WO2023008808A1 - 열가소성 수지 조성물 - Google Patents

열가소성 수지 조성물 Download PDF

Info

Publication number
WO2023008808A1
WO2023008808A1 PCT/KR2022/010530 KR2022010530W WO2023008808A1 WO 2023008808 A1 WO2023008808 A1 WO 2023008808A1 KR 2022010530 W KR2022010530 W KR 2022010530W WO 2023008808 A1 WO2023008808 A1 WO 2023008808A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
polymer
monomer unit
parts
thermoplastic resin
Prior art date
Application number
PCT/KR2022/010530
Other languages
English (en)
French (fr)
Inventor
최정수
이원석
이루다
박상후
이종주
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220088183A external-priority patent/KR20230016593A/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US18/034,270 priority Critical patent/US20230383041A1/en
Priority to EP22849784.8A priority patent/EP4219623A4/en
Priority to CN202280007122.6A priority patent/CN116457414A/zh
Publication of WO2023008808A1 publication Critical patent/WO2023008808A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • C08F279/06Vinyl aromatic monomers and methacrylates as the only monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/18Homopolymers or copolymers of nitriles
    • C08L33/20Homopolymers or copolymers of acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers

Definitions

  • the present invention relates to a thermoplastic resin composition, and specifically, to a thermoplastic resin composition capable of implementing excellent matte transparent properties and impact resistance.
  • Commonly used transparent resins include polycarbonate, polymethyl methacrylate, polystyrene, and polyacrylonitrile-styrene.
  • polycarbonate has excellent impact resistance and transparency, it is difficult to manufacture complex products due to poor processability and has poor chemical resistance. And, due to bisphenol A, which is a raw material of polycarbonate, the use of polycarbonate has been increasingly limited.
  • polymethyl methacrylate beads prepared by cross-linking polymerization and general polymethyl methacrylate are mixed and used, excellent transparency is obtained, but impact resistance and chemical resistance are not excellent.
  • polystyrene and polyacrylonitrile-styrene were not excellent in impact resistance and chemical resistance.
  • a diene-based graft polymer including a diene-based rubbery polymer to which a (meth)acrylate-based monomer unit and a vinyl aromatic-based monomer unit are grafted has been proposed.
  • Patent Document 1 JP1995-025975B
  • An object of the present invention is to provide a thermoplastic resin composition capable of realizing excellent matte transparent properties, impact resistance and processability.
  • the present invention is a rubber polymer having a gel content of 0 to 10% by weight and containing a vinyl aromatic monomer unit and a diene monomer unit, and a (meth)acryl grafted to the rubber polymer a graft polymer comprising a shell comprising a rate-based monomer unit and a vinyl aromatic-based monomer unit; and a (meth)acrylate-based monomer unit and a non-grafted polymer including a vinyl aromatic-based monomer unit, wherein a difference in refractive index between the graft polymer and the non-grafted polymer is 0.0100 or less.
  • the present invention provides the thermoplastic resin composition according to 1) above, wherein the rubbery polymer has a gel content of 0 to 5% by weight.
  • the present invention provides the thermoplastic resin composition according to 1) or 2), wherein the rubbery polymer includes the vinyl aromatic monomer unit and the diene monomer unit in a weight ratio of 10:90 to 35:65. .
  • the present invention provides the thermoplastic resin composition according to any one of 1) to 3) above, wherein the rubbery polymer has an average particle diameter of 20 to 100 nm.
  • the graft polymer comprises 30.0 to 65.0% by weight of the rubbery polymer; 10.0 to 55.0% by weight of the (meth)acrylate-based monomer units; And it provides a thermoplastic resin composition comprising 5.0 to 40.0% by weight of the vinyl aromatic monomer unit.
  • the present invention according to any one of 1) to 5), wherein the non-grafted polymer comprises 39.0 to 65.0% by weight of the (meth)acrylate-based monomer units; And it provides a thermoplastic resin composition comprising 35.0 to 61.0% by weight of the vinyl aromatic monomer unit.
  • thermoplastic resin composition comprises 10.0 to 70.0% by weight of the graft polymer; and a thermoplastic resin composition comprising 30.0 to 90.0 wt% of the non-grafted polymer.
  • the present invention according to any one of 1) to 7), wherein the shell of the graft polymer includes a vinyl cyanide-based monomer unit grafted to the rubbery polymer, and the non-grafted polymer is a vinyl cyanide-based monomer unit It provides a thermoplastic resin composition comprising a monomer unit.
  • the present invention provides the thermoplastic resin composition according to any one of 1) to 8), wherein the graft polymer and the non-graft polymer each have a refractive index of 1.5230 to 1.5420.
  • thermoplastic resin composition comprises 5.0 to 35.0% by weight of the rubber polymer; 24.0 to 60.0% by weight of the (meth)acrylate-based monomer units; And it provides a thermoplastic resin composition comprising 19.0 to 47.0% by weight of the vinyl aromatic monomer unit.
  • thermoplastic resin composition according to the present invention can implement excellent transparency, impact resistance, matte properties and processability.
  • Example 1 is a photograph comparing a specimen prepared in Example 3 and a specimen manufactured in Comparative Example 4.
  • the gel content is obtained by solidifying the rubbery polymer latex using dilute acid or metal salt, washing, and drying in a vacuum oven at 60° C. for 24 hours to obtain a rubber mass.
  • the rubber lump was finely cut with scissors to prepare a rubber piece of 1 g, and the rubber piece was placed in 100 g of toluene, stored in a dark room at 23 ° C. for 48 hours, and then the sol and gel were separated. Substituting this sol and gel into the formula below, the gel content was calculated.
  • the type of dilute acid is not particularly limited, but is preferably at least one selected from the group consisting of hydrochloric acid, sulfuric acid and formic acid.
  • the type of metal salt is not particularly limited, but is preferably at least one selected from the group consisting of magnesium sulfate, calcium chloride, and aluminum sulfate.
  • the refractive index means the absolute refractive index of a material, and the refractive index can be recognized as the ratio of the speed of electromagnetic radiation in free space to the speed of radiation in a material.
  • the radiation may be visible light having a wavelength of 450 nm to 680 nm, and specifically, visible light having a wavelength of 589.3 nm.
  • the refractive index can be measured by a known method, that is, an Abbe refractometer.
  • the present invention after stretching the graft polymer and the non-graft polymer to a thickness of 0.2 mm, it can be measured with an Abbe refractometer using visible light having a wavelength of 589.3 nm at 25 °C.
  • the average particle diameter can be measured using a dynamic light scattering method, and in detail, it can be measured using Nicomp 380 equipment from Particle Sizing Systems.
  • the average particle diameter may mean the arithmetic mean particle diameter in the particle size distribution measured by the dynamic light scattering method, that is, the average particle diameter of intensity distribution.
  • the average particle diameter can be measured with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the weight of the rubbery polymer, diene monomer unit, (meth)acrylate monomer unit, vinyl aromatic monomer unit, and vinyl cyanide monomer unit included in the thermoplastic resin composition can be measured by infrared spectroscopy.
  • a NicoletTM iS20 FTIR Spectrometer (model name, manufacturer: Thermo Scientific) can be used as an infrared spectroscopy measuring device.
  • the polymerization conversion rate indicates the degree to which monomers polymerize to form a polymer, and can be calculated by the following formula.
  • Polymerization conversion rate (%) ⁇ (total weight of monomers added until polymerization was completed) - (total weight of unreacted monomers at the time of measuring polymerization conversion) ⁇ /(total weight of monomers added until polymerization was completed) ) ⁇ 100
  • the diene-based monomer unit may be a unit derived from a diene-based monomer.
  • the diene-based monomer unit may be at least one selected from the group consisting of 1,3-butadiene, isoprene, chloroprene, and piperylene, and among these, 1,3-butadiene is preferred.
  • the vinyl aromatic monomer unit may be a unit derived from a vinyl aromatic monomer.
  • the vinyl aromatic monomer may be at least one selected from the group consisting of styrene, ⁇ -methyl styrene, ⁇ -ethyl styrene, and p-methyl styrene, of which styrene is preferred.
  • the (meth)acrylate-based monomer unit may be a unit derived from a (meth)acrylate-based monomer.
  • the (meth)acrylate-based monomer may be a term encompassing both acrylate-based monomers and methacrylate-based monomers.
  • the (meth)acrylate-based monomer may be a C 1 to C 10 alkyl (meth)acrylate-based monomer, and the C 1 to C 10 alkyl (meth)acrylate-based monomer may be methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, heptyl (meth)acrylate, hexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate and decyl (meth)acrylate It may be one or more selected from the group consisting of, of which methyl methacrylate is preferred.
  • the vinyl cyanide-based monomer unit may be a unit derived from a vinyl cyanide-based monomer.
  • the vinyl cyanide-based monomer may be at least one selected from the group consisting of acrylonitrile, methacrylonitrile, phenylacrylonitrile, and ⁇ -chloroacrylonitrile, of which acrylonitrile is preferable.
  • the emulsifier is sodium dicyclohexyl sulfosuccinate, sodium dodecyl sulfate, sodium dodecyl benzene sulfonate, sodium octadecyl sulfate, sodium oleyl sulfate, potassium dodecyl sulfate, potassium octadecyl sulfate, potassium oleate, It may be at least one selected from the group consisting of sodium oleate, potassium loginate and sodium loginate. Among them, at least one selected from the group consisting of potassium oleate, sodium oleate and potassium loginate is preferred.
  • the initiator is potassium persulfate, sodium persulfate, ammonium persulfate, cumene hydroperoxide diisopropyl benzene hydroperoxide, azobisisobutyronitrile, t-butyl hydroperoxide, paramentane hydroperoxide, It may be at least one selected from the group consisting of benzoyl peroxide and 1,1-bis (t-butylperoxy) cyclohexane, among which potassium persulfate, cumene hydroperoxide and 1,1-bis (t-butyl At least one selected from the group consisting of peroxy)cyclohexane is preferred.
  • the molecular weight modifier is ⁇ -methyl styrene dimer, t-dodecyl mercaptan, n-dodecyl mercaptan, t-octyl mercaptan, n-octyl mercaptan, carbon tetrachloride, methylene chloride, methylene bromide, tetraethyl thiuram It may be at least one selected from the group consisting of disulfide, dipentamethylene thiuram dipulfide, and diisopropylxantogen disulfide. Among these, t-dodecyl mercaptan is preferred.
  • the oxidation-reduction catalyst is selected from the group consisting of sodium formaldehyde sulfoxylate, sodium ethylenediamine tetraacetate, iron (II) sulfate, dextrose, tetrasodium pyrophosphate, anhydrous sodium pyrophosphate and sodium sulfate. It may be one or more, and among them, one or more selected from the group consisting of iron (II) sulfate, dextrose, and tetrasodium pyrophosphate is preferred.
  • the aqueous solvent may be ion-exchanged water or deionized water.
  • a thermoplastic resin composition according to an embodiment of the present invention includes a rubbery polymer having a gel content of 0 to 10% by weight and containing a vinyl aromatic monomer unit and a diene monomer unit, and a (meth)acrylate grafted to the rubbery polymer.
  • a graft polymer comprising a shell comprising a monomer unit and a vinyl aromatic monomer unit; and a (meth)acrylate-based monomer unit and a non-grafted polymer including a vinyl aromatic-based monomer unit, wherein a difference in refractive index between the graft polymer and the non-grafted polymer is 0.0100 or less.
  • the difference in refractive index between the graft polymer and the non-grafted polymer included in the thermoplastic resin composition according to the present invention is 0.0100 or less, preferably 0.0050 or less, more preferably 0.0035 or less, even more preferably 0.0005 or less, most preferably may be 0.
  • excellent transparency of the thermoplastic resin composition can be implemented.
  • the thermoplastic resin composition according to the present invention may include 10 to 70% by weight of the graft polymer and 30 to 90% by weight of the non-grafted polymer, preferably 15 to 65% by weight of the graft polymer and the 35 to 85% by weight of the non-grafted polymer may be included, more preferably 15 to 35% by weight of the graft polymer and 65 to 85% by weight of the non-grafted polymer.
  • the thermoplastic resin composition may have excellent impact resistance and processability.
  • thermoplastic resin composition according to the present invention may include 5.0 to 35.0% by weight of the rubbery polymer, preferably 10.0 to 30.0% by weight. If the above conditions are satisfied, the thermoplastic resin composition can implement excellent impact resistance.
  • thermoplastic resin composition according to the present invention may include 24.0 to 60.0% by weight, preferably 29.0 to 55.0% by weight of the (meth)acrylate-based monomer units. If the above conditions are satisfied, the thermoplastic resin composition can realize excellent transparency.
  • thermoplastic resin composition according to the present invention may include 19.0 to 47.0% by weight, preferably 23.0 to 42.0% by weight of the vinyl aromatic monomer unit.
  • the thermoplastic resin composition can realize excellent processability.
  • thermoplastic resin composition according to the present invention may further include a vinyl cyanide-based monomer unit in order to realize excellent chemical resistance.
  • the content of the vinyl cyanide-based monomer unit may be 10.0% by weight or less, preferably 5% by weight or less.
  • the graft polymer is a rubbery polymer having a gel content of 0 to 10% by weight and containing a vinyl aromatic monomer unit and a diene monomer unit, and a (meth)acrylate monomer unit and a vinyl aromatic monomer grafted onto the rubbery polymer.
  • a shell containing units may include a (meth)acrylate-based monomer unit and a vinyl aromatic-based monomer unit that are not grafted onto the rubbery polymer.
  • the shell may further include a vinyl cyanide-based monomer unit that may or may not be grafted to the rubbery polymer.
  • the rubbery polymer may have a gel content of 0 to 10% by weight, preferably 0 to 5% by weight, and more preferably 0 to 1% by weight.
  • the thermoplastic resin composition can implement excellent matte properties and impact resistance. However, if the above-mentioned range is exceeded, the thermoplastic resin composition may not implement matte properties and impact resistance may be significantly reduced.
  • the gel content of the rubbery polymer can be controlled by the polymerization temperature and the final polymerization conversion rate, and the rubbery polymer satisfying the above-mentioned gel content initiates polymerization of the vinyl aromatic monomer unit and the diene monomer unit at 0 to 20 ° C. and performing, and may be prepared by terminating the polymerization at the point where the polymerization conversion rate is 40 to 60%.
  • the rubbery polymer satisfying the above-described gel content initiates and performs polymerization of the vinyl aromatic monomer unit and the diene monomer at 5 to 15 ° C, and terminates the polymerization when the polymerization conversion rate is 45 to 55%. It can be manufactured by
  • the polymerization may be emulsion polymerization, and may be performed in the presence of at least one selected from the group consisting of an emulsifier, an initiator, a molecular weight regulator, an oxidation-reduction catalyst, and an aqueous solvent.
  • the amount of the emulsifier may be 1.0 to 10.0 parts by weight, preferably 3.0 to 7.0 parts by weight, based on 100 parts by weight of the total amount of monomers added during the preparation of the rubbery polymer.
  • the rubbery polymer can be adjusted to have a desired average particle diameter while improving polymerization stability and latex stability.
  • the amount of the initiator may be 0.1 to 0.5 parts by weight, preferably 0.1 to 0.3 parts by weight, based on 100 parts by weight of the total amount of monomers added during the preparation of the rubbery polymer. If the above conditions are satisfied, emulsion polymerization can be stably initiated and carried out.
  • the amount of the molecular weight modifier may be 0.1 to 1.7 parts by weight, preferably 0.3 to 1.5 parts by weight, and more preferably 0.5 to 1.3 parts by weight, based on 100 parts by weight of the total monomers used in preparing the rubbery polymer. If the above conditions are satisfied, the gel content of the rubbery polymer can be finely controlled, the gel content can be decreased when the content of the molecular weight modifier is increased, and the gel content can be increased when the content of the molecular weight modifier is decreased.
  • the amount of the oxidation-reduction catalyst may be 0.010 to 0.100 parts by weight, preferably 0.030 to 0.080 parts by weight, based on 100 parts by weight of the total amount of monomers added in preparing the rubbery polymer.
  • the rubbery polymer is a rubbery polymer containing only diene-based monomer units
  • an excessive amount of (meth)acrylate-based monomeric units are added to the matrix region in order to prevent or minimize the difference in refractive index between the impact modifier region and the matrix region of the thermoplastic resin composition.
  • the (meth)acrylate-based monomer unit causes deterioration in the chemical resistance of the thermoplastic resin composition and increases manufacturing cost due to the high unit price of the (meth)acrylate-based monomer.
  • a rubbery polymer cannot be prepared with a vinyl aromatic monomer alone.
  • the rubbery polymer may increase the refractive index of the rubbery polymer by including not only a diene monomer unit but also a vinyl aromatic monomer unit, and thus it is possible to include a small amount of (meth)acrylate monomer units in the matrix region. . Therefore, the thermoplastic resin composition according to the present invention can minimize the decrease in chemical resistance and the increase in manufacturing cost caused by the (meth)acrylate-based monomer unit.
  • the rubbery polymer may include a vinyl aromatic monomer unit and a diene monomer unit in a weight ratio of 10:90 to 35:65, preferably 15:85 to 30:70.
  • the impact resistance can be improved and the refractive index can be increased, so that the amount of (meth)acrylate-based monomer units used can be reduced, and chemical resistance is lowered due to the (meth)acrylate-based monomer units and Manufacturing cost increase can be minimized.
  • the refractive index may be higher than that of the rubbery polymer composed only of the diene-based monomer.
  • the rubbery polymer may have a refractive index of 1.5230 to 1.5420, preferably 1.5300 to 1.5400.
  • the rubbery polymer may have an average particle diameter of 20 to 100 nm, preferably 20 to 80 nm. If the above range is satisfied, excellent matte properties and impact resistance may be implemented.
  • the graft polymer may include 30.0 to 65.0% by weight of the rubbery polymer, preferably 35.0 to 60.0% by weight. If the above range is satisfied, excellent impact resistance can be implemented.
  • the graft polymer may include 10.0 to 55.0% by weight, preferably 15.0 to 50.0% by weight of the (meth)acrylate-based monomer units. If the above-described range is satisfied, the graft polymer may realize translucency by maintaining a transmittance of a certain level or higher.
  • the graft polymer may include 5.0 to 40.0% by weight, preferably 10.0 to 35.0% by weight, of the vinyl aromatic monomer unit. If the above range is satisfied, excellent processability can be implemented.
  • the graft polymer may further include a vinyl cyanide-based monomer unit, and may further include 7.0% by weight or less in order to minimize yellowing while implementing excellent chemical resistance.
  • the content of the vinyl cyanide-based monomer unit may mean the content of the vinyl cyanide-based monomer unit grafted or not grafted onto the rubbery polymer.
  • the graft copolymer may have a refractive index of 1.5230 to 1.5420, preferably 1.5300 to 1.5400. If the above-mentioned range is satisfied, the refractive index is identical to or similar to that of the above-mentioned rubbery polymer, so that the transparency of the graft copolymer can be further improved.
  • the non-grafted polymer includes a (meth)acrylate-based monomer unit and a vinyl aromatic-based monomer unit.
  • the non-grafted polymer may include a vinyl cyanide-based monomer unit in order to realize excellent chemical resistance.
  • the non-grafted polymer may include 39.0 to 65.0% by weight of the (meth)acrylate-based monomer unit, preferably 40.0 to 60.0% by weight. If the above conditions are satisfied, a thermoplastic resin composition realizing excellent transparency can be prepared.
  • the non-grafted polymer may include 35.0 to 61.0% by weight of the vinyl aromatic monomer unit, preferably 40.0 to 60.0% by weight. When the above conditions are satisfied, a thermoplastic resin composition having excellent processability can be prepared.
  • the non-grafted polymer may include 12.0 wt% or less of vinyl cyanide-based monomer units.
  • the non-grafted copolymer may have a refractive index of 1.5230 to 1.5420, preferably 1.5300 to 1.5400.
  • a non-grafted polymer having more improved transparency having a refractive index identical to or similar to that of the rubbery polymer and the graft polymer described above can be prepared.
  • graft polymer latex 50 parts by weight (based on solid content) of the styrene/butadiene rubbery polymer latex was introduced into the reactor. Thereafter, polymerization was performed while continuously introducing the mixed solution into the reactor at 60° C. for 5 hours. After the continuous addition of the mixed solution was completed, the mixture was aged at 60° C. for 1 hour, and polymerization was terminated to prepare a graft polymer latex.
  • Graft polymer powder (refractive index: 1.5310) was prepared by coagulating the entire amount of the prepared graft polymer latex into an aqueous solution containing 2 parts by weight of calcium chloride, followed by aging, washing, dehydration, and drying.
  • Graft polymer powder (refractive index: 1.5350) was prepared by adding the entire amount of the prepared graft polymer latex to an aqueous solution containing 2 parts by weight of calcium chloride and coagulating it, aging, washing, dehydration, and drying.
  • a graft polymer powder (refractive index: 1.5350) was prepared in the same manner as in Preparation Example 2, except that the above-described styrene/butadiene rubbery polymer latex was used.
  • Polymerization was terminated when the polymerization conversion rate was 70%, and 25% by weight of styrene and 75% by weight of butadiene were emulsion-polymerized to obtain a styrene/butadiene rubbery polymer latex (gel content: 15% by weight, average particle diameter: 80 nm, refractive index: 1.5350) was manufactured.
  • a graft polymer powder (refractive index: 1.5350) was prepared in the same manner as in Preparation Example 2, except that the above-described styrene/butadiene rubbery polymer latex was used.
  • a graft polymer powder (refractive index: 1.5350) was prepared in the same manner as in Preparation Example 2, except that the above-described styrene/butadiene rubbery polymer latex was used.
  • a graft polymer powder (refractive index: 1.5350) was prepared in the same manner as in Preparation Example 2, except that the above-described styrene/butadiene rubbery polymer latex was used.
  • a graft polymer powder (refractive index: 1.5350) was prepared in the same manner as in Preparation Example 2, except that the above-described styrene/butadiene rubbery polymer latex was used.
  • Polymerization was performed while continuously introducing the mixed solution into the reactor so that the average polymerization time was 3 hours. At this time, the temperature of the reactor was 148 °C.
  • the polymerization solution discharged from the reactor was heated in a pre-heating tank, and unreacted monomers were volatilized in a volatilization tank to prepare a polymer. Then, while maintaining the temperature of the polymer at 210 ° C., it was transferred to a polymer transfer pump extrusion machine to prepare non-grafted polymer pellets (refractive index: 1.5315).
  • a mixed solution containing parts by weight was prepared,
  • Polymerization was performed while continuously introducing the mixed solution into the reactor so that the average polymerization time was 3 hours. At this time, the temperature of the reactor was 148 °C.
  • the polymerization solution discharged from the reactor was heated in a pre-heating tank, and unreacted monomers were volatilized in a volatilization tank to prepare a polymer. Then, while maintaining the temperature of the polymer at 210 °C, it was transferred to a polymer transfer pump extrusion machine to prepare non-grafted polymer pellets (refractive index: 1.5210).
  • Polymerization was performed while continuously introducing the mixed solution into the reactor so that the average polymerization time was 3 hours. At this time, the temperature of the reactor was 148 °C.
  • the polymerization solution discharged from the reactor was heated in a pre-heating tank, and unreacted monomers were volatilized in a volatilization tank to prepare a polymer. Then, while maintaining the temperature of the polymer at 210 ° C., it was transferred to a polymer transfer pump extrusion machine to prepare non-grafted polymer pellets (refractive index: 1.5160).
  • thermoplastic resin composition was prepared by mixing the graft polymer and the non-graft polymer of Preparation Example according to the contents shown in Tables 1 and 2 below.
  • Average particle diameter (nm) Measured with Nicomp 380 equipment from Particle Sizing Systems Co., using a dynamic light scattering method.
  • Refractive index After stretching the prepared rubber piece to a thickness of 0.2 mm when measuring the gel content, it was measured using an Abbe refractometer at 25 ° C. using visible light having a wavelength of 589.3 nm.
  • thermoplastic resin compositions of Examples and Comparative Examples was measured by the method described below, and the results are shown in Tables 1 and 2 below.
  • thermoplastic resin compositions of Examples and Comparative Examples and 0.2 parts by weight of an antioxidant were mixed and extruded to prepare pellets.
  • Specimens were prepared by injecting the pellets, and physical properties were evaluated by the method described below, and the results are shown in Tables 1 and 2 below.
  • Total light transmittance (%) The total light transmittance of the specimen (thickness: 3 mm) was measured according to ASTM D1003. Transparency was judged to be excellent when the total light transmittance was 70% or more.
  • Example 3 The specimen (right) of Example 3 and the specimen (left) of Comparative Example 4 prepared in Experimental Example 3 were placed on a book and photographed, and the results are shown in FIG. 1 .
  • Example 2 Example 3
  • Example 4 Example 5 graft polymer type Preparation Example 1 Preparation Example 1 Preparation Example 2
  • Preparation Example 2 Preparation Example 3
  • SBR monomer (weight%) S 20 20 25 25 25 BD 80 80 75 75 75 Gel content (% by weight) 0 0
  • Preparation Example 8 Preparation Example 9
  • Preparation Example 8 Preparation Example 8
  • Preparation Example 8 monomer (parts by weight) MMA 51.4 65.4 51.4 51.4 51.4 S 43.6 29.6 43.6 43.6 43.6 AN 5.0 5.0 5.0
  • Comparative Example 2 in which the gel content of the rubbery polymer of the graft polymer was 15% by weight and the difference in refractive index between the graft polymer and the non-grafted polymer was 0.0035, had high total light transmittance and realized transparent properties, but had a high gloss value and was matte. The feature could not be implemented.
  • the average particle diameter of the rubbery polymer was remarkably large compared to Examples 1 to 5, but the impact resistance was not excellent.
  • Comparative Example 3 in which the gel content of the rubbery polymer of the graft polymer is 65% by weight and the difference between the refractive indexes of the graft polymer and the non-graft polymer is 0.0035, has high total light transmittance to realize transparent properties, but has a high gloss value and matte properties. failed to implement. Compared with Examples 1 to 5, the average particle diameter of the rubbery polymer was remarkably large, but the impact resistance was at the same level.
  • Comparative Example 4 in which the gel content of the rubbery polymer of the graft polymer was 90% by weight and the difference between the refractive indices of the graft polymer and the non-grafted polymer was 0.0035, had high total light transmittance and excellent transparency properties, but also had a high gloss value, so it exhibited matte properties. failed to implement. And, compared to Examples 1 to 5, the average particle diameter of the rubbery polymer was remarkably large, but the impact resistance was not excellent.
  • Comparative Example 5 in which the gel content of the rubbery polymer of the graft polymer is 15% by weight and the difference between the refractive index of the graft polymer and the non-graft polymer is 0.0035, has high total light transmittance to realize transparent properties, but has a high gloss value and matte properties. failed to implement. And, compared to Examples 1 to 5, the average particle diameter of the rubbery polymer was remarkably large, but the impact resistance was not excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

본 발명은 겔 함량이 0 내지 10 중량%이고 비닐 방향족계 단량체 단위 및 디엔계 단량체 단위를 포함하는 고무질 중합체와, 상기 고무질 중합체에 그라프트된 (메트)아크릴레이트계 단량체 단위 및 비닐 방향족계 단량체 단위를 포함하는 쉘을 포함하는 그라프트 중합체; 및 (메트)아크릴레이트계 단량체 단위 및 비닐 방향족계 단량체 단위를 포함하는 비그라프트 중합체를 포함하고, 상기 그라프트 중합체와 비그라프트 중합체는 굴절률의 차이가 0.0100 이하인 열가소성 수지 조성물에 관한 것이다.

Description

열가소성 수지 조성물
[관련출원과의 상호인용]
본 발명은 2021년 7월 26일에 출원된 한국 특허 출원 제10-2021-0098174호와 2022년 7월 18일에 출원된 한국 특허 출원 제10-2022-0088183호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.
[기술분야]
본 발명은 열가소성 수지 조성물에 관한 것이고, 구체적으로는 우수한 무광 투명 특성 및 내충격성을 구현할 수 있는 열가소성 수지 조성물에 관한 것이다.
일반적으로 사용되는 투명수지로는 폴리카보네이트, 폴리 메틸메타크릴레이트, 폴리스티렌, 폴리아크릴로니트릴-스티렌 등이 있다. 폴리카보네이트는 내충격성 및 투명성이 우수하지만, 가공성이 저하되어 복잡한 제품을 만들기 어렵고, 내화학성이 우수하지 못하였다. 그리고, 폴리카보네이트의 원료인 비스페놀 A로 인해, 폴리카보네이트의 사용이 점점 제한되고 있었다. 또한, 가교 중합으로 제조된 폴리메틸메타크릴레이트 비드와 일반 폴리메틸메타크릴레이트를 혼합 사용하는 경우, 우수한 투명성을 가지나, 내충격성 및 내화학성이 우수하지 못하였다. 또한, 폴리스티렌 및 폴리아크릴로니트릴-스티렌도 내충격성 및 내화학성이 우수하지 못하였다.
이러한 문제점을 해소하고자, (메트)아크릴레이트계 단량체 단위 및 비닐 방향족계 단량체 단위가 그라프트된 디엔계 고무질 중합체를 포함하는 디엔계 그라프트 중합체가 제안되었다.
하지만, 최근 산업이 선진화되고 생활이 다양해짐에 따라 무광 투명 특성과 같은 고기능성을 부여하면서, 복잡한 구조에서도 사출이 가능해야 하는데, 이러한 디엔계 그라프트 중합체는 상술한 조건을 모두 구현하는 것은 어려웠다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) JP1995-025975B
본 발명의 목적은 우수한 무광 투명 특성, 내충격성 및 가공성을 구현할 수 있는 열가소성 수지 조성물을 제공하는 것이다.
상술한 과제를 해결하기 위하여, 1) 본 발명은 겔 함량이 0 내지 10 중량%이고 비닐 방향족계 단량체 단위 및 디엔계 단량체 단위를 포함하는 고무질 중합체와, 상기 고무질 중합체에 그라프트된 (메트)아크릴레이트계 단량체 단위 및 비닐 방향족계 단량체 단위를 포함하는 쉘을 포함하는 그라프트 중합체; 및 (메트)아크릴레이트계 단량체 단위 및 비닐 방향족계 단량체 단위를 포함하는 비그라프트 중합체를 포함하고, 상기 그라프트 중합체와 비그라프트 중합체는 굴절률의 차이가 0.0100 이하인 열가소성 수지 조성물을 제공한다.
2) 본 발명은 상기 1)에 있어서, 상기 고무질 중합체는 겔 함량이 0 내지 5 중량%인 것인 열가소성 수지 조성물을 제공한다.
3) 본 발명은 상기 1) 또는 2)에 있어서, 상기 고무질 중합체는 상기 비닐 방향족계 단량체 단위와 디엔계 단량체 단위를 10:90 내지 35:65의 중량비로 포함하는 것인 열가소성 수지 조성물을 제공한다.
4) 본 발명은 상기 1) 내지 3) 중 어느 하나에 있어서, 상기 고무질 중합체는 평균 입경이 20 내지 100 ㎚인 것인 열가소성 수지 조성물을 제공한다.
5) 본 발명은 상기 1) 내지 4) 중 어느 하나에 있어서, 상기 그라프트 중합체는 상기 고무질 중합체 30.0 내지 65.0 중량%; 상기 (메트)아크릴레이트계 단량체 단위 10.0 내지 55.0 중량%; 및 상기 비닐 방향족계 단량체 단위 5.0 내지 40.0 중량%를 포함하는 것인 열가소성 수지 조성물을 제공한다.
6) 본 발명은 상기 1) 내지 5) 중 어느 하나에 있어서, 상기 비그라프트 중합체는 상기 (메트)아크릴레이트계 단량체 단위 39.0 내지 65.0 중량%; 및 상기 비닐 방향족계 단량체 단위 35.0 내지 61.0 중량%를 포함하는 것인 열가소성 수지 조성물을 제공한다.
7) 본 발명은 상기 1) 내지 6) 중 어느 하나에 있어서, 상기 열가소성 수지 조성물은 상기 그라프트 중합체를 10.0 내지 70.0 중량%; 및 상기 비그라프트 중합체를 30.0 내지 90.0 중량%로 포함하는 것인 열가소성 수지 조성물을 제공한다.
8) 본 발명은 상기 1) 내지 7) 중 어느 하나에 있어서, 상기 그라프트 중합체의 쉘은 상기 고무질 중합체에 그라프트된 비닐 시아나이드계 단량체 단위를 포함하고, 상기 비그라프트 중합체는 비닐 시아나이드계 단량체 단위를 포함하는 것인 열가소성 수지 조성물을 제공한다.
9) 본 발명은 상기 1) 내지 8) 중 어느 하나에 있어서, 상기 그라프트 중합체와 비그라프트 중합체는 각각 굴절률이 1.5230 내지 1.5420인 것인 열가소성 수지 조성물을 제공한다.
10) 본 발명은 상기 1) 내지 9) 중 어느 하나에 있어서, 상기 열가소성 수지 조성물은 상기 고무질 중합체 5.0 내지 35.0 중량%; 상기 (메트)아크릴레이트계 단량체 단위 24.0 내지 60.0 중량%; 및 상기 비닐 방향족계 단량체 단위 19.0 내지 47.0 중량%를 포함하는 것인 열가소성 수지 조성물을 제공한다.
본 발명에 따른 열가소성 수지 조성물은 우수한 투명성, 내충격성, 무광 특성 및 가공성을 구현할 수 있다.
도 1은 실시예 3으로 제조된 시편과 비교예 4로 제조된 시편을 비교한 사진이다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에서 겔 함량은 고무질 중합체 라텍스를 묽은산이나 금속염을 사용하여 응고한 후, 세척하고, 60 ℃의 진공 오븐에서 24 시간 동안 건조하여 고무 덩어리를 수득한다. 이 고무 덩어리를 가위로 잘게 잘라 1 g의 고무 절편을 제조하고, 이 고무 절편을 톨루엔 100 g에 넣고, 48 시간 동안 23 ℃의 암실에서 보관한 후, 졸과 겔을 분리하였다. 이 졸과 겔을 하기 식에 대입하여, 겔 함량을 산출하였다. 여기서, 묽은산의 종류는 특별히 한정하지 않으나, 염산, 황산 및 개미산 등으로 이루어진 군에서 선택되는 1 종 이상인 것이 바람직하다. 그리고, 금속염의 종류는 특별히 한정하지 않으나, 황산마그네슘, 염화칼슘 및 황산알루미늄 등으로 이루어진 군에서 선택되는 1종 이상인 것이 바람직하다.
겔 함량(중량%) = 겔의 중량/ (고무 절편의 중량) × 100
본 발명에서 굴절률은 물질의 절대 굴절률을 의미하는 것으로서, 굴절률은 자유 공간에서의 전자기 복사선 속도 대 물질 내에서의 복사선의 속도 비로서 인식될 수 있다. 이때 복사선은 파장이 450 ㎚ 내지 680 ㎚인 가시광선일 수 있고, 구체적으로는 파장이 589.3 ㎚인 가시광선일 수 있다. 굴절률은 공지된 방법, 즉 아베 굴절계(Abbe refractometer)로 측정할 수 있다.
본 발명에서는 그라프트 중합체 및 비그라프트 중합체를 0.2 ㎜ 두께로 편 후, 25 ℃에서 파장이 589.3 ㎚인 가시광선을 이용하여, 아베 굴절계(Abbe refractometer)로 측정할 수 있다.
본 발명에서 평균 입경은 동적 광산란(dynamic light scattering)법을 이용하여 측정할 수 있고, 상세하게는 Particle Sizing Systems 社의 Nicomp 380 장비를 이용하여 측정할 수 있다. 본 발명에서 평균 입경은 동적 광산란법에 의해 측정되는 입도분포에 있어서의 산술 평균 입경, 즉 산란강도(Intensity Distribution) 평균 입경을 의미할 수 있다.
본 발명에서 평균 입경은 투과전자현미경(transmission electron microscope, TEM)으로 측정할 수 있다.
본 발명에서 열가소성 수지 조성물에 포함된 고무질 중합체, 디엔계 단량체 단위, (메트)아크릴레이트계 단량체 단위, 비닐 방향족계 단량체 단위, 비닐 시아나이드계 단량체 단위의 중량은 적외선 분광법(Infrared Spectroscopy)으로 측정할 수 있다. 이때, 적외선 분광법 측정장치로는 NicoletTM iS20 FTIR Spectrometer(모델명, 제조사: Thermo Scientific)을 이용할 수 있다.
본 발명에서 중합전환율은 단량체들이 중합하여 중합체를 형성한 정도를 나타내는 것으로서, 하기 식으로 산출될 수 있다.
중합전환율(%) = {(중합이 종료될 때까지 투입된 단량체들의 총 중량) - (중합전환율을 측정하는 시점에서 미반응 단량체들의 총 중량)}/(중합이 종료될 때까지 투입된 단량체들의 총 중량) × 100
본 발명에서 디엔계 단량체 단위는 디엔계 단량체로부터 유래된 단위일 수 있다. 상기 디엔계 단량체 단위는 1,3-부타디엔, 이소프렌, 클로로프렌 및 피페릴렌으로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 1,3-부타디엔이 바람직하다.
본 발명에서 비닐 방향족계 단량체 단위는 비닐 방향족계 단량체로부터 유래된 단위일 수 있다. 상기 비닐 방향족계 단량체는 스티렌, α-메틸 스티렌, α-에틸 스티렌 및 p-메틸 스티렌으로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 스티렌이 바람직하다.
본 발명에서 (메트)아크릴레이트계 단량체 단위는 (메트)아크릴레이트계 단량체로부터 유래된 단위일 수 있다. 상기 (메트)아크릴레이트계 단량체는 아크릴레이트계 단량체와 메타크릴레이트계 단량체를 모두 포괄하는 용어일 수 있다. 상기 (메트)아크릴레이트계 단량체는 C1 내지 C10의 알킬 (메트)아크릴레이트계 단량체일 수 있으며, C1 내지 C10의 알킬 (메트)아크릴레이트계 단량체는 메틸 (메트)아크릴레이트, 에틸 (메트)아크릴레이트, 프로필 (메트)아크릴레이트, 부틸 (메트)아크릴레이트, 헵틸 (메트)아크릴레이트, 헥실 (메트)아크릴레이트, 2-에틸헥실 (메트)아크릴레이트 및 데실 (메트)아크릴레이트로 이루어진 군에서 선택되는 1종 이상일 수 있으며, 이 중 메틸 메타크릴레이트가 바람직하다.
본 발명에서 비닐 시아나이드계 단량체 단위는 비닐 시아나이드계 단량체로부터 유래된 단위일 수 있다. 상기 비닐 시아나이드계 단량체는 아크릴로니트릴, 메타크릴로니트릴, 페닐아크릴로니트릴 및 α-클로로아크릴로니트릴로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 아크릴로니트릴이 바람직하다.
본 발명에서 유화제는 소듐 디시클로헥실 설포석시네이트, 소듐 도데실 설페이트, 소듐 도데실 벤젠 설포네이트, 소듐 옥타데실 설페이트, 소듐 올레일 설페이트, 포타슘 도데실 설페이트, 포타슘 옥타데실 설페이트, 포타슘 올레이트, 소듐 올레이트, 포타슘 로지네이트 및 소듐 로지네이트로 이루어진 군에서 선택되는 1종 이상일 수 있다. 이 중 포타슘 올레이트, 소듐 올레이트 및 포타슘 로지네이트로 이루어진 군에서 선택되는 1종 이상이 바람직하다.
본 발명에서 개시제는 포타슘 퍼설페이트, 소듐 퍼설페이트, 암모늄 퍼설페이트, 큐멘 하이드로퍼옥사이드 디이소프로필 벤젠 하이드로퍼옥사이드, 아조비스이소부티로니트릴, t-부틸 하이드로퍼옥사이드, 파라멘탄 하이드로퍼옥사이드, 벤조일퍼옥사이드 및 1,1-비스(t-부틸퍼옥시)사이클로헥산으로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 포타슘 퍼설페이트, 큐멘 하이드로퍼옥사이드 및 1,1-비스(t-부틸퍼옥시)사이클로헥산으로 이루어진 군에서 선택되는 1종 이상이 바람직하다.
본 발명에서 분자량 조절제는 α-메틸 스티렌 다이머, t-도데실 머캅탄, n-도데실 머캅탄, t-옥틸 머캅탄, n-옥틸 머캅탄, 사염화탄소, 염화메틸렌, 브롬화메틸렌, 테트라 에틸 티우람 디설파이드, 디펜타메틸렌 티우람 디펄파이드, 디이소프로필키산토겐 디설파이드로 이루어진 군에서 선택되는 1종 이상일 수 있다. 이 중 t-도데실 머캅탄이 바람직하다.
본 발명에서 산화-환원계 촉매는 나트륨 포름알데히드 설폭실레이트, 나트륨 에틸렌디아민 테트라아세테이트, 황산철(Ⅱ), 덱스트로즈, 테트라소듐 피로포스페이트, 무수 피로인산나트륨 및 나트륨 설페이트로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 황산철(Ⅱ), 덱스트로즈 및 테트라소듐 피로포스페이트로 이루어진 군에서 선택되는 1종 이상이 바람직하다.
본 발명에서 수계 용매는 이온교환수 또는 탈이온수일 수 있다.
1. 열가소성 수지 조성물
본 발명의 일 실시예에 따른 열가소성 수지 조성물은 겔 함량이 0 내지 10 중량%이고 비닐 방향족계 단량체 단위 및 디엔계 단량체 단위를 포함하는 고무질 중합체와, 상기 고무질 중합체에 그라프트된 (메트)아크릴레이트계 단량체 단위 및 비닐 방향족계 단량체 단위를 포함하는 쉘을 포함하는 그라프트 중합체; 및 (메트)아크릴레이트계 단량체 단위 및 비닐 방향족계 단량체 단위를 포함하는 비그라프트 중합체를 포함하고, 상기 그라프트 중합체와 비그라프트 중합체는 굴절률의 차이가 0.0100 이하이다.
본 발명에 따른 열가소성 수지 조성물에 포함된 상기 그라프트 중합체와 비그라프트 중합체는 굴절률의 차이가 0.0100 이하, 바람직하게는 0.0050 이하, 보다 바람직하게는 0.0035 이하, 보다 더 바람직하게는 0.0005 이하, 가장 바람직하게는 0일 수 있다. 상술한 조건을 만족하면, 열가소성 수지 조성물이 우수한 투명성이 구현될 수 있다.
본 발명에 따른 열가소성 수지 조성물은 상기 그라프트 중합체를 10 내지 70 중량% 및 상기 비그라프트 중합체를 30 내지 90 중량%로 포함할 수 있고, 바람직하게는 상기 그라프트 중합체를 15 내지 65 중량% 및 상기 비그라프트 중합체를 35 내지 85 중량%로 포함할 수 있고, 보다 바람직하게는 상기 그라프트 중합체를 15 내지 35 중량% 및 상기 비그라프트 중합체를 65 내지 85 중량%로 포함할 수 있다. 상술한 조건을 만족하면, 열가소성 수지 조성물이 우수한 내충격성 및 가공성을 구현할 수 있다.
본 발명에 따른 열가소성 수지 조성물은 상기 고무질 중합체를 5.0 내지 35.0 중량%, 바람직하게는 10.0 내지 30.0 중량%로 포함할 수 있다. 상술한 조건을 만족하면, 열가소성 수지 조성물이 우수한 내충격성을 구현할 수 있다.
본 발명에 따른 열가소성 수지 조성물은 상기 (메트)아크릴레이트계 단량체 단위를 24.0 내지 60.0 중량%, 바람직하게는 29.0 내지 55.0 중량%로 포함할 수 있다. 상술한 조건을 만족하면, 열가소성 수지 조성물이 우수한 투명성을 구현할 수 있다.
또한, 본 발명에 따른 열가소성 수지 조성물은 상기 비닐 방향족계 단량체 단위를 19.0 내지 47.0 중량%, 바람직하게는 23.0 내지 42.0 중량%로 포함할 수 있다. 상술한 조건을 만족하면, 상기 열가소성 수지 조성물이 우수한 가공성을 구현할 수 있다.
또한, 본 발명에 따른 열가소성 수지 조성물은 우수한 내화학성을 구현하기 위하여, 비닐 시아나이드계 단량체 단위를 더 포함할 수 있다. 이 때 상기 비닐 시아나이드계 단량체 단위의 함량은 10.0 중량% 이하, 바람직하게는 5 중량% 이하일 수 있다. 상술한 조건을 만족하면, 비닐 시아나이드계 단량체 단위로 인한 황색 발현을 최소화시키면서, 우수한 내화학성을 구현할 수 있다.
이하, 본 발명의 구성요소인 그라프트 중합체와 비그라프트 중합체에 대하여 상세하게 설명한다.
1) 그라프트 중합체
그라프트 중합체는 겔 함량이 0 내지 10 중량%이고 비닐 방향족계 단량체 단위 및 디엔계 단량체 단위를 포함하는 고무질 중합체와, 상기 고무질 중합체에 그라프트된 (메트)아크릴레이트계 단량체 단위 및 비닐 방향족계 단량체 단위를 포함하는 쉘을 포함한다. 그리고, 상기 쉘은 상기 고무질 중합체에 그라프트되지 않은 (메트)아크릴레이트계 단량체 단위 및 비닐 방향족계 단량체 단위를 포함할 수 있다. 상기 그라프트 중합체의 내화학성을 개선시키기 위하여, 상기 쉘은 상기 고무질 중합체에 그라프트되거나 되지 않은 비닐 시아나이드계 단량체 단위를 더 포함할 수 있다.
상기 고무질 중합체는 겔 함량이 0 내지 10 중량%이고, 바람직하게는 0 내지 5 중량%, 보다 바람직하게는 0 내지 1 중량%일 수 있다. 상술한 범위를 만족하면, 열가소성 수지 조성물이 우수한 무광 특성 및 내충격성을 구현할 수 있다. 하지만, 상술한 범위를 초과하면, 열가소성 수지 조성물이 무광 특성을 구현할 수 없고 내충격성이 현저하게 저하될 수 있다.
한편, 고무질 중합체의 겔 함량은 중합 온도 및 최종 중합전환율로 조절될 수 있는 것으로서, 상술한 겔 함량을 만족하는 고무질 중합체는, 비닐 방향족계 단량체 단위 및 디엔계 단량체를 0 내지 20 ℃에서 중합을 개시 및 수행하고, 중합전환율이 40 내지 60 %인 시점에서 중합을 종료함으로써 제조될 수 있다. 바람직하게는, 상술한 겔 함량을 만족하는 고무질 중합체는, 비닐 방향족계 단량체 단위 및 디엔계 단량체를 5 내지 15 ℃에서 중합을 개시 및 수행하고, 중합전환율이 45 내지 55 %인 시점에서 중합을 종료함으로써 제조될 수 있다.
상술한 중합 온도 및 중합 종료 시점 중 어느 하나를 만족하지 않으면, 상술한 겔 함량을 만족하는 고무질 중합체를 제조하기 어려울 수 있다.
상기 중합은 유화 중합일 수 있으며, 유화제, 개시제, 분자량 조절제, 산화-환원계 촉매 및 수계 용매로 이루어진 군에서 선택되는 1 종 이상의 존재 하에 수행될 수 있다.
상기 유화제의 함량은 상기 고무질 중합체 제조 시 투입되는 단량체의 총 합 100 중량부에 대하여, 1.0 내지 10.0 중량부, 바람직하게는 3.0 내지 7.0 중량부일 수 있다. 상술한 조건을 만족하면, 중합 안정성 및 라텍스 안정성이 개선되면서, 고무질 중합체가 원하는 평균 입경을 갖도록 조절할 수 있다.
상기 개시제의 함량은 상기 고무질 중합체 제조 시 투입되는 단량체의 총 합 100 중량부에 대하여, 0.1 내지 0.5 중량부, 바람직하게는 0.1 내지 0.3 중량부일 수 있다. 상술한 조건을 만족하면, 유화 중합이 안정적으로 개시 및 수행될 수 있다.
상기 분자량 조절제의 함량은 상기 고무질 중합체 제조 시 투입되는 단량체의 총 합 100 중량부에 대하여, 0.1 내지 1.7 중량부, 바람직하게는 0.3 내지 1.5 중량부, 보다 바람직하게는 0.5 내지 1.3 중량부일 수 있다. 상술한 조건을 만족하면, 고무질 중합체의 겔 함량을 미세 조절할 수 있고, 분자량 조절제의 함량이 증가하면 겔 함량이 낮아질 수 있고, 분자량 조절제의 함량이 감소되면 겔 함량이 높아질 수 있다.
상기 산화-환원계 촉매의 함량은 상기 고무질 중합체 제조 시 투입되는 단량체의 총 합 100 중량부에 대하여, 0.010 내지 0.100 중량부, 바람직하게는 0.030 내지 0.080 중량부일 수 있다.
한편, 고무질 중합체가 디엔계 단량체 단위만을 포함하는 고무질 중합체인 경우, 열가소성 수지 조성물의 충격보강 영역과 매트릭스 영역의 굴절률 차이가 없도록 하거나 최소화하기 위해, 매트릭스 영역에 (메트)아크릴레이트계 단량체 단위를 과량으로 포함하여야만 한다. 그러나, (메트)아크릴레이트계 단량체 단위는 열가소성 수지 조성물의 내화학성을 저하시키는 원인이 되고, (메트)아크릴레이트계 단량체의 단가가 높아 제조비용을 상승시키는 원인이 된다. 또한, 비닐 방향족계 단량체 단독으로는 고무질 중합체가 제조될 수 없다.
하지만, 상기 고무질 중합체는 디엔계 단량체 단위뿐만 아니라 비닐 방향족계 단량체 단위를 포함함으로써 고무질 중합체의 굴절률을 높일 수 있고, 이에 따라 매트릭스 영역에 (메트)아크릴레이트계 단량체 단위를 소량으로 포함하는 것이 가능하다. 따라서, 본 발명에 따른 열가소성 수지 조성물은 (메트)아크릴레이트계 단량체 단위로부터 유발되는 내화학성 저하 및 제조비용 상승을 최소화할 수 있다.
상기 고무질 중합체는 비닐 방향족계 단량체 단위 및 디엔계 단량체 단위를 10:90 내지 35:65의 중량비로 포함하고, 바람직하게는 15:85 내지 30:70의 중량비로 포함할 수 있다. 상술한 조건을 만족하면, 내충격성을 개선시킬 수 있으면서, 굴절률을 높일 수 있어, (메트)아크릴레이트계 단량체 단위의 사용량을 줄일 수 있고, (메트)아크릴레이트계 단량체 단위로 인한 내화학성 저하 및 제조비용 상승을 최소화할 수 있다.
상기 고무질 중합체는 디엔계 단량체 단위와 비닐 방향족계 단량체를 상술한 중량비로 포함하므로, 디엔계 단량체로만 이루어진 고무질 중합체보다 굴절률이 높을 수 있다. 구체적인 예로, 상기 고무질 중합체는 굴절률이 1.5230 내지 1.5420, 바람직하게는 1.5300 내지 1.5400일 수 있다.
상기 고무질 중합체는 평균 입경이 20 내지 100 ㎚, 바람직하게는 20 내지 80 ㎚일 수 있다. 상술한 범위를 만족하면, 우수한 무광 특성 및 내충격성을 구현할 수 있다.
상기 그라프트 중합체는 상기 고무질 중합체를 30.0 내지 65.0 중량%, 바람직하게는 35.0 내지 60.0 중량%로 포함할 수 있다. 상술한 범위를 만족하면, 우수한 내충격성을 구현할 수 있다.
상기 그라프트 중합체는 상기 (메트)아크릴레이트계 단량체 단위를 10.0 내지 55.0 중량%, 바람직하게는 15.0 내지 50.0 중량%로 포함할 수 있다. 상술한 범위를 만족하면, 일정수준 이상의 투과도를 유지하여 그라프트 중합체가 반투명성을 구현할 수 있다.
상기 그라프트 중합체는 상기 비닐 방향족계 단량체 단위를 5.0 내지 40.0 중량%, 바람직하게는 10.0 내지 35.0 중량%로 포함할 수 있다. 상술한 범위를 만족하면, 우수한 가공성을 구현할 수 있다.
상기 그라프트 중합체는 비닐 시아나이드계 단량체 단위를 더 포함할 수 있고, 우수한 내화학성을 구현하면서 황색 발현을 최소화하기 위하여, 7.0 중량% 이하로 더 포함할 수 있다. 이때, 상기 비닐 시아나이드계 단량체 단위의 함량은 상기 고무질 중합체에 그라프트되거나 그라프트되지 않은 비닐 시안나이드계 단량체 단위의 함량을 의미할 수 있다.
상기 그라프트 공중합체는 굴절률이 1.5230 내지 1.5420, 바람직하게는 1.5300 내지 1.5400일 수 있다. 상술한 범위를 만족하면, 상술한 고무질 중합체와 굴절률이 일치하거나 유사하여 그라프트 공중합체의 투명성이 보다 개선될 수 있다.
2) 비그라프트 중합체
비그라프트 중합체는 (메트)아크릴레이트계 단량체 단위 및 비닐 방향족계 단량체 단위를 포함한다. 또한, 상기 비그라프트 중합체는 우수한 내화학성을 구현하기 위하여, 비닐 시아나이드계 단량체 단위를 포함할 수 있다.
상기 비그라프트 중합체는 상기 (메트)아크릴레이트계 단량체 단위를 39.0 내지 65.0 중량%, 바람직하게는 40.0 내지 60.0 중량%로 포함할 수 있다. 상술한 조건을 만족하면, 우수한 투명성을 구현하는 열가소성 수지 조성물을 제조할 수 있다.
상기 비그라프트 중합체는 상기 비닐 방향족계 단량체 단위를 35.0 내지 61.0 중량%, 바람직하게는 40.0 내지 60.0 중량%로 포함할 수 있다. 상술한 조건을 만족하면, 우수한 가공성을 구현하는 열가소성 수지 조성물을 제조할 수 있다.
상기 비그라프트 중합체는 비닐 시아나이드계 단량체 단위 12.0 중량% 이하로 포함할 수 있다. 상술한 조건을 만족하면, 황색 발현을 최소화하면서 우수한 내화학성을 구현하는 열가소성 수지 조성물을 제조할 수 있다.
상기 비그라프트 공중합체는 굴절률이 1.5230 내지 1.5420, 바람직하게는 1.5300 내지 1.5400일 수 있다. 상술한 범위를 만족하면, 상술한 고무질 중합체 및 그라프트 중합체와 굴절률이 일치하거나 유사하여 투명성이 보다 개선된 비그라프트 중합체를 제조할 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
제조예 1
<고무질 중합체의 제조>
질소 치환된 중합 반응기(오토클레이브)에 이온교환수 200 중량부, 스티렌 20 중량부, 1,3-부타디엔 80 중량부, 포타슘 올레이트 2.0 중량부, 포타슘 로지네이트 3.0 중량부, 큐멘 하이드로퍼옥사이드 0.1 중량부, t-도데실 머캅탄 1.0 중량부, 피로인산나트륨 0.010 중량부, 덱스트로즈 0.050 중량부 및 황산철(Ⅱ) 0.001 중량부를 일괄 투입하고, 10 ℃에서 중합하였다. 중합전환율이 50 %인 시점에서 중합을 종료하여, 스티렌/부타디엔 고무질 중합체 라텍스(겔 함량: 0 중량%, 평균 입경: 40 ㎚, 굴절률: 1.5310)를 제조하였다.
<그라프트 중합체의 제조>
이온교환수 200 중량부, 소듐 올레이트 1.0 중량부, 메틸 메타크릴레이트 29.6 중량부, 스티렌 20.4 중량부, t-도데실 머캅탄 0.6 중량부, 에틸렌디아민테트라아세트산 0.050 중량부, 소듐 포름알데히드 설폭실레이트 0.100 중량부, 황산철(Ⅱ) 0.001 중량부 및 큐멘 하이드로퍼옥사이드 0.2 중량부를 포함하는 혼합 용액을 제조하였다.
반응기에 상기 스티렌/부타디엔 고무질 중합체 라텍스 50 중량부(고형분 기준)를 투입하였다. 그 후, 상기 반응기에 상기 혼합 용액을 60 ℃에서 5 시간 동안 연속 투입하면서 중합하였다. 상기 혼합 용액의 연속 투입이 완료된 후, 60 ℃에서 1 시간 동안 숙성시키고, 중합을 종료하여 그라프트 중합체 라텍스를 제조하였다. 염화칼슘 2 중량부를 포함하는 수용액에 제조된 그라프트 중합체 라텍스 전량을 투입하여 응집시키고, 숙성, 세척, 탈수 및 건조하여 그라프트 중합체 분말(굴절률: 1.5310)을 제조하였다.
제조예 2
<고무질 중합체의 제조>
질소 치환된 중합 반응기(오토클레이브)에 이온교환수 200 중량부, 스티렌 25 중량부, 1,3-부타디엔 75 중량부, 포타슘 올레이트 3.0 중량부, 포타슘 로지네이트 3.0 중량부, 큐멘 하이드로퍼옥사이드 0.1 중량부, t-도데실 머캅탄 0.8 중량부, 피로인산나트륨 0.010 중량부, 덱스트로즈 0.050 중량부 및 황산철(Ⅱ) 0.001 중량부를 일괄 투입하고, 10 ℃에서 중합하였다. 중합전환율이 60 %인 시점에서 중합을 종료하여, 스티렌/부타디엔 고무질 중합체 라텍스(겔 함량: 1 중량%, 평균 입경: 40 ㎚, 굴절률: 1.5350)를 제조하였다.
<그라프트 중합체의 제조>
이온교환수 200 중량부, 소듐 올레이트 1.0 중량부, 메틸 메타크릴레이트 25.7 중량부, 스티렌 21.8 중량부, 아크릴로니트릴 2.5 중량부, t-도데실 머캅탄 0.4 중량부, 에틸렌디아민테트라아세트산 0.050 중량부, 소듐 포름알데히드 설폭실레이트 0.100 중량부, 황산철(Ⅱ) 0.001 중량부 및 큐멘 하이드로퍼옥사이드 0.2 중량부를 포함하는 혼합 용액을 제조하였다.
반응기에 상기 스티렌/부타디엔 고무질 중합체 라텍스 50 중량부(고형분 기준)를 투입하였다. 그 후, 상기 반응기에 상기 혼합 용액을 60 ℃에서 5 시간 동안 연속 투입하면서 중합하였다. 상기 혼합 용액의 연속 투입이 완료된 후, 60 ℃에서 1 시간 동안 숙성시키고, 중합을 종료하여 그라프트 중합체 라텍스를 제조하였다. 염화칼슘 2 중량부를 포함하는 수용액에 제조된 그라프트 중합체 라텍스 전량을 투입하여 응집시키고, 숙성, 세척, 탈수 및 건조하여 그라프트 중합체 분말(굴절률: 1.5350)을 제조하였다.
제조예 3
<고무질 중합체의 제조>
질소 치환된 중합 반응기(오토클레이브)에 이온교환수 200 중량부, 스티렌 25 중량부, 1,3-부타디엔 75 중량부, 포타슘 올레이트 3.0 중량부, 포타슘 로지네이트 3.0 중량부, 큐멘 하이드로퍼옥사이드 0.1 중량부, t-도데실 머캅탄 1.0 중량부, 피로인산나트륨 0.010 중량부, 덱스트로즈 0.050 중량부 및 황산철(Ⅱ) 0.001 중량부를 일괄 투입하고, 15 ℃에서 중합하였다. 중합전환율이 60 %인 시점에서 중합을 종료하여, 스티렌/부타디엔 고무질 중합체 라텍스(겔 함량: 5 중량%, 평균 입경: 40 ㎚, 굴절률: 1.5350)를 제조하였다.
<그라프트 중합체의 제조>
상술한 스티렌/부타디엔 고무질 중합체 라텍스를 이용한 것을 제외하고는 제조예 2와 동일한 방법으로 그라프트 중합체 분말(굴절률: 1.5350)을 제조하였다.
제조예 4
<고무질 중합체의 제조>
질소 치환된 중합 반응기(오토클레이브)에 이온교환수 200 중량부, 스티렌 25 중량부, 1,3-부타디엔 75 중량부, 포타슘 올레이트 2.0 중량부, 포타슘 로지네이트 1.5 중량부, 큐멘 하이드로퍼옥사이드 0.1 중량부 및 t-도데실 머캅탄 0.8 중량부, 피로인산나트륨 0.010 중량부, 덱스트로즈 0.050 중량부 및 황산철(Ⅱ) 0.001 중량부를 일괄 투입하고, 10 ℃에서 중합하였다. 중합전환율이 70 %인 시점에서 중합을 종료하여, 스티렌 25 중량%와 부타디엔 75 중량%를 유화 중합하여 스티렌/부타디엔 고무질 중합체 라텍스(겔 함량: 15 중량%, 평균 입경: 80 ㎚, 굴절률: 1.5350)를 제조하였다.
<그라프트 중합체의 제조>
상술한 스티렌/부타디엔 고무질 중합체 라텍스를 이용한 것을 제외하고는 제조예 2와 동일한 방법으로 그라프트 중합체 분말(굴절률: 1.5350)을 제조하였다.
제조예 5
<고무질 중합체의 제조>
질소 치환된 중합 반응기(오토클레이브)에 이온교환수 200 중량부, 스티렌 25 중량부, 1,3-부타디엔 75 중량부, 포타슘 올레이트 1.0 중량부, 포타슘 로지네이트 1.0 중량부, 포타슘 퍼설페이트 0.2 중량부 및 t-도데실 머캅탄 0.3 중량부, 피로인산나트륨 0.010 중량부, 덱스트로즈 0.050 중량부, 황산철(Ⅱ) 0.001 중량부를 일괄 투입하고, 70 ℃에서 중합하였다. 중합전환율이 93 %인 시점에서 중합을 종료하여, 스티렌/부타디엔 고무질 중합체 라텍스(겔 함량: 65 중량%, 평균 입경: 300 ㎚, 굴절률: 1.5350)를 제조하였다.
<그라프트 중합체의 제조>
상술한 스티렌/부타디엔 고무질 중합체 라텍스를 이용한 것을 제외하고는 제조예 2와 동일한 방법으로 그라프트 중합체 분말(굴절률: 1.5350)을 제조하였다.
제조예 6
<고무질 중합체의 제조>
질소 치환된 중합 반응기(오토클레이브)에 이온 교환수 200 중량부, 스티렌 25 중량부, 1,3-부타디엔 75 중량부, 포타슘 퍼설페이트 2.0 중량부, 포타슘 로지네이트 1.0 중량부, 포타슘 퍼설페이트 0.3 중량부 및 t-도데실 머캅탄 0.3 중량부, 피로인산나트륨 0.010 중량부, 덱스트로즈 0.050 중량부, 황산철(Ⅱ) 0.001 중량부를 일괄 투입하고, 70 ℃에서 중합하였다. 중합전환율이 99 %인 시점에서 중합을 종료하여, 스티렌/부타디엔 고무질 중합체 라텍스(겔 함량: 90 중량%, 평균 입경: 90 ㎚, 굴절률: 1.5350)를 제조하였다.
<그라프트 중합체의 제조>
상술한 스티렌/부타디엔 고무질 중합체 라텍스를 이용한 것을 제외하고는 제조예 2와 동일한 방법으로 그라프트 중합체 분말(굴절률: 1.5350)을 제조하였다.
제조예 7
<고무질 중합체의 제조>
질소 치환된 중합 반응기(오토클레이브)에 이온 교환수 200 중량부, 스티렌 25 중량부, 1,3-부타디엔 75 중량부, 포타슘 올레이트 2.0 중량부, 포타슘 로지네이트 3.0 중량부, 포타슘 퍼설페이트 0.1 중량부 및 t-도데실 머캅탄 0.8 중량부, 피로인산나트륨 0.010 중량부, 덱스트로즈 0.050 중량부, 황산철(Ⅱ) 0.001 중량부를 일괄 투입하고, 10 ℃에서 중합하였다. 중합전환율이 65 %인 시점에서 중합을 종료하여, 스티렌/부타디엔 고무질 중합체 라텍스(겔 함량: 15 중량%, 평균 입경: 40 ㎚, 굴절률: 1.5350)를 제조하였다.
<그라프트 중합체의 제조>
상술한 스티렌/부타디엔 고무질 중합체 라텍스를 이용한 것을 제외하고는 제조예 2와 동일한 방법으로 그라프트 중합체 분말(굴절률: 1.5350)을 제조하였다.
제조예 8
메틸 메타크릴레이트 51.4 중량부, 스티렌 43.6 중량부, 아크릴로니트릴 5.0 중량부, 톨루엔 3 중량부, 1,1-비스(t-부틸퍼옥시)사이클로헥산 0.01 중량부, t-도데실 머캅탄 0.3 중량부를 포함하는 혼합 용액을 제조하였다,
반응기에 상기 혼합 용액을 평균 중합 시간이 3 시간이 되도록 연속 투입하면서 중합하였다. 이때, 상기 반응기의 온도는 148 ℃이었다. 상기 반응기에서 배출된 중합 용액을 예비 가열조에서 가열하고, 휘발조에서 미반응 단량체를 휘발시켜 중합체를 제조하였다. 그리고 상기 중합체의 온도를 210 ℃로 유지하면서, 중합체 이송 펌프 압출 가공기로 이송하여, 비그라프트 중합체 펠렛(굴절률: 1.5315)을 제조하였다.
제조예 9
메틸 메타크릴레이트 65.4 중량부, 스티렌 29.6 중량부, 아크릴로니트릴 5.0 중량부, 톨루엔 3 중량부, 1,1-비스(t-부틸퍼옥시)사이클로헥산 0.01 중량부, t-도데실 머캅탄 0.3 중량부를 포함하는 혼합 용액을 제조하였다,
반응기에 상기 혼합 용액을 평균 중합 시간이 3 시간이 되도록 연속 투입하면서 중합하였다. 이때, 상기 반응기의 온도는 148 ℃이었다. 상기 반응기에서 배출된 중합 용액을 예비 가열조에서 가열하고, 휘발조에서 미반응 단량체를 휘발시켜 중합체를 제조하였다. 그리고 상기 중합체의 온도를 210 ℃로 유지하면서, 중합체 이송 펌프 압출 가공기로 이송하여, 비그라프트 중합체 펠렛(굴절률: 1.5210)을 제조하였다.
제조예 10
메틸 메타크릴레이트 70.4 중량부, 스티렌 24.6 중량부, 아크릴로니트릴 5.0 중량부, 톨루엔 3 중량부, 1,1-비스(t-부틸퍼옥시)사이클로헥산 0.01 중량부, t-도데실 머캅탄 0.3 중량부를 포함하는 혼합 용액을 제조하였다,
반응기에 상기 혼합 용액을 평균 중합 시간이 3 시간이 되도록 연속 투입하면서 중합하였다. 이때, 상기 반응기의 온도는 148 ℃이었다. 상기 반응기에서 배출된 중합 용액을 예비 가열조에서 가열하고, 휘발조에서 미반응 단량체를 휘발시켜 중합체를 제조하였다. 그리고 상기 중합체의 온도를 210 ℃로 유지하면서, 중합체 이송 펌프 압출 가공기로 이송하여, 비그라프트 중합체 펠렛(굴절률: 1.5160)을 제조하였다.
실시예 1 내지 실시예 5, 비교예 1 내지 비교예 5
제조예의 그라프트 중합체 및 비그라프트 중합체를 하기 표 1 및 표 2에 기재된 함량 대로 혼합하여 열가소성 수지 조성물을 제조하였다.
실험예 1
제조예의 고무질 중합체의 물성을 하기에 기재된 방법으로 평가하였고, 그 결과를 하기 표 1 및 표 2에 나타내었다.
1) 겔 함량(중량%): 고무질 중합체 라텍스를 염화칼슘으로 응고한 후, 세척하고, 60 ℃의 진공 오븐에서 24 시간 동안 건조하여 고무 덩어리를 수득한다. 이 고무 덩어리를 가위로 잘게 잘라 1 g 의 고무 절편을 제조하고, 이 고무 절편을 톨루엔 100 g에 넣고, 48 시간 동안 23 ℃의 암실에서 보관한 후, 졸과 겔을 분리하였다. 이 졸과 겔을 하기 식에 대입하여, 겔 함량을 산출하였다.
겔 함량(중량%) = 겔의 중량/ 고무 절편의 중량 × 100
2) 평균 입경(㎚): 동적 광산란법을 이용하여 Particle Sizing Systems 社의 Nicomp 380 장비로 측정하였다.
3) 굴절률: 겔 함량 측정 시 제조한 고무 절편을 0.2 ㎜ 두께로 편 후, 25 ℃에서 파장이 589.3 ㎚인 가시광선을 이용하여, 아베 굴절계(Abbe refractometer)로 측정하였다.
실험예 2
실시예 및 비교예의 열가소성 수지 조성물의 조성을 하기에 기재된 방법으로 측정하고, 그 결과를 하기 표 1 및 표 2에 나타내었다.
1) 스티렌/부타디엔 고무질 중합체, 메틸 메타크릴레이트 단량체 단위, 스티렌 단량체 단위 및 아크릴로니트릴 단량체 단위의 함량(중량%): NicoletTM iS20 FTIR Spectrometer(모델명, 제조사: Thermo Scientific)을 이용해 적외선 분광법으로 열가소성 수지 조성물 내 고무질 중합체, 단량체 단위들의 함량을 도출하였다.
실험예 3
실시예 및 비교예의 열가소성 수지 조성물 100 중량부, 산화방지제 0.2 중량부를 혼합하고 압출하여 펠렛을 제조하였다. 이 펠렛을 사출하여 시편을 제조하고 하기에 기재된 방법으로 물성을 평가하였고, 그 결과를 하기 표 1 및 표 2에 나타내었다.
1) 전광선 투과율(%): ASTM D1003에 의거하여 시편(두께: 3 ㎜)의 전광선 투과율을 측정하였다. 전광선 투과율이 70 % 이상일 때 투명성이 우수한 것으로 판단하였다.
2) 글로스(45 °): 니폰 덴쇼쿠 사의 글로스 미터 VG7000을 이용하여 45 °에서 시편(두께: 3 ㎜)의 글로스를 측정하였다. 글로스 값이 40 이하일 때 무광 특성이 구현된 것으로 판단하였고, 글로스 값이 낮을수록 무광 특성이 우수한 것으로 판단하였다.
3) 글로스(60 °): 니폰 덴쇼쿠 사의 글로스 미터 VG7000을 이용하여 60 °에서 시편(두께: 3 ㎜)의 글로스를 측정하였다. 글로스 값이 60 이하일 때 무광 특성이 구현된 것으로 판단하였고, 글로스 값이 낮을수록 무광 특성이 우수한 것으로 판단하였다.
4) 충격강도(㎏f·㎝/㎝): ASTM D256에 의거하여 23 ℃에서 시편(1/4 inch)의 노치드 아이조드 충격강도를 측정하였다.
실험예 4
실험예 3에서 제조된 실시예 3의 시편(오른쪽)과 비교예 4의 시편(왼쪽)을 책 위에 올려놓고 사진 촬영을 하였고, 그 결과를 도 1에 나타내었다.
구분 실시예 1 실시예 2 실시예 3 실시예 4 실시예 5
그라프트 중합체
종류 제조예 1 제조예 1 제조예 2 제조예 2 제조예 3
SBR 단량체
(중량%)
S 20 20 25 25 25
BD 80 80 75 75 75
겔 함량(중량%) 0 0 1 1 5
평균 입경(㎚) 40 40 40 40 40
굴절률 1.5310 1.5310 1.5350 1.5350 1.5350
단량체 외
(중량부)
SBR 50.0 50.0 50.0 50.0 50.0
MMA 29.6 29.6 25.7 25.7 25.7
S 20.4 20.4 21.8 21.8 21.8
AN 0.0 0.0 2.5 2.5 2.5
굴절률 1.5310 1.5310 1.5350 1.5350 1.5350
비그라프트 중합체
종류 제조예 8 제조예 9 제조예 8 제조예 8 제조예 8
단량체
(중량부)
MMA 51.4 65.4 51.4 51.4 51.4
S 43.6 29.6 43.6 43.6 43.6
AN 5.0 5.0 5.0 5.0 5.0
굴절률 1.5315 1.5210 1.5315 1.5315 1.5315
열가소성 수지 조성물
그라프트 중합체(중량부) 30 30 20 30 30
비그라프트 중합체(중량부) 70 70 80 70 70
SBR(중량%) 15 15 10 15 15
MMA 단량체 단위(중량%) 44.86 54.66 46.26 43.69 43.69
S 단량체 단위(중량%) 36.64 26.84 39.24 37.06 37.06
AN 단량체 단위(중량%) 3.5 3.5 4.5 4.25 4.25
그라프트 중합체와 비그라프트 중합체의 굴절률 차이 0.0005 0.0100 0.0035 0.0035 0.0035
물성 평가 결과
전광선 투과율(%) 81 71 85 84 85
글로스(45 °) 29 26 33 31 32
글로스(60 °) 30 29 35 34 34
충격강도(㎏f·㎝/㎝) 11 11 10 19 18
SBR: 스티렌/부타디엔 고무질 중합체
S: 스티렌
BD: 1,3-부타디엔
MMA: 메틸 메타크릴레이트
AN: 아크릴로니트릴
구분 비교예 1 비교예 2 비교예 3 비교예 4 비교예 5
그라프트 중합체
종류 제조예 1 제조예 4 제조예 5 제조예 6 제조예 7
SBR 단량체
(중량%)
S 20 25 25 25 25.0
BD 80 75 75 75 75
겔 함량(중량%) 0 15 65 90 15
평균 입경(㎚) 40 80 300 90 40
굴절률 1.5310 1.5350 1.5350 1.5350 1.5350
단량체 외
(중량부)
SBR 50.0 50.0 50.0 50.0 50.0
MMA 29.6 25.7 25.7 25.7 25.7
S 20.0 21.8 21.8 21.8 21.8
AN 0.0 2.5 2.5 2.5 2.5
굴절률 1.5310 1.5350 1.5350 1.5350 1.5350
비그라프트 중합체
종류 제조예 10 제조예 8 제조예 8 제조예 8 제조예 8
단량체
(중량부)
MMA 70.4 51.4 51.4 51.4 51.4
S 24.6 43.6 43.6 43.6 43.6
AN 5.0 5.0 5.0 5.0 5.0
굴절률 1.5160 1.5315 1.5315 1.5315 1.5315
열가소성 수지 조성물
그라프트 중합체(중량부) 30 30 30 25 30
비그라프트 중합체(중량부) 70 70 70 75 70
SBR(중량%) 15 15 15 15 15
MMA 단량체 단위(중량%) 58.16 43.69 43.69 43.69 46.39
S 단량체 단위(중량%) 23.34 37.06 37.06 37.06 37.06
AN 단량체 단위(중량%) 3.5 4.25 4.25 4.25 4.25
그라프트 중합체와 비그라프트 중합체의 굴절률 차이 0.0150 0.0035 0.0035 0.0035 0.0035
물성 평가 결과
전광선 투과율(%) 61 89 90 91 90
글로스(45 °) 23 67 136 145 65
글로스(60 °) 25 68 133 141 68
충격강도(㎏f·㎝/㎝) 10 5 11 4 6
SBR: 스티렌/부타디엔 고무질 중합체
S: 스티렌
BD: 1,3-부타디엔
MMA: 메틸 메타크릴레이트
AN: 아크릴로니트릴
상기 표 1 및 표 2를 참조하면, 그라프트 중합체의 고무질 중합체의 겔 함량이 0 내지 1 중량%이고, 그라프트 중합체와 비그라프트 중합체의 굴절률의 차이가 0.0005 내지 0.0100인 실시예 1 내지 실시예 5는 전광선 투과율이 높으면서 글로스가 낮으므로, 무광 투명 특성을 구현하는 것을 알 수 있었다. 그리고, 충격강도가 높으므로 내충격성도 우수한 것을 알 수 있었다. 하지만, 그라프트 중합체의 고무질 중합체의 겔 함량이 0 중량%이고 그라프트 중합체와 비그라프트 중합체의 굴절률의 차이가 0.0150인 비교예 1은, 글로스 값이 낮아 무광 특성을 구현하지만 전광선 투과율은 낮으므로 투명 특성은 구현하지 못하였다.
또한, 그라프트 중합체의 고무질 중합체의 겔 함량이 15 중량%이고 그라프트 중합체와 비그라프트 중합체의 굴절률의 차이가 0.0035인 비교예 2는, 전광선 투과율은 높아 투명 특성은 구현하지만, 글로스 값이 높아 무광 특성을 구현하지 못하였다. 그리고 실시예 1 내지 실시예 5와 비교하여 고무질 중합체의 평균 입경이 현저하게 크지만, 내충격성이 우수하지 못하였다.
그라프트 중합체의 고무질 중합체의 겔 함량이 65 중량%이고 그라프트 중합체와 비그라프트 중합체의 굴절률의 차이가 0.0035인 비교예 3은, 전광선 투과율은 높아 투명 특성은 구현하지만, 글로스 값이 높아 무광 특성을 구현하지 못하였다. 그리고 실시예 1 내지 실시예 5와 비교하여 고무질 중합체의 평균 입경이 현저하게 크지만, 내충격성은 동등 수준이었다.
그라프트 중합체의 고무질 중합체의 겔 함량이 90 중량%이고 그라프트 중합체와 비그라프트 중합체의 굴절률의 차이가 0.0035인 비교예 4는, 전광선 투과율은 높아 투명 특성은 우수하지만, 글로스 값도 높아 무광 특성을 구현하지 못하였다. 그리고 실시예 1 내지 실시예 5와 비교하여 고무질 중합체의 평균 입경이 현저하게 크지만, 내충격성은 우수하지 못하였다.
그라프트 중합체의 고무질 중합체의 겔 함량이 15 중량%이고 그라프트 중합체와 비그라프트 중합체의 굴절률의 차이가 0.0035인 비교예 5는, 전광선 투과율은 높아 투명 특성은 구현하지만, 글로스 값이 높아 무광 특성을 구현하지 못하였다. 그리고 실시예 1 내지 실시예 5와 비교하여 고무질 중합체의 평균 입경이 현저하게 크지만, 내충격성은 우수하지 못하였다.
한편, 도 1을 참조하면, 실시예 3으로 제조된 시편(오른쪽)은 무광 투명 특성을 구현하였으나, 비교예 4로 제조된 시편(왼쪽)은 글로스 값이 높아 무광 투명 특성을 구현하지 못한 것을 알 수 있다.

Claims (10)

  1. 겔 함량이 0 내지 10 중량%이고 비닐 방향족계 단량체 단위 및 디엔계 단량체 단위를 포함하는 고무질 중합체와, 상기 고무질 중합체에 그라프트된 (메트)아크릴레이트계 단량체 단위 및 비닐 방향족계 단량체 단위를 포함하는 쉘을 포함하는 그라프트 중합체; 및
    (메트)아크릴레이트계 단량체 단위 및 비닐 방향족계 단량체 단위를 포함하는 비그라프트 중합체를 포함하고,
    상기 그라프트 중합체와 비그라프트 중합체는 굴절률의 차이가 0.0100 이하인 열가소성 수지 조성물.
  2. 청구항 1에 있어서,
    상기 고무질 중합체는 겔 함량이 0 내지 5 중량%인 것인 열가소성 수지 조성물.
  3. 청구항 1에 있어서,
    상기 고무질 중합체는 상기 비닐 방향족계 단량체 단위와 디엔계 단량체 단위를 10:90 내지 35:65의 중량비로 포함하는 것인 열가소성 수지 조성물.
  4. 청구항 1에 있어서,
    상기 고무질 중합체는 평균 입경이 20 내지 100 ㎚인 것인 열가소성 수지 조성물.
  5. 청구항 1에 있어서,
    상기 그라프트 중합체는
    상기 고무질 중합체 30.0 내지 65.0 중량%;
    상기 (메트)아크릴레이트계 단량체 단위 10.0 내지 55.0 중량%; 및
    상기 비닐 방향족계 단량체 단위 5.0 내지 40.0 중량%를 포함하는 것인 열가소성 수지 조성물.
  6. 청구항 1에 있어서,
    상기 비그라프트 중합체는
    상기 (메트)아크릴레이트계 단량체 단위 39.0 내지 65.0 중량%; 및
    상기 비닐 방향족계 단량체 단위 35.0 내지 61.0 중량%를 포함하는 것인 열가소성 수지 조성물.
  7. 청구항 1에 있어서,
    상기 열가소성 수지 조성물은
    상기 그라프트 중합체를 10.0 내지 70.0 중량%; 및
    상기 비그라프트 중합체를 30.0 내지 90.0 중량%로 포함하는 것인 열가소성 수지 조성물.
  8. 청구항 1에 있어서,
    상기 그라프트 중합체의 쉘은 상기 고무질 중합체에 그라프트된 비닐 시아나이드계 단량체 단위를 포함하고,
    상기 비그라프트 중합체는 비닐 시아나이드계 단량체 단위를 포함하는 것인 열가소성 수지 조성물.
  9. 청구항 1에 있어서,
    상기 그라프트 중합체와 비그라프트 중합체는 각각 굴절률이 1.5230 내지 1.5420인 것인 열가소성 수지 조성물.
  10. 청구항 1에 있어서,
    상기 열가소성 수지 조성물은
    상기 고무질 중합체 5.0 내지 35.0 중량%;
    상기 (메트)아크릴레이트계 단량체 단위 24.0 내지 60.0 중량%; 및
    상기 비닐 방향족계 단량체 단위 19.0 내지 47.0 중량%를 포함하는 것인 열가소성 수지 조성물.
PCT/KR2022/010530 2021-07-26 2022-07-19 열가소성 수지 조성물 WO2023008808A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/034,270 US20230383041A1 (en) 2021-07-26 2022-07-19 Thermoplastic resin composition
EP22849784.8A EP4219623A4 (en) 2021-07-26 2022-07-19 THERMOPLASTIC RESIN COMPOSITION
CN202280007122.6A CN116457414A (zh) 2021-07-26 2022-07-19 热塑性树脂组合物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0098174 2021-07-26
KR20210098174 2021-07-26
KR1020220088183A KR20230016593A (ko) 2021-07-26 2022-07-18 열가소성 수지 조성물
KR10-2022-0088183 2022-07-18

Publications (1)

Publication Number Publication Date
WO2023008808A1 true WO2023008808A1 (ko) 2023-02-02

Family

ID=85087120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/010530 WO2023008808A1 (ko) 2021-07-26 2022-07-19 열가소성 수지 조성물

Country Status (3)

Country Link
US (1) US20230383041A1 (ko)
EP (1) EP4219623A4 (ko)
WO (1) WO2023008808A1 (ko)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0725975B2 (ja) 1987-06-11 1995-03-22 東レ株式会社 熱可塑性樹脂組成物
KR0165577B1 (ko) * 1994-12-30 1999-03-20 유현식 대입경 합성고무라텍스의 제조방법
KR100364232B1 (ko) * 1997-12-22 2003-02-19 제일모직주식회사 내충격성 및 저광택성이 우수한 열가소성 수지의 제조방법
JP2012251015A (ja) * 2011-05-31 2012-12-20 Techno Polymer Co Ltd 熱可塑性樹脂組成物およびそれを用いてなる成形品
JP2014181315A (ja) * 2013-03-21 2014-09-29 Toray Ind Inc 透明スチレン系熱可塑性樹脂組成物
KR20160054784A (ko) * 2014-11-07 2016-05-17 주식회사 엘지화학 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
KR20210098174A (ko) 2020-01-31 2021-08-10 호남대학교 산학협력단 사용자의 자세를 측정하는 장치 및 사용자 자세의 균형 상태를 평가하는 방법
KR20220088183A (ko) 2020-12-18 2022-06-27 (주)지비유 데이터링크스 실시간 영상 분석을 통한 이벤트 발생 감지 및 안내 정보 제공 방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6284109A (ja) * 1985-10-09 1987-04-17 Japan Synthetic Rubber Co Ltd 熱可塑性樹脂組成物の製造方法
TWI302538B (ko) * 2001-10-11 2008-11-01 Denki Kagaku Kogyo Kk
KR101905939B1 (ko) * 2015-08-31 2018-10-08 주식회사 엘지화학 열가소성 수지 조성물 및 이의 제조방법
CN110651005B (zh) * 2017-06-01 2020-10-09 东丽株式会社 热塑性树脂组合物、热塑性树脂组合物的制造方法、成型品及成型品的制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0725975B2 (ja) 1987-06-11 1995-03-22 東レ株式会社 熱可塑性樹脂組成物
KR0165577B1 (ko) * 1994-12-30 1999-03-20 유현식 대입경 합성고무라텍스의 제조방법
KR100364232B1 (ko) * 1997-12-22 2003-02-19 제일모직주식회사 내충격성 및 저광택성이 우수한 열가소성 수지의 제조방법
JP2012251015A (ja) * 2011-05-31 2012-12-20 Techno Polymer Co Ltd 熱可塑性樹脂組成物およびそれを用いてなる成形品
JP2014181315A (ja) * 2013-03-21 2014-09-29 Toray Ind Inc 透明スチレン系熱可塑性樹脂組成物
KR20160054784A (ko) * 2014-11-07 2016-05-17 주식회사 엘지화학 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
KR20210098174A (ko) 2020-01-31 2021-08-10 호남대학교 산학협력단 사용자의 자세를 측정하는 장치 및 사용자 자세의 균형 상태를 평가하는 방법
KR20220088183A (ko) 2020-12-18 2022-06-27 (주)지비유 데이터링크스 실시간 영상 분석을 통한 이벤트 발생 감지 및 안내 정보 제공 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4219623A4

Also Published As

Publication number Publication date
EP4219623A4 (en) 2024-05-01
EP4219623A1 (en) 2023-08-02
US20230383041A1 (en) 2023-11-30

Similar Documents

Publication Publication Date Title
WO2018084486A2 (ko) Asa계 그라프트 공중합체의 제조방법, 이를 포함하는 열가소성 asa계 수지 조성물의 제조방법 및 asa계 성형품의 제조방법
WO2018084558A2 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2016204566A1 (ko) 변성 아크릴로니트릴-부타디엔-스티렌계 수지의 제조방법 및 이로부터 제조된 변성 아크릴로니트릴-부타디엔-스티렌계 수지
WO2018084557A1 (ko) 내후성이 우수한 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2017142172A1 (ko) 고무질 중합체와 이의 제조방법, 그라프트 공중합체 및 열가소성 수지 조성물
WO2019083153A1 (ko) 그라프트 공중합체, 이를 포함하는 열가소성 수지 조성물 및 이의 제조방법
WO2018174395A1 (ko) Asa계 그라프트 공중합체의 제조방법, 이를 포함하는 열가소성 수지 조성물의 제조방법 및 성형품의 제조방법
WO2018084436A1 (ko) 충격강도가 향상된 abs계 그라프트 공중합체의 제조방법 및 이를 포함하는 abs계 사출성형품의 제조방법
WO2017082649A1 (ko) 저광 특성, 내후성 및 기계적 물성이 우수한 열가소성 수지 조성물 및 이로부터 제조되는 압출 물품
WO2021060743A1 (ko) 그라프트 중합체의 제조방법
WO2013022205A2 (ko) 알킬 (메트)아크릴레이트계 열가소성 수지 조성물, 및 내스크래치성과 황색도가 조절된 열가소성 수지
WO2022097867A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품
WO2013077614A1 (ko) 내후성 및 성형성이 우수한 아크릴계 라미네이트 필름 및 그 제조 방법
WO2016204485A1 (ko) 열가소성 수지, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2021118063A1 (ko) 알킬 아크릴레이트 화합물-비닐시안 화합물-방향족 비닐 화합물 그라프트 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2018124562A1 (ko) Abs계 그라프트 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2023008808A1 (ko) 열가소성 수지 조성물
WO2020101182A1 (ko) 코어-쉘 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2023008807A1 (ko) 열가소성 수지 조성물
WO2021015485A1 (ko) 아크릴계 공중합체 응집제 및 이를 이용한 그라프트 공중합체의 제조방법
WO2016043424A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 열가소성 수지 성형품
WO2021060833A1 (ko) 공액 디엔계 중합체의 제조방법
WO2015016520A1 (ko) 고무강화 열가소성 수지의 제조방법
WO2021040269A1 (ko) (메트)아크릴레이트 그라프트 공중합체를 포함하는 열가소성 수지 조성물 및 이의 제조방법
WO2022085899A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849784

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280007122.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18034270

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022849784

Country of ref document: EP

Effective date: 20230426

NENP Non-entry into the national phase

Ref country code: DE