WO2023008488A1 - 重合体組成物及び単層位相差材 - Google Patents

重合体組成物及び単層位相差材 Download PDF

Info

Publication number
WO2023008488A1
WO2023008488A1 PCT/JP2022/028970 JP2022028970W WO2023008488A1 WO 2023008488 A1 WO2023008488 A1 WO 2023008488A1 JP 2022028970 W JP2022028970 W JP 2022028970W WO 2023008488 A1 WO2023008488 A1 WO 2023008488A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
polymer
independently
side chain
Prior art date
Application number
PCT/JP2022/028970
Other languages
English (en)
French (fr)
Inventor
大輝 山極
司 藤枝
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to JP2023538599A priority Critical patent/JPWO2023008488A1/ja
Priority to KR1020247002612A priority patent/KR20240037250A/ko
Priority to CN202280051122.6A priority patent/CN117677669A/zh
Publication of WO2023008488A1 publication Critical patent/WO2023008488A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a composition containing a polymer and a single-layer retardation material.
  • the polymerizable liquid crystal compound used here is generally a liquid crystal compound having a polymerizable group and a liquid crystal structure portion (a structure portion having a spacer portion and a mesogen portion), and an acrylic group is widely used as the polymerizable group. ing.
  • Such a polymerizable liquid crystal compound is generally made into a polymer (film) by a method of polymerizing by irradiating it with radiation such as ultraviolet rays.
  • a method of obtaining a polymer by supporting a specific polymerizable liquid crystal compound having an acrylic group between supports and irradiating the compound with radiation while maintaining the compound in a liquid crystal state Patent Document 1
  • a method is known in which a photopolymerization initiator is added to a mixture of two types of polymerizable liquid crystal compounds or a composition obtained by mixing this mixture with a chiral liquid crystal, and the mixture is irradiated with ultraviolet rays to obtain a polymer (Patent Document 2).
  • the present invention has been made in view of the above problems, and a polymer composition that enables the production of a single-layer retardation material with less turbidity by a simpler process, and a single layer obtained from the polymer composition
  • An object is to provide a retardation material.
  • the present inventors have found that by using a composition containing a specific polymer and a specific additive, it is possible to obtain a liquid crystal with little turbidity without using a liquid crystal alignment film.
  • the inventors have found that it is possible to produce a single-layer retardation material having an anisotropy ( ⁇ n), and completed the present invention.
  • the present invention provides the following polymer composition and single-layer retardation material.
  • B a polymer composition containing an organic solvent.
  • 2. 1. The polymer composition of 1, wherein the side chain type polymer block has a side chain represented by any one of the following formulas (a1) to (a6). (In the formula, n1 and n2 are each independently 0, 1, 2 or 3.
  • L is a single bond or an alkylene group having 1 to 12 carbon atoms, and some or all of the hydrogen atoms in the alkylene group may be substituted with halogen atoms.
  • T 1 is a single bond or an alkylene group having 1 to 12 carbon atoms, and some or all of the hydrogen atoms in the alkylene group may be substituted with halogen atoms.
  • a 2 is also a single bond.
  • Y 1 and Y 2 are a phenylene group or a naphthylene group, and part or all of the hydrogen atoms of the phenylene group and naphthylene group are a cyano group, a halogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms. It may be substituted with an alkylcarbonyl group of 5 or an alkoxy group having 1 to 5 carbon atoms.
  • P 1 , Q 1 and Q 2 are each independently a single bond, a phenylene group or a divalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, and part or all of the hydrogen atoms of the phenylene group are , a cyano group, a halogen atom, an alkyl group having 1 to 5 carbon atoms, an alkylcarbonyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms.
  • each Q 1 may be the same or different
  • each Q 2 may be the same or different.
  • R is a hydrogen atom, a cyano group, a halogen atom, a carboxy group, an alkyl group having 1 to 5 carbon atoms, an alkylcarbonyl group having 1 to 5 carbon atoms, a cycloalkyl group having 3 to 7 carbon atoms or a cycloalkyl group having 1 to 5 carbon atoms It is an alkoxy group.
  • each X 1 may be the same or different, and when the number of X 2 is 2 or more, each X 2 may be the same or different.
  • G 1 and G 2 are each independently N or CH. A dashed line is a bond. ) 3.
  • R 1 is —NO 2 , —CN, halogen atom, phenyl group, naphthyl group, biphenylyl group, furanyl group, monovalent nitrogen-containing heterocyclic group, monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, carbon It is an alkyl group having 1 to 12 carbon atoms or an alkoxy group having 1 to 12 carbon atoms.
  • R 2 is a phenyl group, a naphthyl group, a biphenylyl group, a furanyl group, a monovalent nitrogen-containing heterocyclic group or a monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, and part of the hydrogen atoms of these groups Alternatively, all of them may be substituted with —NO 2 , —CN, a halogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms.
  • R 3 is a hydrogen atom, —NO 2 , —CN, a halogen atom, a phenyl group, a naphthyl group, a biphenylyl group, a furanyl group, a monovalent nitrogen-containing heterocyclic group, or a monovalent alicyclic hydrocarbon having 5 to 8 carbon atoms; , an alkyl group having 1 to 12 carbon atoms or an alkoxy group having 1 to 12 carbon atoms.
  • k6 and k7 are each independently an integer of 0 to 2, and the sum of k6 and k7 is 1 or more.
  • m1, m2 and m3 are each independently an integer of 1-3.
  • n is 0 or 1;
  • a dashed line is a bond.
  • 5. 4 The polymer composition according to any one of 1 to 4, wherein the polymer type polymerization initiator has a repeating unit represented by the following formula (1).
  • R a1 to R a4 are each independently a linear or branched alkyl group having 1 to 6 carbon atoms or a cyano group.
  • R L1 and R L2 are each independently an alkylene group having 1 to 10 carbon atoms.
  • X is a divalent group represented by the following formula (2) or (3).
  • R a5 to R a8 are linear or branched C 1-6 alkyl groups or C 6-12 aryl groups.
  • R a9 and R a10 are each independently an alkylene group having 1 to 10 carbon atoms.
  • R L3 and R L4 are each independently an alkylene group having 1 to 10 carbon atoms.
  • x and y are each independently positive integers. 6.
  • the polymer composition of the present invention comprises a photosensitive side-chain polymer block capable of exhibiting liquid crystallinity (hereinafter also simply referred to as a side-chain polymer block) and a polymer derived from a polymer-type polymerization initiator (hereinafter , Also simply referred to as an initiator-derived polymer block.
  • the film becomes a film having photosensitive side chains capable of exhibiting liquid crystallinity. This coating film is subjected to an orientation treatment by irradiating polarized light without performing a rubbing treatment.
  • the polymer film After irradiating polarized light, the polymer film is heated to obtain a film imparted with optical anisotropy (hereinafter also referred to as a single-layer retardation material).
  • a film imparted with optical anisotropy hereinafter also referred to as a single-layer retardation material.
  • the slight anisotropy generated by polarized light irradiation becomes a driving force, and the side chain type block copolymer itself is efficiently reoriented by self-organization.
  • a highly efficient orientation treatment is realized, and a single-layer retardation material imparted with high optical anisotropy can be obtained.
  • the polymer of component (A) comprises a photosensitive side-chain polymer block capable of exhibiting liquid crystallinity and a polymer block derived from a polymer-type polymerization initiator. It is characterized by being a block copolymer containing.
  • the molecular mobility in the solvent of the side chain type block copolymer of the component (A) is improved.
  • the visible haze is suppressed. It should be noted that these include the opinion of the inventor regarding the mechanism of the present invention, and do not limit the present invention.
  • the polymer composition of the present invention comprises (A) a block copolymer containing a side chain type polymer block having a side chain having a photoreactive site and a polymer block derived from a polymer type polymerization initiator, and (B ) containing an organic solvent.
  • Component (A) is a photosensitive side chain type block copolymer that exhibits liquid crystallinity in a predetermined temperature range, and is a side chain type polymer block having a side chain having a photoreactive site and a polymer type polymerization. and a polymer block derived from the initiator.
  • the side chain type polymer block has a photoreactive site that reacts with ultraviolet light in the side chain. It contains a side chain.
  • the initiator-derived polymer block has a main chain derived from a predetermined polymerization initiator described later.
  • a coating film obtained from a polymer composition containing such a side chain type block copolymer has liquid crystallinity and photosensitivity due to the side chain type polymer block, and high solvent solubility due to the initiator-derived polymer block. , it becomes a film having film flexibility (ability to lower the glass transition temperature).
  • This coating film is subjected to an orientation treatment by irradiating polarized light without performing a rubbing treatment. After irradiation with polarized light, the side chain type polymer film is heated to obtain a film (single-layer retardation film) imparted with optical anisotropy.
  • the slight anisotropy generated by polarized light irradiation becomes a driving force, and the side chain type block copolymer itself is efficiently reoriented by self-organization.
  • a highly efficient orientation treatment is realized as a single-layer retardation film, and a single-layer retardation film imparted with high optical anisotropy can be obtained.
  • photoreactivity refers to (A-1) photocrosslinking (photodimerization) reaction, (A-2) photoisomerization, or (A-3) photofries rearrangement reaction; or a plurality of reactions ; refers to the property that causes
  • the side chain type block copolymer is (i) a polymer that exhibits liquid crystallinity in a predetermined temperature range and has a photoreactive side chain.
  • the side-chain type block copolymer (ii) preferably reacts with light in the wavelength range of 200 to 400 nm, preferably 240 to 400 nm, and exhibits liquid crystallinity in the temperature range of 50 to 300.degree.
  • the side-chain type block copolymer preferably has (iii) a photoreactive side chain that reacts with light in the wavelength range of 200 to 400 nm, preferably 240 to 400 nm, particularly polarized ultraviolet light.
  • the side chain type block copolymer (iv) preferably has a mesogenic group in order to exhibit liquid crystallinity in the temperature range of 50 to 300°C.
  • the side chain type block copolymer has a photoreactive side chain having photoreactivity as described above.
  • the structure of the side chain is not particularly limited, but has a structure that causes the reactions (A-1), (A-2) and/or (A-3), particularly (A-1) photocrosslinking It preferably has a structure that causes reaction and/or (A-2) photoisomerization reaction.
  • A-1) The structure that causes the photocrosslinking reaction is such that the orientation of the side chain type polymer block can be stably maintained for a long period of time even when the structure after the reaction is exposed to external stress such as heat. is preferred.
  • (A-2) the structure that causes a photoisomerization reaction enables alignment treatment with a low exposure amount compared to photocrosslinking and photofleece transfer, and can increase production efficiency during retardation film production. preferable.
  • the structure of the side chain of the side chain type polymer block preferably has a rigid mesogenic component because the alignment of the liquid crystal is stabilized.
  • Mesogenic moieties include, but are not limited to, biphenyl groups, terphenyl groups, phenylcyclohexyl groups, phenylbenzoate groups, and the like.
  • the side chain having a photoreactive site that photoreacts with ultraviolet light contained in the side chain type polymer block (hereinafter also referred to as side chain a) is represented by any of the following formulas (a1) to (a6). is preferred. From the viewpoint of solubility in a solvent, the number of benzene rings possessed by one side chain a is preferably 3 or less.
  • n1 and n2 are each independently 0, 1, 2 or 3.
  • L is a single bond or an alkylene group having 1 to 12 carbon atoms, and some or all of the hydrogen atoms in the alkylene group may be substituted with halogen atoms.
  • T 1 is a single bond or an alkylene group having 1 to 12 carbon atoms, and some or all of the hydrogen atoms in the alkylene group may be substituted with halogen atoms.
  • T 1 is a single bond
  • a 2 is also a single bond.
  • Y 1 and Y 2 are a phenylene group or a naphthylene group, and part or all of the hydrogen atoms of the phenylene group and naphthylene group are a cyano group, a halogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms.
  • P 1 , Q 1 and Q 2 are each independently a single bond, a phenylene group or a divalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, and part or all of the hydrogen atoms of the phenylene group are , a cyano group, a halogen atom, an alkyl group having 1 to 5 carbon atoms, an alkylcarbonyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms.
  • each Q 1 may be the same or different, and when the number of Q 2 is 2 or more, each Q 2 may be the same or different.
  • R is a hydrogen atom, a cyano group, a halogen atom, a carboxy group, an alkyl group having 1 to 5 carbon atoms, an alkylcarbonyl group having 1 to 5 carbon atoms, a cycloalkyl group having 3 to 7 carbon atoms or a cycloalkyl group having 1 to 5 carbon atoms It is an alkoxy group.
  • each X 1 may be the same or different, and when the number of X 2 is 2 or more, each X 2 may be the same or different.
  • G 1 and G 2 are each independently N or CH. A dashed line is a bond.
  • the alkylene group having 1 to 12 carbon atoms may be linear, branched or cyclic, and specific examples thereof include methylene group, ethylene group, propane-1,3-diyl group, butane-1,4 -diyl group, pentane-1,5-diyl group, hexane-1,6-diyl group, heptane-1,7-diyl group, octane-1,8-diyl group, nonane-1,9-diyl group, decane -1,10-diyl group and the like.
  • the halogen atom includes a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and the like.
  • the alkyl group having 1 to 5 carbon atoms may be linear or branched, and specific examples thereof include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group and tert-butyl. group, n-pentyl group, and the like.
  • alkylcarbonyl group having 1 to 5 carbon atoms include methylcarbonyl (acetyl) group, ethylcarbonyl group, n-propylcarbonyl group, n-butylcarbonyl group, n-pentylcarbonyl group and the like.
  • alkoxy group having 1 to 5 carbon atoms examples include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, n-pentyloxy group and the like.
  • divalent alicyclic hydrocarbon group having 5 to 8 carbon atoms examples include a cyclopentanediyl group, a cyclohexanediyl group, a cycloheptanediyl group, and a cyclooctanediyl group.
  • cycloalkyl group having 3 to 7 carbon atoms examples include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group and the like.
  • P 1 ' is a phenylene group or a divalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, and part or all of the hydrogen atoms of the phenylene group are a cyano group, a halogen atom, or an alkyl group having 1 to 5 carbon atoms. group, an alkylcarbonyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms.
  • the side chain represented by the formula (a1-1) is preferably a side chain represented by the following formula (a1-1-1), and the side chain represented by the formula (a1-2) is represented by the formula ( A side chain represented by a1-2-1) is preferred.
  • L, R and dashed lines are the same as above.
  • the side chain represented by formula (a2-1) is preferably a side chain represented by formula (a2-1-1) below. (In the formula, L, A 2 , Q 1 , T 1 , R and dashed lines are the same as above.)
  • the side chain represented by formula (a3-1) is preferably a side chain represented by formula (a3-1-1), (a3-1-2) or (a3-1-3) below. (In the formula, L, Cou and dashed line are the same as above.)
  • the side chain represented by formula (a4-1) is represented by the following formula (a4-1-1), (a4-1-2), (a4-1-3) or (a4-1-4) are preferred. (In the formula, L, R and dashed lines are the same as above.)
  • the side chain represented by formula (a5-1) is preferably a side chain represented by formula (a5-1-1) or (a5-1-2) below. (In the formula, L, R and dashed lines are the same as above.)
  • the side chain represented by formula (a6-1) is preferably a side chain represented by formula (a6-1-1), (a6-1-2) or (a6-1-3) below. (In the formula, L, R and dashed lines are the same as above.)
  • the side-chain block copolymer has a photosensitive side chain bonded to the main chain of the side-chain type polymer block, and has an optimum light selected from a wavelength of 200 to 400 nm, particularly a wavelength of 254 nm. , 313 nm or 365 nm light to cause cross-linking reactions, isomerization reactions or Fries rearrangements.
  • the structure of the photosensitive side-chain type polymer block is not particularly limited as long as it satisfies such properties, but it is preferable to have a rigid mesogenic component in the side-chain structure. A stable optical anisotropy can be obtained when the side chain type block copolymer is formed into a single-layer retardation film.
  • the structure of the side-chain polymer block include radically polymerizable groups such as (meth)acrylate, itaconate, fumarate, maleate, ⁇ -methylene- ⁇ -butyrolactone, styrene, vinyl, maleimide and norbornene. and siloxane, and a structure having a side chain a is preferred.
  • radically polymerizable groups such as (meth)acrylate, itaconate, fumarate, maleate, ⁇ -methylene- ⁇ -butyrolactone, styrene, vinyl, maleimide and norbornene. and siloxane, and a structure having a side chain a is preferred.
  • the side chain type polymer block may further include a side chain that neither photodimerizes nor photoisomerizes (hereinafter also referred to as side chain b).
  • a side chain b is preferably represented by one of the following formulas (b1) to (b11), but is not limited thereto.
  • each A 4 may be the same or different.
  • R 1 is —NO 2 , —CN, halogen atom, phenyl group, naphthyl group, biphenylyl group, furanyl group, monovalent nitrogen-containing heterocyclic group, monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, carbon It is an alkyl group having 1 to 12 carbon atoms or an alkoxy group having 1 to 12 carbon atoms.
  • R 2 is a phenyl group, a naphthyl group, a biphenylyl group, a furanyl group, a monovalent nitrogen-containing heterocyclic group or a monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, and part of the hydrogen atoms of these groups Alternatively, all of them may be substituted with —NO 2 , —CN, a halogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms.
  • R 3 is a hydrogen atom, —NO 2 , —CN, a halogen atom, a phenyl group, a naphthyl group, a biphenylyl group, a furanyl group, a monovalent nitrogen-containing heterocyclic group, or a monovalent alicyclic hydrocarbon having 5 to 8 carbon atoms; , an alkyl group having 1 to 12 carbon atoms or an alkoxy group having 1 to 12 carbon atoms.
  • the monovalent nitrogen-containing heterocyclic group examples include a pyrrolidinyl group, a piperidinyl group, a piperazinyl group, a pyrrolyl group, a pyridyl group, and the like.
  • Specific examples of the monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms include cyclopentyl and cyclohexyl groups.
  • examples of the alkyl group and alkoxy group include the same groups as those exemplified in the description of the formulas (a1) to (a6).
  • the side chain type polymer block can be obtained by polymerizing a monomer that provides the side chain a and, if necessary, a monomer that provides the side chain b.
  • Examples of the monomer that provides the side chain a include compounds represented by the following formulas (M1), (M2), (M3), (M4), (M5) and (M6). be done. (wherein A 1 , A 2 , D 1 , L, T 1 , Y 1 , Y 2 , P 1 , Q 1 , Q 2 , R, Cou, E, X 1 , X 2 , G 1 , G 2 , n1 and n2 are the same as above.)
  • PG is a polymerizable group, preferably a group represented by any one of the following formulas (PG1) to (PG6).
  • the acryl group or methacryl group represented by the formula (PG1) is preferable from the viewpoint of easy control of the polymerization reaction and stability of the polymer.
  • RA is a hydrogen atom or a methyl group, and the dashed line is a bond with L.
  • the compound represented by formula (M1-1) is preferably represented by the following formula (M1-1-1), and the compound represented by formula (M1-2) is preferably represented by the following formula (M1- 2-1) is preferred.
  • PG, L and R are the same as above.
  • Examples of the compound represented by formula (M1) include those represented by any one of the following formulas (A-1-1-1) to (A-1-1-12).
  • PG is a polymerizable group
  • s1 represents the number of methylene groups and is an integer of 2-9.
  • R 12 is -H, -CH 3 , - CN or -F.
  • the compound represented by formula (M1) includes, for example, those represented by any one of the following formulas (A-1-2-1) to (A-1-2-4).
  • PG is a polymerizable group
  • s1 is the same as above.
  • Specific examples of the compound represented by formula (M1) include 4-(6-methacryloxyhexyl-1-oxy)cinnamic acid, 4-(6-acryloxyhexyl-1-oxy)cinnamic acid, 4 -(3-methacryloxypropyl-1-oxy)cinnamic acid, 4-[4-(6-methacryloxyhexyl-1-oxy)benzoyloxy]cinnamic acid and the like.
  • Examples of the compound represented by formula (M2) include those represented by any one of the following formulas (A-2-1) to (A-2-9).
  • PG is a polymerizable group
  • s1 and s2 represent the number of methylene groups, each independently an integer of 2 to 9 be.
  • Examples of the compound represented by formula (M3) include those represented by any one of the following formulas (A-3-1) to (A-3-5).
  • PG is a polymerizable group
  • s1 is the same as above.
  • Examples of the compound represented by formula (M4) include those represented by any one of the following formulas (A-4-1) to (A-4-4).
  • PG is a polymerizable group
  • s1 is the same as above.
  • Examples of the compound represented by formula (M5) include those represented by any one of the following formulas (A-5-1) to (A-5-3).
  • PG is a polymerizable group
  • s1 is the same as above.
  • Examples of the compound represented by formula (M6) include those represented by any one of the following formulas (A-6-1) to (A-6-3).
  • PG is a polymerizable group
  • s1 is the same as above.
  • monomer MB An example of a monomer that gives a side chain b that does not undergo photodimerization or photoisomerization (hereinafter also referred to as monomer MB) is a monomer capable of forming a mesogenic group on the side chain.
  • the mesogenic group may be a group such as biphenyl or phenylbenzoate that forms a mesogenic structure by itself, or a group such as benzoic acid that forms a mesogenic structure by hydrogen bonding between side chains.
  • the mesogenic group having a side chain the following structure is preferable.
  • the monomer MB include radically polymerizable groups such as hydrocarbons, (meth)acrylates, itaconates, fumarate, maleates, ⁇ -methylene- ⁇ -butyrolactone, styrene, vinyl, maleimide, norbornene, and siloxanes. and a polymerizable group derived from at least one of the formulas (b1) to (b11).
  • the monomer MB preferably has a polymerizable group derived from (meth)acrylate.
  • Preferred examples of the monomer MB include those represented by the following formulas (MB-1) to (MB-8).
  • PG is a polymerizable group
  • p represents the number of methylene groups and is an integer of 2-9.
  • other monomers can be copolymerized within a range that does not impair the ability to express photoreactivity and/or liquid crystallinity.
  • the other monomers include industrially available radical polymerizable monomers.
  • Specific examples of the other monomers include unsaturated carboxylic acids, acrylic acid ester compounds, methacrylic acid ester compounds, maleimide compounds, acrylonitrile, maleic anhydride, styrene compounds, and vinyl compounds.
  • unsaturated carboxylic acid examples include acrylic acid, methacrylic acid, itaconic acid, maleic acid, and fumaric acid.
  • acrylic ester compound examples include methyl acrylate, ethyl acrylate, isopropyl acrylate, benzyl acrylate, naphthyl acrylate, anthryl acrylate, anthryl methyl acrylate, phenyl acrylate, 2,2,2-trifluoroethyl acrylate, tert -butyl acrylate, cyclohexyl acrylate, isobornyl acrylate, 2-methoxyethyl acrylate, methoxytriethylene glycol acrylate, 2-ethoxyethyl acrylate, tetrahydrofurfuryl acrylate, 3-methoxybutyl acrylate, 2-methyl-2-adamantyl acrylate, 2-propyl-2-adamantyl acrylate, 8-methyl-8-tricyclo[5.2.1.0(2,6)]decyl acrylate, 8-ethyl-8-tricyclo[5.2.1.0(2 , 6)]
  • methacrylate compounds include methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, benzyl methacrylate, naphthyl methacrylate, anthryl methacrylate, anthrylmethyl methacrylate, phenyl methacrylate, 2,2,2-trifluoroethyl methacrylate, tert.
  • vinyl compound examples include vinyl ether, methyl vinyl ether, benzyl vinyl ether, 2-hydroxyethyl vinyl ether, phenyl vinyl ether, and propyl vinyl ether.
  • styrene compound examples include styrene, 4-methylstyrene, 4-chlorostyrene, 4-bromostyrene and the like.
  • maleimide compound examples include maleimide, N-methylmaleimide, N-phenylmaleimide, N-cyclohexylmaleimide, and the like.
  • the contents of the side chain a and the side chain b in the side chain type polymer block are not particularly limited.
  • a homopolymer containing 100 mol % of side chains a may be used, or two or more types of side chains a may be used.
  • the side chain a is preferably 5 to 99.9 mol%, more preferably 5 to 95 mol%, from the viewpoint of photoreactivity, and from the viewpoint of photostability. 5 to 50 mol % is even more preferred.
  • the side chain b is preferably 95 mol % or less, more preferably 5 to 95 mol %, and still more preferably 50 mol % or more from the viewpoint of photostability. Even in the case of a copolymer, two or more types of side chains a and side chains b may be used.
  • the side chain type polymer block may contain other side chains.
  • the content of other side chains is the remainder when the total content of side chains a and b is less than 100 mol %.
  • the method for producing the side chain type block copolymer is not particularly limited, and a general-purpose method that is industrially used can be used. Specifically, it can be produced by mixing a monomer MA, optionally a monomer MB and other monomers, and a polymer-type polymerization initiator, and subjecting the mixture to radical polymerization in a solvent.
  • a polymer type polymerization initiator means a polymerization initiator having a polymer segment and a polymerization initiation active group.
  • the polymer segment is a portion that becomes the initiator-derived polymer block in the side chain type block copolymer.
  • polymer-type polymerization initiator one having a repeating unit represented by the following formula (1) is preferable.
  • R a1 to R a4 are each independently a linear or branched alkyl group having 1 to 6 carbon atoms or a cyano group.
  • R L1 and R L2 are each independently an alkylene group having 1 to 10 carbon atoms.
  • X is a divalent group represented by the following formula (2) or (3).
  • R a5 to R a8 are linear or branched C 1-6 alkyl groups or C 6-12 aryl groups.
  • R a9 and R a10 are each independently an alkylene group having 1 to 10 carbon atoms.
  • R L3 and R L4 are each independently an alkylene group having 1 to 10 carbon atoms.
  • Each of x and y is independently a positive integer, usually 5 to 2,000, preferably 5 to 1,000, more preferably 10 to 300, still more preferably 10 to 200.
  • Linear or branched C 1-6 alkyl groups include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group and n-pentyl group. , isopentyl group, neopentyl group, n-hexyl group, cyclopentyl group, cyclohexyl group and the like.
  • the alkylene group having 1 to 10 carbon atoms may be linear, branched or cyclic, and specific examples include methylene, ethylene, trimethylene, propylene, tetramethylene, pentamethylene, hepta methylene group, octamethylene group, nonamethylene group, decamethylene group, 2-methylpropylene group, 1-methylethylidene group, cyclohexylene group and the like.
  • Examples of the aryl group having 6 to 12 carbon atoms include a phenyl group, 1-naphthyl group, 2-naphthyl group, 1-biphenylyl group and 2-biphenylyl group.
  • R a1 to R a4 are preferably an alkyl group having 1 to 3 carbon atoms or a cyano group, more preferably a methyl group or a cyano group.
  • R L1 and R L2 are preferably C 1-5 alkylene groups, more preferably C 1-3 alkylene groups.
  • R a5 to R a8 are preferably alkyl groups having 1 to 3 carbon atoms, more preferably methyl groups or ethyl groups.
  • R a9 and R a10 are preferably C 1-5 alkylene groups, more preferably C 1-3 alkylene groups.
  • R L3 and R L4 are preferably C 1-5 alkylene groups, more preferably C 1-3 alkylene groups.
  • polymer type polymerization initiator examples include a polyethylene glycol unit-containing polymeric azo polymerization initiator represented by the following formula (In-1), and a polydimethylsiloxane unit-containing polymer represented by the following formula (In-2).
  • Molecular azo polymerization initiators and the like can be mentioned.
  • n is a positive integer, usually 1-100, preferably 3-50, more preferably 5-30.
  • VPE-0201 as the polymerization initiator represented by the formula (In-1) and polymerization represented by the formula (In-2)
  • examples of the initiator include VPS-1001N (both manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.).
  • the organic solvent used for the polymerization reaction is not particularly limited as long as it dissolves the polymer produced.
  • Specific examples include N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methyl- ⁇ -caprolactam, dimethylsulfoxide, and tetramethylurea.
  • a solvent that does not dissolve the generated polymer may be mixed with the above-described organic solvent and used as long as the generated polymer does not precipitate.
  • oxygen in an organic solvent inhibits the polymerization reaction, so it is preferable to use an organic solvent that has been degassed to the extent possible.
  • the polymerization temperature during radical polymerization can be selected from any temperature in the range of 20 to 150°C, preferably in the range of 30 to 100°C.
  • the reaction can be carried out at any concentration, but if the concentration is too low, it becomes difficult to obtain a high-molecular-weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high, making uniform stirring difficult. Therefore, the monomer concentration is preferably 1 to 50% by mass, more preferably 5 to 30% by mass.
  • the initial stage of the reaction can be carried out at a high concentration, and then the organic solvent can be added.
  • the amount of the polymer polymerization initiator to be used is determined, in consideration of the half-life of the polymer polymerization initiator, in order to facilitate the progress of the radical polymerization. It is preferably 0.01 to 0.2 with respect to 1 of the total amount of monomers that provide blocks. Further, various monomer components, solvents, initiators, etc. may be added during polymerization.
  • the side-chain block copolymer produced from the reaction solution obtained by the above reaction can be recovered by putting the reaction solution into a poor solvent to precipitate it, but this reprecipitation treatment is not essential.
  • Poor solvents used for precipitation include methanol, acetone, hexane, heptane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, diethyl ether, methyl ethyl ether, and water.
  • the polymer precipitated by putting it into the poor solvent can be filtered and recovered, and then dried at room temperature or under heat under normal pressure or reduced pressure.
  • impurities in the polymer can be reduced by repeating the operation of redissolving the recovered polymer in an organic solvent and recovering it by reprecipitation 2 to 10 times.
  • the poor solvent in this case include alcohols, ketones, hydrocarbons, and the like. It is preferable to use three or more poor solvents selected from these, because the purification efficiency is further improved.
  • the ratio (molar ratio) of the side chain type polymer block and the initiator-derived polymer block in the side chain type block copolymer is roughly the total amount of the monomers providing the side chain type polymer block and the total amount of the polymer type polymerization initiator. Conforms to usage.
  • the weight-average molecular weight (Mw) of the side chain type block copolymer used in the present invention is 2,000 to 2,000 to 2,000, considering the strength of the resulting coating film, the workability during coating film formation, and the uniformity of the coating film. 000,000 is preferred, 2,000 to 1,000,000 is more preferred, and 5,000 to 200,000 is even more preferred.
  • Mw is a polystyrene equivalent measurement value by a gel permeation chromatography (GPC) method.
  • the polymer composition of the present invention contains an organic solvent (good solvent).
  • the organic solvent (good solvent) is not particularly limited as long as it dissolves the polymer component. Specific examples include N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methyl- ⁇ -caprolactam, 2-pyrrolidone, N-ethyl-2-pyrrolidone, N- Vinyl-2-pyrrolidone, dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, hexamethylphosphoramide, ⁇ -butyrolactone, 3-methoxy-N,N-dimethylpropanamide, 3-ethoxy-N,N-dimethylpropane amide, 3-butoxy-N,N-dimethylpropanamide, 1,3-dimethyl-2-imidazolidinone, ethyl amyl ketone, methyl nonyl ketone, methyl
  • the polymer composition may contain components other than the side-chain block copolymer and the organic solvent (good solvent).
  • examples thereof include solvents (poor solvents) and compounds that improve the film thickness uniformity and surface smoothness when the polymer composition is applied, and compounds that improve the adhesion between the retardation film and the substrate. but not limited to these.
  • the solvent (poor solvent) that improves the film thickness uniformity and surface smoothness include isopropyl alcohol, methoxymethylpentanol, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, ethyl carbitol acetate, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether (butyl cellosolve), propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, Dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropy
  • the poor solvent may be used singly or in combination of two or more.
  • its content is preferably 5 to 80% by mass, more preferably 10 to 60% by mass in the solvent so as not to significantly lower the solubility of the polymer.
  • Compounds that improve film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants. Specific examples thereof include Ftop (registered trademark) 301, EF303, EF352 (manufactured by Tochem Products), Megafac (registered trademark) F171, F173, F560, F563, R-30, R-40, R- 41 (manufactured by DIC), Florard FC430, FC431 (manufactured by 3M), Asahiguard (registered trademark) AG710 (manufactured by AGC), Surflon (registered trademark) S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by AGC Seimi Chemical Co., Ltd.), BYK-302, BYK-331, BYK-348, BYK-360N, BYK-381, BYK-3441 (manufactured by BYK) and the like
  • the compound that improves the adhesion between the retardation film and the substrate include functional silane-containing compounds, and specific examples thereof include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxy Silane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane Silane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxycarbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyl triethylenetriamine, N-trimethoxys
  • the polymer composition contains a phenoplast-based compound and an epoxy group-containing compound for the purpose of improving the adhesion between the substrate and the retardation film and preventing deterioration of characteristics due to backlight when the polarizing plate is constructed. It's okay.
  • phenoplast-based compound examples include, but are not limited to, those shown below.
  • epoxy group-containing compound examples include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, ,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, N,N,N' , N'-tetraglycidyl-m-xylylenediamine, 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane, N,N,N',N'-tetraglycidyl-4,4'-diaminodipheny
  • the content thereof is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the side chain block copolymer contained in the polymer composition. ⁇ 20 parts by mass is more preferable. If the content is less than 0.1 parts by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the orientation of the liquid crystal may deteriorate.
  • a photosensitizer can also be used as an additive.
  • Preferred photosensitizers are colorless sensitizers and triplet sensitizers.
  • photosensitizers include aromatic nitro compounds, coumarin (7-diethylamino-4-methylcoumarin, 7-hydroxy-4-methylcoumarin), ketocoumarin, carbonylbiscoumarin, aromatic 2-hydroxyketone, aromatic 2-hydroxy Ketones (2-hydroxybenzophenone, mono- or di-p-(dimethylamino)-2-hydroxybenzophenone, etc.), acetophenone, anthraquinone, xanthone, thioxanthone, benzantrone, thiazoline (2-benzoylmethylene-3-methyl- ⁇ - Naphthothiazoline, 2-( ⁇ -naphthoylmethylene)-3-methylbenzothiazoline, 2-( ⁇ -naphthoylmethylene)-3-methylbenzothiazoline, 2-(4-biphenoylmethylene)-3-methylbenzothiazoline , 2-( ⁇ -naphthoylmethylene)-3-methyl- ⁇ -naphth
  • aromatic 2-hydroxyketones (benzophenones), coumarins, ketocoumarins, carbonylbiscoumarins, acetophenones, anthraquinones, xanthones, thioxanthones and acetophenone ketals are preferred.
  • the polymer composition may contain a dielectric substance or a conductive substance for the purpose of changing the electrical properties of the retardation film, such as the dielectric constant and conductivity, as long as the effects of the present invention are not impaired.
  • a cross-linking compound may be added for the purpose of increasing the hardness and denseness of the retardation film.
  • the polymer composition is preferably prepared as a coating liquid so as to be suitable for forming a single-layer retardation film. That is, the polymer composition used in the present invention includes a side chain type block copolymer, a compound that improves film thickness uniformity and surface smoothness described above, a compound that improves adhesion to a substrate, etc. It is preferably prepared as a solution dissolved in (a good solvent).
  • the content of the side chain type block copolymer in the polymer composition is preferably 1 to 30% by mass, more preferably 3 to 25% by mass.
  • the polymer composition may contain other polymers within a range that does not impair the ability to develop liquid crystals and the photosensitive performance.
  • the other polymers include polymers that do not contain photosensitive side chains capable of exhibiting liquid crystallinity, such as poly(meth)acrylates, polyamic acids, and polyimides.
  • the content thereof is preferably 0.5 to 80% by mass, more preferably 1 to 50% by mass, based on the total polymer components.
  • dielectrics and A cross-linking compound may be added for the purpose of increasing the hardness and denseness of the film when used as a retardation material, as well as the conductive substance.
  • the polymer composition of the present invention is preferably prepared as a coating liquid so as to be suitable for forming a single-layer retardation material. That is, the polymer composition used in the present invention includes the component (A), the solvents and compounds that improve the film thickness uniformity and surface smoothness described above, the compounds that improve the adhesion between the liquid crystal alignment film and the substrate, and the like. is preferably prepared as a solution in the organic solvent of component (B).
  • the content of component (A) is preferably 1 to 30% by mass, more preferably 3 to 25% by mass, in the polymer composition of the present invention.
  • the single-layer retardation material of the present invention can be produced by a method including the following steps (I) to (III). (I) a step of applying the polymer composition of the present invention onto a substrate to form a coating film; (II) a step of irradiating the coating film with polarized ultraviolet rays; and (III) a step of heating the coating film irradiated with the ultraviolet rays to obtain a retardation material.
  • Step (I) is a step of applying the polymer composition of the present invention onto a substrate to form a coating film.
  • the polymer composition of the present invention can be applied to substrates (e.g., silicon/silicon dioxide coated substrates, silicon nitride substrates, metal (e.g., aluminum, molybdenum, chromium, etc.) coated substrates, glass substrates, Quartz substrate, ITO substrate, etc.) or film (for example, triacetyl cellulose (TAC) film, cycloolefin polymer film, polyethylene terephthalate film, resin film such as acrylic film), etc., are bar-coated, spin-coated, flow-coated, It is applied by a method such as roll coating, slit coating, spin coating subsequent to slit coating, inkjet method, or printing method. After coating, the solvent is evaporated at 50 to 200° C., preferably 50 to 150° C., by heating means such as a hot plate, thermal circulation
  • step (II) the coating film obtained in step (I) is irradiated with polarized ultraviolet rays.
  • the substrate is irradiated with the polarized ultraviolet rays from a certain direction through a polarizing plate.
  • the ultraviolet rays ultraviolet rays having a wavelength of 100 to 400 nm can be used.
  • the optimum wavelength is selected through a filter or the like depending on the type of coating film to be used.
  • ultraviolet light with a wavelength in the range of 290 to 400 nm can be selected and used so as to selectively induce a photocrosslinking reaction.
  • ultraviolet rays for example, light emitted from a high-pressure mercury lamp can be used.
  • the amount of polarized UV light depends on the coating film used.
  • the irradiation amount is 1 to 70% of the amount of polarized ultraviolet rays that realizes the maximum value of ⁇ A, which is the difference between the ultraviolet absorbance in the direction parallel to the polarization direction of the polarized ultraviolet rays and the ultraviolet absorbance in the direction perpendicular to the polarized ultraviolet rays in the coating film. is preferably within the range of , and more preferably within the range of 1 to 50%.
  • step (III) the coating film irradiated with the polarized ultraviolet rays in step (II) is heated. Heating can impart alignment control ability to the coating film.
  • heating means such as a hot plate, thermal circulation oven, IR (infrared) oven, etc. can be used.
  • the heating temperature can be determined in consideration of the temperature at which the coating film to be used exhibits liquid crystallinity.
  • the heating temperature is preferably within the temperature range at which the polymer of component (A) contained in the polymer composition of the present invention exhibits liquid crystallinity (hereinafter referred to as liquid crystal expression temperature).
  • liquid crystal expression temperature the temperature at which liquid crystals appear on the surface of the coating film is expected to be lower than the temperature at which liquid crystals appear when the polymer of component (A) is observed in bulk. For this reason, the heating temperature is more preferably within the temperature range of the liquid crystal manifestation temperature of the coating film surface.
  • the temperature range of the heating temperature after irradiation with polarized ultraviolet rays is set to a temperature 10°C lower than the lower limit of the temperature range of the liquid crystal manifestation temperature of the polymer of component (A), and a temperature lower than the upper limit of the liquid crystal temperature range by 10°C. It is preferable that the temperature is in the range with the upper limit of If the heating temperature is lower than the temperature range, the effect of amplifying the anisotropy in the coating film tends to be insufficient, and if the heating temperature is too high than the temperature range, the state of the coating film tend to approach an isotropic liquid state (isotropic phase), in which case self-assembly can make it difficult to reorient in one direction.
  • the liquid crystal manifestation temperature is the liquid crystal transition temperature at which the polymer or coating surface undergoes a phase transition from the solid phase to the liquid crystal phase, and is isotropic that causes the phase transition from the liquid crystal phase to the isotropic phase (isotropic phase).
  • the temperature below the phase transition temperature (Tiso) means that the liquid crystal transition temperature at which a phase transition occurs from a solid phase to a liquid crystal phase is 130° C. or lower.
  • the thickness of the coating film formed after heating can be appropriately selected in consideration of the steps of the substrate to be used and the optical and electrical properties, and is preferably 0.5 to 10 ⁇ m, for example.
  • the single-layer retardation material of the present invention thus obtained is a material having optical properties suitable for applications such as display devices and recording materials. It is suitable as an optical compensation film.
  • MA-1 and MA-3 are shown below as monomers having a photoreactive group, and MA-2 as a monomer having a non-photoreactive group used in the examples.
  • MA-1 was synthesized according to the synthetic method described in WO2011/084546.
  • MA-2 was synthesized according to the synthesis method described in JP-A-9-118717.
  • MA-3 was synthesized according to the synthesis method described in JP-A-2012-27354.
  • MA-4 was synthesized using MA-2 as a raw material according to the synthesis method described in WO 2013/133078.
  • MA-5 was synthesized according to the synthetic method described in WO2014/054785.
  • MA-6 was synthesized by the synthesis method described in Non-Patent Document (Macromolecules 2007, 40, 6355-6360).
  • MA-7 was synthesized by the synthesis method described in WO2014/054785.
  • the side chains derived from MA-1, MA-3, and MA-6 exhibit photoreactivity and liquid crystallinity, and the side chains derived from MA-7 exhibit photoreactivity.
  • Side chains derived from MA-5 exhibit only liquid crystallinity.
  • abbreviations of reagents used in this example are shown below.
  • NMP N-methyl-2-pyrrolidone
  • BCS butyl cellosolve
  • CPN cyclopentanone (polymerization initiator)
  • AIBN 2,2'-azobisisobutyronitrile
  • In-1 Polyethylene glycol unit-containing polymeric azo polymerization initiator represented by the formula (In-1) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. VPE-0201 , molecular weight of polyethylene glycol unit: about 2,000)
  • In-2 Polydimethylsiloxane unit-containing polymeric azo polymerization initiator represented by the formula (In-2) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.
  • VPS-1001N molecular weight of polysiloxane unit: about 10,000
  • R40 Megaface R-40 (manufactured by DIC)
  • F563 Megafac F-563 (manufactured by DIC) (Molecular weight measurement of polymer)
  • Polymer molecular weight measurement conditions are as follows.
  • MB3 had a number average molecular weight of 14,800 and a weight average molecular weight of 38,100.
  • Table 1 summarizes the components used in each of the above synthesis examples and comparative synthesis examples.
  • Polymer solutions T2 to T6 were obtained in the same manner as in Production Example 1, except that polymer powders MB2 to MB6 were used instead of polymer powder MB1.
  • the obtained polymer solutions T2 to T6 were directly used as retardation materials for forming retardation films.
  • Polymer solutions T8 to T9 were obtained in the same manner as in Production Example 7, except that polymer solutions MB8 to MB9 were used instead of polymer solution MB7.
  • the obtained polymer solutions T8 and T9 were directly used as retardation materials for forming retardation films.
  • Polymer solutions T10 and T11 were obtained in the same manner as in Production Example 1, except that polymer powders MB10 and MB11 were used instead of polymer powder MB1.
  • the obtained polymer solutions T10 and T11 were directly used as retardation materials for forming retardation films.
  • Polymer solution T13 was obtained in the same manner as in Production Example 12, except that polymer powder MB13 was used instead of polymer powder MB12.
  • Polymer solution C1 was obtained in the same manner as in Production Example 1, except that polymer solution P1 was used instead of polymer powder MB1.
  • the obtained polymer solution C1 was used as a retardation material for forming a retardation film as it was.
  • Polymer solution C2 was obtained in the same manner as in Production Example 7, except that polymer solution P2 was used instead of polymer solution MB7.
  • the obtained polymer solution C2 was used as a retardation material for forming a retardation film as it was.
  • Table 2 summarizes the components used in each of the above production examples and comparative production examples.
  • Example 1 Production of single-layer retardation material
  • the polymer solution T1 obtained in Production Example 1 was filtered through a filter with a pore size of 5.0 ⁇ m, spin-coated onto a non-alkali glass substrate, dried on a hot plate at 60° C. for 4 minutes, and coated with a film thickness of 2.0 ⁇ m. A retardation film was formed.
  • the coated film surface was irradiated with ultraviolet rays of 365 nm at 50, 100, 200, 400, and 800 mJ/cm 2 through a polarizing plate, and then placed in a thermal circulation oven at 120°C for 20 minutes. It was heated for a minute to produce a substrate S1 with a retardation film.
  • Example 2 to 9 Substrates S2 to S9 with a retardation film were produced in the same manner as in Example 1, except that T2 to T9 were used instead of the polymer solution T1.
  • Example 10 to 13 In the same manner as in Example 1, except that T10 and T11 were used instead of the polymer solution T1, the polarized ultraviolet exposure conditions were changed, and the baking temperature was changed to 100° C. and 120° C., a substrate S10 to S13 was produced. When exposing to polarized ultraviolet rays, exposure was performed through a 325 nm long wave pass filter (325LWPF) and a 365 nm polarizing plate.
  • 325LWPF 325 nm long wave pass filter
  • Example 14 After the polymer solution T12 was filtered through a 5.0 ⁇ m filter, it was applied onto a non-alkali glass substrate using a bar coater. The coated film was dried in a thermal circulation oven at 50° C. for 3 minutes, and then the substrate was irradiated with 200 mJ/cm 2 of polarized ultraviolet rays of 365 nm from a high-pressure mercury lamp through a 365 nm bandpass filter (365BPF) and a polarizing plate. It was heated in an IR oven at 130° C. for 20 minutes to prepare a substrate S14 with a retardation film.
  • 365BPF 365 nm bandpass filter
  • Example 15 After the polymer solution T13 was filtered through a 5.0 ⁇ m filter, it was applied onto an alkali-free glass substrate using a bar coater. The coated film was dried in a thermal circulation oven at 50° C. for 3 minutes, and then the substrate was irradiated with 1,600 mJ/cm 2 of polarized ultraviolet rays of 313 nm from a high-pressure mercury lamp through a 313 nm bandpass filter (313BPF) and a polarizing plate. bottom. It was heated in an IR oven at 140° C. for 20 minutes to prepare a substrate S15 with a retardation film.
  • 313BPF 313 nm bandpass filter
  • Example 1 A substrate Q1 with a retardation film was produced in the same manner as in Example 1 except that C1 was used instead of the polymer solution T1 and the baking temperature was changed to 140.degree.
  • Example 2 A substrate Q2 with a retardation film was produced in the same manner as in Example 1, except that C1 was used instead of the polymer solution T1.
  • Example 3 A substrate Q3 with a retardation film was produced in the same manner as in Example 1 except that C2 was used instead of the polymer solution T1 and the baking temperature was changed to 140.degree.
  • Example 4 A substrate Q4 with a retardation film was produced in the same manner as in Example 1, except that C2 was used instead of the polymer solution T1.
  • the Haze value of each of the substrates S1 to S15 and Q1 to Q6 produced in each of the examples and comparative examples was evaluated by the following method. [Haze value evaluation] The haze value of the retardation film was evaluated using a haze meter (HZ-V3) manufactured by SUGA Test Instruments Co., Ltd. Tables 3 and 4 show the results.
  • the retardation values of the substrates S1 to S15 and Q1 to Q6 produced in the above examples and comparative examples were evaluated by the following method.
  • [Phase difference value evaluation] A linear phase difference (Linear Re) at a wavelength of 550 nm was evaluated using Axo Scan manufactured by Axometrics. Tables 5 and 6 show the results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polarising Elements (AREA)

Abstract

より簡単なプロセスにより、濁りの少ない位相差膜の作製を可能とする重合体組成物として、(A)液晶性を発現し得る感光性の側鎖型重合体ブロックと、ポリマー型重合開始剤由来の重合体ブロックとを含むブロック共重合体、及び(B)有機溶媒を含む重合体組成物を提供する。

Description

重合体組成物及び単層位相差材
 本発明は、重合体を含む組成物及び単層位相差材に関する。
 液晶表示装置の表示品位の向上や軽量化等の要求から、偏光板や位相差板等の光学補償フィルムとして、内部の分子配向構造が制御された高分子フィルムの要求が高まっている。この要求に応えるべく、重合性液晶化合物が有する光学異方性を利用したフィルムの開発がなされている。ここで用いられる重合性液晶化合物は、一般に、重合性基と液晶構造部位(スペーサ部とメソゲン部とを有する構造部位)とを有する液晶化合物であり、この重合性基としてアクリル基が広く用いられている。
 このような重合性液晶化合物は、一般的に、紫外線等の放射線を照射して重合する方法で重合体(フィルム)とされる。例えば、アクリル基を有する特定の重合性液晶化合物を支持体間に担持し、この化合物を液晶状態に保持しつつ放射線を照射して重合体を得る方法(特許文献1)や、アクリル基を有する2種類の重合性液晶化合物の混合物又はこの混合物にカイラル液晶を混合した組成物に光重合開始剤を添加し、紫外線を照射して重合体を得る方法(特許文献2)が知られている。
 また、液晶配向膜を必要としない重合性液晶化合物や重合体を用いた配向フィルム(特許文献3、4)、光架橋部位を含む重合体を用いた配向フィルム(特許文献5、6)等、様々な単層塗布型配向フィルムが報告されてきた。高配向性を示す重合体は、重合体の溶解性が低く、位相差材料としてHaze(ヘイズ、濁度)や位相差不足等の問題が生じてしまう。このような問題を解決する材料はこれまでに見出されていなかった。
特開昭62-70407号公報 特開平9-208957号公報 欧州特許出願公開第1090325号明細書 国際公開第2008/031243号 特開2008-164925号公報 特開平11-189665号公報
 本発明は、前記問題に鑑みなされたものであり、より簡単なプロセスにより、濁りの少ない単層位相差材の作製を可能とする重合体組成物、及び該重合体組成物から得られる単層位相差材を提供することを目的とする。
 本発明者らは、前記課題を解決すべく鋭意検討を重ねた結果、特定の重合体及び特定の添加剤を含む組成物を用いることで、液晶配向膜を使用することなく、濁りの少ない異方性(Δn)を有する単層位相差材を作製可能となることを見出し、本発明を完成した。
 すなわち、本発明は、下記重合体組成物及び単層位相差材を提供する。
1. (A)液晶性を発現し得る感光性の側鎖型重合体ブロックと、ポリマー型重合開始剤由来の重合体ブロックとを含むブロック共重合体、及び(B)有機溶媒を含む重合体組成物。
2. 前記側鎖型重合体ブロックが、下記式(a1)~(a6)のいずれかで表される側鎖を有する1の重合体組成物。
Figure JPOXMLDOC01-appb-C000007
(式中、n1及びn2は、それぞれ独立に、0、1、2又は3である。
 Lは、単結合又は炭素数1~12のアルキレン基であり、該アルキレン基の水素原子の一部又は全部がハロゲン原子で置換されていてもよい。
 T1は、単結合又は炭素数1~12のアルキレン基であり、該アルキレン基の水素原子の一部又は全部がハロゲン原子で置換されていてもよい。
 A1、A2及びD1は、それぞれ独立に、単結合、-O-、-CH2-、-C(=O)-O-、-O-C(=O)-、-C(=O)-NH-又は-NH-C(=O)-である。ただし、T1が単結合のときは、A2も単結合である。
 Y1及びY2は、フェニレン基又はナフチレン基であり、該フェニレン基及びナフチレン基の水素原子の一部又は全部が、シアノ基、ハロゲン原子、炭素数1~5のアルキル基、炭素数1~5のアルキルカルボニル基又は炭素数1~5のアルコキシ基で置換されていてもよい。
 P1、Q1及びQ2は、それぞれ独立に、単結合、フェニレン基又は炭素数5~8の2価の脂環式炭化水素基であり、該フェニレン基の水素原子の一部又は全部が、シアノ基、ハロゲン原子、炭素数1~5のアルキル基、炭素数1~5のアルキルカルボニル基又は炭素数1~5のアルコキシ基で置換されていてもよい。Q1の数が2以上のとき、各Q1は互いに同一でも異なっていてもよく、Q2の数が2以上のとき、各Q2は互いに同一でも異なっていてもよい。
 Rは、水素原子、シアノ基、ハロゲン原子、カルボキシ基、炭素数1~5のアルキル基、炭素数1~5のアルキルカルボニル基、炭素数3~7のシクロアルキル基又は炭素数1~5のアルコキシ基である。
 X1及びX2は、それぞれ独立に、単結合、-O-、-C(=O)-O-、-O-C(=O)-、-N=N-、-CH=CH-、-C≡C-、-CH=CH-C(=O)-O-又は-O-C(=O)-CH=CH-である。X1の数が2以上のとき、各X1は互いに同一でも異なっていてもよく、X2の数が2以上のとき、各X2は互いに同一でも異なっていてもよい。
 Couは、クマリン-6-イル基又はクマリン-7-イル基であり、これらに結合する水素原子の一部が-NO2、-CN、-CH=C(CN)2、-CH=CH-CN、ハロゲン原子、炭素数1~5のアルキル基又は炭素数1~5のアルコキシ基で置換されてもよい。
 Eは、-C(=O)-O-、-O-C(=O)-、-C(=O)-S-又は-S-C(=O)-である。
 G1及びG2は、それぞれ独立に、N又はCHである。
 破線は、結合手である。)
3. 前記側鎖型重合体ブロックが、更に、光二量化も光異性化もしない側鎖を有する1又は2の重合体組成物。
4. 前記光二量化も光異性化もしない側鎖が、下記式(b1)~(b11)のいずれかで表されるものである3の重合体組成物。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
(式中、A3及びA4は、それぞれ独立に、単結合、-O-、-CH2-、-C(=O)-O-、-O-C(=O)-、-C(=O)-NH-、又は-NH-C(=O)-である。A4の数が2以上のとき、各A4は互いに同一でも異なっていてもよい。
 R1は、-NO2、-CN、ハロゲン原子、フェニル基、ナフチル基、ビフェニリル基、フラニル基、1価窒素含有複素環基、炭素数5~8の1価脂環式炭化水素基、炭素数1~12のアルキル基又は炭素数1~12のアルコキシ基である。
 R2は、フェニル基、ナフチル基、ビフェニリル基、フラニル基、1価窒素含有複素環基又は炭素数5~8の1価脂環式炭化水素基であり、これらの基の水素原子の一部又は全部が、-NO2、-CN、ハロゲン原子、炭素数1~5のアルキル基又は炭素数1~5のアルコキシ基で置換されてもよい。
 R3は、水素原子、-NO2、-CN、ハロゲン原子、フェニル基、ナフチル基、ビフェニリル基、フラニル基、1価窒素含有複素環基、炭素数5~8の1価脂環式炭化水素基、炭素数1~12のアルキル基又は炭素数1~12のアルコキシ基である。
 Eは、-C(=O)-O-、-O-C(=O)-、-C(=O)-S-又は-S-C(=O)-である。
 aは、1~12の整数である。
 k1~k5は、それぞれ独立に、0~2の整数であるが、k1~k5の合計は2以上である。
 k6及びk7は、それぞれ独立に、0~2の整数であるが、k6及びk7の合計は1以上である。
 m1、m2及びm3は、それぞれ独立に、1~3の整数である。
 nは、0又は1である。
 Z1及びZ2は、それぞれ独立に、単結合、-C(=O)-、-CH2-O-、又は-CF2-である。
 破線は、結合手である。)
5. 前記ポリマー型重合開始剤が、下記式(1)で表される繰り返し単位を有する1~4のいずれかの重合体組成物。
Figure JPOXMLDOC01-appb-C000010
 式中、Ra1~Ra4は、それぞれ独立に、直鎖状若しくは分枝状の炭素数1~6のアルキル基、又はシアノ基である。RL1及びRL2は、それぞれ独立に、炭素数1~10のアルキレン基である。L1及びL2は、それぞれ独立に、-C(=O)-O-、-O-C(=O)-、-C(=O)-NH-又は-NH-C(=O)-である。Xは、下記式(2)又は(3)で表される2価の基である。
Figure JPOXMLDOC01-appb-C000011
 式中、Ra5~Ra8は、直鎖状若しくは分枝状の炭素数1~6のアルキル基又は炭素数6~12のアリール基である。Ra9及びRa10は、それぞれ独立に、炭素数1~10のアルキレン基である。RL3及びRL4は、それぞれ独立に、炭素数1~10のアルキレン基である。x及びyは、それぞれ独立に、正の整数である。
6. 前記ポリマー型重合開始剤が、下記式(In-1)~(In-2)のいずれかで表される5の重合体組成物。
Figure JPOXMLDOC01-appb-C000012
(式中、x及びyは前記と同じ。nは、正の整数である。)
7. (I)1~6のいずれかの重合体組成物を、基板上に塗布して塗膜を形成する工程、
(II)前記塗膜に、偏光した紫外線を照射する工程、及び
(III)前記紫外線を照射した塗膜を加熱して、位相差材を得る工程
を含む、単層位相差材の製造方法。
8. 1~6のいずれかの重合体組成物から得られる単層位相差材。
 本発明により、濁りが少なく位相差を発現する単層位相差材と、それを与える重合体組成物とを提供することができる。
 本発明者は、鋭意研究を行った結果、以下の知見を得て本発明を完成するに至った。
 本発明の重合体組成物は、液晶性を発現し得る感光性の側鎖型重合体ブロック(以下、単に側鎖型重合体ブロックともいう。)とポリマー型重合開始剤由来の重合体(以下、単に開始剤由来重合体ブロックともいう。)とを含むブロック共重合体(以下、側鎖型ブロック共重合体ともいう。)を含有しており、前記重合体組成物を用いて得られる塗膜は、液晶性を発現し得る感光性の側鎖を有する膜となる。この塗膜にはラビング処理を行うことなく、偏光照射によって配向処理を行う。そして、偏光照射の後、その重合体膜を加熱する工程を経て、光学異方性が付与されたフィルム(以下、単層位相差材ともいう。)となる。このとき、偏光照射によって発現した僅かな異方性がドライビングフォースとなり、側鎖型ブロック共重合体自体が自己組織化により効率的に再配向する。その結果、高効率な配向処理が実現し、高い光学異方性が付与された単層位相差材を得ることができる。
 また、本発明の重合体組成物は、(A)成分の重合体が、液晶性を発現し得る感光性の側鎖型重合体ブロックと、ポリマー型重合開始剤に由来する重合体ブロックとを含むブロック共重合体であることを特徴とする。これにより、(A)成分の側鎖型ブロック共重合体の、溶剤中での分子運動性が向上する結果、本発明の重合体組成物から得られる位相差材は膜内の分子結晶性が抑制されることとなり、視認ヘイズが抑制される。なお、これらは本発明のメカニズムに関する発明者の見解を含むものであり、本発明を拘束するものではない。
 以下、本発明の実施形態について詳しく説明する。
 本発明の重合体組成物は、(A)光反応性部位を有する側鎖を有する側鎖型重合体ブロックとポリマー型重合開始剤由来の重合体ブロックとを含むブロック共重合体、及び(B)有機溶媒を含むことを特徴とする。
[(A)側鎖型ブロック共重合体]
 (A)成分は、所定の温度範囲で液晶性を発現する感光性の側鎖型ブロック共重合体であって、光反応性部位を有する側鎖を有する側鎖型重合体ブロックとポリマー型重合開始剤由来の重合体ブロックとを含むものである。前記側鎖型重合体ブロックは、紫外線で光反応する光反応性部位を側鎖に有するものであり、具体的には、液晶性を発現し得る感光性の側鎖及び必要に応じて液晶性側鎖を含むものである。前記開始剤由来重合体ブロックは、後述する所定の重合開始剤を由来とする主鎖を有するものである。このような側鎖型ブロック共重合体を含む重合体組成物から得られる塗膜は、前記側鎖型重合体ブロックによる液晶性と感光性と、前記開始剤由来重合体ブロックによる高溶媒溶解性、膜柔軟性(低ガラス転移点化能)を有する膜となる。この塗膜にはラビング処理を行うことなく、偏光照射によって配向処理を行う。そして、偏光照射の後、その側鎖型重合体膜を加熱する工程を経て、光学異方性が付与されたフィルム(単層位相差膜)となる。このとき、偏光照射によって発現した僅かな異方性がドライビングフォースとなり、側鎖型ブロック共重合体自体が自己組織化により効率的に再配向する。その結果、単層位相差膜として高効率な配向処理が実現し、高い光学異方性が付与された単層位相差膜を得ることができる。
 本発明において光反応性とは、(A-1)光架橋(光二量化)反応、(A-2)光異性化、又は(A-3)光フリース転位のいずれかの反応;もしくは複数の反応;を生じる性質をいう。
 前記側鎖型ブロック共重合体は、(i)所定の温度範囲で液晶性を発現する高分子であって、光反応性側鎖を有する高分子である。前記側鎖型ブロック共重合体は、(ii)200~400nm、好ましくは240~400nmの波長範囲の光で反応し、かつ50~300℃の温度範囲で液晶性を示すのがよい。前記側鎖型ブロック共重合体は、(iii)200~400nm、好ましくは240~400nmの波長範囲の光、特に偏光紫外線に反応する光反応性側鎖を有することが好ましい。前記側鎖型ブロック共重合体は、(iv)50~300℃の温度範囲で液晶性を示すためメソゲン基を有することが好ましい。
 前記側鎖型ブロック共重合体は、前述のように、光反応性を有する光反応性側鎖を有する。該側鎖の構造は、特に限定されないが、前記(A-1)、(A-2)及び/又は(A-3)の反応を生じる構造を有し、特に、(A-1)光架橋反応及び/又は(A-2)光異性化反応を生じる構造を有することが好ましい。なお、(A-1)光架橋反応を生じる構造は、その反応後の構造が、熱などの外部ストレスに曝されたとしても側鎖型重合体ブロックの配向性を長期間安定に保持できる点で好ましい。また、(A-2)光異性化反応を生じる構造は、光架橋や光フリース転移と比較して低露光量での配向処理が可能となり、位相差フィルム製造時の生産効率を上げられる点で好ましい。
 前記側鎖型重合体ブロックの側鎖の構造は、剛直なメソゲン成分を有する方が、液晶の配向が安定するため好ましい。メソゲン成分として、ビフェニル基、ターフェニル基、フェニルシクロヘキシル基、フェニルベンゾエート基等が挙げられるが、これらに限定されない。
 前記側鎖型重合体ブロックに含まれる紫外線で光反応する光反応性部位を有する側鎖(以下、側鎖aともいう。)としては、下記式(a1)~(a6)のいずれかで表されるものが好ましい。なお、溶媒への溶解性の観点から、1つの側鎖aが有するベンゼン環の数は、3つ以内が好ましい。
Figure JPOXMLDOC01-appb-C000013
 式(a1)~(a6)中、n1及びn2は、それぞれ独立に、0、1、2又は3である。Lは、単結合又は炭素数1~12のアルキレン基であり、該アルキレン基の水素原子の一部又は全部がハロゲン原子で置換されていてもよい。T1は、単結合又は炭素数1~12のアルキレン基であり、該アルキレン基の水素原子の一部又は全部がハロゲン原子で置換されていてもよい。A1、A2及びD1は、それぞれ独立に、単結合、-O-、-CH2-、-C(=O)-O-、-O-C(=O)-、-C(=O)-NH-又は-NH-C(=O)-である。ただし、T1が単結合のときは、A2も単結合である。Y1及びY2は、フェニレン基又はナフチレン基であり、該フェニレン基及びナフチレン基の水素原子の一部又は全部が、シアノ基、ハロゲン原子、炭素数1~5のアルキル基、炭素数1~5のアルキルカルボニル基又は炭素数1~5のアルコキシ基で置換されていてもよい。P1、Q1及びQ2は、それぞれ独立に、単結合、フェニレン基又は炭素数5~8の2価の脂環式炭化水素基であり、該フェニレン基の水素原子の一部又は全部が、シアノ基、ハロゲン原子、炭素数1~5のアルキル基、炭素数1~5のアルキルカルボニル基又は炭素数1~5のアルコキシ基で置換されていてもよい。Q1の数が2以上のとき、各Q1は互いに同一でも異なっていてもよく、Q2の数が2以上のとき、各Q2は互いに同一でも異なっていてもよい。Rは、水素原子、シアノ基、ハロゲン原子、カルボキシ基、炭素数1~5のアルキル基、炭素数1~5のアルキルカルボニル基、炭素数3~7のシクロアルキル基又は炭素数1~5のアルコキシ基である。X1及びX2は、それぞれ独立に、単結合、-O-、-C(=O)-O-、-O-C(=O)-、-N=N-、-CH=CH-、-C≡C-、-CH=CH-C(=O)-O-又は-O-C(=O)-CH=CH-である。X1の数が2以上のとき、各X1は互いに同一でも異なっていてもよく、X2の数が2以上のとき、各X2は互いに同一でも異なっていてもよい。Couは、クマリン-6-イル基又はクマリン-7-イル基であり、これらに結合する水素原子の一部が-NO2、-CN、-CH=C(CN)2、-CH=CH-CN、ハロゲン原子、炭素数1~5のアルキル基又は炭素数1~5のアルコキシ基で置換されてもよい。Eは、-C(=O)-O-、-O-C(=O)-、-C(=O)-S-又は-S-C(=O)-である。G1及びG2は、それぞれ独立に、N又はCHである。破線は、結合手である。
 前記炭素数1~12のアルキレン基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、メチレン基、エチレン基、プロパン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、ヘプタン-1,7-ジイル基、オクタン-1,8-ジイル基、ノナン-1,9-ジイル基、デカン-1,10-ジイル基等が挙げられる。
 前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 前記炭素数1~5のアルキル基は、直鎖状、分岐状のいずれでもよく、その具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、tert-ブチル基、n-ペンチル基等が挙げられる。
 前記炭素数1~5のアルキルカルボニル基の具体例としては、メチルカルボニル(アセチル)基、エチルカルボニル基、n-プロピルカルボニル基、n-ブチルカルボニル基、n-ペンチルカルボニル基等が挙げられる。
 前記炭素数1~5のアルコキシ基の具体例としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、n-ペンチルオキシ基等が挙げられる。
 前記炭素数5~8の2価の脂環式炭化水素基の具体例としては、シクロペンタンジイル基、シクロヘキサンジイル基、シクロヘプタンジイル基、シクロオクタンジイル基が挙げられる。
 前記炭素数3~7のシクロアルキル基の具体例としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。
 側鎖aとしては、下記式(a1-1)、(a1-2)、(a2-1)、(a3-1)、(a4-1)、(a5-1)又は(a6-1)で表されるものがより好ましい。
Figure JPOXMLDOC01-appb-C000014
(式中、L、A1、A2、Y1、Y2、Q1、T1、R、X1、Cou、E、G1、G2、n1及び破線は、前記と同じ。P1’は、フェニレン基又は炭素数5~8の2価の脂環式炭化水素基であり、該フェニレン基の水素原子の一部又は全部が、シアノ基、ハロゲン原子、炭素数1~5のアルキル基、炭素数1~5のアルキルカルボニル基又は炭素数1~5のアルコキシ基で置換されていてもよい。)
 式(a1-1)で表される側鎖としては、下記式(a1-1-1)で表される側鎖が好ましく、式(a1-2)で表される側鎖としては、式(a1-2-1)で表される側鎖が好ましい。
Figure JPOXMLDOC01-appb-C000015
(式中、L、R及び破線は、前記と同じ。)
 式(a2-1)で表される側鎖としては、下記式(a2-1-1)で表される側鎖が好ましい。
Figure JPOXMLDOC01-appb-C000016
(式中、L、A2、Q1、T1、R及び破線は、前記と同じ。)
 式(a3-1)で表される側鎖としては、下記式(a3-1-1)、(a3-1-2)又は(a3-1-3)で表される側鎖が好ましい。
Figure JPOXMLDOC01-appb-C000017
(式中、L、Cou及び破線は、前記と同じ。)
 式(a4-1)で表される側鎖としては、下記式(a4-1-1)、(a4-1-2)、(a4-1-3)又は(a4-1-4)で表される側鎖が好ましい。
Figure JPOXMLDOC01-appb-C000018
(式中、L、R及び破線は、前記と同じ。)
 式(a5-1)で表される側鎖としては、下記式(a5-1-1)又は(a5-1-2)で表される側鎖が好ましい。
Figure JPOXMLDOC01-appb-C000019
(式中、L、R及び破線は、前記と同じ。)
 式(a6-1)で表される側鎖としては、下記式(a6-1-1)、(a6-1-2)又は(a6-1-3)で表される側鎖が好ましい。
Figure JPOXMLDOC01-appb-C000020
(式中、L、R及び破線は、前記と同じ。)
 (A)側鎖型ブロック共重合体は、側鎖型重合体ブロックの主鎖に感光性を有する側鎖が結合しており、波長200~400nmから選択された最適な光、特に、波長254nm、313nm又は365nmの光に感応して架橋反応、異性化反応又はフリース転位を起こすことができる。感光性の側鎖型重合体ブロックの構造は、そのような特性を満足するものであれば特に限定されないが、側鎖構造に剛直なメソゲン成分を有することが好ましい。前記側鎖型ブロック共重合体を単層位相差膜とした際に、安定な光学異方性を得ることができる。
 前記側鎖型重合体ブロックの構造のより具体的な例としては、(メタ)アクリレート、イタコネート、フマレート、マレエート、α-メチレン-γ-ブチロラクトン、スチレン、ビニル、マレイミド、ノルボルネン等のラジカル重合性基及びシロキサンからなる群から選択される少なくとも1種から構成された主鎖と、側鎖aとを有する構造が好ましい。
 また、前記側鎖型重合体ブロックは、更に、光二量化も光異性化もしない側鎖(以下、側鎖bともいう。)を含んでもよい。このような側鎖bとしては、下記式(b1)~(b11)のいずれかで表されるものが好ましいが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
 式(b1)~(b11)中、A3及びA4は、それぞれ独立に、単結合、-O-、-CH2-、-C(=O)-O-、-O-C(=O)-、-C(=O)-NH-、又は-NH-C(=O)-である。A4の数が2以上のとき、各A4は互いに同一でも異なっていてもよい。R1は、-NO2、-CN、ハロゲン原子、フェニル基、ナフチル基、ビフェニリル基、フラニル基、1価窒素含有複素環基、炭素数5~8の1価脂環式炭化水素基、炭素数1~12のアルキル基又は炭素数1~12のアルコキシ基である。R2は、フェニル基、ナフチル基、ビフェニリル基、フラニル基、1価窒素含有複素環基又は炭素数5~8の1価脂環式炭化水素基であり、これらの基の水素原子の一部又は全部が、-NO2、-CN、ハロゲン原子、炭素数1~5のアルキル基又は炭素数1~5のアルコキシ基で置換されてもよい。R3は、水素原子、-NO2、-CN、ハロゲン原子、フェニル基、ナフチル基、ビフェニリル基、フラニル基、1価窒素含有複素環基、炭素数5~8の1価脂環式炭化水素基、炭素数1~12のアルキル基又は炭素数1~12のアルコキシ基である。Eは、-C(=O)-O-、-O-C(=O)-、-C(=O)-S-又は-S-C(=O)-である。aは、1~12の整数である。k1~k5は、それぞれ独立に、0~2の整数であるが、k1~k5の合計は2以上である。k6及びk7は、それぞれ独立に、0~2の整数であるが、k6及びk7の合計は1以上である。m1、m2及びm3は、それぞれ独立に、1~3の整数である。nは、0又は1である。Z1及びZ2は、それぞれ独立に、単結合、-C(=O)-、-CH2-O-、又は-CF2-である。破線は、結合手である。
 前記1価窒素含有複素環基の具体例としては、ピロリジニル基、ピペリジニル基、ピペラジニル基、ピロリル基、ピリジル基等が挙げられる。前記炭素数5~8の1価脂環式炭化水素基の具体例としては、シクロペンチル、シクロヘキシル基等が挙げられる。また、前記アルキル基及びアルコキシ基としては、式(a1)~(a6)の説明において例示した基と同様のものが挙げられる。
 前記側鎖型重合体ブロックは、側鎖aを与えるモノマー、及び必要に応じて側鎖bを与えるモノマーを重合して得ることができる。
 側鎖aを与えるモノマー(以下、モノマーMAともいう。)としては、下記式(M1)、(M2)、(M3)、(M4)、(M5)又は(M6)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000023
(式中、A1、A2、D1、L、T1、Y1、Y2、P1、Q1、Q2、R、Cou、E、X1、X2、G1、G2、n1及びn2は、前記と同じ。)
 式(M1)~(M6)中、PGは、重合性基であり、下記式(PG1)~(PG6)のいずれかで表される基が好ましい。なかでも、重合反応の制御が容易であるという点及び重合体の安定性の観点から、式(PG1)で表されるアクリル基又はメタクリル基が好ましい。
Figure JPOXMLDOC01-appb-C000024
(式中、RAは、水素原子又はメチル基であり、破線は、Lとの結合手である。)
 式(M1)で表される化合物としては、下記式(M1-1)又は(M1-2)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000025
(式中、PG、L、Y1、P1’及びRは、前記と同じ。)
 式(M2)で表される化合物としては、下記式(M2-1)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000026
(式中、PG、A2、L、T1、Y1、P1、Q1及びRは、前記と同じ。)
 式(M3)で表される化合物としては、下記式(M3-1)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000027
(式中、PG、A1、L、X1、Q1、Cou及びn1は、前記と同じ。)
 式(M4)で表される化合物としては、下記式(M4-1)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000028
(式中、PG、A1、L、X1、Y1、Y2、Q1、E、R及びn1は、前記と同じ。)
 式(M5)で表される化合物としては、下記式(M5-1)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000029
(式中、PG、A1、L、X1、Y1、Y2、Q1、R及びn1は、前記と同じ。)
 式(M6)で表される化合物としては、下記式(M6-1)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000030
(式中、PG、A1、L、X1、Y1、Y2、Q1、G1、G2、R及びn1は、前記と同じ。)
 式(M1-1)で表される化合物としては、下記式(M1-1-1)で表されるものが好ましく、式(M1-2)で表される化合物としては、下記式(M1-2-1)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000031
(式中、PG、L及びRは、前記と同じ。)
 式(M2-1)で表される化合物としては、下記式(M2-2)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000032
(式中、PG、A2、L、T1、Q1及びRは、前記と同じ。)
 式(M3-1)で表される化合物としては、下記式(M3-2)、(M3-3)又は(M3-4で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000033
(式中、PG、L及びCouは、前記と同じ。)
 式(M4-1)で表される化合物としては、下記式(M4-2)、(M4-3)、(M4-4)又は(M4-5)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000034
(式中、PG、L及びRは、前記と同じ。)
 式(M5-1)で表される化合物としては、下記式(M5-2)又は(M5-3)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000035
(式中、PG、L及びRは、前記と同じ。)
 式(M6-1)で表される化合物としては、下記式(M6-2)、(M6-3)、又は(M6-4)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000036
(式中、PG、L及びRは、前記と同じ。)
 式(M1)で表される化合物としては、例えば、下記式(A-1-1-1)~(A-1-1-12)のいずれかで表されるものが挙げられる。下記式(A-1-1-1)~(A-1-1-12)中、PGは、重合性基であり、s1は、メチレン基の数を表し、2~9の整数である。R11は、-H、-CH3、-OCH3、-C(CH33、-C(=O)-CH3又は-CNであり、R12は、-H、-CH3、-CN又は-Fである。
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
 更に、式(M1)で表される化合物としては、例えば、下記式(A-1-2-1)~(A-1-2-4)のいずれかで表されるものが挙げられる。下記式中、PGは、重合性基であり、s1は、前記と同じである。
Figure JPOXMLDOC01-appb-C000041
 式(M1)で表される化合物の具体例としては、4-(6-メタクリルオキシヘキシル-1-オキシ)ケイ皮酸、4-(6-アクリルオキシヘキシル-1-オキシ)ケイ皮酸、4-(3-メタクリルオキシプロピル-1-オキシ)ケイ皮酸、4-[4-(6-メタクリルオキシヘキシル-1-オキシ)ベンゾイルオキシ]ケイ皮酸等が挙げられる。
 式(M2)で表される化合物としては、例えば、下記式(A-2-1)~(A-2-9)のいずれかで表されるものが挙げられる。下記式(A-2-1)~(A-2-9)中、PGは、重合性基であり、s1及びs2は、メチレン基の数を表し、それぞれ独立に、2~9の整数である。R21は、-CH3、-OCH3、-C(CH33、-C(=O)-CH3、-CN又は-Fである。
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
 式(M3)で表される化合物としては、例えば、下記式(A-3-1)~(A-3-5)のいずれかで表されるものが挙げられる。下記式中、PGは、重合性基であり、s1は、前記と同じである。
Figure JPOXMLDOC01-appb-C000045
 式(M4)で表される化合物としては、例えば、下記式(A-4-1)~(A-4-4)のいずれかで表されるものが挙げられる。下記式中、PGは、重合性基であり、s1は、前記と同じである。
Figure JPOXMLDOC01-appb-C000046
 式(M5)で表される化合物としては、例えば、下記式(A-5-1)~(A-5-3)のいずれかで表されるものが挙げられる。下記式中、PGは、重合性基であり、s1は、前記と同じである。
Figure JPOXMLDOC01-appb-C000047
 式(M6)で表される化合物としては、例えば、下記式(A-6-1)~(A-6-3)のいずれかで表されるものが挙げられる。下記式中、PGは、重合性基であり、s1は、前記と同じである。
Figure JPOXMLDOC01-appb-C000048
 前記各モノマーは、あるものは市販されており、あるものは、例えば国際公開第2014/074785号等に記載の方法で製造できる。
 光二量化も光異性化もしない側鎖bを与えるモノマー(以下、モノマーMBともいう。)の一例としては、側鎖にメソゲン基を形成することができるモノマーが挙げられる。
 前記メソゲン基としては、ビフェニルやフェニルベンゾエート等の単独でメソゲン構造となる基であっても、安息香酸等のように側鎖同士が水素結合することでメソゲン構造となる基であってもよい。側鎖の有するメソゲン基としては、下記の構造が好ましい。
Figure JPOXMLDOC01-appb-C000049
 モノマーMBの具体例としては、炭化水素、(メタ)アクリレート、イタコネート、フマレート、マレエート、α-メチレン-γ-ブチロラクトン、スチレン、ビニル、マレイミド、ノルボルネン等のラジカル重合性基及びシロキサンからなる群から選択される少なくとも1種に由来する重合性基と、式(b1)~(b11)の少なくとも1種からなる構造を有する構造であることが好ましい。特に、モノマーMBは、(メタ)アクリレートに由来する重合性基を有するものが好ましい。
 モノマーMBの好ましい例としては、下記式(MB-1)~(MB-8)で表されるものが挙げられる。なお、下記式中、PGは、重合性基であり、pは、メチレン基の数を表し、2~9の整数である。
Figure JPOXMLDOC01-appb-C000050
 また、光反応性及び/又は液晶性の発現能を損なわない範囲で、その他のモノマーを共重合することができる。前記その他のモノマーとしては、例えば工業的に入手できるラジカル重合反応可能なモノマーが挙げられる。前記その他のモノマーの具体例としては、不飽和カルボン酸、アクリル酸エステル化合物、メタクリル酸エステル化合物、マレイミド化合物、アクリロニトリル、マレイン酸無水物、スチレン化合物、ビニル化合物等が挙げられる。
 前記不飽和カルボン酸の具体例としてはアクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸等が挙げられる。
 前記アクリル酸エステル化合物の具体例としては、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、ベンジルアクリレート、ナフチルアクリレート、アントリルアクリレート、アントリルメチルアクリレート、フェニルアクリレート、2,2,2-トリフルオロエチルアクリレート、tert-ブチルアクリレート、シクロヘキシルアクリレート、イソボルニルアクリレート、2-メトキシエチルアクリレート、メトキシトリエチレングリコールアクリレート、2-エトキシエチルアクリレート、テトラヒドロフルフリルアクリレート、3-メトキシブチルアクリレート、2-メチル-2-アダマンチルアクリレート、2-プロピル-2-アダマンチルアクリレート、8-メチル-8-トリシクロ[5.2.1.0(2,6)]デシルアクリレート、8-エチル-8-トリシクロ[5.2.1.0(2,6)]デシルアクリレート等が挙げられる。
 前記メタクリル酸エステル化合物の具体例としては、メチルメタクリレート、エチルメタクリレート、イソプロピルメタクリレート、ベンジルメタクリレート、ナフチルメタクリレート、アントリルメタクリレート、アントリルメチルメタクリレート、フェニルメタクリレート、2,2,2-トリフルオロエチルメタクリレート、tert-ブチルメタクリレート、シクロヘキシルメタクリレート、イソボルニルメタクリレート、2-メトキシエチルメタクリレート、メトキシトリエチレングリコールメタクリレート、2-エトキシエチルメタクリレート、テトラヒドロフルフリルメタクリレート、3-メトキシブチルメタクリレート、2-メチル-2-アダマンチルメタクリレート、2-プロピル-2-アダマンチルメタクリレート、8-メチル-8-トリシクロ[5.2.1.0(2,6)]デシルメタクリレート、8-エチル-8-トリシクロ[5.2.1.0(2,6)]デシルメタクリレート等が挙げられる。
 前記ビニル化合物の具体例としては、ビニルエーテル、メチルビニルエーテル、ベンジルビニルエーテル、2-ヒドロキシエチルビニルエーテル、フェニルビニルエーテル、プロピルビニルエーテル等が挙げられる。
 前記スチレン化合物の具体例としては、スチレン、4-メチルスチレン、4-クロロスチレン、4-ブロモスチレン等が挙げられる。
 前記マレイミド化合物の具体例としては、マレイミド、N-メチルマレイミド、N-フェニルマレイミド、N-シクロヘキシルマレイミド等が挙げられる。
 前記側鎖型重合体ブロックにおいて、側鎖a及び側鎖bの含有量は特に限定されない。側鎖aが100モル%のホモポリマーでもよく、側鎖aを2種類以上用いてもよい。側鎖aと側鎖bのコポリマーとする場合、側鎖aは、光反応性の点から、5~99.9モル%が好ましく、5~95モル%がより好ましく、光安定性の観点から5~50モル%がより一層好ましい。また、側鎖bは、光反応性の観点から、95モル%以下が好ましく、5~95モル%がより好ましく、光安定性の観点から50モル%以上がより一層好ましい。コポリマーの場合でも、側鎖aや側鎖bを2種類以上用いてもよい。
 前記側鎖型重合体ブロックには、その他の側鎖を含んでいてもよい。その他の側鎖の含有量は、側鎖a及び側鎖bの含有量の合計が100モル%に満たない場合に、その残りの部分である。
 前記側鎖型ブロック共重合体の製造方法は、特に限定されず、工業的に扱われている汎用な方法が利用できる。具体的には、モノマーMA、必要に応じてモノマーMB及びその他のモノマー、並びにポリマー型重合開始剤を混合して、溶媒中でラジカル重合させることにより製造することができる。本発明において、ポリマー型重合開始剤とは、高分子セグメント及び重合開始活性基を有する重合開始剤を意味する。なお、前記高分子セグメントは、側鎖型ブロック共重合体において開始剤由来重合体ブロックになる部分である。
 前記ポリマー型重合開始剤としては、下記式(1)で表される繰り返し単位を有するものが好ましい。
Figure JPOXMLDOC01-appb-C000051
 式(1)中、Ra1~Ra4は、それぞれ独立に、直鎖状若しくは分枝状の炭素数1~6のアルキル基、又はシアノ基である。RL1及びRL2は、それぞれ独立に、炭素数1~10のアルキレン基である。L1及びL2は、それぞれ独立に、-C(=O)-O-、-O-C(=O)-、-C(=O)-NH-又は-NH-C(=O)-である。Xは、下記式(2)又は(3)で表される2価の基である。
Figure JPOXMLDOC01-appb-C000052
 式(2)及び(3)中、Ra5~Ra8は、直鎖状若しくは分枝状の炭素数1~6のアルキル基又は炭素数6~12のアリール基である。
a9及びRa10は、それぞれ独立に、炭素数1~10のアルキレン基である。
L3及びRL4は、それぞれ独立に、炭素数1~10のアルキレン基である。
x及びyは、それぞれ独立に、正の整数であり、通常5~2,000、好ましくは5~1,000、より好ましくは10~300、より一層好ましくは10~200である。
 直鎖状若しくは分枝状の炭素数1~6のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、シクロペンチル基、シクロヘキシル基等が挙げられる。
 炭素数1~10のアルキレン基としては、直鎖状、分岐状、環状のいずれでもよく、具体例としては、メチレン基、エチレン基、トリメチレン基、プロピレン基、テトラメチレン基、ペンタメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基、2-メチルプロピレン基、1-メチルエチリデン基、シクロヘキシレン基等が挙げられる。
 炭素数6~12のアリール基としては、フェニル基、1-ナフチル基、2-ナフチル基、1-ビフェニリル基、2-ビフェニリル基等が挙げられる。
 Ra1~Ra4は、炭素数1~3のアルキル基、又はシアノ基が好ましく、メチル基又はシアノ基がより好ましい。
 RL1及びRL2は、炭素数1~5のアルキレン基が好ましく、炭素数1~3のアルキレン基がより好ましい。
 L1は、-C(=O)-O-又は-C(=O)-NH-が好ましい。L2は、-O-C(=O)-又は-NH-C(=O)-が好ましい。特に、L1が-C(=O)-O-、L2が-O-C(=O)-の組み合わせ、及び、L1が-C(=O)-NH-、L2が-NH-C(=O)-の組み合わせがより好ましい。
 Xに関し、Ra5~Ra8は、炭素数1~3のアルキル基が好ましく、メチル基又はエチル基がより好ましい。
 Ra9及びRa10は、炭素数1~5のアルキレン基が好ましく、炭素数1~3のアルキレン基がより好ましい。
 RL3及びRL4は、炭素数1~5のアルキレン基が好ましく、炭素数1~3のアルキレン基がより好ましい。
 ポリマー型重合開始剤の具体例としては、下記式(In-1)で表されるポリエチレングリコールユニット含有高分子アゾ重合開始剤、下記式(In-2)で表されるポリジメチルシロキサンユニット含有高分子アゾ重合開始剤等を挙げることができる。
Figure JPOXMLDOC01-appb-C000053
 式(In-1)及び式(In-2)中、x及びyは、前記と同じである。nは、正の整数であり、通常1~100、好ましくは3~50、より好ましくは5~30である。
 ポリマー型重合開始剤としては、市販品を用いることができ、例えば、前記式(In-1)で表される重合開始剤としてVPE-0201、及び前記式(In-2)で表される重合開始剤としてVPS-1001N(いずれも富士フイルム和光純薬社製)が挙げられる。
 重合反応に用いる有機溶媒としては、生成したポリマーが溶解するものであれば特に限定されない。その具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチル-ε-カプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルリン酸トリアミド、γ-ブチロラクトン、γ-バレロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセロソルブ、エチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、1,4-ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、シクロペンタノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド等が挙げられる。これらの有機溶媒は、1種単独で使用してもよく、2種以上を混合して使用してもよい。
 さらに、生成するポリマーを溶解させない溶媒であっても、生成したポリマーが析出しない範囲で、前述した有機溶媒に混合して使用してもよい。
 なお、ラジカル重合において有機溶媒中の酸素は重合反応を阻害する原因となるので、有機溶媒は可能な程度に脱気されたものを用いることが好ましい。
 ラジカル重合の際の重合温度は、20~150℃の範囲の任意の温度を選択することができるが、好ましくは30~100℃の範囲である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な撹拌が困難となるので、モノマー濃度は、好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、有機溶媒を追加することができる。
 前述したラジカル重合反応においては、ポリマー型重合開始剤の使用量は、ポリマー型重合開始剤の半減期を考慮し、ラジカル重合の進行を円滑に進めるために、モル比で、側鎖型重合体ブロックを与えるモノマーの総量1に対して0.01~0.2であることが好ましい。また重合時には各種モノマー成分や溶媒、開始剤等を追加することもできる。
 前記反応により得られた反応溶液から生成した側鎖型ブロック共重合体は、反応溶液を貧溶媒に投入して沈殿させて回収することができるが、この再沈殿処理は必須ではない。沈殿に用いる貧溶媒としては、メタノール、アセトン、ヘキサン、ヘプタン、ブチルセロソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、ジエチルエーテル、メチルエチルエーテル、水等が挙げられる。貧溶媒に投入して沈殿させた重合体は、濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥させることができる。また、回収した重合体を有機溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の貧溶媒として、例えば、アルコール類、ケトン類、炭化水素等が挙げられ、これらの中から選ばれる3種以上の貧溶媒を用いると、より一層精製の効率が上がるため好ましい。
 前記側鎖型ブロック共重合体における側鎖型重合体ブロックと開始剤由来重合体ブロックとの比率(モル比)は、おおむね側鎖型重合体ブロックを与えるモノマーの総量とポリマー型重合開始剤の使用量に準ずる。
 本発明で用いる側鎖型ブロック共重合体の重量平均分子量(Mw)は、得られる塗膜の強度、塗膜形成時の作業性及び塗膜の均一性を考慮すると、2,000~2,000,000が好ましく、2,000~1,000,000がより好ましく、5,000~200,000がより一層好ましい。なお、本発明においてMwは、ゲルパーミエーションクロマトグラフィー(GPC)法によるポリスチレン換算測定値である。
[(B)有機溶媒]
 本発明の重合体組成物には、有機溶媒(良溶媒)を含む。前記有機溶媒(良溶媒)は、重合体成分を溶解させる有機溶媒であれば特に限定されない。その具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチル-ε-カプロラクタム、2-ピロリドン、N-エチル-2-ピロリドン、N-ビニル-2-ピロリドン、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルホスホルアミド、γ-ブチロラクトン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、1,3-ジメチル-2-イミダゾリジノン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、シクロヘキサノン、シクロペンタノン、エチレンカーボネート、プロピレンカーボネート、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、テトラヒドロフラン、テトラヒドロフルフリルアルコール等が挙げられる。これらは1種単独で使用してもよく、2種以上を混合して使用してもよい。
 また、前記重合体組成物は、側鎖型ブロック共重合体及び前記有機溶媒(良溶媒)以外の成分を含んでもよい。その例としては、重合体組成物を塗布した際の膜厚均一性や表面平滑性を向上させる溶媒(貧溶媒)や化合物、位相差膜と基板との密着性を向上させる化合物等が挙げられるが、これらに限定されない。
 前記膜厚均一性や表面平滑性を向上させる溶媒(貧溶媒)の具体例としては、イソプロピルアルコール、メトキシメチルペンタノール、メチルセロソルブ、エチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチルカルビトールアセテート、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、1-ヘキサノール、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、乳酸メチル、乳酸エチル、乳酸n-プロピル、乳酸n-ブチル、乳酸イソアミル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール等の低表面張力を有する溶媒が挙げられる。
 前記貧溶媒は、1種単独で使用してもよく、2種以上を混合して使用してもよい。貧溶媒を用いる場合、その含有量は、重合体の溶解性を著しく低下させることがないように、溶媒中5~80質量%が好ましく、10~60質量%がより好ましい。
 膜厚均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤等が挙げられる。これらの具体例としては、エフトップ(登録商標)301、EF303、EF352(トーケムプロダクツ社製)、メガファック(登録商標)F171、F173、F560、F563、R-30、R-40、R-41(DIC社製)、フロラードFC430、FC431(スリーエム社製)、アサヒガード(登録商標)AG710(AGC社製)、サーフロン(登録商標)S-382、SC101、SC102、SC103、SC104、SC105、SC106(AGCセイミケミカル社製)、BYK-302、BYK-331、BYK-348、BYK-360N、BYK-381、BYK-3441(BYK社製)等が挙げられる。これらの界面活性剤の含有量は、(A)成分100質量部に対し、0.01~2質量部が好ましく、0.01~1質量部がより好ましい。
 前記位相差膜と基板との密着性を向上させる化合物の具体例としては、官能性シラン含有化合物等が挙げられ、その具体例としては、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン等が挙げられる。
 前記重合体組成物は、基板と位相差膜の密着性の向上に加え、偏光板を構成した時のバックライトによる特性の低下等を防ぐ目的で、フェノプラスト系化合物やエポキシ基含有化合物を含んでもよい。
 前記フェノプラスト系化合物の具体例としては、以下に示すものが挙げられるが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000054
 前記エポキシ基含有化合物の具体例としては、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’-テトラグリシジル-4,4’-ジアミノジフェニルメタン等が挙げられる。
 基板との密着性を向上させる化合物を使用する場合、その含有量は、重合体組成物に含まれる側鎖型ブロック共重合体100質量部に対し、0.1~30質量部が好ましく、1~20質量部がより好ましい。含有量が0.1質量部未満であると密着性向上の効果は期待できず、30質量部よりも多くなると液晶の配向性が悪くなる場合がある。
 添加剤として、光増感剤を用いることもできる。光増感剤としては、無色増感剤及び三重項増感剤が好ましい。
 光増感剤としては、芳香族ニトロ化合物、クマリン(7-ジエチルアミノ-4-メチルクマリン、7-ヒドロキシ4-メチルクマリン)、ケトクマリン、カルボニルビスクマリン、芳香族2-ヒドロキシケトン、芳香族2-ヒドロキシケトン(2-ヒドロキシベンゾフェノン、モノ-又はジ-p-(ジメチルアミノ)-2-ヒドロキシベンゾフェノン等)、アセトフェノン、アントラキノン、キサントン、チオキサントン、ベンズアントロン、チアゾリン(2-ベンゾイルメチレン-3-メチル-β-ナフトチアゾリン、2-(β-ナフトイルメチレン)-3-メチルベンゾチアゾリン、2-(α-ナフトイルメチレン)-3-メチルベンゾチアゾリン、2-(4-ビフェノイルメチレン)-3-メチルベンゾチアゾリン、2-(β-ナフトイルメチレン)-3-メチル-β-ナフトチアゾリン、2-(4-ビフェノイルメチレン)-3-メチル-β-ナフトチアゾリン、2-(p-フルオロベンゾイルメチレン)-3-メチル-β-ナフトチアゾリン等)、オキサゾリン(2-ベンゾイルメチレン-3-メチル-β-ナフトオキサゾリン、2-(β-ナフトイルメチレン)-3-メチルベンゾオキサゾリン、2-(α-ナフトイルメチレン)-3-メチルベンゾオキサゾリン、2-(4-ビフェノイルメチレン)-3-メチルベンゾオキサゾリン、2-(β-ナフトイルメチレン)-3-メチル-β-ナフトオキサゾリン、2-(4-ビフェノイルメチレン)-3-メチル-β-ナフトオキサゾリン、2-(p-フルオロベンゾイルメチレン)-3-メチル-β-ナフトオキサゾリン等)、ベンゾチアゾール、ニトロアニリン(m-又はp-ニトロアニリン、2,4,6-トリニトロアニリン等)、ニトロアセナフテン(5-ニトロアセナフテン等)、2-[(m-ヒドロキシ-p-メトキシ)スチリル]ベンゾチアゾール、ベンゾインアルキルエーテル、N-アルキル化フタロン、アセトフェノンケタール(2,2-ジメトキシフェニルエタノン等)、ナフタレン(2-ナフタレンメタノール、2-ナフタレンカルボン酸等)、アントラセン(9-アントラセンメタノール、9-アントラセンカルボン酸等)、ベンゾピラン、アゾインドリジン、メロクマリン等が挙げられる。これらのうち、好ましくは、芳香族2-ヒドロキシケトン(ベンゾフェノン)、クマリン、ケトクマリン、カルボニルビスクマリン、アセトフェノン、アントラキノン、キサントン、チオキサントン及びアセトフェノンケタールである。
 前記重合体組成物には、前述したもののほか、本発明の効果が損なわれない範囲であれば、位相差膜の誘電率や導電性等の電気特性を変化させる目的で、誘電体や導電物質、さらには、位相差膜にした際の膜の硬度や緻密度を高める目的で、架橋性化合物を添加してもよい。
 前記重合体組成物は、単層位相差膜の形成に好適となるように塗布液として調製されることが好ましい。すなわち、本発明に用いられる重合体組成物は、側鎖型ブロック共重合体及び前述した膜厚均一性や表面平滑性を向上させる化合物、基板との密着性を向上させる化合物等が、有機溶媒(良溶媒)に溶解した溶液として調製されることが好ましい。
 前記重合体組成物中、前記側鎖型ブロック共重合体の含有量は、1~30質量%が好ましく、3~25質量%がより好ましい。
 なお、前記重合体組成物は、前記側鎖型ブロック共重合体以外に、液晶発現能及び感光性能を損なわない範囲でその他の重合体を含んでもよい。前記その他の重合体としては、例えば、ポリ(メタ)アクリレート、ポリアミック酸、ポリイミド等の、液晶性を発現し得る感光性の側鎖を含まない重合体等が挙げられる。前記その他の重合体を含む場合、その含有量は、全重合体成分中、0.5~80質量%が好ましく、1~50質量%がより好ましい。
 本発明の重合体組成物には、上述したもののほか、本発明の効果が損なわれない範囲であれば、位相差材の誘電率や導電性等の電気特性を変化させる目的で、誘電体や導電物質、さらには、位相差材にした際の膜の硬度や緻密度を高める目的で、架橋性化合物を添加してもよい。
[重合体組成物の調製]
 本発明の重合体組成物は、単層位相差材の形成に好適となるように塗布液として調製されることが好ましい。すなわち、本発明に用いられる重合体組成物は、(A)成分、並びに上述した膜厚均一性や表面平滑性を向上させる溶媒や化合物、液晶配向膜と基板との密着性を向上させる化合物等が(B)成分の有機溶媒に溶解した溶液として調製されることが好ましい。ここで、(A)成分の含有量は、本発明の重合体組成物中1~30質量%が好ましく、3~25質量%がより好ましい。
[単層位相差材]
 本発明の単層位相差材は、下記工程(I)~(III)を含む方法によって製造することができる。
(I)本発明の重合体組成物を、基板上に塗布して塗膜を形成する工程、
(II)前記塗膜に偏光した紫外線を照射する工程、及び
(III)前記紫外線を照射した塗膜を加熱して、位相差材を得る工程。
[工程(I)]
 工程(I)は、本発明の重合体組成物を基板上に塗布して塗膜を形成する工程である。より具体的には、本発明の重合体組成物を基板(例えば、シリコン/二酸化シリコン被覆基板、シリコンナイトライド基板、金属(例えば、アルミニウム、モリブデン、クロム等)が被覆された基板、ガラス基板、石英基板、ITO基板等)やフィルム(例えば、トリアセチルセルロース(TAC)フィルム、シクロオレフィンポリマーフィルム、ポリエチレンテレフタレートフィルム、アクリルフィルム等の樹脂フィルム)等の上に、バーコート、スピンコート、フローコート、ロールコート、スリットコート、スリットコートに続いたスピンコート、インクジェット法、印刷法等の方法によって塗布する。塗布した後、ホットプレート、熱循環型オーブン、IR(赤外線)型オーブン等の加熱手段により50~200℃、好ましくは50~150℃で溶媒を蒸発させて塗膜を得ることができる。
[工程(II)]
 工程(II)では、工程(I)で得られた塗膜に偏光した紫外線を照射する。塗膜の膜面に偏光した紫外線を照射する場合、基板に対して一定の方向から偏光板を介して偏光された紫外線を照射する。前記紫外線としては、波長100~400nmの範囲の紫外線を使用することができる。好ましくは、使用する塗膜の種類によりフィルター等を介して最適な波長を選択する。そして、例えば、選択的に光架橋反応を誘起できるように、波長290~400nmの範囲の紫外線を選択して使用することができる。紫外線としては、例えば、高圧水銀灯から放射される光を用いることができる。
 偏光した紫外線の照射量は、使用する塗膜に依存する。照射量は、該塗膜における、偏光した紫外線の偏光方向と平行な方向の紫外線吸光度と垂直な方向の紫外線吸光度との差であるΔAの最大値を実現する偏光紫外線の量の1~70%の範囲内とすることが好ましく、1~50%の範囲内とすることがより好ましい。
[工程(III)]
 工程(III)では、工程(II)で偏光した紫外線を照射された塗膜を加熱する。加熱により、塗膜に配向制御能を付与することができる。
 加熱は、ホットプレート、熱循環型オーブン、IR(赤外線)型オーブン等の加熱手段を用いることができる。加熱温度は、使用する塗膜の液晶性を発現させる温度を考慮して決めることができる。
 加熱温度は、本発明の重合体組成物に含まれる(A)成分の重合体が液晶性を発現する温度(以下、液晶発現温度という。)の温度範囲内であることが好ましい。塗膜のような薄膜表面の場合、塗膜表面の液晶発現温度は、(A)成分の重合体をバルクで観察した場合の液晶発現温度よりも低いことが予想される。このため、加熱温度は、塗膜表面の液晶発現温度の温度範囲内であることがより好ましい。すなわち、偏光紫外線照射後の加熱温度の温度範囲は、(A)成分の重合体の液晶発現温度の温度範囲の下限より10℃低い温度を下限とし、その液晶温度範囲の上限より10℃低い温度を上限とする範囲の温度であることが好ましい。加熱温度が、前記温度範囲よりも低いと、塗膜における熱による異方性の増幅効果が不十分となる傾向があり、また加熱温度が、前記温度範囲よりも高すぎると、塗膜の状態が等方性の液体状態(等方相)に近くなる傾向があり、この場合、自己組織化によって一方向に再配向することが困難になることがある。
 なお、液晶発現温度は、重合体又は塗膜表面が固体相から液晶相に相転移が起きる液晶転移温度以上であって、液晶相からアイソトロピック相(等方相)に相転移を起こすアイソトロピック相転移温度(Tiso)以下の温度をいう。例えば、130℃以下で液晶性を発現するとは、固体相から液晶相に相転移が起きる液晶転移温度が130℃以下であることを意味する。
 加熱後に形成される塗膜の厚みは、使用する基板の段差や光学的、電気的性質を考慮して適宜選択することができ、例えば、0.5~10μmが好適である。
 このようにして得られた本発明の単層位相差材は、表示装置や記録材料等の用途に好適な光学特性を有する材料であり、特に、液晶ディスプレイ用の偏光板及び位相差板等の光学補償フィルムとして好適である。
 以下、合成例、製造例、実施例および比較例を挙げて、本発明をより具体的に説明するが、本発明は下記実施例に限定されない。
 実施例で使用した光反応性基を有するモノマーとしてMA-1とMA-3を、非感光性基のモノマーとしてMA-2を以下に示す。MA-1は、国際公開第2011/084546号に記載された合成法に従って合成した。MA-2は、特開平9-118717号公報に記載された合成法に従って合成した。MA-3は、特開2012-27354号公報に記載された合成法に従って合成した。MA-4は、国際公開第2013/133078号に記載された合成法に従って、原料にMA-2を用いて合成した。MA-5は、国際公開第2014/054785号に記載された合成法に従って合成した。MA-6は、は非特許文献(Macromolecules 2007,40,6355-6360)に記載の合成法にて合成した。MA-7は、国際公開第2014/054785号に記載の合成法にて合成した。なお、MA-1、MA-3、MA-6に由来する側鎖は光反応性および液晶性、MA-7に由来する側鎖は光反応性を発現し、MA-2、MA-4、MA-5に由来する側鎖は液晶性のみを発現する。
Figure JPOXMLDOC01-appb-C000055
 その他、本実施例で用いた試薬の略号を以下に示す。
(有機溶媒)
NMP:N-メチル-2-ピロリドン
BCS:ブチルセロソルブ
CPN:シクロペンタノン
(重合開始剤)
AIBN:2,2’-アゾビスイソブチロニトリル
In-1:前記式(In-1)で表される、ポリエチレングリコールユニット含有高分子アゾ重合開始剤(富士フイルム和光純薬社製 VPE-0201、ポリエチレングリコールユニットの分子量:約2,000)
In-2:前記式(In-2)で表される、ポリジメチルシロキサンユニット含有高分子アゾ重合開始剤(富士フイルム和光純薬社製 VPS-1001N、ポリシロキサンユニットの分子量:約10,000)
(界面活性剤)
R40:メガファックR-40(DIC社製)
F563:メガファックF-563(DIC社製)
(ポリマーの分子量測定)
 ポリマーの分子量測定条件は、以下の通りである。
装置:島津製作所 Nexera GPC システム(Shimadzu SCL-40)
カラム:Shodex社製カラム(LF-804、KF-801)
カラム温度:40℃
溶離液:テトラヒドロフラン(HPLCグレード)
流速:1.0ml/分
検量線作成用標準サンプル:ポリスチレン(PStQuick E/PStQuick F(東ソー社製))
[1]メタクリレートポリマー重合
[合成例1]
 50mLのナスフラスコにMA-3を10.3g(23.5mmol)を量り取り、NMP26.7gを加えて溶解させた。溶解後の溶液にIn-1を4.0g(2.0mmol)加えたのち、ダイアフラムポンプで脱気後、窒素で復圧処理(以下、N2脱気処理ともいう)を行い、撹拌して溶解させた。この溶解液を、80℃に加熱したNMP6.7g中に撹拌しながら1.5時間かけて滴下し、滴下が完了してから80℃で20時間反応させた。反応後、溶液を室温に戻し、固形分濃度30質量%のメタクリレートブロックコポリマー溶液を得た。このポリマー溶液をメタノール(1,000mL)に滴下し、生成した沈殿物をろ別した。このろ物をメタノールで洗浄し、減圧乾燥することで、メタクリレートポリマー粉末MB1を得た。MB1の数平均分子量は11,000、重量平均分子量は31,700であった。
[合成例2]
 100mLのナスフラスコにMA-3を15.4g(35.1mmol)を量り取り、NMP29.9gを加えて溶解させた。溶解後の溶液にIn-1を0.6g(0.3mmol)加えたのち、N2脱気処理を行い、撹拌して溶解させた。この溶解液を、80℃に加熱したNMP7.5g中に撹拌しながら1.5時間かけて滴下し、滴下が完了してから60℃で20時間反応させた。反応後、溶液を室温に戻し、メタクリレートブロックコポリマー溶液を得た。このポリマー溶液をメタノール(1,000mL)に滴下し、生成した沈殿物をろ別した。得られたろ物をメタノールで洗浄し、減圧乾燥することで、メタクリレートポリマー粉末MB2を得た。MB2の数平均分子量は12,900、重量平均分子量は33,800であった。
[合成例3]
 50mLのナスフラスコにMA-3を15.4g(35.1mmol)を量り取り、NMP29.5gを加えて溶解させた。溶解後の溶液にIn-1を0.36g(0.18mmol)加えたのち、N2脱気処理を行い、撹拌して溶解させた。この溶解液を、80℃に加熱したNMP7.4g中に撹拌しながら1.5時間かけて滴下し、滴下が完了してから80℃で20時間反応させた。反応後、溶液を室温に戻し、固形分30%のメタクリレートブロックコポリマー溶液を得た。このポリマー溶液をメタノール(1,000mL)に滴下し、生成した沈殿物をろ別した。得られたろ物をメタノールで洗浄し、減圧乾燥することで、メタクリレートポリマー粉末MB3を得た。MB3の数平均分子量は14,800、重量平均分子量は38,100であった。
[合成例4]
 50mLのナスフラスコにMA-3を1.3g(3.0mmol)を量り取り、NMP11.7gを加えて溶解させた。溶解後の溶液にIn-2を5.0g(0.5mmol)加えたのち、N2脱気処理を行い、撹拌して溶解させた。この溶解液を、60℃に加熱したNMP2.9g中に撹拌しながら1.5時間かけて滴下し、滴下が完了してから60℃で20時間反応させた。反応後、溶液を室温に戻し、メタクリレートブロックコポリマー溶液を得た。このポリマー溶液をメタノール(1,000mL)に滴下し、生成した沈殿物をろ別した。得られたろ物をメタノールで洗浄し、減圧乾燥することで、メタクリレートポリマー粉末MB4を得た。
[合成例5]
 50mLのナスフラスコにMA-3を2.6g(5.9mmol)を量り取り、NMP14.1gを加えて溶解させた。溶解後の溶液にIn-2を5.0g(0.5mmol)加えたのち、N2脱気処理を行い、撹拌して溶解させた。この溶解液を、60℃に加熱したNMP3.5g中に撹拌しながら1.5時間かけて滴下し、滴下が完了してから60℃で20時間反応させた。反応後、溶液を室温に戻し、メタクリレートブロックコポリマー溶液を得た。このポリマー溶液をメタノール(1,000mL)に滴下し、生成した沈殿物をろ別した。得られたろ物をメタノールで洗浄し、減圧乾燥することで、メタクリレートポリマー粉末MB5を得た。
[合成例6]
 50mLのナスフラスコにMA-3を5.1g(12mmol)を量り取り、NMP18.9gを加えて溶解させた。溶解後の溶液にIn-2を5.0g(0.5mmol)加えたのち、N2脱気処理を行い、撹拌して溶解させた。この溶解液を、60℃に加熱したNMP4.7g中に撹拌しながら1.5時間かけて滴下し、滴下が完了してから60℃で20時間反応させた。反応後、溶液を室温に戻し、メタクリレートブロックコポリマー溶液を得た。このポリマー溶液をメタノール(1,000mL)に滴下し、生成した沈殿物をろ別した。得られたろ物をメタノールで洗浄し、減圧乾燥することで、メタクリレートポリマー粉末MB6を得た。
[合成例7]
 100mLのナスフラスコにMA-1を2.0g(6.0mmol)、MA-2を10.4g(34mmol)を量り取り、NMP38.1gを加えて溶解させた。溶解後の溶液にIn-1を8.0g(4.0mmol)加えたのち、N2脱気処理を行い、撹拌して溶解させた。この溶解液を、80℃に加熱したNMP9.5g中に撹拌しながら1.5時間かけて滴下し、滴下が完了してから80℃で20時間反応させた。反応後、溶液を室温に戻し、固形分濃度30質量%のメタクリレートブロックコポリマー(MB7)溶液を得た。MB7の数平均分子量は17,000、重量平均分子量は42,500であった。
[合成例8]
 100mLのナスフラスコにMA-1を1.1g(3.3mmol)、MA-2を5.7g(18.7mmol)を量り取り、NMP16.9gを加えて溶解させた。溶解後の溶液にIn-1を2.2g(1.1mmol)加えたのち、N2脱気処理を行い、撹拌して溶解させた。この溶解液を、80℃に加熱したNMP4.2g中に撹拌しながら1.5時間かけて滴下し、滴下が完了してから80℃で20時間反応させた。反応後、溶液を室温に戻し、固形分濃度30質量%のメタクリレートブロックコポリマー(MB8)溶液を得た。
[合成例9]
 50mLのナスフラスコにMA-1を1.2g(3.6mmol)、MA-2を6.5g(21mmol)を量り取り、NMP17.3gを加えて溶解させた。溶解後の溶液にIn-1を1.5g(0.75mmol)加えたのち、N2脱気処理を行い、撹拌して溶解させた。この溶解液を、80℃に加熱したNMP4.3g中に撹拌しながら1.5時間かけて滴下し、滴下が完了してから80℃で20時間反応させた。反応後、溶液を室温に戻し、固形分濃度30質量%のメタクリレートブロックコポリマー(MB9)溶液を得た。
[合成例10]
 50mLのナスフラスコにMA-3を2.2g(5.0mmol)、MA-4を2.0g(5.0mmol)を量り取り、CPN 12.3gを加えて溶解させた。溶解後の溶液にIn-1を2.0g(1.0mmol)加えたのち、N2脱気処理を行い、撹拌して溶解させた。この溶解液を、80℃に加熱したCPN 3.08g中に撹拌しながら1.5時間かけて滴下し、滴下が完了してから80℃で20時間反応させた。反応後、このポリマー溶液をメタノール(200mL)に滴下し、生成した沈殿物をろ別した。得られたろ物をメタノールで洗浄し、減圧乾燥することで、メタクリレートポリマー粉末MB10を得た。MB10の数平均分子量は13,500、重量平均分子量は48,330であった。
[合成例11]
 50mLのナスフラスコにMA-3を2.2g(5.0mmol)、MA-5を1.8g(5.0mmol)を量り取り、CPN 14.9gを加えて溶解させた。溶解後の溶液にIn-1を2.0g(1.0mmol)加えたのち、N2脱気処理を行い、撹拌して溶解させた。この溶解液を、80℃に加熱したCPN 3.00g中に撹拌しながら1.5時間かけて滴下し、滴下が完了してから80℃で20時間反応させた。反応後、このポリマー溶液をメタノール(200mL)に滴下し、生成した沈殿物をろ別した。得られたろ物をメタノールで洗浄し、減圧乾燥することで、メタクリレートポリマー粉末MB11を得た。MB11の数平均分子量は10,140、重量平均分子量は33,400であった。
[合成例12]
 50mLのナスフラスコにMA-6を2.29g(4.0mmol)、In-1を0.40g(0.20mmol)を量り取り、CPN 10.8gを加えて溶解させた。溶解後の溶液のN2脱気処理を行い、80℃加熱条件下で20時間反応させた。反応後、ポリマー溶液をメタノール(200mL)に滴下し、生成した沈殿物をろ別した。得られたろ物をメタノールで洗浄し、減圧乾燥することで、メタクリレートポリマー粉末MB12を得た。MB12の数平均分子量は23,800、重量平均分子量は55,900であった。
[合成例13]
 50mLのナスフラスコにMA-7を0.68g(1.5mmol)、MA-2を2.60g(8.5mmol)、In-1を0.40g(0.20mmol)を量り取り、CPN 14.7gを加えて溶解させた。溶解後、N2脱気処理を行い、80℃加熱条件下で20時間反応させた。反応後、このポリマー溶液をメタノール(200mL)に滴下し、生成した沈殿物をろ別した。得られたろ物をメタノールで洗浄し、減圧乾燥することで、メタクリレートポリマー粉末MB13を得た。MB13の数平均分子量は25,000、重量平均分子量は51,100であった。
[比較合成例1]
 100mLのナスフラスコにMA-3を13.2g(30mmol)およびNMP37.5gを量り取り、溶解させた。N2脱気処理を行った後、AIBNを0.24g(1.5mmol)を加え、再びN2脱気処理を行った。この後、60℃で8時間反応させ、メタクリレートポリマー溶液を得た。このポリマー溶液をメタノール(1,000mL)に滴下し、生成した沈殿物をろ別した。得られたろ物をメタノールで洗浄し、減圧乾燥することで、メタクリレートポリマー粉末(P1)を得た。P1の数平均分子量は13,400、重量平均分子量は48,900であった。
[比較合成例2]
 50mLのナスフラスコにMA-1を1.5g(4.5mmol)、MA-2を7.8g(25.4mmol)量り取り、NMP22.9gを加えて溶解させた。N2脱気処理を行った後、AIBNを0.49g(3.0mmol)を加え、再びN2脱気処理を行った。この後、60℃で8時間反応させ、メタクリレートポリマー溶液(P2)を得た。P2の数平均分子量は34,000、重量平均分子量は97,800であった。
[比較合成例3]
 50mLのナスフラスコにMA-6を2.86g(5.0mmol)、AIBNを0.41g(0.25mmol)量り取り、CPN 11.6gを加えて溶解させた。溶解後、N2脱気処理を行い、60℃加熱条件下で20時間反応させた。反応後、このポリマー溶液をメタノール(200mL)に滴下し、生成した沈殿物をろ別した。得られたろ物をメタノールで洗浄し、減圧乾燥することで、メタクリレートポリマー粉末P3を得た。P3の数平均分子量は35,000、重量平均分子量は106,000であった。
[比較合成例4]
 50mLのナスフラスコにMA-7を1.35g(3.0mmol)、MA-2を5.21g(17.0mmol)、AIBNを0.16g(1.00mmol)、およびNMP18.8gを量り取り、溶解させた。N2脱気処理を行った後、この溶解液を、60℃に加熱したNMP 8.10g中に撹拌しながら2時間かけて滴下し、滴下が完了してから60℃で20時間反応させた。反応後、このポリマー溶液をメタノール(200mL)及び純水(80mL)の混合溶媒に滴下し、生成した沈殿物をろ別した。得られたろ物をメタノールで洗浄し、減圧乾燥することで、メタクリレートポリマー粉末P4を得た。P4の数平均分子量は28,000、重量平均分子量は63,000であった。
 前記各合成例および比較合成例で使用した成分等について、表1にまとめた。
Figure JPOXMLDOC01-appb-T000056
[2]ポリマー溶液の調製
[製造例1]
 合成例1で得られたポリマー粉末MB1(3.0g)を秤量し、CPN(8.85g)、BCS(3.0g)、及びR40(ポリマー固形分に対して0.05質量%)を加え、撹拌することにより、ポリマー溶液T1を得た。このポリマー溶液T1は、そのまま位相差膜を形成するための位相差材とした。
[製造例2~6]
 ポリマー粉末MB1の代わりにポリマー粉末MB2~MB6をそれぞれ用いた以外は、製造例1と同様の手法によって、ポリマー溶液T2~T6を得た。得られたポリマー溶液T2~T6は、そのまま位相差膜を形成するための位相差材とした。
[製造例7]
 合成例7で得られたポリマー溶液MB7(10.0g)を秤量し、CPN(1.85g)、BCS(3.0g)、及びR40(ポリマー固形分に対して0.05質量%)を加え、撹拌することにより、ポリマー溶液T7を得た。得られたポリマー溶液T7は、そのまま位相差膜を形成するための位相差材とした。
[製造例8~9]
 ポリマー溶液MB7の代わりにポリマー溶液MB8~MB9をそれぞれ用いた以外は、製造例7と同様の手法によって、ポリマー溶液T8~T9を得た。得られたポリマー溶液T8~T9は、そのまま位相差膜を形成するための位相差材とした。
[製造例10、11]
 ポリマー粉末MB1の代わりにポリマー粉末MB10、MB11をそれぞれ用いた以外は、製造例1と同様の手法によって、ポリマー溶液T10、T11を得た。得られたポリマー溶液T10、T11は、そのまま位相差膜を形成するための位相差材とした。
[製造例12]
 合成例12で得られたポリマー粉末MB12(1.50g)を秤量し、CPN(8.49g)、及びF563(7.5mg)を加え、撹拌することにより、ポリマー溶液T12を得た。このポリマー溶液T12は、そのまま位相差膜を形成するための位相差材とした。
[製造例13]
 ポリマー粉末MB12の代わりにポリマー粉末MB13を用いた以外は、製造例12と同様の手法によって、ポリマー溶液T13を得た。
[比較製造例1]
 ポリマー粉末MB1の代わりにポリマー溶液P1を用いた以外は、製造例1と同様の手法によって、ポリマー溶液C1を得た。得られたポリマー溶液C1は、そのまま位相差膜を形成するための位相差材とした。
[比較製造例2]
 ポリマー溶液MB7の代わりにポリマー溶液P2を用いた以外は、製造例7と同様の手法によって、ポリマー溶液C2を得た。得られたポリマー溶液C2は、そのまま位相差膜を形成するための位相差材とした。
[比較製造例3、4]
 ポリマー粉末MB12の代わりにポリマー粉末P3、P4をそれぞれ用いた以外は、製造例12と同様の手法によって、ポリマー溶液C3、C4を得た。
 前記各製造例および比較製造例で使用した成分等について、表2にまとめた。
Figure JPOXMLDOC01-appb-T000057
[3]単層位相差材の製造
[実施例1]
 製造例1で得られたポリマー溶液T1を孔径5.0μmのフィルターで濾過した後、無アルカリガラス基板上にスピンコートし、60℃のホットプレート上で4分間乾燥し、膜厚2.0μmの位相差膜を形成した。次いで、偏光板を介して365nmの紫外線を、表3に示されるように、50、100、200、400、800mJ/cm2で塗膜面に照射した後に、120℃の熱循環式オーブンで20分間加熱し、位相差膜付きの基板S1を作製した。
[実施例2~9]
 ポリマー溶液T1の代わりにT2~T9をそれぞれ用いた以外は、実施例1と同様にして、位相差膜付きの基板S2~S9を作製した。
[実施例10~13]
 ポリマー溶液T1の代わりにT10、T11をそれぞれ用いて、偏光紫外線露条件の変更、焼成温度を100℃、120℃とした以外は、実施例1と同様にして、位相差膜付きの基板S10~S13を作製した。なお、偏光紫外線露時、325nmロングウェーブパスフィルター(325LWPF)および365nm偏光板を介して露光した。
[実施例14]
 ポリマー溶液T12を5.0μmのフィルターで濾過した後、無アルカリガラス基板上にバーコーターを用いて塗布した。この塗布フィルムを50℃の熱循環オーブンで3分間乾燥させ、続いて、この基板に高圧水銀灯から365nmバンドパスフィルター(365BPF)および偏光板を介して365nmの偏光紫外線を200mJ/cm2照射した。130℃のIR式オーブンで20分間加熱し、位相差膜付きの基板S14を作製した。
[実施例15]
 ポリマー溶液T13を5.0μmのフィルターで濾過した後、無アルカリガラス基板上にバーコーターを用いて塗布した。この塗布フィルムを50℃の熱循環オーブンで3分間乾燥させ、続いて、この基板に高圧水銀灯から313nmバンドパスフィルター(313BPF)および偏光板を介して313nmの偏光紫外線を1,600mJ/cm2照射した。140℃のIR式オーブンで20分間加熱し、位相差膜付きの基板S15を作製した。
[比較例1]
 ポリマー溶液T1の代わりにC1を用い、焼成温度を140℃にした以外は、実施例1と同様にして、位相差膜付きの基板Q1を作製した。
[比較例2]
 ポリマー溶液T1の代わりにC1を用いた以外は、実施例1と同様にして、位相差膜付きの基板Q2を作製した。
[比較例3]
 ポリマー溶液T1の代わりにC2を用い、焼成温度を140℃にした以外は、実施例1と同様にして、位相差膜付きの基板Q3を作製した。
[比較例4]
 ポリマー溶液T1の代わりにC2を用いた以外は、実施例1と同様にして、位相差膜付きの基板Q4を作製した。
[比較例5]
 ポリマー溶液T12の代わりにC3を用いた以外は、実施例14と同様にして、位相差膜付きの基板Q5を作製した。
[比較例6]
 ポリマー溶液T13の代わりにC4を用いた以外は、実施例15と同様にして、位相差膜付きの基板Q6を作製した。
 前記各実施例および比較例で作製した各基板S1~S15及びQ1~Q6について、Haze値を下記手法により評価した。
〔Haze値評価〕
 SUGA試験機株式会社製のヘーズメーター(HZ-V3)を用いて位相差膜のHaze値を評価した。結果を表3、4に示す。
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000059
 表3、4の結果より、側鎖型ブロック共重合体を用いて作製した試験片においては、膜の柔軟化(低Tg化)が起きることにより、膜焼結時の結晶化精度が高まる(結晶の構造欠陥箇所が減少する)、もしくは、分子の柔軟性化によって結晶分子がポリドメインを形成しにくくなることにより膜中を透過する光の散乱が減少し、膜の濁り(ヘーズ)が抑制されるものと考えられる。
 前記各実施例および比較例で作製した各基板S1~S15及びQ1~Q6について、位相差値を下記手法により評価した。
〔位相差値評価〕
 Axometrics社製のAxo Scanを用いて波長550nmにおける直線位相差(Linear Re)を評価した。結果を表5、6に示す。
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000061
 表5、6の結果より、側鎖型ブロック共重合体を用いて作製した試験片においては、前記Hazeの低下が見られるにも関わらず、位相差の発現が確認された。これは側鎖型ブロック共重合体の適用による低Tg化が起きつつも膜内の結晶性が保持されていることに拠ると考えられる。

Claims (8)

  1.  (A)液晶性を発現し得る感光性の側鎖型重合体ブロックと、ポリマー型重合開始剤由来の重合体ブロックとを含むブロック共重合体、及び(B)有機溶媒を含む重合体組成物。
  2.  前記側鎖型重合体ブロックが、下記式(a1)~(a6)のいずれかで表される側鎖を有する請求項1記載の重合体組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、n1及びn2は、それぞれ独立に、0、1、2又は3である。
     Lは、単結合又は炭素数1~12のアルキレン基であり、該アルキレン基の水素原子の一部又は全部がハロゲン原子で置換されていてもよい。
     T1は、単結合又は炭素数1~12のアルキレン基であり、該アルキレン基の水素原子の一部又は全部がハロゲン原子で置換されていてもよい。
     A1、A2及びD1は、それぞれ独立に、単結合、-O-、-CH2-、-C(=O)-O-、-O-C(=O)-、-C(=O)-NH-又は-NH-C(=O)-である。ただし、T1が単結合のときは、A2も単結合である。
     Y1及びY2は、フェニレン基又はナフチレン基であり、該フェニレン基及びナフチレン基の水素原子の一部又は全部が、シアノ基、ハロゲン原子、炭素数1~5のアルキル基、炭素数1~5のアルキルカルボニル基又は炭素数1~5のアルコキシ基で置換されていてもよい。
     P1、Q1及びQ2は、それぞれ独立に、単結合、フェニレン基又は炭素数5~8の2価の脂環式炭化水素基であり、該フェニレン基の水素原子の一部又は全部が、シアノ基、ハロゲン原子、炭素数1~5のアルキル基、炭素数1~5のアルキルカルボニル基又は炭素数1~5のアルコキシ基で置換されていてもよい。Q1の数が2以上のとき、各Q1は互いに同一でも異なっていてもよく、Q2の数が2以上のとき、各Q2は互いに同一でも異なっていてもよい。
     Rは、水素原子、シアノ基、ハロゲン原子、カルボキシ基、炭素数1~5のアルキル基、炭素数1~5のアルキルカルボニル基、炭素数3~7のシクロアルキル基又は炭素数1~5のアルコキシ基である。
     X1及びX2は、それぞれ独立に、単結合、-O-、-C(=O)-O-、-O-C(=O)-、-N=N-、-CH=CH-、-C≡C-、-CH=CH-C(=O)-O-又は-O-C(=O)-CH=CH-である。X1の数が2以上のとき、各X1は互いに同一でも異なっていてもよく、X2の数が2以上のとき、各X2は互いに同一でも異なっていてもよい。
     Couは、クマリン-6-イル基又はクマリン-7-イル基であり、これらに結合する水素原子の一部が-NO2、-CN、-CH=C(CN)2、-CH=CH-CN、ハロゲン原子、炭素数1~5のアルキル基又は炭素数1~5のアルコキシ基で置換されてもよい。
     Eは、-C(=O)-O-、-O-C(=O)-、-C(=O)-S-又は-S-C(=O)-である。
     G1及びG2は、それぞれ独立に、N又はCHである。
     破線は、結合手である。)
  3.  前記側鎖型重合体ブロックが、更に、光二量化も光異性化もしない側鎖を有する請求項1又は2記載の重合体組成物。
  4.  前記光二量化も光異性化もしない側鎖が、下記式(b1)~(b11)のいずれかで表されるものである請求項3記載の重合体組成物。
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    (式中、A3及びA4は、それぞれ独立に、単結合、-O-、-CH2-、-C(=O)-O-、-O-C(=O)-、-C(=O)-NH-、又は-NH-C(=O)-である。A4の数が2以上のとき、各A4は互いに同一でも異なっていてもよい。
     R1は、-NO2、-CN、ハロゲン原子、フェニル基、ナフチル基、ビフェニリル基、フラニル基、1価窒素含有複素環基、炭素数5~8の1価脂環式炭化水素基、炭素数1~12のアルキル基又は炭素数1~12のアルコキシ基である。
     R2は、フェニル基、ナフチル基、ビフェニリル基、フラニル基、1価窒素含有複素環基又は炭素数5~8の1価脂環式炭化水素基であり、これらの基の水素原子の一部又は全部が、-NO2、-CN、ハロゲン原子、炭素数1~5のアルキル基又は炭素数1~5のアルコキシ基で置換されてもよい。
     R3は、水素原子、-NO2、-CN、ハロゲン原子、フェニル基、ナフチル基、ビフェニリル基、フラニル基、1価窒素含有複素環基、炭素数5~8の1価脂環式炭化水素基、炭素数1~12のアルキル基又は炭素数1~12のアルコキシ基である。
     Eは、-C(=O)-O-、-O-C(=O)-、-C(=O)-S-又は-S-C(=O)-である。
     aは、1~12の整数である。
     k1~k5は、それぞれ独立に、0~2の整数であるが、k1~k5の合計は2以上である。
     k6及びk7は、それぞれ独立に、0~2の整数であるが、k6及びk7の合計は1以上である。
     m1、m2及びm3は、それぞれ独立に、1~3の整数である。
     nは、0又は1である。
     Z1及びZ2は、それぞれ独立に、単結合、-C(=O)-、-CH2-O-、又は-CF2-である。
     破線は、結合手である。)
  5.  前記ポリマー型重合開始剤が、下記式(1)で表される繰り返し単位を有する請求項1~4のいずれか1項記載の重合体組成物。
    Figure JPOXMLDOC01-appb-C000004
     式中、Ra1~Ra4は、それぞれ独立に、直鎖状若しくは分枝状の炭素数1~6のアルキル基、又はシアノ基である。RL1及びRL2は、それぞれ独立に、炭素数1~10のアルキレン基である。L1及びL2は、それぞれ独立に、-C(=O)-O-、-O-C(=O)-、-C(=O)-NH-又は-NH-C(=O)-である。Xは、下記式(2)又は(3)で表される2価の基である。
    Figure JPOXMLDOC01-appb-C000005
     式中、Ra5~Ra8は、直鎖状若しくは分枝状の炭素数1~6のアルキル基又は炭素数6~12のアリール基である。Ra9及びRa10は、それぞれ独立に、炭素数1~10のアルキレン基である。RL3及びRL4は、それぞれ独立に、炭素数1~10のアルキレン基である。x及びyは、それぞれ独立に、正の整数である。
  6.  前記ポリマー型重合開始剤が、下記式(In-1)~(In-2)のいずれかで表される請求項5記載の重合体組成物。
    Figure JPOXMLDOC01-appb-C000006
    (式中、x及びyは前記と同じ。nは、正の整数である。)
  7.  (I)請求項1~6のいずれか1項記載の重合体組成物を、基板上に塗布して塗膜を形成する工程、
    (II)前記塗膜に、偏光した紫外線を照射する工程、及び
    (III)前記紫外線を照射した塗膜を加熱して、位相差材を得る工程
    を含む、単層位相差材の製造方法。
  8.  請求項1~6のいずれか1項記載の重合体組成物から得られる単層位相差材。
PCT/JP2022/028970 2021-07-28 2022-07-27 重合体組成物及び単層位相差材 WO2023008488A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023538599A JPWO2023008488A1 (ja) 2021-07-28 2022-07-27
KR1020247002612A KR20240037250A (ko) 2021-07-28 2022-07-27 중합체 조성물 및 단층 위상차재
CN202280051122.6A CN117677669A (zh) 2021-07-28 2022-07-27 聚合物组合物和单层相位差材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021123463 2021-07-28
JP2021-123463 2021-07-28

Publications (1)

Publication Number Publication Date
WO2023008488A1 true WO2023008488A1 (ja) 2023-02-02

Family

ID=85086858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028970 WO2023008488A1 (ja) 2021-07-28 2022-07-27 重合体組成物及び単層位相差材

Country Status (5)

Country Link
JP (1) JPWO2023008488A1 (ja)
KR (1) KR20240037250A (ja)
CN (1) CN117677669A (ja)
TW (1) TW202313936A (ja)
WO (1) WO2023008488A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024071364A1 (ja) * 2022-09-29 2024-04-04 日産化学株式会社 重合体組成物及び単層位相差材

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1095821A (ja) * 1996-09-26 1998-04-14 Dainippon Ink & Chem Inc 液晶性ブロック共重合体及びその製造方法
JP2000017028A (ja) * 1998-04-30 2000-01-18 Jsr Corp 硬化性樹脂組成物および反射防止膜
CN101029116A (zh) * 2007-03-09 2007-09-05 北京大学 一种主链含液晶高分子基元的嵌段共聚物及其自由基/正离子转化聚合法
JP2017104028A (ja) * 2015-12-07 2017-06-15 東洋インキScホールディングス株式会社 細胞培養用部材
WO2017170947A1 (ja) * 2016-03-31 2017-10-05 日産化学工業株式会社 偏光層形成組成物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09208957A (ja) 1996-01-31 1997-08-12 Teijin Ltd 光学異方体の製造方法
JP3945790B2 (ja) 1997-12-25 2007-07-18 林テレンプ株式会社 複屈折フィルムとその製造方法
US8054411B2 (en) 2006-09-13 2011-11-08 Rolic Ag Volume photo-aligned retarder
JP2008164925A (ja) 2006-12-28 2008-07-17 Hayashi Telempu Co Ltd 位相差フィルムおよびその製造方法
KR101090325B1 (ko) 2009-03-18 2011-12-07 동방에프티엘(주) 고순도 올메사탄 메독소밀의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1095821A (ja) * 1996-09-26 1998-04-14 Dainippon Ink & Chem Inc 液晶性ブロック共重合体及びその製造方法
JP2000017028A (ja) * 1998-04-30 2000-01-18 Jsr Corp 硬化性樹脂組成物および反射防止膜
CN101029116A (zh) * 2007-03-09 2007-09-05 北京大学 一种主链含液晶高分子基元的嵌段共聚物及其自由基/正离子转化聚合法
JP2017104028A (ja) * 2015-12-07 2017-06-15 東洋インキScホールディングス株式会社 細胞培養用部材
WO2017170947A1 (ja) * 2016-03-31 2017-10-05 日産化学工業株式会社 偏光層形成組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KAWATSUKI, N. ; NAKASHIMA, H. ; YAMAMOTO, T.: "A comparative study on the thermally enhanced reorientation between random and diblock methacrylate copolymers with photo-cross-linkable mesogenic side groups by irradiating with linearly polarized ultraviolet light", POLYMER, ELSEVIER, AMSTERDAM, NL, vol. 44, no. 10, 1 May 2003 (2003-05-01), AMSTERDAM, NL, pages 2939 - 2946, XP027130677, ISSN: 0032-3861 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024071364A1 (ja) * 2022-09-29 2024-04-04 日産化学株式会社 重合体組成物及び単層位相差材

Also Published As

Publication number Publication date
JPWO2023008488A1 (ja) 2023-02-02
CN117677669A (zh) 2024-03-08
KR20240037250A (ko) 2024-03-21
TW202313936A (zh) 2023-04-01

Similar Documents

Publication Publication Date Title
JP7517327B2 (ja) 重合体組成物及び単層位相差材
JP7517326B2 (ja) 重合体組成物及び単層位相差材
CN108603036B (zh) 液晶取向剂、液晶取向膜和液晶表示元件
JP6369942B2 (ja) 光反応性組成物、それを用いた光配向膜、及び光学異方性膜
WO2023008488A1 (ja) 重合体組成物及び単層位相差材
TW202039769A (zh) 液晶配向劑、液晶配向膜及相位差材料
WO2022071409A1 (ja) 単層位相差材の製造方法
WO2022080378A1 (ja) 単層位相差材の製造方法
WO2022138932A1 (ja) 単層位相差膜の製造方法及び単層位相差膜形成用重合体組成物
JP7517328B2 (ja) 重合体組成物及び単層位相差材
WO2022210639A1 (ja) パターン化された単層位相差膜の製造方法及び単層位相差膜形成用重合体組成物
WO2024038887A1 (ja) 重合体組成物及び単層位相差材
WO2024071364A1 (ja) 重合体組成物及び単層位相差材
WO2023095925A1 (ja) 重合体組成物及び単層位相差材
WO2023171757A1 (ja) 重合体組成物、単層位相差材及び液晶配向剤
KR20240112908A (ko) 중합체 조성물 및 단층 위상차재
WO2021090832A1 (ja) パターニングされた単層位相差材の製造方法
WO2023171760A1 (ja) 位相差膜用組成物及び単層位相差材
TW202419494A (zh) 聚合物組成物及單層相位差材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849549

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023538599

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280051122.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247002612

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE