WO2023019842A1 - 功率控制方法及装置 - Google Patents

功率控制方法及装置 Download PDF

Info

Publication number
WO2023019842A1
WO2023019842A1 PCT/CN2021/140749 CN2021140749W WO2023019842A1 WO 2023019842 A1 WO2023019842 A1 WO 2023019842A1 CN 2021140749 W CN2021140749 W CN 2021140749W WO 2023019842 A1 WO2023019842 A1 WO 2023019842A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
target device
error rate
frame error
power
Prior art date
Application number
PCT/CN2021/140749
Other languages
English (en)
French (fr)
Inventor
吴泽先
Original Assignee
西安闻泰信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安闻泰信息技术有限公司 filed Critical 西安闻泰信息技术有限公司
Publication of WO2023019842A1 publication Critical patent/WO2023019842A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to a power control method and device.
  • Most positioning systems usually include positioning devices such as base stations, and devices that need to be positioned, such as tags.
  • the positioning device and the positioned device realize positioning by sending and receiving signals.
  • the positioning accuracy of most existing positioning systems is difficult to meet the preset requirements, and the positioning accuracy is low.
  • the existing positioning system will set the signal transmission power of the positioning device and the positioned device in advance, and the positioning device and the positioned device will transmit signals according to the preset signal transmission power. If the signal transmission power is not set well, it will directly affect the positioning. precision.
  • a power control method, device, control device, UWB positioning system and storage medium are provided.
  • a power control method comprising:
  • a power adjustment operation is performed based on the power control strategy to reduce the frame error rate of the target device to within the preset frame error threshold.
  • the step of obtaining the frame error rate of the target device in the positioning system includes: counting the total number of frames of the signal of the target device received by each signal receiving device in the positioning system within a specified period of time and The number of error frames; for each of the signal receiving devices, according to the total number of signal frames of the target device received by the signal receiving device and the number of error frames, calculate the error of the signal receiving device corresponding to the target device Frame rate: use the maximum frame error rate among all calculated frame error rates as the frame error rate of the target device.
  • the step of determining the cause of the frame error rate includes: counting the signals of each signal frame of the target device received by each signal receiving device in the positioning system within a specified period of time Power: determining the frame error rate according to the signal power of each of the signal frames of the target device received by each of the signal receiving devices, a preset minimum signal power threshold, and a preset maximum signal power threshold The cause of the cause; wherein, the cause includes: the signal transmission power of the target device is insufficient, or the transmission power of the surrounding devices of the target device is too high; wherein, the surrounding devices are in the positioning system and The target device is separated from devices within a preset distance range.
  • the step of determining the cause of the frame error rate includes: for each of the signal receiving devices, counting the number of first signal frames of the signal receiving device; wherein, the first number of signal frames is received by the signal receiving device The number of signal frames whose signal power of the target device is less than the preset minimum signal power threshold; count the number of second signal frames of the signal receiving device; wherein, the second number of signal frames is received by the signal receiving device The number of signal frames whose received signal power of the target device is greater than the preset highest signal power threshold; according to the first signal frame number, the second signal frame number of each of the signal receiving devices and the received target The total number of frames of the signal of the device to determine the cause of the frame error rate.
  • the triggering of the frame error rate is determined according to the first signal frame number, the second signal frame number of each of the signal receiving devices, and the total number of received signal frames of the target device
  • the step of the cause includes: for each said signal receiving device, calculating the first ratio of the first signal frame number of the signal receiving device to the total number of signal frames, and the ratio of the second signal frame number of the signal receiving device to the said signal receiving device The second ratio of the total number of frames of the signal; the maximum value of all the calculated first ratios is used as the lowest signal quality ratio of the target device, and the minimum value of all the calculated second ratios is used as the target
  • the highest signal quality ratio of the device if the lowest signal quality ratio is less than the preset first ratio threshold, it is determined that the cause of the frame error rate is insufficient signal transmission power of the target device; if the highest signal quality ratio If it is greater than the preset second ratio threshold, it is determined that the cause of the frame error rate is that the transmit power of the surrounding devices of the target device is too high.
  • the step of determining the power control strategy according to the cause includes: if the cause is that the signal transmission power of the target device is insufficient, then determining the power control strategy is to adjust the power of the target device Signal transmission power; if the cause is that the transmission power of the surrounding devices of the target device is too high, then determining that the power control strategy is to adjust the signal transmission power of the surrounding devices of the target device.
  • the step of performing a power adjustment operation based on the power control strategy includes: if the power control strategy is to adjust the signal transmission power of the target device, increasing the signal transmission of the target device Power; if the power control strategy is to adjust the signal transmission power of the surrounding devices of the target device, then reduce the signal transmission power of the surrounding devices of the target device and/or increase the signal transmission of the surrounding devices of the target device interval.
  • the step of reducing the signal transmission power of the surrounding devices of the target device and/or increasing the signal transmission interval of the surrounding devices of the target device includes: obtaining The frame error rate of each surrounding device that is separated from the target device by a preset distance range; according to the frame error rate of each of the surrounding devices, filter out a plurality of surrounding devices to be adjusted according to a preset number ratio device; wherein, the frame error rate of each of the devices to be adjusted is lower than the frame error rate of the target device, and the frame error rate of each of the devices to be adjusted is lower than that of the peripheral devices except the one to be adjusted The frame error rate of other devices than the device; reducing the signal transmission power of the device to be adjusted and/or increasing the signal transmission interval of the device to be adjusted.
  • the method further includes: obtaining the positioning accuracy of the target device; and reducing the transmission power of the target device when the positioning accuracy is greater than a preset accuracy threshold.
  • a power control device comprising:
  • a frame error rate acquisition module configured to acquire the frame error rate of the target device in the positioning system
  • the cause determination module is configured to determine the cause of the frame error rate if the frame error rate is greater than a preset frame error threshold
  • a strategy determination module configured to determine a power control strategy according to the cause
  • a power adjustment module configured to perform a power adjustment operation based on the power control policy, so as to reduce the frame error rate of the target device to within the preset frame error threshold.
  • a power control device comprising:
  • a memory and one or more processors the memory is configured as a module storing computer-readable instructions; when the computer-readable instructions are executed by the processor, the one or more processors are configured to perform any Steps of a power control method provided in one embodiment.
  • a UWB positioning system comprising the above-mentioned control device, and further comprising a target device communicatively connected with the control device; the target device includes a base station and/or a tag.
  • One or more non-volatile storage media storing computer-readable instructions, when the computer-readable instructions are executed by one or more processors, the one or more processors execute the power provided in any one of the embodiments of the present disclosure The steps of the control method.
  • FIG. 1 is a schematic structural diagram of a positioning system provided by one or more embodiments of the present disclosure
  • FIG. 2 is a schematic structural diagram of a UWB positioning system provided by one or more embodiments of the present disclosure
  • FIG. 3 is a schematic flowchart of a power control method provided by one or more embodiments of the present disclosure
  • FIG. 4 is a schematic structural diagram of a power control device provided by one or more embodiments of the present disclosure.
  • Fig. 5 is a schematic structural diagram of a control device provided by one or more embodiments of the present disclosure.
  • the inventors have found through research that the positioning accuracy of the positioning system will be affected by wireless signals, and the positioning devices (such as base stations) and positioned devices (such as tags) in the positioning system If the signal transmission power is too high, it will cause self-interference or signal drift, and if the signal transmission power is insufficient, it will be difficult for the signal to be effectively received or decoded normally.
  • the existing positioning system does not consider the impact of signal transmission power on positioning accuracy. Most of them are only set in advance to set the signal transmission power within a fixed range of the base station/tag transmission in advance, and the signal transmission power will not be controlled afterwards, so it is difficult to effectively guarantee the positioning accuracy.
  • embodiments of the present disclosure provide a power control method and device. It should be noted that the above-mentioned defects in the positioning system in the related art are the results obtained by the applicant after practice and careful research. All proposed solutions should be recognized as the applicant's contribution to this disclosure.
  • the power control method provided in this disclosure can be applied to the structural schematic diagram of a positioning system as shown in FIG. 1 , which shows that the power control method is applied in an application environment of a positioning system. and the positioned device 300 .
  • the control device 100, the positioning device 200 and the positioned device 300 can communicate wirelessly between each other, and the power control of the positioning device 200 and/or the positioned device 300 can be performed through the control device 100, wherein the positioning device 200 and the positioned device 300 can be connected to each other.
  • the control device 100 can obtain the frame error rate of the target device in the positioning system; if the frame error rate is greater than the preset frame error threshold, further determine the cause of the frame error rate; thus determine according to the cause Power control strategy; and then perform power adjustment operations based on the power control strategy to reduce the frame error rate of the target device to the preset error frame threshold.
  • the above method fully takes into account that inappropriate signal transmission power will affect the positioning accuracy, and considers Inappropriate signal transmission power will cause a large frame error rate. Therefore, when the frame error rate of the target device is high, find out the cause of the frame error rate and determine the corresponding power control strategy, and then perform power adjustment operations to reduce the error rate. frame rate, thereby effectively improving positioning accuracy.
  • control device 100 can be, but not limited to, a server, a computer device, a host computer, a control module, etc.
  • the control device 100 can be a server, a host computer set independently, or a control module integrated on a designated positioning device , without limitation here.
  • the positioning system can be a UWB (Ultra-Wide Band, ultra-wideband) positioning system.
  • the UWB positioning system takes advantage of its ultra-wideband and high-speed pulse carrier characteristics, and plays an important role in short-distance precise positioning. Applied to indoor positioning, IoT positioning, etc., it has a more accurate positioning effect for mobile tags.
  • the positioning device in the UWB positioning system is a base station (anchor), and the positioned device is a tag (tag).
  • the base station can use UWB technology to locate the tag, and the tag can use UWB technology to obtain its own position coordinates.
  • the UWB positioning system may also include a control device such as a server, which is used to control the signal transmission power of the base station and the tag.
  • a control device such as a server, which is used to control the signal transmission power of the base station and the tag.
  • the UWB positioning system can contain multiple base stations and multiple tags.
  • FIG. 2 is only a simple illustration.
  • a UWB positioning system may generally include multiple tags and multiple base stations. Embodiments of the present disclosure do not limit the specific number of tags and base stations in the positioning system.
  • the UWB positioning system can be used as a short-distance positioning system including multiple base stations and multiple tags, and the distance measurement and positioning are realized by transmitting and receiving high-frequency wireless signals between the base station and the tags, the signal proposed by the inventor is more obvious.
  • the problem that the transmission power affects the positioning accuracy, such as the insufficient signal transmission power of the tag will make it difficult for the base station to receive effective signals or to decode the received signal normally, or the insufficient signal transmission power of the base station will make it difficult for the tag to receive valid signals.
  • the signal may be difficult to decode the received signal normally; or, if the signal transmission power of the tag/base station is too high, it will interfere with the transmission signals of other devices around it, etc.
  • the above problems will reduce the positioning accuracy to a certain extent. Therefore, the power control method provided by the embodiments of the present disclosure can be better applied to a UWB positioning system. For ease of understanding, the power control method provided by the embodiments of the present disclosure is described in detail below.
  • FIG. 3 is a schematic flowchart of a power control method provided by an embodiment of the present disclosure.
  • the method can be executed by a control device of a positioning system, and the control device
  • the control device can be a device with processing functions such as a controller and a processor.
  • the control device can be set independently.
  • the control device can be a separate computer, server, etc., or it can be integrated on a positioning device such as a base station in the positioning system. , without limitation here.
  • the method mainly includes the following steps S302 to S308:
  • Step S302 acquiring the frame error rate of the target device in the positioning system.
  • the positioning system includes but is not limited to a UWB positioning system, and the target device may be a positioning device (such as a base station) in the positioning system, or may be a positioned device (such as a tag). That is, there are multiple base stations and tags in the positioning system, and each base station and each tag can be used as a target device, and the target device can be specifically determined according to actual conditions, which is not limited here.
  • the target device transmits signals.
  • the frame error rate of the target device can be calculated based on the signal frames received by the signal receiving device of the target device, where the frame error rate is equal to the frame error rate received by the signal receiving device. The ratio of the number of error frames to the total number of frames of the signal.
  • the largest frame error rate is selected as the frame error rate of the target device.
  • the signal receiving device of the target device may be a tag; when the target device is a tag, the signal receiving device of the target device may be a base station.
  • Step S304 if the frame error rate is greater than the preset frame error threshold, determine the cause of the frame error rate.
  • the frame error threshold can be set according to actual conditions, and is not limited here. Whether the current frame error rate is acceptable can be measured by presetting the frame error threshold, in other words, it can be used to measure whether the current signal transmission power is inappropriate. If the frame error rate is greater than the preset frame error threshold, it means that the frame error rate is unacceptable, and the current signal transmission power is not suitable, which may affect the positioning accuracy, so the cause of the frame error rate will be further determined.
  • the cause of the frame error rate includes but is not limited to: the signal transmission power of the target device is insufficient, or the transmission power of the surrounding devices of the target device is relatively high.
  • Step S306 determine the power control strategy according to the cause; wherein, the power control strategy includes adjusting the signal transmission power of the target device, or adjusting the signal transmission power of the surrounding devices of the target device; the surrounding devices are preset for the distance from the target device in the positioning system devices within range.
  • the corresponding relationship between the cause and the power control strategy can be preset.
  • the corresponding power control strategy is to adjust the signal transmission power of the target device.
  • it may be: increase the signal transmission power of the target device; the cause is to adjust the signal transmission power of the surrounding devices of the target device, and the corresponding power control strategy is to adjust the signal transmission power of the surrounding devices of the target device; It may be: lowering the signal transmission power of surrounding devices of the target device.
  • the surrounding devices within the preset distance from the target device can be determined.
  • the power of all surrounding devices can be adjusted, or some devices can be selected from the surrounding devices according to preset conditions. Perform power adjustment (at this time, you can set the power adjustment range of other peripheral devices that have not been selected to 0).
  • the signal transmission power of different surrounding devices can be adjusted in the same or different ways, for example, the closer the surrounding device is to the target device, the larger the adjustment range of its signal transmission power; or, it can also be adjusted according to the frame error rate of the surrounding device
  • the surrounding equipment with a lower frame error rate can be preferentially adjusted. The above is only an example for illustration, and the specific adjustment method is not limited here.
  • Surrounding devices are devices within a preset distance from the target device in the positioning system, and the preset distance can be set according to actual conditions, such as 3 meters.
  • the device type of the surrounding device may be the same as or different from the target device.
  • the surrounding device may be a base station or a tag; when the target device is a tag, the surrounding device may be a tag or for the base station.
  • the device type definition of the surrounding device is the same as that of the target device.
  • the surrounding device is also defined as a base station; when the target device is a tag, the surrounding device is also defined as a tag.
  • Step S308 perform a power adjustment operation based on the power control strategy, so as to reduce the frame error rate of the target device to within a preset frame error threshold.
  • the power is adjusted based on the power control strategy in order to gradually reduce the frame error rate of the target device until the frame error rate of the target device meets the requirements, so that the problem of poor signal transmission power affecting the positioning accuracy can be better improved.
  • the above power control method fully takes into account that inappropriate signal transmission power will affect the positioning accuracy, and considers that inappropriate signal transmission power will cause a large frame error rate, so the frame error rate of the target device When the frame error rate is large, find out the cause of the frame error rate and determine the corresponding power control strategy, and then perform power adjustment operations to reduce the frame error rate, thereby effectively improving the positioning accuracy.
  • the embodiment of the present disclosure provides a specific implementation example of obtaining the frame error rate of the target device in the positioning system, which can be realized by referring to the following steps: first, count each signal receiving device in the positioning system within a specified period of time (also can be The total number of frames and the number of error frames of the signal received by the target device are referred to as the first designated period); for each signal receiving device, according to the total number of signal frames and the number of error frames of the target device received by the signal receiving device, Calculate the frame error rate of the signal receiving device corresponding to the target device; finally, use the maximum frame error rate among all the calculated frame error rates as the frame error rate of the target device.
  • the signal receiving device is a base station.
  • the tag transmits the signal using the current signal transmission power
  • the total number of frames of the tag's signal received by each base station within a specified period can be counted. and the number of error frames, and then calculate the frame error rate of each base station corresponding to the tag from the base station side, and use the final maximum frame error rate as the frame error rate of the tag.
  • the target device is a base station
  • the frame error rate of each tag corresponding to the base station is calculated from the label side, and the maximum frame error rate is taken as the frame error rate of the base station, which will not be repeated here.
  • the embodiment of the present disclosure does not limit the specified period of time, such as within 3 minutes or 20 minutes of the specified period; in the implementation of counting the signal frames within the specified period of time, it can be implemented in the sliding window mode within the specified period of time, For example, when the window size is 2s and the sliding step is 1s, then the total number of signal frames and the number of error frames during 0 ⁇ 2s, 1 ⁇ 3s, 2 ⁇ 4s are counted successively, and finally can be smoothly acquired within the specified period The total number of frames and error frames of the signal. In practical applications, it can be set that when the total number of frames of the signal reaches the set threshold, the calculation of the frame error rate can be started, so as to avoid the situation where the total number of signal frames is too small and the frame error rate is inaccurate.
  • the frame error rate of the target device can be reasonably determined, and the maximum frame error rate is used as a benchmark to fully measure whether the current frame error rate is acceptable, so as to reasonably measure the rationality of the current signal transmission power.
  • the cause of the frame error rate can be determined with reference to the following steps A and B:
  • step A the signal power of each signal frame of the target device received by each signal receiving device in the positioning system within a specified time period (also referred to as a second specified time period) is calculated.
  • the second designated time period may be the same as or different from the aforementioned first designated time period, which is not limited here.
  • Step B according to the signal power of each signal frame of the target device received by each signal receiving device, the preset minimum signal power threshold and the preset highest signal power threshold, determine the cause of the frame error rate;
  • the reasons include: the signal transmitting power of the target device is insufficient, or the transmitting power of the surrounding devices of the target device is relatively high.
  • the signal quality received by the signal receiving device can be effectively measured, so as to determine the frame error rate based on the signal quality of the cause.
  • step B can be implemented with reference to the following steps B1 to B3:
  • Step B1 for each signal receiving device, count the first signal frame number of the signal receiving device; wherein, the first signal frame number is that the signal power of the target device received by the signal receiving device is less than the preset minimum signal power threshold The number of signal frames.
  • the lowest signal power threshold ie the lowest acceptable received signal threshold, is for example -30dbm. That is, after the signal power of each signal frame of the target device received by the signal receiving device within a specified period of time is statistically obtained through step A, the signal power of each signal frame is compared with the minimum signal power threshold, and the statistics The number of signal frames whose signal power is less than the minimum signal power threshold is the first number of signal frames.
  • Step B2 counting the number of second signal frames of the signal receiving device; wherein, the second number of signal frames is the number of signal frames received by the signal receiving device in which the signal power of the target device is greater than a preset maximum signal power threshold.
  • the highest signal power threshold is also the highest acceptable received signal threshold, such as -20dbm. That is, after the signal power of each signal frame of the target device received by the signal receiving device within a specified period of time is obtained statistically through step A, the signal power of each signal frame is compared with the highest signal power threshold, and the statistics The number of signal frames whose signal power is greater than the highest signal power threshold is the second number of signal frames.
  • Step B3 according to the first signal frame number, the second signal frame number of each signal receiving device and the total received signal frame number of the target device, determine the cause of the frame error rate. Specifically, the ratio of signal frames of different types (too low or too high) may be calculated based on the first signal frame number, the second signal frame number and the total signal frame number, so as to determine the cause of the frame error rate based on the ratio.
  • the above step B3 can be implemented with reference to the following steps B3.1 to B3.4:
  • Step B3.1 for each signal receiving device, calculate the first ratio of the first signal frame number of the signal receiving device to the total signal frame number, and the ratio of the second signal frame number of the signal receiving device to the total signal frame number second ratio.
  • the first ratio can reflect the proportion of too low signal in the signal frame sent by the target device
  • the second ratio can reflect the proportion of too high signal in the signal frame sent by the target device.
  • Step B3.2 taking the maximum value of all calculated first ratios as the lowest signal quality ratio of the target device, and taking the minimum value of all calculated second ratios as the highest signal quality ratio of the target device.
  • each signal receiving device corresponds to a first ratio and a second ratio
  • the embodiment of the present disclosure selects the maximum value from the first ratios corresponding to all signal receiving devices as the lowest signal quality ratio of the target device, from The maximum value is selected from the second ratios corresponding to all signal receiving devices as the highest signal quality ratio of the target device, so as to reasonably represent the quality of the signal frame sent by the target device.
  • step B3.3 if the lowest signal quality ratio is smaller than the preset first ratio threshold, it is determined that the frame error rate is caused by insufficient signal transmission power of the target device.
  • the first ratio threshold can be flexibly set according to requirements, for example, the first ratio threshold can be 60%. If the lowest signal quality ratio (the largest first ratio) of the target device is smaller than the first ratio threshold, it means that the signal frame sent by the target device generally has insufficient power, making it difficult for the signal receiving device to receive the signal effectively or perform normal processing on the signal. Decoding, that is, explaining that the frame error rate is caused by insufficient signal transmission power of the target device. Taking the target device as an example, when the signal transmission power of the tag is insufficient, the base station will not be able to decode the received signal normally, resulting in the frame error rate of the tag measured from the base station being greater than the preset frame error threshold .
  • step B3.4 if the highest signal quality ratio is greater than the preset second ratio threshold, it is determined that the frame error rate is caused by the high transmit power of surrounding devices of the target device.
  • the second ratio threshold can be flexibly set according to requirements, for example, the second ratio threshold can be 40%. If the highest signal quality ratio (the smallest second ratio) of the target device is greater than the second ratio threshold, it means that the signal receiving device of the target device can receive and decode the signal frame normally, and the frame error rate will not be large in theory, but if the frame error If the ratio is large, it means that the signal frame sent by the target device is affected by the signal frame of the surrounding device. The normal reception and decoding of the signal frame by the receiving device.
  • the signal transmission power of the target device may be increased. For example, each time the signal transmission power of the target device is increased according to the first specified step.
  • the first specified step size can be flexibly set according to requirements, for example, it is set to 0.5db, that is, it can be adjusted up by 0.5db each time, and can be adjusted one or more times until the frame error rate is reduced to the preset frame error threshold.
  • the power control strategy determines the power control strategy as adjusting the signal transmit power of the peripheral devices of the target device.
  • the signal transmission power of the surrounding devices of the target device may be reduced and/or the signal transmission interval of the surrounding devices of the target device may be increased. For example, the signal transmission power of the surrounding devices of the target device is lowered each time according to the second specified step size.
  • the second specified step size can be flexibly set according to requirements, and can be the same as or different from the first specified step size, such as being set to 0.4db, that is, adjusting down by 0.4db each time, and can be adjusted one or more times until the target The frame error rate of the device is reduced to the preset error frame threshold.
  • the step of reducing the signal transmission power of the surrounding devices of the target device and/or increasing the signal transmission interval of the surrounding devices of the target device can be Refer to the following steps 1 to 3 to realize:
  • Step 1 Obtain the frame error rate of each surrounding device that is within a preset distance range from the target device.
  • the device type of the surrounding device is the same as that of the target device, assuming that the target device is a tag, then search for all other tags within a preset distance (such as 3 meters) from the tag, and obtain Frame error rates for all other labels.
  • Step 2 according to the frame error rate of each surrounding device, select the device to be adjusted from multiple surrounding devices according to the preset quantity ratio; wherein, the frame error rate of each device to be adjusted is lower than the frame error rate of the target device , and the frame error rate of each device to be adjusted is lower than the frame error rate of other devices in the surrounding devices except the device to be adjusted.
  • the frame error rates of the surrounding devices can be arranged from small to large, and the peripheral devices with small frame error rates are preferentially selected as the equipment to be adjusted, so as to avoid greatly affecting the error rate of the equipment to be adjusted when adjusting the signal transmission power of the equipment to be adjusted. frame rate.
  • the device with the smallest frame error rate (such as the top 40%) is selected from the surrounding devices as the device to be adjusted.
  • the target device as a tag as an example, arrange the frame error rates of all other tags within 3 meters from small to large, and then take the frame error rate smaller than the tag, and rank a certain number in front (such as taking the top 40 %) as the label to be adjusted, so as to avoid involving too many other devices at one time.
  • Step 3 reducing the signal transmission power of the equipment to be adjusted and/or increasing the signal transmission interval of the equipment to be adjusted.
  • the above power control method provided by the embodiments of the present disclosure further includes: obtaining the positioning accuracy of the target device; and reducing the transmit power of the target device when the positioning accuracy is greater than a preset accuracy threshold. In practical applications, it is also possible to count the positioning accuracy of tags within a preset period of time, and reduce the transmit power of the tag when the positioning accuracy is greater than a preset accuracy threshold.
  • the embodiment of the present disclosure can appropriately reduce the transmitting power of the tag when the positioning accuracy meets the requirements, so as to achieve the power saving effect, and can also effectively avoid interference to other tags.
  • the aforementioned power control method fully takes into account that inappropriate signal transmission power will affect the positioning accuracy, and considers that inappropriate signal transmission power will cause a large frame error rate, so in When the frame error rate of the target device is large, find out the cause of the frame error rate and determine the corresponding power control strategy, and then perform power adjustment operations to reduce the frame error rate, thereby effectively improving the positioning accuracy. Furthermore, when the positioning accuracy of the tag is greater than the preset accuracy threshold, the signal transmission power of the tag can be appropriately reduced, so as to achieve power saving effect and enhance the battery life of the tag.
  • the aforementioned power control method provided by the embodiments of the present disclosure can be better applied to positioning systems, such as UWB positioning systems including multiple base stations and tags, so that UWB positioning systems can be better applied to indoor positioning, large-scale IoT positioning and other scenarios.
  • steps in the flow chart of FIG. 3 are displayed sequentially as indicated by the arrows, these steps are not necessarily executed sequentially in the order indicated by the arrows. Unless otherwise specified herein, there is no strict order restriction on the execution of these steps, and these steps can be executed in other orders. Moreover, at least some of the steps in FIG. 3 may include multiple sub-steps or multiple stages. These sub-steps or stages are not necessarily executed at the same time, but may be executed at different times. The execution of these sub-steps or stages The order is not necessarily performed sequentially, but may be performed alternately or alternately with at least a part of other steps or sub-steps or stages of other steps.
  • an embodiment of the present disclosure further provides a power control device, referring to a schematic structural diagram of a power control device shown in FIG. 4 , including:
  • the frame error rate acquisition module 402 is configured to acquire the frame error rate of the target device in the positioning system
  • the cause determination module 404 is configured to determine the cause of the frame error rate if the frame error rate is greater than the preset error frame threshold;
  • the strategy determination module 406 is configured to determine a power control strategy according to the cause; wherein, the power control strategy includes adjusting the signal transmission power of the target device, or adjusting the signal transmission power of the surrounding devices of the target device; Devices within a preset distance from the device;
  • the power adjustment module 408 is configured to perform a power adjustment operation based on the power control strategy, so as to reduce the frame error rate of the target device to within a preset frame error threshold.
  • the above power control device fully takes into account that inappropriate signal transmission power will affect the positioning accuracy, and considers that inappropriate signal transmission power will cause a large frame error rate, so the frame error rate of the target device When the frame error rate is large, find out the cause of the frame error rate and determine the corresponding power control strategy, and then perform power adjustment operations to reduce the frame error rate, thereby effectively improving the positioning accuracy.
  • the frame error rate acquisition module 402 is specifically configured to: count the total number of frames and the number of error frames of the target device's signal received by each signal receiving device in the positioning system within a specified period; for each signal receiving device, Calculate the frame error rate of the signal receiving device corresponding to the target device according to the total number of frames and error frames of the target device received by the signal receiving device; take the maximum frame error rate among all the calculated frame error rates as the target The frame error rate of the device.
  • the cause determination module 404 is specifically configured to: statistically calculate the signal power of each signal frame of the target device received by each signal receiving device in the positioning system within a specified period; The signal power of each signal frame of the device, the preset minimum signal power threshold, and the preset maximum signal power threshold determine the cause of the frame error rate; where the cause includes: the signal transmission power of the target device is insufficient, or, The transmit power of the surrounding devices of the target device is high.
  • the cause determination module 404 is specifically configured to: for each signal receiving device, count the number of first signal frames of the signal receiving device; wherein, the first number of signal frames is the target device received by the signal receiving device The number of signal frames whose signal power is less than the preset minimum signal power threshold; the second signal frame number of the signal receiving device is counted; where the second signal frame number is the signal power of the target device received by the signal receiving device is greater than The number of signal frames with the preset highest signal power threshold; determine the cause of the frame error rate based on the first signal frame number, the second signal frame number of each signal receiving device, and the total number of received signal frames of the target device .
  • the cause determination module 404 is specifically configured to: for each signal receiving device, calculate the first ratio of the first signal frame number of the signal receiving device to the total number of signal frames, and the second ratio of the signal receiving device's second signal frame number.
  • the second ratio of the number of signal frames to the total number of frames of the signal taking the maximum of all calculated first ratios as the minimum signal quality ratio of the target device, and taking the minimum of all calculated second ratios as the target
  • the highest signal quality ratio of the device if the lowest signal quality ratio is less than the preset first ratio threshold, determine that the cause of the frame error rate is insufficient signal transmission power of the target device; if the highest signal quality ratio is greater than the preset second ratio threshold , it is determined that the frame error rate is caused by the high transmit power of the surrounding devices of the target device.
  • the policy determination module 406 is specifically configured to: if the cause is that the signal transmission power of the target device is insufficient, then determine the power control strategy as adjusting the signal transmission power of the target device; If the transmission power is too high, then it is determined that the power control strategy is to adjust the signal transmission power of surrounding devices of the target device.
  • the power adjustment module 408 is specifically configured to: increase the signal transmission power of the target device if the power control strategy is to adjust the signal transmission power of the target device; If the transmission power is lowered, the signal transmission power of the surrounding devices of the target device is lowered and/or the signal transmission interval of the surrounding devices of the target device is increased.
  • the power adjustment module 408 is specifically configured to: acquire the frame error rate of each surrounding device that is within a preset distance from the target device; according to the frame error rate of each surrounding device, according to The preset quantity ratio screens out the devices to be adjusted from multiple surrounding devices; among them, the frame error rate of each device to be adjusted is lower than that of the target device, and the frame error rate of each device to be adjusted is lower than that of the surrounding devices.
  • the frame error rate of other devices in the device except the device to be adjusted reduce the signal transmission power of the device to be adjusted and/or increase the signal transmission interval of the device to be adjusted.
  • the above-mentioned apparatus further includes:
  • an accuracy acquisition module configured to acquire the positioning accuracy of the target device
  • the power reduction module is configured to reduce the transmission power of the target device when the positioning accuracy is greater than a preset accuracy threshold.
  • the power control device provided in the embodiments of the present disclosure has the beneficial effect of the power control method provided in any embodiment of the present disclosure, and details are not repeated here.
  • a control device comprising: a memory and one or more processors; the memory is configured to store computer-readable instructions; when the computer-readable instructions are executed by the processor, the one or more processors Execute the steps of the power control method provided by any embodiment of the present disclosure.
  • the control device may be a server or a host computer, a control module, etc., and its internal structure may be as shown in FIG. 5 .
  • the control device includes a processor, a memory and a network interface connected through a system bus. Wherein, the processor of the control device is used to provide calculation and control capabilities.
  • the memory of the control device includes a non-volatile storage medium and an internal memory. The non-volatile storage medium stores an operating system, computer programs and databases.
  • the internal memory provides an environment for the operation of the operating system and computer programs in the non-volatile storage medium.
  • the network interface of the computer device is used to communicate with an external terminal via a network connection.
  • the computer program is executed by the processor, a power control method is implemented.
  • FIG. 5 is only a block diagram of a partial structure related to the disclosed solution, and does not constitute a limitation on the control device to which the disclosed solution is applied.
  • the specific control device can be More or fewer components than shown in the figures may be included, or some components may be combined, or have a different arrangement of components.
  • the power control device provided by the present disclosure can be implemented in the form of a computer readable instruction, and the computer readable instruction can be executed on the control device as shown in FIG. 5 .
  • Various program modules constituting the power control device can be stored in the memory of the control device, for example, a frame error rate acquisition module, a cause determination module, a policy determination module and a power adjustment module shown in FIG. 4 .
  • the control device shown in FIG. 5 may execute the step of acquiring the frame error rate of the target device in the positioning system through the frame error rate acquisition module in the power control device as shown in FIG. 4 .
  • the control device may execute the step of determining the cause of the frame error rate if the frame error rate is greater than a preset frame error threshold through the cause determination module.
  • the control device can execute the step of determining the power control strategy according to the cause through the strategy determining module.
  • the control device may perform a power adjustment operation based on a power control strategy through the power adjustment module to reduce the frame error rate of the target device to a preset frame error threshold.
  • the above control device fully takes into account that inappropriate signal transmission power will affect the positioning accuracy, and considers that inappropriate signal transmission power will cause a large frame error rate, so the frame error rate of the target device is relatively low. When it is large, find out the cause of the frame error rate and determine the corresponding power control strategy, and then perform power adjustment operations to reduce the frame error rate, thereby effectively improving the positioning accuracy.
  • An embodiment of the present disclosure also provides a UWB positioning system, including the above-mentioned control device, and a target device communicatively connected with the control device; the target device includes a base station and/or a tag.
  • one or more non-volatile storage media store computer-readable instructions.
  • the one or more processors execute any one of the present disclosure. The steps of the power control method provided in the embodiment.
  • the above computer-readable storage medium provided by the embodiments of the present disclosure fully considers that inappropriate signal transmission power will affect the positioning accuracy, and considers that inappropriate signal transmission power will cause a large frame error rate, so the target device When the frame error rate is large, find out the cause of the frame error rate and determine the corresponding power control strategy, and then perform power adjustment operations to reduce the frame error rate, thereby effectively improving the positioning accuracy.
  • Non-volatile memory may include read-only memory (Read-Only Memory, ROM), magnetic tape, floppy disk, flash memory or optical memory, etc.
  • Volatile memory can include random access memory (Random Access Memory, RAM) or external cache memory.
  • RAM Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • the above power control method fully takes into account that inappropriate signal transmission power will affect the positioning accuracy, and considers that inappropriate signal transmission power will cause a large frame error rate, which can effectively improve the positioning accuracy, and also
  • the positioning accuracy of the tag is greater than the preset accuracy threshold, the signal transmission power of the tag can be appropriately reduced, so as to achieve power saving effect and enhance the battery life of the tag.
  • the UWB positioning system of the tag so that the UWB positioning system can be better applied to indoor positioning, large-scale Internet of Things positioning and other scenarios, and has strong industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及一种功率控制方法及装置,其中该方法包括:获取定位***中目标设备的误帧率;如果误帧率大于预设误帧阈值,确定误帧率的引发原因;根据引发原因确定功率控制策略;基于功率控制策略执行功率调整操作,以将目标设备的误帧率降低至预设误帧阈值之内。本公开能够有效提升定位***的定位精度。

Description

功率控制方法及装置
本公开要求于2021年8月19日提交中国专利局、申请号为202110956990.6、发明名称为“功率控制方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及一种功率控制方法及装置。
背景技术
大多定位***通常包含有诸如基站等定位设备,以及标签等需要被定位的设备,定位设备和被定位设备通过收发信号实现定位。然而,现有的大多定位***的定位精度难以达到预设要求,定位精度较低。
发明人经大量研究发现,定位精度受到信号发射功率的影响。现有的定位***会提前设置定位设备和被定位设备的信号发射功率,定位设备和被定位设备按照预先设置好的信号发射功率进行信号发射,倘若信号发射功率设置不佳,则会直接影响定位精度。
发明内容
(一)要解决的技术问题
如何有效提高定位精度。
(二)技术方案
根据本公开的各种实施例,提供一种功率控制方法、装置、控制设备、UWB定位***及存储介质。
一种功率控制方法,所述方法包括:
获取定位***中目标设备的误帧率;
如果所述误帧率大于预设误帧阈值,确定所述误帧率的引发原因;
根据所述引发原因确定功率控制策略;
基于所述功率控制策略执行功率调整操作,以将所述目标设备的误帧率降低至所述预设误帧阈值之内。
在一个实施例中,所述获取定位***中目标设备的误帧率的步骤, 包括:统计所述定位***中各个信号接收设备在指定时段内接收到的所述目标设备的信号总帧数以及错误帧数;对于每个所述信号接收设备,根据该信号接收设备接收到的所述目标设备的信号总帧数和所述错误帧数,计算该信号接收设备相应于所述目标设备的误帧率;将计算得到的所有误帧率中的最大误帧率作为所述目标设备的误帧率。
在一个实施例中,所述确定所述误帧率的引发原因的步骤,包括:统计所述定位***中各个信号接收设备在指定时段内接收到的所述目标设备的每个信号帧的信号功率;根据每个所述信号接收设备接收到的所述目标设备的每个所述信号帧的信号功率、预设的最低信号功率阈值以及预设的最高信号功率阈值,确定所述误帧率的引发原因;其中,所述引发原因包括:所述目标设备的信号发射功率不足,或者,所述目标设备的周围设备的发射功率偏高;其中,所述周围设备为所述定位***中与所述目标设备相距预设距离范围内的设备。
在一个实施例中,所述根据每个所述信号接收设备接收到的所述目标设备的每个所述信号帧的信号功率、预设的最低信号功率阈值以及预设的最高信号功率阈值,确定所述误帧率的引发原因的步骤,包括:对于每个所述信号接收设备,统计该信号接收设备的第一信号帧数;其中,所述第一信号帧数为该信号接收设备接收到的所述目标设备的信号功率小于预设的最低信号功率阈值的信号帧的数量;统计该信号接收设备的第二信号帧数;其中,所述第二信号帧数为该信号接收设备接收到的所述目标设备的信号功率大于预设的最高信号功率阈值的信号帧的数量;根据每个所述信号接收设备的第一信号帧数、第二信号帧数以及接收到的所述目标设备的信号总帧数,确定所述误帧率的引发原因。
在一个实施例中,所述根据每个所述信号接收设备的第一信号帧数、第二信号帧数以及接收到的所述目标设备的信号总帧数,确定所述误帧率的引发原因的步骤,包括:对于每个所述信号接收设备,计算该信号接收设备的第一信号帧数与信号总帧数的第一比值,以及该信号接收设备的第二信号帧数与所述信号总帧数的第二比值;将计算得到的所有第一比值中的最大值作为所述目标设备的最低信号质量比值,以及,将计算得到的所有第二比值中的最小值作为所述目标设备 的最高信号质量比值;如果所述最低信号质量比值小于预设的第一比例阈值,确定所述误帧率的引发原因为所述目标设备的信号发射功率不足;如果所述最高信号质量比值大于预设的第二比例阈值,确定所述误帧率的引发原因为所述目标设备的周围设备的发射功率偏高。
在一个实施例中,所述根据所述引发原因确定功率控制策略的步骤,包括:如果所述引发原因为所述目标设备的信号发射功率不足,则确定功率控制策略为调整所述目标设备的信号发射功率;如果所述引发原因为所述目标设备的周围设备的发射功率偏高,则确定所述功率控制策略为调整所述目标设备的周围设备的信号发射功率。
在一个实施例中,所述基于所述功率控制策略执行功率调整操作的步骤,包括:如果所述功率控制策略为调整所述目标设备的信号发射功率,则调高所述目标设备的信号发射功率;如果所述功率控制策略为调整所述目标设备的周围设备的信号发射功率,则调低所述目标设备的周围设备的信号发射功率和/或增加所述目标设备的周围设备的信号发射间隔。
在一个实施例中,所述周围设备为多个;所述调低所述目标设备的周围设备的信号发射功率和/或增加所述目标设备的周围设备的信号发射间隔的步骤,包括:获取与所述目标设备相距预设距离范围的每个周围设备的误帧率;根据每个所述周围设备的误帧率,按照预设的数量比例从多个所述周围设备中筛选出待调设备;其中,每个所述待调设备的误帧率均小于所述目标设备的误帧率,且每个所述待调设备的误帧率均小于所述周围设备中除所述待调设备之外的其它设备的误帧率;调低所述待调设备的信号发射功率和/或增加所述待调设备的信号发射间隔。
在一个实施例中,如果所述目标设备为标签,所述方法还包括:获取所述目标设备的定位精度;当所述定位精度大于预设精度阈值时,降低所述目标设备的发射功率。
一种功率控制装置,包括:
误帧率获取模块,配置成获取定位***中目标设备的误帧率;
原因确定模块,配置成如果所述误帧率大于预设误帧阈值,确定所述误帧率的引发原因;
策略确定模块,配置成根据所述引发原因确定功率控制策略;
功率调整模块,配置成基于所述功率控制策略执行功率调整操作,以将所述目标设备的误帧率降低至所述预设误帧阈值之内。
一种功率控制设备,所述功率控制设备包括:
存储器和一个或多个处理器,将所述存储器配置成存储计算机可读指令的模块;所述计算机可读指令被所述处理器执行时,使得所述一个或多个处理器执行本公开任意一个实施例中提供的功率控制方法的步骤。
一种UWB定位***,包括上述控制设备,还包括与所述控制设备通信连接的目标设备;所述目标设备包括基站和/或标签。
一个或多个存储有计算机可读指令的非易失性存储介质,计算机可读指令被一个或多个处理器执行时,使得一个或多个处理器执行本公开任意一个实施例中提供的功率控制方法的步骤。
本公开的其他特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本公开而了解。本公开的目的和其他优点在说明书、权利要求书以及附图中所特别指出的结构来实现和获得,本公开的一个或多个实施例的细节在下面的附图和描述中提出。
为使本公开的上述目的、特征和优点能更明显易懂,下文特举可选实施例,并配合所附附图,作详细说明如下。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开一个或多个实施例提供的一种定位***的结构示意图;
图2为本公开一个或多个实施例提供的一种UWB定位***的结构示意图;
图3为本公开一个或多个实施例提供的一种功率控制方法的流程示意图;
图4为本公开一个或多个实施例提供的一种功率控制装置的结构示意图;
图5为本公开一个或多个实施例提供的一种控制设备的结构示意图。
具体实施方式
为了能够更清楚地理解本公开的上述目的、特征和优点,下面将对本公开的方案进行进一步描述。需要说明的是,在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本公开,但本公开还可以采用其他不同于在此描述的方式来实施;显然,说明书中的实施例只是本公开的一部分实施例,而不是全部的实施例。
针对现有定位***存在定位精度不佳的问题,发明人经研究发现,定位***的定位精度会受到无线信号的影响,定位***中的定位设备(诸如基站)以及被定位设备(诸如标签)的信号发射功率过高,则会产生自干扰或者信号漂移现象,而信号发射功率不足又会导致发出的信号难以被有效接收或正常解码,然而现有定位***并未考虑到信号发射功率对定位精度的影响,大多仅在最初提前设置基站/标签发射固定范围内的信号发射功率,之后并不会再对信号发射功率进行管控,因此难以有效保证定位精度。基于此,本公开实施例提供了一种功率控制方法及装置。应当注意的是,针对相关技术中的定位***所存在的上述缺陷是申请人在经过实践并仔细研究后得出的结果,因此,上述缺陷的发现过程以及在下文中本公开实施例针对上述缺陷所提出的解决方案,都应该被认定为申请人对本公开做出的贡献。
本公开提供的功率控制方法,可以应用于如图1所示的定位***的结构示意图,示意出了该功率控制方法应用于定位***的应用环境中,该定位***包括控制设备100、定位设备200和被定位设备300。其中,控制设备100、定位设备200和被定位设备300两两之间均可无线通信,通过控制设备100对定位设备200和/或被定位设备300进行功率控制,其中,可以将定位设备200和/或被定位设备300作为目标设备,控制设备100能够获取定位***中目标设备的误帧率;如果误帧率大于预设误帧阈值,进一步确定误帧率的引发原因;从而根据引 发原因确定功率控制策略;进而基于功率控制策略执行功率调整操作,以将目标设备的误帧率降低至预设误帧阈值之内,上述方式充分考虑到了不合适的信号发射功率会影响定位精度,并且考虑到不合适的信号发射功率会引发较大的误帧率,因此在目标设备的误帧率较大时查找误帧率的引发原因并确定相应的功率控制策略,之后执行功率调整操作来降低误帧率,从而有效提升定位精度。其中,控制设备100可以但不限于是服务器、计算机设备、上位机、控制模组等,控制设备100可以是独立设置的服务器、上位机,也可以是集成在指定的定位设备上的控制模组,在此不进行限制。
在一个实施例中,定位***可以为UWB(Ultra-Wide Band,超宽带)定位***,UWB定位***利用其超宽带及高速脉冲载波的特点,在短距离精确定位中占有重要地位,可较好应用于室内定位、物联网定位等,对于移动标签具有较准确的定位效果。具体而言,UWB定位***中的定位设备为基站(anchor),被定位设备为标签(tag),基站可利用UWB技术定位标签,标签可利用UWB技术获得自身位置坐标。除此之外,UWB定位***还可以包括诸如服务器等控制设备,用于控制基站和标签的信号发射功率。在实际应用中,UWB定位***可以包含多个基站和多个标签。为便于理解,可参见图2所示的一种UWB定位***的结构示意图,简单示意出了一个控制设备、一个标签以及四个基站;通常采用3~4个基站即可实现对一个标签的准确定位。在一定距离范围内,每个标签都对应有多个基站,而每个基站也对应多个标签,基站与标签之间靠收发高频的无线信号实现测距和定位。可以理解的是,图2仅为简单示意,在实际应用中,UWB定位***通常可以包含多个标签以及多个基站,本公开实施例对定位***中的标签和基站的具体数量不进行限制。
由于UWB定位***可作为包含多个基站、多个标签的近距离定位***,而基站与标签之间靠收发高频的无线信号实现测距和定位,因此更为明显地存在发明人提出的信号发射功率影响定位精度的问题,诸如,标签的信号发射功率不足将会导致基站难以接收到有效信号或难以对接收到的信号进行正常解码,或者,基站的信号发射功率不足导致标签难以接收到有效信号或难以对接收到的信号进行正常解码;再或者,标签/基站的信号发射功率过大也会干扰其周边其它设备的发射信号等,上述问题都会在一定程度上降低定位精度。因此本公开实施例提供的功率控制方法可以较好适用于UWB定位***。为便于理解,以下对本公开实施例提供的功率控制方法进行详细阐述。
在一个实施例中,本公开实施例提供了一种功率控制方法,图3为本公开实施例提供的一种功率控制方法的流程示意图,该方法可以由定位***的控制设备执行,该控制设备诸如可以为控制器、处理器等具有处理功能的器件,该控制设备可以独立设置,诸如该控制设备可以为单独的计算机、服务器等,也可以集成在定位***中的某个基站等定位设备上,在此不进行限制。如图3所示的实施例中,该方法主要包括以下步骤S302~步骤S308:
步骤S302,获取定位***中目标设备的误帧率。该定位***包括但不限于UWB定位***,目标设备可以为定位***中的定位设备(诸如基站),也可以为被定位设备(诸如标签)。也即,在定位***中有多个基站和标签,每个基站和每个标签均可被作为目标设备,具体可根据实际情况确定目标设备,在此不进行限制。
目标设备向外发射信号,为了评估目标设备的信号发射质量,可以基于目标设备的信号接收设备接收到的信号帧来计算目标设备的误帧率,其中,误帧率等于信号接收设备接收到的错误帧数与信号总帧数的比值。当目标设备的信号接收设备有多个时,选取最大的误帧率作为目标设备的误帧率。当目标设备是基站时,目标设备的信号接收设备可以为标签;当目标设备是标签时,目标设备的信号接收设备可以为基站。
步骤S304,如果误帧率大于预设误帧阈值,确定误帧率的引发原因。
误帧阈值可根据实际情况进行设置,在此不进行限制。通过预设误帧阈值可以衡量当前的误帧率是否可接受,换言之,用于衡量当前的信号发射功率是否不合适。如果误帧率大于预设误帧阈值,说明该误帧率不可接受,当前的信号发射功率并不合适,可能影响定位精度,因此会进一步确定误帧率的引发原因。
在一些实施方式中,误帧率的引发原因包括但不限于:目标设备的信号发射功率不足,或者,目标设备的周围设备的发射功率偏高。
步骤S306,根据引发原因确定功率控制策略;其中,功率控制策略包括调整目标设备的信号发射功率,或者,调整目标设备的周围设备的信号发射功率;周围设备为定位***中与目标设备相距预设距离范围内的设备。
在实际应用中,可以预先设置引发原因和功率控制策略的对应关系,诸如,引发原因为目标设备的信号发射功率不足,则相应的功率控制策略为调整目标设备的信号发射功率,示例性地,具体可以为: 调高目标设备的信号发射功率;引发原因为调整目标设备的周围设备的信号发射功率,则相应的功率控制策略为调整目标设备的周围设备的信号发射功率;示例性地,具体可以为:调低目标设备的周围设备的信号发射功率。实际应用中,可以确定与目标设备相距预设距离范围内的周围设备,当周围设备多于一个时,可以对所有的周围设备进行功率调整,也可以按照预设条件从周围设备中选取部分设备进行功率调整(此时可将未被选取的其它周围设备的功率调整幅度设为0)。另外,不同周围设备的信号发射功率的调整方式可以相同也可以不同,诸如,周围设备距离目标设备越近,其信号发射功率的调整幅度越大;亦或,也可以根据周围设备的误帧率来确定相应的功率调整方式,可优先调整误帧率较小的周围设备。以上仅为示例说明,具体调整方式在此不进行限制。
周围设备为定位***中与目标设备相距预设距离范围内的设备,预设距离范围可以根据实际情况而设置,诸如设置为3米。在一些实施示例中,周围设备的设备类型可以与目标设备相同或不同,诸如,目标设备是基站时,周围设备可以为基站也可以为标签;目标设备是标签时,周围设备可以为标签也可以为基站。在另一些实施示例中,周围设备的设备类型限定与目标设备相同,诸如,目标设备是基站时,周围设备也限定为基站;目标设备是标签时,周围设备也限定为标签。
步骤S308,基于功率控制策略执行功率调整操作,以将目标设备的误帧率降低至预设误帧阈值之内。
基于功率控制策略进行功率调整,以便于逐步降低目标设备的误帧率,直至目标设备的误帧率符合要求,从而可较好地改善信号发射功率不佳而影响定位精度的问题。
本公开实施例提供的上述功率控制方法,充分考虑到了不合适的信号发射功率会影响定位精度,并且考虑到不合适的信号发射功率会引发较大的误帧率,因此在目标设备的误帧率较大时查找误帧率的引发原因并确定相应的功率控制策略,之后执行功率调整操作来降低误帧率,从而有效提升定位精度。
在一些实施方式中,本公开实施例给出了获取定位***中目标设备的误帧率的具体实施示例,可参照如下步骤实现:首先统计定位***中各个信号接收设备在指定时段内(也可称之为第一指定时段)接收到的目标设备的信号总帧数以及错误帧数;对于每个信号接收设备,根据该信号接收设备接收到的目标设备的信号总帧数和错误帧数,计算该信号接收设备相应于目标设备的误帧率;最后将计算得到的所有 误帧率中的最大误帧率作为目标设备的误帧率。
为便于理解,以目标设备是标签为例,则信号接收设备为基站,标签采用当前的信号发射功率向外发射信号之后,可统计各个基站在指定时段内接收到的该标签的信号总帧数和错误帧数,然后从基站侧计算每个基站相应于该标签的误帧率,将最终得到的最大误帧率作为该标签的误帧率。同理,当目标设备是基站时,则从标签侧计算每个标签相应于该基站的误帧率,并取最大误帧率作为基站的误帧率,在此不再赘述。本公开实施例对指定时段不进行限制,诸如,可以是指定的3分钟内、20分钟内等;在统计指定时段内的信号帧的实现方式中,可以在指定时段内以滑窗模式实现,示例性地,当窗大小为2s时,滑动步长为1s,则逐次统计0~2s、1~3s、2~4s期间的信号总帧数以及错误帧数,最终可以平滑获取到指定时段内的信号总帧数和错误帧数。在实际应用中,可以设定信号总帧数达到设定阈值时,再开始计算误帧率,以避免信号总帧数太小而导致误帧率不准确的情况。
通过上述方式,可以合理确定目标设备的误帧率,以最大误帧率为基准,有助于充分衡量当前误帧率是否符合可接受,从而较为合理地衡量当前的信号发射功率的合理性。
在确定目标设备的误帧率大于预设误帧阈值之后,即可认为当前的定位***中存在信号发射功率不佳的情况,因此进一步判别引发误帧率的原因,以便于后续有针对性地采取措施。在一些实施方式中,可以参照如下步骤A和步骤B确定误帧率的引发原因:
步骤A,统计定位***中各个信号接收设备在指定时段内(也可称之为第二指定时段)接收到的目标设备的每个信号帧的信号功率。第二指定时段与前述第一指定时段可以相同,也可以不同,在此不进行限制。
步骤B,根据每个信号接收设备接收到的目标设备的每个信号帧的信号功率、预设的最低信号功率阈值以及预设的最高信号功率阈值,确定误帧率的引发原因;其中,引发原因包括:目标设备的信号发射功率不足,或者,目标设备的周围设备的发射功率偏高。
通过统计每个信号接收设备接收到的目标设备的信号帧的信号功率,以及预先设置的最低/最高信号功率阈值,可以有效衡量信号接收设备接收到的信号质量,从而基于信号质量确定误帧率的引发原因。
在一些实施方式中,步骤B可参照如下步骤B1~步骤B3实现:
步骤B1,对于每个信号接收设备,统计该信号接收设备的第一信号帧数;其中,第一信号帧数为该信号接收设备接收到的目标设备的 信号功率小于预设的最低信号功率阈值的信号帧的数量。最低信号功率阈值也即最低可接受的接收信号阈值,诸如为-30dbm。也即,通过步骤A统计得到该信号接收设备在指定时段内接收到的目标设备的每个信号帧的信号功率之后,将每个信号帧的信号功率分别与最低信号功率阈值进行比较,并统计信号功率小于最低信号功率阈值的信号帧的数量,该数量即为第一信号帧数。
步骤B2,统计该信号接收设备的第二信号帧数;其中,第二信号帧数为该信号接收设备接收到的目标设备的信号功率大于预设的最高信号功率阈值的信号帧的数量。最高信号功率阈值也即最高可接受的接收信号阈值,诸如为-20dbm。也即,通过步骤A统计得到该信号接收设备在指定时段内接收到的目标设备的每个信号帧的信号功率之后,将每个信号帧的信号功率分别与最高信号功率阈值进行比较,并统计信号功率大于最高信号功率阈值的信号帧的数量,该数量即为第二信号帧数。
步骤B3,根据每个信号接收设备的第一信号帧数、第二信号帧数以及接收到的目标设备的信号总帧数,确定误帧率的引发原因。具体而言,可以基于第一信号帧数、第二信号帧数以及信号总帧数计算不同类型(过低或过高)的信号帧的比值,以便基于比值确定误帧率的引发原因。在一些实施方式中,上述步骤B3可以参照如下步骤B3.1~步骤B3.4实现:
步骤B3.1,对于每个信号接收设备,计算该信号接收设备的第一信号帧数与信号总帧数的第一比值,以及该信号接收设备的第二信号帧数与信号总帧数的第二比值。第一比值可反映出目标设备发出的信号帧中过低信号的占比,第二比值可反映出目标设备发出的信号帧中过高信号的占比。
步骤B3.2,将计算得到的所有第一比值中的最大值作为目标设备的最低信号质量比值,以及,将计算得到的所有第二比值中的最小值作为目标设备的最高信号质量比值。可以理解的是,每个信号接收设备都对应有第一比值和第二比值,本公开实施例从所有信号接收设备对应的第一比值中挑选出最大值作为目标设备的最低信号质量比例,从所有信号接收设备对应的第二比值中挑选出最大值作为目标设备的最高信号质量比例,从而合理表征目标设备发出的信号帧的质量情况。
步骤B3.3,如果最低信号质量比值小于预设的第一比例阈值,确定误帧率的引发原因为目标设备的信号发射功率不足。第一比例阈值可以根据需求而灵活设置,示例性地,第一比例阈值可以为60%。如 果目标设备的最低信号质量比例(最大的第一比值)都小于第一比例阈值,说明目标设备发出的信号帧普遍存在功率不足的情况,致使信号接收设备难以有效接收到信号或者对信号进行正常解码,也即,说明误帧率的引发原因是目标设备的信号发射功率不足导致。以目标设备是标签为例,当标签的信号发射功率不足时,会导致基站侧无法对接收到的信号正常解码,从而导致从基站侧测量得到的该标签的误帧率大于预设误帧阈值。
步骤B3.4,如果最高信号质量比值大于预设的第二比例阈值,确定误帧率的引发原因为目标设备的周围设备的发射功率偏高。第二比例阈值可以根据需求而灵活设置,示例性地,第二比例阈值可以为40%。如果目标设备的最高信号质量比例(最小的第二比值)都大于第二比例阈值,说明目标设备的信号接收设备可以正常接收并解码信号帧,理论上误帧率不会大,但如果误帧率较大,则说明目标设备发出的信号帧受到了周围设备的信号帧的影响,具体而言,周围设备的信号发射功率过大而干扰了目标设备的信号帧,从而影响了目标设备的信号接收设备对信号帧的正常接收及解码。
通过上述方式确定误帧率的引发原因之后,可以进一步根据引发原因确定功率控制策略,并基于功率控制策略执行功率调整操作,具体而言:
(1)如果引发原因为目标设备的信号发射功率不足,则确定功率控制策略为调整目标设备的信号发射功率。在一种具体实施示例中,基于该功率控制策略执行功率调整操作时,可以调高目标设备的信号发射功率。诸如,每次按照第一指定步长调高目标设备的信号发射功率。该第一指定步长可以根据需求而灵活设置,诸如设置为0.5db,也即每次往高调整0.5db,可以调整一次或多次,直至将误帧率降低至预设误帧阈值内。
(2)如果引发原因为目标设备的周围设备的发射功率偏高,则确定功率控制策略为调整目标设备的周围设备的信号发射功率。在一种具体实施示例中,基于该功率控制策略执行功率调整操作时,可以调低目标设备的周围设备的信号发射功率和/或增加目标设备的周围设备的信号发射间隔。诸如,每次按照第二指定步长调低目标设备的周围设备的信号发射功率。该第二指定步长可以根据需求而灵活设置,可以与第一指定步长相同或不同,诸如设置为0.4db,也即每次往下调整0.4db,可以调整一次或多次,直至将目标设备的误帧率降低至预设误帧阈值内。
当周围设备为多个时,可以选择部分周围设备进行调整,一种实施例中,调低目标设备的周围设备的信号发射功率和/或增加目标设备的周围设备的信号发射间隔的步骤,可以参照如下步骤1~步骤3实现:
步骤1,获取与目标设备相距预设距离范围的每个周围设备的误帧率。示例性地,该周围设备的设备类型与目标设备的设备类型相同,假设目标设备为标签,则查找该标签相距预设距离范围内(诸如3米)的其它所有标签,并获取3米之内的其它所有标签的误帧率。
步骤2,根据每个周围设备的误帧率,按照预设的数量比例从多个周围设备中筛选出待调设备;其中,每个待调设备的误帧率均小于目标设备的误帧率,且每个待调设备的误帧率均小于周围设备中除待调设备之外的其它设备的误帧率。实际应用中,可以将周围设备的误帧率从小到大排列,优先选取误帧率小的周围设备作为待调设备,以避免调整待调设备的信号发射功率时较大程度影响其本身的误帧率。诸如,基于周围设备的误帧率,从周围设备中选取误帧率最小的预设数量比例(诸如前40%)的设备作为待调设备。仍旧以目标设备是标签为例,将3米之内的其它所有标签的误帧率由小到大排列,然后取误帧率小于该标签,且排在前面一定个数(诸如取排前40%)的标签作为待调标签,从而避免一次性涉及太多其它设备。
步骤3,调低待调设备的信号发射功率和/或增加待调设备的信号发射间隔。
诸如,将每个待调设备的信号发射功率在原有基础上降低指定步长,和/或,同时增加各个待调设备的信号发射间隔等。通过这些方式,可有效降低目标设备的周围设备的信号发射功率对于目标设备的影响。
此外,考虑到定位***中的标签等设备具有移动特性,因此可能无法连接固定电源,不便于实时充电,在充电后只能维持一段时间的正常工作,为了提升标签等设备的续航能力,如果目标设备为标签,则本公开实施例提供的上述功率控制方法还包括:获取目标设备的定位精度;当定位精度大于预设精度阈值时,降低目标设备的发射功率。在实际应用中,也可以统计预设时段内的标签的定位精度,并在定位精度大于预设精度阈值时降低该标签的发射功率。当然,如果发现定位精度低于可接受的最低精度阈值时,也可进一步查找原因并采取相应措施,诸如增加该标签的信号发射功率或者调整该标签周围的其它标签的信号发射功率等,具体也可参照前述相关内容,在此不再赘述。
本公开实施例在定位精度满足需求的情况下可以适当降低标签的 发射功率,从而达到省电效果,以及也可有效避免对于其它标签的干扰。
综上所述,本公开实施例提供的前述功率控制方法,充分考虑到了不合适的信号发射功率会影响定位精度,并且考虑到不合适的信号发射功率会引发较大的误帧率,因此在目标设备的误帧率较大时查找误帧率的引发原因并确定相应的功率控制策略,之后执行功率调整操作来降低误帧率,从而有效提升定位精度。进一步,还可以在标签的定位精度大于预设精度阈值时适当降低标签的信号发射功率,从而达到省电效果,增强标签的续航能力。本公开实施例提供的前述功率控制方法可较好适用于定位***,诸如较好适用于包含多个基站和标签的UWB定位***,从而使UWB定位***能够更好地应用于室内定位、大规模的物联网定位等场景。
应该理解的是,虽然图3的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图3中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
对应于前述功率控制方法,本公开实施例还提供了一种功率控制装置,参见图4所示的一种功率控制装置的结构示意图,包括:
误帧率获取模块402,配置成获取定位***中目标设备的误帧率;
原因确定模块404,配置成如果误帧率大于预设误帧阈值,确定误帧率的引发原因;
策略确定模块406,配置成根据引发原因确定功率控制策略;其中,功率控制策略包括调整目标设备的信号发射功率,或者,调整目标设备的周围设备的信号发射功率;周围设备为定位***中与目标设备相距预设距离范围内的设备;
功率调整模块408,配置成基于功率控制策略执行功率调整操作,以将目标设备的误帧率降低至预设误帧阈值之内。
本公开实施例提供的上述功率控制装置,充分考虑到了不合适的信号发射功率会影响定位精度,并且考虑到不合适的信号发射功率会引发较大的误帧率,因此在目标设备的误帧率较大时查找误帧率的引发原因并确定相应的功率控制策略,之后执行功率调整操作来降低误 帧率,从而有效提升定位精度。
在一些实施方式中,误帧率获取模块402具体配置成:统计定位***中各个信号接收设备在指定时段内接收到的目标设备的信号总帧数以及错误帧数;对于每个信号接收设备,根据该信号接收设备接收到的目标设备的信号总帧数和错误帧数,计算该信号接收设备相应于目标设备的误帧率;将计算得到的所有误帧率中的最大误帧率作为目标设备的误帧率。
在一些实施方式中,原因确定模块404具体配置成:统计定位***中各个信号接收设备在指定时段内接收到的目标设备的每个信号帧的信号功率;根据每个信号接收设备接收到的目标设备的每个信号帧的信号功率、预设的最低信号功率阈值以及预设的最高信号功率阈值,确定误帧率的引发原因;其中,引发原因包括:目标设备的信号发射功率不足,或者,目标设备的周围设备的发射功率偏高。
在一些实施方式中,原因确定模块404具体配置成:对于每个信号接收设备,统计该信号接收设备的第一信号帧数;其中,第一信号帧数为该信号接收设备接收到的目标设备的信号功率小于预设的最低信号功率阈值的信号帧的数量;统计该信号接收设备的第二信号帧数;其中,第二信号帧数为该信号接收设备接收到的目标设备的信号功率大于预设的最高信号功率阈值的信号帧的数量;根据每个信号接收设备的第一信号帧数、第二信号帧数以及接收到的目标设备的信号总帧数,确定误帧率的引发原因。
在一些实施方式中,原因确定模块404具体配置成:对于每个信号接收设备,计算该信号接收设备的第一信号帧数与信号总帧数的第一比值,以及该信号接收设备的第二信号帧数与信号总帧数的第二比值;将计算得到的所有第一比值中的最大值作为目标设备的最低信号质量比值,以及,将计算得到的所有第二比值中的最小值作为目标设备的最高信号质量比值;如果最低信号质量比值小于预设的第一比例阈值,确定误帧率的引发原因为目标设备的信号发射功率不足;如果最高信号质量比值大于预设的第二比例阈值,确定误帧率的引发原因为目标设备的周围设备的发射功率偏高。
在一些实施方式中,策略确定模块406具体配置成:如果引发原因为目标设备的信号发射功率不足,则确定功率控制策略为调整目标设备的信号发射功率;如果引发原因为目标设备的周围设备的发射功率偏高,则确定功率控制策略为调整目标设备的周围设备的信号发射功率。
在一些实施方式中,功率调整模块408具体配置成:如果功率控制策略为调整目标设备的信号发射功率,则调高目标设备的信号发射功率;如果功率控制策略为调整目标设备的周围设备的信号发射功率,则调低目标设备的周围设备的信号发射功率和/或增加目标设备的周围设备的信号发射间隔。
在一些实施方式中,周围设备为多个;功率调整模块408具体配置成:获取与目标设备相距预设距离范围的每个周围设备的误帧率;根据每个周围设备的误帧率,按照预设的数量比例从多个周围设备中筛选出待调设备;其中,每个待调设备的误帧率均小于目标设备的误帧率,且每个待调设备的误帧率均小于周围设备中除待调设备之外的其它设备的误帧率;调低待调设备的信号发射功率和/或增加待调设备的信号发射间隔。
在一些实施方式中,如果目标设备为标签,上述装置还包括:
精度获取模块,配置成获取目标设备的定位精度;
功率降低模块,配置成当定位精度大于预设精度阈值时,降低目标设备的发射功率。
关于功率控制装置的具体限定可以参见上文中对于功率控制方法的限定,在此不再赘述。
本公开实施例所提供的功率控制装置具有本公开任意实施例所提供的功率控制方法的有益效果,在此不再赘述。
在一个实施例中,提供了一种控制设备,包括:存储器和一个或多个处理器;存储器配置成存储计算机可读指令;计算机可读指令被处理器执行时,使得一个或多个处理器执行本公开任意一个实施例提供的功率控制方法的步骤。示例性地,该控制设备可以是服务器或者上位机、控制模组等,其内部结构图可以如图5所示。该控制设备包括通过***总线连接的处理器、存储器和网络接口。其中,该控制设备的处理器用于提供计算和控制能力。该控制设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作***、计算机程序和数据库。该内存储器为非易失性存储介质中的操作***和计算机程序的运行提供环境。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种功率控制方法。
本领域技术人员可以理解,图5中示出的结构,仅仅是与本公开方案相关的部分结构的框图,并不构成对本公开方案所应用于其上的控制设备的限定,具体的控制设备可以包括比图中所示更多或更少的 部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,本公开提供的功率控制装置可以实现为一种计算机可读指令的形式,计算机可读指令可在如图5所示的控制设备上运行。控制设备的存储器中可存储组成该功率控制装置的各个程序模块,比如,图4所示的误帧率获取模块、原因确定模块、策略确定模块和功率调整模块。
例如,图5所示的控制设备可以通过如图4所示的功率控制装置中的误帧率获取模块执行获取定位***中目标设备的误帧率的步骤。控制设备可通过原因确定模块执行如果误帧率大于预设误帧阈值,确定误帧率的引发原因的步骤。控制设备可通过策略确定模块执行根据引发原因确定功率控制策略的步骤。控制设备可通过功率调整模块执行基于功率控制策略执行功率调整操作,以将目标设备的误帧率降低至预设误帧阈值之内的步骤。
本实施例提供的上述控制设备,充分考虑到了不合适的信号发射功率会影响定位精度,并且考虑到不合适的信号发射功率会引发较大的误帧率,因此在目标设备的误帧率较大时查找误帧率的引发原因并确定相应的功率控制策略,之后执行功率调整操作来降低误帧率,从而有效提升定位精度。
本公开实施例还提供了一种UWB定位***,包括上述控制设备,还包括与控制设备通信连接的目标设备;目标设备包括基站和/或标签。通过控制设备执行上述功率控制方法,可以有效保障UWB定位***的定位精度。
在一个实施例中,一个或多个存储有计算机可读指令的非易失性存储介质,计算机可读指令被一个或多个处理器执行时,使得一个或多个处理器执行本公开任意一个实施例中提供的功率控制方法的步骤。
本公开实施例提供的上述计算机可读存储介质,充分考虑到了不合适的信号发射功率会影响定位精度,并且考虑到不合适的信号发射功率会引发较大的误帧率,因此在目标设备的误帧率较大时查找误帧率的引发原因并确定相应的功率控制策略,之后执行功率调整操作来降低误帧率,从而有效提升定位精度。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本公开所 提供的各实施例中所使用的对存储器、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-Only Memory,ROM)、磁带、软盘、闪存或光存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,比如静态随机存取存储器(Static Random Access Memory,SRAM)和动态随机存取存储器(Dynamic Random Access Memory,DRAM)等。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本公开的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本公开构思的前提下,还可以做出若干变形和改进,这些都属于本公开的保护范围。因此,本公开专利的保护范围应以所附权利要求为准。
工业实用性
本公开实施例提供的上述功率控制方法,充分考虑到了不合适的信号发射功率会影响定位精度,并且考虑到不合适的信号发射功率会引发较大的误帧率,可以有效提升定位精度,还可以在标签的定位精度大于预设精度阈值时适当降低标签的信号发射功率,从而达到省电效果,增强标签的续航能力,可较好适用于定位***,诸如较好适用于包含多个基站和标签的UWB定位***,从而使UWB定位***能够更好地应用于室内定位、大规模的物联网定位等场景,具有很强的工业实用性。

Claims (20)

  1. 一种功率控制方法,其特征在于,包括:
    获取定位***中目标设备的误帧率;
    如果所述误帧率大于预设误帧阈值,确定所述误帧率的引发原因;
    根据所述引发原因确定功率控制策略;
    基于所述功率控制策略执行功率调整操作,以将所述目标设备的误帧率降低至所述预设误帧阈值之内。
  2. 根据权利要求1所述的方法,其中,所述获取定位***中目标设备的误帧率的步骤,包括:
    统计所述定位***中各个信号接收设备在指定时段内接收到的所述目标设备的信号总帧数以及错误帧数;
    对于每个所述信号接收设备,根据该信号接收设备接收到的所述目标设备的信号总帧数和所述错误帧数,计算该信号接收设备相应于所述目标设备的误帧率;
    将计算得到的所有误帧率中的最大误帧率作为所述目标设备的误帧率。
  3. 根据权利要求1所述的方法,其中,所述确定所述误帧率的引发原因的步骤,包括:
    统计所述定位***中各个信号接收设备在指定时段内接收到的所述目标设备的每个信号帧的信号功率;
    根据每个所述信号接收设备接收到的所述目标设备的每个所述信号帧的信号功率、预设的最低信号功率阈值以及预设的最高信号功率阈值,确定所述误帧率的引发原因;其中,所述引发原因包括:所述目标设备的信号发射功率不足,或者,所述目标设备的周围设备的发射功率偏高;其中,所述周围设备为所述定位***中与所述目标设备相距预设距离范围内的设备。
  4. 根据权利要求3所述的方法,其中,所述根据每个所述信号接收设备接收到的所述目标设备的每个所述信号帧的信号功率、预设的最低信号功率阈值以及预设的最高信号功率阈值,确定所述误帧率的引发原因的步骤,包括:
    对于每个所述信号接收设备,统计该信号接收设备的第一信号帧数;其中,所述第一信号帧数为该信号接收设备接收到的所述目标设备的信号功率小于预设的最低信号功率阈值的信号帧的数量;
    统计该信号接收设备的第二信号帧数;其中,所述第二信号帧数 为该信号接收设备接收到的所述目标设备的信号功率大于预设的最高信号功率阈值的信号帧的数量;
    根据每个所述信号接收设备的第一信号帧数、第二信号帧数以及接收到的所述目标设备的信号总帧数,确定所述误帧率的引发原因。
  5. 根据权利要求4所述的方法,其中,所述根据每个所述信号接收设备的第一信号帧数、第二信号帧数以及接收到的所述目标设备的信号总帧数,确定所述误帧率的引发原因的步骤,包括:
    对于每个所述信号接收设备,计算该信号接收设备的第一信号帧数与信号总帧数的第一比值,以及该信号接收设备的第二信号帧数与所述信号总帧数的第二比值;
    将计算得到的所有第一比值中的最大值作为所述目标设备的最低信号质量比值,以及,将计算得到的所有第二比值中的最小值作为所述目标设备的最高信号质量比值;
    如果所述最低信号质量比值小于预设的第一比例阈值,确定所述误帧率的引发原因为所述目标设备的信号发射功率不足;
    如果所述最高信号质量比值大于预设的第二比例阈值,确定所述误帧率的引发原因为所述目标设备的周围设备的发射功率偏高。
  6. 根据权利要求1至5任一项所述的方法,其中,所述根据所述引发原因确定功率控制策略的步骤,包括:
    如果所述引发原因为所述目标设备的信号发射功率不足,则确定功率控制策略为调整所述目标设备的信号发射功率;
    如果所述引发原因为所述目标设备的周围设备的发射功率偏高,则确定所述功率控制策略为调整所述目标设备的周围设备的信号发射功率。
  7. 根据权利要求6所述的方法,其中,所述基于所述功率控制策略执行功率调整操作的步骤,包括:
    如果所述功率控制策略为调整所述目标设备的信号发射功率,则调高所述目标设备的信号发射功率;
    如果所述功率控制策略为调整所述目标设备的周围设备的信号发射功率,则调低所述目标设备的周围设备的信号发射功率和/或增加所述目标设备的周围设备的信号发射间隔。
  8. 根据权利要求6所述的方法,其中,所述周围设备为多个;所述调低所述目标设备的周围设备的信号发射功率和/或增加所述目标设备的周围设备的信号发射间隔的步骤,包括:
    获取与所述目标设备相距预设距离范围的每个周围设备的误帧 率;
    根据每个所述周围设备的误帧率,按照预设的数量比例从多个所述周围设备中筛选出待调设备;其中,每个所述待调设备的误帧率均小于所述目标设备的误帧率,且每个所述待调设备的误帧率均小于所述周围设备中除所述待调设备之外的其它设备的误帧率;
    调低所述待调设备的信号发射功率和/或增加所述待调设备的信号发射间隔。
  9. 根据权利要求1所述的方法,其中,如果所述目标设备为标签,所述方法还包括:
    获取所述目标设备的定位精度;
    当所述定位精度大于预设精度阈值时,降低所述目标设备的发射功率。
  10. 一种功率控制装置,其特征在于,包括:
    误帧率获取模块,配置成获取定位***中目标设备的误帧率;
    原因确定模块,配置成如果所述误帧率大于预设误帧阈值,确定所述误帧率的引发原因;
    策略确定模块,配置成根据所述引发原因确定功率控制策略;
    功率调整模块,配置成基于所述功率控制策略执行功率调整操作,以将所述目标设备的误帧率降低至所述预设误帧阈值之内。
  11. 根据权利要求10所述的装置,其中,所述误帧率获取模块具体配置成:
    统计定位***中各个信号接收设备在指定时段内接收到的目标设备的信号总帧数以及错误帧数;
    对于每个信号接收设备,根据该信号接收设备接收到的目标设备的信号总帧数和错误帧数,计算该信号接收设备相应于目标设备的误帧率;
    将计算得到的所有误帧率中的最大误帧率作为目标设备的误帧率。
  12. 根据权利要求10所述的装置,其中,所述原因确定模块具体配置成:
    统计定位***中各个信号接收设备在指定时段内接收到的目标设备的每个信号帧的信号功率;
    根据每个信号接收设备接收到的目标设备的每个信号帧的信号功率、预设的最低信号功率阈值以及预设的最高信号功率阈值,确定误帧率的引发原因;其中,引发原因包括:目标设备的信号发射功率不 足,或者,目标设备的周围设备的发射功率偏高。
  13. 根据权利要求10所述的装置,其中,所述原因确定模块具体配置成:
    对于每个信号接收设备,统计该信号接收设备的第一信号帧数;其中,第一信号帧数为该信号接收设备接收到的目标设备的信号功率小于预设的最低信号功率阈值的信号帧的数量;
    统计该信号接收设备的第二信号帧数;其中,第二信号帧数为该信号接收设备接收到的目标设备的信号功率大于预设的最高信号功率阈值的信号帧的数量;
    根据每个信号接收设备的第一信号帧数、第二信号帧数以及接收到的目标设备的信号总帧数,确定误帧率的引发原因。
  14. 根据权利要求10所述的装置,其中,所述原因确定模块具体配置成:
    对于每个信号接收设备,计算该信号接收设备的第一信号帧数与信号总帧数的第一比值,以及该信号接收设备的第二信号帧数与信号总帧数的第二比值;
    将计算得到的所有第一比值中的最大值作为目标设备的最低信号质量比值,以及,将计算得到的所有第二比值中的最小值作为目标设备的最高信号质量比值;
    如果最低信号质量比值小于预设的第一比例阈值,确定误帧率的引发原因为目标设备的信号发射功率不足;
    如果最高信号质量比值大于预设的第二比例阈值,确定误帧率的引发原因为目标设备的周围设备的发射功率偏高。
  15. 根据权利要求10所述的装置,其中,所述策略确定模块具体配置成:
    如果引发原因为目标设备的信号发射功率不足,则确定功率控制策略为调整目标设备的信号发射功率;如果引发原因为目标设备的周围设备的发射功率偏高,则确定功率控制策略为调整目标设备的周围设备的信号发射功率。
  16. 根据权利要求10所述的装置,其中,所述功率调整模块具体配置成:
    如果功率控制策略为调整目标设备的信号发射功率,则调高目标设备的信号发射功率;
    如果功率控制策略为调整目标设备的周围设备的信号发射功率,则调低目标设备的周围设备的信号发射功率和/或增加目标设备的周围 设备的信号发射间隔。
  17. 根据权利要求10所述的装置,其中,如果所述周围设备为多个,所述功率调整模块具体配置成:
    获取与目标设备相距预设距离范围的每个周围设备的误帧率;
    根据每个周围设备的误帧率,按照预设的数量比例从多个周围设备中筛选出待调设备;其中,每个待调设备的误帧率均小于目标设备的误帧率,且每个待调设备的误帧率均小于周围设备中除待调设备之外的其它设备的误帧率;调低待调设备的信号发射功率和/或增加待调设备的信号发射间隔。
  18. 一种功率控制设备,包括:存储器和一个或多个处理器,将所述存储器配置成存储计算机可读指令的模块;所述计算机可读指令被所述处理器执行时,使得所述一个或多个处理器执行权利要求1-9任一项所述的功率控制方法。
  19. 一种UWB定位***,包括上述控制设备,还包括与所述控制设备通信连接的目标设备;所述目标设备包括基站和/或标签。
  20. 一个或多个存储有计算机可读指令的非易失性存储介质,计算机可读指令被一个或多个处理器执行时,使得一个或多个处理器执行权利要求1-9任一项所述的功率控制方法。
PCT/CN2021/140749 2021-08-19 2021-12-23 功率控制方法及装置 WO2023019842A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110956990.6A CN113825221B (zh) 2021-08-19 2021-08-19 功率控制方法及装置
CN202110956990.6 2021-08-19

Publications (1)

Publication Number Publication Date
WO2023019842A1 true WO2023019842A1 (zh) 2023-02-23

Family

ID=78913344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140749 WO2023019842A1 (zh) 2021-08-19 2021-12-23 功率控制方法及装置

Country Status (2)

Country Link
CN (1) CN113825221B (zh)
WO (1) WO2023019842A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113825221B (zh) * 2021-08-19 2023-11-17 昆明闻讯实业有限公司 功率控制方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1595862A (zh) * 2003-09-11 2005-03-16 华为技术有限公司 码分多址集群通信***前向功率控制的方法
US20070191044A1 (en) * 2006-02-14 2007-08-16 Lucent Technologies Inc. Method for adjusting forward link power control parameters based on forward link quality feedback in wireless network
CN101547030A (zh) * 2008-03-28 2009-09-30 中兴通讯股份有限公司 码分多址接入通信***动态调整目标误帧率的***及方法
CN105636179A (zh) * 2014-11-27 2016-06-01 华为终端(东莞)有限公司 一种发射功率的确定方法及装置
CN113825221A (zh) * 2021-08-19 2021-12-21 西安闻泰信息技术有限公司 功率控制方法及装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5745520A (en) * 1996-03-15 1998-04-28 Motorola, Inc. Method and apparatus for power control in a spread spectrum communication system using threshold step-down size adjustment
US5778030A (en) * 1996-03-15 1998-07-07 Motorola, Inc. Method and apparatus for power control in a communication system
JPH11355204A (ja) * 1998-06-04 1999-12-24 Nec Corp Cdma移動通信システム及びcdma移動通信システムにおける送信電力制御方法
JP3358565B2 (ja) * 1998-11-02 2002-12-24 日本電気株式会社 送信電力制御方法、送信電力制御装置、移動局、基地局及び制御局
US6298242B1 (en) * 1999-07-22 2001-10-02 Qualcomm Inc. Method and apparatus for reducing frame error rate through signal power adjustment
AU7549500A (en) * 1999-09-30 2001-04-30 Telefonaktiebolaget Lm Ericsson (Publ) Transmit power control
JP3508131B2 (ja) * 2000-11-14 2004-03-22 日本電気株式会社 無線通信方法および装置
CN1149768C (zh) * 2000-12-12 2004-05-12 华为技术有限公司 移动通信***中的一种反向外环功率控制方法
JP4054550B2 (ja) * 2001-06-29 2008-02-27 株式会社エヌ・ティ・ティ・ドコモ 送信電力制御方法及び装置
JP4125288B2 (ja) * 2002-10-01 2008-07-30 富士通株式会社 送信電力制御装置,移動通信システムおよび電力制御方法
US20040100911A1 (en) * 2002-11-25 2004-05-27 Raymond Kwan Method for link adaptation
JP3800222B2 (ja) * 2004-02-19 2006-07-26 日本電気株式会社 送信電力制御のための目標値制御システム及びその方法並びに基地局及び携帯通信端末
CN100375404C (zh) * 2005-04-20 2008-03-12 北京首信股份有限公司 码分多址移动通信***中的反向外环功率控制方法
CN100375405C (zh) * 2005-05-20 2008-03-12 北京首信股份有限公司 用于码分多址移动通信***的反向外外环功率控制方法
CN103404207B (zh) * 2010-12-02 2017-11-17 华为技术有限公司 确定外环功控目标信干比的方法
CN103731866A (zh) * 2012-10-15 2014-04-16 中国电信股份有限公司 检测用户终端性能的方法和***
US20170257862A1 (en) * 2016-03-07 2017-09-07 Qualcomm Incorporated Wireless Communication Enhancements for Relative Motion Between a Transmitting Device and a Receiving Device
CN109548131B (zh) * 2019-01-29 2021-06-29 中国联合网络通信集团有限公司 功率调整方法及装置
CN112468264B (zh) * 2020-11-06 2023-03-24 深圳市科思科技股份有限公司 高速网络中吞吐量和发射功率优化方法、***及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1595862A (zh) * 2003-09-11 2005-03-16 华为技术有限公司 码分多址集群通信***前向功率控制的方法
US20070191044A1 (en) * 2006-02-14 2007-08-16 Lucent Technologies Inc. Method for adjusting forward link power control parameters based on forward link quality feedback in wireless network
CN101547030A (zh) * 2008-03-28 2009-09-30 中兴通讯股份有限公司 码分多址接入通信***动态调整目标误帧率的***及方法
CN105636179A (zh) * 2014-11-27 2016-06-01 华为终端(东莞)有限公司 一种发射功率的确定方法及装置
CN113825221A (zh) * 2021-08-19 2021-12-21 西安闻泰信息技术有限公司 功率控制方法及装置

Also Published As

Publication number Publication date
CN113825221A (zh) 2021-12-21
CN113825221B (zh) 2023-11-17

Similar Documents

Publication Publication Date Title
CN110572172B (zh) 电子设备联合比吸收率调整方法、装置及电子设备
US10021650B2 (en) WLAN system with opportunistic transitioning to a low power state for power management
WO2020119322A1 (zh) 一种异步无线唤醒方法及设备
US9736859B2 (en) Method and apparatus for providing voice service in wireless local area network
WO2023019842A1 (zh) 功率控制方法及装置
WO2017161929A1 (zh) 一种温度控制方法及装置、终端、存储介质
US9596637B2 (en) Dynamically adapting wireless communication
WO2021052247A1 (zh) 传输速率控制方法及终端、计算机存储介质
US20220377670A1 (en) Search Space Monitoring Method and Apparatus
EP3278602A1 (en) Determining inactivity timeout using distributed coordination function
WO2022001686A1 (zh) 网络质量评估的方法、电子设备及存储介质
BR112018002505B1 (pt) Método de processamento de sinal, equipamento de usuário, estação base e meio de armazenamento legível por computador
US10237831B2 (en) Outer loop power control method, apparatus, and device
CN112804718A (zh) 网络切换方法、终端及存储介质
WO2021057442A1 (zh) 卫星通信的方法及装置
CN108337720B (zh) 一种wlan设备省电模式实现方法及装置
US9661523B1 (en) Method and apparatus for dynamically adapting a transmission rate of a wireless communication device in a wireless network
US20220369388A1 (en) Method and device for random access in wireless communication system
CN115002885A (zh) 标签数据采集方法、装置、电子设备及存储介质
WO2021248421A1 (zh) 边链路资源选择方法以及装置
CN106899386B (zh) 基于多通道通信接收***的碎片化帧信号的解调方法
US20200178186A1 (en) Access Method And Access Device
US9877285B2 (en) Method and system for device aware power save
TW201427329A (zh) 校準監聽週期與監聽間隔的方法及其控制模組
WO2023274001A1 (zh) Phr的上报方法、基站、终端、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21954077

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE