WO2021052247A1 - 传输速率控制方法及终端、计算机存储介质 - Google Patents

传输速率控制方法及终端、计算机存储介质 Download PDF

Info

Publication number
WO2021052247A1
WO2021052247A1 PCT/CN2020/114701 CN2020114701W WO2021052247A1 WO 2021052247 A1 WO2021052247 A1 WO 2021052247A1 CN 2020114701 W CN2020114701 W CN 2020114701W WO 2021052247 A1 WO2021052247 A1 WO 2021052247A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
base station
target parameter
transmission rate
network side
Prior art date
Application number
PCT/CN2020/114701
Other languages
English (en)
French (fr)
Inventor
谭正鹏
唐凯
庄云腾
杨兴随
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2021052247A1 publication Critical patent/WO2021052247A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/22Negotiating communication rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0205Traffic management, e.g. flow control or congestion control at the air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • H04W28/0236Traffic management, e.g. flow control or congestion control based on communication conditions radio quality, e.g. interference, losses or delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to data transmission technology, in particular to a transmission rate control method, terminal, and computer storage medium.
  • the fifth generation (5th Generation, 5G) mobile communication system supports standalone (SA) architecture and non-standalone (NSA) architecture.
  • SA standalone
  • NSA non-standalone
  • a typical NSA architecture is dual connection (Dual Connection, DC). ) Architecture.
  • the terminal can work in dual connection mode.
  • the terminal communicates with two base stations.
  • the terminal communicates with both a Long Term Evolution (LTE) base station and a New Radio (NR) base station, resulting in high power consumption of the terminal.
  • LTE Long Term Evolution
  • NR New Radio
  • the embodiments of the present application provide a transmission rate control method, a terminal, and a computer storage medium, which can solve the problem of large power consumption of the terminal.
  • the terminal measures a target parameter, where the target parameter is used to indicate the channel quality corresponding to the first base station; wherein, the terminal is in a dual connection mode;
  • the terminal adjusts the target parameter and sends the adjusted target parameter to the network side; wherein the adjusted target parameter is used to reduce the downlink transmission rate on the first base station side.
  • a calculation unit configured to measure a target parameter, where the target parameter is used to indicate the channel quality corresponding to the first base station; wherein, the terminal is in a dual connection mode;
  • An adjustment unit configured to adjust the target parameter
  • the communication unit is configured to send the adjusted target parameter to the network side; wherein the adjusted target parameter is used to reduce the downlink transmission rate of the first base station side.
  • the terminal provided by the embodiment of the present application includes a processor and a memory for storing a computer program that can run on the processor, where the processor is used to execute the above-mentioned transmission rate control method when the computer program is running.
  • the computer storage medium provided by the embodiment of the present application stores a computer program, and when the computer program is executed by a processor, the foregoing transmission rate control method is implemented.
  • the terminal when the terminal communicates with the first base station and the second base station at the same time, by limiting the downlink transmission rate of the terminal, the power consumption of the terminal can be saved, thereby increasing the endurance time of the terminal.
  • FIG. 1 is a schematic diagram of a dual connectivity architecture provided by an embodiment of the application
  • FIG. 2 is a schematic flowchart of a transmission rate control method provided by an embodiment of the application
  • FIG. 3 is a structural diagram of a communication module of a terminal in a dual connection mode according to an embodiment of the application;
  • FIG. 4 is a flowchart of a terminal provided by an embodiment of the application for turning on smart 5G;
  • FIG. 5 is a flowchart of adjusting the CQI value provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram 1 of the structural composition of a terminal provided by an embodiment of the application.
  • FIG. 7 is a second schematic diagram of the structural composition of a terminal provided by an embodiment of the application.
  • the transmission rate control method provided in this application can be applied to the dual connectivity architecture as shown in FIG. 1.
  • the terminal 101 can establish an air interface connection with the primary base station 102 (also referred to as the primary node), thereby achieving communication with the primary base station 102; the terminal 101 can also establish an air interface connection with the secondary base station 103 (also referred to as the secondary node), In this way, communication with the secondary base station 103 is realized; the terminal 101 can also establish an air interface connection with the primary base station 102 and the secondary base station 103 at the same time, so as to realize the communication with the primary base station 102 and the secondary base station 103 at the same time.
  • the terminal 101 simultaneously establishes two connections with the primary base station 102 and the secondary base station 103, where the primary base station 102 is responsible for transmitting signaling, and the secondary base station 103 is responsible for transmitting data.
  • the technical solution of the embodiment of the present application is mainly aimed at a terminal in a dual connection mode.
  • the types of the primary base station 102 and the secondary base station 103 shown in FIG. 1 may be the same or different.
  • the primary base station 102 is an LTE base station
  • the secondary base station 103 is an NR base station.
  • the primary base station 102 is an NR base station
  • the secondary base station 103 is also an NR base station.
  • the primary base station 102 is an NR base station
  • the secondary base station 103 is an LTE base station.
  • the embodiment of the present application does not limit the types of the primary base station 102 and the secondary base station 103.
  • the dual connectivity mode is EN-DC mode or next generation EN-DC (next generation EN-DC, NGEN-DC) mode.
  • the primary base station is an LTE base station
  • the secondary base station is an NR base station
  • the terminal Communicate with both LTE base station and NR base station.
  • the dual connection mode is NR-evolved UMTS (NR-EUTRA, NE-DC) mode.
  • the primary base station is an NR base station
  • the secondary base station is an LTE base station
  • the terminal is connected to the LTE base station and the NR base station. Both communicate.
  • the dual connection mode is not limited to the aforementioned EN-DC mode and NE-DC mode, and the embodiment of the present application does not limit the specific type of the dual connection mode.
  • the deployment mode of the primary base station and the secondary base station can be co-site deployment (for example, NR base station and LTE base station can be set on one physical device), or non-co-site deployment (for example, NR base station and LTE base station can be Set on different physical devices), this application does not have to limit this.
  • the LTE base station may also be referred to as an evolved Node B (eNB), and the NR base station may also be referred to as a next generation Node B (gNB). It should be noted that this application may not limit the relationship between the coverage of the primary base station and the secondary base station, for example, the primary base station and the secondary base station may overlap.
  • the specific type of the terminal 101 is not limited in this application. It can be any user equipment that supports the aforementioned dual connection mode, such as a smart phone, a personal computer, a notebook computer, a tablet computer, and a portable wearable device.
  • Fig. 2 is a schematic flowchart of a transmission rate control method provided by an embodiment of the application. As shown in Fig. 2, the transmission rate control method includes the following steps:
  • Step 201 The terminal measures a target parameter, where the target parameter is used to indicate the channel quality corresponding to the first base station; wherein, the terminal is in a dual connection mode.
  • the terminal is in a dual connection mode, and in the dual connection mode, the terminal communicates with both the first base station and the second base station.
  • the first base station is a secondary base station
  • the second base station is a primary base station.
  • the secondary base station is mainly responsible for transmitting data
  • the primary base station is mainly responsible for transmitting signaling
  • the terminal and the second base station are A base station and a second base station form a dual-connection architecture, refer to Figure 1.
  • the dual connection mode is, for example, the EN-DC mode, or the NGEN-DC mode, or the NE-DC mode.
  • the EN-DC mode as an example, the first base station is an NR base station (i.e. gNB), the second base station is an LTE base station (i.e. eNB), and the terminal communicates with the NR base station and the LTE base station at the same time.
  • the terminal in the dual connection mode consumes more power. For this reason, the embodiment of the present application limits the transmission rate of the terminal to save the power consumption of the terminal in the dual connection mode.
  • Fig. 3 is a structural diagram of the communication module of the terminal in the dual connection mode.
  • the terminal in order to realize simultaneous communication with two base stations, the terminal needs to have two sets of communication modules, and the two sets of communication modules correspond to two base stations.
  • the first modem module (modem) and the first radio frequency path form a first set of communication modules, and the first set of communication modules corresponds to the first base station.
  • the second modem module (modem) and the second radio frequency path (including the second radio frequency circuit and the second radio frequency antenna) form a second set of communication modules, and the second set of communication modules corresponds to the second base station.
  • the first modem is a 5G modem
  • the second modem is a 4G modem
  • the first radio frequency circuit is 5G RF
  • the second radio frequency circuit is 4G RF.
  • the first communication module and the second communication module work at the same time.
  • the terminal first establishes a connection with the second base station, and then establishes a connection with the first base station. For example: when the terminal is connected to the second base station, a control instruction sent by the first base station is received, and the control instruction is used to trigger the activation of the communication function corresponding to the first base station; the terminal responds to the control instruction To establish a connection with the first base station.
  • the terminal measures the channel quality of the first base station to obtain the target parameter.
  • the target parameter is channel quality indicator (CQI).
  • CQI channel quality indicator
  • the value of CQI represents the quality of the channel, and corresponds to the signal-to-noise ratio of the channel.
  • the value of CQI ranges from 0 to 31. For example: when the CQI value is 0, the channel quality is the worst; when the CQI value is 31, the channel quality is the best.
  • the common value is 12-24.
  • Step 202 The terminal adjusts the target parameter, and sends the adjusted target parameter to the network side; wherein the adjusted target parameter is used to reduce the downlink transmission rate of the first base station side .
  • the terminal after the connection between the terminal and the first base station is established, the terminal can communicate with the first base station.
  • the connection described in the embodiments of the present application refers to access.
  • the terminal After the terminal turns on the communication function corresponding to the first base station, it needs to adjust various parameters of the terminal according to the actual situation, so as to achieve the best compromise between performance and power consumption, so that the user can get more experience. Further, the embodiment of the present application adjusts the transmission rate of the terminal to save power consumption of the terminal.
  • FIG. 4 is a schematic diagram of the terminal turning on the smart 5G.
  • turning on the smart 5G means optimizing the 5G function.
  • the terminal uses In the 5G function, various parameters (such as transmission rate) of the terminal can be adjusted according to the actual situation.
  • the terminal turning on smart 5G includes the following processes:
  • the terminal judges whether it has received an operation to turn on the smart 5G.
  • the terminal displays a user interface
  • the user interface includes an option to turn on the smart 5G
  • the user can trigger an operation to select the option corresponding to the smart 5G, thereby turning on the smart 5G.
  • the user's operation may be a touch operation, a key operation, a voice operation, a gesture operation, or the like.
  • the optimization of the 5G function includes at least: limiting the 5G transmission rate of the terminal to save the power consumption of the terminal.
  • the terminal detects the temperature of the terminal; in the case that the temperature of the terminal is greater than or equal to a target threshold, the terminal activates and restricts the communication function corresponding to the first base station (for example, activates the restriction of the first base station).
  • a downlink transmission rate corresponding to a base station when the communication function corresponding to the first base station is started to be restricted, the terminal adjusts the target parameter.
  • the downlink transmission rate here refers to the downlink transmission rate corresponding to the first base station. Taking the first base station as a 5G base station as an example, the downlink transmission rate refers to the 5G downlink transmission rate.
  • the temperature of the terminal may be reflected by the temperature of a certain piece of hardware of the terminal or the average temperature of certain pieces of hardware, such as the temperature of the processor and the temperature of the memory.
  • the terminal when the temperature of the terminal is less than the target threshold, the terminal turns off and restricts the communication function corresponding to the first base station. In this case, the downlink transmission rate of the terminal is restored to the normal condition (that is, the target parameter is not adjusted).
  • the terminal determines to start limiting the downlink transmission rate
  • the value of the target parameter is reduced; the terminal sends the reduced target parameter to the network side; wherein, the reduced target
  • the parameter is used by the network side to perform the following operation: reducing the index value of the MCS on the first base station side.
  • the target parameter is called the CQI value.
  • the terminal measures the CQI value of the first base station and reduces the measured CQI value; 2.
  • the terminal uses a physical uplink control channel (Physical Uplink Control Channel,
  • the uplink control information (UPlink Control Information, UCI) in (PUCCH) reports the reduced CQI value to the first base station.
  • UCI Physical Uplink Control Channel
  • the reduced target parameter is used by the network side to perform the following operation: reducing the index value of the MCS on the first base station side. In this way, the downlink transmission rate can be reduced.
  • the terminal may also report to the first base station by changing part of positive acknowledgement (ACK) feedback information to negative acknowledgement (NACK) feedback information.
  • ACK positive acknowledgement
  • NACK negative acknowledgement
  • the terminal sends the adjusted target parameter to the network side, which can be implemented in the following ways: 1) The terminal sends the adjusted target parameter to the first base station. Or, 2) the terminal sends the adjusted target parameter to the second base station, and the second base station forwards the target parameter to the first base station.
  • the operations performed by the network side may be performed by the first base station or by the second base station.
  • FIG. 6 is a schematic diagram of the structural composition of a terminal provided by an embodiment of the application. As shown in FIG. 6, the terminal includes:
  • the calculation unit 601 is configured to measure a target parameter, where the target parameter is used to indicate the channel quality corresponding to the first base station; wherein, the terminal is in a dual connection mode;
  • the adjustment unit 602 is configured to adjust the target parameter
  • the communication unit 603 is configured to send the adjusted target parameter to the network side;
  • the adjusted target parameter is used to reduce the downlink transmission rate on the side of the first base station.
  • the adjustment unit 602 is configured to adjust the value of the target parameter to a smaller value when it is determined to start limiting the downlink transmission rate
  • the communication unit 603 is configured to send the reduced target parameter to the network side;
  • the reduced target parameter is used for the network side to perform the following operation: reducing the index value of the MCS on the first base station side.
  • the terminal further includes:
  • the detecting unit 604 is configured to detect the temperature of the terminal
  • the control unit 605 is configured to enable the communication function corresponding to the first base station to be restricted when the temperature of the terminal is greater than or equal to a target threshold;
  • the adjustment unit 602 is configured to adjust the target parameter when the communication function corresponding to the first base station starts to be restricted.
  • control unit 605 is further configured to disable and restrict the communication function corresponding to the first base station when the temperature of the terminal is less than the target threshold.
  • the target parameter is CQI.
  • the terminal is in a dual connection mode, and in the dual connection mode, the terminal communicates with both the first base station and the second base station.
  • each unit in the terminal can be understood with reference to the relevant description of the foregoing transmission rate control method.
  • the calculation unit, adjustment unit, and control unit in the terminal can be implemented by the processor in the terminal, such as a central processing unit (CPU), a digital signal processor (DSP), Microcontroller Unit (MCU) or Field-Programmable Gate Array (FPGA), etc.;
  • the communication unit in the terminal can be implemented through a communication module (including: basic communication suite, operating system, communication module , Standardized interfaces and protocols, etc.) and a transceiver antenna.
  • the detection unit in the terminal can be implemented by a temperature sensor.
  • the division of the above-mentioned units is only exemplary. In practical applications, the internal structure of the terminal can be divided into different units to complete all or part of the functions described above.
  • the terminal provided in the foregoing embodiment and the transmission rate control method embodiment belong to the same concept. For the specific implementation process, please refer to the method embodiment, which will not be repeated here.
  • FIG. 7 is a schematic diagram of the hardware composition structure of the terminal of the embodiment of the application.
  • the terminal includes a memory 701, a processor 702, and storage A computer program running on the memory 701 and capable of running on the processor; as a first implementation manner, the processor 702 located in the terminal implements the following steps when executing the program: measuring a target parameter, the target parameter being used to indicate the first base station Corresponding channel quality; adjust the target parameter, and send the adjusted target parameter to the network side; wherein the adjusted target parameter is used to reduce the downlink transmission rate on the first base station side.
  • processor 702 further implements the following steps when executing the program:
  • the reduced target parameter is used for the network side to perform the following operation: reducing the index value of the MCS on the first base station side.
  • processor 702 further implements the following steps when executing the program:
  • the target parameter is adjusted.
  • processor 702 further implements the following steps when executing the program:
  • the communication function corresponding to the first base station is closed and restricted.
  • the target parameter is CQI.
  • the terminal is in a dual connection mode, and in the dual connection mode, the terminal communicates with both the first base station and the second base station.
  • the terminal also includes a bus system 703; various components in the terminal are coupled together through the bus system 703. It can be understood that the bus system 703 is used to implement connection and communication between these components.
  • the bus system 703 also includes a power bus, a control bus, and a status signal bus.
  • the memory in this embodiment may be a volatile memory or a non-volatile memory, and may also include both volatile and non-volatile memory.
  • non-volatile memory can be Read Only Memory (ROM), Programmable Read-Only Memory (PROM), Erasable Programmable Read-Only Memory (Erasable Programmable Read-Only Memory) , EPROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), Magnetic Random Access Memory (FRAM), Flash Memory, Magnetic Surface Memory , CD-ROM, or CD-ROM (Compact Disc Read-Only Memory, CD-ROM); magnetic surface memory can be disk storage or tape storage.
  • the volatile memory may be random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • SRAM static random access memory
  • SSRAM synchronous static random access memory
  • dynamic random access memory dynamic random access memory.
  • Memory Dynanamic Random Access Memory, DRAM
  • Synchronous Dynamic Random Access Memory SDRAM
  • Double Data Rate Synchronous Dynamic Random Access Memory Double Data Rate, Synchronous Dynamic Access Memory, DDRSDRAM
  • enhanced Type of Synchronous Dynamic Random Access Memory Enhanced Synchronous Dynamic Random Access Memory, ESDRAM
  • SLDRAM Synchronous Link Dynamic Random Access Memory
  • DRRAM Direct Rambus Random Access Memory
  • the memories described in the embodiments of the present application are intended to include, but are not limited to, these and any other suitable types of memories.
  • the methods disclosed in the foregoing embodiments of the present application may be applied to a processor or implemented by a processor.
  • the processor may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the above method can be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the aforementioned processor may be a general-purpose processor, DSP, or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and so on.
  • the processor may implement or execute the methods, steps, and logical block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like.
  • the software module may be located in a storage medium, and the storage medium is located in a memory.
  • the processor reads the information in the memory and completes the steps of the foregoing method in combination with its hardware.
  • the embodiment of the present application also provides a computer storage medium, which is specifically a computer-readable storage medium.
  • Computer instructions are stored thereon.
  • the computer instructions are executed by the processor to implement the following steps: measure target parameters, which are used to indicate the corresponding parameters of the first base station Channel quality; adjust the target parameter, and send the adjusted target parameter to the network side; wherein the adjusted target parameter is used to reduce the downlink transmission rate on the first base station side.
  • the reduced target parameter is used for the network side to perform the following operation: reducing the index value of the MCS on the first base station side.
  • the target parameter is adjusted.
  • the communication function corresponding to the first base station is closed and restricted.
  • the target parameter is CQI.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, such as: multiple units or components can be combined, or It can be integrated into another system, or some features can be ignored or not implemented.
  • the coupling, or direct coupling, or communication connection between the components shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms. of.
  • the units described above as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units; Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • the functional units in the embodiments of the present application can be all integrated into one processing unit, or each unit can be individually used as a unit, or at least two units can be integrated into one unit; the above-mentioned integrated units are both It can be implemented in the form of hardware, or it can be implemented in the form of hardware plus software functional units.
  • the foregoing program can be stored in a computer readable storage medium. When the program is executed, it is executed. Including the steps of the foregoing method embodiment; and the foregoing storage medium includes: various media that can store program codes, such as a mobile storage device, ROM, RAM, magnetic disk, or optical disk.
  • the above-mentioned integrated unit of the present application is implemented in the form of a software function module and sold or used as an independent product, it may also be stored in a computer readable storage medium.
  • the computer software product is stored in a storage medium and includes several instructions for A computer device (which may be a personal computer, a server, or a network device, etc.) executes all or part of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: removable storage devices, ROM, RAM, magnetic disks, or optical disks and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种传输速率控制方法及终端、计算机存储介质,所述方法包括:终端测量目标参数,所述目标参数用于表示第一基站对应的信道质量;其中,所述终端处于双连接模式;所述终端对所述目标参数进行调整,并将调整后的所述目标参数发送给网络侧;其中,调整后的所述目标参数用于降低所述第一基站侧的下行传输速率。

Description

传输速率控制方法及终端、计算机存储介质
相关申请的交叉引用
本申请基于申请号为201910872435.8、申请日为2019年09月16日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请实施例涉及数据传输技术,具体涉及一种传输速率控制方法及终端、计算机存储介质。
背景技术
第五代(5th Generation,5G)移动通信***支持独立组网(Standalone,SA)架构和非独立组网(Non-Standalone,NSA)架构,一种典型的NSA架构为双连接(Dual Connection,DC)架构。
在双连接架构中,终端可以工作在双连接模式。在双连接模式下,终端与两个基站均进行通信,例如终端与长期演进(Long Term Evolution,LTE)基站和新空口(New Radio,NR)基站均进行通信,导致终端的耗电很大。
发明内容
本申请实施例提供一种传输速率控制方法及终端、计算机存储介质,能够解决终端的耗电很大的问题。
本申请实施例提供的传输速率控制方法,包括:
终端测量目标参数,所述目标参数用于表示第一基站对应的信道质量;其中,所述终端处于双连接模式;
所述终端对所述目标参数进行调整,并将调整后的所述目标参数发送给网络侧;其中,调整后的所述目标参数用于降低所述第一基站侧的下行传输速率。
本申请实施例提供的终端,包括:
计算单元,配置为测量目标参数,所述目标参数用于表示第一基站对应的信道质量;其中,所述终端处于双连接模式;
调整单元,配置为对所述目标参数进行调整;
通信单元,配置为将调整后的所述目标参数发送给网络侧;其中,调整后的所述目标参数用于降低所述第一基站侧的下行传输速率。
本申请实施例提供的终端包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述的传输速率控制方法。
本申请实施例提供的计算机存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述的传输速率控制方法。
本申请实施例的技术方案中,终端同时与第一基站和第二基站进行通信的情况下,通过限制终端的下行传输速率,能够达到节省终端耗电的目的,从而提高了终端的续航时长。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1为本申请实施例提供的一种双连接架构的示意性图;
图2为本申请实施例提供的传输速率控制方法的流程示意图;
图3为本申请实施例提供的终端在双连接模式下的通信模块的结构图;
图4为本申请实施例提供的终端开启智能5G的流程图;
图5为本申请实施例提供的调整CQI值的流程图;
图6为本申请实施例提供的终端的结构组成示意图一;
图7为本申请实施例提供的终端的结构组成示意图二。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请提供的传输速率控制方法,可以应用于如图1所示的双连接架构中。其中,终端101可以与主基站102(也称为主节点)建立空口连接,从而实现与主基站102之间的通信;终端101也可以与辅基站103(也称为辅节点)建立空口连接,从而实现与辅基站103之间的通信;终端101还可以同时与主基站102和辅基站103建立空口连接,从而同时实现与主基站102和辅基站103之间的通信。
终端101在双连接模式下,与主基站102和辅基站103同时建立两个连接,其中,主基站102负责传输信令,辅基站103负责传输数据。本申请实施例的技术方案主要针对双连接模式下的终端。
图1所示的主基站102和辅基站103的类型可以相同,也可以不同。在一个例子中,主基站102为LTE基站,辅基站103为NR基站。在另一个例子中,主基站102为NR基站,辅基站103也为NR基站。在又一个例子中,主基站102为NR基站,辅基站103为LTE基站。本申请实施例对主基站102和辅基站103的类型不做限制。
在一个示例中,双连接模式为EN-DC模式或下一代EN-DC(next generation EN-DC,NGEN-DC)模式,这种情况下,主基站为LTE基站,辅基站为NR基站,终端与LTE基站和NR基站均进行通信。
在另一个示例中,双连接模式为NR-进化的UMTS(NR-EUTRA,NE-DC)模式,这种情况下,主基站为NR基站,辅基站为LTE基站,终 端与LTE基站和NR基站均进行通信。
需要说明的是,双连接模式并不局限于上述EN-DC模式、NE-DC模式,本申请实施例对于双连接模式的具体类型不做限定。
具体实现时,主基站和辅基站的部署方式可以为共站部署(如,NR基站和LTE基站可以设置在一个实体设备上),也可以为非共站部署(如,NR基站和LTE基站可以设置在不同实体设备上),本申请对此可以不做限定。这里,LTE基站也可以称为演进基站(evolved Node B,eNB),NR基站也可以称为下一代基站(next generation Node B,gNB)。需要说明的是,对于主基站和辅基站覆盖范围的相互关系本申请可以不做限定,例如主基站和辅基站可以重叠覆盖。
对于终端101的具体类型,本申请可以不做限定,其可以为任何支持上述双连接模式的用户设备,例如可以为智能手机、个人计算机、笔记本电脑、平板电脑和便携式可穿戴设备等。
下面将通过实施例并结合附图具体地对本申请的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。
图2为本申请实施例提供的传输速率控制方法的流程示意图,如图2所示,所述传输速率控制方法包括以下步骤:
步骤201:终端测量目标参数,所述目标参数用于表示第一基站对应的信道质量;其中,所述终端处于双连接模式。
本申请实施例中,所述终端处于双连接模式,在所述双连接模式下,所述终端与所述第一基站和第二基站均进行通信。在一可选实施方式中,所述第一基站为辅基站,所述第二基站为主基站,其中,辅基站主要负责传输数据,主基站主要负责传输信令,所述终端与所述第一基站和第二基 站形成双连接架构,参照图1。
本申请实施例中,所述双连接模式例如是EN-DC模式、或者NGEN-DC模式、或者NE-DC模式。以EN-DC模式为例,所述第一基站为NR基站(即gNB),所述第二基站为LTE基站(即eNB),终端与NR基站和LTE基站同时进行通信。相比于单连接模式下终端需要与一个基站(如LTE基站或NR基站)进行通信,双连接模式下的终端耗电量更大。为此,本申请实施例通过限制终端的传输速率来节省终端在双连接模式下的耗电。
图3为终端在双连接模式下的通信模块的结构图,如图3所示,终端为实现与两个基站的同时通信,需要具备两套通信模块,两套通信模块分别对应两个基站。其中,第一调制解调模块(modem)和第一射频通路(包括第一射频电路和第一射频天线)形成第一套通信模块,第一套通信模块对应第一基站。第二调制解调模块(modem)和第二射频通路(包括第二射频电路和第二射频天线)形成第二套通信模块,第二套通信模块对应第二基站。在一个示例中,第一modem为5G modem,第二modem为4G modem,第一射频电路为5G RF,第二射频电路为4G RF。双连接模式下,第一通信模块和第二通信模块同时工作。
在一个示例中,终端先建立与第二基站的连接,再建立与第一基站的连接。举个例子:终端与第二基站连接的情况下,接收到第一基站发送的控制指令,所述控制指令用于触发开启所述第一基站对应的通信功能;所述终端响应所述控制指令,建立与所述第一基站之间的连接。
本申请实施例中,所述终端对第一基站的信道质量进行测量,得到所述目标参数,在一个例子中,所述目标参数为信道质量指示信息(Channel Quality Indicator,CQI)。CQI的取值代表信道质量的好坏,和信道的信噪比大小相对应,CQI的取值范围为0~31。举个例子:CQI取值为0时,信道质量最差;CQI取值为31的时候,信道质量最好。一般常见的取值为12~ 24。
步骤202:所述终端对所述目标参数进行调整,并将调整后的所述目标参数发送给网络侧;其中,调整后的所述目标参数用于降低所述第一基站侧的下行传输速率。
本申请实施例中,当终端与第一基站之间建立完连接后,终端即可与第一基站进行通信。需要说明的是,本申请实施例中所述的连接是指接入。终端开启所述第一基站对应的通信功能后,需要结合实际情况来调整终端的各项参数,从而达到性能和功耗的最佳折中,使用户获得更加的体验。进一步,本申请实施例对终端的传输速率进行调整,来节省终端的耗电。
以所述第一基站对应的通信功能为5G功能为例,参照图4,图4为终端开启智能5G的示意图,这里,开启智能5G的含义是指对5G功能进行优化,具体地,终端使用5G功能时能够结合实际情况来调整终端的各项参数(如传输速率)。如图4所示,终端开启智能5G包括以下流程:
1、终端判断是否接收到了开启智能5G的操作。
这里,终端展示用户界面,该用户界面包括开启智能5G的选项,用户可以触发操作来选中智能5G对应的选项,从而开启智能5G。这里,用户的操作可以是触摸操作或按键操作或语音操作或手势操作等。
2、如果接收到了开启智能5G的操作,则对5G功能进行优化。
这里,5G功能的优化至少包括:限制终端的5G传输速率来节省终端的耗电。
3、如果未接收到了开启5G功能的控制指令,则不对5G功能进行优化。
在一应用场景中,所述终端检测所述终端的温度;所述终端的温度大于等于目标门限的情况下,所述终端开启限制所述第一基站对应的通信功能(如启动限制所述第一基站对应的下行传输速率);在开始限制所述第一 基站对应的通信功能的情况下,所述终端对所述目标参数进行调整。需要说明的是,这里的下行传输速率是指第一基站对应的下行传输速率,以第一基站为5G基站为例,下行传输速率指5G下行传输速率。
示例性地,终端的温度可以通过终端某个硬件的温度或者某几个硬件的平均温度来体现,例如处理器的温度、存储器的温度等。
在一可选实施方式中,所述终端的温度小于所述目标门限的情况下,所述终端关闭限制所述第一基站对应的通信功能。这种情况下,终端的下行传输速率恢复到正常情况(即目标参数没有被调整的情况)。
以下阐述终端如何对目标参数进行调整。
所述终端确定启动限制下行传输速率的情况下,将所述目标参数的取值调小;所述终端将调小后的所述目标参数发送给网络侧;其中,调小后的所述目标参数用于所述网络侧执行以下操作:降低所述第一基站侧的MCS的索引值。
在一个例子中,目标参数称为CQI值,参照图5,1、终端测量第一基站的CQI值,将测量得到的CQI值调小;2、终端通过物理上行控制信道(Physical Uplink Control Channel,PUCCH)中的上行控制信息(Uplink Control Information,UCI)向第一基站上报调小后的CQI值。
调小后的所述目标参数用于所述网络侧执行以下操作:降低所述第一基站侧的MCS的索引值。如此,可以实现降低下行传输速率。
在一可选实施方式中,所述终端还可以通过将一部分肯定确认(ACK)反馈信息变更为否定确认(NACK)反馈信息上报给第一基站,第一基站收到的NACK反馈信息越多,则会降低所述第一基站侧的MCS的索引值,从而降低下行传输速率。
本申请实施例中,终端将调整后的所述目标参数发送给网络侧,可以通过以下方式实现:1)终端将调整后的所述目标参数发送给第一基站。或 者,2)终端将调整后的所述目标参数发送给第二基站,由第二基站将所述目标参数转发给第一基站。
需要说明的是,网络侧执行的操作可以由第一基站执行或者由第二基站执行。
本申请实施例的上述技术方案,通过限制下行传输速率,能够达到节省终端耗电的目的,从而提高了终端的续航时长。
图6为本申请实施例提供的终端的结构组成示意图,如图6所示,所述终端包括:
计算单元601,配置为测量目标参数,所述目标参数用于表示第一基站对应的信道质量;其中,所述终端处于双连接模式;
调整单元602,配置为对所述目标参数进行调整;
通信单元603,配置为将调整后的所述目标参数发送给网络侧;
其中,调整后的所述目标参数用于降低所述第一基站侧的下行传输速率。
在一实施方式中,所述调整单元602,配置为在确定启动限制下行传输速率的情况下,将所述目标参数的取值调小;
所述通信单元603,配置为将调小后的所述目标参数发送给网络侧;
其中,调小后的所述目标参数用于所述网络侧执行以下操作:降低所述第一基站侧的MCS的索引值。
在一实施方式中,所述终端还包括:
检测单元604,配置为检测所述终端的温度;
控制单元605,配置为在所述终端的温度大于等于目标门限的情况下,开启限制所述第一基站对应的通信功能;
所述调整单元602,配置为在开始限制所述第一基站对应的通信功能的情况下,对所述目标参数进行调整。
在一实施方式中,所述控制单元605,还用于在所述终端的温度小于所述目标门限的情况下,关闭限制所述第一基站对应的通信功能。
在一实施方式中,所述目标参数为CQI。
在一实施方式中,所述终端处于双连接模式,在所述双连接模式下,所述终端与所述第一基站和第二基站均进行通信。
本申请实施例中,所述终端中各单元实现的功能可以参照前述传输速率控制方法的相关描述进行理解。具体实现时,所述终端中的计算单元、调整单元、控制单元可由所述终端中的处理器,比如中央处理器(Central Processing Unit,CPU)、数字信号处理器(Digital Signal Processor,DSP)、微控制单元(Microcontroller Unit,MCU)或可编程门阵列(Field-Programmable Gate Array,FPGA)等实现;所述终端中的通信单元可通过通信模组(包含:基础通信套件、操作***、通信模块、标准化接口和协议等)及收发天线实现,所述终端中的检测单元可通过温度传感器实现。
需要说明的是:上述各单元的划分仅为示例性的,实际应用中,可以将终端的内部结构划分成不同的单元,以完成以上描述的全部或者部分功能。另外,上述实施例提供的终端与传输速率控制方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
基于上述设备的硬件实现,本申请实施例还提供了一种终端,图7为本申请实施例的终端的硬件组成结构示意图,如图7所示,终端包括存储器701、处理器702及存储在存储器701上并可在处理器上运行的计算机程序;作为第一种实施方式,位于终端的处理器702执行所述程序时实现以下步骤:测量目标参数,所述目标参数用于表示第一基站对应的信道质量;对所述目标参数进行调整,并将调整后的所述目标参数发送给网络侧;其中,调整后的所述目标参数用于降低所述第一基站侧的下行传输速率。
在一可选实施方式中,所述处理器702执行所述程序时还实现以下步 骤:
确定启动限制下行传输速率的情况下,将所述目标参数的取值调小;
将调小后的所述目标参数发送给网络侧;
其中,调小后的所述目标参数用于所述网络侧执行以下操作:降低所述第一基站侧的MCS的索引值。
在一可选实施方式中,所述处理器702执行所述程序时还实现以下步骤:
检测所述终端的温度;
所述终端的温度大于等于目标门限的情况下,开启限制所述第一基站对应的通信功能;
在开始限制所述第一基站对应的通信功能的情况下,对所述目标参数进行调整。
在一可选实施方式中,所述处理器702执行所述程序时还实现以下步骤:
所述终端的温度小于所述目标门限的情况下,关闭限制所述第一基站对应的通信功能。
在一可选实施方式中,所述目标参数为CQI。
在一可选实施方式中,所述终端处于双连接模式,在所述双连接模式下,所述终端与所述第一基站和第二基站均进行通信。
可以理解,终端还包括总线***703;终端中的各个组件通过总线***703耦合在一起。可理解,总线***703用于实现这些组件之间的连接通信。总线***703除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
可以理解,本实施例中的存储器可以是易失性存储器或非易失性存储器,也可包括易失性和非易失性存储器两者。其中,非易失性存储器可以 是只读存储器(Read Only Memory,ROM)、可编程只读存储器(Programmable Read-Only Memory,PROM)、可擦除可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、电可擦除可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、磁性随机存取存储器(Ferromagnetic Random Access Memory,FRAM)、快闪存储器(Flash Memory)、磁表面存储器、光盘、或只读光盘(Compact Disc Read-Only Memory,CD-ROM);磁表面存储器可以是磁盘存储器或磁带存储器。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static Random Access Memory,SRAM)、同步静态随机存取存储器(Synchronous Static Random Access Memory,SSRAM)、动态随机存取存储器(Dynamic Random Access Memory,DRAM)、同步动态随机存取存储器(Synchronous Dynamic Random Access Memory,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate Synchronous Dynamic Random Access Memory,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced Synchronous Dynamic Random Access Memory,ESDRAM)、同步连接动态随机存取存储器(SyncLink Dynamic Random Access Memory,SLDRAM)、直接内存总线随机存取存储器(Direct Rambus Random Access Memory,DRRAM)。本申请实施例描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
上述本申请实施例揭示的方法可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、DSP,或者其他可编程 逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。处理器可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤,可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于存储介质中,该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成前述方法的步骤。
本申请实施例还提供了一种计算机存储介质,具体为计算机可读存储介质。其上存储有计算机指令,作为第一种实施方式,在计算机存储介质位于终端时,该计算机指令被处理器执行时实现以下步骤:测量目标参数,所述目标参数用于表示第一基站对应的信道质量;对所述目标参数进行调整,并将调整后的所述目标参数发送给网络侧;其中,调整后的所述目标参数用于降低所述第一基站侧的下行传输速率。
在一可选实施方式中,所述计算机指令被处理器执行时还实现以下步骤:
确定启动限制下行传输速率的情况下,将所述目标参数的取值调小;
将调小后的所述目标参数发送给网络侧;
其中,调小后的所述目标参数用于所述网络侧执行以下操作:降低所述第一基站侧的MCS的索引值。
在一可选实施方式中,所述计算机指令被处理器执行时还实现以下步骤:
检测所述终端的温度;
所述终端的温度大于等于目标门限的情况下,开启限制所述第一基站对应的通信功能;
在开始限制所述第一基站对应的通信功能的情况下,对所述目标参数 进行调整。
在一可选实施方式中,所述计算机指令被处理器执行时还实现以下步骤:
所述终端的温度小于所述目标门限的情况下,关闭限制所述第一基站对应的通信功能。
在一可选实施方式中,所述目标参数为CQI。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个***,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元,即可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本申请各实施例中的各功能单元可以全部集成在一个处理单元中,也可以是各单元分别单独作为一个单元,也可以至少两个单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、ROM、RAM、磁碟或者光盘等各 种可以存储程序代码的介质。
或者,本申请上述集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本申请各个实施例所述方法的全部或部分。而前述的存储介质包括:移动存储设备、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
需要说明的是:本申请实施例所记载的技术方案之间,在不冲突的情况下,可以任意组合。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种传输速率控制方法,所述方法包括:
    终端测量目标参数,所述目标参数用于表示第一基站对应的信道质量;其中,所述终端处于双连接模式;
    所述终端对所述目标参数进行调整,并将调整后的所述目标参数发送给网络侧;其中,调整后的所述目标参数用于降低所述第一基站侧的下行传输速率。
  2. 根据权利要求1所述的方法,其中,所述终端对所述目标参数进行调整,并将调整后的所述目标参数发送给网络侧,包括:
    所述终端确定启动限制下行传输速率的情况下,将所述目标参数的取值调小;
    所述终端将调小后的所述目标参数发送给网络侧;
    其中,调小后的所述目标参数用于所述网络侧执行以下操作:降低所述第一基站侧的调制编码策略MCS的索引值。
  3. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述终端检测所述终端的温度;
    所述终端的温度大于等于目标门限的情况下,所述终端开启限制所述第一基站对应的通信功能;
    在开始限制所述第一基站对应的通信功能的情况下,所述终端对所述目标参数进行调整。
  4. 根据权利要求3所述的方法,其中,所述方法还包括:
    所述终端的温度小于所述目标门限的情况下,所述终端关闭限制所述第一基站对应的通信功能。
  5. 根据权利要求1至4中任一项所述的方法,其中,所述目标参数为信道质量指示信息CQI。
  6. 一种终端,所述终端包括:
    计算单元,配置为测量目标参数,所述目标参数用于表示第一基站对应的信道质量;其中,所述终端处于双连接模式;
    调整单元,配置为对所述目标参数进行调整;
    通信单元,配置为将调整后的所述目标参数发送给网络侧;其中,调整后的所述目标参数用于降低所述第一基站侧的下行传输速率。
  7. 根据权利要求6所述的终端,其中,
    所述调整单元,配置为在确定启动限制下行传输速率的情况下,将所述目标参数的取值调小;
    所述通信单元,配置为将调小后的所述目标参数发送给网络侧;
    其中,调小后的所述目标参数用于所述网络侧执行以下操作:降低所述第一基站侧的MCS的索引值。
  8. 根据权利要求6所述的终端,其中,所述终端还包括:
    检测单元,配置为检测所述终端的温度;
    控制单元,配置为在所述终端的温度大于等于目标门限的情况下,开启限制所述第一基站对应的通信功能;
    所述调整单元,配置为在开始限制所述第一基站对应的通信功能的情况下,对所述目标参数进行调整。
  9. 一种计算机存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1至5任一项所述方法的步骤。
  10. 一种终端,所述终端包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,
    其中,所述处理器用于运行所述计算机程序时,执行权利要求1至5任一项所述方法的步骤。
PCT/CN2020/114701 2019-09-16 2020-09-11 传输速率控制方法及终端、计算机存储介质 WO2021052247A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910872435.8 2019-09-16
CN201910872435.8A CN110677874B (zh) 2019-09-16 2019-09-16 传输速率控制方法及终端、计算机存储介质

Publications (1)

Publication Number Publication Date
WO2021052247A1 true WO2021052247A1 (zh) 2021-03-25

Family

ID=69077950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114701 WO2021052247A1 (zh) 2019-09-16 2020-09-11 传输速率控制方法及终端、计算机存储介质

Country Status (2)

Country Link
CN (1) CN110677874B (zh)
WO (1) WO2021052247A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110677874B (zh) * 2019-09-16 2021-08-24 Oppo广东移动通信有限公司 传输速率控制方法及终端、计算机存储介质
CN111970754B (zh) * 2020-08-18 2021-11-05 珠海格力电器股份有限公司 通信控制方法及装置、电子设备
CN111866933B (zh) * 2020-09-02 2022-04-05 珠海格力电器股份有限公司 数据传输模式的确定方法及装置
CN112199216A (zh) * 2020-10-21 2021-01-08 哲库科技(北京)有限公司 接口配置方法和装置、调制解调芯片及存储介质
CN114221739B (zh) * 2021-12-08 2024-04-09 惠州Tcl移动通信有限公司 一种语音通话方法、装置和计算机可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014108666A1 (en) * 2013-01-10 2014-07-17 Anite Telecoms Limited A system for radio transceiver timing
CN107888244A (zh) * 2016-09-30 2018-04-06 中兴通讯股份有限公司 一种无线通信***中实现用户面功能增强的方法和装置
CN109587757A (zh) * 2017-09-29 2019-04-05 电信科学技术研究院 一种终端能力控制方法、终端及基站
CN110677874A (zh) * 2019-09-16 2020-01-10 Oppo广东移动通信有限公司 传输速率控制方法及终端、计算机存储介质

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102123409A (zh) * 2011-02-24 2011-07-13 华为终端有限公司 无线网络连接方法及无线宽带设备
CN104219739B (zh) * 2013-05-30 2018-02-06 华为终端有限公司 通信速率调整方法和无线热点
US9763116B2 (en) * 2014-08-27 2017-09-12 Western Digital Technologies, Inc. Method of optimizing device performance by maintaining device within temperature limits
US9999037B2 (en) * 2015-05-15 2018-06-12 Qualcomm Incorporated Methods and apparatus for adjusting flow rate of transmissions received by a device
US9876613B2 (en) * 2015-08-28 2018-01-23 Qualcomm Incorporated Transport protocol communications reduction
US10595311B2 (en) * 2016-07-29 2020-03-17 Qualcomm Incorporated Adapting transmissions in multi-transmission time interval (TTI) sidelink communication
CN108738079B (zh) * 2017-04-18 2020-11-06 ***通信有限公司研究院 一种传输速率协商方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014108666A1 (en) * 2013-01-10 2014-07-17 Anite Telecoms Limited A system for radio transceiver timing
CN107888244A (zh) * 2016-09-30 2018-04-06 中兴通讯股份有限公司 一种无线通信***中实现用户面功能增强的方法和装置
CN109587757A (zh) * 2017-09-29 2019-04-05 电信科学技术研究院 一种终端能力控制方法、终端及基站
CN110677874A (zh) * 2019-09-16 2020-01-10 Oppo广东移动通信有限公司 传输速率控制方法及终端、计算机存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA, ALCATEL-LUCENT SHANGHAI BELL: "On bandwidth extension solutions in NR", 3GPP DRAFT; R1-1609665, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Lisbon, Portugal; 20161010 - 20161014, 9 October 2016 (2016-10-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051149700 *

Also Published As

Publication number Publication date
CN110677874B (zh) 2021-08-24
CN110677874A (zh) 2020-01-10

Similar Documents

Publication Publication Date Title
WO2021052247A1 (zh) 传输速率控制方法及终端、计算机存储介质
US11812387B2 (en) Method and apparatus for controlling power consumption of terminal, and storage medium
US11546106B2 (en) Method and device for determining beam failure detection reference signal resource
KR102429965B1 (ko) 사용자 단말의 수신 안테나 선택 방법 및 그 장치
EP3101824B1 (en) Drx operation for ul/dl reconfiguration
US11120811B2 (en) Power optimized link quality detection and feedback
US12004082B2 (en) Method for determining better power consumption for antenna panels
EP3843486A1 (en) Data transmission method and terminal device
WO2021052258A1 (zh) 传输速率控制方法及终端、存储介质
US9813988B2 (en) Method and device for data transmission in wireless local area network
WO2021179305A1 (zh) 用于上行传输的方法和装置
CN110708722B (zh) 传输速率控制方法及终端、计算机存储介质
WO2021238520A1 (zh) 可穿戴设备控制方法、装置、电子设备及存储介质
EP3829228A1 (en) Method and apparatus for transmitting signal, and computer-readable storage medium
US11985026B2 (en) Processing method and device for link recovery process, and terminal
WO2019079997A1 (zh) 数据传输模式的确定方法、网络设备及计算机存储介质
US20200178186A1 (en) Access Method And Access Device
WO2020088329A1 (zh) 一种数据传输方法、网络设备、终端和存储介质
CN112788713A (zh) 网络连接方法及终端、计算机存储介质
US9930722B2 (en) Discontinuous reception techniques
WO2024017196A1 (zh) 交叉链路干扰测量及报告方法、设备及可读存储介质
WO2023202627A1 (zh) 功率控制方法、装置、终端、网络侧设备及***
WO2024017321A1 (zh) 唤醒信号的发送和反馈方法、设备及可读存储介质
WO2023236868A1 (zh) 反向散射通信配置方法、装置、网络侧设备和终端
WO2023045723A1 (zh) 通信方法、装置、设备以及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20865890

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20865890

Country of ref document: EP

Kind code of ref document: A1