WO2023019935A1 - 在片s参数测量***串扰误差修正方法及电子设备 - Google Patents

在片s参数测量***串扰误差修正方法及电子设备 Download PDF

Info

Publication number
WO2023019935A1
WO2023019935A1 PCT/CN2022/081431 CN2022081431W WO2023019935A1 WO 2023019935 A1 WO2023019935 A1 WO 2023019935A1 CN 2022081431 W CN2022081431 W CN 2022081431W WO 2023019935 A1 WO2023019935 A1 WO 2023019935A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
crosstalk
chip
measurement system
value
Prior art date
Application number
PCT/CN2022/081431
Other languages
English (en)
French (fr)
Inventor
吴爱华
付兴昌
方园
王一帮
霍晔
梁法国
刘晨
栾鹏
徐森锋
陈晓华
张晓云
Original Assignee
中国电子科技集团公司第十三研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电子科技集团公司第十三研究所 filed Critical 中国电子科技集团公司第十三研究所
Priority to US17/890,854 priority Critical patent/US20230051442A1/en
Publication of WO2023019935A1 publication Critical patent/WO2023019935A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Definitions

  • the present application relates to the technical field of on-chip S-parameter calibration, in particular to a method for correcting crosstalk errors in an on-chip S-parameter measurement system and electronic equipment.
  • On-chip S-parameter measurement systems are generally used in the microelectronics industry. Before the measurement system is used each time, it is necessary to select a suitable calibration method to calibrate the measurement system, and perform crosstalk errors on the calibrated on-chip S-parameter measurement system. corrections to make the measurements more accurate.
  • on-chip calibration methods mainly include SOLT (Short-Open-Load-Thru) calibration method, LRM (Line-Reflect-Match) calibration method, LRRM (Line-Reflect-Reflect-Match) calibration method and TRL (Thru-Reflect -Line) calibration method, etc.
  • Crosstalk errors can be errors resulting from coupling between probes of the measurement system.
  • electromagnetic energy is not only transmitted from one probe to another through the tested object, but also part of the electromagnetic energy is transmitted through the air and the substrate of the tested object. The transmission of electromagnetic energy through the air and substrate is a disadvantageous factor for measurement and will cause crosstalk errors.
  • the base error can be corrected using the SOLR calibration method.
  • the SOLR calibration method uses an eight-item error model and requires four calibration items: Short, Open, Load, and Reciprocity. Among them, the parameters of the Short, Open and Load calibration components need to be known in advance, and the Reciprocity two-port calibration components can use straight-through transmission lines or other passive components.
  • Existing correction methods require many types of calibration objects that have been defined (that is, known parameters), and the definition accuracy of the calibration objects has a great influence on the correction accuracy of the on-wafer S-parameter measurement system, resulting in unsatisfactory correction results. In addition, the use of more defined calibration parts will also lead to low correction efficiency and high cost.
  • This application provides an on-chip S-parameter measurement system crosstalk error correction method and electronic equipment to solve the problem of unsatisfactory correction effect, low correction efficiency and high cost caused by the need for more defined calibration parts in the existing correction method question.
  • the present application provides a crosstalk error correction method for an on-chip S-parameter measurement system, and the correction method includes two parts.
  • the first part is the pre-correction part.
  • the eight errors of the on-chip S-parameter measurement system are obtained by using the on-chip through calibration, the on-chip load calibration and the on-chip reflection calibration, and the on-chip S-parameters are corrected according to the eight errors.
  • the measuring system is pre-corrected.
  • the first part comprises a first measurement step, a first calculation step and a first correction step.
  • the first measurement step includes using the on-wafer S-parameter measurement system to measure the on-wafer through calibration piece, the on-wafer load calibration piece and the on-wafer reflection calibration piece respectively, to obtain the through-through S-parameter, the load S-parameter and the reflection S-parameter.
  • the first calculation step includes calculating the eight-term error of the on-chip S-parameter measurement system according to the above-mentioned direct S-parameter, load S-parameter, reflection S-parameter and the corresponding relationship between the transfer parameter and the S-parameter.
  • the first correction step includes pre-correcting the on-chip S-parameter measurement system according to the above-mentioned eight errors, and obtaining the pre-corrected on-chip S-parameter measurement system.
  • the second part uses the pre-corrected on-chip S-parameter measurement system to obtain the crosstalk error of the S-parameter measurement system, and then corrects the S-parameter measurement system again according to the crosstalk error.
  • the second part comprises a simulation step, a second measurement step, a second calculation step and a second correction step.
  • the simulation step includes simulating the crosstalk calibration piece to obtain the real S-parameter of the crosstalk calibration piece.
  • the second measurement step includes using the pre-corrected on-chip S-parameter measurement system to measure the crosstalk calibration piece to obtain parallel S-parameters, the parallel S-parameters containing the crosstalk error of the on-chip S-parameter measurement system.
  • the second calculation step includes calculating the crosstalk error of the on-chip S-parameter measurement system according to the above-mentioned real S-parameters, parallel S-parameters, and conversion relationship between Y-parameters and S-parameters.
  • the second correction step includes re-correcting the pre-corrected on-wafer S-parameter measurement system according to the above-mentioned crosstalk error.
  • the present application provides a correction device, which has several execution modules capable of implementing the steps of the above correction method.
  • the present application provides an electronic device, where the electronic device includes a memory, a processor, and a computer program.
  • Computer programs are stored in memory and are capable of running on processors.
  • the processor runs the computer program, the steps of the above-mentioned correction method can be realized.
  • the present application provides a computer-readable storage medium, where a computer program is stored in the storage medium, and when the computer program is executed by any processor, the steps of the above correction method can be realized.
  • the beneficial effect of the on-chip S-parameter measurement system crosstalk error correction method provided by the present application is that the correction method provided by the present application uses the on-chip through calibration when obtaining the eight errors of the on-chip S-parameter measurement system. parts, on-wafer calibration kits and on-wafer reflection calibration kits, where only the on-wafer loading calibration kits need to be in a defined state. The remaining two types of calibration kits, the on-wafer thru calibration kit and the on-wafer reflection calibration kit, can be in an undefined state. After the eight errors of the system are obtained, the crosstalk error of the on-chip S-parameter measurement system is further obtained by using the crosstalk calibration kit, so as to realize the complete correction of the system.
  • the fully corrected system can achieve the expected measurement accuracy.
  • the correction method provided by this application requires fewer types of defined calibration parts, which reduces the influence of the definition accuracy of the calibration parts on the correction accuracy, and the corrected on-chip S-parameter measurement system has higher measurement accuracy. Moreover, reducing the types of defined calibration parts is beneficial to improving correction efficiency and reducing correction costs.
  • Fig. 1 is the implementation flowchart of the crosstalk error correction method of the on-chip S-parameter measurement system provided by the embodiment of the present application;
  • Fig. 2 is the crosstalk error model provided by the embodiment of the present application.
  • Fig. 3 is the eight-item error model that the embodiment of the present application provides
  • Fig. 4 is a schematic diagram of the relationship between transfer parameters and voltage and current provided by the embodiment of the present application.
  • Fig. 5 is a diagram of the transmission phase measurement results of the on-chip attenuator provided by the embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a crosstalk error correction device for an on-chip S-parameter measurement system provided by an embodiment of the present application;
  • Fig. 7 is a schematic diagram of an electronic device provided by an embodiment of the present application.
  • the method for correcting the crosstalk error of the on-chip S-parameter measurement system includes the following steps:
  • the on-chip S-parameter measurement system for the convenience of description, hereinafter referred to as "the on-chip S-parameter measurement system” as “measurement system”
  • the measurement system measures the on-wafer load calibration piece to obtain the load S-parameter; uses the uncorrected measurement system to measure the on-wafer reflection calibration piece to obtain the reflection S-parameter;
  • the crosstalk calibration part is simulated to obtain the crosstalk S parameter (i.e. the S parameter of the crosstalk calibration part, which can also be called the real S parameter of the crosstalk calibration part);
  • step S101 1. Further description of step S101.
  • both the on-wafer through calibration piece and the on-wafer reflection calibration piece may be in an undefined state, and the on-wafer loading calibration piece must be in a defined state.
  • defined means fixed value, which means the parameters of the calibration kit are known.
  • Undefined represents an undetermined value, and the parameters of the calibration kit are unknown.
  • the parameters of a defined on-wafer loaded calibrator (such as the actual admittance value) are known.
  • Undefined The parameters of the on-wafer thru calibration and on-wafer reflection calibration are unknown.
  • the measurement system has two ports that can be connected to an on-wafer thru calibrator, an on-wafer loaded calibrator, or an on-wafer reflective calibrator.
  • the measured straight-through S-parameters include S 11 , S 12 , S 21 and S 22
  • the measured load S-parameters include S 11 and S 22
  • the measured reflective S-parameters include S 11 and S 22 .
  • the first port can be used to measure the first load calibration object
  • the second port can be used to measure the second load calibration object.
  • the number of on-chip through calibration pieces is one; the number of on-chip load calibration pieces is two, including the first on-chip load calibration piece and the second on-chip load calibration piece;
  • There are two groups of reflection calibration kits the first group includes two symmetrical and consistent short calibration kits, and the second group includes two symmetrical and consistent open calibration kits.
  • the loading process would be consistent and one set of on-wafer reflectance calibration kits could be eliminated. That is, a set of on-wafer reflectance calibration pieces can be used to complete the correction process.
  • the number of on-chip through calibration pieces is one; the number of on-chip load calibration pieces is two, including the first on-chip load calibration piece and the second on-chip load calibration piece;
  • There are two groups of reflection calibration kits the first group includes two symmetrical and consistent short calibration kits, and the second group includes two symmetrical and consistent open calibration kits.
  • the correction method provided by this application can use an uncalibrated measurement system to measure an undefined on-wafer through calibrator, two sets of undefined on-wafer reflection calibrator, and two defined on-wafer load calibrator, and obtain the corresponding original data. Through the cascading characteristics of S parameters and transfer matrix, eight errors are calculated. It can be seen that with the correction method provided in this application, the correction of the measurement system can be completed only by knowing the definition of the load calibrator.
  • the correction method provided by this application can realize the calibration of the measurement system in the field of on-chip S-parameter calibration and measurement, achieve better indicators, meet the commercial needs of on-chip S-parameter calibration and measurement in the market, and have good economic and social benefits.
  • step S102
  • the eight errors in S102 include A 1 , B 1 , C 1 , D 1 , A 2 , B 2 , C 2 , and D 2 , as shown in FIG. 3 .
  • Eight errors can be expressed in the form of S parameters.
  • this application expresses the error networks by transferring parameters (ie, ABCD parameters) to facilitate cascading calculations. Transfer parameters are well known knowledge in the art. There is a one-to-one correspondence between transfer parameters and S parameters, as shown in the following method (1) and formula (2):
  • Transfer parameters are parameters expressed using voltage and current, as shown in Figure 4.
  • Figure 4 shows the transfer parameters as a function of voltage and current.
  • S102 may further include the following two steps:
  • S1021 Determine the value of A 1 /D 1 , the value of B 1 /D 1 , and the value of C 1 /D 1 based on the correspondence between the transfer parameter and the S parameter, the through S parameter, the load S parameter, and the reflection S parameter;
  • Step S1021 may further include the following steps:
  • Thru S-parameters can be obtained by measuring an undefined on-wafer thru calibration with an uncorrected measurement system.
  • a straight-through original parameter matrix can be obtained, and there is a cascade relational expression.
  • the on-wafer through-calibration unit is a through-transmission line and the measurement reference plane is in the middle of the through-transmission line, it is not necessary to obtain its definition by measuring the on-wafer through-calibration unit. Because the definition of the on-chip through calibration element is known at this time, its defined value is a [0,1; 1,0] identity matrix.
  • E 1 is the first error network of the uncorrected measurement system
  • E 2 is the second error network measured by the uncorrected measurement system
  • S 11 , S 12 , S 21 , S 22 are S parameters
  • a T , B T , C T , D T are transfer parameters.
  • Admittance relationships can include:
  • Y 1,A,load is the actual measured admittance value of the load calibrator at the first port
  • Z 1,M,load is the measured impedance value of the load calibrator at the first port
  • Z 0 is the characteristic impedance
  • R 1 is the actual resistance value of the first port load calibrator
  • L 1 is the actual inductance value of the first port load calibrator
  • the characteristic resistance may be 50 ⁇ .
  • the defined on-chip load calibrator described in this application means that the actual admittance measurement value of the load calibrator is known.
  • admittance relationship it can also include:
  • Y 2,A,load is the actual admittance measurement value of the load calibrator of the second port
  • Z 2,M,load is the measured impedance value of the load calibrator of the second port
  • R 2 is the resistance of the load calibrator of the second port Actual value
  • L 2 is the actual value of the inductance of the second port load calibrator.
  • the first error network relation is:
  • Z i, M(j) represents the impedance value
  • i is the i-th port
  • M is the reflection calibrator
  • j is the j-th reflection calibrator
  • the admittance relation the first error network relation and the second error network relation, the first error parameter can be calculated, and the process is as follows:
  • x 1 A T Z 2,M(1) -B T +C T Z 1,M(1) Z 2,M(2) -D T Z 1,M(1)
  • x 2 A T Z 2,M(2) -B T +C T Z 1,M(2) Z 2,M(2) -D T Z 1,M(2)
  • the first network relational expression is the relational expression of the first error network E1 viewed from the left to the DUT.
  • the relationship between the value of A 1 /C 1 and the value of B 1 /D 1 can be obtained, and combined with the admittance relational expression, the value of A 1 /C 1 , B 1
  • the relationship between the value of /D 1 and the value of C 1 /D 1 , the value of A 1 /D 1 , the value of B 1 /D 1 and the value of C 1 /D 1 can be deduced according to the relationship between the three. .
  • the port exchange in S1022 refers to: exchange the results of the S parameters measured by the two ports of the measurement system.
  • the straight-through S-parameters are used for port swapping to obtain the swapped straight-through S-parameters.
  • the load S parameters are carried out port swapping to obtain the load S parameters after swapping.
  • the reflection S parameters are performed to exchange ports to obtain the exchanged reflection S parameters.
  • port swapping in S1022 includes:
  • the S parameters measured by the two ports in the through S parameters are exchanged, and the exchanged through S parameters are expressed as:
  • a 2 /D 2 , B 2 /D 2 , and C 2 /D 2 can be obtained according to the exchanged straight-through S parameters, the exchanged load S parameters and the exchanged reflection S parameters, Specifically include the following steps:
  • the ports are swapped again, and the values of A 2 /D 2 , B 2 /D 2 and C 2 /D 2 are determined.
  • Step 1 For the on-wafer reflection calibrator and the on-wafer load calibrator, set S 11 measured at the first port as S 22 , and set S 22 measured at the second port as S 11 .
  • Step 2 For the on-chip through calibration kit, exchange the S-parameters measured at the first port with the S-parameters measured at the second port.
  • the measured S-parameters are:
  • the S-parameters after the first port and the second port are interchanged are:
  • Step 3 Calculate the value of A 3 / D 3 , B 3 /D 3 , C 3 /D 3 value.
  • the E3 transition matrix normalized by D3 is converted into S parameters, as follows:
  • det(*) represents the value of the determinant of *.
  • Step 4 convert the S parameter into a transfer matrix after performing port exchange (that is, the S parameter after the exchange of the first port and the second port), as follows:
  • step S103 Further description of step S103.
  • S103 further includes the following steps:
  • S1031 The value of A 1 /D 1 , the value of B 1 /D 1 , the value of C 1 /D 1 obtained in S1021, the value of A 2 /D 2 , the value of B 2 /D 2 obtained in S1022, The value of C 2 /D 2 , and the value of D 1 D 2 pre-correct the uncorrected on-wafer S-parameter measurement system.
  • the measurement system can measure passive components. Passive devices have a reciprocal property. Using the measurement system to measure a passive device, the following formula (3) is obtained:
  • E DUT represents the uncorrected measurement result of the DUT
  • E A_DUT represents the true value of the DUT, both of which are represented by an ABCD matrix.
  • formula (3) can be transformed into formula (4), as follows:
  • the modulus value of D 1 D 2 can be obtained.
  • the sign of D 1 D 2 can be obtained by existing techniques (such as the SOLR calibration method). So far, the modulus and sign of D 1 D 2 have been calculated, and the value of D 1 D 2 has been calculated.
  • steps S101 to S104 the values of A 1 /D 1 , B 1 /D 1 , C 1 /D 1 , A 2 /D 2 , B 2 /D 2 , C 2 /D 2 value, and calculate the value of D 1 D 2 according to the reciprocity property of passive devices.
  • a pre-correction of the measurement system is then achieved based on the various values mentioned above.
  • the first error network relation (11) and the second error network relation are obtained, and by calculating the three relations, we get A 1 /D 1 value, B 1 /D 1 value, C 1 /D 1 value.
  • the values of D 1 and D 2 can be calculated. Based on the above values, the uncorrected on-chip S-parameter measurement system can be pre-corrected.
  • step S104 Further description of step S104.
  • the S-parameters of the crosstalk calibration kit can be obtained by selecting crosstalk calibration kits with known properties for simulation.
  • the S-parameters can be regarded as the real S-parameters of the crosstalk calibration kit, that is, the S-parameters of the crosstalk calibration kit itself.
  • the various properties of the crosstalk calibration kit include physical properties and material properties. Such as permittivity, electrical conductivity, magnetic permeability, and density.
  • the properties of the crosstalk calibration kit also include geometric parameters such as length, width, height, etc.
  • Simulation is generally implemented using simulation software.
  • the simulation software may be three-dimensional electromagnetic field simulation software, such as CST, HFSS and the like. After the simulation is completed, the simulation graph can be obtained, and the real S parameters of the crosstalk calibration component can be obtained through the simulation graph.
  • step S105 Further description of step S105.
  • the crosstalk error of the measurement system can be equivalent to a microwave circuit network connected in parallel with the DUT (crosstalk calibrator).
  • the parallel S-parameters obtained in S105 include the real S-parameters of the crosstalk calibration piece and the crosstalk error of the measurement system.
  • Y T is used to represent the parallel S-parameter
  • Y C is used to represent the crosstalk error of the measurement system
  • step S106 Further description of step S106.
  • S106 may further include the following steps:
  • S1061 Convert the real S parameter of the crosstalk calibration piece into a real Y parameter according to the conversion relationship between the Y parameter and the S parameter;
  • S1062 Convert the parallel S parameter into a parallel Y parameter according to the conversion relationship between the Y parameter and the S parameter;
  • S1063 Calculate the crosstalk error of the measurement system by using the real Y parameter and the parallel Y parameter.
  • the crosstalk error of the measurement system can be obtained by subtracting the real Y parameter from the parallel Y parameter.
  • Figure 2 shows a crosstalk error model.
  • Y 11A , Y 21A , Y 12A , and Y 22A represent the real Y parameters of the device under test (crosstalk calibration device), and the matrix formed by them is represented by Y A .
  • Y 11C , Y 21C , Y 12C , and Y 22C represent the crosstalk errors of the measurement system, and their matrix is represented by Y C .
  • Y A and Y C are in parallel relationship, they have the same input and output, have the same voltage U 1 and U 2 , and the current relationship (I 1 and I 2 ) is superposition.
  • the matrices Y A and Y C are as follows:
  • each crosstalk calibration piece can correspond to a crosstalk error of a measurement system.
  • the multiple crosstalk errors are averaged as the final crosstalk error for the measurement system. By calculating the average, random errors can be reduced, making the obtained crosstalk errors more accurate.
  • S104 is changed to: respectively simulate each crosstalk calibration piece to obtain the real S-parameter of each crosstalk calibration piece.
  • S105 is changed to: measure each crosstalk calibration piece with a pre-corrected measurement system to obtain parallel S-parameters of each crosstalk calibration piece.
  • S106 changes to: calculate the crosstalk error corresponding to each crosstalk calibration piece according to the real S parameter and parallel S parameter of each crosstalk calibration piece, and the conversion relationship between S parameter and Y parameter.
  • the obtained multiple crosstalk errors are averaged as the crosstalk error of the measurement system.
  • step S107 Further description of step S107.
  • any DUT can be measured to obtain the S parameters of the DUT. Convert the S-parameters to Y-parameters, denoted as Then the real Y matrix Y DUT of the DUT is: After obtaining the real Y matrix of the tested part, according to the conversion relationship between the Y matrix and the S matrix, the real S parameter of the tested part can be finally obtained, and the measurement of the S parameter of the tested part can be realized.
  • step S104 can obtain the real S-parameters of the crosstalk calibration piece through simulation. However, for any DUT, it is generally impossible to obtain its real S-parameters through simulation. Because for any object under test, its physical and material properties are generally unknown, and its structural composition is very complex.
  • the correction method provided in this application is reasonable and meets the requirements for on-chip S-parameter calibration and testing. It should be noted that the multi-line TRL calibration method is a calibration method provided by the National Institute of Standards and Technology (National Institute of Standards and Technology). This method is recognized in the art as having the highest calibration accuracy.
  • the correction method provided in the present application can realize the correction of the measurement system by only using two pairs of symmetrical undefined reflection calibration parts, one undefined through-pass calibration part and a pair of defined load calibration parts. Considering the leakage error of the microwave probe in the millimeter wave and above on-chip systems, a circuit representing the leakage is added to the circuit model of the single-port load calibrator.
  • the correction method provided by this application is generally divided into two parts:
  • the first part is the pre-correction process.
  • the basic eight-term error model is obtained, that is, the six basic error terms of the on-chip leakage system are calculated by using the ABCD matrix through two pairs of reflection calibrator and a pair of load calibrator. Then test the undefined two-port passive device (including reflection calibrator or load calibrator or other passive device) and use its reciprocity property to get the residual error term;
  • the crosstalk error of the measurement system is calculated by using the existing parallel crosstalk error model.
  • the solution algorithm is simulated and verified.
  • the calibration part and passive attenuator verification part of 110GHz ceramic substrate were developed.
  • the measurement result of verification part S11 was improved by 0.02
  • the test result of S21 was optimized by 1.7dB
  • the calibration can be realized without accurately knowing the exact values of the two sets of on-chip reflection calibration components.
  • the correction method provided by this application can save another set of The reflective calibrator is used to improve the test accuracy, improve the test efficiency and reduce the cost.
  • FIG. 6 is a schematic structural diagram of a crosstalk error correction device for an on-chip S-parameter measurement system provided by the present application.
  • FIG. 6 is a schematic structural diagram of a crosstalk error correction device for an on-chip S-parameter measurement system provided by the present application.
  • the details are as follows. For details that are not exhaustively described therein, reference may be made to the above description of the correction method.
  • the on-chip S-parameter measurement system crosstalk error correction device 20 includes:
  • the pre-correction module is used to pre-correct the on-chip S-parameter system before using the on-chip S-parameter measurement system to measure the crosstalk calibration piece;
  • Pre-modified modules include:
  • the parameter acquisition unit is used to measure the on-chip through calibration piece by using the uncorrected on-chip S-parameter measurement system to obtain the through-through S parameter; use the uncorrected on-chip S-parameter measurement system to measure the on-chip load calibration piece to obtain the load S-parameter; Use the uncorrected on-chip S-parameter measurement system to measure the on-chip reflection calibration piece to obtain the reflection S-parameter;
  • the error calculation unit is used to determine the eight errors of the uncorrected on-chip S-parameter measurement system according to the corresponding relationship between the through S parameter, the load S parameter, the reflection S parameter and the transfer parameter and the S parameter, and calculate the uncorrected error according to the eight errors
  • the on-chip S-parameter measurement system is pre-corrected to obtain the pre-corrected on-chip S-parameter measurement system;
  • the eight errors measured by the S parameter measurement system include A 1 , B 1 , C 1 , D 1 , A 2 , B 2 , C 2 , and D 2 , and the error calculation unit can include:
  • the first calculation subunit is used to determine the value of A 1 /D 1 , the value of B 1 /D 1 , and the value of C 1 /D based on the corresponding relationship between the transfer parameter and the S parameter, the through S parameter, the load S parameter and the reflection S parameter. the value of 1 ;
  • the port swapping subunit is used to swap the ports of the through S parameters, load S parameters and reflection S parameters, and determine the value of A 2 /D 2 and the value of B 2 /D 2 according to the result of port swapping , the value of C 2 /D 2 ;
  • the second calculation subunit is used to calculate according to the value of A 1 /D 1 , the value of B 1 /D 1 , the value of C 1 /D 1 , the value of A 2 /D 2 , the value of B 2 /D 2 , C 2 /D 2 values and D 1 D 2 values pre-correct the uncorrected on-wafer S-parameter measurement system.
  • the first calculation subunit is also used to determine the uncalibrated on-chip S-parameter measurement system's through-through original parameter matrix according to the through-through S-parameter and the corresponding relationship between the transfer parameter and the S-parameter, and determine the cascade relationship according to the through-through original parameter matrix;
  • the cascade relationship, load S-parameters and reflective S-parameters determine the values of A 1 /D 1 , B 1 /D 1 , and C 1 /D 1 .
  • On-chip S-parameter measurement system crosstalk error correction device 20 also includes:
  • the measurement module 201 is used to simulate the crosstalk calibration piece to obtain the real S parameters of the crosstalk calibration piece; use the pre-corrected on-chip S parameter measurement system to measure the crosstalk calibration piece to obtain the parallel S parameters; the parallel S parameters include the on-chip S The crosstalk error of the parameter measurement system;
  • the correction module 202 is used to determine the crosstalk error of the on-chip S-parameter measurement system according to the real S-parameter, the parallel S-parameter, and the conversion relationship between the Y-parameter and the S-parameter, and correct the on-chip S-parameter measurement system according to the crosstalk error.
  • the correction module 202 may include:
  • the first conversion unit is used to convert the real S parameter into a simulated Y parameter by using the conversion relationship between the Y parameter and the S parameter;
  • the second conversion unit is used to convert the parallel S parameter into a parallel Y parameter by using the conversion relationship between the Y parameter and the S parameter;
  • the crosstalk calculation unit is used to determine the crosstalk error of the calibrated on-chip S-parameter measurement system according to the simulated Y parameter and the parallel Y parameter.
  • the measurement module 201 may include:
  • the simulation unit is used to simulate each crosstalk calibration part separately to obtain the real S parameter of each crosstalk calibration part;
  • the measurement unit is configured to measure each crosstalk calibration piece separately by using an on-chip S-parameter measurement system to obtain parallel S-parameters of the crosstalk calibration piece.
  • the on-chip S-parameter measurement system crosstalk error correction device 20 may also include:
  • the first calculation unit is used for each crosstalk calibration piece, according to the real S parameter of the crosstalk calibration piece, the parallel S parameter of the crosstalk calibration piece, and the conversion relationship between the Y parameter and the S parameter, to determine the crosstalk calibration piece corresponding to the Crosstalk error of on-chip S-parameter measurement system;
  • the second calculation unit is used to calculate the average value of the crosstalk error corresponding to each crosstalk calibration piece, use the average value as the crosstalk error of the on-chip S-parameter measurement system, and correct the on-chip S-parameter system according to the crosstalk error.
  • Fig. 7 is a schematic diagram of an electronic device provided by an embodiment of the present application.
  • the electronic device 30 of this embodiment includes: a processor 300 , a memory 301 , and a computer program 302 stored in the memory 301 and operable on the processor 300 .
  • the processor 300 executes the computer program 302 , the steps in the above embodiments of the crosstalk error correction method for the on-chip S-parameter measurement system are implemented, such as S101 to S102 shown in FIG. 1 .
  • the processor 300 executes the computer program 302
  • the functions of the modules/units in the above-mentioned device embodiments are realized, for example, the functions of the modules/units 201 to 202 shown in FIG. 6 .
  • the computer program 302 can be divided into one or more modules/units, and one or more modules/units are stored in the memory 301 and executed by the processor 300 to complete the present application.
  • One or more modules/units may be a series of computer program instruction segments capable of accomplishing specific functions, and the instruction segments are used to describe the execution process of the computer program 302 in the electronic device 30 .
  • computer program 302 may be divided into modules/units 201 to 202 shown in FIG. 6 .
  • the electronic device 30 may be computing devices such as desktop computers, notebooks, palmtop computers, and cloud servers.
  • the electronic device 30 may include, but not limited to, a processor 300 and a memory 301 .
  • FIG. 7 is only an example of the electronic device 30, and does not constitute a limitation to the electronic device 30. It may include more or less components than shown in the figure, or combine certain components, or different components. , for example, the electronic device may also include input and output devices, network access devices, buses, and so on.
  • the so-called processor 300 may be a central processing unit (Central Processing Unit, CPU), and may also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the storage 301 may be an internal storage unit of the electronic device 30 , such as a hard disk or memory of the electronic device 30 .
  • the memory 301 can also be an external storage device of the electronic device 30, such as a plug-in hard disk equipped on the electronic device 30, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, a flash memory card (Flash Card) and so on.
  • the memory 301 may also include both an internal storage unit of the electronic device 30 and an external storage device.
  • the memory 301 is used to store computer programs and other programs and data required by the electronic device.
  • the memory 301 can also be used to temporarily store data that has been output or will be output.
  • the disclosed device/electronic equipment and method can be implemented in other ways.
  • the device/electronic device embodiments described above are only illustrative, for example, the division of modules or units is only a logical function division, and there may be other division methods in actual implementation, such as multiple units or components May be combined or may be integrated into another system, or some features may be omitted, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • a unit described as a separate component may or may not be physically separated, and a component displayed as a unit may or may not be a physical unit, that is, it may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • an integrated module/unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the present application realizes all or part of the processes in the methods of the above embodiments, and can also be completed by instructing related hardware through computer programs, and the computer programs can be stored in a computer-readable storage medium.
  • the steps in the above embodiments of the crosstalk error correction method for the on-chip S-parameter measurement system can be realized.
  • the computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file or some intermediate form.
  • the computer-readable medium may include: any entity or device capable of carrying computer program code, recording medium, U disk, removable hard disk, magnetic disk, optical disk, computer memory, read-only memory (Read-Only Memory, ROM), random access Memory (Random Access Memory, RAM), electrical carrier signal, telecommunication signal and software distribution medium, etc.
  • computer readable media may be appropriately increased or decreased according to the requirements of legislation and patent practice in the jurisdiction. For example, in some jurisdictions, according to legislation and patent practice, computer readable media does not include It is an electrical carrier signal and a telecommunication signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

本申请提供一种在片S参数测量***串扰误差修正方法及电子设备。上述修正方法包括两部分,第一部分为预修正过程,该部分使用在片直通校准件、在片负载校准件和在片反射校准件得到在片S参数测量***的八项误差,并根据该八项误差对在片S参数测量***进行预修正。第二部分使用预修正后的在片S参数测量***得到S参数测量***的串扰误差,并根据该串扰误差对S参数测量***进行再次修正。本申请提供的修正方法能够提高在片S参数测量***的修正精度、修正效率,降低修正成本。

Description

在片S参数测量***串扰误差修正方法及电子设备
本专利申请要求于2021年08月16日提交的中国专利申请No.CN 202110938374.8的优先权。在先申请的公开内容通过整体引用并入本申请。
技术领域
本申请涉及在片S参数校准技术领域,尤其涉及一种在片S参数测量***串扰误差修正方法及电子设备。
背景技术
在片S参数测量***一般应用在微电子行业中,在该测量***每次使用前,需要选取合适的校准方法对该测量***进行校准,并对校准后的在片S参数测量***进行串扰误差修正,以使测量结果更准确。其中,在片校准方法主要包括SOLT(Short-Open-Load-Thru)校准方法、LRM(Line-Reflect-Match)校准方法、LRRM(Line-Reflect-Reflect-Match)校准方法和TRL(Thru-Reflect-Line)校准方法等。
随着在片测量频率的升高,一些在低频段可以忽略的***误差逐渐增大,尤其是串扰误差会越来越大,进而导致测量结果不准确。串扰误差可以是测量***的探针之间耦合产生的误差。测量时,电磁能量不仅经被测件从一个探针传递到另一个探针,还有一部分电磁能量经空气和被测件的衬底传递。电磁能量经空气和衬底传递对于测量来说是不利因素,会产生串扰误差。
修正在片S参数测量***的串扰误差之前,一般会预先修正***的基础误差。基础误差可以使用SOLR校准方法进行修正。SOLR校准方法采用八项误差模型,并且需要Short、Open、Load和Reciprocity四种校准件。其中Short、Open和Load三种校准件的参数需要事先已知,Reciprocity两端口校准件可以采用直通传输线或其它无源器件。现有的修正方法需要的已定义(即参数已知)的校准件的种类较多,校准件的定义精度对在片S参数测量***的修正精度影响很大,导致修正效果不理想。另外,使用较多已定义的校准件,也会导致修正效率低,成本高。
技术问题
本申请提供了一种在片S参数测量***串扰误差修正方法及电子设备,以解决现有的修正方法需要较多已定义的校准件而导致的修正效果不理想、修正效率低、成本高的问题。
技术解决方案
第一方面,本申请提供了一种在片S参数测量***串扰误差修正方法,该修正方法包括两个部分。
第一部分为预修正部分,该部分使用在片直通校准件、在片负载校准件和在片反射校 准件得到在片S参数测量***的八项误差,并根据该八项误差对在片S参数测量***进行预修正。第一部分包括第一测量步骤、第一计算步骤和第一修正步骤。第一测量步骤包括使用在片S参数测量***分别测量在片直通校准件、在片负载校准件和在片反射校准件,得到直通S参数、负载S参数和反射S参数。第一计算步骤包括根据上述直通S参数、负载S参数和反射S参数以及转移参数与S参数的对应关系,计算在片S参数测量***的八项误差。第一修正步骤包括根据上述八项误差,对在片S参数测量***进行预修正,得到预修正后的在片S参数测量***。
第二部分使用预修正后的在片S参数测量***得到S参数测量***的串扰误差,并根据该串扰误差对S参数测量***进行再次修正。第二部分包括仿真步骤、第二测量步骤、第二计算步骤和第二修正步骤。仿真步骤包括对串扰校准件进行仿真,得到串扰校准件的真实S参。第二测量步骤包括采用所述预修正后的在片S参数测量***测量上述串扰校准件,得到并联S参数,该并联S参数含有所述在片S参数测量***的串扰误差。第二计算步骤包括根据上述真实S参数、并联S参数以及Y参数与S参数的转换关系,计算在片S参数测量***的串扰误差。第二修正步骤包括根据上述串扰误差,对预修正后的在片S参数测量***进行再次修正。
需要说明的是,上述第一部分中的八项误差,以及转移参数与S参数的对应关系是本领域内公知的知识;上述第二部分中的Y参数与S参数的转换关系也是本领域内公知的知识。
第二方面,本申请提供了一种修正装置,该装置具有若干个能够实现上述修正方法的步骤的执行模块。
第三方面,本申请提供了一种电子设备,该电子设备包括存储器、处理器和计算机程序。计算机程序存储于存储器中,并能够在处理器上运行。处理器运行计算机程序时,能够实现上述修正方法的步骤。
第四方面,本申请提供了一种计算机可读存储介质,该存储介质存储有计算机程序,该计算机程序被任意处理器执行时,能够实现上述修正方法的步骤。
有益效果
相比现有技术,本申请提供的在片S参数测量***串扰误差修正方法的有益效果在于:本申请提供的修正方法在获取在片S参数测量***的八项误差时,使用在片直通校准件、在片负载校准件和在片反射校准件,其中仅须在片负载校准件为已定义的状态即可。其余两种校准件,即在片直通校准件和在片反射校准件,可以是未定义的状态。得到***的八项误差后,使用串扰校准件,进一步得到在片S参数测量***的串扰误差,从而实现***的完全修正。完全修正后的***能够达到预期的测量精度。本申请提供的修正方法需要的 已定义校准件的种类较少,减小了校准件的定义精度对修正精度的影响,修正后的在片S参数测量***具有更高的测量精度。并且,减少已定义校准件的种类,有利于提高修正效率、降低修正成本。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的在片S参数测量***串扰误差修正方法的实现流程图;
图2是本申请实施例提供的串扰误差模型;
图3是本申请实施例提供的八项误差模型;
图4是本申请实施例提供的转移参数与电压电流关系的示意图;
图5是本申请实施例提供的在片衰减器的传输相位测量结果图;
图6是本申请实施例提供的在片S参数测量***串扰误差修正装置的结构示意图;
图7是本申请实施例提供的电子设备的示意图。
本申请的实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定***结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的***、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图通过具体实施例来进行说明。
本申请提供的在片S参数测量***串扰误差修正方法,包括以下步骤:
S101,使用未修正的在片S参数测量***(为了叙述方便,下文将“在片S参数测量***”简称为“测量***”)测量在片直通校准件,得到直通S参数;使用未修正的测量***测量在片负载校准件,得到负载S参数;使用未修正的测量***测量在片反射校准件,得到反射S参数;
S102,根据S101得到的直通S参数、负载S参数、反射S参数以及转移参数与S参数的对应关系计算未修正的测量***的八项误差;
S103,根据S102计算得出的八项误差对未修正的测量***进行预修正,得到预修正后的测量***;
S104,对串扰校准件进行仿真,得到串扰S参数(即串扰校准件的S参数,也可 以称为串扰校准件的真实S参数);
S105,使用S103预修正后的测量***测量S104中的串扰校准件,得到并联S参数。因为此时尚未对测量***的串扰误差进行修正,所以上述并联S参数中含有测量***的串扰误差;
S106,使用S104和S105得到的真实S参数和并联S参数,以及Y参数与S参数的转换关系,计算测量***的串扰误差;
S107,根据S106得到的串扰误差对测量***进行再次修正。
下面分别对S101至S107作进一步的说明。
1、步骤S101的进一步说明。
S101中,在片直通校准件和在片反射校准件均可以是未定义的状态,在片负载校准件须是已定义的状态。已定义代表已定值,表示该校准件的参数已知。未定义代表未定值,该校准件的参数未知。例如,已定义的在片负载校准件的参数(例如实际导纳值)已知。未定义的在片直通校准件和在片反射校准件的参数未知。
测量***有两个端口,能够分别连接在片直通校准件、在片负载校准件或者在片反射校准件。测量得到的直通S参数包括S 11、S 12、S 21和S 22,测量得到的负载S参数包括S 11和S 22,测量得到的反射S参数包括S 11和S 22。示例性的,可以采用第一端口测量第一负载校准件,采用第二端口测量第二负载校准件。
示例性的,在一个测量过程中,在片直通校准件的数量为一个;在片负载校准件的数量为两个,包括第一在片负载校准件和第二在片负载校准件;在片反射校准件为两组,第一组包括两个对称的、一致的短路校准件,第二组包括两个对称的、一致的开路校准件。理想情况下,负载加工工艺一致,可以省去一组在片反射校准件。即使用一组在片反射校准件即可完成修正过程。
示例性的,在一个测量过程中,在片直通校准件的数量为一个;在片负载校准件的数量为两个,包括第一在片负载校准件和第二在片负载校准件;在片反射校准件为两组,第一组包括两个对称的、一致的短路校准件,第二组包括两个对称的、一致的开路校准件。
本申请提供的修正方法能够使用未校准的测量***测量一个未定义的在片直通校准件、两组未定义的在片反射校准件、两个已定义的在片负载校准件,得到相应的原始数据。通过S参数和转移矩阵级联的特点,计算得到八项误差。可见,采用本申请提供的修正方法,只需知道负载校准件的定义,即可完成测量***的修正。本申请提供的修正方法,在在片S参数校准与测量领域,能够实现测量***的校准,达到了较好的指标,满足市场上商用的在片S参数校准和测量需求,具有良好的经济和社会效 益。
2、步骤S102的进一步说明。
S102中的八项误差包括A 1、B 1、C 1、D 1、A 2、B 2、C 2、D 2,如图3所示。八项误差可以采用S参数的形式表示。考虑到实际求解过程中误差网络之间需要级联,本申请通过转移参数(即ABCD参数)表示误差网络,以便于级联计算。转移参数是本领域内公知的知识。转移参数和S参数存在一一对应的关系,如下方式(1)和式(2)所示:
Figure PCTCN2022081431-appb-000001
Figure PCTCN2022081431-appb-000002
转移参数是使用电压和电流表示的参数,如图4所示。图4示出了转移参数与电压和电流的关系。
S102可以进一步包括以下两个步骤:
S1021:基于转移参数与S参数的对应关系、直通S参数、负载S参数和反射S参数确定A 1/D 1的值、B 1/D 1的值、C 1/D 1的值;
S1022,将直通S参数、负载S参数和反射S参数进行端口互换,并根据端口互换后的结果,确定A 2/D 2的值、B 2/D 2的值、C 2/D 2的值。
步骤S1021可以进一步包括以下步骤:
根据直通S参数和所述的对应关系,得到测量***的直通原始参数矩阵;
根据上述直通原始参数矩阵得到级联关系式;
根据上述级联关系式、负载S参数和反射S参数,得到A 1/D 1的值、B 1/D 1的值、C 1/D 1的值。
使用未修正的测量***测量未定义的在片直通校准件,可以得到直通S参数。根据该直通S参数可以得到直通原始参数矩阵,并存在级联关系式。需要说明的是,当在片直通校准件为直通传输线,且测量参考面在直通传输线中间时,则无须通过测量在片直通校准件的方式获取其定义。因为此时在片直通校准件的定义是已知的,其定义值是[0,1;1,0]单位矩阵。
根据级联关系式、负载S参数和反射S参数,得到A 1/D 1的值、B 1/D 1的值、C 1/D 1的值的过程如下:
根据负载S参数和在片负载校准件构建导纳关系式;
根据第一组在片反射校准件构建第一误差网络关系式;
根据第二组在片反射校准件构建第二误差网络关系式;
根据级联关系式、导纳关系式、第一误差网络关系式、第二误差网络关系式,确定A 1/D 1的值、B 1/D 1的值、C 1/D 1的值;
级联关系式为:E T=E 1E 2    (5)
其中:
Figure PCTCN2022081431-appb-000003
Figure PCTCN2022081431-appb-000004
转移参数与S参数的对应关系为:
Figure PCTCN2022081431-appb-000005
其中,E 1为未修正的测量***的第一误差网络,E 2为未修正的测量***测的第二误差网络,S 11、S 12、S 21、S 22为S参数,A T、B T、C T、D T为转移参数。
导纳关系式可以包括:
Figure PCTCN2022081431-appb-000006
其中,
Figure PCTCN2022081431-appb-000007
Y 1,A,load为第一端口的负载校准件的实际导纳测量值,Z 1,M,load为第一端口负载校准件的测量阻抗值,Z 0为特征阻抗。
可选的,
Figure PCTCN2022081431-appb-000008
其中,R 1为第一端口负载校准件的电阻实际值,L 1为第一端口负载校准件的电感实际值。
示例性的,特征电阻可以为50Ω。
本申请所述的已定义的在片负载校准件是指该负载校准件的实际导纳测量值已 知。
对于上述导纳关系式,还可以包括:
Figure PCTCN2022081431-appb-000009
其中,
Figure PCTCN2022081431-appb-000010
Figure PCTCN2022081431-appb-000011
Y 2,A,load为第二端口的负载校准件的实际导纳测量值,Z 2,M,load为第二端口负载校准件的测量阻抗值,R 2为第二端口负载校准件的电阻实际值,L 2为第二端口负载校准件的电感实际值。
第一误差网络关系式为:
Figure PCTCN2022081431-appb-000012
其中,Z i,M(j)表示阻抗值,i为第i个端口,i=1为第一端口,i=2为第二端口,M为反射校准件,j为第j个反射校准件,j=1为开路校准件,j=2为短路校准件;
根据导纳关系式、第一误差网络关系式和第二误差网络关系式能够计算第一误差参数,过程如下:
对于第一误差网络关系式,令
x 1=A TZ 2,M(1)-B T+C TZ 1,M(1)Z 2,M(2)-D TZ 1,M(1)
y 1=2D T-2C TZ 2,M(1)
v 1=2A TZ 1,M(1)Z 2,M(1)-2B TZ 1,M(1)
对于第二误差网络关系式,令
x 2=A TZ 2,M(2)-B T+C TZ 1,M(2)Z 2,M(2)-D TZ 1,M(2)
y 2=2D T-2C TZ 2,M(2)
v 2=2A TZ 1,M(2)Z 2,M(2)-2B TZ 1,M(2)
Figure PCTCN2022081431-appb-000013
Figure PCTCN2022081431-appb-000014
则:
Figure PCTCN2022081431-appb-000015
Figure PCTCN2022081431-appb-000016
Figure PCTCN2022081431-appb-000017
参考图3,第一网络关系式为从左看向被测件的第一误差网络E1的关系式。通过计算第一误差网络关系式,可以得到A 1/C 1的值、B 1/D 1的值之间的关系,再结合导纳关系式,可以得到A 1/C 1的值、B 1/D 1的值和C 1/D 1的值之间的关系,根据三者的关系可以推出A 1/D 1的值、B 1/D 1的值和C 1/D 1的值。。
S1022中的端口互换是指:将测量***的两个端口测量的S参数的结果互换。直通S参数进行端口互换得到互换后的直通S参数。负载S参数进行端口互换得到互换后的负载S参数。反射S参数进行端口互换得到互换后的反射S参数。
具体的,S1022中的端口互换包括:
将负载S参数和反射S参数中的S 11设定为S 22,S 22设定为S 11
将直通S参数中两个端口测得的S参数互换,互换后的直通S参数表示为:
Figure PCTCN2022081431-appb-000018
根据互换后的直通S参数、互换后的负载S参数和互换后的反射S参数可以得到A 2/D 2的值、B 2/D 2的值、C 2/D 2的值,具体包括以下步骤:
基于端口互换后的结果,采用与计算第一误差参数相同的方式计算得到A 3/D 3的值、B 3/D 3的值、C 3/D 3的值;
根据A 3/D 3的值、B 3/D 3的值、C 3/D 3的值确定端口互换后的第二端口的转移矩阵;
基于第二端口的转移矩阵,将端口再次互换,确定A 2/D 2的值、B 2/D 2的值和C 2/D 2 的值。
示例性的,计算A 2/D 2的值、B 2/D 2的值、C 2/D 2的值的过程如下:
第一步:对于在片反射校准件和在片负载校准件,将第一端口测得的S 11设定为S 22,第二端口测得的S 22设定为S 11
第二步:对于在片直通校准件,将第一端口测得的S参数和第二端口测得的S参数互换。
示例性的,对于两端口的在片直通校准件,测得其S参数为:
Figure PCTCN2022081431-appb-000019
第一端口和第二端口互换后的S参数为:
Figure PCTCN2022081431-appb-000020
步骤三、采用与计算A 1/D 1的值、B 1/D 1的值和C 1/D 1的值相同的方式计算A 3/D 3的值、B 3/D 3的值、C 3/D 3的值。
其中,
Figure PCTCN2022081431-appb-000021
以D3归一化后的E3转移矩阵转换成S参数,如下:
Figure PCTCN2022081431-appb-000022
det(*)表示*的行列式的值。
步骤四、再将S参数进行端口互换(即第一端口和第二端口互换后的S参数)后转换成转移矩阵,如下:
Figure PCTCN2022081431-appb-000023
得到
Figure PCTCN2022081431-appb-000024
Figure PCTCN2022081431-appb-000025
至此,计算出A 2/D 2的值、B 2/D 2的值、C 2/D 2的值。
参见图3,E 2、E 3、E 4之间的关系为:
转移参数定义跟波传输的方向(端口顺序)有关。图3中的E1和E2都是从左向 右看的,转移参数E2如果从右往左看,则变成E3。将E3在此变换端口顺序,即从左往右看,则变成E4。E4和E2有一比例关系,在这里可以看成E2=E4。
3、步骤S103的进一步说明。
S103进一步包括以下步骤:
S1031:根据S1021得到的A 1/D 1的值、B 1/D 1的值、C 1/D 1的值,以及S1022得到的A 2/D 2的值、B 2/D 2的值、C 2/D 2的值,以及D 1D 2的值对未修正的在片S参数测量***进行预修正。
D 1D 2的值的计算过程如下。
测量***可以测量无源器件。无源器件具有互易性质。利用测量***测量一个无源器件,得到如下式(3):
E DUT=E1*E A_DUT*E2    (3)
式(3)中,E DUT表示被测件未经修正的测量结果,E A_DUT表示被测件真实值,均采用ABCD矩阵表示。
因为无源器件具有互易性质,其ABCD矩阵行列式是1。因此,式(3)可以转换成式(4),如下所示:
|E DUT|=|E1|*|E2|    (4)
根据式(4)即可得到D 1D 2的模值。D 1D 2的符号可以通过现有技术(例如SOLR校准方法)得到。至此,D 1D 2的模值和符号均被求出,D 1D 2的值被求出。
步骤S101至S104中,求得了A 1/D 1的值、B 1/D 1的值、C 1/D 1的值、A 2/D 2的值、B 2/D 2的值、C 2/D 2的值,并且根据无源器件互易性质计算得到D 1D 2的值。然后根据上述各种值,实现了测量***的预修正。
示例性的,步骤S101至S104的预修正的计算过程如下:
1)采用未校准的在片S参数测量***测量一个未定义的在片直通校准件,得到直通原始参数矩阵E T,存在级联关系式(5)~(7)。
2)采用未校准的在片S参数测量***测量一组定义的在片负载校准件,得到导纳关系式(9);
采用未校准的在片S参数测量***测量两组未定义的在片反射校准件,得到第一误差网络关系式(11)和第二误差网络关系式,并通过计算该三个关系式,得到A 1/D 1的值、B 1/D 1的值、C 1/D 1的值。
3)将未校准的在片S参数测量***的两个端口测量得到的S参数进行端口互换,并采用与计算第一误差参数相同的方式计算得到A 3/D 3的值、B 3/D 3的值、C 3/D 3的值,如E 3
4)根据A 3/D 3的值、B 3/D 3的值、C 3/D 3的值确定端口互换后的第二端口的转移矩阵,如E 4。基于第二端口的转移矩阵,将端口再次互换,确定A 2/D 2的值、B 2/D 2的值和C 2/D 2的值。
5)基于无源器件的互易性质,可以计算得到D 1的值和D 2的值,基于上述的各项值,可以对未修正的在片S参数测量***进行预修正。
4、步骤S104的进一步说明。
选用各项性质已知的串扰校准件进行仿真,可以得到串扰校准件的S参数。该S参数可以视为串扰校准件的真实S参数,即串扰校准件本身具有的S参数。串扰校准件的各项性质包括物理性质和材料性质。例如介电常数、电导率、磁导率和密度等。串扰校准件的各项性质还包括几何参数,例如长、宽、高等。仿真一般使用仿真软件实现。仿真软件可以是三维电磁场仿真软件,例如CST、HFSS等。仿真完成后可以得到仿真图,通过仿真图可以得到串扰校准件的真实S参数。
5、步骤S105的进一步说明。
测量***的串扰误差可以等效为与被测件(串扰校准件)并联的微波电路网络。S105中得到的并联S参数包含串扰校准件的真实S参数和测量***的串扰误差。使用Y T表示并联S参数,Y C使用表示测量***的串扰误差,使用Y A表示串扰校准件的真实S参数,则Y C=Y T—Y A
6、步骤S106的进一步说明。
S106可以进一步包括以下步骤:
S1061:根据Y参数与S参数的转换关系将串扰校准件的真实S参数转换为真实Y参数;
S1062:根据Y参数与S参数的转换关系将并联S参数转换为并联Y参数;
S1063:使用真实Y参数和并联Y参数计算测量***的串扰误差。
Y参数以及Y参数与S参数的转换关系是本领域内公知的知识。S1063中,使用并联Y参数减去真实Y参数,即可得到测量***的串扰误差。
图2示出了一种串扰误差模型。图2中,Y 11A、Y 21A、Y 12A、Y 22A表示被测件(串扰校准件)的真实Y参数,它们组成的矩阵用Y A表示。Y 11C、Y 21C、Y 12C、Y 22C表示测量***的串扰误差,其矩阵用Y C表示。Y A与Y C为并联关系,它们同输入同输出,具有相同的电压U 1和U 2,电流关系(I 1与I 2)为叠加。用Y T表示串扰校准件的并联Y参数,则Y C=Y T—Y A。矩阵Y A和Y C如下式所示:
Figure PCTCN2022081431-appb-000026
Figure PCTCN2022081431-appb-000027
对于步骤S104至S106而言,可以对多个串扰校准件进行仿真和测量。这样每个串扰校准件可对应得出一个测量***的串扰误差。对多个串扰误差求平均值,作为测量***的最终串扰误差。通过求平均值,可以减少随机误差,使得到的串扰误差更加准确。
如果使用多个串扰校准件,则S104变化为:分别对每个串扰校准件进行仿真,得到每个串扰校准件的真实S参数。
如果使用多个串扰校准件,则S105变化为:采用预修正后的测量***测量每个串扰校准件,得到每个串扰校准件的并联S参数。
如果使用多个串扰校准件,则S106变化为:根据每个串扰校准件的真实S参数和并联S参数,以及S参数和Y参数的转换关系,计算得到每个串扰校准件对应的串扰误差。对得到的多个串扰误差求平均值,作为测量***的串扰误差。
7、步骤S107的进一步说明。
计算得到测量***的串扰误差Y C后,可以对任一被测件进行测量,得到该被测件的S参数。将该S参数转换为Y参数,记为
Figure PCTCN2022081431-appb-000028
则被测件的真实Y矩阵Y DUT为:
Figure PCTCN2022081431-appb-000029
得到被测件的真实Y矩阵后,根据Y矩阵与S矩阵的转换关系,最终可得到被测件的真实S参数,实现被测件的S参数的测量。
也就是说,使用串扰误差Y C对测量***进行再次修正的过程实际上体现在每个测量过程中。测量得到被测件的并联Y参数后,将该并联Y参数减去串扰误差Y C,再将结果转换为S参数,即可得到被测件的真实S参数。需要说明的是,虽然步骤S104可以通过仿真得到串扰校准件的真实S参数。但是对于任意被测件而言,一般无法通过仿真得到其真实S参数。因为对于任意被测件,其物理和材料性质一般是未知的,并且其结构组成十分复杂。
参见图5,其示出了在片衰减器的传输相位测量结果图。为了检验本申请提供的修正方法是否可行,发明人分别使用本申请提供的在片S参数测量***串扰误差修正方法(即新型算法)和多线TRL校准方法,在100MHz~110GHz频段,对同一在片S参数测量***进行修正,修正完成后测量相同的在片衰减器,将测量结果进行比较。图5所示测量结果中,本申请与多线TRL校准方法相比,验证件S11测量结果改善了0.02,S21的测试结果最大优化了1.7dB。本申请提供的修正方法是合理的,满足在片S参数校准和测试需求。需要说明的是多线TRL校准方法是由美国国家标准技术研究所(National Institute of Standards and Technology)提供的一种校准方法。该方法在本领 域内被公认为具有最高的校准精度。
本申请提供的修正方法可以仅使用两对对称的未定义的反射标校准件,一个未定义的直通标校准件和一对已定义的负载校校准件,即可实现测量***的修正。考虑到在毫米波及以上在片***中,微波探针存在的泄露误差,在单端口负载校准件电路模型中增加了表征泄漏的电路。
本申请提供的修正方法,整体上分为两个部分:
第一部分是预修正过程。首先得到基本的八项误差模型,即采用ABCD矩阵通过两对反射校准件和一对负载校准件分别计算出在片泄漏***的六项基本误差项。然后测试未定义的两端口无源器件(包括反射校准件或负载校准件或其他无源器件)并利用其互易特性得到剩余误差项;
第二部分,利用现有的并联串扰误差模型计算得到测量***的串扰误差。对求解算法进行了仿真验证。研制了110GHz陶瓷衬底的校准件和无源衰减器验证件,相比于现有的商用校准方法,验证件S11测量结果改善了0.02,S21的测试结果最大优化了1.7dB,且对校准件定义的信息要求更少。相比于现有SOLR校准方法,不需要准确已知两组在片反射校准件的准确量值即可实现校准,同时,若加工工艺一致,本申请提供的修正方法可再省去一组在片反射校准件,提高了测试准确度,提高了测试效率,降低了成本。
应理解,以上描述中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请的实施过程构成任何限定。
图6为本申请提供的在片S参数测量***串扰误差修正装置的结构示意图。为了便于说明,仅示出了与本申请相关的部分,详述如下。对于其中未详尽描述的细节,可以参考上述对于修正方法的描述。
如图6所示,在片S参数测量***串扰误差修正装置20包括:
预修正模块,用于在采用在片S参数测量***测量串扰校准件之前,对在片S参数***进行预修正;
预修正模块包括:
参数获取单元,用于利用未修正的在片S参数测量***测量在片直通校准件,得到直通S参数;采用未修正的在片S参数测量***测量在片负载校准件,得到负载S参数;采用未修正的在片S参数测量***测量在片反射校准件,得到反射S参数;
误差计算单元,用于根据直通S参数、负载S参数、反射S参数以及转移参数与S参数的对应关系确定未修正的在片S参数测量***的八项误差,并根据八项误差对未修正的在片S参数测量***进行预修正,得到预修正后的在片S参数测量***;
S参数测量***测量的八项误差包括A 1、B 1、C 1、D 1、A 2、B 2、C 2、D 2,误差计算单元可以包括:
第一计算子单元,用于基于转移参数与S参数的对应关系、直通S参数、负载S参数和反射S参数确定A 1/D 1的值、B 1/D 1的值、C 1/D 1的值;
端口互换子单元,用于将直通S参数、负载S参数和反射S参数进行端口互换,并根据端口互换后的结果,确定A 2/D 2的值、B 2/D 2的值、C 2/D 2的值;
第二计算子单元,用于根据A 1/D 1的值、B 1/D 1的值、C 1/D 1的值、A 2/D 2的值、B 2/D 2的值、C 2/D 2的值以及D 1D 2的值对未修正的在片S参数测量***进行预修正。
第一计算子单元还用于根据直通S参数和转移参数与S参数的对应关系确定未校准的在片S参数测量***的直通原始参数矩阵,并根据直通原始参数矩阵确定级联关系式;根据级联关系式、负载S参数和反射S参数,确定A 1/D 1的值、B 1/D 1的值、C 1/D 1的值。
在片S参数测量***串扰误差修正装置20还包括:
测量模块201,用于对串扰校准件进行仿真,得到串扰校准件的真实S参数;采用预修正后的在片S参数测量***测量串扰校准件,得到并联S参数;并联S参数含有在片S参数测量***的串扰误差;
修正模块202,用于根据真实S参数、并联S参数以及Y参数与S参数的转换关系,确定在片S参数测量***的串扰误差,并根据该串扰误差对在片S参数测量***进行修正。
修正模块202可以包括:
第一转换单元,用于利用Y参数与S参数的转换关系将真实S参数转换为仿真Y参数;
第二转换单元,用于利用Y参数与S参数的转换关系将并联S参数转换为并联Y参数;
串扰计算单元,用于根据仿真Y参数和并联Y参数确定校准后的在片S参数测量***的串扰误差。
当对多个串扰校准件进行仿真和测量时,测量模块201可以包括:
仿真单元,用于分别对每个串扰校准件进行仿真,得到每个串扰校准件的真实S参数;
测量单元,用于采用在片S参数测量***分别测量每个串扰校准件,得到该串扰校准件的并联S参数。
当对多个串扰校准件进行仿真和测量时,在片S参数测量***串扰误差修正装置 20还可以包括:
第一计算单元,用于针对每一个串扰校准件,根据该串扰校准件的真实S参数、该串扰校准件的并联S参数以及Y参数与S参数的转换关系,确定该串扰校准件对应的在片S参数测量***的串扰误差;
第二计算单元,用于求取各个串扰校准件对应的串扰误差的平均值,将该平均值作为在片S参数测量***的串扰误差,并根据该串扰误差对在片S参数***进行修正。
图7是本申请实施例提供的电子设备的示意图。如图7所示,该实施例的电子设备30包括:处理器300、存储器301以及存储在存储器301中并可在处理器300上运行的计算机程序302。处理器300执行计算机程序302时实现上述各个在片S参数测量***串扰误差修正方法实施例中的步骤,例如图1所示的S101至S102。或者,处理器300执行计算机程序302时实现上述各装置实施例中各模块/单元的功能,例如图6所示模块/单元201至202的功能。
示例性的,计算机程序302可以被分割成一个或多个模块/单元,一个或者多个模块/单元被存储在存储器301中,并由处理器300执行,以完成本申请。一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述计算机程序302在电子设备30中的执行过程。例如,计算机程序302可以被分割成图6所示的模块/单元201至202。
电子设备30可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。电子设备30可包括,但不仅限于,处理器300、存储器301。本领域技术人员可以理解,图7仅仅是电子设备30的示例,并不构成对电子设备30的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如电子设备还可以包括输入输出设备、网络接入设备、总线等。
所称处理器300可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器301可以是电子设备30的内部存储单元,例如电子设备30的硬盘或内存。存储器301也可以是电子设备30的外部存储设备,例如电子设备30上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,存储器301还可以既包括电子设备30的内部存储单元也包括外部存储设备。存储器301用于存储计算机程序以及电子设备所需的其 他程序和数据。存储器301还可以用于暂时地存储已经输出或者将要输出的数据。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述***中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的实施例中,应该理解到,所揭露的装置/电子设备和方法,可以通过其它的方式实现。例如,以上所描述的装置/电子设备实施例仅仅是示意性的,例如,模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实 施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个在片S参数测量***串扰误差修正方法实施例的步骤。其中,计算机程序包括计算机程序代码,计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。计算机可读介质可以包括:能够携带计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、电载波信号、电信信号以及软件分发介质等。需要说明的是,计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括是电载波信号和电信信号。
以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (13)

  1. 一种在片S参数测量***串扰误差修正方法,其特征在于,包括:
    利用未校准的在片S参数测量***测量在片直通校准件,得到直通S参数;采用所述未校准的在片S参数测量***测量在片负载校准件,得到负载S参数;采用所述未校准的在片S参数测量***测量在片反射校准件,得到反射S参数;
    根据所述直通S参数、所述负载S参数、所述反射S参数以及转移参数与S参数的对应关系确定所述未校准的在片S参数测量***测量的八项误差,并根据所述八项误差对所述未校准的在片S参数测量***进行校准,得到校准后的在片S参数测量***;
    对串扰校准件进行仿真,得到串扰S参数;采用所述校准后的在片S参数测量***测量所述串扰校准件,得到并联S参数;所述并联S参数包括串扰误差;
    根据所述串扰S参数、所述并联S参数以及Y参数与S参数的转换关系,确定所述在片S参数测量***的串扰误差,并根据所述串扰误差对所述在片S参数***进行修正。
  2. 如权利要求1所述的在片S参数测量***串扰误差修正方法,其特征在于,所述未校准的在片S参数测量***测量的八项误差包括A 1、B 1、C 1、D 1、A 2、B 2、C 2、D 2,所述根据所述直通S参数、所述负载S参数、所述反射S参数以及转移参数与S参数的对应关系确定所述未校准的在片S参数测量***测量的八项误差,并根据所述八项误差对所述未校准的在片S参数测量***进行校准,包括:
    基于转移参数与S参数的对应关系、所述直通S参数、所述负载S参数和所述反射S参数确定A 1/D 1的值、B 1/D 1的值、C 1/D 1的值;
    将所述直通S参数、所述负载S参数和所述反射S参数进行端口互换,并根据端口互换后的结果,确定A 2/D 2的值、B 2/D 2的值、C 2/D 2的值;
    根据A 1/D 1的值、B 1/D 1的值、C 1/D 1的值、A 2/D 2的值、B 2/D 2的值、C 2/D 2的值以及D 1D 2的值,对所述未校准的在片S参数测量***进行校准。
  3. 如权利要求2所述的在片S参数测量***串扰误差修正方法,其特征在于,所述基于转移参数与S参数的对应关系、所述直通S参数、所述负载S参数和所述反射S参数确定A 1/D 1的值、B 1/D 1的值、C 1/D 1的值,包括:
    根据所述直通S参数和所述转移参数与S参数的对应关系确定所述未校准的在片S参数测量***的直通原始参数矩阵,并根据所述直通原始参数矩阵确定级联关系式;
    根据所述级联关系式、所述负载S参数和所述反射S参数,确定A 1/D 1的值、B 1/D 1的值、C 1/D 1的值。
  4. 如权利要求1所述的在片S参数测量***串扰误差修正方法,其特征在于,所述根据所述串扰S参数、所述并联S参数以及Y参数与S参数的转换关系,确定所述在片S参数测量***的串扰误差,包括:
    利用Y参数与S参数的转换关系将所述串扰S参数转换为串扰Y参数;
    利用Y参数与S参数的转换关系将所述并联S参数转换为并联Y参数;
    根据所述串扰Y参数和所述并联Y参数确定所述校准后的在片S参数测量***的串扰误差。
  5. 如权利要求1所述的在片S参数测量***串扰误差修正方法,其特征在于,所述串扰校准件为预设数量;
    所述对串扰校准件仿真,得到串扰S参数,包括:
    分别对所述预设数量的串扰校准件进行仿真,得到对应串扰校准件的串扰S参数;
    所述采用在片S参数测量***测量所述串扰校准件,得到并联S参数,包括:
    采用在片S参数测量***分别测量所述预设数量的串扰校准件,得到对应串扰校准件的并联S参数。
  6. 如权利要求5所述的在片S参数测量***串扰误差修正方法,其特征在于,在得到对应串扰校准件的串扰S参数和得到对应串扰校准件的并联S参数后,所述方法还包括:
    针对每一个串扰校准件,根据该串扰校准件的串扰S参数、该串扰校准件的并联S参数以及Y参数与S参数的转换关系,确定该串扰校准件对应的串扰误差;
    求取各个的串扰校准件对应的串扰误差的平均串扰误差,作为所述在片S参数测量***的串扰误差,并根据所述串扰误差对所述在片S参数***进行修正。
  7. 一种在片S参数测量***串扰误差修正装置,其特征在于,包括:
    测量模块,用于对串扰校准件仿真,得到串扰S参数;采用所述在片S参数测量***测量所述串扰校准件,得到并联S参数;所述并联S参数包括串扰误差;
    修正模块,用于根据所述串扰S参数、所述并联S参数以及Y参数与S参数的转换关系,确定所述在片S参数测量***的串扰误差,并根据所述串扰误差对所述在片S参数***进行修正。
  8. 一种电子设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如上的权利要求1至6中任一项所述在片S参数测量***串扰误差修正方法的步骤。
  9. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如上的权利要求1至6中任一项所述在 片S参数测量***串扰误差修正方法的步骤。
  10. 一种在片S参数测量***串扰误差修正方法,其特征在于,包括:
    第一测量步骤:采用在片S参数测量***测量在片直通校准件,得到直通S参数;采用在片S参数测量***测量在片负载校准件,得到负载S参数;采用在片S参数测量***测量在片反射校准件,得到反射S参数;
    第一计算步骤:根据所述直通S参数、所述负载S参数、所述反射S参数以及转移参数与S参数的对应关系,计算所述在片S参数测量***的八项误差;
    第一修正步骤:根据所述八项误差,对所述在片S参数测量***进行预修正,得到预修正后的在片S参数测量***;
    仿真步骤:对串扰校准件进行仿真,得到串扰校准件的真实S参数;
    第二测量步骤:采用所述预修正后的在片S参数测量***测量所述串扰校准件,得到并联S参数,所述并联S参数含有所述在片S参数测量***的串扰误差;
    第二计算步骤:根据所述真实S参数、所述并联S参数以及Y参数与S参数的转换关系,计算所述串扰误差;
    第二修正步骤:根据所述串扰误差,对所述预修正后的在片S参数测量***进行再次修正。
  11. 如权利要求10所述的在片S参数测量***串扰误差修正方法,其特征在于,所述八项误差分别为A 1、B 1、C 1、D 1、A 2、B 2、C 2、D 2,所述第一计算步骤包括:
    第三计算步骤:根据所述直通S参数、所述负载S参数、所述反射S参数以及所述转移参数与S参数的对应关系,计算A 1/D 1的值、B 1/D 1的值、C 1/D 1的值;
    第四计算步骤:将所述直通S参数、所述负载S参数和所述反射S参数进行端口互换,并根据端口互换后的结果,计算A 2/D 2的值、B 2/D 2的值、C 2/D 2的值;
    所述第一修正步骤包括:
    根据A 1/D 1的值、B 1/D 1的值、C 1/D 1的值、A 2/D 2的值、B 2/D 2的值、C 2/D 2的值以及D 1D 2的值,对所述在片S参数测量***进行预修正。
  12. 如权利要求11所述的在片S参数测量***串扰误差修正方法,其特征在于,所述第三计算步骤包括:
    根据所述直通S参数和所述转移参数与S参数的对应关系,计算所述在片S参数测量***的直通原始参数矩阵;
    根据所述直通原始参数矩阵确定级联关系式;
    根据所述级联关系式、所述负载S参数和所述反射S参数,确定A 1/D 1的值、B 1/D 1的值、C 1/D 1的值。
  13. 如权利要求10所述的在片S参数测量***串扰误差修正方法,其特征在于,所述第二计算步骤包括:
    利用所述转换关系,将所述真实S参数转换为真实Y参数;
    利用所述转换关系,将所述并联S参数转换为并联Y参数;
    根据所述真实Y参数和所述并联Y参数,计算所述串扰误差。
PCT/CN2022/081431 2021-08-16 2022-03-17 在片s参数测量***串扰误差修正方法及电子设备 WO2023019935A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/890,854 US20230051442A1 (en) 2021-08-16 2022-08-18 Method for Calibrating Crosstalk Errors in System for Measuring on-Wafer S Parameters and Electronic Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110938374.8A CN113849958A (zh) 2021-08-16 2021-08-16 在片s参数测量***串扰误差修正方法及电子设备
CN202110938374.8 2021-08-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/890,854 Continuation US20230051442A1 (en) 2021-08-16 2022-08-18 Method for Calibrating Crosstalk Errors in System for Measuring on-Wafer S Parameters and Electronic Device

Publications (1)

Publication Number Publication Date
WO2023019935A1 true WO2023019935A1 (zh) 2023-02-23

Family

ID=78975595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081431 WO2023019935A1 (zh) 2021-08-16 2022-03-17 在片s参数测量***串扰误差修正方法及电子设备

Country Status (2)

Country Link
CN (1) CN113849958A (zh)
WO (1) WO2023019935A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116755019A (zh) * 2023-04-07 2023-09-15 浙江大学 一种使用未知直通校准件的四端***频探针校准方法
CN117129371A (zh) * 2023-10-27 2023-11-28 宁德时代新能源科技股份有限公司 面密度测量仪的标定方法、装置和可读存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113849958A (zh) * 2021-08-16 2021-12-28 中国电子科技集团公司第十三研究所 在片s参数测量***串扰误差修正方法及电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109444721A (zh) * 2018-12-19 2019-03-08 中国电子科技集团公司第十三研究所 检测s参数的方法及终端设备
CN109444717A (zh) * 2018-11-27 2019-03-08 中国电子科技集团公司第十三研究所 新型在片s参数误差校准方法和装置
CN110286345A (zh) * 2019-05-22 2019-09-27 中国电子科技集团公司第十三研究所 一种矢量网络分析仪在片s参数的校准方法、***及设备
CN111142057A (zh) * 2019-12-17 2020-05-12 中国电子科技集团公司第十三研究所 太赫兹频段在片s参数的校准方法及终端设备
CN111257814A (zh) * 2020-03-05 2020-06-09 西北工业大学 矢量网络分析仪的直通-短路-短路校准方法
CN111983538A (zh) * 2020-07-15 2020-11-24 中国电子科技集团公司第十三研究所 在片s参数测量***校准方法及装置
CN111983539A (zh) * 2020-07-21 2020-11-24 中国电子科技集团公司第十三研究所 在片s参数测量***校准方法
CN113849958A (zh) * 2021-08-16 2021-12-28 中国电子科技集团公司第十三研究所 在片s参数测量***串扰误差修正方法及电子设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112098792B (zh) * 2020-08-14 2023-02-28 中国电子科技集团公司第十三研究所 两端口在片校准件模型和参数确定的方法
CN112098791B (zh) * 2020-08-14 2023-03-21 中国电子科技集团公司第十三研究所 在片校准件模型及在片校准件模型中参数确定的方法
CN112098793B (zh) * 2020-08-14 2023-02-28 中国电子科技集团公司第十三研究所 单端口在片校准件模型确定的方法及终端设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109444717A (zh) * 2018-11-27 2019-03-08 中国电子科技集团公司第十三研究所 新型在片s参数误差校准方法和装置
CN109444721A (zh) * 2018-12-19 2019-03-08 中国电子科技集团公司第十三研究所 检测s参数的方法及终端设备
CN110286345A (zh) * 2019-05-22 2019-09-27 中国电子科技集团公司第十三研究所 一种矢量网络分析仪在片s参数的校准方法、***及设备
CN111142057A (zh) * 2019-12-17 2020-05-12 中国电子科技集团公司第十三研究所 太赫兹频段在片s参数的校准方法及终端设备
CN111257814A (zh) * 2020-03-05 2020-06-09 西北工业大学 矢量网络分析仪的直通-短路-短路校准方法
CN111983538A (zh) * 2020-07-15 2020-11-24 中国电子科技集团公司第十三研究所 在片s参数测量***校准方法及装置
CN111983539A (zh) * 2020-07-21 2020-11-24 中国电子科技集团公司第十三研究所 在片s参数测量***校准方法
CN113849958A (zh) * 2021-08-16 2021-12-28 中国电子科技集团公司第十三研究所 在片s参数测量***串扰误差修正方法及电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN LIU, WANG YI-BANG, AI-HUA WU, JING DU, ZHANG LI-FEI: "Research on Crosstalk Correction Method for Terahertz On-Wafer S Parameter Measurement", JOURNAL OF MICROWAVES, vol. 37, no. 2, 30 April 2021 (2021-04-30), pages 66 - 69, XP093036077, ISSN: 1005-6122, DOI: 10.14183/j.cnki.1005-6122.202102012 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116755019A (zh) * 2023-04-07 2023-09-15 浙江大学 一种使用未知直通校准件的四端***频探针校准方法
CN116755019B (zh) * 2023-04-07 2024-02-13 浙江大学 一种使用未知直通校准件的四端***频探针校准方法
CN117129371A (zh) * 2023-10-27 2023-11-28 宁德时代新能源科技股份有限公司 面密度测量仪的标定方法、装置和可读存储介质
CN117129371B (zh) * 2023-10-27 2024-04-09 宁德时代新能源科技股份有限公司 面密度测量仪的标定方法、装置和可读存储介质

Also Published As

Publication number Publication date
CN113849958A (zh) 2021-12-28

Similar Documents

Publication Publication Date Title
WO2023019935A1 (zh) 在片s参数测量***串扰误差修正方法及电子设备
US11340286B2 (en) On-wafer S-parameter calibration method
WO2021120452A1 (zh) 太赫兹频段在片s参数的校准方法及终端设备
CN109444721B (zh) 检测s参数的方法及终端设备
WO2020232810A1 (zh) 一种矢量网络分析仪在片s参数的校准方法、***及设备
CN112098791B (zh) 在片校准件模型及在片校准件模型中参数确定的方法
CN111929558B (zh) 一种基于自校准的去嵌方法、***、存储介质及终端
US11385175B2 (en) Calibration method and terminal equipment of terahertz frequency band on-wafer S parameter
CN111983539B (zh) 在片s参数测量***校准方法
CN111579869B (zh) 互易二端口网络s参数测量方法、装置及终端设备
CN111983538B (zh) 在片s参数测量***校准方法及装置
CN110954809A (zh) 一种用于大信号测试的矢量校准快速修正方法
CN112698257A (zh) 矢量网络分析仪硬件指标对测量精度影响的分析方法
CN112098793B (zh) 单端口在片校准件模型确定的方法及终端设备
CN108107392A (zh) 多线trl校准方法及终端设备
CN104062510B (zh) 可减小测量误差的两端口较远互易馈线***损耗测量方法
CN111025214A (zh) 获取功率校准模型的方法及终端设备
CN112098794B (zh) 在片校准件模型中参数确定的方法及终端设备
US20230051442A1 (en) Method for Calibrating Crosstalk Errors in System for Measuring on-Wafer S Parameters and Electronic Device
CN113821763B (zh) 在片s参数测量***校准方法及电子设备
CN114137389A (zh) 微波探针s参数相位的确定方法、装置、终端及存储介质
CN116125353A (zh) 在片s参数测量***误差修正方法、电子设备及存储介质
CN116165589A (zh) 在片s参数测量***校准方法、电子设备及存储介质
CN114252831A (zh) 太赫兹在片同轴验证及优化选择***、方法及装置
Wallis et al. Statistical measurement techniques for equivalent source mismatch of 1.85 mm power splitter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22857254

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE