WO2023017675A1 - Lower limb control capability measurement device, lower limb control capability measurement system, lower limb control capability measurement program, and lower limb control capability measurement method - Google Patents

Lower limb control capability measurement device, lower limb control capability measurement system, lower limb control capability measurement program, and lower limb control capability measurement method Download PDF

Info

Publication number
WO2023017675A1
WO2023017675A1 PCT/JP2022/024169 JP2022024169W WO2023017675A1 WO 2023017675 A1 WO2023017675 A1 WO 2023017675A1 JP 2022024169 W JP2022024169 W JP 2022024169W WO 2023017675 A1 WO2023017675 A1 WO 2023017675A1
Authority
WO
WIPO (PCT)
Prior art keywords
index
control ability
peak
axis
lower limb
Prior art date
Application number
PCT/JP2022/024169
Other languages
French (fr)
Japanese (ja)
Inventor
洋平 下河内
晋史郎 峯田
Original Assignee
学校法人浪商学園
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人浪商学園 filed Critical 学校法人浪商学園
Priority to JP2023541232A priority Critical patent/JPWO2023017675A1/ja
Publication of WO2023017675A1 publication Critical patent/WO2023017675A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/22Ergometry; Measuring muscular strength or the force of a muscular blow

Definitions

  • the present invention relates to a lower-limb control ability measuring device, a lower-limb control ability measuring system, a lower-limb control ability measuring program, and a lower-limb control ability measuring method for measuring lower-limb control ability.
  • Patent Document 1. reference. Conventionally, there has been known a technique in which a sensor is attached to a user's body to obtain long-term sensor data, and a neural network is used to estimate a motor function from the long-term sensor data (for example, Patent Document 1. reference.).
  • An object of the present invention is to provide a lower-limb control ability measuring device, a lower-limb control ability measuring system, a lower-limb control ability measuring program, and a lower-limb control ability measuring method that facilitate measurement of lower-limb control ability.
  • a lower-limb control ability measuring device is a test subject having a physical quantity detection device that detects at least one physical quantity of angular velocity and acceleration attached to the thigh, and flexes and/or bends the knee joint while resisting a load.
  • a physical quantity acquisition unit that acquires a physical quantity detected by the physical quantity detection device during a period in which a knee flexion exercise including an extension motion is performed, and a waveform of the physical quantity acquired by the physical quantity acquisition unit is a preset target and a peak number counter for counting the number of peaks, which is the number of times a peak occurs within the period.
  • a lower-limb control ability measuring system includes the above-described lower-limb control ability measuring device and the physical quantity detection device.
  • a lower-limb control ability measuring program causes a computer to function as the above-described lower-limb control ability measuring device.
  • a subject having a physical quantity detection device that detects at least one physical quantity of angular velocity and acceleration attached to the thigh bends the knee joint while resisting a load. and/or a physical quantity acquisition step of acquiring a physical quantity detected by the physical quantity detection device during a period in which a knee flexion exercise including an extension motion is performed; and a waveform of the physical quantity acquired by the physical quantity acquisition step is preset. and a peak number counting step of counting the number of peaks, which is the number of peaks within the target period.
  • a lower limb control ability measuring system includes the above-described lower limb control ability measuring device, and the X-axis peak number, the Y-axis peak number, and the Z-axis peak number obtained from a plurality of subjects.
  • Principal component analysis is performed using the X-axis peak frequency value Vx, the Y-axis peak frequency value Vy, and the Z-axis peak frequency value Vz as variables, and the first principal component of the principal component analysis is expressed by the formula (1 ) and the principal component analysis part obtained as
  • FIG. 2 is a block diagram showing an example of an electrical configuration of the physical quantity detection device shown in FIG. 1;
  • FIG. 4 is a graph showing an example of angular velocities when a subject wearing the physical quantity detection device shown in FIG. 1 on the thigh performs squat exercise five times. 4 is a graph showing an example of an angular velocity waveform in one falling period;
  • 2 is a flow chart showing an example of a method for generating equation (1) by the lower limb control ability measurement system shown in FIG. 1; 9 is a flowchart showing an example of peak number acquisition processing;
  • FIG. 4 is a graph showing an example of angular velocities when a subject wearing the physical quantity detection device shown in FIG. 1 on the thigh performs squat exercise five times. 4 is a graph showing an example of an angular velocity waveform in one falling period;
  • 2 is a flow chart showing an example of a method for generating equation (1) by the lower limb control ability measurement system shown in FIG. 1
  • FIG. 4 is an explanatory diagram showing an example of the number of left and right peaks in a falling period for five squat exercises counted by the number-of-peaks counting unit shown in FIG. 1 ;
  • FIG. 2 is a flow chart showing an example of a method of measuring an index by the lower-limb control ability measuring device shown in FIG. 1.
  • FIG. 10 is a table showing multiple regression analysis results for Equation (2) for TUG test.
  • FIG. It is a table
  • FIG. 4 is an explanatory diagram for explaining a trunk backward inclination angle Ra, a knee joint extension angle Rb, and a thigh extension angle Rc;
  • FIG. 10 is a table showing results of multiple regression analysis of Equation (4) regarding trunk backward tilt peak angle Rap;
  • FIG. 10 is a table showing results of multiple regression analysis of formula (5) regarding knee extension peak angle Rbp;
  • FIG. 10 is a table showing results of multiple regression analysis for formula (6) regarding thigh extension peak angle Rcp;
  • FIG. 10 is a table showing results of multiple regression analysis with respect to equation (7) relating to trunk backward tilt peak angle Rap;
  • FIG. 10 is a table showing results of multiple regression analysis of formula (8) regarding knee joint extension peak angle Rbp;
  • FIG. 10 is a table showing results of multiple regression analysis for formula (9) regarding thigh extension peak angle Rcp;
  • FIG. 1 is an explanatory diagram showing an example of the configuration of a lower limb control ability measuring system according to one embodiment of the present invention.
  • a lower-limb control ability measuring system 1 shown in FIG. 1 includes a lower-limb control ability measuring device 2 and a physical quantity detection device 3 .
  • the lower limb control ability measurement system 1 is a system for measuring the subject U's lower limb control ability as an index IX.
  • the index IX can be the LEEC Index representing the subject U's lower extremity eccentric control ability (LEEC: Lower Extremity Eccentric Control).
  • the lower-limb control ability measuring system 1 can measure an index IX that is an index of the motor function of the subject's U lower limbs. If the motor function of the lower extremities of the subject U can be grasped as the index IX, it can be used to maintain and improve the motor function of the lower extremities of the subject U.
  • the lower limb control ability measuring device 2 is configured using, for example, a so-called personal computer.
  • the lower limb control ability measuring device 2 includes, for example, a control section 21, a display 22, a keyboard 23, a mouse 24, and a sensor I/F section 25 (physical quantity acquisition section).
  • the lower-limb control ability measuring device 2 is not limited to an example configured using a personal computer, and may be, for example, a smart phone, a tablet terminal, or the like.
  • FIG. 2 is a block diagram showing an example of the electrical configuration of the physical quantity detection device 3 shown in FIG.
  • the physical quantity detection device 3 shown in FIG. 2 includes an angular velocity sensor 31 , a storage section 32 , an external I/F (interface) section 33 and a control section 34 .
  • the lower limb control ability measuring system 1 uses a small information processing device such as a so-called smartphone equipped with an angular velocity sensor 31 to integrate the lower limb control ability measuring device 2 and the physical quantity detection device 3 into a single device. It may be a system with
  • the angular velocity sensor 31 is, for example, an angular velocity sensor that detects an angular velocity Ax around the X axis, an angular velocity Ay around the Y axis, and an angular velocity Az around the Z axis in X, Y, Z orthogonal coordinates.
  • Angular velocities Ax, Ay, and Az are collectively referred to as angular velocities A hereinafter.
  • the physical quantity detection device 3 may include an acceleration sensor for detecting X-axis direction acceleration, Y-axis direction acceleration, and Z-axis direction acceleration. good. Angular velocity and acceleration are examples of physical quantities.
  • the physical quantity detection device 3 is not limited to detecting the angular velocity A and/or the acceleration with the angular velocity sensor 31 and/or the acceleration sensor.
  • the physical quantity detection device 3 includes, for example, a camera (for example, a high-speed camera) that captures the knee bending motion of the subject U, and performs three-dimensional motion analysis from the video, thereby detecting the angular velocity A and/or acceleration. .
  • Fig. 1 shows squat exercise as an example of knee bending exercise.
  • a squat exercise is a knee flexion exercise that involves flexing and extending the knee joint while resisting a load (gravity).
  • the squat exercise is not limited to double leg squats, and may be single leg squats.
  • Double-leg squats are suitable for evaluating walking and balance functions in middle-aged and elderly people, and single-leg squats are suitable for evaluating the possibility of injury in athletes.
  • knee bending exercise is not limited to the squat exercise.
  • Various exercises can be used as the knee bending exercise.
  • knee flexion motions suitable for evaluation of walking function and balance function of middle-aged and elderly people include motions of sitting on a chair, motions of standing up, motions of ascending and descending stairs, and running motions.
  • knee flexion exercises suitable for evaluating the possibility of athlete injury double-leg vertical jump, single-leg vertical jump, stop motion, side step motion, double-leg landing motion, drop jump motion, double-leg rebound jump motion, and A single-leg rebound jump motion and the like can be mentioned.
  • a stop motion is a motion to stop suddenly from a running state.
  • a drop-jump motion is a motion of jumping off a platform.
  • a rebound jump is an action of continuously jumping, such as jumping with a jump rope.
  • the load in the knee bending motion is not limited to gravity.
  • it may be a load applied to the leg due to motion such as lateral movement, stopping from lateral movement, or the like.
  • it may be a load applied to the leg by a spring or a weight.
  • the X axis of the angular velocity sensor 31 is the long axis direction of the thigh of the subject U
  • the Y axis of the angular velocity sensor 31 is the longitudinal direction of the thigh of the subject U
  • the Z axis of the angular velocity sensor 31 The physical quantity detection device 3 is attached to the thigh of the subject U so that the axis extends along the lateral direction of the thigh of the subject.
  • the storage unit 32 is a non-volatile storage device configured using, for example, flash memory.
  • the external I/F unit 33 is a communication interface circuit that is connected to the sensor I/F unit 25 of the lower limb control ability measuring device 2 via, for example, an unillustrated cable or the like, and that can transmit data to the lower limb control ability measuring device 2. .
  • the external I/F unit 33 is not limited to transmitting data to the lower-limb control ability measuring device 2 by wire, and may be a wireless communication circuit that transmits data to the lower-limb control ability measuring device 2 using a radio signal.
  • the storage unit 32 may be configured by a removable storage medium such as a memory card, and the external I/F unit 33 and the sensor I/F unit 25 may be connectors or the like that allow the storage medium to be removable.
  • the control unit 34 is configured using, for example, a so-called microcomputer.
  • the control unit 34 consists of a CPU (Central Processing Unit) that executes predetermined arithmetic processing, a RAM (Random Access Memory) that temporarily stores data, a non-volatile storage unit, a timer circuit, and these peripheral circuits. It is The control unit 34 operates as follows by executing a predetermined control program.
  • CPU Central Processing Unit
  • RAM Random Access Memory
  • the control unit 34 causes the storage unit 32 to store the angular velocities Ax, Ay, and Az detected by the angular velocity sensor 31 cumulatively at predetermined time intervals, for example, for a predetermined period. Further, the control unit 34 transfers the data stored in the storage unit 32 to the lower limb control ability measuring device when the external I/F unit 33 and the sensor I/F unit 25 are connected, for example, by a cable (not shown) or the like. 2.
  • the sensor I/F unit 25 shown in FIG. 1 corresponds to an example of a physical quantity acquisition unit that acquires the physical quantity detected by the physical quantity detection device 3.
  • the sensor I/F unit 25 may be, for example, a communication circuit capable of receiving data from the external I/F unit 33 in a wired manner via a cable. It may be a wireless communication circuit capable of receiving data from the external I/F unit 33 via the sensor I/F unit 25 or an interface circuit that reads data from a storage medium in which data is written by the sensor I/F unit 25 .
  • the control unit 21 of the lower limb control ability measuring device 2 is configured using, for example, a microcomputer.
  • the control unit 21 includes a CPU that executes predetermined arithmetic processing, a RAM that temporarily stores data, non-volatile storage devices such as HDD (Hard Disk Drive) and SSD (Solid State Drive), peripheral circuits thereof, etc. consists of
  • the storage device also functions as an analysis result storage unit 214 .
  • the analysis result storage unit 214 stores equations (1) to (6), equations (A) to (C), etc., which will be described later.
  • the control unit 21 functions as a peak number counting unit 211, an index calculation unit 212, and a principal component analysis unit 213, for example, by executing the lower limb control ability measurement program stored in the storage device described above.
  • the principal component analysis unit 213 is not limited to being included in the lower limb control ability measuring device 2 .
  • the principal component analysis unit 213 may be configured as another device independent of the lower limb control ability measuring device 2 .
  • the number-of-peaks counting unit 211 generates waveforms of the angular velocities Ax, Ay, and Az (physical quantities) acquired by the sensor I/F unit 25, that is, waveforms in which the angular velocities Ax, Ay, and Az (physical quantities) are arranged along the time axis.
  • the number of peaks Cx X-axis peak number
  • Cy Y-axis peak number
  • Cz Z-axis peak number
  • the peak number counting unit 211 processes the waveforms of the angular velocities Ax, Ay, and Az after high-frequency components have been removed by the low-pass filter from the angular velocity waveform acquired by the sensor I/F unit 25, and calculates the number of peaks Cx. , Cy, Cz are preferably counted. As a result, noise can be removed from the angular velocity detected by the angular velocity sensor 31, and the counting accuracy of the peak numbers Cx, Cy, and Cz, which are highly correlated with the leg extension control ability, is improved.
  • a cutoff frequency of the low-pass filter is preferably 6 Hz.
  • a low-pass Butterworth filter is preferable as the low-pass filter.
  • the peak number counting unit 211 is not necessarily limited to processing the waveforms of the angular velocities Ax, Ay, and Az after high-frequency components have been removed by the low-pass filter.
  • the angular velocities acquired by the sensor I/F unit 25 may be used as the angular velocities Ax, Ay, and Az to be processed.
  • the peak number counting unit 211 does not necessarily have to count all of the peak numbers Cx, Cy, and Cz, and may count at least one of the peak numbers Cx, Cy, and Cz.
  • any period can be set as the target period Tw.
  • the knee flexion exercise is a squat exercise, it is more preferable to set the target period Tw as a period during which the center of gravity of the subject U (physical quantity detection device 3) descends.
  • the descending period in the squat exercise corresponds to an example of the period during which the knee joint is bent while resisting the load.
  • the index IX described later is the lower extensibility control ability index (LEEC Index). becomes.
  • constriction contraction in which the muscle exerts force while its length shortens
  • isometric contraction in which the muscle exerts force while the length is constant
  • force exertion while the muscle lengthens There is an eccentric contraction that exerts In knee flexion exercise, when the knee joint is flexed while resisting the load
  • squat exercise when the body's center of gravity is lowered while bending the knee and hip joints, the contraction that occurs in the extensor muscles of the lower extremities is mainly eccentric contraction. .
  • Eccentric contractions of the extensor muscles of the lower extremities are involved in daily activities such as shock-absorbing situations where falls and injuries are likely to occur, walking down stairs, and sitting on a chair. used. If a person does not have the ability to slowly lower the center of gravity of the body, the muscles cannot absorb the impact during these movements, so it is believed that the person is more likely to receive a large impact and fall more easily.
  • the index IX is an index representing the lower limb control ability from the viewpoint of improving the QOL of middle-aged and elderly people and preventing nursing care. As such, it is considered to be particularly effective.
  • FIG. 3 is a graph showing an example of the angular velocity Az when the subject U who has the physical quantity detection device 3 attached to the thigh performs squat exercise five times.
  • a graph G1 indicates the angular velocity Az
  • a graph G2 indicates the inclination angle of the thigh.
  • the horizontal axis of the graph shown in FIG. 3 is time (msec), the left vertical axis is angular velocity (dps: degree per second) corresponding to graph G1, and the right vertical axis is tilt angle (degree) corresponding to graph G2. .
  • the tilt angle of the thigh that is, the tilt angle of the X-axis is obtained by integrating the angular velocity Az.
  • the tilt angle indicates that the thigh (X-axis) is vertical at 0 degrees, and the thigh (X-axis) is horizontal at -90 degrees. Since the angular velocities Ax and Ay are substantially the same as the angular velocity Az, the explanation of the angular velocities Ax and Ay is omitted.
  • the graph G2 decreases during the descending period when the subject U bends the leg and the center of gravity descends, and the graph G2 increases during the ascending period when the subject U stretches the leg and the center of gravity rises. Therefore, it is possible to distinguish between the falling period and the rising period based on the inclination angle of the graph G2.
  • FIG. 4 is a graph showing an example of the waveform of the angular velocity A during one falling period. The operation of the peak number counting unit 211 will be described below with reference to the graph G3 shown in FIG.
  • the peak number counting unit 211 detects peaks P1 to P15 from the graph G3.
  • the peak number counting unit 211 counts, as the number of peaks C, the number of peaks having a difference equal to or greater than a preset reference level Aref on both sides of the peaks P1 to P15 of the graph G3.
  • the peak numbers Cx, Cy, and Cz reflect the number of times the positive and negative of the angular velocities Ax, Ay, and Az are switched, the peak numbers Cx, Cy, and Cz are used to measure the tremor and flexion of the thigh around the X, Y, and Z axes. It can be used as a comprehensive index of the smoothness of exercise.
  • the reference level Aref is assumed to be 10 dps.
  • there are four peaks P4, P9, P12, and P15 that have a difference equal to or greater than the reference level Aref on both sides of the peak. Therefore, the number-of-peaks counting unit 211 counts the number of peaks C 4.
  • a difference greater than or equal to the reference level Aref is judged by ignoring other peaks that do not have a difference greater than or equal to the reference level Aref on both sides. For example, the peak P3 on the left slope of the peak P4 has no difference equal to or greater than the reference level Aref on both sides. The number of peaks is counted.
  • the reference level Aref is not limited to 10 dps.
  • a reference level Aref that allows selection of peaks that are highly correlated with the lower extremity control ability to be counted may be determined experimentally, for example, and the reference level Aref may be appropriately set.
  • the number-of-peaks counting unit 211 is not limited to counting the number of peaks having a difference equal to or greater than the reference level Aref on both sides of the peak.
  • the number-of-peaks counting unit 211 may count, as the number of peaks C, the number of all peaks P1 to P15 within the target period Tw, for example.
  • the example shown in FIG. 4 shows a method of counting the number of peaks C when the target period Tw is the falling period and the index IX is the lower extensibility control ability index (LEEC Index).
  • the target period Tw may be a period for one squat or a period for multiple squats, including a falling period and a rising period.
  • the index IX is a lower-limb control ability index that is not limited to extensibility control ability.
  • the target period Tw may be the rising period.
  • the index IX as the lower extremity control ability index when the target period Tw is the descending period is more preferable than when the target period Tw is another period.
  • the index calculation unit 212 calculates a peak frequency value Vx based on the peak frequency Cx (X-axis peak frequency value), a peak frequency value Vy based on the peak frequency Cy (Y-axis peak frequency value), and a peak frequency value Vz based on the peak frequency Cz (
  • An index IX is calculated as an index representing the lower limb control ability of the subject U from the Z-axis peak count value).
  • the index calculator 212 calculates the index IX from the peak frequency values Vx, Vy, and Vz using the following formula (1).
  • Index IX indicates that the higher the value, the lower the walking ability and balance ability, the more likely it is that the knees cannot be bent smoothly during squat exercise, and the legs shake from side to side.
  • the ratio of the coefficients Kx, Ky, and Kz should be 378:388:353, and the absolute values of the coefficients Kx, Ky, and Kz do not matter.
  • the greater the number of significant digits representing the ratios of the coefficients Kx, Ky, and Kz the more preferable the index IX is to improve the accuracy of representing the lower limb control ability of the subject U.
  • the peak frequency value Vx the peak frequency Cx
  • the peak frequency value Vy the peak frequency Cy
  • the peak frequency value Vz the peak frequency Cz.
  • the principal component analysis unit 213 performs principal component analysis using the peak frequency values Vx, Vy, and Vz obtained from a plurality of subjects U as variables, and calculates the first principal component of the principal component analysis obtained as a result of the analysis by the formula (1) is stored in the analysis result storage unit 214 .
  • FIG. 5 is a flow chart showing an example of a method of generating equation (1) by the lower limb control ability measuring system 1 shown in FIG.
  • the same step numbers are given to the same processes, and the description thereof will be omitted.
  • a peak number acquisition process is executed for a plurality of subjects U (step S1).
  • FIG. 6 is a flowchart showing an example of the peak number acquisition process.
  • the physical quantity detection device 3 is attached to each of the right thigh and the left thigh of the subject U (step S11).
  • subject U performs squat exercises five times.
  • the left and right physical quantity detection devices 3 detect angular velocities Ax, Ay, and Az, respectively (step S12).
  • the control unit 34 samples the angular velocities Ax, Ay, and Az detected by the angular velocity sensors 31 of the physical quantity detection devices 3 at predetermined time intervals, such as 5 msec intervals, and stores them in the storage unit 32 .
  • subject U stands on both feet with his feet shoulder-width apart. Then, the subject U lowered the center of gravity from a two-legged standing position with full knee extension (0 degrees) over 5 seconds until the knee joints reached 90 degrees, and then performed squat exercises five times over 5 seconds to stretch the knees. Do it continuously. One set of this is performed for each person, and the angular velocities Ax, Ay, and Az are detected from the left and right thighs.
  • the physical quantity detection device 3 is removed from the right and left thighs of the subject U, and the external I/F section 33 of the physical quantity detection device 3 and the sensor I/F section 25 of the leg control ability measuring device 2 are connected, for example, by a cable (not shown). to connect.
  • the sensor I/F unit 25 detects left angular velocities Ax, Ay, and Az from the physical quantity detection device 3 attached to the left thigh, and right angular velocities from the physical quantity detection device 3 attached to the right thigh.
  • Ax, Ay, and Az are acquired, and the control unit 21 stores them in the storage device (step S13: physical quantity acquisition step).
  • the peak frequency counting unit 211 removes high frequency components from the waveforms of the left and right angular velocities Ax, Ay, and Az using a low-pass filter (step S14).
  • the number-of-peaks counting unit 211 counts the numbers of left and right peaks Cx, Cy, and Cz during the falling period for five squat exercises from the waveforms of the left and right angular velocities Ax, Ay, and Az after removing the high-frequency component (step S15: peak number counting step).
  • one set of squat exercise is performed by attaching the physical quantity detection device 3 to one of the left and right thighs, and after detecting the angular velocity A of one, the physical quantity detection device is attached to the other thigh. 3 may be attached to perform another set of squat exercises to detect the angular velocities A of the other, thereby detecting the left and right angular velocities A sequentially.
  • FIG. 7 is an explanatory diagram showing an example of left and right peak numbers Cx, Cy, and Cz of the falling period for five squat exercises counted by the peak number counting unit 211.
  • FIG. 7 As shown in FIG. 7, left and right peak numbers Cx, Cy, and Cz are counted for five squat exercises.
  • the index calculation unit 212 generates peak count values Vx, Vy, and Vz based on the left and right peak counts Cx, Cy, and Cz of the falling period of three times excluding the first and last of the five squat exercises (step S16).
  • peak frequency values Vx, Vy, and Vz are collectively referred to as peak frequency value V.
  • the index calculation unit 212 uses the peak number C of the squat exercises excluding the first and last of the multiple squat exercises to generate the peak number values Vx, Vy, and Vz.
  • the number of squat exercises is not limited to 5 times, and may be 6 times or more, 4 times or less, or 1 time.
  • the index calculation unit 212 averages the numbers of left and right peaks Cx, Cy, and Cz in the second to fourth falling periods excluding the first and last, thereby calculating the number of right peaks Cx, Cy, and Cz. 3.0, 8.0, and 13.0 are calculated as average values, and 18.0, 23.0, and 28.0 are calculated as average values of left peak numbers Cx, Cy, and Cz.
  • Peak frequency values Vx, Vy, and Vz for one subject U are obtained by the peak frequency acquisition processing in steps S11 to S16. By repeating steps S11 to S16 for a plurality of subjects U, peak frequency values Vx, Vy, and Vz corresponding to a plurality of subjects U are obtained (step S1).
  • steps S11 to S15 either the left or right angular velocity A and the number of peaks C may be obtained. Then, in step S16, the peak frequency value V may be generated based on the peak frequency C of either one.
  • steps S11 to S15 the knee bending exercise described above may be performed instead of the squat exercise.
  • the principal component analysis unit 213 executes three-dimensional principal component analysis using the peak frequency values Vx, Vy, and Vz obtained from the plurality of subjects U as variables (step S2: principal component analysis step).
  • step S2 principal component analysis step.
  • principal component analysis for a plurality of peak frequency values Vx, Vy, and Vz, the peak frequency values Vx, Vy, and Vz after performing so-called Z-transformation, in which the average value is subtracted from the values and divided by the standard deviation, Principal component analysis may be performed using Vz.
  • the principal component analysis unit 213 stores the first principal component obtained by the principal component analysis in the analysis result storage unit 214 as the formula (1) and the coefficients Kx, Ky, Kz (step S3: principal component analysis process).
  • the lower-limb control ability measuring device 2 can measure the new index IX representing the lower-limb control ability of the subject U. becomes.
  • the lower limb control ability measuring device 2 may not include the principal component analysis unit 213, and the coefficients Kx, Ky, and Kz may be generated in steps S2 and S3 by a method other than the principal component analysis.
  • the physical quantity detection device 3 detects a physical quantity of one or two axes among the three axes of X, Y, and Z, and the lower limb control ability measuring device 2 counts the number of peaks C based on the physical quantity of one or two axes, A peak frequency value V may be generated.
  • FIG. 8 is a flow chart showing an example of a method for measuring the index IX by the lower-limb control ability measuring device 2 shown in FIG.
  • the subject U whose index IX is to be measured is subjected to the same kind of knee bending exercise as that performed when calculating the coefficients Kx, Ky, and Kz stored in the analysis result storage unit 214.
  • the peak frequency acquisition process of S16 is executed to acquire peak frequency values Vx, Vy, and Vz (step S21).
  • the index calculation unit 212 substitutes the peak frequency values Vx, Vy, and Vz obtained from the subject U into Equation (1) to calculate the index IX (step S22: index calculation step).
  • the index calculator 212 notifies the user of the calculated index IX by, for example, displaying it on the display 22 .
  • the lower limb control ability of the subject U can be measured.
  • the index calculation unit 212 does not have to execute step S22.
  • Each of the peak frequency values Vx, Vy, and Vz obtained in step S21 itself has a correlation with the subject's U lower-limb control ability. Therefore, the index calculation unit 212 may use at least one of the peak frequency values Vx, Vy, and Vz as an index representing the lower limb control ability of the subject U as it is.
  • the lower-limb control ability measuring device 2 may not include the index calculation unit 212, may not execute steps S16 and S22, and may acquire the peak count C as an index representing the subject's U lower-limb control ability in step S21.
  • Each of the peak counts Cx, Cy, and Cz obtained in step S15 itself has a correlation with the subject's U lower limb control ability. Therefore, at least one of the peak numbers Cx, Cy, and Cz can be used as an index representing the subject's U lower-limb control ability.
  • the index IX When the index IX is used, it becomes easier to comprehensively grasp the lower limb control ability of the subject U.
  • the left and right peak numbers Cx, Cy, Cz or the left and right peak number values Vx, Vy, Vz are used as they are as indices representing the lower limb control ability. It is possible to determine the magnitude, and to perform more detailed analysis, for example, to determine the smoothness of the bending motion from the number of peaks Cz. Also, from the left peak number C or the left peak number V, it is possible to analyze the left leg control ability, and from the right peak number C or the right peak number V, the right leg control ability can be analyzed.
  • the present inventors used the results of the TUG test and the results of the one-leg balance test by the above-mentioned 133 elderly people (ages 51 to 84), and the expression (1) and the coefficient using double leg squats as knee flexion exercise
  • the TUG test measures the time it takes to stand up from a sitting position, walk to a cone 3m ahead, turn the cone, walk back to the chair, and return to a sitting position.
  • the TUG test was performed twice for each person, and the average value of the measurement times was used for verification.
  • the subject was asked to stand on one leg with their hands on their hips, the knee on the free leg side extended, the hip joint slightly flexed, and their eyes opened.
  • the upper limit is 180 seconds, and either (1) the supporting leg moves, (2) the free leg touches the ground, or (3) the posture collapses (trunk flexes 30 degrees or the free leg moves more than 30 degrees).
  • index IX was calculated by double-leg squats
  • the age of each subject was defined as Xage
  • index IX and age Xage were used as independent variables for multiple regression analysis.
  • the TUG test result (time) is Ytug
  • the one-leg balance test result (time) is Ybalance
  • the formula (2) showing the multiple regression model with Ytug as the dependent variable is Ybalance
  • the formula (2) showing the multiple regression model with Ybalance as the dependent variable For 3
  • Equation (2) a and b are partial regression coefficients (unstandardized coefficients) of each independent variable in Equation (2), and c is an intercept (constant).
  • Equation (3) m and n are partial regression coefficients (unstandardized coefficients) of each independent variable in Equation (3), and r is an intercept (constant).
  • FIG. 9 is a table showing the results of multiple regression analysis for equation (2) for the TUG test.
  • FIG. 9 shows multiple correlation coefficient R obtained by multiple regression analysis for formula (2), multiple contribution rate R 2 , partial regression coefficients a and b, intercept c, standard partial regression coefficient ⁇ , p value (p value) , 95.0% confidence interval (CI: Confidence Interval) of the partial regression coefficients a and b.
  • the multiple contribution rate R2 is 0.218, which means that 21.8% of the variation in Ytug obtained by the TUG test is calculated by the formula ( It means that it can be explained by the index IX shown in 1). Since the TUG test measures the walking ability of the subject U, the fact that 21.8% of the variation in Ytug obtained by the TUG test can be explained by the index IX means that 21.8% of the variation in the walking ability of the subject U can be explained. This means that 8% can be explained by index IX.
  • the p-value of the index IX is 0.000, which is smaller than 0.05.
  • the index IX can be determined to be significant from the results of the multiple regression analysis.
  • the significance of the index IX obtained from the double-leg squat is obtained from the results of multiple regression analysis on the formula (2) for the TUG test. Calculation means that the TUG test result Ytug of the subject U can be estimated.
  • the equation (2), the partial regression coefficients a and b, and the constant c are stored in advance in the analysis result storage unit 214, and the index calculation unit 212 stores the index IX calculated in step S22 in the analysis result storage.
  • Ytug may be calculated as an index representing the walking ability of the subject U by substituting it into the equation (2) stored in the unit 214 .
  • the ratio of a:b:c may be 270:42:2554, and the absolute values of the partial regression coefficients a, b and constant c are not limited.
  • the greater the number of significant digits representing the ratio of the partial regression coefficients a, b, and the constant c the more preferable the accuracy of the index Ytug representing the walking ability of the subject U is.
  • FIG. 10 is a table showing results of multiple regression analysis for Equation (3) regarding the one-leg balance test.
  • FIG. 10 shows multiple correlation coefficient R obtained by multiple regression analysis for formula (3), multiple contribution rate R 2 , partial regression coefficients m, n, intercept r, standard partial regression coefficient ⁇ , p value (p value) , 95.0% confidence interval (CI: Confidence Interval) of the partial regression coefficients m, n.
  • the index IX shown in the formula (1). Since the one-leg balance test measures the balance ability of the subject U, the fact that 20.5% of the fluctuations in Ybalance obtained by the one-leg balance test can be explained by the index IX means that the variation in the balance ability of the subject U is This means that 20.5% can be explained by index IX.
  • the p-value of index IX is 0.003, which is smaller than 0.05.
  • the index IX can be determined to be significant from the results of the multiple regression analysis.
  • the index IX obtained from the double-leg squat is significant from the result of multiple regression analysis on the equation (3) regarding the one-leg balance test result Ybalance, and the index IX of the subject U is substituted into the equation (3).
  • the one-leg balance test result Ybalance of the subject U can be estimated by calculating Ybalance by using .
  • the equation (3), the partial regression coefficients m and n, and the constant r are stored in the analysis result storage unit 214 in advance, and the index calculation unit 212 stores the index IX calculated in step S22 in the analysis result storage.
  • Ybalance may be calculated as an index representing the subject's U balance ability by substituting it into the equation (3) stored in the unit 214 .
  • the ratio of m:n:r is -5361:-1244:125690, and the absolute values of the partial regression coefficients m and n and the constant r are not limited.
  • m:n:r -536:-124:12600 with three significant digits
  • m:n:r -54:-12:1300 with two significant digits, and one significant digit.
  • m:n:r -5:-1:100.
  • the greater the number of significant digits representing the ratio of the partial regression coefficients m, n, and the constant r the better, because the accuracy of the index Ybalance representing the balance ability of the subject U is improved.
  • the index IX is appropriate as an index representing the ability to control the lower limbs, such as the walking ability and balance ability of the subject U.
  • An index IX can be calculated that represents the controllability of the lower extremity for feasibility assessment.
  • an athlete index IX a method of calculating an index IX (hereinafter referred to as an athlete index IX) relating to the evaluation of the possibility of an injury occurring to an athlete using the lower-limb control ability measuring system 1 and the lower-limb control ability measuring device 2 shown in FIG. 1 will be described. do.
  • the coefficients Kx, Ky, and Kz for calculating the athlete index IX are calculated.
  • steps S11 to S16 shown in FIG. 6 the peak number values Vx, Vy, and Vz are generated by performing the second knee flexion exercise instead of the squat exercise.
  • steps S1 to S3 shown in FIG. 5 By executing steps S1 to S3 shown in FIG. 5 using the peak frequency values Vx, Vy, and Vz thus obtained, the coefficients Kx, Ky, and Kz for the athlete index IX are calculated, and the formula Stored in the analysis result storage unit 214 together with (1).
  • step S21 the peak frequency values Vx, Vy, and Vz are obtained (step S21).
  • step S22 the peak frequency values Vx, Vy, and Vz thus obtained, the coefficients Kx, Ky, and Kz for the athlete index IX stored in the analysis result storage unit 214, and the formula (1 ), the athlete index IX is calculated.
  • the athlete index IX can be calculated using the lower-limb control ability measuring system 1 and the lower-limb control ability measuring device 2 shown in FIG.
  • step S11 when performing a one-leg squat as the second knee flexion exercise, in step S11, the physical quantity detection device 3 is attached to the thigh on the side where the one-leg squat is performed.
  • the number of left and right peaks C may be obtained.
  • a peak frequency value V may be generated based on the peak frequency C.
  • the athlete index IX is obtained.
  • the athlete index IX can be used as an index representing the ability of the athlete to control the lower extremities regarding the evaluation of the possibility of occurrence of injury.
  • the coefficients Kx, Ky, and Kz for the athlete's index IX only need to have a ratio of 487:465:352, and the absolute values of the coefficients Kx, Ky, and Kz do not matter.
  • the greater the number of significant digits representing the ratios of the coefficients Kx, Ky, and Kz the better, since the accuracy of representing the lower limb control ability of the subject U by the athlete index IX is improved.
  • FIG. 11 is an explanatory diagram for explaining the trunk backward inclination angle Ra, the knee joint extension angle Rb, and the thigh extension angle Rc.
  • the trunk backward inclination angle Ra is an angle between the vertical direction Dv and the longitudinal direction Db1 of the trunk B1.
  • the trunk backward inclination angle Ra is expressed with the vertical direction Dv being 0 degrees, the backward inclination direction being positive, and the forward inclination direction being negative relative to the vertical direction Dv.
  • the knee joint extension angle Rb is the angle formed by the long axis direction Db3 of the lower leg B3 and the extension line of the long axis direction Db2 of the thigh B2.
  • the thigh extension angle Rc is an angle between the longitudinal direction Db1 of the trunk B1 and the longitudinal direction Db2 of the thigh B2.
  • the trunk backward tilt peak angle Rap was measured by standing on one foot on a 30 cm platform and landing on one foot at the same time as the signal. This is the maximum rearward inclination angle Ra of the trunk in the analysis section up to the point reached.
  • the knee joint extension peak angle Rbp is the maximum knee joint extension angle Rb in the above-described analysis section in the above-described one-leg landing task.
  • the thigh extension peak angle Rcp is the maximum thigh extension angle Rc in the above-described analysis section in the above-described one-leg landing task.
  • ACL anterior cruciate ligament
  • the present inventors performed the above-described one-leg landing task with the same 50 athletes who obtained the peak count values Vx, Vy, and Vz from the above-described single-leg squats as subjects U, and used 13 infrared cameras.
  • the trunk backward inclination peak angle Rap, the knee joint extension peak angle Rbp, and the thigh extension peak angle Rcp with respect to the trunk were measured.
  • the one-leg landing task was performed three times for each subject U, and the average values were taken as the trunk backward tilt peak angle Rap, the knee joint extension peak angle Rbp, and the thigh extension peak angle relative to the trunk Rcp of each subject U.
  • the one-leg landing task was performed with the right leg for the subjects U who performed the above-described one-leg squat with the right leg, and with the left leg for the subjects U who performed the above-described one-leg squat with the left leg.
  • Equation (4) showing the multiple regression model with the athlete index IX of each subject U as an independent variable in multiple regression analysis and the trunk backward tilt peak angle Rap as a dependent variable
  • the knee joint extension peak angle Rbp Multiple regression analysis was performed on Equation (5) showing a multiple regression model with Rcp as the dependent variable
  • Equation (6) showing a multiple regression model with the thigh extension peak angle Rcp with respect to the trunk as the dependent variable.
  • Rap BaIX+Ca (4)
  • Ba is the partial regression coefficient (unstandardized coefficient) of the independent variable IX in Equation (4)
  • Ca is the intercept (constant).
  • Rbp BbIX+Cb (5)
  • Bb is the partial regression coefficient (unstandardized coefficient) of the independent variable IX in Equation (5)
  • Cb is the intercept (constant).
  • Rcp BcIX+Cc (6)
  • Bc is the partial regression coefficient (unstandardized coefficient) of the independent variable IX in Equation (6)
  • Cc is the intercept (constant).
  • FIG. 12 is a table showing the results of multiple regression analysis of Equation (4) regarding the trunk backward tilt peak angle Rap.
  • FIG. 12 shows the multiple correlation coefficient R obtained by multiple regression analysis for formula (4), the multiple contribution rate R 2 , the partial regression coefficient Ba, the intercept Ca, the standard partial regression coefficient ⁇ , and the p value (p value). showing.
  • the athlete index IX shown in formula (4).
  • the p-value of the athlete index IX is 0.020, which is smaller than 0.05. In the multiple regression analysis, if the p-value is smaller than 0.05, it is determined to be significant. I can judge.
  • the Athlete Index IX is appropriate as an index that expresses the control ability of the lower extremity in assessing the possibility of injury occurrence in athletes.
  • FIG. 13 is a table showing results of multiple regression analysis of formula (5) regarding knee extension peak angle Rbp.
  • FIG. 13 shows the multiple correlation coefficient R obtained by multiple regression analysis for formula (5), the multiple contribution rate R 2 , the partial regression coefficient Bb, the intercept Cb, the standard partial regression coefficient ⁇ , and the p value (p value). showing.
  • the multiple regression analysis results for the knee joint extension peak angle Rbp shown in FIG. means that it can be explained by the athlete index IX shown in equation (5). Also, the p-value of the athlete index IX is 0.010, which is smaller than 0.05. In the multiple regression analysis, if the p-value is smaller than 0.05, it is determined to be significant. Therefore, the athlete index IX is determined to be significant for the knee joint extension peak angle Rbp from the results of the multiple regression analysis. can.
  • index IX is appropriate as an index representing the control ability of the lower extremity regarding the evaluation of the possibility of injury occurrence in athletes.
  • FIG. 14 is a table showing the results of multiple regression analysis for Equation (6) regarding the thigh extension peak angle Rcp.
  • FIG. 14 shows the multiple correlation coefficient R obtained by multiple regression analysis for formula (6), the multiple contribution rate R 2 , the partial regression coefficient Bc, the intercept Cc, the standard partial regression coefficient ⁇ , and the p value (p value). showing.
  • the multiple regression analysis results for the thigh extension peak angle Rcp shown in FIG. It means that it can be explained by the athlete index IX shown in (6). Also, the p-value of the athlete index IX is 0.002, which is smaller than 0.05. In the multiple regression analysis, if the p-value is smaller than 0.05, it is determined to be significant, so the athlete index IX can be determined to be significant with respect to the thigh extension peak angle Rcp from the results of the multiple regression analysis. .
  • the thigh extension peak angle Rcp is related to the occurrence of knee joint disorders. is valid as an indicator of lower extremity control ability in assessing the possibility of injury in athletes.
  • the athlete index IX is appropriate as an index representing the control ability of the lower extremities regarding the evaluation of the possibility of injury occurring in the athlete of subject U. rice field.
  • the fact that the athlete index IX obtained from the single-leg squat is significant from the results of the multiple regression analysis of the equation (4) regarding the trunk backward tilt peak angle Rap indicates that the athlete index IX of subject U is It means that the trunk backward inclination peak angle Rap of the subject U can be estimated by calculating the trunk backward inclination peak angle Rap by substituting it into Equation (4).
  • the equation (4), the partial regression coefficient Ba, and the constant Ca are stored in the analysis result storage unit 214 in advance, and the index calculation unit 212 stores the index IX calculated in step S22 in the analysis result storage unit 214 may be calculated as an index Rap representing the control ability of the lower extremities regarding the evaluation of the possibility of occurrence of injury of the subject U by substituting it into the formula (4) stored in .
  • the athlete index IX obtained from the single-leg squat is significant from the results of the multiple regression analysis on the formula (5) regarding the knee extension peak angle Rbp shows that the athlete index IX of the subject U is represented by the formula ( 5) to calculate the knee extension peak angle Rbp, it means that the knee extension peak angle Rbp of the subject U can be estimated.
  • the equation (5), the partial regression coefficient Bb, and the constant Cb are stored in the analysis result storage unit 214 in advance, and the index calculation unit 212 stores the index IX calculated in step S22 in the analysis result storage unit 214 , the knee joint extension peak angle Rbp may be calculated as an index Rbp representing the control ability of the lower extremity regarding the evaluation of the possibility of injury occurrence of the subject U.
  • the index Rbp must be calculated as a numerical value representing the actual angle.
  • the ratio of Bb:Cb is 1743:-14785, and the absolute values of the partial regression coefficient Bb and the constant Cb do not matter.
  • Bb:Cb 174:-1480 with three significant digits
  • Bb:Cb 17:-150 with two significant digits
  • Bb:Cb 2:-10 with one significant digit. good too.
  • the athlete index IX obtained from the single-leg squat is significant from the results of the multiple regression analysis for the formula (6) regarding the thigh extension peak angle Rcp with respect to the trunk, which indicates that the athlete index IX of subject U into equation (6) to calculate the thigh extension peak angle Rcp, the subject U's thigh extension peak angle Rcp can be estimated.
  • the equation (6), the partial regression coefficient Bc, and the constant Cc are stored in advance in the analysis result storage unit 214, and the index calculation unit 212 stores the index IX calculated in step S22 in the analysis result storage unit 214 , the thigh extension peak angle Rcp may be calculated as an index Rcp representing the control ability of the lower extremity regarding the evaluation of the possibility of injury occurrence of the subject U.
  • the index Rcp does not necessarily need to be calculated as a numerical value representing an actual angle. It is sufficient that the ratio of Bc:Cc is ⁇ 5208:35996, and the absolute values of the partial regression coefficient Bc and the constant Cc do not matter.
  • Bc:Cc -521:3600 with three significant digits
  • Bc:Cc -52:360 with two significant digits
  • Bc:Cc -5:40 with one significant digit good too.
  • the index IX (athlete index IX) based on formula (1) has been shown to be effective as an index representing the motor function of the lower extremities of the subject U. can be used as an index representing the motor function of the subject's U lower limbs.
  • FIGS. 15 to 17 show the peak count value Vz for 50 athletes obtained by performing the peak count acquisition processing in steps S11 to S16 by single-leg squats using the 50 athletes described above as subjects U, and the above-described FIG. 10 is a table showing the results of multiple regression analysis of the relationship between the trunk backward inclination peak angle Rap, the knee joint extension peak angle Rbp, and the thigh extension peak angle Rcp with respect to the trunk.
  • FIG. 10 is a table showing the results of multiple regression analysis of the relationship between the trunk backward inclination peak angle Rap, the knee joint extension peak angle Rbp, and the thigh extension peak angle Rcp with respect to the trunk.
  • Equation (8) representing a multiple regression model with the peak number Vz of each subject U as an independent variable in multiple regression analysis and the trunk backward tilt peak angle Rap as a dependent variable
  • Equation (8) showing a multiple regression model with Rcp as the dependent variable
  • Equation (9) showing a multiple regression model with the thigh extension peak angle Rcp with respect to the trunk as the dependent variable.
  • Trunk backward tilt peak angle Rap EaVz+Fa (7)
  • Ea is the partial regression coefficient (unstandardized coefficient) of the independent variable Vz in Equation (7)
  • Fa is the intercept (constant).
  • Knee joint extension peak angle Rbp EbVz+Fb (8)
  • Eb is the partial regression coefficient (unstandardized coefficient) of the independent variable Vz in Equation (8)
  • Fb is the intercept (constant).
  • FIG. 15 is a table showing the results of multiple regression analysis for Equation (7) regarding the trunk backward tilt peak angle Rap.
  • FIG. 15 shows the multiple correlation coefficient R, multiple contribution ratio R 2 , partial regression coefficient Ea, intercept Fa, standard partial regression coefficient ⁇ , and p value obtained by multiple regression analysis for formula (7). showing.
  • the peak frequency value Vz shown in Equation (7) According to the results of multiple regression analysis on the trunk backward inclination peak angle Rap shown in FIG. % can be explained by the peak frequency value Vz shown in Equation (7). Also, the p-value of the peak frequency value Vz is 0.000, which is smaller than 0.05. In the multiple regression analysis, if the p-value is smaller than 0.05, it is determined to be significant. Therefore, the peak number Vz is considered significant for the trunk backward tilt peak angle Rap from the results of the multiple regression analysis. I can judge.
  • the trunk backward inclination peak angle Rap is related to the occurrence of knee joint disorders, it is It is shown that the peak count value Vz is appropriate as an index representing the control ability of the lower extremity regarding the evaluation of the possibility of injury occurrence of the athlete.
  • FIG. 16 is a table showing results of multiple regression analysis of formula (8) regarding knee extension peak angle Rbp.
  • FIG. 16 shows the multiple correlation coefficient R obtained by multiple regression analysis for formula (8), the multiple contribution rate R 2 , the partial regression coefficient Eb, the intercept Fb, the standard partial regression coefficient ⁇ , and the p value (p value). showing.
  • the heavy contribution rate R2 is 0.229, which accounts for 22.9% of the variation in the knee extension peak angle Rbp , means that it can be explained by the peak frequency value Vz shown in equation (8).
  • the p-value of the peak frequency value Vz is 0.000, which is smaller than 0.05. In the multiple regression analysis, if the p-value is smaller than 0.05, it is determined to be significant, so the peak number Vz is determined to be significant with respect to the knee joint extension peak angle Rbp from the results of the multiple regression analysis. can.
  • the knee joint extension peak angle Rbp is related to the occurrence of knee joint disorders.
  • the numerical value Vz is appropriate as an index representing the control ability of the lower extremity regarding the evaluation of the possibility of injury occurrence in athletes.
  • FIG. 17 is a table showing the results of multiple regression analysis for Equation (9) regarding the thigh extension peak angle Rcp.
  • FIG. 17 shows the multiple correlation coefficient R, multiple contribution ratio R 2 , partial regression coefficient Ec, intercept Fc, standard partial regression coefficient ⁇ , and p value obtained by multiple regression analysis for formula (9). showing.
  • the p-value of the peak frequency value Vz is 0.000, which is smaller than 0.05.
  • the peak frequency value Vz can be determined to be significant with respect to the thigh extension peak angle Rcp from the results of the multiple regression analysis. .
  • the thigh extension peak angle Rcp is related to the occurrence of knee joint disorders. is valid as an indicator of lower extremity control ability in assessing the possibility of injury in athletes.
  • the peak count value Vz is appropriate as an index representing the control ability of the lower extremity regarding the evaluation of the possibility of injury occurrence of the subject U athlete. rice field.
  • the fact that the peak number Vz obtained from the single-leg squat is significant from the results of the multiple regression analysis on the expression (7) regarding the trunk backward tilt peak angle Rap means that the peak number Vz of the subject U is It means that the trunk backward inclination peak angle Rap of the subject U can be estimated by calculating the trunk backward inclination peak angle Rap by substituting it into the equation (7).
  • the equation (7), the partial regression coefficient Ea, and the constant Fa are stored in advance in the analysis result storage unit 214, and the index calculation unit 212 stores the peak frequency value Vz calculated in step S21 as the analysis result storage unit.
  • the trunk backward inclination peak angle Rap may be calculated as an index Rap representing the control ability of the lower extremities regarding the possibility evaluation of injury occurrence of the subject U.
  • the index Rap is necessarily calculated as a numerical value representing an actual angle. It is not necessary, and the ratio of Ea:Fa should be 337:-43078, and the absolute values of the partial regression coefficient Ea and the constant Fa do not matter.
  • Ea: Fa 337: -43100 with three significant digits
  • Ea: Fa 34: -4300 with two significant digits
  • Ea: Fa 3: -400 with one significant digit good too.
  • the larger the number of significant digits representing the ratio between the partial regression coefficient Ea and the constant Fa the more preferable the index Rap improves the accuracy of representing the control ability of the lower extremities regarding the possibility evaluation of injury occurrence of the subject U.
  • the fact that the peak number Vz obtained from the single-leg squat is significant from the results of the multiple regression analysis on the formula (8) regarding the knee joint extension peak angle Rbp shows that the peak number Vz of the subject U is expressed by the formula ( 8) to calculate the knee extension peak angle Rbp, it means that the knee extension peak angle Rbp of the subject U can be estimated.
  • the equation (8), the partial regression coefficient Eb, and the constant Fb are stored in advance in the analysis result storage unit 214, and the index calculation unit 212 stores the peak frequency value Vz calculated in step S21 as the analysis result storage unit.
  • the knee joint extension peak angle Rbp may be calculated as an index Rbp representing the lower extremity control ability regarding the evaluation of the possibility of injury occurrence of the subject U.
  • the index Rbp must be calculated as a numerical value representing the actual angle.
  • the ratio of Eb:Fb is -146:28144, and the absolute values of the partial regression coefficient Eb and the constant Fb do not matter.
  • Eb:Fb -146:28100 with three significant digits
  • Eb:Fb -15:2800 with two significant digits
  • Ec:Fc -1:300 with one significant digit good too.
  • the peak number Vz obtained from the single-leg squat is significant from the results of the multiple regression analysis for the formula (9) regarding the thigh extension peak angle Rcp with respect to the trunk, and the peak number Vz of the subject U into equation (9) to calculate the thigh extension peak angle Rcp, the subject U's thigh extension peak angle Rcp can be estimated.
  • the equation (9), the partial regression coefficient Ec, and the constant Fc are stored in the analysis result storage unit 214 in advance, and the index calculation unit 212 stores the peak frequency value Vz calculated in step S21 as the analysis result storage unit.
  • the thigh extension peak angle Rcp may be calculated as an index Rcp representing the ability of the subject U to control the lower extremities regarding the possibility of injury occurrence.
  • the index Rcp does not necessarily need to be calculated as a numerical value representing an actual angle. It is sufficient that the Ec:Fc ratio is ⁇ 290:44968, and the absolute values of the partial regression coefficient Ec and the constant Fc do not matter.
  • Ec: Fc -290: 45000 with three significant digits
  • Ec: Fc -29: 4500 with two significant digits
  • Ec: Fc -3: 400 with one significant digit good too.
  • the larger the number of significant digits representing the ratio of the partial regression coefficient Ec and the constant Fc the more preferable the index Rcp improves the accuracy of representing the control ability of the lower extremities regarding the possibility evaluation of injury occurrence of the subject U.
  • the peak number of times value Vx or the peak number of times value Vy may be used instead of the peak number of times value Vz.
  • a lower-limb control ability measuring system includes the above-described lower-limb control ability measuring device and the physical quantity detection device.
  • a lower-limb control ability measuring program causes a computer to function as the above-described lower-limb control ability measuring device.
  • a subject having a physical quantity detection device that detects at least one physical quantity of angular velocity and acceleration attached to the thigh bends the knee joint while resisting a load. and/or a physical quantity acquisition step of acquiring a physical quantity detected by the physical quantity detection device during a period in which a knee flexion exercise including an extension motion is performed; and a waveform of the physical quantity acquired by the physical quantity acquisition step is preset. and a peak number counting step of counting the number of peaks, which is the number of peaks within the target period.
  • a physical quantity detection device is attached to the subject's thigh, and by counting the number of peaks from the physical quantity waveform acquired when the subject performs a knee flexion exercise, the control ability of the subject's lower extremity is measured. can be measured, it is easy to measure the control ability of the lower limbs.
  • the knee bending exercise includes an operation of bending the knee joint while resisting the load
  • the target period is a period during which the knee bending exercise is performing the operation of bending the knee joint while resisting the load. A period is preferred.
  • the contraction morphology that occurs in the extensor muscles of the lower extremities of the subject is mainly eccentric contraction.
  • the eccentric contractile ability is particularly important from the viewpoint of improving the QOL of middle-aged and elderly people and preventing nursing care. Therefore, by setting the period of eccentric contraction exercise as the target period for counting the number of peaks, it is possible to measure the control ability of the lower extremities, which is particularly beneficial from the viewpoint of improving the QOL of middle-aged and elderly people and preventing nursing care. Become.
  • the angular velocity is about at least one of an X-axis extending in the longitudinal direction of the thigh, a Y-axis extending in the front-rear direction of the thigh, and a Z-axis extending in the left-right direction of the thigh. and the acceleration is acceleration in at least one axial direction of the X-axis, the Y-axis, and the Z-axis.
  • the X-axis extending in the longitudinal direction of the thigh, the Y-axis extending in the front-rear direction of the thigh, and the Z-axis extending in the left-right direction of the thigh are axial directions that are closely related to the ability to control the lower limbs in knee flexion motion. Therefore, by counting the number of peaks representing the control ability of the subject's lower extremities from the physical quantity corresponding to at least one axial direction of the X axis, the Y axis, and the Z axis, the subject represented by the number of peaks improve the accuracy of the ability to control the lower extremities.
  • the peak number counting unit counts at least one of the X-axis peak number for the X-axis, the Y-axis peak number for the Y-axis, and the Z-axis peak number for the Z-axis as the peak number
  • the lower-limb control ability measuring device further calculates an index representing the lower-limb control ability of the subject based on at least one of the X-axis peak count, the Y-axis peak count, and the Z-axis peak count. It is preferable to include a calculator.
  • the number of peaks is counted for at least one of the X-axis, Y-axis, and Z-axis, which are closely related to the lower-limb control ability in knee flexion exercise, and the index representing the lower-limb control ability of the subject is obtained.
  • the number of peaks is counted for all of the X-axis, Y-axis, and Z-axis, and based on the X-axis peak number, Y-axis peak number, and Z-axis peak number, an index representing the lower extremity control ability of the subject is obtained.
  • the index provides a more accurate representation of overall lower extremity control ability.
  • the physical quantity preferably includes an angular velocity about the X-axis, an angular velocity about the Y-axis, and an angular velocity about the Z-axis.
  • the angular velocity around the X-axis, the angular velocity around the Y-axis, and the angular velocity around the Z-axis are suitable as physical quantities for which the number of peaks is to be counted.
  • the index calculation unit calculates an X-axis peak frequency value Vx based on the X-axis peak frequency, a Y-axis peak frequency value Vy based on the Y-axis peak frequency, and a Z-axis peak frequency value Vz based on the Z-axis peak frequency. Therefore, it is preferable to calculate the index using the following formula (1).
  • Index IX KxVx+KyVy+KzVz (1)
  • Kx, Ky, and Kz are coefficients
  • Formula (1) is suitable as a formula for obtaining the index IX that comprehensively represents the lower limb control ability.
  • the index calculation unit further calculates an index Ytug representing the walking ability of the subject using the following formula (2) from the index IX and the subject's age Xage.
  • Index Ytug aIX+bXage+c (2) where a and b are coefficients and c is a constant.
  • a ratio of a:b:c of 270:42:2600 is suitable.
  • the index calculation unit further calculates an index Ybalance representing the balance ability of the subject using the following formula (3) from the index IX and the subject's age Xage.
  • Ybalance mIX+nXage+r (3)
  • m and n are coefficients, r is a constant.
  • the knee bending exercise is a double leg squat
  • the knee flexion exercise is a one-leg squat
  • the physical quantity detection device is attached to the thigh on the side where the one-leg squat is performed.
  • the physical quantity detection device is attached to the thigh on the side where the one-leg squat is performed.
  • index calculation unit further calculates from the index IX, using the following formula (4), an index Rap is preferably calculated.
  • Index Rap BaIX+Ca (4)
  • Ba is a coefficient and Ca is a constant.
  • the physical quantity includes a physical quantity obtained from the right thigh and a physical quantity obtained from the left thigh of the subject
  • the peak number counting unit is a physical quantity obtained from the right thigh. and the peak number of times with respect to the physical quantity obtained from the left thigh
  • the lower limb control ability measuring device further counts the peak number of times with respect to the physical quantity obtained from the right thigh and , and an index calculation unit that calculates an index representing the lower limb control ability of the subject based on the number of peaks for the physical quantity obtained from the left thigh.
  • the peak number counting unit counts the number of peaks for each knee bending exercise from the waveform of the physical quantity corresponding to a plurality of knee bending exercises
  • the index calculating unit counts the number of peaks for each knee bending exercise.
  • the index is calculated based on the corresponding peak times.
  • the index since the index is calculated from a plurality of knee flexion movements, the index improves the accuracy of representing the lower limb control ability.
  • the peak number counting unit counts the number of peaks based on the waveform of the physical quantity after high-frequency components have been removed by a low-pass filter.
  • the peak number counting unit counts, as the peak number, the number of peaks in the waveform of the physical quantity that have a difference equal to or greater than a preset reference level on both sides of the peak.
  • the physical quantity is preferably angular velocity.
  • Angular velocities detected from the thigh during knee flexion exercise are suitable as physical quantities for which the number of peaks is to be counted.
  • a lower limb control ability measuring system includes the above-described lower limb control ability measuring device, and the X-axis peak number, the Y-axis peak number, and the Z-axis peak number obtained from a plurality of subjects.
  • Principal component analysis is performed using the X-axis peak frequency value Vx, the Y-axis peak frequency value Vy, and the Z-axis peak frequency value Vz as variables, and the first principal component of the principal component analysis is expressed by the formula (1 ) and the principal component analysis part obtained as
  • the above equation (1) can be obtained based on the X-axis peak frequency value Vx, the Y-axis peak frequency value Vy, and the Z-axis peak frequency value Vz.
  • the lower-limb control ability measuring device, the lower-limb control ability measuring system, the lower-limb control ability measuring program, and the lower-limb control ability measuring method configured in this way facilitate the measurement of the lower-limb control ability.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Physiology (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

A lower limb control capability measurement device (2) comprises: a sensor I/F unit (25) for acquiring an angular velocity (A) that was detected by a physical quantity detection device (3) during a period in which a test subject (U) performed a knee bending motion, including the bending and/or extension of a knee joint, while resisting a load, the test subject having the physical quantity detection device (3) for detecting the angular velocity (A) attached to his or her femoral region; and a peak counting unit (211) that counts a peak count (C), which is the number of times that the waveform of the angular velocity (A) acquired by the sensor I/F unit (25) indicates a peak within a preset target period (Tw).

Description

下肢制御能力測定装置、下肢制御能力測定システム、下肢制御能力測定プログラム、及び下肢制御能力測定方法Lower-limb control ability measuring device, lower-limb control ability measuring system, lower-limb control ability measuring program, and lower-limb control ability measuring method
 本発明は、下肢の制御能力を測定する下肢制御能力測定装置、下肢制御能力測定システム、下肢制御能力測定プログラム、及び下肢制御能力測定方法に関する。 The present invention relates to a lower-limb control ability measuring device, a lower-limb control ability measuring system, a lower-limb control ability measuring program, and a lower-limb control ability measuring method for measuring lower-limb control ability.
 従来より、ユーザの身体にセンサを取り付けて長時間のセンサデータを取得し、その長時間のセンサデータから、ニューラルネットワークを用いて運動機能を推定する技術が知られている(例えば、特許文献1参照。)。 Conventionally, there has been known a technique in which a sensor is attached to a user's body to obtain long-term sensor data, and a neural network is used to estimate a motor function from the long-term sensor data (for example, Patent Document 1. reference.).
特開2018-33949号公報Japanese Unexamined Patent Application Publication No. 2018-33949
 しかしながら、特許文献1に記載の技術のように、ニューラルネットワークを用いて運動機能を推定するためには、ニューラルネットワークを学習させるための教師データを大量に準備する必要がある。また、そのような教師データを用いてニューラルネットワークを学習させたとしても、ニューラルネットワークから適切な推定結果が出力されるかどうかはやってみなければ判らない。さらに、ニューラルネットワークから出力された推定結果が適切かどうかを検証する必要がある。そのため、特許文献1に記載の技術を実際に実施するには非常に手間がかかり、かつ適切な推定結果が得られるかどうかは、実際にやってみないと判らない。 However, like the technique described in Patent Document 1, in order to estimate motor function using a neural network, it is necessary to prepare a large amount of training data for learning the neural network. Moreover, even if a neural network is trained using such teacher data, it is impossible to know whether or not the neural network will output an appropriate estimation result by trying. Furthermore, it is necessary to verify whether the estimation results output from the neural network are appropriate. Therefore, it takes a lot of time and effort to actually implement the technique described in Patent Document 1, and whether or not an appropriate estimation result can be obtained cannot be known until the technique is actually performed.
 本発明の目的は、下肢の制御能力を測定することが容易な下肢制御能力測定装置、下肢制御能力測定システム、下肢制御能力測定プログラム、及び下肢制御能力測定方法を提供することである。 An object of the present invention is to provide a lower-limb control ability measuring device, a lower-limb control ability measuring system, a lower-limb control ability measuring program, and a lower-limb control ability measuring method that facilitate measurement of lower-limb control ability.
 本発明の一局面に従う下肢制御能力測定装置は、角速度及び加速度のうち少なくとも一方の物理量を検出する物理量検出装置が大腿部に取り付けられた被験者が、荷重に抗しながら膝関節を屈曲及び/又は伸展する動作を含む膝屈曲運動を行った期間中に前記物理量検出装置によって検出された物理量を取得する物理量取得部と、前記物理量取得部によって取得された物理量の波形が、予め設定された対象期間内にピークを示す回数であるピーク回数を計数するピーク回数計数部とを備える。 A lower-limb control ability measuring device according to one aspect of the present invention is a test subject having a physical quantity detection device that detects at least one physical quantity of angular velocity and acceleration attached to the thigh, and flexes and/or bends the knee joint while resisting a load. Alternatively, a physical quantity acquisition unit that acquires a physical quantity detected by the physical quantity detection device during a period in which a knee flexion exercise including an extension motion is performed, and a waveform of the physical quantity acquired by the physical quantity acquisition unit is a preset target and a peak number counter for counting the number of peaks, which is the number of times a peak occurs within the period.
 また、本発明の一局面に従う下肢制御能力測定システムは、上述の下肢制御能力測定装置と、前記物理量検出装置とを含む。 Also, a lower-limb control ability measuring system according to one aspect of the present invention includes the above-described lower-limb control ability measuring device and the physical quantity detection device.
 また、本発明の一局面に従う下肢制御能力測定プログラムは、上述の下肢制御能力測定装置として、コンピュータを機能させる。 Also, a lower-limb control ability measuring program according to one aspect of the present invention causes a computer to function as the above-described lower-limb control ability measuring device.
 また、本発明の一局面に従う下肢制御能力測定方法は、角速度及び加速度のうち少なくとも一方の物理量を検出する物理量検出装置が大腿部に取り付けられた被験者が、荷重に抗しながら膝関節を屈曲及び/又は伸展する動作を含む膝屈曲運動を行った期間中に前記物理量検出装置によって検出された物理量を取得する物理量取得工程と、前記物理量取得工程によって取得された物理量の波形が、予め設定された対象期間内にピークを示す回数であるピーク回数を計数するピーク回数計数工程とを含む。 Further, in the method for measuring lower limb control ability according to one aspect of the present invention, a subject having a physical quantity detection device that detects at least one physical quantity of angular velocity and acceleration attached to the thigh bends the knee joint while resisting a load. and/or a physical quantity acquisition step of acquiring a physical quantity detected by the physical quantity detection device during a period in which a knee flexion exercise including an extension motion is performed; and a waveform of the physical quantity acquired by the physical quantity acquisition step is preset. and a peak number counting step of counting the number of peaks, which is the number of peaks within the target period.
 また、本発明の一局面に従う下肢制御能力測定システムは、上述の下肢制御能力測定装置と、複数の被験者から取得された前記X軸ピーク回数、前記Y軸ピーク回数、及び前記Z軸ピーク回数に基づく前記X軸ピーク回数値Vx、前記Y軸ピーク回数値Vy、及び前記Z軸ピーク回数値Vzを変数とする主成分分析を実行し、前記主成分分析の第一主成分を前記式(1)として求める主成分分析部とを含む。 Further, a lower limb control ability measuring system according to one aspect of the present invention includes the above-described lower limb control ability measuring device, and the X-axis peak number, the Y-axis peak number, and the Z-axis peak number obtained from a plurality of subjects. Principal component analysis is performed using the X-axis peak frequency value Vx, the Y-axis peak frequency value Vy, and the Z-axis peak frequency value Vz as variables, and the first principal component of the principal component analysis is expressed by the formula (1 ) and the principal component analysis part obtained as
本発明の一実施形態に係る下肢制御能力測定システムの構成の一例を示す説明図である。It is an explanatory view showing an example of composition of a leg control ability measuring system concerning one embodiment of the present invention. 図1に示す物理量検出装置の電気的構成の一例を示すブロック図である。2 is a block diagram showing an example of an electrical configuration of the physical quantity detection device shown in FIG. 1; FIG. 図1に示す物理量検出装置を大腿部に取り付けた被験者がスクワット運動を5回行った際の角速度の一例を示すグラフである。4 is a graph showing an example of angular velocities when a subject wearing the physical quantity detection device shown in FIG. 1 on the thigh performs squat exercise five times. 1回分の下降期間における角速度の波形の一例を示すグラフである。4 is a graph showing an example of an angular velocity waveform in one falling period; 図1に示す下肢制御能力測定システムによって、式(1)を生成する方法の一例を示すフローチャートである。2 is a flow chart showing an example of a method for generating equation (1) by the lower limb control ability measurement system shown in FIG. 1; ピーク回数取得処理の一例を示すフローチャートである。9 is a flowchart showing an example of peak number acquisition processing; 図1に示すピーク回数計数部によって計数されたスクワット運動5回分の下降期間の左右の各ピーク回数の一例を示す説明図である。FIG. 4 is an explanatory diagram showing an example of the number of left and right peaks in a falling period for five squat exercises counted by the number-of-peaks counting unit shown in FIG. 1 ; 図1に示す下肢制御能力測定装置による指標の測定方法の一例を示すフローチャートである。FIG. 2 is a flow chart showing an example of a method of measuring an index by the lower-limb control ability measuring device shown in FIG. 1. FIG. TUGテストに関する式(2)についての重回帰分析結果を示す表である。FIG. 10 is a table showing multiple regression analysis results for Equation (2) for TUG test. FIG. 片足バランステストに関する式(3)についての重回帰分析結果を示す表である。It is a table|surface which shows the multiple regression analysis result about Formula (3) regarding a one leg balance test. 体幹後傾角度Ra、膝関節伸展角度Rb、及び大腿伸展角度Rcを説明するための説明図である。FIG. 4 is an explanatory diagram for explaining a trunk backward inclination angle Ra, a knee joint extension angle Rb, and a thigh extension angle Rc; 体幹後傾ピーク角度Rapに関する式(4)についての重回帰分析結果を示す表である。FIG. 10 is a table showing results of multiple regression analysis of Equation (4) regarding trunk backward tilt peak angle Rap; FIG. 膝関節伸展ピーク角度Rbpに関する式(5)についての重回帰分析結果を示す表である。FIG. 10 is a table showing results of multiple regression analysis of formula (5) regarding knee extension peak angle Rbp; FIG. 大腿伸展ピーク角度Rcpに関する式(6)についての重回帰分析結果を示す表である。FIG. 10 is a table showing results of multiple regression analysis for formula (6) regarding thigh extension peak angle Rcp; FIG. 体幹後傾ピーク角度Rapに関する式(7)についての重回帰分析結果を示す表である。FIG. 10 is a table showing results of multiple regression analysis with respect to equation (7) relating to trunk backward tilt peak angle Rap; FIG. 膝関節伸展ピーク角度Rbpに関する式(8)についての重回帰分析結果を示す表である。FIG. 10 is a table showing results of multiple regression analysis of formula (8) regarding knee joint extension peak angle Rbp; FIG. 大腿伸展ピーク角度Rcpに関する式(9)についての重回帰分析結果を示す表である。FIG. 10 is a table showing results of multiple regression analysis for formula (9) regarding thigh extension peak angle Rcp; FIG.
 以下、本発明に係る実施形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、その説明を省略する。図1は、本発明の一実施形態に係る下肢制御能力測定システムの構成の一例を示す説明図である。図1に示す下肢制御能力測定システム1は、下肢制御能力測定装置2と、物理量検出装置3とを備えている。 Hereinafter, embodiments according to the present invention will be described based on the drawings. It should be noted that the same reference numerals in each figure indicate the same configuration, and the description thereof will be omitted. FIG. 1 is an explanatory diagram showing an example of the configuration of a lower limb control ability measuring system according to one embodiment of the present invention. A lower-limb control ability measuring system 1 shown in FIG. 1 includes a lower-limb control ability measuring device 2 and a physical quantity detection device 3 .
 下肢制御能力測定システム1は、被験者Uの下肢制御能力を指標IXとして測定するためのシステムである。特に、指標IXを、被験者Uの下肢伸張性制御能力(LEEC:Lower Extremity Eccentric Control)を表すLEEC Indexとすることができる。 The lower limb control ability measurement system 1 is a system for measuring the subject U's lower limb control ability as an index IX. In particular, the index IX can be the LEEC Index representing the subject U's lower extremity eccentric control ability (LEEC: Lower Extremity Eccentric Control).
 アスリートのスポーツ障害予防や中高年齢者のQOL(Quality Of Life)向上には、下肢の運動機能の維持向上が重要となる。下肢制御能力測定システム1は、被験者Uの下肢の運動機能を指標化した指標IXを測定することが可能となる。被験者Uの下肢の運動機能を指標IXとして把握することができれば、被験者Uの下肢の運動機能の維持向上に役立てることができる。 It is important to maintain and improve the motor function of the lower extremities in order to prevent sports injuries in athletes and improve the QOL (Quality Of Life) of middle-aged and elderly people. The lower-limb control ability measuring system 1 can measure an index IX that is an index of the motor function of the subject's U lower limbs. If the motor function of the lower extremities of the subject U can be grasped as the index IX, it can be used to maintain and improve the motor function of the lower extremities of the subject U.
 下肢制御能力測定装置2は、例えば、いわゆるパーソナルコンピュータを用いて構成されている。下肢制御能力測定装置2は、例えば、制御部21、ディスプレイ22、キーボード23、マウス24、及びセンサI/F部25(物理量取得部)を備えている。なお、下肢制御能力測定装置2は、パーソナルコンピュータを用いて構成される例に限られず、例えばスマートフォンや、タブレット端末等であってもよい。 The lower limb control ability measuring device 2 is configured using, for example, a so-called personal computer. The lower limb control ability measuring device 2 includes, for example, a control section 21, a display 22, a keyboard 23, a mouse 24, and a sensor I/F section 25 (physical quantity acquisition section). In addition, the lower-limb control ability measuring device 2 is not limited to an example configured using a personal computer, and may be, for example, a smart phone, a tablet terminal, or the like.
 物理量検出装置3は、例えばベルトや粘着テープ等を用いて被験者Uの大腿部に取り付けられて用いられる。図2は、図1に示す物理量検出装置3の電気的構成の一例を示すブロック図である。図2に示す物理量検出装置3は、角速度センサ31、記憶部32、外部I/F(インターフェイス)部33、及び制御部34を備える。 The physical quantity detection device 3 is attached to the subject's U thigh using, for example, a belt or adhesive tape. FIG. 2 is a block diagram showing an example of the electrical configuration of the physical quantity detection device 3 shown in FIG. The physical quantity detection device 3 shown in FIG. 2 includes an angular velocity sensor 31 , a storage section 32 , an external I/F (interface) section 33 and a control section 34 .
 なお、下肢制御能力測定システム1は、角速度センサ31を備えたいわゆるスマートフォン等の小型情報処理装置を用いて、下肢制御能力測定装置2と、物理量検出装置3とを単一の装置で一体に構成したシステムであってもよい。 In addition, the lower limb control ability measuring system 1 uses a small information processing device such as a so-called smartphone equipped with an angular velocity sensor 31 to integrate the lower limb control ability measuring device 2 and the physical quantity detection device 3 into a single device. It may be a system with
 角速度センサ31は、例えば、X,Y,Zの直交座標における、X軸回りの角速度Ax、Y軸回りの角速度Ay、及びZ軸回りの角速度Azを検出する角速度センサである。以下、角速度Ax,Ay,Azを総称して角速度Aと称する。 The angular velocity sensor 31 is, for example, an angular velocity sensor that detects an angular velocity Ax around the X axis, an angular velocity Ay around the Y axis, and an angular velocity Az around the Z axis in X, Y, Z orthogonal coordinates. Angular velocities Ax, Ay, and Az are collectively referred to as angular velocities A hereinafter.
 なお、物理量検出装置3は、角速度センサ31に加えて、あるいは角速度センサ31の代わりに、X軸方向の加速度、Y軸方向の加速度、及びZ軸方向の加速度を検出する加速度センサを備えてもよい。角速度及び加速度は、物理量の一例に相当する。 In addition to the angular velocity sensor 31, or instead of the angular velocity sensor 31, the physical quantity detection device 3 may include an acceleration sensor for detecting X-axis direction acceleration, Y-axis direction acceleration, and Z-axis direction acceleration. good. Angular velocity and acceleration are examples of physical quantities.
 また、物理量検出装置3は、角速度センサ31及び/又は加速度センサによって、角速度A及び/又は加速度を検出するものに限らない。物理量検出装置3は、例えば被験者Uの膝屈曲運動を撮影するカメラ(例えばハイスピードカメラ)を備え、その動画から三次元動作解析を行うことにより、角速度A及び/又は加速度を検出してもよい。 Also, the physical quantity detection device 3 is not limited to detecting the angular velocity A and/or the acceleration with the angular velocity sensor 31 and/or the acceleration sensor. The physical quantity detection device 3 includes, for example, a camera (for example, a high-speed camera) that captures the knee bending motion of the subject U, and performs three-dimensional motion analysis from the video, thereby detecting the angular velocity A and/or acceleration. .
 図1には、膝屈曲運動の一例として、スクワット運動を示している。スクワット運動は、荷重(重力)に抗しながら膝関節を屈曲及び伸展する動作を含む膝屈曲運動である。 Fig. 1 shows squat exercise as an example of knee bending exercise. A squat exercise is a knee flexion exercise that involves flexing and extending the knee joint while resisting a load (gravity).
 なお、スクワット運動は、両脚スクワットに限られず、片脚スクワットであってもよい。両脚スクワットは中高齢者の歩行機能やバランス機能評価に適し、片脚スクワットはアスリートの傷害発生の可能性を評価するのに適している。 Note that the squat exercise is not limited to double leg squats, and may be single leg squats. Double-leg squats are suitable for evaluating walking and balance functions in middle-aged and elderly people, and single-leg squats are suitable for evaluating the possibility of injury in athletes.
 また、膝屈曲運動は、スクワット運動に限らない。膝屈曲運動としては、種々の運動を用いることができる。例えば、中高齢者の歩行機能やバランス機能評価に適した膝屈曲運動として、椅子へ座る動作、立ち上がる動作、階段昇降動作、及び走る動作等が挙げられる。また、例えば、アスリートの傷害発生の可能性評価に適した膝屈曲運動として、両脚垂直跳び、片脚垂直跳び、ストップ動作、サイドステップ動作、両脚着地動作、ドロップジャンプ動作、両脚リバウンドジャンプ動作、及び片脚リバウンドジャンプ動作等が挙げられる。 Also, the knee bending exercise is not limited to the squat exercise. Various exercises can be used as the knee bending exercise. For example, knee flexion motions suitable for evaluation of walking function and balance function of middle-aged and elderly people include motions of sitting on a chair, motions of standing up, motions of ascending and descending stairs, and running motions. In addition, for example, as knee flexion exercises suitable for evaluating the possibility of athlete injury, double-leg vertical jump, single-leg vertical jump, stop motion, side step motion, double-leg landing motion, drop jump motion, double-leg rebound jump motion, and A single-leg rebound jump motion and the like can be mentioned.
 ストップ動作は、走っている状態から急激に止まる動作である。ドロップジャンプ動作は、台から飛び降りてジャンプする動作である。リバウンドジャンプは、例えば縄跳びでジャンプするように、連続でジャンプする動作である。 A stop motion is a motion to stop suddenly from a running state. A drop-jump motion is a motion of jumping off a platform. A rebound jump is an action of continuously jumping, such as jumping with a jump rope.
 また、膝屈曲運動における荷重は重力に限らない。例えば、横方向への移動、横方向の移動からの停止、等の運動により脚部に加わる荷重であってもよい。あるいは、例えば、マシントレーニングにおいて、バネや錘によって脚部に加わえられる荷重であってもよい。 Also, the load in the knee bending motion is not limited to gravity. For example, it may be a load applied to the leg due to motion such as lateral movement, stopping from lateral movement, or the like. Alternatively, for example, in machine training, it may be a load applied to the leg by a spring or a weight.
 図1、図2を参照して、角速度センサ31のX軸が被験者Uの大腿部の長軸方向、角速度センサ31のY軸が被験者Uの大腿部の前後方向、角速度センサ31のZ軸が被験者Uの大腿部の左右方向に沿うように、物理量検出装置3が被験者Uの大腿部に取り付けられる。 1 and 2, the X axis of the angular velocity sensor 31 is the long axis direction of the thigh of the subject U, the Y axis of the angular velocity sensor 31 is the longitudinal direction of the thigh of the subject U, and the Z axis of the angular velocity sensor 31 The physical quantity detection device 3 is attached to the thigh of the subject U so that the axis extends along the lateral direction of the thigh of the subject.
 記憶部32は、例えばフラッシュメモリ等を用いて構成された、不揮発性の記憶装置である。外部I/F部33は、例えば図略のケーブル等を介して下肢制御能力測定装置2のセンサI/F部25に接続され、下肢制御能力測定装置2へデータ送信可能な通信インターフェイス回路である。 The storage unit 32 is a non-volatile storage device configured using, for example, flash memory. The external I/F unit 33 is a communication interface circuit that is connected to the sensor I/F unit 25 of the lower limb control ability measuring device 2 via, for example, an unillustrated cable or the like, and that can transmit data to the lower limb control ability measuring device 2. .
 なお、外部I/F部33は、有線で下肢制御能力測定装置2へデータ送信するものに限られず、無線信号によって下肢制御能力測定装置2へデータを送信する無線通信回路であってもよい。あるいは、例えば記憶部32を、脱着可能なメモリカード等の記憶媒体によって構成し、外部I/F部33及びセンサI/F部25は、記憶媒体を脱着可能なコネクタ等であってもよい。 Note that the external I/F unit 33 is not limited to transmitting data to the lower-limb control ability measuring device 2 by wire, and may be a wireless communication circuit that transmits data to the lower-limb control ability measuring device 2 using a radio signal. Alternatively, for example, the storage unit 32 may be configured by a removable storage medium such as a memory card, and the external I/F unit 33 and the sensor I/F unit 25 may be connectors or the like that allow the storage medium to be removable.
 制御部34は、例えばいわゆるマイクロコンピュータを用いて構成されている。制御部34は、所定の演算処理を実行するCPU(Central Processing Unit)、データを一時的に記憶するRAM(Random Access Memory)、不揮発性の記憶部、タイマ回路、及びこれらの周辺回路等から構成されている。制御部34は、所定の制御プログラムを実行することによって、以下のように動作する。 The control unit 34 is configured using, for example, a so-called microcomputer. The control unit 34 consists of a CPU (Central Processing Unit) that executes predetermined arithmetic processing, a RAM (Random Access Memory) that temporarily stores data, a non-volatile storage unit, a timer circuit, and these peripheral circuits. It is The control unit 34 operates as follows by executing a predetermined control program.
 制御部34は、角速度センサ31によって検出された角速度Ax,Ay,Azを、例えば所定期間、所定の時間間隔で累積的に記憶部32へ記憶させる。また、制御部34は、例えば図略のケーブル等によって外部I/F部33とセンサI/F部25とが接続された場合等に、記憶部32に記憶されたデータを下肢制御能力測定装置2へ送信する。 The control unit 34 causes the storage unit 32 to store the angular velocities Ax, Ay, and Az detected by the angular velocity sensor 31 cumulatively at predetermined time intervals, for example, for a predetermined period. Further, the control unit 34 transfers the data stored in the storage unit 32 to the lower limb control ability measuring device when the external I/F unit 33 and the sensor I/F unit 25 are connected, for example, by a cable (not shown) or the like. 2.
 図1に示すセンサI/F部25は、物理量検出装置3によって検出された物理量を取得する物理量取得部の一例に相当する。センサI/F部25は、例えばケーブルを介して有線で外部I/F部33からデータ受信可能な通信回路であってもよく、例えばWiFi(登録商標)、Bluetooth(登録商標)等の無線通信によって外部I/F部33からデータ受信可能な無線通信回路であってもよく、センサI/F部25でデータが書き込まれた記憶媒体からデータを読み取るインターフェイス回路であってもよい。 The sensor I/F unit 25 shown in FIG. 1 corresponds to an example of a physical quantity acquisition unit that acquires the physical quantity detected by the physical quantity detection device 3. The sensor I/F unit 25 may be, for example, a communication circuit capable of receiving data from the external I/F unit 33 in a wired manner via a cable. It may be a wireless communication circuit capable of receiving data from the external I/F unit 33 via the sensor I/F unit 25 or an interface circuit that reads data from a storage medium in which data is written by the sensor I/F unit 25 .
 下肢制御能力測定装置2の制御部21は、例えばマイクロコンピュータを用いて構成されている。制御部21は、所定の演算処理を実行するCPU、データを一時的に記憶するRAM、HDD(Hard Disk Drive)やSSD(Solid State Drive)等の不揮発性の記憶装置、及びこれらの周辺回路等から構成されている。記憶装置は、分析結果記憶部214としても機能する。分析結果記憶部214には、後述する式(1)~式(6)及び式(A)~(C)等が記憶される。 The control unit 21 of the lower limb control ability measuring device 2 is configured using, for example, a microcomputer. The control unit 21 includes a CPU that executes predetermined arithmetic processing, a RAM that temporarily stores data, non-volatile storage devices such as HDD (Hard Disk Drive) and SSD (Solid State Drive), peripheral circuits thereof, etc. consists of The storage device also functions as an analysis result storage unit 214 . The analysis result storage unit 214 stores equations (1) to (6), equations (A) to (C), etc., which will be described later.
 制御部21は、例えば上述の記憶装置に記憶された下肢制御能力測定プログラムを実行することによって、ピーク回数計数部211、指標算出部212、及び主成分分析部213として機能する。 The control unit 21 functions as a peak number counting unit 211, an index calculation unit 212, and a principal component analysis unit 213, for example, by executing the lower limb control ability measurement program stored in the storage device described above.
 なお、主成分分析部213は、下肢制御能力測定装置2に含まれる例に限らない。下肢制御能力測定装置2とは独立した別の装置として主成分分析部213が構成されていてもよい。 Note that the principal component analysis unit 213 is not limited to being included in the lower limb control ability measuring device 2 . The principal component analysis unit 213 may be configured as another device independent of the lower limb control ability measuring device 2 .
 ピーク回数計数部211は、センサI/F部25によって取得された角速度Ax,Ay,Az(物理量)の波形、すなわち角速度Ax,Ay,Az(物理量)が時間軸に沿って並べられた波形が、予め設定された対象期間Tw内にピークを示す回数であるピーク回数Cx(X軸ピーク回数),Cy(Y軸ピーク回数),Cz(Z軸ピーク回数)を計数する。以下、ピーク回数Cx,Cy,Czを総称して、ピーク回数Cと称する。 The number-of-peaks counting unit 211 generates waveforms of the angular velocities Ax, Ay, and Az (physical quantities) acquired by the sensor I/F unit 25, that is, waveforms in which the angular velocities Ax, Ay, and Az (physical quantities) are arranged along the time axis. , the number of peaks Cx (X-axis peak number), Cy (Y-axis peak number), and Cz (Z-axis peak number), which are the number of peaks within a preset target period Tw, are counted. Hereinafter, the number of peaks Cx, Cy, and Cz will be collectively referred to as the number of peaks C.
 ピーク回数計数部211は、センサI/F部25によって取得された角速度波形から、低域通過フィルタによって高周波成分が除去された後の角速度Ax,Ay,Azの波形を処理対象として、ピーク回数Cx,Cy,Czを計数することが好ましい。これにより、角速度センサ31によって検出された角速度からノイズを除去することが可能となり、下肢伸張性制御能力との相関性が高いピーク回数Cx,Cy,Czの計数精度が向上する。低域通過フィルタの遮断周波数は、6Hzが好適である。また、低域通過フィルタとしては、ローパスバターワースフィルタが好ましい。 The peak number counting unit 211 processes the waveforms of the angular velocities Ax, Ay, and Az after high-frequency components have been removed by the low-pass filter from the angular velocity waveform acquired by the sensor I/F unit 25, and calculates the number of peaks Cx. , Cy, Cz are preferably counted. As a result, noise can be removed from the angular velocity detected by the angular velocity sensor 31, and the counting accuracy of the peak numbers Cx, Cy, and Cz, which are highly correlated with the leg extension control ability, is improved. A cutoff frequency of the low-pass filter is preferably 6 Hz. A low-pass Butterworth filter is preferable as the low-pass filter.
 なお、ピーク回数計数部211は、必ずしも低域通過フィルタによって高周波成分が除去された後の角速度Ax,Ay,Azの波形を処理対象とする例に限らない。センサI/F部25によって取得された角速度をそのまま処理対象の角速度Ax,Ay,Azとしてもよい。また、ピーク回数計数部211は、必ずしもピーク回数Cx,Cy,Czをすべて計数しなくてもよく、ピーク回数Cx,Cy,Czのうち少なくとも一つを計数すればよい。 It should be noted that the peak number counting unit 211 is not necessarily limited to processing the waveforms of the angular velocities Ax, Ay, and Az after high-frequency components have been removed by the low-pass filter. The angular velocities acquired by the sensor I/F unit 25 may be used as the angular velocities Ax, Ay, and Az to be processed. Also, the peak number counting unit 211 does not necessarily have to count all of the peak numbers Cx, Cy, and Cz, and may count at least one of the peak numbers Cx, Cy, and Cz.
 対象期間Twとしては任意の期間を設定することができる。しかしながら、膝屈曲運動をスクワット運動とした場合、被験者U(物理量検出装置3)の重心が下降する下降期間が対象期間Twとして設定されることがより好ましい。スクワット運動における下降期間は、荷重に抗しながら膝関節を屈曲する動作を実行中の期間の一例に相当する。 Any period can be set as the target period Tw. However, if the knee flexion exercise is a squat exercise, it is more preferable to set the target period Tw as a period during which the center of gravity of the subject U (physical quantity detection device 3) descends. The descending period in the squat exercise corresponds to an example of the period during which the knee joint is bent while resisting the load.
 荷重に抗しながら膝関節を屈曲する動作を実行中の期間(スクワット運動においては下降期間)が対象期間Twとして設定された場合、後述する指標IXは、下肢伸張性制御能力指標(LEEC Index)となる。 When the period during which the knee joint is bent while resisting the load (descent period in squat exercise) is set as the target period Tw, the index IX described later is the lower extensibility control ability index (LEEC Index). becomes.
 筋肉の収縮様式には、筋の長さが短くなりながら力を発揮する短縮性収縮と、筋の長さが一定で力を発揮する等尺性収縮と、筋の長さが長くなりながら力を発揮する伸張性収縮とがある。膝屈曲運動では、荷重に抗しながら膝関節を屈曲する時、スクワット運動では膝や股関節を曲げながら身体重心を下降させる時に、下肢伸筋群に生じる収縮形態が、主に伸張性収縮となる。 There are three types of muscle contraction patterns: constriction contraction in which the muscle exerts force while its length shortens, isometric contraction in which the muscle exerts force while the length is constant, and force exertion while the muscle lengthens. There is an eccentric contraction that exerts In knee flexion exercise, when the knee joint is flexed while resisting the load, and in squat exercise, when the body's center of gravity is lowered while bending the knee and hip joints, the contraction that occurs in the extensor muscles of the lower extremities is mainly eccentric contraction. .
 大腿四頭筋、大殿筋、腓腹筋、ヒラメ筋など、下肢伸筋群の伸張性収縮は、人の日常動作で転倒や怪我が生じやすい衝撃吸収局面、階段の降り動作、椅子に座る動作などで使われる。人は、ゆっくりと身体重心を下降させる能力が無いと、これらの動作時に衝撃吸収を筋肉で行うことができないため、大きな衝撃も受けやすく、転倒もしやすくなると考えられている。 Eccentric contractions of the extensor muscles of the lower extremities, such as the quadriceps femoris, gluteus maximus, gastrocnemius, and soleus, are involved in daily activities such as shock-absorbing situations where falls and injuries are likely to occur, walking down stairs, and sitting on a chair. used. If a person does not have the ability to slowly lower the center of gravity of the body, the muscles cannot absorb the impact during these movements, so it is believed that the person is more likely to receive a large impact and fall more easily.
 また、伸張性収縮を強調した筋力トレーニング(エキセントリックトレーニング)は、他の収縮様式のみの筋力トレーニングよりも、筋力向上効果などが高いことが知られている(日本文芸社発行、野坂和則著、「ゆ~っくり座れば、一生歩ける!」)。従って、自重で行うスクワット運動において、身体重心をゆっくりと下げることができる運動能力を評価することは、中高齢者が安全に日常生活を送るための基礎筋力の評価手法として有効であり、介護予防などのトレーニング効果の評価においても有用度が高い。 In addition, it is known that strength training that emphasizes eccentric contraction (eccentric training) is more effective in improving muscle strength than strength training that only uses other contraction modes (published by Nihon Bungeisha, written by Kazunori Nosaka, " If you sit comfortably, you can walk for the rest of your life!"). Therefore, evaluating the ability to slowly lower the body's center of gravity during squat exercises performed with one's own weight is an effective method for evaluating the basic muscle strength necessary for middle-aged and elderly people to safely lead daily lives. It is also highly useful in evaluating training effects such as
 従って、下降期間を対象期間Twとして設定し、指標IXを下肢伸張性制御能力指標とすれば、指標IXは、中高年齢者のQOL向上や介護予防などの観点で、下肢の制御能力を表す指標として、特に有効性が高いと考えられる。 Therefore, if the descending period is set as the target period Tw and the index IX is set as the lower limb extension control ability index, the index IX is an index representing the lower limb control ability from the viewpoint of improving the QOL of middle-aged and elderly people and preventing nursing care. As such, it is considered to be particularly effective.
 図3は、物理量検出装置3を大腿部に取り付けた被験者Uがスクワット運動を5回行った際の角速度Azの一例を示すグラフである。グラフG1は角速度Azを示し、グラフG2は大腿部の傾斜角を示している。 FIG. 3 is a graph showing an example of the angular velocity Az when the subject U who has the physical quantity detection device 3 attached to the thigh performs squat exercise five times. A graph G1 indicates the angular velocity Az, and a graph G2 indicates the inclination angle of the thigh.
 図3に示すグラフの横軸は時間(msec)、左縦軸はグラフG1に対応する角速度(dps:degree per sec)、右縦軸はグラフG2に対応する傾斜角(度)を示している。大腿部の傾斜角、すなわちX軸の傾斜角は、角速度Azを積分することにより得られる。傾斜角は、0度で大腿部(X軸)が垂直、-90度で大腿部(X軸)が水平であることを示している。角速度Ax,Ayについては角速度Azと略同様であるので、角速度Ax,Ayについての説明は省略する。 The horizontal axis of the graph shown in FIG. 3 is time (msec), the left vertical axis is angular velocity (dps: degree per second) corresponding to graph G1, and the right vertical axis is tilt angle (degree) corresponding to graph G2. . The tilt angle of the thigh, that is, the tilt angle of the X-axis is obtained by integrating the angular velocity Az. The tilt angle indicates that the thigh (X-axis) is vertical at 0 degrees, and the thigh (X-axis) is horizontal at -90 degrees. Since the angular velocities Ax and Ay are substantially the same as the angular velocity Az, the explanation of the angular velocities Ax and Ay is omitted.
 図3に示すように、被験者Uが脚を曲げて重心が下降する下降期間ではグラフG2が低下し、被験者Uが脚を伸ばして重心が上昇する上昇期間ではグラフG2が上昇する。従って、グラフG2の傾斜角に基づいて、下降期間と上昇期間とを判別することができる。 As shown in FIG. 3, the graph G2 decreases during the descending period when the subject U bends the leg and the center of gravity descends, and the graph G2 increases during the ascending period when the subject U stretches the leg and the center of gravity rises. Therefore, it is possible to distinguish between the falling period and the rising period based on the inclination angle of the graph G2.
 図4は、1回分の下降期間における角速度Aの波形の一例を示すグラフである。以下、図4に示すグラフG3を参照しつつ、ピーク回数計数部211の動作について説明する。 FIG. 4 is a graph showing an example of the waveform of the angular velocity A during one falling period. The operation of the peak number counting unit 211 will be described below with reference to the graph G3 shown in FIG.
 まず、ピーク回数計数部211は、グラフG3から、ピークP1~P15を検出する。 First, the peak number counting unit 211 detects peaks P1 to P15 from the graph G3.
 次に、ピーク回数計数部211は、グラフG3のピークP1~P15のうち、そのピークの両側に予め設定された基準レベルAref以上の差があるピークの数を、ピーク回数Cとして計数する。 Next, the peak number counting unit 211 counts, as the number of peaks C, the number of peaks having a difference equal to or greater than a preset reference level Aref on both sides of the peaks P1 to P15 of the graph G3.
 ピーク回数Cx,Cy,Czは、角速度Ax,Ay,Azの正負が入れ替わる回数を反映するため、ピーク回数Cx,Cy,Czを、X,Y,Z軸周りにおける大腿部の震え、及び屈曲運動のスムーズさの総合指標とすることができる。 Since the peak numbers Cx, Cy, and Cz reflect the number of times the positive and negative of the angular velocities Ax, Ay, and Az are switched, the peak numbers Cx, Cy, and Cz are used to measure the tremor and flexion of the thigh around the X, Y, and Z axes. It can be used as a comprehensive index of the smoothness of exercise.
 図4に示す例では、仮に基準レベルAref=10dpsとしている。この場合、ピークの両側に基準レベルAref以上の差があるのは、ピークP4,P9,P12,P15の四つである。従って、ピーク回数計数部211は、ピーク回数C=4と計数する。 In the example shown in FIG. 4, the reference level Aref is assumed to be 10 dps. In this case, there are four peaks P4, P9, P12, and P15 that have a difference equal to or greater than the reference level Aref on both sides of the peak. Therefore, the number-of-peaks counting unit 211 counts the number of peaks C=4.
 基準レベルAref以上の差は、両側に基準レベルAref以上の差がない他のピークは無視して判断する。例えば、ピークP4の左斜面にあるピークP3は、その両側に基準レベルAref以上の差がないので、ピークP3は無視してピークP4の両側のレベル差を基準レベルArefと比較し、ピークP4をピーク回数の計数対象とする。 A difference greater than or equal to the reference level Aref is judged by ignoring other peaks that do not have a difference greater than or equal to the reference level Aref on both sides. For example, the peak P3 on the left slope of the peak P4 has no difference equal to or greater than the reference level Aref on both sides. The number of peaks is counted.
 なお、基準レベルArefは、10dpsに限らない。下肢伸張性制御能力との相関性が高いピークを計数対象として選択できる基準レベルArefを、例えば実験的に求めるなどして適宜基準レベルArefを設定すればよい。また、ピーク回数計数部211は、ピークの両側に基準レベルAref以上の差があるピークの数を計数する例に限らない。ピーク回数計数部211は、例えば対象期間Tw内の全てのピークP1~P15の数を、ピーク回数Cとして計数してもよい。 Note that the reference level Aref is not limited to 10 dps. A reference level Aref that allows selection of peaks that are highly correlated with the lower extremity control ability to be counted may be determined experimentally, for example, and the reference level Aref may be appropriately set. Moreover, the number-of-peaks counting unit 211 is not limited to counting the number of peaks having a difference equal to or greater than the reference level Aref on both sides of the peak. The number-of-peaks counting unit 211 may count, as the number of peaks C, the number of all peaks P1 to P15 within the target period Tw, for example.
 図4に示す例では、対象期間Twを下降期間として、指標IXが下肢伸張性制御能力指標(LEEC Index)である場合のピーク回数Cの計数方法を示した。しかしながら、対象期間Twを、下降期間と上昇期間とを含む、スクワット1回分の期間としてもよく、スクワット複数回分の期間としてもよい。この場合、指標IXは、伸張性制御能力に限らない下肢制御能力指標となる。あるいは、対象期間Twを上昇期間としてもよい。しかしながら、上述したように、対象期間Twを下降期間とした場合の下肢伸張性制御能力指標としての指標IXは、対象期間Twを他の期間とした場合と比べてより好ましい。 The example shown in FIG. 4 shows a method of counting the number of peaks C when the target period Tw is the falling period and the index IX is the lower extensibility control ability index (LEEC Index). However, the target period Tw may be a period for one squat or a period for multiple squats, including a falling period and a rising period. In this case, the index IX is a lower-limb control ability index that is not limited to extensibility control ability. Alternatively, the target period Tw may be the rising period. However, as described above, the index IX as the lower extremity control ability index when the target period Tw is the descending period is more preferable than when the target period Tw is another period.
 指標算出部212は、ピーク回数Cxに基づくピーク回数値Vx(X軸ピーク回数値)、ピーク回数Cyに基づくピーク回数値Vy(Y軸ピーク回数値)、ピーク回数Czに基づくピーク回数値Vz(Z軸ピーク回数値)から、被験者Uの下肢制御能力を表す指標として、指標IXを算出する。具体的には、指標算出部212は、ピーク回数値Vx,Vy,Vzから、下記の式(1)を用いて指標IXを算出する。 The index calculation unit 212 calculates a peak frequency value Vx based on the peak frequency Cx (X-axis peak frequency value), a peak frequency value Vy based on the peak frequency Cy (Y-axis peak frequency value), and a peak frequency value Vz based on the peak frequency Cz ( An index IX is calculated as an index representing the lower limb control ability of the subject U from the Z-axis peak count value). Specifically, the index calculator 212 calculates the index IX from the peak frequency values Vx, Vy, and Vz using the following formula (1).
 指標IX=KxVx+KyVy+KzVz ・・・ (1)
但し、係数Kx=0.378、係数Ky=0.388、係数Kz=0.353とする。
Index IX=KxVx+KyVy+KzVz (1)
However, the coefficient Kx=0.378, the coefficient Ky=0.388, and the coefficient Kz=0.353.
 指標IXは、値が大きくなるほど歩行能力やバランス能力が低下し、スクワット運動で膝をスムーズに曲げられなかったり、足が左右に震えたりする度合いが高くなることを示している。指標IX、式(1)、及び係数Kx=0.378、係数Ky=0.388、係数Kz=0.353の妥当性については後述する。 Index IX indicates that the higher the value, the lower the walking ability and balance ability, the more likely it is that the knees cannot be bent smoothly during squat exercise, and the legs shake from side to side. The validity of index IX, formula (1), and coefficients Kx=0.378, Ky=0.388, and Kz=0.353 will be described later.
 なお、係数Kx,Ky,Kzの比率が378:388:353であればよく、係数Kx,Ky,Kzの絶対値は問わない。また、有効数字二桁でKx:Ky:Kz=38:39:35としてもよく、有効数字一桁でKx:Ky:Kz=1:1:1としてもよい。しかしながら、係数Kx,Ky,Kzの比率を表す有効数字桁数が多いほど、指標IXによって被験者Uの下肢制御能力を表す精度が向上する点でより好ましい。 It should be noted that the ratio of the coefficients Kx, Ky, and Kz should be 378:388:353, and the absolute values of the coefficients Kx, Ky, and Kz do not matter. Alternatively, Kx:Ky:Kz=38:39:35 with two significant digits, or Kx:Ky:Kz=1:1:1 with one significant digit. However, the greater the number of significant digits representing the ratios of the coefficients Kx, Ky, and Kz, the more preferable the index IX is to improve the accuracy of representing the lower limb control ability of the subject U.
 ピーク回数Cx,Cy,Czからピーク回数値Vx,Vy,Vzを求める方法としては、例えば平均処理を用いることができる。なお、ピーク回数値Vx=ピーク回数Cx、ピーク回数値Vy=ピーク回数Cy、ピーク回数値Vz=ピーク回数Czであってもよい。 As a method for obtaining the peak frequency values Vx, Vy, and Vz from the peak frequency Cx, Cy, and Cz, for example, averaging can be used. Alternatively, the peak frequency value Vx=the peak frequency Cx, the peak frequency value Vy=the peak frequency Cy, and the peak frequency value Vz=the peak frequency Cz.
 主成分分析部213は、複数の被験者Uから取得されたピーク回数値Vx,Vy,Vzを変数とする主成分分析を実行し、分析の結果得られた主成分分析の第一主成分を式(1)として分析結果記憶部214に記憶させる。 The principal component analysis unit 213 performs principal component analysis using the peak frequency values Vx, Vy, and Vz obtained from a plurality of subjects U as variables, and calculates the first principal component of the principal component analysis obtained as a result of the analysis by the formula (1) is stored in the analysis result storage unit 214 .
 図5は、図1に示す下肢制御能力測定システム1によって、式(1)を生成する方法の一例を示すフローチャートである。以下のフローチャートにおいて、同一の処理には同一のステップ番号を付してその説明を省略する。 FIG. 5 is a flow chart showing an example of a method of generating equation (1) by the lower limb control ability measuring system 1 shown in FIG. In the following flowcharts, the same step numbers are given to the same processes, and the description thereof will be omitted.
 式(1)を生成するために、まず、複数の被験者Uに対して、ピーク回数取得処理を実行する(ステップS1)。 In order to generate the formula (1), first, a peak number acquisition process is executed for a plurality of subjects U (step S1).
 図6は、ピーク回数取得処理の一例を示すフローチャートである。まず、物理量検出装置3を二つ用いて、被験者Uの右大腿部及び左大腿部にそれぞれ物理量検出装置3を取り付ける(ステップS11)。 FIG. 6 is a flowchart showing an example of the peak number acquisition process. First, using two physical quantity detection devices 3, the physical quantity detection device 3 is attached to each of the right thigh and the left thigh of the subject U (step S11).
 次に、被験者Uが、スクワット運動を5回実施する。そうすると、スクワット運動の期間中に、左右の物理量検出装置3がそれぞれ角速度Ax,Ay,Azを検出する(ステップS12)。具体的には、各物理量検出装置3の角速度センサ31が検出した角速度Ax,Ay,Azを、制御部34が、所定の時間間隔、例えば5msec間隔でサンプリングして記憶部32に記憶させる。 Next, subject U performs squat exercises five times. Then, during the squat exercise, the left and right physical quantity detection devices 3 detect angular velocities Ax, Ay, and Az, respectively (step S12). Specifically, the control unit 34 samples the angular velocities Ax, Ay, and Az detected by the angular velocity sensors 31 of the physical quantity detection devices 3 at predetermined time intervals, such as 5 msec intervals, and stores them in the storage unit 32 .
 スクワット運動の詳細について説明する。まず、被験者Uのスクワット中の最大膝屈曲角度が90度(大腿部と下腿の長軸が成す鋭角が90度になる角度)となるようにするため、及び安全確保のため、スクワット動作で膝屈曲角度が90度になると対象者の臀部が椅子上面に少し触れるように高さ調節した椅子を被験者Uの後ろにおいておく。 Explain the details of the squat exercise. First, in order to ensure that the maximum knee flexion angle during the squat of the subject U is 90 degrees (the acute angle formed by the long axis of the thigh and the lower leg is 90 degrees) and to ensure safety, the squat operation A chair whose height is adjusted so that the subject's buttocks slightly touch the upper surface of the chair is placed behind the subject U when the knee flexion angle reaches 90 degrees.
 次に、被験者Uは肩幅に足を開き両足で立つ。そして、被験者Uは、完全膝伸展位(0度)の両脚立位の姿勢から、5秒かけて膝関節が90度になるまで重心を下げ、5秒かけて膝を伸ばすスクワット運動を5回連続で行う。これを一人1セット行い、左右の大腿部から角速度Ax,Ay,Azを検出する。 Next, subject U stands on both feet with his feet shoulder-width apart. Then, the subject U lowered the center of gravity from a two-legged standing position with full knee extension (0 degrees) over 5 seconds until the knee joints reached 90 degrees, and then performed squat exercises five times over 5 seconds to stretch the knees. Do it continuously. One set of this is performed for each person, and the angular velocities Ax, Ay, and Az are detected from the left and right thighs.
 次に、例えば被験者Uの左右大腿部から物理量検出装置3を取り外し、例えば図略のケーブルで物理量検出装置3の外部I/F部33と下肢制御能力測定装置2のセンサI/F部25とを接続する。そして、センサI/F部25が、左大腿部に取り付けられていた物理量検出装置3から左の角速度Ax,Ay,Az、右大腿部に取り付けられていた物理量検出装置3から右の角速度Ax,Ay,Azを取得し、制御部21が記憶装置に記憶させる(ステップS13:物理量取得工程)。 Next, for example, the physical quantity detection device 3 is removed from the right and left thighs of the subject U, and the external I/F section 33 of the physical quantity detection device 3 and the sensor I/F section 25 of the leg control ability measuring device 2 are connected, for example, by a cable (not shown). to connect. Then, the sensor I/F unit 25 detects left angular velocities Ax, Ay, and Az from the physical quantity detection device 3 attached to the left thigh, and right angular velocities from the physical quantity detection device 3 attached to the right thigh. Ax, Ay, and Az are acquired, and the control unit 21 stores them in the storage device (step S13: physical quantity acquisition step).
 次に、ピーク回数計数部211は、左右の角速度Ax,Ay,Azの波形から、低域通過フィルタによって高周波成分を除去する(ステップS14)。 Next, the peak frequency counting unit 211 removes high frequency components from the waveforms of the left and right angular velocities Ax, Ay, and Az using a low-pass filter (step S14).
 次に、ピーク回数計数部211は、高周波成分除去後の左右の角速度Ax,Ay,Azの波形から、スクワット運動5回分の下降期間の左右の各ピーク回数Cx,Cy,Czを計数する(ステップS15:ピーク回数計数工程)。 Next, the number-of-peaks counting unit 211 counts the numbers of left and right peaks Cx, Cy, and Cz during the falling period for five squat exercises from the waveforms of the left and right angular velocities Ax, Ay, and Az after removing the high-frequency component (step S15: peak number counting step).
 なお、ステップS11,12において、必ずしも二台の物理量検出装置3を用いる必要はない。一台の物理量検出装置3を用いて、左右一方の大腿部に物理量検出装置3を取り付けてスクワット運動を1セット行い、一方の角速度Aを検出した後、他方の大腿部に物理量検出装置3を取り付けてスクワット運動をもう1セット行って他方の角速度Aを検出することにより、左右の角速度Aを順次検出してもよい。 It should be noted that it is not always necessary to use two physical quantity detection devices 3 in steps S11 and S12. Using one physical quantity detection device 3, one set of squat exercise is performed by attaching the physical quantity detection device 3 to one of the left and right thighs, and after detecting the angular velocity A of one, the physical quantity detection device is attached to the other thigh. 3 may be attached to perform another set of squat exercises to detect the angular velocities A of the other, thereby detecting the left and right angular velocities A sequentially.
 図7は、ピーク回数計数部211によって計数されたスクワット運動5回分の下降期間の左右の各ピーク回数Cx,Cy,Czの一例を示す説明図である。図7に示すように、左右のピーク回数Cx,Cy,Czが、スクワット運動5回分、計数される。 FIG. 7 is an explanatory diagram showing an example of left and right peak numbers Cx, Cy, and Cz of the falling period for five squat exercises counted by the peak number counting unit 211. FIG. As shown in FIG. 7, left and right peak numbers Cx, Cy, and Cz are counted for five squat exercises.
 次に、指標算出部212は、スクワット運動5回のうち最初と最後を除く3回分の下降期間の左右のピーク回数Cx,Cy,Czに基づき、ピーク回数値Vx,Vy,Vzを生成する(ステップS16)。以下、ピーク回数値Vx,Vy,Vzを総称してピーク回数値Vと称する。 Next, the index calculation unit 212 generates peak count values Vx, Vy, and Vz based on the left and right peak counts Cx, Cy, and Cz of the falling period of three times excluding the first and last of the five squat exercises ( step S16). Hereinafter, peak frequency values Vx, Vy, and Vz are collectively referred to as peak frequency value V. FIG.
 図3に示すように、スクワット運動を開始した直後の1回目は、2回目以降と比べてスクワット運動のリズムが異なり、下降期間が長くなるなど、角速度の傾向が異なり易い。また、2~4回目は前後に他のスクワット運動の角速度波形が連なるため、1回分のスクワット運動の期間が判別し易い。一方、最初の1回目はスクワット運動の開始タイミングを判別し難く、最後の5回目はスクワット運動の終了タイミングを判別し難い。従って、指標算出部212は、複数回のスクワット運動のうち最初と最後を除くスクワット運動におけるピーク回数Cをピーク回数値Vx,Vy,Vzの生成に用いることが好ましい。 As shown in Fig. 3, the first squat exercise immediately after the start of the squat exercise has a different rhythm of the squat exercise compared to the second and subsequent times, and the tendencies of the angular velocity tend to differ, such as a longer descent period. In addition, since the angular velocity waveforms of other squat exercises are connected before and after the second to fourth times, the period of one squat exercise can be easily determined. On the other hand, it is difficult to determine the start timing of the squat exercise for the first time, and it is difficult to determine the end timing of the squat exercise for the last fifth time. Therefore, it is preferable that the index calculation unit 212 uses the peak number C of the squat exercises excluding the first and last of the multiple squat exercises to generate the peak number values Vx, Vy, and Vz.
 なお、必ずしも最初と最後のスクワット運動におけるピーク回数Cを除外しなくてもよい。また、スクワット運動の回数は、5回に限られず、6回以上であってもよく、4回以下であってもよく、1回でもよい。 It should be noted that it is not necessary to exclude the peak number C in the first and last squat exercises. Also, the number of squat exercises is not limited to 5 times, and may be 6 times or more, 4 times or less, or 1 time.
 図7に示す例では、指標算出部212によって、最初と最後を除く2~4回目の下降期間の左右のピーク回数Cx,Cy,Czを平均することにより、右ピーク回数Cx,Cy,Czの平均値として3.0,8.0,13.0が算出され、左ピーク回数Cx,Cy,Czの平均値として18.0,23.0,28.0が算出されている。 In the example shown in FIG. 7, the index calculation unit 212 averages the numbers of left and right peaks Cx, Cy, and Cz in the second to fourth falling periods excluding the first and last, thereby calculating the number of right peaks Cx, Cy, and Cz. 3.0, 8.0, and 13.0 are calculated as average values, and 18.0, 23.0, and 28.0 are calculated as average values of left peak numbers Cx, Cy, and Cz.
 指標算出部212は、さらに、右ピーク回数Cxと左ピーク回数Cxとを平均することによってピーク回数値Vx=10.5を算出し、右ピーク回数Cyと左ピーク回数Cyとを平均することによってピーク回数値Vy=15.5を算出し、右ピーク回数Czと左ピーク回数Czとを平均することによってピーク回数値Vz=20.5を算出する。 The index calculator 212 further averages the right peak count Cx and the left peak count Cx to calculate a peak count value Vx=10.5, and averages the right peak count Cy and the left peak count Cy to A peak frequency value Vy=15.5 is calculated, and a peak frequency value Vz=20.5 is calculated by averaging the right peak frequency Cz and the left peak frequency Cz.
 複数回分のピーク回数Cx,Cy,Czを平均してピーク回数値Vx,Vy,Vzを求めることによって、人の運動の測定で生じるランダムエラーやランダムな動きのばらつきを相殺することができる。 By averaging the peak numbers Cx, Cy, and Cz for a plurality of times to obtain the peak number values Vx, Vy, and Vz, it is possible to cancel random errors and variations in random movements that occur in the measurement of human movement.
 ステップS11~16のピーク回数取得処理によって、被験者U一人分のピーク回数値Vx,Vy,Vzが得られる。複数の被験者Uに対して、ステップS11~16を繰り返すことによって、複数の被験者Uに対応するピーク回数値Vx,Vy,Vzが得られる(ステップS1)。 Peak frequency values Vx, Vy, and Vz for one subject U are obtained by the peak frequency acquisition processing in steps S11 to S16. By repeating steps S11 to S16 for a plurality of subjects U, peak frequency values Vx, Vy, and Vz corresponding to a plurality of subjects U are obtained (step S1).
 なお、ステップS11~S15において、左右いずれか一方の角速度A及びピーク回数Cを取得してもよい。そして、ステップS16において、いずれか一方のピーク回数Cに基づきピーク回数値Vを生成してもよい。 In steps S11 to S15, either the left or right angular velocity A and the number of peaks C may be obtained. Then, in step S16, the peak frequency value V may be generated based on the peak frequency C of either one.
 また、ステップS11~S15において、スクワット運動の代わりに上述の膝屈曲運動を行ってもよい。 Also, in steps S11 to S15, the knee bending exercise described above may be performed instead of the squat exercise.
 次に、主成分分析部213は、複数の被験者Uから得られたピーク回数値Vx,Vy,Vzを変数とする三次元の主成分分析を実行する(ステップS2:主成分分析工程)。主成分分析を行う際に、複数のピーク回数値Vx,Vy,Vzについて、その値から平均値を減算して標準偏差で除算する、いわゆるZ変換を行った後のピーク回数値Vx,Vy,Vzを用いて主成分分析を行ってもよい。 Next, the principal component analysis unit 213 executes three-dimensional principal component analysis using the peak frequency values Vx, Vy, and Vz obtained from the plurality of subjects U as variables (step S2: principal component analysis step). When performing principal component analysis, for a plurality of peak frequency values Vx, Vy, and Vz, the peak frequency values Vx, Vy, and Vz after performing so-called Z-transformation, in which the average value is subtracted from the values and divided by the standard deviation, Principal component analysis may be performed using Vz.
 次に、主成分分析部213は、主成分分析により得られた第一主成分を、式(1)及び係数Kx,Ky,Kzとして分析結果記憶部214に記憶する(ステップS3:主成分分析工程)。 Next, the principal component analysis unit 213 stores the first principal component obtained by the principal component analysis in the analysis result storage unit 214 as the formula (1) and the coefficients Kx, Ky, Kz (step S3: principal component analysis process).
 本発明者らは、高齢者(年齢51歳~84歳)133名について、両脚スクワット運動によりステップS11~S16のピーク回数取得処理を実施し、133名分のピーク回数値Vx,Vy,Vzを取得した。そして、133名分のピーク回数値Vx,Vy,Vzの主成分分析結果から、第一主成分として、式(1)の係数Kx=0.378、係数Ky=0.388、係数Kz=0.353を算出した。 The present inventors performed the peak number acquisition process in steps S11 to S16 by squatting with both legs for 133 elderly people (ages 51 to 84), and obtained the peak number values Vx, Vy, and Vz for the 133 people. Acquired. Then, from the principal component analysis results of the peak frequency values Vx, Vy, and Vz for 133 people, the coefficient Kx = 0.378, the coefficient Ky = 0.388, and the coefficient Kz = 0 in Equation (1) as the first principal component. .353 was calculated.
 式(1)及び係数Kx,Ky,Kzを分析結果記憶部214に記憶することによって、下肢制御能力測定装置2は、新たな被験者Uの下肢の制御能力を表す指標IXを測定することが可能となる。 By storing the equation (1) and the coefficients Kx, Ky, and Kz in the analysis result storage unit 214, the lower-limb control ability measuring device 2 can measure the new index IX representing the lower-limb control ability of the subject U. becomes.
 なお、下肢制御能力測定装置2は、主成分分析部213を備えず、ステップS2,S3において、主成分分析以外の手法により係数Kx,Ky,Kzを生成してもよい。また、物理量検出装置3は、X,Y,Zの三軸のうち一軸又は二軸の物理量を検出し、下肢制御能力測定装置2は一軸又は二軸の物理量に基づきピーク回数Cを計数し、ピーク回数値Vを生成してもよい。 Note that the lower limb control ability measuring device 2 may not include the principal component analysis unit 213, and the coefficients Kx, Ky, and Kz may be generated in steps S2 and S3 by a method other than the principal component analysis. In addition, the physical quantity detection device 3 detects a physical quantity of one or two axes among the three axes of X, Y, and Z, and the lower limb control ability measuring device 2 counts the number of peaks C based on the physical quantity of one or two axes, A peak frequency value V may be generated.
 次に、図1に示す下肢制御能力測定装置2による、指標IXの測定方法について説明する。図8は、図1に示す下肢制御能力測定装置2による指標IXの測定方法の一例を示すフローチャートである。 Next, a method for measuring the index IX by the lower limb control ability measuring device 2 shown in FIG. 1 will be described. FIG. 8 is a flow chart showing an example of a method for measuring the index IX by the lower-limb control ability measuring device 2 shown in FIG.
 まず、指標IXを測定しようとする被験者Uに対して、分析結果記憶部214に記憶された係数Kx,Ky,Kzを算出する際に行った運動と同じ種類の膝屈曲運動によって、ステップS11~S16のピーク回数取得処理を実行し、ピーク回数値Vx,Vy,Vzを取得する(ステップS21)。 First, the subject U whose index IX is to be measured is subjected to the same kind of knee bending exercise as that performed when calculating the coefficients Kx, Ky, and Kz stored in the analysis result storage unit 214. The peak frequency acquisition process of S16 is executed to acquire peak frequency values Vx, Vy, and Vz (step S21).
 次に、指標算出部212は、被験者Uから得られたピーク回数値Vx,Vy,Vzを、式(1)に代入し、指標IXを算出する(ステップS22:指標算出工程)。指標算出部212は、算出した指標IXを、例えばディスプレイ22に表示させるなどしてユーザに報知する。 Next, the index calculation unit 212 substitutes the peak frequency values Vx, Vy, and Vz obtained from the subject U into Equation (1) to calculate the index IX (step S22: index calculation step). The index calculator 212 notifies the user of the calculated index IX by, for example, displaying it on the display 22 .
 指標IXは、値が大きくなるほど歩行能力やバランス能力が低下していることを示し、指標IXが小さいほど震えが少なくスムーズに膝屈曲運動、例えばスクワット運動ができていることを示す。従って、指標IXを測定することによって、被験者Uの下肢制御能力を測定することができる。 The larger the index IX value, the lower the walking ability and balance ability, and the smaller the index IX, the less tremors and smoother knee bending movements, such as squat exercises. Therefore, by measuring the index IX, the lower limb control ability of the subject U can be measured.
 従って、ステップS21,S22の処理によれば、下肢の制御能力を指標IXとして測定することが容易であり、特に下肢伸張性制御能力(LEEC)を測定することが容易である。 Therefore, according to the processing of steps S21 and S22, it is easy to measure the control ability of the lower limbs as the index IX, and in particular, it is easy to measure the control ability of lower extensibility (LEEC).
 なお、指標算出部212は、ステップS22を実行しなくてもよい。ステップS21で得られた各ピーク回数値Vx,Vy,Vzは、それ自体、被験者Uの下肢制御能力と相関関係を有している。従って、指標算出部212は、ピーク回数値Vx,Vy,Vzのうち少なくとも一つを、そのまま被験者Uの下肢制御能力を表す指標として用いてもよい。 Note that the index calculation unit 212 does not have to execute step S22. Each of the peak frequency values Vx, Vy, and Vz obtained in step S21 itself has a correlation with the subject's U lower-limb control ability. Therefore, the index calculation unit 212 may use at least one of the peak frequency values Vx, Vy, and Vz as an index representing the lower limb control ability of the subject U as it is.
 また、下肢制御能力測定装置2は、指標算出部212を備えず、ステップS16,S22を実行せず、ステップS21でピーク回数Cを被験者Uの下肢制御能力を表す指標として取得してもよい。ステップS15で得られた各ピーク回数Cx,Cy,Czは、それ自体、被験者Uの下肢制御能力と相関関係を有している。従って、ピーク回数Cx,Cy,Czのうち少なくとも一つを、そのまま被験者Uの下肢制御能力を表す指標として用いることができる。 Alternatively, the lower-limb control ability measuring device 2 may not include the index calculation unit 212, may not execute steps S16 and S22, and may acquire the peak count C as an index representing the subject's U lower-limb control ability in step S21. Each of the peak counts Cx, Cy, and Cz obtained in step S15 itself has a correlation with the subject's U lower limb control ability. Therefore, at least one of the peak numbers Cx, Cy, and Cz can be used as an index representing the subject's U lower-limb control ability.
 指標IXを用いた場合、被験者Uの下肢制御能力を総合的に把握することが容易となる。一方、左右のピーク回数Cx,Cy,Cz、又は左右のピーク回数値Vx,Vy,Vzを、そのまま下肢制御能力を表す指標として用いた場合、例えばピーク回数Cx,Cyから大腿部の横揺れの大きさを判断することができ、例えばピーク回数Czから屈曲動作のスムーズさを判断することがでる、というように、より詳細な分析を行うことが可能となる。また、左のピーク回数C又は左のピーク回数値Vからは左脚の制御能力、右のピーク回数C又は右のピーク回数値Vからは右脚の制御能力を分析することが可能となる。 When the index IX is used, it becomes easier to comprehensively grasp the lower limb control ability of the subject U. On the other hand, when the left and right peak numbers Cx, Cy, Cz or the left and right peak number values Vx, Vy, Vz are used as they are as indices representing the lower limb control ability, It is possible to determine the magnitude, and to perform more detailed analysis, for example, to determine the smoothness of the bending motion from the number of peaks Cz. Also, from the left peak number C or the left peak number V, it is possible to analyze the left leg control ability, and from the right peak number C or the right peak number V, the right leg control ability can be analyzed.
 次に、指標IX、式(1)、及び係数Kx=0.378、係数Ky=0.388、係数Kz=0.353の妥当性について説明する。従来より、下肢制御能力として、歩行能力を測定するTime Up and Go(TUG)テスト、及びバランス能力を測定する片足バランステストが知られている。 Next, the validity of the index IX, formula (1), and coefficients Kx=0.378, Ky=0.388, and Kz=0.353 will be explained. Conventionally, as leg control ability, the Time Up and Go (TUG) test for measuring walking ability and the one-leg balance test for measuring balance ability are known.
 そこで、本発明者らは、上述の高齢者(年齢51歳~84歳)133名によるTUGテストの結果及び片足バランステストの結果と、膝屈曲運動として両脚スクワットを用いて式(1)及び係数Kx=0.378、係数Ky=0.388、係数Kz=0.353により得られた指標IXとの相関関係を重回帰分析により検証した。TUGテストの結果及び片足バランステストの結果と、式(1)及び係数Kx,Ky,Kzにより得られた指標IXとの間に有意な関連性が有れば、指標IXは、被験者Uの下肢制御能力を表す指標として妥当であると考えられる。 Therefore, the present inventors used the results of the TUG test and the results of the one-leg balance test by the above-mentioned 133 elderly people (ages 51 to 84), and the expression (1) and the coefficient using double leg squats as knee flexion exercise The correlation with index IX obtained by Kx=0.378, coefficient Ky=0.388, and coefficient Kz=0.353 was verified by multiple regression analysis. If there is a significant relationship between the results of the TUG test and the results of the one-leg balance test, and the index IX obtained from the formula (1) and the coefficients Kx, Ky, and Kz, the index IX is the lower limb of the subject U. It is considered to be appropriate as an index representing control ability.
 TUGテストは、椅子に座った姿勢から立ち上がり、3m先のコーンまで歩き、コーンをターンして椅子まで歩いて戻り、再び座位になるまでの時間を測定するものである。TUGテストは、一人に対して2回行い、測定時間の平均値を検証に用いた。 The TUG test measures the time it takes to stand up from a sitting position, walk to a cone 3m ahead, turn the cone, walk back to the chair, and return to a sitting position. The TUG test was performed twice for each person, and the average value of the measurement times was used for verification.
 片足バランステストは、手を腰に当て、遊脚側の膝は伸展位で股関節を軽度屈曲させ、開眼して片足立ちする課題を実施した。上限は180秒までとし、(1)支持脚が動く、(2)遊脚が地面に着く、(3)姿勢が大きく崩れる(体幹屈曲30度や、遊脚側が30度以上動く)のいずれか1つが起こるまでの時間を計測した。測定は2回実施し、平均値を代表値として用いた。 For the one-leg balance test, the subject was asked to stand on one leg with their hands on their hips, the knee on the free leg side extended, the hip joint slightly flexed, and their eyes opened. The upper limit is 180 seconds, and either (1) the supporting leg moves, (2) the free leg touches the ground, or (3) the posture collapses (trunk flexes 30 degrees or the free leg moves more than 30 degrees). We measured the time until one or the other occurred. Measurement was performed twice and the average value was used as a representative value.
 上述の133名を被験者Uとして両脚スクワットによる指標IXを算出し、各被験者の年齢をXageとし、指標IXと年齢Xageとを重回帰分析の独立変数とした。TUGテスト結果(時間)をYtug、片足バランステスト結果(時間)をYbalanceとし、Ytugを従属変数とした重回帰モデルを示す式(2)、及びYbalanceを従属変数とした重回帰モデルを示す式(3)について、重回帰分析を行った。 Using the above 133 subjects as subjects U, index IX was calculated by double-leg squats, the age of each subject was defined as Xage, and index IX and age Xage were used as independent variables for multiple regression analysis. The TUG test result (time) is Ytug, the one-leg balance test result (time) is Ybalance, the formula (2) showing the multiple regression model with Ytug as the dependent variable, and the formula (2) showing the multiple regression model with Ybalance as the dependent variable ( For 3), multiple regression analysis was performed.
 Ytug=aIX+bXage+c ・・・(2)
但し、a,bは式(2)における各独立変数の偏回帰係数(非標準化係数)、cは切片(定数)である。
Ytug=aIX+bXage+c (2)
However, a and b are partial regression coefficients (unstandardized coefficients) of each independent variable in Equation (2), and c is an intercept (constant).
 Ybalance=mIX+nXage+r ・・・(3)
但し、m,nは式(3)における各独立変数の偏回帰係数(非標準化係数)、rは切片(定数)である。
Ybalance=mIX+nXage+r (3)
However, m and n are partial regression coefficients (unstandardized coefficients) of each independent variable in Equation (3), and r is an intercept (constant).
 図9は、TUGテストに関する式(2)についての重回帰分析結果を示す表である。図9は、式(2)について重回帰分析により得られた重相関係数R、重寄与率R、偏回帰係数a,b、切片c、標準偏回帰係数β、p値(p value)、偏回帰係数a,bの95.0%信頼区間(CI:Confidence Interval)を示している。 FIG. 9 is a table showing the results of multiple regression analysis for equation (2) for the TUG test. FIG. 9 shows multiple correlation coefficient R obtained by multiple regression analysis for formula (2), multiple contribution rate R 2 , partial regression coefficients a and b, intercept c, standard partial regression coefficient β, p value (p value) , 95.0% confidence interval (CI: Confidence Interval) of the partial regression coefficients a and b.
 図9に示すTUGテストに関する重回帰分析結果によれば、重寄与率Rが0.218となっており、これはTUGテストにより得られたYtugの変動のうち21.8%を、式(1)で示す指標IXで説明できることを意味している。TUGテストは、被験者Uの歩行能力を測定するのであるから、TUGテストにより得られたYtugの変動のうち21.8%を指標IXで説明できることは、被験者Uの歩行能力の変動のうち21.8%を指標IXで説明できることを意味する。 According to the multiple regression analysis results for the TUG test shown in FIG. 9, the multiple contribution rate R2 is 0.218, which means that 21.8% of the variation in Ytug obtained by the TUG test is calculated by the formula ( It means that it can be explained by the index IX shown in 1). Since the TUG test measures the walking ability of the subject U, the fact that 21.8% of the variation in Ytug obtained by the TUG test can be explained by the index IX means that 21.8% of the variation in the walking ability of the subject U can be explained. This means that 8% can be explained by index IX.
 人の運動能力に関連する要因は、スクワット運動による伸筋群の機能だけでなく、筋力、関節可動域、柔軟性、バランス能力、コーディネーション能力、心理的要因、体重、身長など、非常に多くの要因が人の運動能力に関連している。そのような数多くの要因が存在する中で、指標IXのみで人の歩行能力の21.8%を説明できることは臨床的に非常に大きな意味があり、指標IXが、下肢の制御能力を表す指標として妥当であることを示している。 There are many factors related to human exercise capacity, such as muscle strength, joint range of motion, flexibility, balance ability, coordination ability, psychological factors, body weight, height, etc. Factors are related to a person's athletic ability. Among such many factors, the fact that 21.8% of human walking ability can be explained by index IX alone is of great clinical significance. It shows that it is appropriate as
 また、図9に示すTUGテストに関する重回帰分析結果によれば、指標IXのp値は0.000であり、0.05より小さい。重回帰分析では、p値が0.05より小さければ、有意であると判断されるので、指標IXは、重回帰分析の結果から有意であると判断できる。 Also, according to the multiple regression analysis results for the TUG test shown in FIG. 9, the p-value of the index IX is 0.000, which is smaller than 0.05. In the multiple regression analysis, if the p-value is smaller than 0.05, it is determined to be significant, so the index IX can be determined to be significant from the results of the multiple regression analysis.
 ここで、両脚スクワットから得られた指標IXが、TUGテストに関する式(2)についての重回帰分析の結果から有意であることは、被験者Uの指標IXを式(2)に代入してYtugを計算することによって、その被験者UのTUGテスト結果Ytugを推定可能であることを意味する。 Here, the significance of the index IX obtained from the double-leg squat is obtained from the results of multiple regression analysis on the formula (2) for the TUG test. Calculation means that the TUG test result Ytug of the subject U can be estimated.
 そこで、例えば式(2)、偏回帰係数a,b、及び定数cを予め分析結果記憶部214に記憶しておき、指標算出部212は、ステップS22で算出された指標IXを、分析結果記憶部214に記憶された式(2)に代入することによって、Ytugを、被験者Uの歩行能力を表す指標として算出してもよい。 Therefore, for example, the equation (2), the partial regression coefficients a and b, and the constant c are stored in advance in the analysis result storage unit 214, and the index calculation unit 212 stores the index IX calculated in step S22 in the analysis result storage. Ytug may be calculated as an index representing the walking ability of the subject U by substituting it into the equation (2) stored in the unit 214 .
 図9に示すように、偏回帰係数a,b、及び定数cの一例として、a=0.270、b=0.042、c=2.554を好適に用いることができる。なお、a:b:cの比率が270:42:2554であればよく、偏回帰係数a,b、及び定数cの絶対値は問わない。また、有効数字二桁でa:b:c=270:42:2600としてもよく、有効数字一桁でa:b:c=300:40:3000としてもよい。しかしながら、偏回帰係数a,b、及び定数cの比率を表す有効数字桁数が多いほど、指標Ytugによって被験者Uの歩行能力を表す精度が向上する点でより好ましい。 As shown in FIG. 9, a=0.270, b=0.042, c=2.554 can be preferably used as an example of the partial regression coefficients a, b, and the constant c. The ratio of a:b:c may be 270:42:2554, and the absolute values of the partial regression coefficients a, b and constant c are not limited. Alternatively, a:b:c=270:42:2600 with two significant digits, or a:b:c=300:40:3000 with one significant digit. However, the greater the number of significant digits representing the ratio of the partial regression coefficients a, b, and the constant c, the more preferable the accuracy of the index Ytug representing the walking ability of the subject U is.
 図10は、片足バランステストに関する式(3)についての重回帰分析結果を示す表である。図10は、式(3)について重回帰分析により得られた重相関係数R、重寄与率R、偏回帰係数m,n、切片r、標準偏回帰係数β、p値(p value)、偏回帰係数m,nの95.0%信頼区間(CI:Confidence Interval)を示している。 FIG. 10 is a table showing results of multiple regression analysis for Equation (3) regarding the one-leg balance test. FIG. 10 shows multiple correlation coefficient R obtained by multiple regression analysis for formula (3), multiple contribution rate R 2 , partial regression coefficients m, n, intercept r, standard partial regression coefficient β, p value (p value) , 95.0% confidence interval (CI: Confidence Interval) of the partial regression coefficients m, n.
 図10に示す片足バランステストに関する重回帰分析結果によれば、重寄与率Rが0.205となっており、これは片足バランステストにより得られたYbalanceの変動のうち20.5%を、式(1)で示す指標IXで説明できることを意味している。片足バランステストは、被験者Uのバランス能力を測定するのであるから、片足バランステストにより得られたYbalanceの変動のうち20.5%を指標IXで説明できることは、被験者Uのバランス能力の変動のうち20.5%を指標IXで説明できることを意味する。 According to the multiple regression analysis results for the one -leg balance test shown in FIG. It means that it can be explained by the index IX shown in the formula (1). Since the one-leg balance test measures the balance ability of the subject U, the fact that 20.5% of the fluctuations in Ybalance obtained by the one-leg balance test can be explained by the index IX means that the variation in the balance ability of the subject U is This means that 20.5% can be explained by index IX.
 人の運動能力に関連する要因は、スクワット運動による伸筋群の機能だけでなく、筋力、関節可動域、柔軟性、バランス能力、コーディネーション能力、心理的要因、体重、身長など、非常に多くの要因が人の運動能力に関連している。そのような数多くの要因が存在する中で、指標IXのみで人のバランス能力の20.5%を説明できることは臨床的に非常に大きな意味があり、指標IXが、下肢の制御能力を表す指標として妥当であることを示している。 There are many factors related to human exercise capacity, such as muscle strength, joint range of motion, flexibility, balance ability, coordination ability, psychological factors, body weight, height, etc. Factors are related to a person's athletic ability. Among such many factors, the fact that index IX alone can explain 20.5% of a person's balance ability is of great clinical significance. It shows that it is appropriate as
 また、図10に示す片足バランステストに関する重回帰分析結果によれば、指標IXのp値は0.003であり、0.05より小さい。重回帰分析では、p値が0.05より小さければ、有意であると判断されるので、指標IXは、重回帰分析の結果から有意であると判断できる。 Also, according to the results of multiple regression analysis on the one-leg balance test shown in FIG. 10, the p-value of index IX is 0.003, which is smaller than 0.05. In the multiple regression analysis, if the p-value is smaller than 0.05, it is determined to be significant, so the index IX can be determined to be significant from the results of the multiple regression analysis.
 ここで、両脚スクワットから得られた指標IXが、片足バランステスト結果Ybalanceに関する式(3)についての重回帰分析の結果から有意であることは、被験者Uの指標IXを式(3)に代入してYbalanceを計算することによって、その被験者Uの片足バランステスト結果Ybalanceを推定可能であることを意味する。 Here, the index IX obtained from the double-leg squat is significant from the result of multiple regression analysis on the equation (3) regarding the one-leg balance test result Ybalance, and the index IX of the subject U is substituted into the equation (3). This means that the one-leg balance test result Ybalance of the subject U can be estimated by calculating Ybalance by using .
 そこで、例えば式(3)、偏回帰係数m,n、及び定数rを予め分析結果記憶部214に記憶しておき、指標算出部212は、ステップS22で算出された指標IXを、分析結果記憶部214に記憶された式(3)に代入することによって、Ybalanceを、被験者Uのバランス能力を表す指標として算出してもよい。 Therefore, for example, the equation (3), the partial regression coefficients m and n, and the constant r are stored in the analysis result storage unit 214 in advance, and the index calculation unit 212 stores the index IX calculated in step S22 in the analysis result storage. Ybalance may be calculated as an index representing the subject's U balance ability by substituting it into the equation (3) stored in the unit 214 .
 図10に示すように、偏回帰係数m,n、及び定数rの一例として、m=-5.361、n=-1.244、r=125.690を好適に用いることができる。なお、m:n:rの比率が-5361:-1244:125690であればよく、偏回帰係数m,n、及び定数rの絶対値は問わない。また、有効数字三桁でm:n:r=-536:-124:12600としてもよく、有効数字二桁でm:n:r=-54:-12:1300としてもよく、有効数字一桁でm:n:r=-5:-1:100としてもよい。しかしながら、偏回帰係数m,n、及び定数rの比率を表す有効数字桁数が多いほど、指標Ybalanceによって被験者Uのバランス能力を表す精度が向上する点でより好ましい。 As shown in FIG. 10, m = -5.361, n = -1.244, r = 125.690 can be suitably used as an example of the partial regression coefficients m, n and constant r. The ratio of m:n:r is -5361:-1244:125690, and the absolute values of the partial regression coefficients m and n and the constant r are not limited. Also, m:n:r=-536:-124:12600 with three significant digits, m:n:r=-54:-12:1300 with two significant digits, and one significant digit. , m:n:r=-5:-1:100. However, the greater the number of significant digits representing the ratio of the partial regression coefficients m, n, and the constant r, the better, because the accuracy of the index Ybalance representing the balance ability of the subject U is improved.
 以上のように、図9、図10に示す重回帰分析結果から、指標IXが被験者Uの歩行能力やバランス能力等、下肢の制御能力を表す指標として妥当であることが確認できた。 As described above, from the results of the multiple regression analysis shown in FIGS. 9 and 10, it was confirmed that the index IX is appropriate as an index representing the ability to control the lower limbs, such as the walking ability and balance ability of the subject U.
 下肢制御能力測定システム1及び下肢制御能力測定装置2は、図6に示すピーク回数取得処理において、上述の中高齢者の歩行機能やバランス機能評価に適した膝屈曲運動(以下、第一膝屈曲運動と称する)の代わりに、上述のアスリートの傷害発生の可能性評価に適した膝屈曲運動(以下、第二膝屈曲運動と称する)、例えば片脚スクワットを行うことによって、アスリートの傷害発生の可能性評価に関する下肢の制御能力を表す指標IXを算出することができる。 The lower-limb control ability measuring system 1 and the lower-limb control ability measuring device 2, in the peak number acquisition process shown in FIG. exercise), instead of the above-mentioned knee flexion exercise (hereinafter referred to as second knee flexion exercise) suitable for evaluating the possibility of athlete injury occurrence, such as single-leg squats, the athlete's injury occurrence An index IX can be calculated that represents the controllability of the lower extremity for feasibility assessment.
 以下、図1に示す下肢制御能力測定システム1及び下肢制御能力測定装置2を用いて、アスリートの傷害発生の可能性評価に関する指標IX(以下、アスリート用指標IXと称する)を算出する方法について説明する。 Hereinafter, a method of calculating an index IX (hereinafter referred to as an athlete index IX) relating to the evaluation of the possibility of an injury occurring to an athlete using the lower-limb control ability measuring system 1 and the lower-limb control ability measuring device 2 shown in FIG. 1 will be described. do.
 まず、アスリート用指標IXを算出するための係数Kx,Ky,Kzを算出する。図6に示すステップS11~S16において、スクワット運動の代わりに第二膝屈曲運動を行うことによってピーク回数値Vx,Vy,Vzを生成する。このようにして得られたピーク回数値Vx,Vy,Vzを用いて図5に示すステップS1~S3を実行することによって、アスリート用指標IXのための係数Kx,Ky,Kzを算出し、式(1)と共に分析結果記憶部214に記憶する。 First, the coefficients Kx, Ky, and Kz for calculating the athlete index IX are calculated. In steps S11 to S16 shown in FIG. 6, the peak number values Vx, Vy, and Vz are generated by performing the second knee flexion exercise instead of the squat exercise. By executing steps S1 to S3 shown in FIG. 5 using the peak frequency values Vx, Vy, and Vz thus obtained, the coefficients Kx, Ky, and Kz for the athlete index IX are calculated, and the formula Stored in the analysis result storage unit 214 together with (1).
 次に、図8を参照しつつ、被験者Uのアスリート用指標IXを算出する処理について説明する。被験者Uのアスリート用指標IXを算出する場合、図6に示すステップS11~S16において、アスリート用指標IXのための係数Kx,Ky,Kzの算出に用いたのと同じ種類の第二膝屈曲運動をスクワット運動の代わりに行うことによってピーク回数値Vx,Vy,Vzを取得する(ステップS21)。次に、ステップS22において、このようにして得られたピーク回数値Vx,Vy,Vzと、分析結果記憶部214に記憶されたアスリート用指標IXのための係数Kx,Ky,Kz及び式(1)に基づいて、アスリート用指標IXを算出する。 Next, the process of calculating the athlete index IX of the subject U will be described with reference to FIG. When calculating the athlete index IX of the subject U, in steps S11 to S16 shown in FIG. instead of the squat exercise, the peak frequency values Vx, Vy, and Vz are obtained (step S21). Next, in step S22, the peak frequency values Vx, Vy, and Vz thus obtained, the coefficients Kx, Ky, and Kz for the athlete index IX stored in the analysis result storage unit 214, and the formula (1 ), the athlete index IX is calculated.
 このようにして、図1に示す下肢制御能力測定システム1及び下肢制御能力測定装置2を用いて、アスリート用指標IXを算出することができる。 In this way, the athlete index IX can be calculated using the lower-limb control ability measuring system 1 and the lower-limb control ability measuring device 2 shown in FIG.
 例えば第二膝屈曲運動として片脚スクワットを行う場合、ステップS11において、片脚スクワットを行う側の大腿部に物理量検出装置3を取り付ける。左右の脚で、順次片脚スクワットを行うことによって、ステップS11~S16と同様、左右のピーク回数Cを取得してもよく、左右いずれか一方でのみ片脚スクワットを行って、いずれか一方のピーク回数Cに基づきピーク回数値Vを生成してもよい。 For example, when performing a one-leg squat as the second knee flexion exercise, in step S11, the physical quantity detection device 3 is attached to the thigh on the side where the one-leg squat is performed. By sequentially performing single-leg squats with the left and right legs, similarly to steps S11 to S16, the number of left and right peaks C may be obtained. A peak frequency value V may be generated based on the peak frequency C. FIG.
 本発明者らは、大学生のアスリート50名を被験者Uとして、片脚スクワットによりステップS11~S16のピーク回数取得処理を実施し、50名分のピーク回数値Vx,Vy,Vzを取得した。片脚スクワットは、被験者U毎に、利き脚、非利き脚からランダムに選択した左右いずれか一方の脚でのみ行った。そして、50名分のピーク回数値Vx,Vy,Vzの主成分分析結果から、第一主成分として、式(1)の係数Kx=0.487、係数Ky=0.465、係数Kz=0.352を算出した。 The present inventors used 50 college student athletes as subjects U, performed the peak number acquisition process in steps S11 to S16 by squatting with one leg, and acquired the peak number values Vx, Vy, and Vz for the 50 athletes. Single-leg squats were performed with only one of the left and right legs randomly selected from the dominant leg and the non-dominant leg for each subject U. Then, from the principal component analysis results of the peak frequency values Vx, Vy, and Vz for 50 people, the coefficient Kx = 0.487, the coefficient Ky = 0.465, and the coefficient Kz = 0 in Equation (1) as the first principal component. .352 was calculated.
 このことから、膝屈曲運動として第二膝屈曲運動を行ってステップS21を実行し、係数Kx=0.487、係数Ky=0.465、係数Kz=0.352としてステップS22を実行することによって、アスリート用指標IXが得られる。アスリート用指標IXは、後述するように、アスリートの傷害発生の可能性評価に関する下肢制御能力を表す指標として用いることができる。 Therefore, the second knee flexion exercise is performed as the knee flexion exercise, step S21 is performed, and step S22 is performed with the coefficient Kx=0.487, the coefficient Ky=0.465, and the coefficient Kz=0.352. , the athlete index IX is obtained. As will be described later, the athlete index IX can be used as an index representing the ability of the athlete to control the lower extremities regarding the evaluation of the possibility of occurrence of injury.
 なお、アスリート用指標IXのための係数Kx,Ky,Kzは、その比率が487:465:352であればよく、係数Kx,Ky,Kzの絶対値は問わない。また、有効数字二桁でKx:Ky:Kz=49:47:35としてもよく、有効数字一桁でKx:Ky:Kz=5:5:4としてもよい。しかしながら、係数Kx,Ky,Kzの比率を表す有効数字桁数が多いほど、アスリート用指標IXによって被験者Uの下肢制御能力を表す精度が向上する点でより好ましい。 The coefficients Kx, Ky, and Kz for the athlete's index IX only need to have a ratio of 487:465:352, and the absolute values of the coefficients Kx, Ky, and Kz do not matter. Alternatively, Kx:Ky:Kz=49:47:35 with two significant digits, or Kx:Ky:Kz=5:5:4 with one significant digit. However, the greater the number of significant digits representing the ratios of the coefficients Kx, Ky, and Kz, the better, since the accuracy of representing the lower limb control ability of the subject U by the athlete index IX is improved.
 次に、アスリート用指標IX、式(1)、及び係数Kx=0.487、係数Ky=0.465、係数Kz=0.352の妥当性について説明する。 Next, the validity of the athlete's index IX, formula (1), and coefficients Kx=0.487, Ky=0.465, and Kz=0.352 will be explained.
 従来より、アスリートの運動時における、着地時の体幹後傾ピーク角度Rap、膝関節伸展ピーク角度Rbp、及び体幹に対する大腿伸展ピーク角度Rcpが、膝関節障害の発生と関連していることが知られている。 Conventionally, it has been known that the rear trunk tilt peak angle Rap, the knee extension peak angle Rbp, and the thigh extension peak angle Rcp with respect to the trunk during exercise are associated with the occurrence of knee joint disorders. Are known.
 図11は、体幹後傾角度Ra、膝関節伸展角度Rb、及び大腿伸展角度Rcを説明するための説明図である。体幹後傾角度Raは、鉛直方向Dvと体幹B1の長軸方向Db1とがなす角度である。体幹後傾角度Raは、鉛直方向Dvを0度とし、鉛直方向Dvよりも後傾方向をプラス、前傾方向をマイナスとして角度を表している。 FIG. 11 is an explanatory diagram for explaining the trunk backward inclination angle Ra, the knee joint extension angle Rb, and the thigh extension angle Rc. The trunk backward inclination angle Ra is an angle between the vertical direction Dv and the longitudinal direction Db1 of the trunk B1. The trunk backward inclination angle Ra is expressed with the vertical direction Dv being 0 degrees, the backward inclination direction being positive, and the forward inclination direction being negative relative to the vertical direction Dv.
 膝関節伸展角度Rbは、下腿部B3の長軸方向Db3と大腿部B2の長軸方向Db2の延長線とがなす角度である。大腿伸展角度Rcは、体幹B1の長軸方向Db1と大腿部B2の長軸方向Db2とがなす角度である。 The knee joint extension angle Rb is the angle formed by the long axis direction Db3 of the lower leg B3 and the extension line of the long axis direction Db2 of the thigh B2. The thigh extension angle Rc is an angle between the longitudinal direction Db1 of the trunk B1 and the longitudinal direction Db2 of the thigh B2.
 体幹後傾ピーク角度Rapは、30cmの台の上に片足立ち状態で立ち、合図と同時に片足で着地を行う片足着地課題において、足が地面に着いた接地から、身体重心が最下点に達するまでの解析区間で最大の体幹後傾角度Raである。膝関節伸展ピーク角度Rbpは、上述の片足着地課題における上述の解析区間で最大の膝関節伸展角度Rbである。大腿伸展ピーク角度Rcpは、上述の片足着地課題における上述の解析区間で最大の大腿伸展角度Rcである。 The trunk backward tilt peak angle Rap was measured by standing on one foot on a 30 cm platform and landing on one foot at the same time as the signal. This is the maximum rearward inclination angle Ra of the trunk in the analysis section up to the point reached. The knee joint extension peak angle Rbp is the maximum knee joint extension angle Rb in the above-described analysis section in the above-described one-leg landing task. The thigh extension peak angle Rcp is the maximum thigh extension angle Rc in the above-described analysis section in the above-described one-leg landing task.
 体幹後傾ピーク角度Rapが大きく後傾傾向になると、主要な膝関節障害である前十字靭帯(ACL:Anterior CruciateLigament)損傷のリスクが高くなることは、例えば、”<https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5865503/pdf/jbjsr-4-e5.pdf>DYNAMIC SAGITTAL-PLANE TRUNK CONTROL DURING ANTERIOR CRUCIATE LIGAMENT INJURY (nih.gov)、<https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3582351/> Sheehan, F.T.; Sipprell, W.H., 3rd; Boden, B.P. Dynamic Sagittal Plane > Trunk Control During Anterior Cruciate Ligament Injury. Am J Sports Med 2012.”、” untitled (nih.gov)<https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5139783/pdf/i1062-6050-51-9-669.pdf>”、” Changing sagittal plane body position during single-leg landings influences the risk of non-contact anterior cruciate ligament injury - PubMed (nih.gov) <https://pubmed.ncbi.nlm.nih.gov/22543471/>”等の文献に記載されている。 The risk of anterior cruciate ligament (ACL: Anterior Cruciate Ligament) damage, which is a major knee joint disorder, increases when the trunk posterior tilt peak angle Rap becomes large and tends to posterior tilt. ncbi.nlm.nih.gov/pmc/articles/PMC5865503/pdf/jbjsr-4-e5.pdf>DYNAMIC SAGITTAL-PLANE TRUNK CONTROL DURING ANTERIOR CRUCIATE LIGAMENT INJURY (nih.gov), <https://www.ncbi. nlm.nih.gov/pmc/articles/PMC3582351/> Sheehan, F.T.; Sipprell, W.H., 3rd; Boden, B.P. Dynamic Sagittal Plane > Trunk Control During Anterior Cruciate Ligament Injury. Am J Sports Med 2012.”,” untitled (nih .gov) <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5139783/pdf/i1062-6050-51-9-669.pdf>”, ”Changing sagittal plane body position during single-leg landings influences the risk of non-contact anterior cruciate ligament injury - PubMed (nih.gov) <https://pubmed.ncbi.nlm.nih.gov/22543471/>”.
 膝関節伸展ピーク角度Rbpが大きく屈曲が浅いと、前十字靭帯損傷のリスクが高くなることは、例えば、” jbjsrD1500116 1..12 (nih.gov)
<https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5865503/pdf/jbjsr-4-e5.pdf>”に記載されている。
The risk of anterior cruciate ligament injury increases when the knee joint extension peak angle Rbp is large and flexion is shallow.
<https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5865503/pdf/jbjsr-4-e5.pdf>”.
 大腿伸展ピーク角度Rcpが大きく後傾傾向になると、前十字靭帯損傷のリスクが高くなる(前傾して着地した方がACL損傷の危険性が低下する)ことは、例えば、” Blackburn, J.T.; Padua, D.A. Influence of trunk flexion on hip and knee joint kinematics during a controlled drop landing. Clin Biomech (Bristol, Avon) 2008, 23, 313-319."に記載されている。 The risk of anterior cruciate ligament injury increases when the femoral extension peak angle Rcp tends to lean backward (the risk of ACL injury decreases when landing with an anterior lean). Padua, D.A. Influence of trunk flexion on hip and knee joint kinematics during a controlled drop landing. Clin Biomech (Bristol, Avon) 2008, 23, 313-319."
 そこで、本発明者らは、上述の片脚スクワットによりピーク回数値Vx,Vy,Vzを取得したのと同じアスリート50名を被験者Uとして上述の片足着地課題を実施し、13台の赤外線カメラを用いてサンプリング周波数240Hzで、体幹後傾ピーク角度Rap、膝関節伸展ピーク角度Rbp、及び体幹に対する大腿伸展ピーク角度Rcpを計測した。片足着地課題は、被験者U毎に3回実施し、その平均値を各被験者Uの体幹後傾ピーク角度Rap、膝関節伸展ピーク角度Rbp、及び体幹に対する大腿伸展ピーク角度Rcpとした。また、片足着地課題は、上述の片脚スクワットを右脚で行った被験者Uについては右脚で、上述の片脚スクワットを左脚で行った被験者Uについては左脚で行った。 Therefore, the present inventors performed the above-described one-leg landing task with the same 50 athletes who obtained the peak count values Vx, Vy, and Vz from the above-described single-leg squats as subjects U, and used 13 infrared cameras. At a sampling frequency of 240 Hz, the trunk backward inclination peak angle Rap, the knee joint extension peak angle Rbp, and the thigh extension peak angle Rcp with respect to the trunk were measured. The one-leg landing task was performed three times for each subject U, and the average values were taken as the trunk backward tilt peak angle Rap, the knee joint extension peak angle Rbp, and the thigh extension peak angle relative to the trunk Rcp of each subject U. The one-leg landing task was performed with the right leg for the subjects U who performed the above-described one-leg squat with the right leg, and with the left leg for the subjects U who performed the above-described one-leg squat with the left leg.
 50名の被験者Uについて、このようにして得られた体幹後傾ピーク角度Rap、膝関節伸展ピーク角度Rbp、及び体幹に対する大腿伸展ピーク角度Rcpと、上述のアスリート用指標IXとの関係について、重回帰分析を行った。 Regarding the 50 subjects U, the relationship between the trunk backward inclination peak angle Rap, the knee joint extension peak angle Rbp, and the thigh extension peak angle Rcp with respect to the trunk obtained in this way, and the aforementioned athlete index IX , multiple regression analysis was performed.
 具体的には、各被験者Uのアスリート用指標IXを重回帰分析の独立変数とし、体幹後傾ピーク角度Rapを従属変数とした重回帰モデルを示す式(4)、膝関節伸展ピーク角度Rbpを従属変数とした重回帰モデルを示す式(5)、及び体幹に対する大腿伸展ピーク角度Rcpを従属変数とした重回帰モデルを示す式(6)について、重回帰分析を行った。 Specifically, the formula (4) showing the multiple regression model with the athlete index IX of each subject U as an independent variable in multiple regression analysis and the trunk backward tilt peak angle Rap as a dependent variable, the knee joint extension peak angle Rbp Multiple regression analysis was performed on Equation (5) showing a multiple regression model with Rcp as the dependent variable and Equation (6) showing a multiple regression model with the thigh extension peak angle Rcp with respect to the trunk as the dependent variable.
 Rap=BaIX+Ca ・・・(4)
但し、Baは式(4)における独立変数IXの偏回帰係数(非標準化係数)、Caは切片(定数)である。
Rap=BaIX+Ca (4)
However, Ba is the partial regression coefficient (unstandardized coefficient) of the independent variable IX in Equation (4), and Ca is the intercept (constant).
 Rbp=BbIX+Cb ・・・(5)
但し、Bbは式(5)における独立変数IXの偏回帰係数(非標準化係数)、Cbは切片(定数)である。
Rbp=BbIX+Cb (5)
However, Bb is the partial regression coefficient (unstandardized coefficient) of the independent variable IX in Equation (5), and Cb is the intercept (constant).
 Rcp=BcIX+Cc ・・・(6)
但し、Bcは式(6)における独立変数IXの偏回帰係数(非標準化係数)、Ccは切片(定数)である。
Rcp=BcIX+Cc (6)
However, Bc is the partial regression coefficient (unstandardized coefficient) of the independent variable IX in Equation (6), and Cc is the intercept (constant).
 図12は、体幹後傾ピーク角度Rapに関する式(4)についての重回帰分析結果を示す表である。図12は、式(4)について重回帰分析により得られた重相関係数R、重寄与率R、偏回帰係数Ba、切片Ca、標準偏回帰係数β、及びp値(p value)を示している。 FIG. 12 is a table showing the results of multiple regression analysis of Equation (4) regarding the trunk backward tilt peak angle Rap. FIG. 12 shows the multiple correlation coefficient R obtained by multiple regression analysis for formula (4), the multiple contribution rate R 2 , the partial regression coefficient Ba, the intercept Ca, the standard partial regression coefficient β, and the p value (p value). showing.
 図12に示す体幹後傾ピーク角度Rapに関する重回帰分析結果によれば、重寄与率Rが0.108となっており、これは体幹後傾ピーク角度Rapの変動のうち10.8%を、式(4)で示すアスリート用指標IXで説明できることを意味している。また、アスリート用指標IXのp値は0.020であり、0.05より小さい。重回帰分析では、p値が0.05より小さければ、有意であると判断されるので、アスリート用指標IXは、重回帰分析の結果から体幹後傾ピーク角度Rapに対して有意であると判断できる。 According to the results of multiple regression analysis of the peak angle of rearward trunk inclination Rap shown in FIG. % can be explained by the athlete index IX shown in formula (4). Also, the p-value of the athlete index IX is 0.020, which is smaller than 0.05. In the multiple regression analysis, if the p-value is smaller than 0.05, it is determined to be significant. I can judge.
 上述のように、体幹後傾ピーク角度Rapは膝関節障害の発生と関連していることが知られているから、アスリート用指標IXで体幹後傾ピーク角度Rapの変動を説明できることは、アスリート用指標IXが、アスリートの傷害発生の可能性評価に関する下肢の制御能力を表す指標として妥当であることを示している。 As described above, since it is known that the rear trunk inclination peak angle Rap is related to the occurrence of knee joint disorders, it is This indicates that the Athlete Index IX is appropriate as an index that expresses the control ability of the lower extremity in assessing the possibility of injury occurrence in athletes.
 図13は、膝関節伸展ピーク角度Rbpに関する式(5)についての重回帰分析結果を示す表である。図13は、式(5)について重回帰分析により得られた重相関係数R、重寄与率R、偏回帰係数Bb、切片Cb、標準偏回帰係数β、及びp値(p value)を示している。 FIG. 13 is a table showing results of multiple regression analysis of formula (5) regarding knee extension peak angle Rbp. FIG. 13 shows the multiple correlation coefficient R obtained by multiple regression analysis for formula (5), the multiple contribution rate R 2 , the partial regression coefficient Bb, the intercept Cb, the standard partial regression coefficient β, and the p value (p value). showing.
 図13に示す膝関節伸展ピーク角度Rbpに関する重回帰分析結果によれば、重寄与率Rが0.130となっており、これは膝関節伸展ピーク角度Rbpの変動のうち13.0%を、式(5)で示すアスリート用指標IXで説明できることを意味している。また、アスリート用指標IXのp値は0.010であり、0.05より小さい。重回帰分析では、p値が0.05より小さければ、有意であると判断されるので、アスリート用指標IXは、重回帰分析の結果から膝関節伸展ピーク角度Rbpに対して有意であると判断できる。 According to the multiple regression analysis results for the knee joint extension peak angle Rbp shown in FIG. , means that it can be explained by the athlete index IX shown in equation (5). Also, the p-value of the athlete index IX is 0.010, which is smaller than 0.05. In the multiple regression analysis, if the p-value is smaller than 0.05, it is determined to be significant. Therefore, the athlete index IX is determined to be significant for the knee joint extension peak angle Rbp from the results of the multiple regression analysis. can.
 上述のように、膝関節伸展ピーク角度Rbpは膝関節障害の発生と関連していることが知られているから、アスリート用指標IXで膝関節伸展ピーク角度Rbpの変動を説明できることは、アスリート用指標IXが、アスリートの傷害発生の可能性評価に関する下肢の制御能力を表す指標として妥当であることを示している。 As described above, it is known that the knee extension peak angle Rbp is related to the occurrence of knee joint disorders. This indicates that index IX is appropriate as an index representing the control ability of the lower extremity regarding the evaluation of the possibility of injury occurrence in athletes.
 図14は、大腿伸展ピーク角度Rcpに関する式(6)についての重回帰分析結果を示す表である。図14は、式(6)について重回帰分析により得られた重相関係数R、重寄与率R、偏回帰係数Bc、切片Cc、標準偏回帰係数β、及びp値(p value)を示している。 FIG. 14 is a table showing the results of multiple regression analysis for Equation (6) regarding the thigh extension peak angle Rcp. FIG. 14 shows the multiple correlation coefficient R obtained by multiple regression analysis for formula (6), the multiple contribution rate R 2 , the partial regression coefficient Bc, the intercept Cc, the standard partial regression coefficient β, and the p value (p value). showing.
 図14に示す大腿伸展ピーク角度Rcpに関する重回帰分析結果によれば、重寄与率Rが0.177となっており、これは大腿伸展ピーク角度Rcpの変動のうち17.7%を、式(6)で示すアスリート用指標IXで説明できることを意味している。また、アスリート用指標IXのp値は0.002であり、0.05より小さい。重回帰分析では、p値が0.05より小さければ、有意であると判断されるので、アスリート用指標IXは、重回帰分析の結果から大腿伸展ピーク角度Rcpに対して有意であると判断できる。 According to the multiple regression analysis results for the thigh extension peak angle Rcp shown in FIG. It means that it can be explained by the athlete index IX shown in (6). Also, the p-value of the athlete index IX is 0.002, which is smaller than 0.05. In the multiple regression analysis, if the p-value is smaller than 0.05, it is determined to be significant, so the athlete index IX can be determined to be significant with respect to the thigh extension peak angle Rcp from the results of the multiple regression analysis. .
 上述のように、大腿伸展ピーク角度Rcpは膝関節障害の発生と関連していることが知られているから、アスリート用指標IXで大腿伸展ピーク角度Rcpの変動を説明できることは、アスリート用指標IXが、アスリートの傷害発生の可能性評価に関する下肢の制御能力を表す指標として妥当であることを示している。 As described above, it is known that the thigh extension peak angle Rcp is related to the occurrence of knee joint disorders. is valid as an indicator of lower extremity control ability in assessing the possibility of injury in athletes.
 以上のように、図12~図14に示す重回帰分析結果から、アスリート用指標IXが被験者Uのアスリートの傷害発生の可能性評価に関する下肢の制御能力を表す指標として妥当であることが確認できた。 As described above, from the results of the multiple regression analysis shown in FIGS. 12 to 14, it can be confirmed that the athlete index IX is appropriate as an index representing the control ability of the lower extremities regarding the evaluation of the possibility of injury occurring in the athlete of subject U. rice field.
 ここで、片脚スクワットから得られたアスリート用指標IXが、体幹後傾ピーク角度Rapに関する式(4)についての重回帰分析の結果から有意であることは、被験者Uのアスリート用指標IXを式(4)に代入して体幹後傾ピーク角度Rapを計算することによって、その被験者Uの体幹後傾ピーク角度Rapを推定可能であることを意味する。 Here, the fact that the athlete index IX obtained from the single-leg squat is significant from the results of the multiple regression analysis of the equation (4) regarding the trunk backward tilt peak angle Rap indicates that the athlete index IX of subject U is It means that the trunk backward inclination peak angle Rap of the subject U can be estimated by calculating the trunk backward inclination peak angle Rap by substituting it into Equation (4).
 そこで、例えば式(4)、偏回帰係数Ba、及び定数Caを予め分析結果記憶部214に記憶しておき、指標算出部212は、ステップS22で算出された指標IXを、分析結果記憶部214に記憶された式(4)に代入することによって、体幹後傾ピーク角度Rapを、被験者Uの傷害発生の可能性評価に関する下肢の制御能力を表す指標Rapとして算出してもよい。 Therefore, for example, the equation (4), the partial regression coefficient Ba, and the constant Ca are stored in the analysis result storage unit 214 in advance, and the index calculation unit 212 stores the index IX calculated in step S22 in the analysis result storage unit 214 may be calculated as an index Rap representing the control ability of the lower extremities regarding the evaluation of the possibility of occurrence of injury of the subject U by substituting it into the formula (4) stored in .
 図12に示すように、偏回帰係数Ba及び定数Caの一例として、Ba=5.310、Ca=-32.629を好適に用いることができる。なお、体幹後傾ピーク角度Rapを、被験者Uの傷害発生の可能性評価に関する下肢の制御能力を表す指標Rapとして取り扱う観点からは、指標Rapは、必ずしも現実の角度を表す数値として算出される必要はなく、Ba:Caの比率が5310:-32629であればよく、偏回帰係数Ba及び定数Caの絶対値は問わない。また、有効数字三桁でBa:Ca=531:-3260としてもよく、有効数字二桁でBa:Ca=53:-330としてもよく、有効数字一桁でBa:Ca=5:-30としてもよい。しかしながら、偏回帰係数Ba及び定数Caの比率を表す有効数字桁数が多いほど、指標Rapによって被験者Uの傷害発生の可能性評価に関する下肢の制御能力を表す精度が向上する点でより好ましい。 As shown in FIG. 12, as an example of the partial regression coefficient Ba and the constant Ca, Ba=5.310 and Ca=-32.629 can be preferably used. From the viewpoint of treating the trunk backward tilt peak angle Rap as an index Rap representing the control ability of the lower extremities related to the evaluation of the possibility of injury occurrence of the subject U, the index Rap is necessarily calculated as a numerical value representing an actual angle. It is not necessary, and the ratio of Ba:Ca should be 5310:-32629, and the absolute values of the partial regression coefficient Ba and the constant Ca are irrelevant. Also, three significant digits may be Ba:Ca=531:-3260, two significant digits may be Ba:Ca=53:-330, and one significant digit may be Ba:Ca=5:-30. good too. However, the larger the number of significant digits representing the ratio between the partial regression coefficient Ba and the constant Ca, the more preferable the index Rap improves the accuracy of representing the control ability of the lower extremities regarding the evaluation of the possibility of occurrence of injury of the subject U.
 また、片脚スクワットから得られたアスリート用指標IXが、膝関節伸展ピーク角度Rbpに関する式(5)についての重回帰分析の結果から有意であることは、被験者Uのアスリート用指標IXを式(5)に代入して膝関節伸展ピーク角度Rbpを計算することによって、その被験者Uの膝関節伸展ピーク角度Rbpを推定可能であることを意味する。 In addition, the fact that the athlete index IX obtained from the single-leg squat is significant from the results of the multiple regression analysis on the formula (5) regarding the knee extension peak angle Rbp shows that the athlete index IX of the subject U is represented by the formula ( 5) to calculate the knee extension peak angle Rbp, it means that the knee extension peak angle Rbp of the subject U can be estimated.
 そこで、例えば式(5)、偏回帰係数Bb、及び定数Cbを予め分析結果記憶部214に記憶しておき、指標算出部212は、ステップS22で算出された指標IXを、分析結果記憶部214に記憶された式(5)に代入することによって、膝関節伸展ピーク角度Rbpを、被験者Uの傷害発生の可能性評価に関する下肢の制御能力を表す指標Rbpとして算出してもよい。 Therefore, for example, the equation (5), the partial regression coefficient Bb, and the constant Cb are stored in the analysis result storage unit 214 in advance, and the index calculation unit 212 stores the index IX calculated in step S22 in the analysis result storage unit 214 , the knee joint extension peak angle Rbp may be calculated as an index Rbp representing the control ability of the lower extremity regarding the evaluation of the possibility of injury occurrence of the subject U.
 図13に示すように、膝関節伸展ピーク角度Rbpに関する式(5)の偏回帰係数Bb及び定数Cbの一例として、Bb=1.743、Cb=-14.785を好適に用いることができる。なお、膝関節伸展ピーク角度Rbpを、被験者Uの傷害発生の可能性評価に関する下肢の制御能力を表す指標Rbpとして取り扱う観点からは、指標Rbpは、必ずしも現実の角度を表す数値として算出される必要はなく、Bb:Cbの比率が1743:-14785であればよく、偏回帰係数Bb及び定数Cbの絶対値は問わない。また、有効数字三桁でBb:Cb=174:-1480としてもよく、有効数字二桁でBb:Cb=17:-150としてもよく、有効数字一桁でBb:Cb=2:-10としてもよい。しかしながら、偏回帰係数Bb及び定数Cbの比率を表す有効数字桁数が多いほど、指標Rbpによって被験者Uの傷害発生の可能性評価に関する下肢の制御能力を表す精度が向上する点でより好ましい。 As shown in FIG. 13, Bb=1.743 and Cb=-14.785 can be preferably used as an example of the partial regression coefficient Bb and the constant Cb of the equation (5) regarding the knee joint extension peak angle Rbp. From the viewpoint of handling the knee joint extension peak angle Rbp as an index Rbp representing the control ability of the lower limbs regarding the evaluation of the possibility of injury occurrence of the subject U, the index Rbp must be calculated as a numerical value representing the actual angle. , and the ratio of Bb:Cb is 1743:-14785, and the absolute values of the partial regression coefficient Bb and the constant Cb do not matter. Also, Bb:Cb=174:-1480 with three significant digits, Bb:Cb=17:-150 with two significant digits, and Bb:Cb=2:-10 with one significant digit. good too. However, the greater the number of significant digits representing the ratio of the partial regression coefficient Bb and the constant Cb, the more preferable the index Rbp improves the accuracy of representing the control ability of the lower extremities regarding the evaluation of the possibility of occurrence of injury of the subject U.
 同様に、片脚スクワットから得られたアスリート用指標IXが、体幹に対する大腿伸展ピーク角度Rcpに関する式(6)についての重回帰分析の結果から有意であることは、被験者Uのアスリート用指標IXを式(6)に代入して大腿伸展ピーク角度Rcpを計算することによって、その被験者Uの大腿伸展ピーク角度Rcpを推定可能であることを意味する。 Similarly, the athlete index IX obtained from the single-leg squat is significant from the results of the multiple regression analysis for the formula (6) regarding the thigh extension peak angle Rcp with respect to the trunk, which indicates that the athlete index IX of subject U into equation (6) to calculate the thigh extension peak angle Rcp, the subject U's thigh extension peak angle Rcp can be estimated.
 そこで、例えば式(6)、偏回帰係数Bc、及び定数Ccを予め分析結果記憶部214に記憶しておき、指標算出部212は、ステップS22で算出された指標IXを、分析結果記憶部214に記憶された式(6)に代入することによって、大腿伸展ピーク角度Rcpを、被験者Uの傷害発生の可能性評価に関する下肢の制御能力を表す指標Rcpとして算出してもよい。 Therefore, for example, the equation (6), the partial regression coefficient Bc, and the constant Cc are stored in advance in the analysis result storage unit 214, and the index calculation unit 212 stores the index IX calculated in step S22 in the analysis result storage unit 214 , the thigh extension peak angle Rcp may be calculated as an index Rcp representing the control ability of the lower extremity regarding the evaluation of the possibility of injury occurrence of the subject U.
 図14に示すように、大腿伸展ピーク角度Rcpに関する式(6)の偏回帰係数Bc及び定数Ccの一例として、Bc=-5.208、Cc=35.996を好適に用いることができる。なお、大腿伸展ピーク角度Rcpを、被験者Uの傷害発生の可能性評価に関する下肢の制御能力を表す指標Rcpとして取り扱う観点からは、指標Rcpは、必ずしも現実の角度を表す数値として算出される必要はなく、Bc:Ccの比率が-5208:35996であればよく、偏回帰係数Bc及び定数Ccの絶対値は問わない。また、有効数字三桁でBc:Cc=-521:3600としてもよく、有効数字二桁でBc:Cc=-52:360としてもよく、有効数字一桁でBc:Cc=-5:40としてもよい。しかしながら、偏回帰係数Bc及び定数Ccの比率を表す有効数字桁数が多いほど、指標Rcpによって被験者Uの傷害発生の可能性評価に関する下肢の制御能力を表す精度が向上する点でより好ましい。 As shown in FIG. 14, Bc=−5.208 and Cc=35.996 can be preferably used as an example of the partial regression coefficient Bc and the constant Cc of the equation (6) regarding the thigh extension peak angle Rcp. From the viewpoint of treating the thigh extension peak angle Rcp as an index Rcp representing the control ability of the lower extremities regarding the evaluation of the possibility of injury occurrence of the subject U, the index Rcp does not necessarily need to be calculated as a numerical value representing an actual angle. It is sufficient that the ratio of Bc:Cc is −5208:35996, and the absolute values of the partial regression coefficient Bc and the constant Cc do not matter. Also, Bc:Cc=-521:3600 with three significant digits, Bc:Cc=-52:360 with two significant digits, and Bc:Cc=-5:40 with one significant digit good too. However, the larger the number of significant digits representing the ratio of the partial regression coefficient Bc and the constant Cc, the more preferable the index Rcp improves the accuracy of representing the control ability of the lower extremities regarding the possibility evaluation of injury occurrence of the subject U.
 上述のように、式(1)に基づく指標IX(アスリート用指標IX)が、被験者Uの下肢の運動機能を表す指標として有効であることを示したが、ピーク回数値Vx,Vy,Vzそのものを、被験者Uの下肢の運動機能を表す指標として用いることができる。 As described above, the index IX (athlete index IX) based on formula (1) has been shown to be effective as an index representing the motor function of the lower extremities of the subject U. can be used as an index representing the motor function of the subject's U lower limbs.
 図15~図17は、上述のアスリート50名を被験者Uとして、片脚スクワットによりステップS11~S16のピーク回数取得処理を実施することにより得られた50名分のピーク回数値Vzと、上述の体幹後傾ピーク角度Rap、膝関節伸展ピーク角度Rbp、及び体幹に対する大腿伸展ピーク角度Rcpとの関係について、重回帰分析を行った結果を示す表である。 FIGS. 15 to 17 show the peak count value Vz for 50 athletes obtained by performing the peak count acquisition processing in steps S11 to S16 by single-leg squats using the 50 athletes described above as subjects U, and the above-described FIG. 10 is a table showing the results of multiple regression analysis of the relationship between the trunk backward inclination peak angle Rap, the knee joint extension peak angle Rbp, and the thigh extension peak angle Rcp with respect to the trunk. FIG.
 具体的には、各被験者Uのピーク回数値Vzを重回帰分析の独立変数とし、体幹後傾ピーク角度Rapを従属変数とした重回帰モデルを示す式(7)、膝関節伸展ピーク角度Rbpを従属変数とした重回帰モデルを示す式(8)、及び体幹に対する大腿伸展ピーク角度Rcpを従属変数とした重回帰モデルを示す式(9)について、重回帰分析を行った。 Specifically, the expression (7) representing a multiple regression model with the peak number Vz of each subject U as an independent variable in multiple regression analysis and the trunk backward tilt peak angle Rap as a dependent variable, the knee joint extension peak angle Rbp Multiple regression analysis was performed on Equation (8) showing a multiple regression model with Rcp as the dependent variable and Equation (9) showing a multiple regression model with the thigh extension peak angle Rcp with respect to the trunk as the dependent variable.
 体幹後傾ピーク角度Rap=EaVz+Fa ・・・(7)
但し、Eaは式(7)における独立変数Vzの偏回帰係数(非標準化係数)、Faは切片(定数)である。
Trunk backward tilt peak angle Rap=EaVz+Fa (7)
However, Ea is the partial regression coefficient (unstandardized coefficient) of the independent variable Vz in Equation (7), and Fa is the intercept (constant).
 膝関節伸展ピーク角度Rbp=EbVz+Fb ・・・(8)
但し、Ebは式(8)における独立変数Vzの偏回帰係数(非標準化係数)、Fbは切片(定数)である。
Knee joint extension peak angle Rbp=EbVz+Fb (8)
However, Eb is the partial regression coefficient (unstandardized coefficient) of the independent variable Vz in Equation (8), and Fb is the intercept (constant).
 大腿伸展ピーク角度Rcp=EcVz+Fc ・・・(9)
但し、Ecは式(9)における独立変数Vzの偏回帰係数(非標準化係数)、Fcは切片(定数)である。
Thigh extension peak angle Rcp=EcVz+Fc (9)
However, Ec is the partial regression coefficient (unstandardized coefficient) of the independent variable Vz in Equation (9), and Fc is the intercept (constant).
 図15は、体幹後傾ピーク角度Rapに関する式(7)についての重回帰分析結果を示す表である。図15は、式(7)について重回帰分析により得られた重相関係数R、重寄与率R、偏回帰係数Ea、切片Fa、標準偏回帰係数β、及びp値(p value)を示している。 FIG. 15 is a table showing the results of multiple regression analysis for Equation (7) regarding the trunk backward tilt peak angle Rap. FIG. 15 shows the multiple correlation coefficient R, multiple contribution ratio R 2 , partial regression coefficient Ea, intercept Fa, standard partial regression coefficient β, and p value obtained by multiple regression analysis for formula (7). showing.
 図15に示す体幹後傾ピーク角度Rapに関する重回帰分析結果によれば、重寄与率Rが0.271となっており、これは体幹後傾ピーク角度Rapの変動のうち27.1%を、式(7)で示すピーク回数値Vzで説明できることを意味している。また、ピーク回数値Vzのp値は0.000であり、0.05より小さい。重回帰分析では、p値が0.05より小さければ、有意であると判断されるので、ピーク回数値Vzは、重回帰分析の結果から体幹後傾ピーク角度Rapに対して有意であると判断できる。 According to the results of multiple regression analysis on the trunk backward inclination peak angle Rap shown in FIG. % can be explained by the peak frequency value Vz shown in Equation (7). Also, the p-value of the peak frequency value Vz is 0.000, which is smaller than 0.05. In the multiple regression analysis, if the p-value is smaller than 0.05, it is determined to be significant. Therefore, the peak number Vz is considered significant for the trunk backward tilt peak angle Rap from the results of the multiple regression analysis. I can judge.
 上述のように、体幹後傾ピーク角度Rapは膝関節障害の発生と関連していることが知られているから、ピーク回数値Vzで体幹後傾ピーク角度Rapの変動を説明できることは、ピーク回数値Vzが、アスリートの傷害発生の可能性評価に関する下肢の制御能力を表す指標として妥当であることを示している。 As described above, since it is known that the trunk backward inclination peak angle Rap is related to the occurrence of knee joint disorders, it is It is shown that the peak count value Vz is appropriate as an index representing the control ability of the lower extremity regarding the evaluation of the possibility of injury occurrence of the athlete.
 図16は、膝関節伸展ピーク角度Rbpに関する式(8)についての重回帰分析結果を示す表である。図16は、式(8)について重回帰分析により得られた重相関係数R、重寄与率R、偏回帰係数Eb、切片Fb、標準偏回帰係数β、及びp値(p value)を示している。 FIG. 16 is a table showing results of multiple regression analysis of formula (8) regarding knee extension peak angle Rbp. FIG. 16 shows the multiple correlation coefficient R obtained by multiple regression analysis for formula (8), the multiple contribution rate R 2 , the partial regression coefficient Eb, the intercept Fb, the standard partial regression coefficient β, and the p value (p value). showing.
 図16に示す膝関節伸展ピーク角度Rbpに関する重回帰分析結果によれば、重寄与率Rが0.229となっており、これは膝関節伸展ピーク角度Rbpの変動のうち22.9%を、式(8)で示すピーク回数値Vzで説明できることを意味している。また、ピーク回数値Vzのp値は0.000であり、0.05より小さい。重回帰分析では、p値が0.05より小さければ、有意であると判断されるので、ピーク回数値Vzは、重回帰分析の結果から膝関節伸展ピーク角度Rbpに対して有意であると判断できる。 According to the multiple regression analysis results for the knee extension peak angle Rbp shown in FIG. 16, the heavy contribution rate R2 is 0.229, which accounts for 22.9% of the variation in the knee extension peak angle Rbp , means that it can be explained by the peak frequency value Vz shown in equation (8). Also, the p-value of the peak frequency value Vz is 0.000, which is smaller than 0.05. In the multiple regression analysis, if the p-value is smaller than 0.05, it is determined to be significant, so the peak number Vz is determined to be significant with respect to the knee joint extension peak angle Rbp from the results of the multiple regression analysis. can.
 上述のように、膝関節伸展ピーク角度Rbpは膝関節障害の発生と関連していることが知られているから、ピーク回数値Vzで膝関節伸展ピーク角度Rbpの変動を説明できることは、ピーク回数値Vzが、アスリートの傷害発生の可能性評価に関する下肢の制御能力を表す指標として妥当であることを示している。 As described above, it is known that the knee joint extension peak angle Rbp is related to the occurrence of knee joint disorders. This indicates that the numerical value Vz is appropriate as an index representing the control ability of the lower extremity regarding the evaluation of the possibility of injury occurrence in athletes.
 図17は、大腿伸展ピーク角度Rcpに関する式(9)についての重回帰分析結果を示す表である。図17は、式(9)について重回帰分析により得られた重相関係数R、重寄与率R、偏回帰係数Ec、切片Fc、標準偏回帰係数β、及びp値(p value)を示している。 FIG. 17 is a table showing the results of multiple regression analysis for Equation (9) regarding the thigh extension peak angle Rcp. FIG. 17 shows the multiple correlation coefficient R, multiple contribution ratio R 2 , partial regression coefficient Ec, intercept Fc, standard partial regression coefficient β, and p value obtained by multiple regression analysis for formula (9). showing.
 図17に示す大腿伸展ピーク角度Rcpに関する重回帰分析結果によれば、重寄与率Rが0.348となっており、これは大腿伸展ピーク角度Rcpの変動のうち34.8%を、式(9)で示すピーク回数値Vzで説明できることを意味している。また、ピーク回数値Vzのp値は0.000であり、0.05より小さい。重回帰分析では、p値が0.05より小さければ、有意であると判断されるので、ピーク回数値Vzは、重回帰分析の結果から大腿伸展ピーク角度Rcpに対して有意であると判断できる。 According to the multiple regression analysis results for the thigh extension peak angle Rcp shown in FIG. This means that it can be explained by the peak frequency value Vz shown in (9). Also, the p-value of the peak frequency value Vz is 0.000, which is smaller than 0.05. In the multiple regression analysis, if the p-value is smaller than 0.05, it is determined to be significant, so the peak frequency value Vz can be determined to be significant with respect to the thigh extension peak angle Rcp from the results of the multiple regression analysis. .
 上述のように、大腿伸展ピーク角度Rcpは膝関節障害の発生と関連していることが知られているから、ピーク回数値Vzで大腿伸展ピーク角度Rcpの変動を説明できることは、ピーク回数値Vzが、アスリートの傷害発生の可能性評価に関する下肢の制御能力を表す指標として妥当であることを示している。 As described above, it is known that the thigh extension peak angle Rcp is related to the occurrence of knee joint disorders. is valid as an indicator of lower extremity control ability in assessing the possibility of injury in athletes.
 以上のように、図15~図17に示す重回帰分析結果から、ピーク回数値Vzが被験者Uのアスリートの傷害発生の可能性評価に関する下肢の制御能力を表す指標として妥当であることが確認できた。 As described above, from the results of the multiple regression analysis shown in FIGS. 15 to 17, it can be confirmed that the peak count value Vz is appropriate as an index representing the control ability of the lower extremity regarding the evaluation of the possibility of injury occurrence of the subject U athlete. rice field.
 ここで、片脚スクワットから得られたピーク回数値Vzが、体幹後傾ピーク角度Rapに関する式(7)についての重回帰分析の結果から有意であることは、被験者Uのピーク回数値Vzを式(7)に代入して体幹後傾ピーク角度Rapを計算することによって、その被験者Uの体幹後傾ピーク角度Rapを推定可能であることを意味する。 Here, the fact that the peak number Vz obtained from the single-leg squat is significant from the results of the multiple regression analysis on the expression (7) regarding the trunk backward tilt peak angle Rap means that the peak number Vz of the subject U is It means that the trunk backward inclination peak angle Rap of the subject U can be estimated by calculating the trunk backward inclination peak angle Rap by substituting it into the equation (7).
 そこで、例えば式(7)、偏回帰係数Ea、及び定数Faを予め分析結果記憶部214に記憶しておき、指標算出部212は、ステップS21で算出されたピーク回数値Vzを、分析結果記憶部214に記憶された式(7)に代入することによって、体幹後傾ピーク角度Rapを、被験者Uの傷害発生の可能性評価に関する下肢の制御能力を表す指標Rapとして算出してもよい。 Therefore, for example, the equation (7), the partial regression coefficient Ea, and the constant Fa are stored in advance in the analysis result storage unit 214, and the index calculation unit 212 stores the peak frequency value Vz calculated in step S21 as the analysis result storage unit. By substituting into equation (7) stored in the unit 214, the trunk backward inclination peak angle Rap may be calculated as an index Rap representing the control ability of the lower extremities regarding the possibility evaluation of injury occurrence of the subject U.
 図15に示すように、体幹後傾ピーク角度Rapに関する式(7)の偏回帰係数Ea及び定数Faの一例として、Ea=0.337、Fa=-43.078を好適に用いることができる。なお、体幹後傾ピーク角度Rapを、被験者Uの傷害発生の可能性評価に関する下肢の制御能力を表す指標Rapとして取り扱う観点からは、指標Rapは、必ずしも現実の角度を表す数値として算出される必要はなく、Ea:Faの比率が337:-43078であればよく、偏回帰係数Ea及び定数Faの絶対値は問わない。また、有効数字三桁でEa:Fa=337:-43100としてもよく、有効数字二桁でEa:Fa=34:-4300としてもよく、有効数字一桁でEa:Fa=3:-400としてもよい。しかしながら、偏回帰係数Ea及び定数Faの比率を表す有効数字桁数が多いほど、指標Rapによって被験者Uの傷害発生の可能性評価に関する下肢の制御能力を表す精度が向上する点でより好ましい。 As shown in FIG. 15, Ea=0.337 and Fa=-43.078 can be preferably used as an example of the partial regression coefficient Ea and the constant Fa of the equation (7) regarding the trunk backward tilt peak angle Rap. . From the viewpoint of treating the trunk backward tilt peak angle Rap as an index Rap representing the control ability of the lower extremities related to the evaluation of the possibility of injury occurrence of the subject U, the index Rap is necessarily calculated as a numerical value representing an actual angle. It is not necessary, and the ratio of Ea:Fa should be 337:-43078, and the absolute values of the partial regression coefficient Ea and the constant Fa do not matter. Also, Ea: Fa = 337: -43100 with three significant digits, Ea: Fa = 34: -4300 with two significant digits, and Ea: Fa = 3: -400 with one significant digit good too. However, the larger the number of significant digits representing the ratio between the partial regression coefficient Ea and the constant Fa, the more preferable the index Rap improves the accuracy of representing the control ability of the lower extremities regarding the possibility evaluation of injury occurrence of the subject U.
 また、片脚スクワットから得られたピーク回数値Vzが、膝関節伸展ピーク角度Rbpに関する式(8)についての重回帰分析の結果から有意であることは、被験者Uのピーク回数値Vzを式(8)に代入して膝関節伸展ピーク角度Rbpを計算することによって、その被験者Uの膝関節伸展ピーク角度Rbpを推定可能であることを意味する。 In addition, the fact that the peak number Vz obtained from the single-leg squat is significant from the results of the multiple regression analysis on the formula (8) regarding the knee joint extension peak angle Rbp shows that the peak number Vz of the subject U is expressed by the formula ( 8) to calculate the knee extension peak angle Rbp, it means that the knee extension peak angle Rbp of the subject U can be estimated.
 そこで、例えば式(8)、偏回帰係数Eb、及び定数Fbを予め分析結果記憶部214に記憶しておき、指標算出部212は、ステップS21で算出されたピーク回数値Vzを、分析結果記憶部214に記憶された式(8)に代入することによって、膝関節伸展ピーク角度Rbpを、被験者Uの傷害発生の可能性評価に関する下肢の制御能力を表す指標Rbpとして算出してもよい。 Therefore, for example, the equation (8), the partial regression coefficient Eb, and the constant Fb are stored in advance in the analysis result storage unit 214, and the index calculation unit 212 stores the peak frequency value Vz calculated in step S21 as the analysis result storage unit. By substituting into the equation (8) stored in the unit 214, the knee joint extension peak angle Rbp may be calculated as an index Rbp representing the lower extremity control ability regarding the evaluation of the possibility of injury occurrence of the subject U.
 図16に示すように、膝関節伸展ピーク角度Rbpに関する式(8)の偏回帰係数Eb及び定数Fbの一例として、Eb=-0.146、Fb=28.144を好適に用いることができる。なお、膝関節伸展ピーク角度Rbpを、被験者Uの傷害発生の可能性評価に関する下肢の制御能力を表す指標Rbpとして取り扱う観点からは、指標Rbpは、必ずしも現実の角度を表す数値として算出される必要はなく、Eb:Fbの比率が-146:28144であればよく、偏回帰係数Eb及び定数Fbの絶対値は問わない。また、有効数字三桁でEb:Fb=-146:28100としてもよく、有効数字二桁でEb:Fb=-15:2800としてもよく、有効数字一桁でEc:Fc=-1:300としてもよい。しかしながら、偏回帰係数Eb及び定数Fbの比率を表す有効数字桁数が多いほど、指標Rbpによって被験者Uの傷害発生の可能性評価に関する下肢の制御能力を表す精度が向上する点でより好ましい。 As shown in FIG. 16, Eb=−0.146 and Fb=28.144 can be preferably used as an example of the partial regression coefficient Eb and the constant Fb of the equation (8) regarding the knee extension peak angle Rbp. From the viewpoint of handling the knee joint extension peak angle Rbp as an index Rbp representing the control ability of the lower limbs regarding the evaluation of the possibility of injury occurrence of the subject U, the index Rbp must be calculated as a numerical value representing the actual angle. , the ratio of Eb:Fb is -146:28144, and the absolute values of the partial regression coefficient Eb and the constant Fb do not matter. Also, Eb:Fb=-146:28100 with three significant digits, Eb:Fb=-15:2800 with two significant digits, and Ec:Fc=-1:300 with one significant digit good too. However, the greater the number of significant digits representing the ratio of the partial regression coefficient Eb and the constant Fb, the more preferable the index Rbp improves the accuracy of representing the control ability of the lower extremities regarding the evaluation of the possibility of occurrence of injury of the subject U.
 同様に、片脚スクワットから得られたピーク回数値Vzが、体幹に対する大腿伸展ピーク角度Rcpに関する式(9)についての重回帰分析の結果から有意であることは、被験者Uのピーク回数値Vzを式(9)に代入して大腿伸展ピーク角度Rcpを計算することによって、その被験者Uの大腿伸展ピーク角度Rcpを推定可能であることを意味する。 Similarly, the peak number Vz obtained from the single-leg squat is significant from the results of the multiple regression analysis for the formula (9) regarding the thigh extension peak angle Rcp with respect to the trunk, and the peak number Vz of the subject U into equation (9) to calculate the thigh extension peak angle Rcp, the subject U's thigh extension peak angle Rcp can be estimated.
 そこで、例えば式(9)、偏回帰係数Ec、及び定数Fcを予め分析結果記憶部214に記憶しておき、指標算出部212は、ステップS21で算出されたピーク回数値Vzを、分析結果記憶部214に記憶された式(9)に代入することによって、大腿伸展ピーク角度Rcpを、被験者Uの傷害発生の可能性評価に関する下肢の制御能力を表す指標Rcpとして算出してもよい。 Therefore, for example, the equation (9), the partial regression coefficient Ec, and the constant Fc are stored in the analysis result storage unit 214 in advance, and the index calculation unit 212 stores the peak frequency value Vz calculated in step S21 as the analysis result storage unit. By substituting into equation (9) stored in section 214, the thigh extension peak angle Rcp may be calculated as an index Rcp representing the ability of the subject U to control the lower extremities regarding the possibility of injury occurrence.
 図17に示すように、大腿伸展ピーク角度Rcpに関する式(9)の偏回帰係数Ec及び定数Fcの一例として、Ec=-0.290、Fc=44.968を好適に用いることができる。なお、大腿伸展ピーク角度Rcpを、被験者Uの傷害発生の可能性評価に関する下肢の制御能力を表す指標Rcpとして取り扱う観点からは、指標Rcpは、必ずしも現実の角度を表す数値として算出される必要はなく、Ec:Fcの比率が-290:44968であればよく、偏回帰係数Ec及び定数Fcの絶対値は問わない。また、有効数字三桁でEc:Fc=-290:45000としてもよく、有効数字二桁でEc:Fc=-29:4500としてもよく、有効数字一桁でEc:Fc=-3:400としてもよい。しかしながら、偏回帰係数Ec及び定数Fcの比率を表す有効数字桁数が多いほど、指標Rcpによって被験者Uの傷害発生の可能性評価に関する下肢の制御能力を表す精度が向上する点でより好ましい。 As shown in FIG. 17, Ec=−0.290 and Fc=44.968 can be preferably used as an example of the partial regression coefficient Ec and the constant Fc of the equation (9) regarding the thigh extension peak angle Rcp. From the viewpoint of treating the thigh extension peak angle Rcp as an index Rcp representing the control ability of the lower extremities regarding the evaluation of the possibility of injury occurrence of the subject U, the index Rcp does not necessarily need to be calculated as a numerical value representing an actual angle. It is sufficient that the Ec:Fc ratio is −290:44968, and the absolute values of the partial regression coefficient Ec and the constant Fc do not matter. Also, Ec: Fc = -290: 45000 with three significant digits, Ec: Fc = -29: 4500 with two significant digits, Ec: Fc = -3: 400 with one significant digit good too. However, the larger the number of significant digits representing the ratio of the partial regression coefficient Ec and the constant Fc, the more preferable the index Rcp improves the accuracy of representing the control ability of the lower extremities regarding the possibility evaluation of injury occurrence of the subject U.
 なお、式(7)~式(9)において、ピーク回数値Vzの代わりに、ピーク回数値Vx、又はピーク回数値Vyを用いてもよい。 It should be noted that in equations (7) to (9), the peak number of times value Vx or the peak number of times value Vy may be used instead of the peak number of times value Vz.
 すなわち、本発明の一局面に従う下肢制御能力測定装置は、角速度及び加速度のうち少なくとも一方の物理量を検出する物理量検出装置が大腿部に取り付けられた被験者が、荷重に抗しながら膝関節を屈曲及び/又は伸展する動作を含む膝屈曲運動を行った期間中に前記物理量検出装置によって検出された物理量を取得する物理量取得部と、前記物理量取得部によって取得された物理量の波形が、予め設定された対象期間内にピークを示す回数であるピーク回数を計数するピーク回数計数部とを備える。 That is, in the lower limb control ability measuring device according to one aspect of the present invention, a subject having a physical quantity detection device that detects at least one physical quantity of angular velocity and acceleration attached to the thigh bends the knee joint while resisting a load. and/or a physical quantity acquisition unit that acquires physical quantities detected by the physical quantity detection device during a period in which a knee flexion exercise including an extension motion is performed, and a waveform of the physical quantity acquired by the physical quantity acquisition unit are set in advance. and a peak number counting unit for counting the number of peaks, which is the number of times a peak occurs within the target period.
 また、本発明の一局面に従う下肢制御能力測定システムは、上述の下肢制御能力測定装置と、前記物理量検出装置とを含む。 Also, a lower-limb control ability measuring system according to one aspect of the present invention includes the above-described lower-limb control ability measuring device and the physical quantity detection device.
 また、本発明の一局面に従う下肢制御能力測定プログラムは、上述の下肢制御能力測定装置として、コンピュータを機能させる。 Also, a lower-limb control ability measuring program according to one aspect of the present invention causes a computer to function as the above-described lower-limb control ability measuring device.
 また、本発明の一局面に従う下肢制御能力測定方法は、角速度及び加速度のうち少なくとも一方の物理量を検出する物理量検出装置が大腿部に取り付けられた被験者が、荷重に抗しながら膝関節を屈曲及び/又は伸展する動作を含む膝屈曲運動を行った期間中に前記物理量検出装置によって検出された物理量を取得する物理量取得工程と、前記物理量取得工程によって取得された物理量の波形が、予め設定された対象期間内にピークを示す回数であるピーク回数を計数するピーク回数計数工程とを含む。 Further, in the method for measuring lower limb control ability according to one aspect of the present invention, a subject having a physical quantity detection device that detects at least one physical quantity of angular velocity and acceleration attached to the thigh bends the knee joint while resisting a load. and/or a physical quantity acquisition step of acquiring a physical quantity detected by the physical quantity detection device during a period in which a knee flexion exercise including an extension motion is performed; and a waveform of the physical quantity acquired by the physical quantity acquisition step is preset. and a peak number counting step of counting the number of peaks, which is the number of peaks within the target period.
 これらの構成によれば、被験者の大腿部に物理量検出装置を取り付け、被験者が膝屈曲運動を行った際に取得された物理量の波形からピーク回数を計数することによって、被験者の下肢の制御能力を表すピーク回数を測定することができるので、下肢の制御能力を測定することが容易である。 According to these configurations, a physical quantity detection device is attached to the subject's thigh, and by counting the number of peaks from the physical quantity waveform acquired when the subject performs a knee flexion exercise, the control ability of the subject's lower extremity is measured. can be measured, it is easy to measure the control ability of the lower limbs.
 また、前記膝屈曲運動は、前記荷重に抗しながら膝関節を屈曲する動作を含み、前記対象期間は、前記膝屈曲運動における、前記荷重に抗しながら膝関節を屈曲する動作を実行中の期間であることが好ましい。 Further, the knee bending exercise includes an operation of bending the knee joint while resisting the load, and the target period is a period during which the knee bending exercise is performing the operation of bending the knee joint while resisting the load. A period is preferred.
 荷重に抗しながら膝関節を屈曲する動作を実行中の期間は、被験者の下肢伸筋群に生じる収縮形態が、主に伸張性収縮となる期間である。後述するように、伸張性収縮能力は、中高年齢者のQOL向上や介護予防などの観点で、特に重要である。従って、伸張性収縮運動を行う期間を、ピーク回数を計数する対象期間とすることによって、中高年齢者のQOL向上や介護予防などの観点で特に有益な下肢の制御能力を測定することが可能となる。 During the period during which the knee joint is flexed while resisting the load, the contraction morphology that occurs in the extensor muscles of the lower extremities of the subject is mainly eccentric contraction. As will be described later, the eccentric contractile ability is particularly important from the viewpoint of improving the QOL of middle-aged and elderly people and preventing nursing care. Therefore, by setting the period of eccentric contraction exercise as the target period for counting the number of peaks, it is possible to measure the control ability of the lower extremities, which is particularly beneficial from the viewpoint of improving the QOL of middle-aged and elderly people and preventing nursing care. Become.
 また、前記角速度は、前記大腿部の長軸方向に延びるX軸、前記大腿部の前後方向に延びるY軸、及び前記大腿部の左右方向に延びるZ軸のうち少なくとも一つの軸回りの角速度であり、前記加速度は、前記X軸、前記Y軸、及び前記Z軸のうち少なくとも一つの軸方向の加速度であることが好ましい。 The angular velocity is about at least one of an X-axis extending in the longitudinal direction of the thigh, a Y-axis extending in the front-rear direction of the thigh, and a Z-axis extending in the left-right direction of the thigh. and the acceleration is acceleration in at least one axial direction of the X-axis, the Y-axis, and the Z-axis.
 大腿部の長軸方向に延びるX軸、大腿部の前後方向に延びるY軸、及び大腿部の左右方向に延びるZ軸は、膝屈曲運動における下肢制御能力との関連が深い軸方向であるから、X軸、Y軸、及びZ軸のうち少なくとも一つの軸方向に対応する物理量から、被験者の下肢の制御能力を表すピーク回数が計数されることによって、ピーク回数によって表される被験者の下肢の制御能力の精度が向上する。 The X-axis extending in the longitudinal direction of the thigh, the Y-axis extending in the front-rear direction of the thigh, and the Z-axis extending in the left-right direction of the thigh are axial directions that are closely related to the ability to control the lower limbs in knee flexion motion. Therefore, by counting the number of peaks representing the control ability of the subject's lower extremities from the physical quantity corresponding to at least one axial direction of the X axis, the Y axis, and the Z axis, the subject represented by the number of peaks improve the accuracy of the ability to control the lower extremities.
 また、前記ピーク回数計数部は、前記ピーク回数として、前記X軸に対するX軸ピーク回数、前記Y軸に対するY軸ピーク回数、及び前記Z軸に対するZ軸ピーク回数のうち少なくとも一つを計数し、前記下肢制御能力測定装置は、さらに、前記X軸ピーク回数、前記Y軸ピーク回数、及び前記Z軸ピーク回数のうち少なくとも一つに基づいて、前記被験者の下肢制御能力を表す指標を算出する指標算出部を備えることが好ましい。 Further, the peak number counting unit counts at least one of the X-axis peak number for the X-axis, the Y-axis peak number for the Y-axis, and the Z-axis peak number for the Z-axis as the peak number, The lower-limb control ability measuring device further calculates an index representing the lower-limb control ability of the subject based on at least one of the X-axis peak count, the Y-axis peak count, and the Z-axis peak count. It is preferable to include a calculator.
 この構成によれば、膝屈曲運動における下肢制御能力との関連が深いX軸、Y軸、及びZ軸のうち少なくとも一つに対してピーク回数が計数され、被験者の下肢制御能力を表す指標が算出される。特にX軸、Y軸、及びZ軸のすべてに対してピーク回数が計数され、そのX軸ピーク回数、Y軸ピーク回数、及びZ軸ピーク回数に基づいて、被験者の下肢制御能力を表す指標が算出される場合には、指標によって、下肢制御能力を総合的に表す精度が向上する。 According to this configuration, the number of peaks is counted for at least one of the X-axis, Y-axis, and Z-axis, which are closely related to the lower-limb control ability in knee flexion exercise, and the index representing the lower-limb control ability of the subject is obtained. Calculated. In particular, the number of peaks is counted for all of the X-axis, Y-axis, and Z-axis, and based on the X-axis peak number, Y-axis peak number, and Z-axis peak number, an index representing the lower extremity control ability of the subject is obtained. When calculated, the index provides a more accurate representation of overall lower extremity control ability.
 また、前記物理量は、前記X軸回りの角速度、前記Y軸回りの角速度、及び前記Z軸回りの角速度を含むことが好ましい。 Also, the physical quantity preferably includes an angular velocity about the X-axis, an angular velocity about the Y-axis, and an angular velocity about the Z-axis.
 X軸回りの角速度、Y軸回りの角速度、及びZ軸回りの角速度は、ピーク回数を計数する対象となる物理量として好適である。  The angular velocity around the X-axis, the angular velocity around the Y-axis, and the angular velocity around the Z-axis are suitable as physical quantities for which the number of peaks is to be counted.
 また、前記指標算出部は、前記X軸ピーク回数に基づくX軸ピーク回数値Vx、前記Y軸ピーク回数に基づくY軸ピーク回数値Vy、及び前記Z軸ピーク回数に基づくZ軸ピーク回数値Vzから、下記の式(1)を用いて前記指標を算出することが好ましい。
指標IX=KxVx+KyVy+KzVz ・・・ (1)
Kx、Ky、及びKzは係数
Further, the index calculation unit calculates an X-axis peak frequency value Vx based on the X-axis peak frequency, a Y-axis peak frequency value Vy based on the Y-axis peak frequency, and a Z-axis peak frequency value Vz based on the Z-axis peak frequency. Therefore, it is preferable to calculate the index using the following formula (1).
Index IX=KxVx+KyVy+KzVz (1)
Kx, Ky, and Kz are coefficients
 式(1)は、下肢制御能力を総合的に表す指標IXを求める数式として好適である。 Formula (1) is suitable as a formula for obtaining the index IX that comprehensively represents the lower limb control ability.
 また、前記係数Kx、Ky、及びKzの比率が、Kx:Ky:Kz=38:39:35であることが好ましい。 Also, the ratio of the coefficients Kx, Ky, and Kz is preferably Kx:Ky:Kz=38:39:35.
 本発明者らは、式(1)において、Kx:Ky:Kz=38:39:35とすることによって、指標IXが、被験者の下肢制御能力を表す精度が向上することを見出した。 The present inventors found that by setting Kx:Ky:Kz=38:39:35 in Equation (1), the accuracy of the index IX representing the subject's lower limb control ability is improved.
 また、前記指標算出部は、さらに、前記指標IX、及び前記被験者の年齢Xageから、下記の式(2)を用いて、前記被験者の歩行能力を表す指標Ytugを算出することが好ましい。指標Ytug=aIX+bXage+c ・・・(2) a及びbは係数、cは定数。 Further, it is preferable that the index calculation unit further calculates an index Ytug representing the walking ability of the subject using the following formula (2) from the index IX and the subject's age Xage. Index Ytug=aIX+bXage+c (2) where a and b are coefficients and c is a constant.
 この構成によれば、指標IX、及び前記被験者の年齢Xageから、被験者の歩行能力を表す指標Ytugを算出することが可能となる。 According to this configuration, it is possible to calculate the index Ytug representing the walking ability of the subject from the index IX and the subject's age Xage.
 また、前記膝屈曲運動は、両脚スクワットであり、前記係数a,b及び前記定数cの比率が、有効数字二桁でa:b:c=270:42:2600であることが好ましい。式(2)において、a:b:cの比率として270:42:2600は好適である。 Also, the knee bending exercise is a double leg squat, and the ratio of the coefficients a, b and the constant c is preferably a:b:c=270:42:2600 in two significant figures. In formula (2), a ratio of a:b:c of 270:42:2600 is suitable.
 また、前記指標算出部は、さらに、前記指標IX、及び前記被験者の年齢Xageから、下記の式(3)を用いて、前記被験者のバランス能力を表す指標Ybalanceを算出することが好ましい。Ybalance=mIX+nXage+r ・・・(3) m及びnは係数、rは定数。 Further, it is preferable that the index calculation unit further calculates an index Ybalance representing the balance ability of the subject using the following formula (3) from the index IX and the subject's age Xage. Ybalance=mIX+nXage+r (3) m and n are coefficients, r is a constant.
 この構成によれば、指標IX、及び前記被験者の年齢Xageから、被験者のバランス能力を表す指標Ytugを算出することが可能となる。 According to this configuration, it is possible to calculate the index Ytug representing the subject's balance ability from the index IX and the subject's age Xage.
 また、前記膝屈曲運動は、両脚スクワットであり、前記係数m,n及び前記定数rの比率が、有効数字二桁でm:n:r=-54:-12:1300であることが好ましい。膝屈曲運動を両脚スクワットとした場合、係数m,n及び前記定数rの比率は、m:n:r=-54:-12:1300が好適である。 Also, the knee bending exercise is a double leg squat, and the ratio of the coefficients m, n and the constant r is preferably m:n:r=-54:-12:1300 in two significant figures. When the knee flexion exercise is a double leg squat, the ratio of the coefficients m, n and the constant r is preferably m:n:r=-54:-12:1300.
 また、前記膝屈曲運動は、片脚スクワットであり、前記物理量検出装置は、前記片脚スクワットを行う側の大腿部に取り付けられることが好ましい。 Further, it is preferable that the knee flexion exercise is a one-leg squat, and the physical quantity detection device is attached to the thigh on the side where the one-leg squat is performed.
 膝屈曲運動を片脚スクワットとした場合、物理量検出装置の取り付け箇所は、片脚スクワットを行う側の大腿部が好適である。 When the knee flexion exercise is a one-leg squat, it is preferable that the physical quantity detection device is attached to the thigh on the side where the one-leg squat is performed.
 また、前記係数Kx、Ky、及びKzの比率が、Kx:Ky:Kz=49:47:35であることが好ましい。係数Kx、Ky、及びKzの比率は、Kx:Ky:Kz=49:47:35が好適である。 Also, the ratio of the coefficients Kx, Ky, and Kz is preferably Kx:Ky:Kz=49:47:35. The ratio of coefficients Kx, Ky, and Kz is preferably Kx:Ky:Kz=49:47:35.
 また、前記指標算出部は、さらに、前記指標IXから、下記の式(4)を用いて、前記被験者の体幹の長軸方向と鉛直方向とがなす角度に関する下肢の制御能力を表す指標Rapを算出することが好ましい。指標Rap=BaIX+Ca ・・・(4) Baは係数、Caは定数。 Further, the index calculation unit further calculates from the index IX, using the following formula (4), an index Rap is preferably calculated. Index Rap=BaIX+Ca (4) Ba is a coefficient and Ca is a constant.
 この構成によれば、指標IXから、被験者の体幹の長軸方向と鉛直方向とがなす角度に関する下肢の制御能力を表す指標Rapを算出することが可能となる。 According to this configuration, from the index IX, it is possible to calculate the index Rap representing the controllability of the lower limbs with respect to the angle formed by the longitudinal direction of the trunk of the subject and the vertical direction.
 また、前記膝屈曲運動は、片脚スクワットであり、前記係数Ba及び前記定数Caの比率が、有効数字二桁でBa:Ca=53:-330であることが好ましい。膝屈曲運動が片脚スクワットである場合、係数Ba及び定数Caの比率は、Ba:Ca=53:-330が好適である。 In addition, it is preferable that the knee flexion exercise is a single-leg squat, and the ratio of the coefficient Ba and the constant Ca is Ba:Ca=53:-330 in two significant figures. When the knee flexion exercise is a single-leg squat, the ratio of coefficient Ba and constant Ca is preferably Ba:Ca=53:-330.
 また、前記指標算出部は、さらに、前記指標IXから、下記の式(5)を用いて、前記被験者の下腿部の長軸方向と大腿部の長軸方向の延長線とがなす角度に関する下肢の制御能力を表す指標Rbpを算出することが好ましい。指標Rbp=BbIX+Cb ・・・(5) Bbは係数、Cbは定数。 The index calculation unit further calculates the angle formed by the longitudinal direction of the crus of the subject and the extension of the longitudinal direction of the thigh from the index IX using the following formula (5): It is preferable to calculate an index Rbp representing the control ability of the lower limbs with respect to. Index Rbp=BbIX+Cb (5) Bb is a coefficient and Cb is a constant.
 この構成によれば、指標IXから、被験者の下腿部の長軸方向と大腿部の長軸方向の延長線とがなす角度に関する下肢の制御能力を表す指標Rbpを算出することが可能となる。 According to this configuration, it is possible to calculate, from the index IX, the index Rbp representing the controllability of the lower limbs with respect to the angle formed by the long-axis direction of the lower leg of the subject and the extension line of the long-axis direction of the thigh. Become.
 また、前記膝屈曲運動は、片脚スクワットであり、前記係数Bb及び前記定数Cbの比率が、有効数字二桁でBb:Cb=17:-150であることが好ましい。膝屈曲運動が片脚スクワットである場合、係数Bb及び定数Cbの比率は、Bb:Cb=17:-150が好適である。 Further, it is preferable that the knee bending exercise is a one-leg squat, and the ratio of the coefficient Bb and the constant Cb is Bb:Cb=17:-150 in two significant figures. If the knee flexion exercise is a single leg squat, the ratio of coefficient Bb and constant Cb is preferably Bb:Cb=17:-150.
 また、前記指標算出部は、さらに、前記指標IXから、下記の式(6)を用いて、前記被験者の体幹の長軸方向と大腿部の長軸方向とがなす角度に関する下肢の制御能力を表す指標Rcpを算出することが好ましい。指標Rcp=BcIX+Cc ・・・(6) Bcは係数、Ccは定数。 In addition, the index calculation unit further uses the following formula (6) from the index IX to control the lower limbs with respect to the angle formed by the longitudinal direction of the trunk of the subject and the longitudinal direction of the thigh. It is preferable to calculate an index Rcp representing ability. Index Rcp=BcIX+Cc (6) Bc is a coefficient and Cc is a constant.
 この構成によれば、指標IXから、被験者の体幹の長軸方向と大腿部の長軸方向とがなす角度に関する下肢の制御能力を表す指標Rcpを算出することが可能となる。 According to this configuration, it is possible to calculate, from the index IX, the index Rcp representing the controllability of the lower limbs with respect to the angle formed by the longitudinal direction of the trunk and the longitudinal direction of the thigh of the subject.
 また、前記膝屈曲運動は、片脚スクワットであり、前記係数Bc及び前記定数Ccの比率が、有効数字二桁でBc:Cc=-52:360であることが好ましい。膝屈曲運動が片脚スクワットの場合、係数Bc及び定数Ccの比率は、Bc:Cc=-52:360が好適である。 Further, it is preferable that the knee bending exercise is a single leg squat, and the ratio of the coefficient Bc and the constant Cc is Bc:Cc=-52:360 in two significant figures. When the knee flexion exercise is a single leg squat, the ratio of coefficient Bc and constant Cc is preferably Bc:Cc=-52:360.
 また、前記指標算出部は、さらに、前記X軸ピーク回数、前記Y軸ピーク回数、及び前記Z軸ピーク回数のうち一つであるピーク回数値Vから、下記の式(A)を用いて前記被験者の体幹の長軸方向と鉛直方向とがなす角度に関する下肢の制御能力を表す指標Rapを算出することが好ましい。指標Rap=EaV+Fa ・・・(A) Eaは係数、Faは定数。 Further, the index calculation unit further calculates the peak number V, which is one of the X-axis peak number, the Y-axis peak number, and the Z-axis peak number, using the following formula (A): It is preferable to calculate an index Rap representing the controllability of the lower limbs with respect to the angle formed by the longitudinal direction of the trunk of the subject and the vertical direction. Index Rap=EaV+Fa (A) Ea is a coefficient and Fa is a constant.
 この構成によれば、X軸ピーク回数、前記Y軸ピーク回数、及び前記Z軸ピーク回数のうち一つを用いるだけでよいので、処理の簡素化が容易である。 According to this configuration, it is only necessary to use one of the X-axis peak count, the Y-axis peak count, and the Z-axis peak count, which facilitates simplification of processing.
 また、前記膝屈曲運動は、片脚スクワットであり、前記係数Ea及び前記定数Faの比率が、有効数字二桁でEa:Fa=34:-4300であることが好ましい。膝屈曲運動が片脚スクワットの場合、係数Ea及び定数Faの比率は、Ea:Fa=34:-4300が好適である。 Also, the knee bending exercise is a single leg squat, and the ratio of the coefficient Ea and the constant Fa is preferably Ea:Fa=34:-4300 in two significant figures. When the knee flexion exercise is a single-leg squat, the ratio of coefficient Ea and constant Fa is preferably Ea:Fa=34:-4300.
 また、前記指標算出部は、さらに、前記X軸ピーク回数、前記Y軸ピーク回数、及び前記Z軸ピーク回数のうち一つであるピーク回数値Vから、下記の式(B)を用いて、前記被験者の下腿部の長軸方向と大腿部の長軸方向の延長線とがなす角度に関する下肢の制御能力を表す指標Rbpを算出することが好ましい。指標Rbp=EbV+Fb ・・・(B) Ebは係数、Fbは定数。 Further, the index calculation unit further uses the following formula (B) from the peak frequency value V, which is one of the X-axis peak frequency, the Y-axis peak frequency, and the Z-axis peak frequency, to obtain: It is preferable to calculate an index Rbp representing the controllability of the lower limbs with respect to the angle formed by the longitudinal direction of the lower leg of the subject and the extension line of the longitudinal direction of the thigh. Index Rbp=EbV+Fb (B) Eb is a coefficient and Fb is a constant.
 この構成によれば、X軸ピーク回数、Y軸ピーク回数、及びZ軸ピーク回数のうち一つに基づいて、被験者の下腿部の長軸方向と大腿部の長軸方向の延長線とがなす角度に関する下肢の制御能力を表す指標Rbpを算出することが可能となる。 According to this configuration, based on one of the number of peaks on the X-axis, the number of peaks on the Y-axis, and the number of peaks on the Z-axis, the long-axis direction of the lower leg of the subject and the extension line of the long-axis direction of the thigh. It is possible to calculate an index Rbp representing the control ability of the lower limbs with respect to the angle formed by the legs.
 また、前記膝屈曲運動は、片脚スクワットであり、前記係数Eb及び前記定数Fbの比率が、有効数字二桁でEb:Fb=-15:2800であることが好ましい。膝屈曲運動が片脚スクワットである場合、係数Eb及び定数Fbの比率は、Eb:Fb=-15:2800が好適である。 In addition, it is preferable that the knee bending exercise is a one-leg squat, and the ratio of the coefficient Eb and the constant Fb is Eb:Fb=-15:2800 in two significant figures. When the knee flexion exercise is a single-leg squat, the ratio of coefficient Eb and constant Fb is preferably Eb:Fb=-15:2800.
 また、前記指標算出部は、さらに、前記X軸ピーク回数、前記Y軸ピーク回数、及び前記Z軸ピーク回数のうち一つであるピーク回数値Vから、下記の式(C)を用いて、前記被験者の体幹の長軸方向と大腿部の長軸方向とがなす角度に関する下肢の制御能力を表す指標Rcpを算出することが好ましい。指標Rcp=EcV+Fc ・・・(C) Ecは係数、Fcは定数。 Further, the index calculation unit further uses the following formula (C) from the peak frequency value V, which is one of the X-axis peak frequency, the Y-axis peak frequency, and the Z-axis peak frequency, to obtain: It is preferable to calculate an index Rcp representing the controllability of the lower limbs with respect to the angle formed by the longitudinal direction of the trunk and the longitudinal direction of the thigh of the subject. Index Rcp=EcV+Fc (C) Ec is a coefficient and Fc is a constant.
 この構成によれば、X軸ピーク回数、Y軸ピーク回数、及びZ軸ピーク回数のうち一つに基づいて、被験者の体幹の長軸方向と大腿部の長軸方向とがなす角度に関する下肢の制御能力を表す指標Rcpを算出することが可能となる。 According to this configuration, based on one of the number of X-axis peaks, the number of Y-axis peaks, and the number of Z-axis peaks, It becomes possible to calculate the index Rcp representing the control ability of the lower limbs.
 また、前記膝屈曲運動は、片脚スクワットであり、前記係数Ec及び前記定数Fcの比率が、有効数字二桁でEc:Fc=-29:4500であることが好ましい。膝屈曲運動が片脚スクワットである場合、係数Ec及び定数Fcの比率は、Ec:Fc=-29:4500が好適である。 Further, it is preferable that the knee bending exercise is a single leg squat, and the ratio of the coefficient Ec and the constant Fc is Ec:Fc=-29:4500 in two significant figures. When the knee flexion exercise is a single leg squat, the ratio of coefficient Ec and constant Fc is preferably Ec:Fc=-29:4500.
 また、前記物理量は、前記被験者の、右大腿部から得られた物理量と左大腿部から得られた物理量とを含み、前記ピーク回数計数部は、前記右大腿部から得られた物理量に対する前記ピーク回数と、前記左大腿部から得られた物理量に対する前記ピーク回数とを計数し、前記下肢制御能力測定装置は、さらに、前記右大腿部から得られた物理量に対する前記ピーク回数と、前記左大腿部から得られた物理量に対する前記ピーク回数とに基づいて、前記被験者の下肢制御能力を表す指標を算出する指標算出部を備えることが好ましい。 Further, the physical quantity includes a physical quantity obtained from the right thigh and a physical quantity obtained from the left thigh of the subject, and the peak number counting unit is a physical quantity obtained from the right thigh. and the peak number of times with respect to the physical quantity obtained from the left thigh, and the lower limb control ability measuring device further counts the peak number of times with respect to the physical quantity obtained from the right thigh and , and an index calculation unit that calculates an index representing the lower limb control ability of the subject based on the number of peaks for the physical quantity obtained from the left thigh.
 この構成によれば、被験者の、両脚の下肢制御能力が反映された指標を算出することが可能となる。 According to this configuration, it is possible to calculate an index that reflects the lower limb control ability of both legs of the subject.
 また、前記ピーク回数計数部は、複数回の膝屈曲運動に対応する前記物理量の波形から、前記各膝屈曲運動毎に前記ピーク回数を計数し、前記指標算出部は、前記各膝屈曲運動に対応する前記ピーク回数に基づいて前記指標を算出することがこのまいしい。 Further, the peak number counting unit counts the number of peaks for each knee bending exercise from the waveform of the physical quantity corresponding to a plurality of knee bending exercises, and the index calculating unit counts the number of peaks for each knee bending exercise. Preferably, the index is calculated based on the corresponding peak times.
 この構成によれば、複数回の膝屈曲運動から指標が算出されるので、指標によって、下肢制御能力を表す精度が向上する。 According to this configuration, since the index is calculated from a plurality of knee flexion movements, the index improves the accuracy of representing the lower limb control ability.
 また、前記ピーク回数計数部は、低域通過フィルタによって高周波成分が除去された後の前記物理量の波形に基づいてピーク回数を計数することが好ましい。 Further, it is preferable that the peak number counting unit counts the number of peaks based on the waveform of the physical quantity after high-frequency components have been removed by a low-pass filter.
 この構成によれば、物理量検出装置によって検出された物理量に含まれるノイズが低減される。 According to this configuration, noise included in the physical quantity detected by the physical quantity detection device is reduced.
 また、前記ピーク回数計数部は、前記物理量の波形におけるピークのうち、そのピークの両側に予め設定された基準レベル以上の差があるピークの数を、前記ピーク回数として計数することが好ましい。 Further, it is preferable that the peak number counting unit counts, as the peak number, the number of peaks in the waveform of the physical quantity that have a difference equal to or greater than a preset reference level on both sides of the peak.
 この構成によれば、物理量検出装置によって検出された物理量に含まれるノイズが低減される。 According to this configuration, noise included in the physical quantity detected by the physical quantity detection device is reduced.
 また、前記物理量は、角速度であることが好ましい。膝屈曲運動の際に大腿部から検出される角速度は、ピーク回数を計数する対象となる物理量として好適である。 Also, the physical quantity is preferably angular velocity. Angular velocities detected from the thigh during knee flexion exercise are suitable as physical quantities for which the number of peaks is to be counted.
 また、本発明の一局面に従う下肢制御能力測定システムは、上述の下肢制御能力測定装置と、複数の被験者から取得された前記X軸ピーク回数、前記Y軸ピーク回数、及び前記Z軸ピーク回数に基づく前記X軸ピーク回数値Vx、前記Y軸ピーク回数値Vy、及び前記Z軸ピーク回数値Vzを変数とする主成分分析を実行し、前記主成分分析の第一主成分を前記式(1)として求める主成分分析部とを含む。 Further, a lower limb control ability measuring system according to one aspect of the present invention includes the above-described lower limb control ability measuring device, and the X-axis peak number, the Y-axis peak number, and the Z-axis peak number obtained from a plurality of subjects. Principal component analysis is performed using the X-axis peak frequency value Vx, the Y-axis peak frequency value Vy, and the Z-axis peak frequency value Vz as variables, and the first principal component of the principal component analysis is expressed by the formula (1 ) and the principal component analysis part obtained as
 この構成によれば、X軸ピーク回数値Vx、Y軸ピーク回数値Vy、及びZ軸ピーク回数値Vzに基づいて、上述の式(1)を求めることができる。 According to this configuration, the above equation (1) can be obtained based on the X-axis peak frequency value Vx, the Y-axis peak frequency value Vy, and the Z-axis peak frequency value Vz.
 このような構成の下肢制御能力測定装置、下肢制御能力測定システム、下肢制御能力測定プログラム、及び下肢制御能力測定方法は、下肢の制御能力を測定することが容易である。 The lower-limb control ability measuring device, the lower-limb control ability measuring system, the lower-limb control ability measuring program, and the lower-limb control ability measuring method configured in this way facilitate the measurement of the lower-limb control ability.
 この出願は、2021年8月10日に出願された日本国特許出願特願2021-130819及び2021年9月14日に出願された日本国特許出願特願2021-149123を基礎とするものであり、その内容は、本願に含まれるものである。なお、発明を実施するための形態の項においてなされた具体的な実施態様又は実施例は、あくまでも、本発明の技術内容を明らかにするものであって、本発明は、そのような具体例にのみ限定して狭義に解釈されるべきものではない。 This application is based on Japanese Patent Application No. 2021-130819 filed on August 10, 2021 and Japanese Patent Application No. 2021-149123 filed on September 14, 2021. , the contents of which are incorporated herein. It should be noted that the specific embodiments or examples described in the section for carrying out the invention merely clarify the technical content of the present invention, and the present invention is based on such specific examples. It should not be interpreted narrowly by limiting only
1    下肢制御能力測定システム
2    下肢制御能力測定装置
3    物理量検出装置
21,34  制御部
22  ディスプレイ
23  キーボード
24  マウス
25  センサI/F部(物理量取得部)
31  角速度センサ
32  記憶部
33  外部I/F部
211      ピーク回数計数部
212      指標算出部
213      主成分分析部
214      分析結果記憶部
A,Ax,Ay,Az    角速度(物理量)
a,b,m,n,Ba,Bb,Bc,Ea,Eb,Ec    偏回帰係数(係数)      
Aref    基準レベル
B1  体幹
B2  大腿部
B3  下腿部
C    ピーク回数
Cx  ピーク回数(X軸ピーク回数)
Cy  ピーク回数(Y軸ピーク回数)
Cz  ピーク回数(Z軸ピーク回数)
c,Ca,Cb,Cc,Fa,Fb,Fc    切片(定数)
Db1,Db2,Db3  長軸方向
Dv  鉛直方向
IX  指標
Kx,Ky,Kz  係数
P1~P15      ピーク
R    重相関係数
  重寄与率
Ra  体幹後傾角度
Rap      体幹後傾ピーク角度(指標)
Rb  膝関節伸展角度
Rbp      膝関節伸展ピーク角度(指標)
Rc  大腿伸展角度
Rcp      大腿伸展ピーク角度(指標)
Tw  対象期間
U    被験者
V    ピーク回数値
Vx  ピーク回数値(X軸ピーク回数値)
Vy  ピーク回数値(Y軸ピーク回数値)
Vz  ピーク回数値(Z軸ピーク回数値)
Ybalance   バランス能力を表す指標
Ytug 歩行能力を表す指標
Xage 年齢
β    標準偏回帰係数
1 Lower Limb Control Ability Measuring System 2 Lower Limb Control Ability Measuring Device 3 Physical Quantity Detectors 21, 34 Control Unit 22 Display 23 Keyboard 24 Mouse 25 Sensor I/F Unit (Physical Quantity Acquisition Unit)
31 Angular velocity sensor 32 Storage unit 33 External I/F unit 211 Peak number counting unit 212 Index calculation unit 213 Principal component analysis unit 214 Analysis result storage unit A, Ax, Ay, Az Angular velocity (physical quantity)
a, b, m, n, Ba, Bb, Bc, Ea, Eb, Ec Partial regression coefficient (coefficient)
Aref Reference level B1 Trunk B2 Thigh B3 Lower leg C Peak count Cx Peak count (X-axis peak count)
Cy Peak count (Y-axis peak count)
Cz Peak count (Z-axis peak count)
c, Ca, Cb, Cc, Fa, Fb, Fc intercept (constant)
Db1, Db2, Db3 Long axis direction Dv Vertical direction IX Index Kx, Ky, Kz Coefficients P1 to P15 Peak R Multiple correlation coefficient R Double contribution Ra Trunk backward tilt angle Rap Trunk backward tilt peak angle (index)
Rb Knee joint extension angle Rbp Knee joint extension peak angle (index)
Rc Thigh extension angle Rcp Thigh extension peak angle (index)
Tw Target period U Subject V Peak count value Vx Peak count value (X-axis peak count value)
Vy Peak count value (Y-axis peak count value)
Vz Peak count value (Z-axis peak count value)
Ybalance Index representing balance ability Ytug Index representing walking ability Xage Age β Standard partial regression coefficient

Claims (34)

  1.  角速度及び加速度のうち少なくとも一方の物理量を検出する物理量検出装置が大腿部に取り付けられた被験者が、荷重に抗しながら膝関節を屈曲及び/又は伸展する動作を含む膝屈曲運動を行った期間中に前記物理量検出装置によって検出された物理量を取得する物理量取得部と、
     前記物理量取得部によって取得された物理量の波形が、予め設定された対象期間内にピークを示す回数であるピーク回数を計数するピーク回数計数部とを備える下肢制御能力測定装置。
    The period during which the subject, whose thigh is equipped with a physical quantity detection device that detects at least one physical quantity of angular velocity and acceleration, performs a knee flexion exercise that includes flexion and/or extension of the knee joint while resisting the load. a physical quantity acquisition unit that acquires the physical quantity detected by the physical quantity detection device;
    A lower-limb control ability measuring device, comprising: a peak frequency counting unit that counts the number of times that the waveform of the physical quantity obtained by the physical quantity obtaining unit shows a peak within a preset target period.
  2.  前記膝屈曲運動は、前記荷重に抗しながら膝関節を屈曲する動作を含み、
     前記対象期間は、前記膝屈曲運動における、前記荷重に抗しながら膝関節を屈曲する動作を実行中の期間である請求項1記載の下肢制御能力測定装置。
    The knee bending motion includes an action of bending the knee joint while resisting the load,
    2. The leg control ability measuring device according to claim 1, wherein the target period is a period during which the knee joint is being bent while resisting the load in the knee bending exercise.
  3.  前記角速度は、前記大腿部の長軸方向に延びるX軸、前記大腿部の前後方向に延びるY軸、及び前記大腿部の左右方向に延びるZ軸のうち少なくとも一つの軸回りの角速度であり、
     前記加速度は、前記X軸、前記Y軸、及び前記Z軸のうち少なくとも一つの軸方向の加速度である請求項1又は2に記載の下肢制御能力測定装置。
    The angular velocity is an angular velocity around at least one of an X-axis extending in the longitudinal direction of the thigh, a Y-axis extending in the front-rear direction of the thigh, and a Z-axis extending in the left-right direction of the thigh. and
    3. The lower limb control ability measuring device according to claim 1 or 2, wherein the acceleration is acceleration in at least one axial direction of the X-axis, the Y-axis, and the Z-axis.
  4.  前記ピーク回数計数部は、前記ピーク回数として、前記X軸に対するX軸ピーク回数、前記Y軸に対するY軸ピーク回数、及び前記Z軸に対するZ軸ピーク回数のうち少なくとも一つを計数し、
     前記下肢制御能力測定装置は、さらに、
     前記X軸ピーク回数、前記Y軸ピーク回数、及び前記Z軸ピーク回数のうち少なくとも一つに基づいて、前記被験者の下肢制御能力を表す指標を算出する指標算出部を備える請求項3記載の下肢制御能力測定装置。
    The peak number counting unit counts, as the peak number, at least one of an X-axis peak number for the X-axis, a Y-axis peak number for the Y-axis, and a Z-axis peak number for the Z-axis;
    The lower limb control ability measuring device further comprises
    4. The leg according to claim 3, further comprising an index calculation unit that calculates an index representing the subject's lower-limb control ability based on at least one of the X-axis peak count, the Y-axis peak count, and the Z-axis peak count. Control ability measuring device.
  5.  前記物理量は、前記X軸回りの角速度、前記Y軸回りの角速度、及び前記Z軸回りの角速度を含む請求項4記載の下肢制御能力測定装置。 The lower limb control ability measuring device according to claim 4, wherein the physical quantity includes angular velocity about the X-axis, angular velocity about the Y-axis, and angular velocity about the Z-axis.
  6.  前記指標算出部は、前記X軸ピーク回数に基づくX軸ピーク回数値Vx、前記Y軸ピーク回数に基づくY軸ピーク回数値Vy、及び前記Z軸ピーク回数に基づくZ軸ピーク回数値Vzから、下記の式(1)を用いて前記指標を算出する請求項4又は5に記載の下肢制御能力測定装置。
     指標IX=KxVx+KyVy+KzVz ・・・ (1)
     Kx、Ky、及びKzは係数
    From the X-axis peak frequency value Vx based on the X-axis peak frequency, the Y-axis peak frequency value Vy based on the Y-axis peak frequency, and the Z-axis peak frequency value Vz based on the Z-axis peak frequency, 6. The lower limb control ability measuring device according to claim 4 or 5, wherein the index is calculated using the following formula (1).
    Index IX=KxVx+KyVy+KzVz (1)
    Kx, Ky, and Kz are coefficients
  7.  前記係数Kx、Ky、及びKzの比率が、
     Kx:Ky:Kz=38:39:35
    である請求項6記載の下肢制御能力測定装置。
    The ratio of the coefficients Kx, Ky, and Kz is
    Kx:Ky:Kz=38:39:35
    7. The lower limb control ability measuring device according to claim 6.
  8.  前記指標算出部は、さらに、前記指標IX、及び前記被験者の年齢Xageから、下記の式(2)を用いて、前記被験者の歩行能力を表す指標Ytugを算出する請求項6又は7に記載の下肢制御能力測定装置。
     指標Ytug=aIX+bXage+c ・・・(2)
     a及びbは係数、cは定数
    8. The index calculation unit according to claim 6 or 7, wherein the index calculation unit further calculates an index Ytug representing the walking ability of the subject from the index IX and the subject's age Xage using the following formula (2). Lower extremity control ability measuring device.
    Index Ytug=aIX+bXage+c (2)
    a and b are coefficients, c is a constant
  9.  前記膝屈曲運動は、両脚スクワットであり、
     前記係数a,b及び前記定数cの比率が、
     有効数字二桁でa:b:c=270:42:2600
    である請求項8記載の下肢制御能力測定装置。
    the knee flexion exercise is a double leg squat;
    The ratio of the coefficients a, b and the constant c is
    a:b:c=270:42:2600 with two significant digits
    9. The lower limb control ability measuring device according to claim 8.
  10.  前記指標算出部は、さらに、前記指標IX、及び前記被験者の年齢Xageから、下記の式(3)を用いて、前記被験者のバランス能力を表す指標Ybalanceを算出する請求項6~9のいずれか1項に記載の下肢制御能力測定装置。
     Ybalance=mIX+nXage+r ・・・(3)
     m及びnは係数、rは定数
    Any one of claims 6 to 9, wherein the index calculation unit further calculates an index Ybalance representing the balance ability of the subject from the index IX and the subject's age Xage using the following formula (3): 2. The lower limb control ability measuring device according to item 1.
    Ybalance=mIX+nXage+r (3)
    m and n are coefficients, r is a constant
  11.  前記膝屈曲運動は、両脚スクワットであり、
     前記係数m,n及び前記定数rの比率が、
     有効数字二桁でm:n:r=-54:-12:1300
    である請求項10記載の下肢制御能力測定装置。
    the knee flexion exercise is a double leg squat;
    The ratio of the coefficients m, n and the constant r is
    m:n:r=-54:-12:1300 with two significant digits
    11. The lower limb control ability measuring device according to claim 10.
  12.  前記膝屈曲運動は、片脚スクワットであり、
     前記物理量検出装置は、前記片脚スクワットを行う側の大腿部に取り付けられる請求項6~10のいずれか1項に記載の下肢制御能力測定装置。
    the knee flexion exercise is a single leg squat;
    The lower limb control ability measuring device according to any one of claims 6 to 10, wherein the physical quantity detection device is attached to the thigh on the side where the one-leg squat is performed.
  13.  前記係数Kx、Ky、及びKzの比率が、
     Kx:Ky:Kz=49:47:35
    である請求項12記載の下肢制御能力測定装置。
    The ratio of the coefficients Kx, Ky, and Kz is
    Kx:Ky:Kz=49:47:35
    13. The lower limb control ability measuring device according to claim 12.
  14.  前記指標算出部は、さらに、前記指標IXから、下記の式(4)を用いて、前記被験者の体幹の長軸方向と鉛直方向とがなす角度に関する下肢の制御能力を表す指標Rapを算出する請求項6~13のいずれか1項に記載の下肢制御能力測定装置。
     指標Rap=BaIX+Ca ・・・(4)
     Baは係数、Caは定数
    The index calculation unit further calculates, from the index IX, using the following formula (4), an index Rap representing the control ability of the lower extremities with respect to the angle formed by the longitudinal direction of the trunk of the subject and the vertical direction. The lower limb control ability measuring device according to any one of claims 6 to 13.
    Index Rap=BaIX+Ca (4)
    Ba is a coefficient, Ca is a constant
  15.  前記膝屈曲運動は、片脚スクワットであり、
     前記係数Ba及び前記定数Caの比率が、
     有効数字二桁でBa:Ca=53:-330
    である請求項14記載の下肢制御能力測定装置。
    the knee flexion exercise is a single leg squat;
    The ratio of the coefficient Ba and the constant Ca is
    Ba: Ca = 53: -330 in two significant digits
    15. The lower limb control ability measuring device according to claim 14.
  16.  前記指標算出部は、さらに、前記指標IXから、下記の式(5)を用いて、前記被験者の下腿部の長軸方向と大腿部の長軸方向の延長線とがなす角度に関する下肢の制御能力を表す指標Rbpを算出する請求項6~15のいずれか1項に記載の下肢制御能力測定装置。
     指標Rbp=BbIX+Cb ・・・(5)
     Bbは係数、Cbは定数
    The index calculation unit further uses the following formula (5) from the index IX to calculate the number of legs related to the angle formed by the long axis direction of the lower leg of the subject and the extension line of the long axis direction of the thigh. The lower limb control ability measuring device according to any one of claims 6 to 15, which calculates an index Rbp representing the control ability of.
    Index Rbp=BbIX+Cb (5)
    Bb is a coefficient, Cb is a constant
  17.  前記膝屈曲運動は、片脚スクワットであり、
     前記係数Bb及び前記定数Cbの比率が、
     有効数字二桁でBb:Cb=17:-150
    である請求項16記載の下肢制御能力測定装置。
    the knee flexion exercise is a single leg squat;
    The ratio of the coefficient Bb and the constant Cb is
    Bb:Cb=17:-150 with two significant digits
    17. The lower limb control ability measuring device according to claim 16.
  18.  前記指標算出部は、さらに、前記指標IXから、下記の式(6)を用いて、前記被験者の体幹の長軸方向と大腿部の長軸方向とがなす角度に関する下肢の制御能力を表す指標Rcpを算出する請求項6~17のいずれか1項に記載の下肢制御能力測定装置。
     指標Rcp=BcIX+Cc ・・・(6)
     Bcは係数、Ccは定数
    The index calculation unit further uses the following formula (6) from the index IX to calculate the control ability of the lower limbs with respect to the angle formed by the longitudinal direction of the trunk and the longitudinal direction of the thigh of the subject. 18. The lower limb control ability measuring device according to any one of claims 6 to 17, which calculates a representative index Rcp.
    Index Rcp=BcIX+Cc (6)
    Bc is a coefficient, Cc is a constant
  19.  前記膝屈曲運動は、片脚スクワットであり、
     前記係数Bc及び前記定数Ccの比率が、
     有効数字二桁でBc:Cc=-52:360
    である請求項18記載の下肢制御能力測定装置。
    the knee flexion exercise is a single leg squat;
    The ratio of the coefficient Bc and the constant Cc is
    Bc:Cc=-52:360 with two significant digits
    19. The lower limb control ability measuring device according to claim 18.
  20.  前記指標算出部は、さらに、前記X軸ピーク回数、前記Y軸ピーク回数、及び前記Z軸ピーク回数のうち一つであるピーク回数値Vから、下記の式(A)を用いて前記被験者の体幹の長軸方向と鉛直方向とがなす角度に関する下肢の制御能力を表す指標Rapを算出する請求項4又は5に記載の下肢制御能力測定装置。
     指標Rap=EaV+Fa ・・・(A)
     Eaは係数、Faは定数
    The index calculation unit further uses the following formula (A) from the peak frequency value V, which is one of the X-axis peak frequency, the Y-axis peak frequency, and the Z-axis peak frequency. 6. The lower limb control ability measuring device according to claim 4 or 5, which calculates an index Rap representing the control ability of the lower limbs with respect to the angle formed by the longitudinal direction of the trunk and the vertical direction.
    Index Rap=EaV+Fa (A)
    Ea is a coefficient, Fa is a constant
  21.  前記膝屈曲運動は、片脚スクワットであり、
     前記係数Ea及び前記定数Faの比率が、
     有効数字二桁でEa:Fa=34:-4300
    である請求項20記載の下肢制御能力測定装置。
    the knee flexion exercise is a single leg squat;
    The ratio of the coefficient Ea and the constant Fa is
    Ea: Fa = 34: -4300 in two significant digits
    21. The device for measuring lower limb control ability according to claim 20.
  22.  前記指標算出部は、さらに、前記X軸ピーク回数、前記Y軸ピーク回数、及び前記Z軸ピーク回数のうち一つであるピーク回数値Vから、下記の式(B)を用いて、前記被験者の下腿部の長軸方向と大腿部の長軸方向の延長線とがなす角度に関する下肢の制御能力を表す指標Rbpを算出する請求項4,5,20,及び21のいずれか1項に記載の下肢制御能力測定装置。
     指標Rbp=EbV+Fb ・・・(B)
     Ebは係数、Fbは定数
    The index calculation unit further uses the following formula (B) to calculate the subject 22. Any one of claims 4, 5, 20 and 21, wherein an index Rbp representing the control ability of the lower limbs with respect to the angle formed by the long axis direction of the lower leg and the extension line of the long axis direction of the thigh is calculated. The lower limb control ability measuring device according to .
    Index Rbp=EbV+Fb (B)
    Eb is a coefficient, Fb is a constant
  23.  前記膝屈曲運動は、片脚スクワットであり、
     前記係数Eb及び前記定数Fbの比率が、
     有効数字二桁でEb:Fb=-15:2800
    である請求項22記載の下肢制御能力測定装置。
    the knee flexion exercise is a single leg squat;
    The ratio of the coefficient Eb and the constant Fb is
    Eb: Fb = -15: 2800 with two significant digits
    23. The device for measuring lower limb control ability according to claim 22.
  24.  前記指標算出部は、さらに、前記X軸ピーク回数、前記Y軸ピーク回数、及び前記Z軸ピーク回数のうち一つであるピーク回数値Vから、下記の式(C)を用いて、前記被験者の体幹の長軸方向と大腿部の長軸方向とがなす角度に関する下肢の制御能力を表す指標Rcpを算出する請求項4,5,及び20~23のいずれか1項に記載の下肢制御能力測定装置。
     指標Rcp=EcV+Fc ・・・(C)
     Ecは係数、Fcは定数
    The index calculation unit further calculates the subject using the following formula (C) from the peak frequency value V, which is one of the X-axis peak frequency, the Y-axis peak frequency, and the Z-axis peak frequency. The lower limb according to any one of claims 4, 5, and 20 to 23, wherein an index Rcp representing the control ability of the lower limb with respect to the angle formed by the longitudinal direction of the trunk and the longitudinal direction of the thigh is calculated. Control ability measuring device.
    Index Rcp=EcV+Fc (C)
    Ec is a coefficient, Fc is a constant
  25.  前記膝屈曲運動は、片脚スクワットであり、
     前記係数Ec及び前記定数Fcの比率が、
     有効数字二桁でEc:Fc=-29:4500
    である請求項24記載の下肢制御能力測定装置。
    the knee flexion exercise is a single leg squat;
    The ratio of the coefficient Ec and the constant Fc is
    Ec: Fc = -29: 4500 with two significant digits
    25. The lower limb control ability measuring device according to claim 24.
  26.  前記物理量は、前記被験者の、右大腿部から得られた物理量と左大腿部から得られた物理量とを含み、
     前記ピーク回数計数部は、前記右大腿部から得られた物理量に対する前記ピーク回数と、前記左大腿部から得られた物理量に対する前記ピーク回数とを計数し、
     前記下肢制御能力測定装置は、さらに、
     前記右大腿部から得られた物理量に対する前記ピーク回数と、前記左大腿部から得られた物理量に対する前記ピーク回数とに基づいて、前記被験者の下肢制御能力を表す指標を算出する指標算出部を備える請求項1~25のいずれか1項に記載の下肢制御能力測定装置。
    The physical quantity includes a physical quantity obtained from the right thigh and a physical quantity obtained from the left thigh of the subject,
    The peak number counting unit counts the number of peaks for the physical quantity obtained from the right thigh and the number of peaks for the physical quantity obtained from the left thigh,
    The lower limb control ability measuring device further comprises
    An index calculation unit that calculates an index representing the lower limb control ability of the subject based on the number of peaks for the physical quantity obtained from the right thigh and the number of peaks for the physical quantity obtained from the left thigh. The lower limb control ability measuring device according to any one of claims 1 to 25.
  27.  前記ピーク回数計数部は、複数回の前記膝屈曲運動に対応する前記物理量の波形から、前記各膝屈曲運動毎に前記ピーク回数を計数し、
     前記指標算出部は、前記各膝屈曲運動に対応する前記ピーク回数に基づいて前記指標を算出する請求項1~26のいずれか1項に記載の下肢制御能力測定装置。
    The peak number counting unit counts the number of peaks for each knee bending exercise from the waveform of the physical quantity corresponding to the knee bending exercise a plurality of times,
    The lower limb control ability measuring device according to any one of claims 1 to 26, wherein the index calculator calculates the index based on the number of peak times corresponding to each knee flexion exercise.
  28.  前記ピーク回数計数部は、低域通過フィルタによって高周波成分が除去された後の前記物理量の波形に基づいてピーク回数を計数する請求項1~27のいずれか1項に記載の下肢制御能力測定装置。 The lower limb control ability measuring device according to any one of claims 1 to 27, wherein the peak number counting unit counts the number of peaks based on the waveform of the physical quantity after high-frequency components have been removed by a low-pass filter. .
  29.  前記ピーク回数計数部は、前記物理量の波形におけるピークのうち、そのピークの両側に予め設定された基準レベル以上の差があるピークの数を、前記ピーク回数として計数する請求項1~28のいずれか1項に記載の下肢制御能力測定装置。 The number-of-peaks counting unit counts, as the number of peaks, the number of peaks in the waveform of the physical quantity that have a difference equal to or greater than a preset reference level on both sides of the peak. 1. A lower-limb control ability measuring device according to claim 1.
  30.  前記物理量は、角速度である請求項1~29のいずれか1項に記載の下肢制御能力測定装置。 The lower limb control ability measuring device according to any one of claims 1 to 29, wherein the physical quantity is angular velocity.
  31.  請求項1~30のいずれか1項に記載の下肢制御能力測定装置と、
     前記物理量検出装置とを含む下肢制御能力測定システム。
    a lower limb control ability measuring device according to any one of claims 1 to 30;
    A lower limb control ability measuring system including the physical quantity detection device.
  32.  請求項6~19のいずれか1項に記載の下肢制御能力測定装置と、
     複数の被験者から取得された前記X軸ピーク回数、前記Y軸ピーク回数、及び前記Z軸ピーク回数に基づく前記X軸ピーク回数値Vx、前記Y軸ピーク回数値Vy、及び前記Z軸ピーク回数値Vzを変数とする主成分分析を実行し、前記主成分分析の第一主成分を前記式(1)として求める主成分分析部とを含む下肢制御能力測定システム。
    a lower limb control ability measuring device according to any one of claims 6 to 19;
    The X-axis peak count value Vx, the Y-axis peak count value Vy, and the Z-axis peak count value based on the X-axis peak count, the Y-axis peak count, and the Z-axis peak count obtained from a plurality of subjects. A lower limb control ability measuring system, comprising: a principal component analysis unit that performs principal component analysis with Vz as a variable, and obtains a first principal component of the principal component analysis as the formula (1).
  33.  請求項1~30のいずれか1項に記載の下肢制御能力測定装置として、コンピュータを機能させる下肢制御能力測定プログラム。 A lower-limb control ability measuring program that causes a computer to function as the lower-limb control ability measuring device according to any one of claims 1 to 30.
  34.  角速度及び加速度のうち少なくとも一方の物理量を検出する物理量検出装置が大腿部に取り付けられた被験者が、荷重に抗しながら膝関節を屈曲及び/又は伸展する動作を含む膝屈曲運動を行った期間中に前記物理量検出装置によって検出された物理量を取得する物理量取得工程と、
     前記物理量取得工程によって取得された物理量の波形が、予め設定された対象期間内にピークを示す回数であるピーク回数を計数するピーク回数計数工程とを含む下肢制御能力測定方法。
    The period during which the subject, whose thigh is equipped with a physical quantity detection device that detects at least one physical quantity of angular velocity and acceleration, performs a knee flexion exercise that includes flexion and/or extension of the knee joint while resisting the load. a physical quantity acquisition step of acquiring the physical quantity detected by the physical quantity detection device;
    a peak number counting step of counting the number of peaks, which is the number of times the waveform of the physical quantity obtained by the physical quantity obtaining step shows a peak within a preset target period.
PCT/JP2022/024169 2021-08-10 2022-06-16 Lower limb control capability measurement device, lower limb control capability measurement system, lower limb control capability measurement program, and lower limb control capability measurement method WO2023017675A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023541232A JPWO2023017675A1 (en) 2021-08-10 2022-06-16

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-130819 2021-08-10
JP2021130819 2021-08-10
JP2021-149123 2021-09-14
JP2021149123 2021-09-14

Publications (1)

Publication Number Publication Date
WO2023017675A1 true WO2023017675A1 (en) 2023-02-16

Family

ID=85199742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024169 WO2023017675A1 (en) 2021-08-10 2022-06-16 Lower limb control capability measurement device, lower limb control capability measurement system, lower limb control capability measurement program, and lower limb control capability measurement method

Country Status (2)

Country Link
JP (1) JPWO2023017675A1 (en)
WO (1) WO2023017675A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007275283A (en) * 2006-04-06 2007-10-25 Honda Motor Co Ltd Motion management system, motion management method and motion management program
JP2009187068A (en) * 2008-02-01 2009-08-20 Citizen Systems Japan Co Ltd Body motion detector
WO2018070389A1 (en) * 2016-10-11 2018-04-19 国立大学法人東北大学 Living body state estimating system, sensor unit and item of furniture, and living body state estimating method
JP2021053255A (en) * 2019-10-01 2021-04-08 ローム株式会社 Walking feature amount detection device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007275283A (en) * 2006-04-06 2007-10-25 Honda Motor Co Ltd Motion management system, motion management method and motion management program
JP2009187068A (en) * 2008-02-01 2009-08-20 Citizen Systems Japan Co Ltd Body motion detector
WO2018070389A1 (en) * 2016-10-11 2018-04-19 国立大学法人東北大学 Living body state estimating system, sensor unit and item of furniture, and living body state estimating method
JP2021053255A (en) * 2019-10-01 2021-04-08 ローム株式会社 Walking feature amount detection device

Also Published As

Publication number Publication date
JPWO2023017675A1 (en) 2023-02-16

Similar Documents

Publication Publication Date Title
Zhang et al. Jerk as an indicator of physical exertion and fatigue
Schütte et al. Wireless tri-axial trunk accelerometry detects deviations in dynamic center of mass motion due to running-induced fatigue
JP4962765B2 (en) Walking analysis device and walking analysis method
Zhang et al. Classifying lower extremity muscle fatigue during walking using machine learning and inertial sensors
Frost et al. PLAD (personal lift assistive device) stiffness affects the lumbar flexion/extension moment and the posterior chain EMG during symmetrical lifting tasks
Zemková ASSESSMENT OF BALANCE IN SPORT: SCIENCE AND REALITY.
McGinnis et al. Quantifying the effects of load carriage and fatigue under load on sacral kinematics during countermovement vertical jump with IMU-based method
Schweizer et al. Correlation of forearm strength and sport climbing performance
Le Bris et al. Effect of fatigue on stride pattern continuously measured by an accelerometric gait recorder in middle distance runners
Meng et al. Alterations in over-ground walking patterns in obese and overweight adults
FI124278B (en) Measuring device and method for indicating strain
KR101651429B1 (en) Fitness monitoring system
EP3604097A1 (en) Steering input information acquisition device
US20160073934A1 (en) Method and apparatus for monitoring dynamic status of a body
Malik et al. An intelligent recovery progress evaluation system for ACL reconstructed subjects using integrated 3-D kinematics and EMG features
JP2020120807A (en) Fall risk evaluation device, fall risk evaluation method and fall risk evaluation program
WO2023017675A1 (en) Lower limb control capability measurement device, lower limb control capability measurement system, lower limb control capability measurement program, and lower limb control capability measurement method
KR20170139645A (en) Indicators, wearable devices and mobile devices
JP2020151470A (en) Walking evaluation device, walking evaluation method, and program
Nessler et al. A single bout of resistance exercise does not affect nonlinear dynamics of lower extremity kinematics during treadmill walking
WO2023079942A1 (en) Lower extremity control capability measurement device, lower extremity control capability measurement system, lower extremity control capability measurement program, computer-readable recording medium recording lower extremity control capability measurement program, and lower extremity control capability measurement method
WO2022018938A1 (en) Exercise support device and exercise support method
Li et al. Changes of lumbosacral joint compression force profile when walking caused by backpack loads
JP6079585B2 (en) Gait balance evaluation device
Mateos-Angulo et al. Kinematic mobile drop jump analysis at different heights based on a smartphone inertial sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855739

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023541232

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE