WO2023024217A1 - 一种利用电化学过程辅助污泥处理的方法 - Google Patents

一种利用电化学过程辅助污泥处理的方法 Download PDF

Info

Publication number
WO2023024217A1
WO2023024217A1 PCT/CN2021/122728 CN2021122728W WO2023024217A1 WO 2023024217 A1 WO2023024217 A1 WO 2023024217A1 CN 2021122728 W CN2021122728 W CN 2021122728W WO 2023024217 A1 WO2023024217 A1 WO 2023024217A1
Authority
WO
WIPO (PCT)
Prior art keywords
sludge
treatment
acid
electrochemical system
alkali
Prior art date
Application number
PCT/CN2021/122728
Other languages
English (en)
French (fr)
Inventor
戈拯
戴胜杰
许家望
张煜
Original Assignee
北京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京工业大学 filed Critical 北京工业大学
Publication of WO2023024217A1 publication Critical patent/WO2023024217A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/006Electrochemical treatment, e.g. electro-oxidation or electro-osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds

Definitions

  • the invention relates to a sludge treatment method and belongs to the technical field of sludge treatment.
  • Sludge is an inevitable product in the process of sewage treatment. According to statistics, by the end of 2018, there were 4,332 sewage treatment plants in operation in cities and towns across the country, and the sewage treatment capacity reached 195 million tons of sewage per day. 40 million tons. It is very necessary to reduce, harmless and recycle sludge. The remaining sludge is rich in nutrients such as nitrogen and phosphorus, so the sludge contains considerable resources. Nitrogen and phosphorus are recovered from sludge to make Its resource utilization is extremely valuable.
  • the sludge treatment methods include physical treatment, chemical treatment and microbial treatment, among which physical treatment includes heat treatment, ultrasonic treatment, freeze-thaw technology, and chemical treatment includes adding coagulant, acid/alkali treatment, ozone treatment, etc., among which Acid/alkali treatment can inhibit cell activity and destroy the structure of sludge flocs, which is conducive to its hydrolysis to dissolve the extracellular polymers and cell walls of microorganisms in the sludge, and at the same time the sludge releases intracellular substances, which contain nitrogen and phosphorus elements. The amount of release generally increases with the increase of acid and alkali.
  • acid/alkali treatment of sludge can recover and subsequently utilize nitrogen and phosphorus resources in sludge.
  • acid and alkali agents such as sodium hydroxide or potassium hydroxide solution for alkali adjustment, such as hydrochloric acid or sulfuric acid for acid adjustment, which will increase the cost of sludge resource treatment.
  • the current acid/alkali treatment technology for sludge is relatively simple and costly, it is necessary to propose an electrochemical sludge treatment technology that can couple the advantages of acid/alkali treatment and electrochemical systems.
  • the sludge treatment is beneficial to the subsequent sludge disposal, and at the same time, the sludge can be decomposed to release organic matter and nitrogen and phosphorus elements.
  • the purpose of the present invention is to overcome the existing method of sludge acid/alkali treatment that requires additional dosing of chemicals, and to provide a new sludge acid/alkali treatment by utilizing the acid environment and alkali environment generated in the reaction process of the electrochemical system Methods.
  • the method proposed by the present invention can use the acid-base environment generated by the membrane-separated anion and yang chambers to perform acid and alkali treatment on the sludge without additional addition of acid-base agents in the electrochemical system, thereby changing the properties and properties of the sludge. form, to realize the release of organic matter and nitrogen and phosphorus in the sludge.
  • the technical scheme of the present invention is as follows: a method for utilizing an electrochemical process to assist sludge treatment, comprising the steps of:
  • Step 1 adding the sludge to be treated into the anode chamber and the cathode chamber of the electrochemical system, fully stirring and mixing, and reacting under direct current conditions, the pH in the anode chamber is less than 4.
  • Step 2 take out a certain amount of sludge in the anode chamber in the electrochemical system in step 1, add it to the cathode chamber in the electrochemical system, and also fully stir and mix, and at the same time use the sludge to be treated to supplement the sludge in the anode chamber. Reaction under conditions, the pH in the cathode chamber is greater than 10.
  • step 3 the sludge in the cathode chamber in step 2 is taken out, and the sludge is treated sludge.
  • the sludge to be treated is excess sludge in the activated sludge process, with a water content of about 98%.
  • the certain amount of sludge taken out is 50% of the volume of the original sludge.
  • the stirring speed is 100r/min.
  • the electrochemical system is a two-chamber electrochemical reactor with an external voltage of 8-20V.
  • the reaction time under the direct current condition is 2h.
  • the technical principle of the present invention is: in an electrochemical system, an electrochemical reaction occurs under direct current conditions, and the anode chamber takes place as follows:
  • This reaction generates hydroxide ions causing the pH to rise creating an alkaline environment.
  • the sludge is put into the electrochemical cathode chamber and anode chamber for acid treatment and alkali treatment respectively.
  • the microbial cell wall in the sludge will be dissolved and intracellular substances will be released.
  • the surface charge characteristics of the flocs will change, making Hydrolysis of extracellular polymers denatures proteins and carbohydrates in sludge.
  • the microbial cell floc structure in the sludge is destroyed, and the microbial cells are cracked, which will also cause the cell wall to dissolve and the cytoplasm to flow out.
  • the organic matter, nitrogen, phosphorus and other substances in the microbial cells in the sludge will be released.
  • the present invention has following advantage:
  • the method of the present invention can effectively utilize the acid-base environment produced by the negative and positive chambers of the electrochemical system to carry out acid treatment and alkali treatment for sludge, so as to realize the purpose of sludge treatment, and carry out acid treatment and alkali treatment of sludge with simple addition of medicament Compared with treatment, it reduces the cost of adding chemicals.
  • the method of the present invention effectively assists the electrochemical process in sludge treatment, can realize the release of nutrients such as organic matter and nitrogen and phosphorus, and can change the properties and forms of sludge flocs at the same time, which can improve the dehydration performance of sludge And is conducive to further sludge dewatering.
  • Fig. 1 is a schematic diagram of an electrochemical system used for sludge treatment in the present invention.
  • Fig. 2 is a flow chart of sludge treatment in the present invention.
  • Fig. 3 is a flowchart of the present invention.
  • this embodiment provides an electrochemical double-chamber reactor for sludge treatment, including a power supply 1, a wire 2, a carbon brush 3, an anode chamber 4, an agitator 5, a cation exchange membrane 6, and a cathode chamber 7 , sludge pump 8, conveying pipe 9, the carbon brush in the anode chamber 4 is connected to the positive pole of the external power supply 1 through the wire 2, the carbon brush in the cathode chamber 7 is connected to the negative pole of the external power supply 1 through the wire 2, the anode chamber 4 and the cathode chamber 7 are separated by a cation exchange membrane 6, and the sludge is pumped by starting the sludge pump 8, and the sludge enters and exits the anode chamber 4 and the cathode chamber 7 of the reactor from the delivery pipe 9.
  • FIG. 2 The schematic diagram of the process method in this embodiment is shown in FIG. 2 , and the device described in Embodiment 1 can be used in this embodiment.
  • the energizing voltage of the negative and positive chambers of the reactor is 10V, and the reaction lasts for 2 hours. At this time, the pH in the anode chamber is 3.85.
  • Step 2 Take out 250mL of the above-mentioned anode chamber sludge through the sludge pump, add it to the cathode chamber of the electrochemical system, and take 250mL of remaining sludge to replenish the anode chamber, and then carry out hydrolysis and alkalization in the cathode chamber of the reactor under agitation ,
  • the stirring speed of the reactor is 100r/min.
  • the voltage of the negative and positive chambers of the reactor is 10V, and the reaction lasts for 2 hours. At this time, the pH in the cathode chamber is 10.52.
  • Step 3 the sludge in the cathode chamber is taken out by the sludge pump, and the sludge is treated sludge.
  • the concentration of phosphate radicals released in the sludge-discharging solution in the cathode chamber increases by 480.2%, and the concentration of ammonium radicals increases by 182.5%.
  • FIG. 2 The schematic diagram of the process method in this embodiment is shown in FIG. 2 , and the device described in Embodiment 1 can be used in this embodiment.
  • the energizing voltage of the negative and positive chambers of the reactor is 12V, and the reaction lasts for 2 hours. At this time, the pH in the anode chamber is 2.92.
  • Step 2 Take out 250mL of the above-mentioned anode chamber sludge through the sludge pump, add it to the cathode chamber of the electrochemical system, and take 250mL of remaining sludge to replenish the anode chamber, and then carry out hydrolysis and alkalization in the cathode chamber of the reactor under agitation ,
  • the stirring speed of the reactor is 100r/min.
  • the voltage of the negative and positive chambers of the reactor is 12V, and the reaction lasts for 2 hours. At this time, the pH in the cathode chamber is 11.64.
  • Step 3 the sludge in the cathode chamber is taken out by the sludge pump, and the sludge is treated sludge.
  • the concentration of phosphate radicals released in the sludge-discharging solution in the cathode chamber increases by 566.4%, and the concentration of ammonium radicals increases by 233.5%.
  • the process of the present invention can significantly lyse excess sludge, significantly release nitrogen and phosphorus in sludge, change the properties and forms of sludge, and meet the requirements of sludge harmlessness and volume reduction. It can prevent the nitrogen, phosphorus and organic matter in the sludge from polluting the environment, which is of great significance for sludge treatment and disposal, and provides a new idea for the process of electrochemically coupled sludge treatment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Sludge (AREA)

Abstract

一种利用电化学过程辅助污泥处理的方法,属于污泥处理技术领域,是将待处理污泥加入至电化学***中的阳极室(4)内进行酸处理,之后加入至电化学***中的阴极室(7)内进行碱处理。经碱处理和酸处理后的污泥,可以破解污泥颗粒,解决了现有的污泥酸/碱处理过程中需要外加酸碱药剂的问题,实现将污泥处理和电化学***耦合,利用膜分隔的阴阳两室所产生的酸碱环境对污泥进行酸处理和碱处理,改变污泥絮体的性质和形态,由于污泥中含有氮磷营养物质和有机物,实现污泥中有机物和氮磷的释放。该方法可以广泛应用在污泥处理工艺中,满足污泥无害化、减量化、资源化处理。

Description

一种利用电化学过程辅助污泥处理的方法 技术领域
本发明涉及一种污泥处理方法,属于污泥处理技术领域。
背景技术
污泥是污水处理过程中必然会产生的产物,据统计截止到2018年底,全国城镇运行有污水处理厂4332座,污水处理量达到每天1.95亿吨污水,处理产生的剩余污泥年产量已达4000万吨。对污泥进行减量化、无害化和资源化是十分有必要的,剩余污泥中富含氮磷等营养元素,故污泥中含有相当可观的资源,从污泥中回收氮磷使其资源化利用是极具价值的。
目前对污泥进行处理的方法有物理处理、化学处理和微生物处理,其中物理处理有热处理、超声处理、冻融技术,化学处理有投加混凝剂、酸/碱处理、臭氧处理等,其中酸/碱处理可以抑制细胞活性和破坏污泥絮体结构,有利于其水解使污泥中微生物的胞外聚合物和细胞壁溶解,同时污泥释放出胞内物质,其中含有氮和磷元素,其释放量总体均随着酸和碱的增强而增大。因此对污泥进行酸/碱处理可以对污泥中的氮磷资源进行回收和后续利用。但是需要对污泥投加酸碱的药剂,如氢氧化钠或氢氧化钾溶液进行调碱,如盐酸或硫酸进行调酸,这会额外增加污泥资源化处理的成本。
由于目前的对污泥的酸/碱处理技术比较单一并且成本较高,因此,有必要提出一种电化学对污泥处理技术,能够将酸/碱处理和电化学体系优势耦合的方法技术,对污泥进行处理有利于后续的污泥处置,同时可以对污泥实现破解达到有机质和氮磷元素的释放。
发明内容
本发明的目的是克服现有污泥酸/碱处理需要额外投加药剂的方法,利用电化学体系反应过程中的产生的酸环境和碱环境,提供了一种新的污泥酸/碱处理的方法。
本发明提出的方法,能在电化学***中无需额外投加酸碱药剂,可以利用膜分隔的阴阳两室所产生的酸碱环境对污泥进行酸处理和碱处理,改变污泥的性质和形态,实现污泥中有机物和氮磷的释放。
本发明的技术方案如下:一种利用电化学过程辅助污泥处理的方法,包括如下步骤:
步骤一,将待处理污泥加入至电化学***的阳极室内和阴极室内,进行充分搅拌混合,在直流电条件下反应,所述阳极室内的pH小于4。
步骤二,取出步骤一中的电化学***内的阳极室内一定量污泥,加入至电化学***中的阴极室内,同样进行充分搅拌混合,同时采用待处理污泥补充阳极室内污泥,在直流电条件下反应,所述阴极室内的pH大于10。
步骤三,取出步骤二中的阴极室内的污泥,该污泥为处理完毕后的污泥。
优选地,所述的待处理污泥为活性污泥法中的剩余污泥,含水率约98%。
优选地,所述的取出一定量污泥为原污泥体积的50%。
优选地,所述搅拌转速为100r/min。
优选地,所述电化学***为两室电化学反应器,外接8-20V电压。
优选地,所述的直流电条件下反应时间为2h。
本发明的技术原理为:在电化学***中,在直流电条件下发生电化学反应,阳极室发生如下:
2H 2O→4H ++O 2+4e -
该反应水解产生氢离子导致pH下降形成酸性环境。在阴极室中有水电解发生如下:
4H 2O+4e -→4OH -+2H 2
该反应产生氢氧根导致pH上升形成碱性环境。污泥投入电化学的阴极室和阳极室室内分别进行酸处理和碱处理,在酸性条件下会使污泥中微生物细胞壁溶解,释放出胞内物质,同时絮体的表面电荷特性发生变化,使胞外聚合物水解,使污泥中蛋白质和糖类物质变性。在碱性条件下污泥中的微生物细胞絮体结构破坏,微生物细胞破解,同样会使细胞壁溶解和细胞质流出。 酸处理和碱处理期间会伴随着污泥中微生物细胞内有机物、氮、磷等物质的释放。
采用上述方案,本发明具有如下优点:
(1)本发明方法可以有效利用电化学***阴阳两室产生的酸碱环境对污泥进行酸处理和碱处理,实现污泥处理的目的,和单纯的投加药剂进行污泥酸处理和碱处理相比,减少了药剂的投加成本。
(2)本发明方法有效的将电化学过程辅助污泥处理,能实现有机物和氮磷等营养元素的释放,同时可以改变污泥絮体的性质和形态,对污泥的脱水性能具有改善作用和有利于进一步的污泥脱水。
附图说明
图1为本发明污泥处理所用的电化学***示意图。
图2为本发明污泥处理流程图。
图3为本发明流程图。
具体实施方式
以下结合具体实施例,对本发明进行详细说明。
实施例一:
如图一所示,本实施例提供一种电化学双室反应器用于污泥处理,包括电源1、导线2、碳刷3、阳极室4、搅拌器5、阳离子交换膜6、阴极室7、污泥泵8、输送管9,阳极室4内的碳刷通过导线2与外部电源1正极相连,阴极室7内的碳刷通过导线2与外部电源1负极相连,阳极室4和阴极室7之间采用阳离子交换膜6分隔,通过启动污泥泵8对污泥进行抽取,污泥从输送管9进出入反应器的阳极室4和阴极室7。
实施例二:
本实施例工艺方法示意图见图2所示,本实施例可以采用实施例1所述的装置。
步骤一,将500mL剩余污泥(总悬浮固体浓度为5977mg/L,挥发性悬浮固体浓度为4262mg/L,含水率98.7%,pH=7.02)通过污泥泵加入电化学体系的阳极室中,阴极室内加入250mL的污泥,而后密闭反应器阳极室在搅拌状态下水解酸化,反应器搅拌速度为100r/min。反应器阴阳两室的通电电压为10V,反应持续2h,此时阳极室中pH为3.85。
步骤二,将上述阳极室污泥通过污泥泵取出250mL,将其加入电化学体系的阴极室中,另外取剩余污泥250mL补充阳极室内,而后反应器阴极室在搅拌状态下进行水解碱化,反应器搅拌速度为100r/min。反应器阴阳两室的电压为10V,反应持续2h,此时阴极室中pH为10.52。
步骤三,通过污泥泵取出阴极室内的污泥,该污泥为处理完毕后的污泥。
经过上述方法,阴极室中的出泥的溶液中释放的磷酸根浓度增加480.2%,铵根浓度增加182.5%。
实施例三:
本实施例工艺方法示意图见图2所示,本实施例可以采用实施例1所述的装置。
步骤一,将500mL剩余污泥(总悬浮固体浓度为5760mg/L,挥发性悬浮固体浓度为3710mg/L,含水率99.4%,pH=6.95)通过污泥泵加入电化学体系的阳极室中,阴极室内加入250mL的污泥,而后密闭反应器阳极室在搅拌状态下水解酸化,反应器搅拌速度为100r/min。反应器阴阳两室的通电电压为12V,反应持续2h,此时阳极室中pH为2.92。
步骤二,将上述阳极室污泥通过污泥泵取出250mL,将其加入电化学体系的阴极室中,另外取剩余污泥250mL补充阳极室内,而后反应器阴极室在搅拌状态下进行水解碱化,反应器搅拌速度为100r/min。反应器阴阳两室的电压为12V,反应持续2h,此时阴极室中pH为11.64。
步骤三,通过污泥泵取出阴极室内的污泥,该污泥为处理完毕后的污泥。
经过上述方法,阴极室中的出泥的溶液中释放的磷酸根浓度增加566.4%,铵根浓度增加233.5%。
上述处理工艺流程如图2所示。
综上所述,本发明的工艺过程可以对剩余污泥起到明显的溶胞作用,显著释放污泥中的氮磷,能改变污泥的性质和形态,满足污泥无害化、减量化、资源化处理,能防止污泥中氮磷元素和有机物对环境的污染,对于污泥处理处置具有重要意义,为电化学耦合污泥处理的工艺提供了新思路。
以上所述的实施例只是本发明的一种较佳的方案,然其并非用以限制本发明。有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变形。例如,在反应器内填充填料提升污泥处理效果。因此凡采取等同替换或等效变换的方式获得的技术方案,均落在本发明的保护范围内。

Claims (3)

  1. 一种利用电化学过程辅助污泥处理的方法,其特征在于,步骤如下:
    (1)步骤一,将待处理污泥加入至电化学***的阳极室内和阴极室内,进行充分搅拌混合,外接8-20V直流电下反应2h,所述阳极室内的pH小于4;待处理污泥为活性污泥法中的剩余污泥,含水率98%;
    (2)步骤二,取出步骤一中的电化学***内的阳极室内一定量污泥,一定量污泥为原污泥体积的50%;加入至电化学***中的阴极室内,同样进行充分搅拌混合,同时采用待处理污泥补充阳极室内污泥,外接8-20V直流电下反应2h,所述阴极室内的pH大于10;
    (3)步骤三,取出步骤二中的阴极室内的污泥。
  2. 根据权利要求1所述的利用电化学体系对污泥进行处理的方法,其特征在于,所述的电化学***为两室电化学反应器。
  3. 根据权利要求1所述的利用电化学体系对污泥进行处理的方法,其特征在于,所述的搅拌转速为100r/min。
PCT/CN2021/122728 2021-08-24 2021-10-09 一种利用电化学过程辅助污泥处理的方法 WO2023024217A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110972876.2A CN114057366A (zh) 2021-08-24 2021-08-24 一种利用电化学过程辅助污泥处理的方法
CN202110972876.2 2021-08-24

Publications (1)

Publication Number Publication Date
WO2023024217A1 true WO2023024217A1 (zh) 2023-03-02

Family

ID=80233560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122728 WO2023024217A1 (zh) 2021-08-24 2021-10-09 一种利用电化学过程辅助污泥处理的方法

Country Status (2)

Country Link
CN (1) CN114057366A (zh)
WO (1) WO2023024217A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09150196A (ja) * 1995-11-30 1997-06-10 Ebara Corp 汚泥の減容化方法および減容化装置
JP2005058976A (ja) * 2003-08-20 2005-03-10 Hitachi Maxell Ltd 電解処理による余剰汚泥の削減システム
CN101831462A (zh) * 2010-04-29 2010-09-15 中国科学院生态环境研究中心 一种预处理和电化学强化污泥厌氧发酵产氢方法
CN102344230A (zh) * 2010-08-04 2012-02-08 中国石油化工股份有限公司 一种生物污泥淤浆的处理方法
CN106915876A (zh) * 2017-02-24 2017-07-04 中山大学 一种利用双极膜电渗析装置电解盐产酸产碱提高污泥可消化性的方法
CN109179934A (zh) * 2018-11-13 2019-01-11 南京大学 一种电化学高级氧化反应处理剩余污泥的方法
CN112624545A (zh) * 2020-12-22 2021-04-09 湖南军信环保股份有限公司 一种厌氧消化污泥的处理方法和处理***

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109912145B (zh) * 2019-04-01 2022-02-15 北京工业大学 一种好氧颗粒污泥产电装置
CN110002578B (zh) * 2019-04-24 2021-10-15 北京工业大学 一种利用生物电化学***强化污水脱氮并同步产生电能的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09150196A (ja) * 1995-11-30 1997-06-10 Ebara Corp 汚泥の減容化方法および減容化装置
JP2005058976A (ja) * 2003-08-20 2005-03-10 Hitachi Maxell Ltd 電解処理による余剰汚泥の削減システム
CN101831462A (zh) * 2010-04-29 2010-09-15 中国科学院生态环境研究中心 一种预处理和电化学强化污泥厌氧发酵产氢方法
CN102344230A (zh) * 2010-08-04 2012-02-08 中国石油化工股份有限公司 一种生物污泥淤浆的处理方法
CN106915876A (zh) * 2017-02-24 2017-07-04 中山大学 一种利用双极膜电渗析装置电解盐产酸产碱提高污泥可消化性的方法
CN109179934A (zh) * 2018-11-13 2019-01-11 南京大学 一种电化学高级氧化反应处理剩余污泥的方法
CN112624545A (zh) * 2020-12-22 2021-04-09 湖南军信环保股份有限公司 一种厌氧消化污泥的处理方法和处理***

Also Published As

Publication number Publication date
CN114057366A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
CN101108194B (zh) 一种除去右旋糖酐铁络合物水溶液中氯化钠的方法及装置
CN108455680B (zh) 一种钢铁酸洗废液绿色资源化利用方法
CN102372391B (zh) 一种生物法与化学法相结合除磷的高钙污水处理方法及处理***
CN110066054A (zh) 用于垃圾渗滤液浓液处理的电芬顿***及垃圾渗滤液浓液处理方法
CN112520915A (zh) 一种同步回收沼液中的氮磷和去除抗生素的阳极电渗析方法
CN108314287A (zh) 污泥脱水减量方法
CN109553163A (zh) 一种电解处理高氨氮废水的方法
CN107814470A (zh) 一种电化学沉淀回收剩余污泥中氮磷的装置及方法
CN105254152A (zh) 利用高铁酸盐对污水处理厂的污泥进行处理的方法
CN204874226U (zh) 一种剩余活性污泥资源化与能源化处理***
CN111072112A (zh) 一种脱硫废水零排放的废水处理方法及处理***
CN102942243A (zh) 三维电极与电类Fenton联用的废水处理方法
CN108439750B (zh) 一种利用芬顿氧化实现污泥隐性生长减量并强化废水处理的方法
CN101973659A (zh) 微电解及物化法联用处理维生素b12提炼废水的装置及方法
WO2023024217A1 (zh) 一种利用电化学过程辅助污泥处理的方法
JP3796416B2 (ja) 電解法を用いた有機性汚水の浄化方法
CN111847815B (zh) 一种污泥d型氨基酸-无机酸联合循环-射流的调理方法
CN110066012A (zh) 一种利用厌氧消化从污泥中协同回收氮和磷的资源化工艺
CN113060898B (zh) 一种利用污水厂污泥水解酸化生成碳源的再利用方法
CN110835210B (zh) 一种聚焦脉冲电场提取污泥蛋白的方法及***
CN103626365A (zh) 一种利用剩余污泥碱中和能力调节碱预处理污泥pH的方法
CN211644723U (zh) 一种脱硫废水零排放的废水处理***
CN207062049U (zh) 一种铁循环电化学芬顿水处理装置
CN108341572B (zh) 一种利用芬顿氧化耦合微生物铁还原实现污泥隐性生长减量的方法
CN206553372U (zh) 一种铁盐循环利用的芬顿污泥处理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21954737

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE