和时延补偿方法
CN101183898A (zh) * 2007-12-27 2008-05-21 中兴通讯股份有限公司 一种实现微微蜂窝基站同步的***、方法及其装置
US20150222464A1 (en) * 2014-02-06 2015-08-06 Stichting Imec Nederland System for direct conversion receivers
CN105812297A (zh) * 2014-12-30 2016-07-27 联芯科技有限公司 基带芯片、基带芯片***、及进行let性能扩展的方法
US20190254013A1 (en) * 2018-06-07 2019-08-15 Intel Corporation Full bandwidth uplink transmission for unlicensed narrowband internet of things

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "BS Spec improvements: TS 25.141 Corrections", 3GPP DRAFT; R4-156189 CR 25141-REL-11, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Sophia-Antipolis, France; 20151012 - 20151016, 12 October 2015 (2015-10-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051009207 *

Also Published As

Publication number Publication date
CN117643031A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
KR101616488B1 (ko) 차분 디코더
CN101541071B (zh) 无线通信***、基站和数据发送定时控制方法
CN103414547B (zh) 一种主站控制多从站的方法、主站以及***
EP3322255B1 (en) Methods and network apparatus for receivingf cpri data stream via ethernet frames.
CN105426329B (zh) 基于嵌入式万兆网硬协议栈的信号高速采集转发实现方法
CN109996325A (zh) 一种无线传感器网络的时钟同步***及方法
CN109164468B (zh) 一种适用于微小卫星多卫编队的一体化测量通信方法
CN101730307A (zh) 一种射频拉远数据传输装置及传输方法
CN103685103A (zh) 一种基于fpga的通信基带的一体化验证平台
WO2016019740A1 (zh) 一种微小区基站***、相关设备及数据处理方法
CN113595615B (zh) 一种多星星间通信测距的实现方法及***
CN103763085A (zh) 一种多路数据高速采集合并方法及装置
CN102143185B (zh) 数据传输方法和数据传输装置
Pocovi et al. Measurement framework for assessing reliable real-time capabilities of wireless networks
CN103533630B (zh) 空口时间同步方法及***、无线设备、无线设备控制器
WO2023028960A1 (zh) 一种数据包传输方法及装置
CN103152136A (zh) 一种使用可编程逻辑器件实时接收多路iec61850-9-2采样值的方法
CN102437944B (zh) 一种局域网之间相互通信的***、设备及方法
CN106209292B (zh) 一种利用过采样方法实现stm-1的sdh光接口的方法与装置
CN106230538B (zh) 一种单载波点对点时分双向无线通信方法
CN102769859B (zh) 一种无线***调试方法和装置
CN112118197B (zh) 一种开销监控方法和装置、计算机可读存储介质
CN115630537B (zh) 一种基于片上仿真的导航信号仿真方法与***
CN101668228A (zh) 接口测试装置及方法
CN104661299B (zh) Tdd***同步的方法和***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21955498

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180100616.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE