WO2023008138A1 - Crystal oscillator and manufacturing method therefor - Google Patents

Crystal oscillator and manufacturing method therefor Download PDF

Info

Publication number
WO2023008138A1
WO2023008138A1 PCT/JP2022/027066 JP2022027066W WO2023008138A1 WO 2023008138 A1 WO2023008138 A1 WO 2023008138A1 JP 2022027066 W JP2022027066 W JP 2022027066W WO 2023008138 A1 WO2023008138 A1 WO 2023008138A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
crystal
recess
package
crystal element
Prior art date
Application number
PCT/JP2022/027066
Other languages
French (fr)
Japanese (ja)
Inventor
貴博 植田
正明 太田
孝男 楠木
広幸 石川
和也 竺原
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2023538393A priority Critical patent/JPWO2023008138A1/ja
Publication of WO2023008138A1 publication Critical patent/WO2023008138A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/30Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator
    • H03B5/32Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Definitions

  • the present disclosure relates to crystal oscillators and manufacturing methods thereof.
  • a crystal oscillator having a crystal element, an IC (Integrated Circuit), and a package holding them is known (for example, Patent Document 1 below).
  • the crystal element has, for example, a crystal blank and excitation electrodes that overlap the crystal blank.
  • the IC includes, for example, an oscillator circuit and is electrically connected to excitation electrodes via a package.
  • the oscillating circuit vibrates the crystal blank by applying an alternating voltage to the excitation electrodes, and uses this vibration to generate an oscillating signal.
  • an IC is mounted on a package by bumps made of solder.
  • a crystal oscillator includes a crystal element, an IC, a package, a connecting member, and a first Au layer.
  • the IC has terminals.
  • the package holds the crystal element and the IC.
  • the connecting members are bumps or bonding wires made of gold and bonded to the terminals and the package.
  • the terminal has a first Au layer forming a surface of the terminal and to which the connection member is bonded.
  • FIG. 1 is an exploded perspective view showing a schematic configuration of a crystal oscillator according to a first embodiment
  • FIG. FIG. 2 is a cross-sectional view of the crystal oscillator taken along line II-II of FIG. 1
  • FIG. 2 is a plan view showing the inside of the crystal oscillator of FIG. 1
  • region IV of FIG. 2 is a flow chart showing an example of the procedure of a method for manufacturing the crystal oscillator of FIG. 1; Sectional drawing corresponding to a part of FIG. 4 which shows the structure of a comparative example.
  • FIG. 5 is a cross-sectional view showing a schematic configuration of a crystal oscillator according to a second embodiment
  • FIG. 8 is an enlarged view of region VIII of FIG.
  • FIG. 5 is a cross-sectional view showing a schematic configuration of a crystal oscillator according to a third embodiment
  • FIG. 5 is a cross-sectional view showing a schematic configuration of a crystal oscillator according to a fourth embodiment
  • FIG. 5 is a diagram showing temporal changes in the characteristics of an oscillator according to a comparative example
  • FIG. 4 is a diagram showing temporal changes in the characteristics of the oscillator according to the example
  • the drawings may be labeled with an orthogonal coordinate system D1-D2-D3 for convenience.
  • any direction may be the upper side or the lower side, but for the sake of convenience, the +D3 side may be referred to as the upper side, and terms such as the upper surface and the lower surface may be used hereinafter.
  • first insulating layer 31A and “second insulating layer 31B”
  • simply "insulating layer 31" may be indicated by a number and additional signs may be omitted to distinguish between them.
  • rectangle may include a shape with chamfered corners unless otherwise specified. The same is true for other polygons. Also, shapes other than polygons do not have to be shapes that are strictly defined by mathematics. Of course, the various shapes may be strictly mathematically defined shapes.
  • the "main component” may be, for example, a component that accounts for 50% by mass or more of the material. When two or more components are the main components, the total of the two or more components is 50% by mass or more. It should be noted that the mass % of various main components to be described later may be, for example, 80 mass % or more or 90 mass % or more upon implementation.
  • the member When the member is made of "gold" (or Au), the member may be made of metal containing 99.9% or more by mass of Au. That is, the member may contain less than 0.1% by mass of impurities. Impurities may be unavoidably mixed (unintended) or intentionally added. Impurities that are intentionally added include, for example, those that adjust the crystalline state. In addition, the mass % of Au in various members made of Au, which will be described later, may be 99.99% or more or more in practice.
  • the metal in the completed oscillator may be formed by firing a conductive paste. Therefore, even materials referred to simply as metals in the following description may include inorganic materials contained in the conductive paste.
  • FIG. 1 is an exploded perspective view showing a schematic configuration of a crystal oscillator 1 (hereinafter, "crystal” may be omitted) according to the first embodiment.
  • FIG. 2 is a cross-sectional view taken along line II--II of FIG.
  • FIG. 3 is a plan view showing the inside of the oscillator 1.
  • FIG. 2 for the sake of convenience, strictly speaking, members that are not located on the same cross section are also shown together.
  • the oscillator 1 is, for example, an electronic component that generally has a thin rectangular parallelepiped shape as a whole.
  • the dimensions of oscillator 1 are arbitrary.
  • the length of the long side and short side is 1 mm or more and 10 mm or less.
  • the thickness is 0.2 mm or more and 2 mm or less on the premise that it is smaller than the length of the short side.
  • the oscillator 1 generates an oscillation signal, for example, by being supplied with DC power of a predetermined voltage.
  • An oscillating signal is a signal whose signal level (for example, potential) oscillates at a constant period.
  • the frequency of the oscillation signal generated by the oscillator 1 is arbitrary. For example, when it is assumed that the crystal element (described later) applied to the embodiment may have various aspects (shape, vibration mode, etc.), the frequency of the oscillation signal may be 1 kHz or more and 1 GHz or less.
  • the oscillator 1 has, for example, a crystal element 3, an IC 5, and a package 7 that holds (for example, accommodates) these elements, as particularly shown in FIG. Package 7 has a base 9 and a lid 11 . Note that FIG. 3 shows the inside of the oscillator 1 by omitting the lid 11 .
  • the crystal element 3 generates natural vibration when an AC voltage is applied.
  • the IC5 includes an oscillation circuit (not shown).
  • the oscillation circuit applies a voltage to the crystal element 3 and utilizes the natural oscillation in the crystal element 3 to generate an oscillation signal.
  • the package 7 contributes to protection of the crystal element 3 and the IC 5, transmission of electrical signals to these elements, and the like.
  • the crystal element 3 and the IC 5 are mounted on the base 9 of the package 7, for example. That is, the crystal element 3 and the IC 5 are fixed to the base 9 and electrically connected.
  • a lid 11 of the package 7 is fixed to the base 9 so as to form a closed space S1 in which the crystal element 3 and the IC 5 are accommodated.
  • the closed space S1 is, for example, evacuated or filled with an appropriate gas (eg, nitrogen).
  • the crystal element 3 is fixed and electrically connected to the base 9 by two conductive adhesives 41 (FIGS. 2 and 3).
  • the IC 5 is fixed to the base 9 by an adhesive 43 (FIG. 2) and electrically connected to the base 9 by a plurality (eight in the example shown) of bonding wires 45 (FIGS. 2 and 3). It is connected to the. At least part of the IC 5 may be covered with a sealing resin 49 (see FIG. 11 described later).
  • a member (bonding wire 45 in the illustrated example) that electrically connects the IC 5 and the package 7 (base 9) is sometimes called a connection member.
  • the oscillator 1 has, for example, a new configuration regarding the bonding between the connecting member and the IC 5 .
  • Other configurations may be in various aspects, for example, may be in known aspects.
  • the structure of the crystal element 3, the structure of the IC 5 (excluding the structure related to the bonding described above), the structure of the package 7, and the mounting structure of each element (the bonding described above) shown in FIGS. ) etc. is merely an example.
  • the outer shape of the oscillator 1 does not have to be rectangular parallelepiped.
  • the description of (1) may include description of novel aspects without any particular notice. Also, the description of (1) will be made by taking the mode shown in FIGS. 1 to 3 as an example. In the explanation of (1), the crystal element 3, the IC 5, the package 7 (the base portion 9 and the lid 11), and the members involved in mounting (the conductive adhesive 41, the adhesive 43 and the bonding wire 45) are explained in order. After that, the positional relationship between the crystal element 3 and the IC 5 will be described.
  • the crystal element 3 includes, for example, a crystal blank 13 , two or more (one pair in the illustrated example) excitation electrodes 15 for applying a voltage to the crystal blank 13 , and the crystal element 3 mounted on the base 9 of the package 7 . It has two or more (one pair in the illustrated example) extraction electrodes 17 for the purpose.
  • the shape of the crystal blank 13, the excitation electrode 15, and the extraction electrode 17 is such that either of the two surfaces of the crystal element 3 may be the mounting side (-D3 side). (longitudinal direction)), and may be formed into a shape approximately 180° rotationally symmetrical with respect to a center line (not shown).
  • the shapes of the crystal blank 13, the excitation electrode 15, and the extraction electrode 17 do not have to be rotationally symmetrical.
  • the planar shape of the crystal blank 13 may be rectangular (example shown), circular, or elliptical.
  • the thickness of the crystal blank 13 may be constant or may not be constant (example shown). As an example of the latter, although not shown, a so-called mesa shape in which the central portion is thicker than the outer peripheral portion can be cited.
  • the crystal blank 13 has a relatively thin portion and a relatively thick portion.
  • a pair of excitation electrodes 15 are located in the thin portion.
  • the thick portion is located, for example, at one end (one side) of the crystal blank 13, and a pair of extraction electrodes 17 are located.
  • the thicker portions can, for example, increase the strength of the crystal blank 13 .
  • the thick portions may be formed, for example, on two sides, three sides, or four sides of the crystal blank 13 . From another point of view, the thick portion may be formed in a region where the extraction electrode 17 is not located.
  • the planar shape of the excitation electrode 15 may be a circular shape (example shown in the drawing), a rectangular shape, or an elliptical shape. Further, the planar shape of the excitation electrode 15 may be a shape similar to the planar shape of the crystal blank 13 (or the planar shape of the mesa portion), or may not be such a shape (example shown in the figure). ).
  • the former includes a rectangular-rectangular combination, a circular-circular combination, and an elliptical-elliptical combination.
  • the lead-out electrode 17 has, for example, a wiring portion extending from the excitation electrode 15 and a pad-like terminal portion connected to the tip of the wiring portion, although no particular reference numeral is attached.
  • the terminal portion is a portion that is joined to the base portion 9 of the package 7 .
  • the terminal portion included in one extraction electrode 17 has two portions located on both sides of the crystal blank 13 so that either side of the crystal element 3 can be the mounting side. are doing. These two portions are, for example, the end surface of the crystal blank 13 (the surface on the -D1 side), the side surface of the crystal blank 13 (the surface on the +D2 side or the -D2 side), and a through hole (not shown) formed in the crystal blank 13. They are connected to each other through at least one of the holes.
  • the crystal element 3 may have a configuration other than the above.
  • the crystal element 3 may be a tuning fork type element using bending vibration, a CT cut or DT cut element using contour shear vibration, or an element using SAW (surface acoustic wave).
  • Such an element also has a crystal blank 13 and two or more excitation electrodes 15 overlapping the crystal blank 13 .
  • the crystal blank layer of crystal may overlap layers of other materials.
  • the thickness of the crystal blank 13 may be set as appropriate for the crystal blank 13 that is not plate-shaped and/or the crystal blank 13 whose thickness is not a factor that determines the frequency.
  • the thickness of such a crystal blank 13 may be 5 ⁇ m or more and 30 ⁇ m or less.
  • the thickness direction of the non-platy crystal blank 13 may be reasonably determined from its overall shape. For example, in a tuning fork type, the dimension in the direction orthogonal to both the direction in which two or more arms extend in parallel and the direction in which the two or more arms are arranged is the thickness.
  • the IC 5 has a chip body 19 having various circuits inside, and a plurality of IC terminals 21 that mediate connections between the circuits and the outside of the IC 5 .
  • eight IC terminals 21 are shown as shown in FIG. In FIG. 2, only one IC terminal 21 on the -D1 side is shown. In FIG. 3, the two IC terminals on the -D1 side are hidden by the crystal element 3 and are not shown.
  • the chip body 19 has a substrate made of, for example, a semiconductor (eg, silicon). have a circuit.
  • the circuit included in the chip body 19 is, for example, the oscillation circuit described above.
  • the chip body 19 may include a temperature sensor and a temperature compensation circuit that compensates for temperature changes in the oscillation signal based on the temperature detected by the temperature sensor.
  • the IC 5 (chip body 19) may be packaged or may be a bare chip.
  • the shape of the chip body 19 is arbitrary. In general, the shape of the chip body 19 is a thin rectangular parallelepiped, as shown in the drawing. Moreover, the dimensions of the chip body 19 are also arbitrary. For example, the width (area) of the chip body 19 in plan view may be larger than the width of the crystal element 3 in plan view (example shown), may be the same, or may be smaller. The width of the crystal element 3 in plan view may be the minimum rectangular width that includes the crystal element 3 when the crystal element 3 is not plate-shaped like a tuning fork.
  • the thickness of the chip body 19 may be thicker than the thickness of the crystal element 3 (the thickness of the portion where the excitation electrode 15 overlaps, or the maximum thickness) (example shown), or may be the same. It may be fine, or it may be thin.
  • the number and roles of the IC terminals 21 may be appropriately set according to the functions required of the IC 5 (oscillator 1).
  • the IC terminals 21 may include the following terminals.
  • the IC terminals 21 may include the following terminals.
  • the IC terminal 21 is composed of, for example, a pad that overlaps one of the two main surfaces (the widest surface; front and back) of the IC 5 .
  • the planar shape, size and arrangement position of the IC terminal 21 are arbitrary.
  • the planar shape and dimensions of the plurality of IC terminals 21 may be the same (example shown) or may be different.
  • the planar shape of the IC terminal 21 may be rectangular (illustrated example), circular, or elliptical.
  • the width of one IC terminal 21 in plan view may be smaller than the width of the portion facing the -D3 side of the terminal portion of one extraction electrode 17 (example shown), or may be the same. and can be larger.
  • the plurality of IC terminals 21 may be arranged in a row generally along the outer edge of the chip body 19 (example shown), or unlike the example shown in the figure, may be arranged in a row along the outer edge. It may also include another IC terminal 21 positioned inside the plurality of IC terminals 21 .
  • the package 7 has a base 9 and a lid 11 fixed to the base 9, as described above.
  • the base 9 and the lid 11 form a sealed space S1 that accommodates the crystal element 3 and the IC5.
  • the specific shapes of the base portion 9 and the lid 11, the mounting structure of the crystal element 3 and the IC 5 with respect to the base portion 9, the relative positions of the crystal element 3 and the IC 5, and the like may be made as appropriate.
  • the base portion 9 has a first surface 9a (the bottom surface of the recess in the illustrated example) facing the +D3 side.
  • the lid 11 is fixed to the base 9 so as to form a closed space S1 on the first surface 9a.
  • the IC 5 is fixed to the first surface 9a and accommodated in the sealed space S1.
  • the crystal element 3 is accommodated in the closed space S1 at a position facing the first surface 9a through the IC5. That is, the illustrated package 7 accommodates the crystal element 3 and the IC 5 in a stacked manner on the first surface 9a. Specifically, it is as follows.
  • the base 9 has, for example, an insulating substrate 23 and various conductors (eg, metal) provided on the substrate 23 .
  • the base 23 for example, occupies most of the base 9 , and the base 9 has substantially the same shape as the base 23 .
  • Various conductors constitute, for example, pads to which the crystal element 3 and the IC 5 are electrically connected.
  • the shape, size and material of the substrate 23 are arbitrary.
  • the outer shape of the base 23 is substantially rectangular parallelepiped.
  • the base 23 includes a first recess 25 opening on the top surface, a second recess 27 opening on the bottom surface of the first recess 25, and a bottom surface of the second recess 27 opening on the bottom surface. and a third recessed portion 29 which is provided.
  • the third recess 29 accommodates the IC5.
  • the bottom surface of the third concave portion 29 (strictly speaking, a die pad 42 described later overlapping with the bottom surface) is an example of the first surface 9a described above.
  • the second recess 27 accommodates the bonding wire 45 .
  • the first recess 25 accommodates the crystal element 5 .
  • the base 23 may be regarded as having one recess. Further, assuming that the one concave portion has a first bottom surface including the bottom surface (first surface 9a) of the third concave portion 29, the first bottom surface is provided with a first pedestal (the upper surface of which is the bottom surface of the second concave portion 27). ) is formed, and the second pedestal (the upper surface of which includes the bottom surface of the first recess 25 ) is formed on the upper surface of the first pedestal.
  • the base 23 is composed of, for example, a plurality of (four in this embodiment) first insulating layers 31A to fourth insulating layers 31D.
  • the base 9 comprises a first insulating layer 31A, a second insulating layer 31B having an opening forming a third recess 29, and a second recess 27, in this order from the bottom surface of the base 9. It has a third insulating layer 31 ⁇ /b>C having an opening and a fourth insulating layer 31 ⁇ /b>D having an opening forming the first recess 25 .
  • the substrate 23 may be produced by laminating the insulating layer 31, or may be produced by a manufacturing method different from such a manufacturing method.
  • a method of laminating and firing a plurality of ceramic green sheets to be a plurality of insulating layers 31 can be used.
  • the latter method for example, there is a method of forming concave portions (25, 27 and 29) in one ceramic green sheet by pressing and firing.
  • the former manufacturing method and the latter manufacturing method may be combined.
  • the insulating layer 31 may be of convenience that is conceived based on the shape of the substrate 23 and/or the conductor layers within the substrate 23 .
  • the shape of the outer edges of the plurality of insulating layers 31 is, for example, a rectangular shape corresponding to the rectangular parallelepiped shape of the substrate 23 .
  • the planar shape of each recess (25, 27 and 29) is, for example, a rectangular shape having four sides parallel to the rectangle of the outer edge of the insulating layer 31.
  • the thickness of each insulating layer 31 (the depth of each recess) may be the same as or different from each other, and may be appropriately set according to the thicknesses of the crystal element 3 and the IC 5. .
  • the second recess 27 is, for example, smaller than the first recess 25 in at least one of the D1 direction (longitudinal direction of the base 23) and the D2 direction (lateral direction of the base 23) (the D1 direction in the illustrated example).
  • the bottom surface of the first recess 25 (the upper surface of the third insulating layer 31C) is exposed upward around the second recess 27 .
  • the bottom surface of the first recess 25 may refer to only the area around the second recess 27 (only the area excluding the area where the second recess 27 is open).
  • the bottom surface of the first concave portion 25 is used for mounting the crystal element 3, for example.
  • the third recess 29 is smaller than the second recess 27, for example, in at least one (both in the illustrated example) of the D1 direction (longitudinal direction of the base 23) and the D2 direction (lateral direction of the base 23).
  • the bottom surface of the second recess 27 (the upper surface of the second insulating layer 31B) is exposed upward around the third recess 29 .
  • the bottom surface of the second recess 27 may refer to only the area around the third recess 29 (only the area excluding the area where the third recess 29 is open).
  • the bottom surface of the second recess 27 is used, for example, for electrical connection with the IC 5 and the conductors of the base 9 .
  • the relative positions and relative sizes of the plurality of recesses (25, 27 and 29) in plan view are arbitrary. These are appropriately set in consideration of, for example, the size of the elements accommodated in each recess, and the arrangement position of a conductor layer (for example, pads connected to various elements) formed on the bottom surface of each recess. you can A specific example thereof will be described later together with the description of the conductor layer.
  • the material of the substrate 23 may be ceramic, for example.
  • the plurality of insulating layers 31 are made of ceramic, for example, and are integrally formed. Any specific type of ceramic may be used, and examples include aluminum oxide (alumina, Al 2 O 3 ), aluminum nitride (AlN), and LTCC (Low Temperature Co-fired Ceramics).
  • the coefficient of linear expansion of the material is, for example, 3 ppm/K or more and 13 ppm/K or less.
  • the Young's modulus of the material is, for example, 50 GPa or more and 350 GPa or less.
  • the material of the substrate 23 may be an insulating material other than ceramic (for example, resin).
  • a pair of crystal pads 33 are connected to two IC pads 35 via wiring conductors of the base 9 . This allows the IC 5 to apply voltage to the crystal element 3 .
  • IC pads 35 other than the two IC pads 35 are connected to external terminals 37 via, for example, wiring conductors of the base portion 9 . This allows the IC 5 to input an electric signal from outside the oscillator 1 and output an electric signal to the outside of the oscillator 1 .
  • the crystal pad 33 is positioned, for example, on the bottom surface of the first recess 25 (the area around the second recess 27).
  • the planar shape and dimensions of the bottom surface of the first recess 25 and the planar shape and dimensions of the crystal pad 33 are arbitrary, and the relative relationship between them is also arbitrary.
  • the crystal pad 33 may be positioned on any of the -D1 side (example shown), +D1 side, -D2 side and +D2 side with respect to the second concave portion 27 .
  • the second recess 27 has the same size as the first recess 25 in the D2 direction.
  • the +D1 side edge of the second recess 27 coincides with the +D1 side edge of the first recess 25 . That is, the bottom surface of the first recess 25 (the area surrounding the second recess 27) is exposed only on the -D1 side.
  • the pair of crystal pads 33 extends over the bottom surface of the first recess 25 in the D1 direction.
  • the pair of crystal pads 33 are separated from each other in the D2 direction and extend to the end of the bottom surface of the first recess 25 in the D2 direction. With such a configuration, for example, both the area of the crystal pad 33 and the area of the second recess 27 can be increased.
  • the length of the crystal pad 33 in the D1 direction may be shorter than the length of the bottom surface of the first recess 25 in the D1 direction. Further, the crystal pad 33 does not have to extend to the end of the bottom surface of the first recess 25 in the D2 direction.
  • the bottom surface of the first recess 25 (region around the second recess 27) has a portion located on the +D1 side, the ⁇ D2 side and/or the +D2 side in addition to or instead of the portion located on the ⁇ D1 side. You may have These portions may or may not overlap with the crystal element 3 in planar see-through.
  • the crystal element 3 When the crystal element 3 is supported at both ends, for example, it may be supported by the ⁇ D1 side portion and the +D1 side portion of the bottom surface of the first concave portion 25 . Also, for example, part of the second recess 27 may be located between the pair of crystal pads 33 .
  • the IC pad 35 is located, for example, on the bottom surface of the second recess 27 (region around the third recess 29).
  • the planar shape and dimensions of the bottom surface of the second recess 27 and the planar shape and dimensions of the IC pad 35 are arbitrary, and the relative relationship between them is also arbitrary.
  • the IC pad 35 may be located on the -D1 side (illustrated example), the +D1 side, the -D2 side (illustrated example), or the +D2 side (illustrated example) with respect to the third recess 29. .
  • the third recess 29 is smaller than the second recess 27 in both the D1 direction and the D2 direction. Also, the third recess 29 is biased toward the +D1 side with respect to the second recess 27 . As a result, the bottom surface of the second recess 27 (region around the third recess 29) is mainly exposed on the -D1 side, the -D2 side and the +D2 side.
  • a plurality of IC pads 35 are provided in the same number as the IC terminals 21 (eight in the illustrated example), and are arranged along the opening edge of the third recess 29 . For example, the IC pad 35 extends over the bottom surface of the second recess 27 from the inner peripheral side (the third recess 29 side) to the outer peripheral side.
  • the number of IC pads 35 may be greater than the number of IC terminals 21 . In other words, there may be dummy IC pads 35 that are not used. Further, for example, the length from the inner circumference side to the outer circumference side of the IC pad 35 may be shorter than the length from the inner circumference side to the outer circumference side of the bottom surface of the second recess 27 .
  • the bottom surface of the second recess 27 (the area surrounding the third recess 29) may have a sufficient width on the +D1 side, or conversely, may be wide enough on the -D1 side, the -D2 side and/or the +D2 side. It does not have to have a portion to be located. Also, for example, a part of the third recess 29 may be positioned between the IC pads 35 adjacent to each other along the opening edge of the third recess 29 .
  • the material of the crystal pad 33 is arbitrary.
  • the crystal pad 33 may be composed of one metal layer, or may be composed of two or more metal layers. At least part of the material of the crystal pads 33 may be the same as at least part of the material of other conductor layers (for example, the material of the IC pads 35 (described later)) of the base 9, or may be completely different. may In any case, the description of the material of the IC pads 35 to be described later may be applied to the material of the crystal pads 33 .
  • the thickness of the crystal pad 33 is also arbitrary.
  • the thickness of the crystal pad 33 may be the same as or different from the thickness of the IC pad 35 (described later). In any case, the description of the thickness of the IC pad 35 may be used for the thickness of the crystal pad 33 .
  • the plurality of external terminals 37 are composed of, for example, layered conductors (pads) located on the lower surface of the substrate 23 .
  • the oscillator 1 is mounted on the circuit board by joining the pads of the circuit board (not shown) and the external terminals 37 with solder or the like interposed therebetween. That is, the oscillator 1 in the illustrated example is of a surface mount type.
  • the number of external terminals 37, planar shape, size, position on the bottom surface, etc. are arbitrary. In the illustrated example, four external terminals 37 are positioned at four corners of the rectangular base 23 .
  • the shape of the external terminal 37 is, for example, rectangular. Note that, unlike the illustrated example, the number of external terminals 37 may be five or more. Also, the external terminal 37 may be pin-shaped. That is, the oscillator 1 does not have to be of the surface mount type.
  • the number and roles of the external terminals 37 may be appropriately set according to the functions required of the oscillator 1.
  • the plurality of external terminals 37 includes at least three external terminals 37 corresponding to the ground potential, power supply voltage and oscillation signal described in the description of the IC terminal 21 .
  • the plurality of external terminals 37 may further include external terminals 37 corresponding to control signals and the like.
  • the external terminals 37 may include dummy external terminals 37 that are used only for joining the oscillator 1 to the circuit board (not used for transmitting electrical signals).
  • the material of the external terminal 37 is arbitrary.
  • the external terminal 37 may be composed of one metal layer, or may be composed of two or more metal layers. At least part of the material of the external terminals 37 may be the same as at least part of the material of other conductor layers (for example, the material of the IC pads 35 (described later)) of the base 9, or may be completely different. good too. In any case, the description of the material of the IC pads 35 to be described later may be applied to the material of the crystal pads 33 .
  • the thickness of the external terminal 37 is also arbitrary.
  • the wiring conductor may be composed of a layered conductor (layered wiring) located on the upper surface or the lower surface of the insulating layer 31 and/or a penetrating conductor (via conductor) penetrating the insulating layer 31 .
  • any material can be used for the wiring conductor.
  • at least part of these materials may be the same as at least part of the materials of the other conductor layers of the base 9, or may be completely different.
  • the material of the portion of the wiring conductor embedded in the substrate 23 may be the same as the material of the lower layer 59 (described later) of the IC pad 35 .
  • the description of the material of the IC pads 35 may be applied to the wiring conductors as appropriate.
  • the first joining metal layer 39 is a member joined to the lid 11 by seam welding, for example.
  • the first bonding metal layer 39 is located on the upper surface of the base 23 (the portion surrounding the first recess 25 ) and extends over the entire circumference of the first recess 25 .
  • the width of the first bonding metal layer 39 is, for example, equivalent to the width of the upper surface of the base 23 . However, the former may be thinner than the latter.
  • the material and thickness of the first joining metal layer 39 may be set as appropriate.
  • the material of the first bonding metal layer 39 may be the same as or different from the material of the other conductor layers of the base 9 (for example, the material of the IC pads 35 (described later)). In any case, the description of the material of the IC pad 35 to be described later may be applied to the material of the first bonding metal layer 39 .
  • the first bonding metal layer 39 is composed of a layer made of W or Mo or an alloy containing at least one of these as a main component, a Ni layer overlapping the layer, and an Au layer overlapping the Ni layer. you can
  • the thickness of the first bonding metal layer 39 is, for example, 10 ⁇ m or more and 25 ⁇ m or less.
  • the die pad 42 is a member to which the lower surface of the IC 5 is adhered on its upper surface.
  • the die pad 42 contributes, for example, to improving the adhesive strength between the IC 5 and the base 9, improving the heat dissipation of the IC 5, and/or reducing noise.
  • Any material can be used for the die pad 42 .
  • the material of the die pad 42 may be the same as or different from the material of other conductor layers of the base 9 (for example, the material of the IC pads 35 (described later)). In any case, the description of the material of the IC pad 35 to be described later may be applied to the material of the die pad 42 . Note that the die pad 42 may not be provided.
  • the lid 11 is, for example, a plate-like member.
  • the lid 11 has, for example, a frame-shaped second bonding metal layer 47 on its lower surface.
  • the inside of the package 7 is hermetically sealed by joining the first joining metal layer 39 and the second joining metal layer 47 by seam welding or the like. That is, a closed space S1 is formed.
  • the lid 11 may be joined by a method other than seam welding.
  • the shape, material and dimensions of the lid body are arbitrary.
  • the shape and size of the outer edge of the lid body in plan view are generally the same as the shape and size of the outer edge of the upper surface of the base 9 in plan view.
  • the material of the lid body may be, for example, metal.
  • the metal may be, for example, iron, nickel or cobalt, or an alloy based on at least one of these.
  • the shape, material and dimensions of the second bonding metal layer 47 are arbitrary.
  • the shape and dimensions of the second bonding metal layer 47 are substantially the same as the shape and dimensions of the first bonding metal layer 39 .
  • the second bonding metal layer 47 is made of, for example, silver solder or gold tin.
  • the thickness of the second bonding metal layer 47 is, for example, 10 ⁇ m or more and 40 ⁇ m.
  • the mass % of Au may be, for example, 75 mass % or more and 85 mass % or less.
  • the conductive adhesive 41 has an insulating binder and conductive filler (conductive powder) dispersed in the binder.
  • the binder may be an organic material (eg, resin) or an inorganic material.
  • the resin may be, for example, a silicone resin, an epoxy resin, a polyimide resin, or a bismaleimide resin.
  • the material of the conductive filler may be metal, for example.
  • the metal may be, for example, aluminum, molybdenum, tungsten, platinum, palladium, silver, titanium, nickel or iron, or an alloy based on one or more of these.
  • the conductive adhesive 41 is interposed between the extraction electrode 17 (more specifically, its terminal portion) and the crystal pad 33 to join them together.
  • the conductive adhesive 41 is bonded, for example, to at least the area of the extraction electrode 17 facing the -D3 side.
  • the conductive adhesive 41 may be bonded to the area facing the -D1 side and/or the area facing the -D2 side or the +D2 side of the extraction electrode 17 .
  • the adhesive 43 is interposed between the bottom surface of the IC 5 and the bottom surface of the third recess 29 (the first surface 9a and the die pad 42) to bond them together.
  • the adhesive 43 spreads over substantially the entire lower surface of the IC 5, for example.
  • the material of the adhesive 43 is arbitrary.
  • the material of the adhesive 43 may be an insulating material or a conductive material.
  • the insulating material may be an organic material or an inorganic material.
  • the organic insulating material is, for example, a resin, and more specifically, may be a thermosetting resin that hardens when heated.
  • the resin may be the same as the resin forming the conductive adhesive 41, or may be different.
  • the conductive material may be, for example, a suitable metal. When the conductive material is solder, a material with a relatively high melting point may be selected so as not to be melted by an annealing treatment or the like, which will be described later.
  • Each bonding wire 45 has one end joined to the IC terminal 21 and the other end joined to the IC pad 35 . Thereby, the IC 5 is electrically connected to the package 7 (base portion 9).
  • the package 7 base portion 9
  • the bonding wires 45 may be formed by so-called ball bonding (the example shown in the figure) or may be formed by wedge bonding.
  • one end of the bonding wire 45 may be ball-shaped (dome-shaped or disk-shaped after bonding; hereinafter sometimes referred to as an enlarged diameter portion) having a diameter larger than that of the other portion. (illustrated example), but need not be such a shape. If ball bonding is used, the enlarged diameter portion may be located at the IC terminal 21 (example shown) or at the IC pad 35 .
  • enlarged diameter portions are formed at both ends of the bonding wire 45. may be configured.
  • the specific shape and dimensions of the bonding wire 45 are arbitrary.
  • the bonding wire 45 extends with a generally constant cross-section except at both ends.
  • the cross-sectional shape is, for example, circular.
  • the bonding wire 45 extends in a curved shape (loop shape) that is convex upward (+D3 side). In plan view, the bonding wire 45 extends linearly. The extending direction may be set appropriately. From another point of view, the relative positions of the IC terminals 21 and the IC pads 35 that are connected to each other are arbitrary.
  • the diameter of the portion of the bonding wire excluding both ends is, for example, 10 ⁇ m or more and 50 ⁇ m or less.
  • the diameter of the enlarged diameter portion of the bonding wire 45 in plan view (after bonding) is, for example, 70 ⁇ m or more and 100 ⁇ m or less.
  • the crystal element 3 faces the first surface 9a (bottom surface of the third recess 29) via the IC5.
  • the width, etc., where the crystal element 3 and the IC 5 overlap is arbitrary.
  • the term "IC5" may be replaced with "first surface 9a" as long as there is no contradiction.
  • a portion of the crystal element 3 overlaps the bottom surface of the first concave portion 25 and is bonded to the bottom surface with a conductive adhesive 41 . Therefore, the crystal element 3 may partially (illustrated example) or all of the remaining portion overlap the IC 5 .
  • the relative extent of the overlapping regions in the crystal element 3 is arbitrary.
  • the ratio of the area of the overlapping region to the area of the crystal element 3 may be less than 1/2 (the example shown in the figure) or may be 1/2 or more.
  • the overlapping region may occupy a part (illustrated example) or the whole of the thin portion of the crystal element 3 and may occupy a part (illustrated example) or the whole of the excitation electrode 15 .
  • the IC 5 may partially or wholly overlap the crystal element 3 .
  • the relative width of the overlapping region at IC5 is arbitrary.
  • the ratio of the area of the overlapping region to the area of the IC 5 may be less than 1/2 (the example shown in the figure) or may be 1/2 or more.
  • the position of the geometric center of the crystal element 3 in the D2 direction and the position of the geometric center of the IC 5 in the D2 direction match. Unlike the illustrated example, both may be offset from each other. Also, the width of the crystal element 3 in the D2 direction is smaller than the width of the IC 5 in the D2 direction. The width of the former is within the width of the latter. Unlike the illustrated example, the width of the former may be greater than the width of the latter, or the width of the former may protrude from the width of the latter due to this or due to the displacement of the geometric center.
  • the crystal element 3 may overlap at least a portion of at least one IC pad 35, at least a portion of at least one bonding wire 45, and/or at least a portion of at least one IC terminal 21. However, it does not have to overlap these members at all.
  • the crystal element 3 is part of the two IC pads 35 on the -D1 side, all of the two bonding wires 45 connected to the IC pads 35, and connected to the two bonding wires 45. are overlapped for all of the two IC terminals 21 connected.
  • the term “crystal element 3" may be replaced with the term "thin portion of crystal element 3" or "excitation electrode 15" as long as there is no contradiction.
  • FIG. 4 is a cross-sectional view showing an enlarged region IV of FIG.
  • a bonding wire 45 (an example of a connection member) is made of gold (Au). At least the surface (more strictly, the upper surface (+D3 side surface)) of the IC terminal 21 is made of Au. Therefore, the bonding between the bonding wire 45 and the IC terminal 21 is a Au-to-Au bonding. This reduces the possibility of voids (and cracks) occurring in the bonding wires 45, as will be described in detail later.
  • the structure related to the bonding of the bonding wire 45 may take various forms, for example, a known form, except that the surfaces of the bonding wire 45 and the IC terminal 21 are made of Au as described above. I don't mind. Of course, novel aspects may also be applied.
  • the material of the IC terminal 21 and the material of the IC pad 35 will be described below, focusing on the illustrated example.
  • the IC terminal 21 is composed of, for example, four metal layers. Specifically, in the IC terminal 21 , a first layer 51 , a second layer 53 , a third layer 55 and an Au layer 57 made of different materials are laminated in order from the chip body 19 side of the IC 5 .
  • the Au layer 57 is, as its name suggests, a layer made of Au. Since the Au layer 57 forms the upper surface of the IC terminal 21, the upper surface of the IC terminal 21 is made of Au.
  • the first layer 51 may be located below the insulating protective layer of the chip body 19, and the IC terminal 21 may be formed by a portion exposed through an opening formed in the protective layer.
  • the side surface of each layer is exposed.
  • the side surfaces of some layers on the chip body 19 side may be covered with the chip body 19 (for example, the protective layer described above).
  • the side surface of the relatively lower ( ⁇ D3 side) layer may be covered with the relatively upper (+D3 side) layer (for example, the Au layer 57).
  • the influence of the side surface is limited. Therefore, the description of the conductor layer may not distinguish between the upper surface and the front surface.
  • the materials of the first layer 51, the second layer 53 and the third layer 55 are arbitrary.
  • the first layer 51 is made of aluminum or an alloy containing aluminum as a main component.
  • the second layer 53 is made of nickel or an alloy containing nickel as a main component.
  • the third layer 55 is made of palladium or a palladium-based alloy.
  • each layer constituting the IC terminal 21 is arbitrary.
  • each layer generally has a constant thickness.
  • each layer may have a different thickness, such as being thinner on the outer edge side.
  • any of these layers may be thicker than the other layers.
  • one of the first layer 51 and the second layer 53 may be thicker than the other.
  • the third layer 55 and the Au layer 57 may be thinner than the first layer 51 and/or the second layer 53, for example. Either the third layer 55 or the Au layer 57 may be thicker than the other.
  • the thickness of each layer may be, for example, 0.05 ⁇ m or more and 10 ⁇ m or less.
  • the second layer 53 and/or the third layer 55 may be omitted. Conversely, additional layers may be added. Further, instead of the first layer 51, a through conductor (non-layered conductor) is exposed from the chip body 19, and another layer (second layer 53, third layer 55 or Au layer 57) is superimposed thereon. may The materials of the first layer 51, the second layer 53 and the third layer 55 may be other than the materials described above. For example, W, Cu, Ti or Cr, or an alloy containing at least one of these as a main component may be used.
  • the IC pad 35 is composed of, for example, two metal layers. Specifically, in the IC pad 35 , a lower layer 59 and an upper layer 61 made of different materials are laminated in order from the substrate 23 side of the base 9 . In addition, in FIG. 4, the side surface of each layer is exposed. In contrast to the illustrated example, the sides of lower layer 59 may be covered by upper layer 61 .
  • the material of the lower layer 59 and the upper layer 61 are arbitrary.
  • the material of the lower layer 59 may be Ni, W, Cu, Al, or an alloy containing at least one of these as a main component.
  • the material of the upper layer 61 may be Au, Ag, Pt, or an alloy containing at least one of these as a main component.
  • the upper layer 61 is made of Au
  • at least the surface (strictly, the upper surface (+D3 side surface)) of the IC pad 35 is made of Au. Similar to the bonding, the bonding between the connection member and the IC pad 35 is also bonding between Au.
  • the IC pad 35 may be composed of one layer of metal, or may be composed of three or more layers of metal. In a mode composed of three or more layers of metal, the above description of the material of the IC terminal 21 may be applied to the material of the IC pad 35 .
  • the thickness of the IC pad 35 and its layers are arbitrary.
  • the thickness of the IC pad 35 may be thinner than, equal to, or thicker than the thickness of the IC terminal 21 .
  • the thickness of the IC pad 35 may be, for example, 1 ⁇ m or more and 10 ⁇ m or less.
  • Top layer 61 may be thinner than bottom layer 59, for example.
  • the thickness of the lower layer 59 may be, for example, 1 ⁇ m or more and 10 ⁇ m or less.
  • the thickness of the upper layer 61 may be, for example, 0.1 ⁇ m or more and 2 ⁇ m or less.
  • the material of the conductor layer (the excitation electrode 15 and the extraction electrode 17) of the crystal element 3 is arbitrary.
  • the conductor layer of the crystal element 3 may be composed of one metal layer, or may be composed of two or more metal layers.
  • the conductor layer of the crystal element 3 is composed of two metal layers. Specifically, a base layer 63 and a main layer 65 made of different materials are laminated in order from the crystal blank 13 side. In addition, in FIG. 4, the side surface of each layer is exposed. Unlike the illustrated example, the side surface of the underlying layer 63 may be covered with the main layer 65 .
  • the material of the underlying layer 63 may be Ni, Cr, or an alloy containing at least one of these as a main component.
  • the material of the main layer 65 may be Au, Ag, or an alloy containing at least one of these as a main component.
  • the main layer 65 is made of Au
  • at least the surface (strictly, the upper surface (+D3 side surface of the excitation electrode 15 on the +D3 side and -D3 side surface of the -D3 side excitation electrode 15)) of the excitation electrode 15 is composed of Au.
  • the surface of the excitation electrode 15, the connection member (bonding wire 45) and the surface of the IC terminal 21 are made of the same metal (Au).
  • the thickness of the conductor layer (excitation electrode 15 and extraction electrode 17) of the crystal element 3 is arbitrary.
  • the thickness of the conductor layer may be 1000 ⁇ or more and 4000 ⁇ or less.
  • the main layer 65 may occupy most of the above thickness (eg, 80% or more or 90% or more).
  • the thickness of the underlying layer 63 may be, for example, 10 ⁇ or more and 100 ⁇ or less.
  • the manufacturing method of the oscillator 1 may be the same as various manufacturing methods except for the specific materials of the connection member (bonding wire 45) and the IC terminal 21, and may be, for example, a known manufacturing method. .
  • An example of a procedure relating to packaging among the procedures of the method for manufacturing the oscillator 1 will be described below.
  • FIG. 5 is a flow chart showing an example of the procedure of the method for manufacturing the oscillator 1.
  • step ST1 the IC 5 is mounted on the base 9 of the package 7. Specifically, for example, first, the IC 5 is adhered to the first surface 9 a (die pad 42 ) of the base 9 with the adhesive 43 . Next, a bonding wire 45 is formed to electrically connect the IC terminal 21 and the IC pad 35 .
  • Bonding of the bonding wire 45 to the IC terminal 21 and the IC pad 35 is performed by, for example, applying ultrasonic waves, pressure and heat to the bonding wire 45 (and the IC terminal 21 and the IC pad 35 as necessary). done by Since ultrasonic waves are applied, Au is joined at a temperature lower than its melting point.
  • the heating temperature is, for example, 100° C. or more and less than 200° C.
  • the heating method may be various methods, for example, it may be a known method. For example, heating may be done by raising the temperature of a heating table on which the package 7 rests. As the heating temperature, the temperature of the heating means (for example, a heating table) that heats the object to be heated may be referred to. However, for the sake of convenience, the temperature of the object to be heated and the heating temperature are sometimes expressed without distinction. The matter described in this paragraph may be applied not only to heating for bonding connecting members, but also to heating in other steps (eg, ST2, ST3, ST5 and ST8).
  • steps eg., ST2, ST3, ST5 and ST8.
  • step ST2 the crystal element 3 is mounted on the base 9 of the package 7. Specifically, for example, an uncured conductive adhesive 41 is supplied to the crystal pad 33 . Next, the crystal element 3 is placed on the conductive adhesive 41 . After that, the conductive adhesive 41 is cured by heat treatment.
  • the heating temperature at this time is, for example, 200° C. or higher and 400° C. or lower. From another point of view, the heating temperature here is, for example, higher than the heating temperature when bonding the connection member (bonding wire 45).
  • the heating time is, for example, 10 minutes or more and 1 hour or less.
  • the heating temperature for the embodiment in which the type of thermosetting resin of the conductive adhesive 41 is a silicone resin is higher than the heating temperature in the embodiment in which the type of the thermosetting resin for the conductive adhesive 41 is an epoxy resin.
  • the former is about 350°C and the latter is about 200°C.
  • step ST3 heat treatment (a heat treatment different from the heat treatment for curing the conductive adhesive 41 in step ST2) is performed.
  • this heat treatment for example, the residual stress of the conductive adhesive 41 is reduced (annealing treatment) and/or the conductive adhesive 41 is degassed.
  • the heating temperature at this time is, for example, 200° C. or higher and 400° C. or lower. From another point of view, the heating temperature here is, for example, higher than the heating temperature when bonding the connection member (bonding wire 45).
  • the heating time is, for example, 1 hour or more and 5 hours or less.
  • This heat treatment may be performed, for example, under a vacuum atmosphere.
  • step ST4 the frequency of the crystal element 3 is adjusted. Specifically, for example, the crystal element 3 is excited through the pads of the base portion 9 electrically connected to the crystal element 3 to measure the frequency characteristics of the crystal element 3, and depending on the measurement result, the excitation electrode 15 is measured. Increase and/or decrease mass.
  • step ST5 heat treatment is performed.
  • the description of step ST3 may be incorporated into this step.
  • step ST6 the frequency of the crystal element 3 is adjusted.
  • the description of step ST4 may be incorporated into this step.
  • step ST7 the long sides of the lid 11 are joined to the upper surface of the base 9 by seam welding.
  • step ST8 heat treatment is performed.
  • the description of step ST3 may generally be used for this step.
  • the heating time may be equal to or less than the heating time in step ST3, and is, for example, 10 minutes or more and 1 hour or less.
  • step ST9 the short sides of the lid 11 are joined to the upper surface of the base 9 by seam welding.
  • the concave portion of the base portion 9 is sealed to form a sealed space S1.
  • seam welding is performed in an appropriate atmosphere, so that the closed space S1 is in a vacuum state or in a state in which an appropriate gas (for example, nitrogen) is enclosed.
  • the crystal oscillator 1 As described above, the crystal oscillator 1 according to the first embodiment has the crystal element 3, the IC 5, the package 7, and the connecting members (bonding wires 45).
  • IC 5 has an IC terminal 21 .
  • a package 7 holds the crystal element 3 and the IC 5 .
  • the bonding wires 45 are made of gold (Au) and are joined to the IC terminals 21 and the package 7 .
  • the IC terminal 21 has a first Au layer (Au layer 57) that constitutes the surface of the IC terminal 21 and to which the bonding wire 45 is bonded.
  • the probability of voids and/or cracks occurring in the bonding wires 45 can be reduced, and the deterioration of the characteristics of the oscillator 1 can be reduced. Specifically, for example, it is as follows.
  • FIG. 6 is a diagram showing a bonding structure between bonding wires 45 and IC terminals (first layer 51) according to a comparative example, and corresponds to part of FIG.
  • the IC terminal is composed only of the first layer 51 of the embodiment.
  • the material of the first layer 51 is, for example, Al as described in the description of the embodiment.
  • a plurality of voids V1 and/or one or more cracks C1 may be formed in a portion of the bonding wire 45 near the IC terminal. rice field.
  • the diameter of the void V1 and the width of the crack C1 are, for example, 0.1 ⁇ m or more and 3 ⁇ m or less.
  • voids V1 and cracks C1 can be reduced.
  • the applicant has confirmed the above effects by taking cross-sectional photographs as shown in FIG. 6 for prototypes according to comparative examples and examples. More specifically, voids V1 and cracks C1 seen in Comparative Examples were not observed in Examples.
  • Relatively high heat may be applied to the bonding wires 45 and IC terminals during the manufacturing process of the oscillator, the process of incorporating the oscillator into the device (for example, the reflow process), and the process of using the device.
  • the bonding wire 45 is exposed to heat of 200° C. or higher or 300° C. or higher after bonding (step ST1) (step ST2, ST3, ST5 and ST8).
  • the bonding wire 45 (Au) and the IC terminal (Al) are mutually diffused by exposure to high heat as described above. That is, an alloy layer of Au and Al grows. At this time, multiple kinds of alloys grow. More specifically, for example, AuAl 2 (9 ppm/° C.), AuAl (12 ppm/° C.), Au 2 Al (13 ppm/° C.), Au 5 Al 2 (14 ppm/° C.) and Au 4 Al (12 ppm/° C.) is formed.
  • the numerical values shown in parentheses after the above compositional formulas are the linear expansion coefficients of the respective alloys. Various alloys have different coefficients of linear expansion. After the growth of the alloy layer, if the oscillator according to the comparative example is exposed to temperature cycles during its use, etc., a difference in thermal expansion occurs between the alloys having different coefficients of linear expansion, causing voids V1 and cracks C1.
  • the bonding between the bonding wire 45 and the IC terminal 21 is Au-to-Au bonding. Therefore, even if they are exposed to high heat, the growth of an alloy layer between them is reduced, and the growth of a plurality of alloy layers having different coefficients of linear expansion is also reduced. As a result, voids V1 and cracks C1 are less likely to occur even when the oscillator 1 is exposed to temperature cycles.
  • the IC terminal 21 may have the first layer 51 , the second layer 53 and the third layer 55 .
  • the first layer 51 may be made of aluminum or an alloy containing aluminum as a main component.
  • the second layer 53 may be made of nickel or a nickel-based alloy, and may overlap the first layer on the Au layer 57 side.
  • the third layer 55 may be composed of palladium or a palladium-based alloy, and may overlap the Au layer 57 side with respect to the second layer.
  • Au layer 57 may overlay the third layer.
  • the package 7 may have a base 9 and a lid 11 .
  • the base 9 may have a first surface 9a.
  • the lid 11 may be fixed to the base 9 such that the closed space S1 is formed on the first surface 9a.
  • the IC 5 may be fixed to the first surface 9a and accommodated in the sealed space S1.
  • the crystal element 3 may be accommodated in the sealed space S1 at a position facing the first surface 9a via the IC 5, and is bonded to the base 9 with a conductive adhesive 41 made of a resin in which conductive filler is dispersed. It can be.
  • the effect of reducing the occurrence of voids V1 and cracks C1 described above is particularly effective.
  • the reason is as follows.
  • the IC 5 it is necessary to mount the IC 5 on the base portion 9 before bonding the crystal element 3 to the base portion 9 with the conductive adhesive 41 .
  • the bonding wires 45 and the IC terminals 21 are exposed to heat for annealing and/or degassing the conductive adhesive 41 . Therefore, in the case where the aforementioned comparative example has the structure as described above, various alloy layers tend to grow between the bonding wire 45 and the IC terminal (the first layer 51), which in turn causes voids.
  • the probability of occurrence of V1 and crack C1 is particularly high. However, in this embodiment, such inconvenience is reduced.
  • the crystal element 3 may have a crystal blank 13 and an excitation electrode 15 overlapping the crystal blank 13 .
  • the thickness of the portion of the crystal blank 13 where the excitation electrode 15 overlaps may be 5 ⁇ m or more and 30 ⁇ m or less.
  • the effect of reducing the occurrence of voids V1 and cracks C1 described above is particularly effective.
  • it is as follows.
  • the adhesion amount of the gas generated from the conductive adhesive 41 and adhering to the crystal element 3 increases the mass and/or volume of the excitation region of the crystal element 3. increases relative to As a result, the effect of gas adhesion on the characteristics of the crystal element 3 increases. Therefore, heating for degassing the conductive adhesive 41 is carefully performed. As a result, the probability of voids V1 and cracks C1 occurring in the bonding wires 45 is particularly high. However, in this embodiment, such inconvenience is reduced.
  • the package 7 may have pads (IC pads 35) to which connection members (bonding wires 45) are bonded.
  • the IC pad 35 may have a second Au layer (upper layer 61).
  • the upper layer 61 constitutes the surface of the IC pad 35 and may be bonded with the bonding wire 45 .
  • bonding wires 45 are Au-to-Au bonding not only to IC terminals 21 but also to IC pads 35 . Therefore, as with the IC terminal 21 side, the probability of voids V1 and cracks C1 occurring in the bonding wires 45 is reduced.
  • the crystal element 3 and IC 5 may be accommodated in the same closed space S1.
  • the excitation electrode 15 of the crystal element 3 may have a third Au layer (main layer 65 ) forming the surface of the excitation electrode 15 .
  • connection member bonding wire 45
  • surface of the IC terminal 21 the surface of the excitation electrode 15 are all made of Au.
  • the effects (dissolution and/or reduction, etc.) of any material present in the package 7 during the manufacturing process or after completion on the Au are likely to be distributed to these members.
  • the change in the characteristics of the oscillator 1 as a whole is suppressed compared to the case where the substance affects only one member, and thus the change in the characteristics of the one member becomes large.
  • the method of manufacturing the crystal oscillator 1 according to the first embodiment manufactures the oscillator 1 configured such that the connecting member (bonding wire 45) made of Au and the Au layer 57 of the IC terminal 21 are bonded as described above. . Therefore, the various effects described above are achieved.
  • the manufacturing method of the oscillator 1 includes a bonding step (see step ST1) and one or more heating steps (see steps ST2, ST3, ST5 and ST8).
  • the bonding step the connection member (bonding wire 45 ) is bonded to the first Au layer (Au layer 57 ) and the base 9 of the package 7 .
  • the heating step after the bonding step, the bonding wires 45 are exposed to a temperature higher than the temperature of the bonding wires 45 during the bonding step (which may be the temperature of the heating means for heating the bonding wires 45 as described above). .
  • the bonding wire 45 is exposed to a temperature higher than the temperature at the time of bonding after bonding, so voids V1 and cracks C1 are likely to occur due to the growth of the alloy layer as described above. In other words, the effect of reducing the occurrence of voids V1 and cracks C1 is effectively exhibited by the bonding between Au layers in this embodiment.
  • the temperature of the bonding wires 45 does not necessarily have to reach the temperature of the heating means used in the heating step.
  • FIG. 7 is a cross-sectional view showing the configuration of a crystal oscillator 201 according to the second embodiment.
  • the connecting member for electrically connecting the IC 5 and the package 7 was the bonding wire 45 .
  • the connection member is the bump 245 . Specifically, for example, it is as follows.
  • the oscillator 201 has a crystal element 3, an IC 5, and a package 207, like the oscillator 1 of the first embodiment.
  • the package 207 has a base 209 and a lid 11 that closes the recess of the base 209, like the package 7 of the first embodiment.
  • the crystal element 3 and IC 5 are accommodated in the recess.
  • the IC 5 faces the first surface 209a of the base portion 209 (the bottom surface of the recess in the illustrated example), and the crystal element 3 faces the first surface 9a through the IC 5. facing each other.
  • the specific shape of the base 209 differs from that of the first embodiment due to the difference in the mounting structure of the IC5.
  • the base 9 of the first embodiment has three recesses
  • the base 209 has two recesses, a first recess 225 and a second recess 227 opening at the bottom surface of the first recess 225.
  • the insulating substrate 223 of the base 209 is drawn as a laminate of three insulating layers (first insulating layer 31E, second insulating layer 31F and third insulating layer 31G).
  • the first concave portion 225 corresponds to the first concave portion 25 of the first embodiment. That is, the first concave portion 225 contributes to accommodation of the crystal element 3 .
  • the crystal element 3 is mounted on the bottom surface of the first concave portion 225 as in the first embodiment.
  • the second recessed portion 227 corresponds to the second recessed portion 27 and the third recessed portion 29 of the first embodiment. That is, the second concave portion 227 contributes to accommodation of the IC 5 and the connection member (bump 245).
  • the IC 5 is surface-mounted on the bottom surface of the second recess 227 (from another point of view, the bottom surface of the recess of the base 209) as the first surface 209a.
  • the base 209 has the IC pad 35 on the bottom surface of the second recess 227 .
  • the IC 5 is arranged so that the IC terminal 21 faces the IC pad 35 .
  • the IC 5 is fixed and electrically connected to the package 7 by bonding the IC pads 35 and the IC terminals 21 with the bumps 245 interposed therebetween.
  • the IC pads 35 are basically the same as the IC pads 35 of the first embodiment, except that they are provided on the first surface 209a and face the IC terminals 21 .
  • the number, planar shape and dimensions of the IC pads 35 are arbitrary, as in the first embodiment.
  • the IC pad 35 may be wider than the IC terminal 21 (the example shown in the figure), may be of the same width, or may be narrower than the IC terminal 21 when viewed through the plane.
  • the IC terminal 21 is as described in the first embodiment. However, the details may differ from the first embodiment due to the difference in connection members (bonding wires 45 and bumps 245).
  • the IC terminals 21 (as well as the bumps 245 and IC pads 35) serve to support the IC5. Therefore, the plurality of IC terminals 21 may be arranged symmetrically in each of the D1 direction and the D2 direction so as to support the IC 5 in a well-balanced manner.
  • the shape and dimensions of the bump 245 are arbitrary.
  • the side surface of the bump 245 may bulge outward (the example shown), may be recessed inward, or may have a shape that cannot be said to be either of the former.
  • Either the area where the bump 245 and the IC terminal 21 are bonded or the area where the bump 245 and the IC pad 35 are bonded may be larger.
  • An example of the diameter (for example, maximum diameter) of the bump 245 is 90 ⁇ m or more and 120 ⁇ m or less.
  • the IC 5 may be covered with a sealing resin 49 (see FIG. 11, in other words, an underfill) at least partly (for example, the surface where the IC terminals 21 are located). good.
  • a sealing resin 49 see FIG. 11, in other words, an underfill
  • FIG. 8 is an enlarged view of region VIII in FIG.
  • the bumps 245 are made of Au, like the bonding wires 45 . Therefore, in this embodiment as well, the bonding between the connection member (bump 245) and the IC terminal 21 (at least the surface of which is made of Au) is Au-to-Au bonding. Also, similarly to the first embodiment, bonding between the bumps 245 and the IC pads 35 may be performed by bonding between Au.
  • connection member is made of gold (Au)
  • the IC terminal 21 has the first Au layer (Au layer 57), as in the first embodiment.
  • the Au layer 57 constitutes the surface of the IC terminal 21, and the bump 245 is bonded thereto. Therefore, the same effects as those of the first embodiment can be obtained. Specifically, it is as follows.
  • FIG. 9 is a diagram showing a bonding structure between the bump 245 and the IC terminal (first layer 51) according to the comparative example, and corresponds to FIG.
  • the IC terminal is composed only of the first layer 51 of the embodiment, similar to the comparative example in FIG.
  • voids V1 and cracks C1 are generated in portions of the bumps 245 near the IC terminals by the same principle as the voids V1 and cracks C1 in the portions of the bonding wires 45 near the IC terminals in the comparative example of FIG.
  • a crack C1 occurs.
  • the probability of occurrence of voids V1 and cracks C1 is reduced by the same principle as in the oscillator 1 of the first embodiment.
  • FIG. 10 is a cross-sectional view showing the configuration of a crystal oscillator 301 according to the third embodiment.
  • the crystal element 3 is mounted on the package 67 in this embodiment.
  • Package 67 is mounted on package 307 .
  • the package 307 corresponds to the packages 7 and 207 of the first and second embodiments.
  • the package 307 is a package to which connection members (bumps 245 in the illustrated example) that are bonded to the IC 5 are bonded.
  • the crystal element 3 may be indirectly held by the package 307 rather than directly by the package 7 or 207 to which the connection member (bonding wire 45 or bump 245) is bonded.
  • Various modes of indirectly holding the crystal element 3 in the package 307 are possible. In the illustrated example:
  • the package 307 has a base 309 and a lid 11 as in other embodiments.
  • the insulating substrate 323 of the base portion 309 has a first recess 325 and a second recess 327 opening at the bottom surface of the first recess 325 .
  • the first concave portion 325 contributes to housing the IC5.
  • An IC pad 35 (not shown here, see FIG. 8) is provided on the bottom surface of the first recess 325 (around the opening of the second recess 327).
  • the IC 5 is provided with an IC terminal 21 (not shown here, see FIG. 8) on the surface on the -D3 side.
  • the IC 5 is mounted on the package 307 by bonding the IC terminals 21 and the IC pads 35 with the bumps 245 .
  • FIG. 8 may be taken as a cross-sectional view of the bump 245 and its surroundings in this embodiment.
  • the second recess 327 contributes to housing the package 67.
  • a pad (not shown) is formed on the bottom surface of the second recess 327 .
  • the package 67 also has terminals (not shown) on its lower surface.
  • the package 67 is mounted on the package 307 (base portion 309) by bonding the pads and terminals with the bumps 69. As shown in FIG. That is, the package 67 is fixed and electrically connected to the package 307 .
  • a combination of the crystal element 3 and the package 67 may be regarded as a crystal oscillator 68 .
  • the crystal oscillator 68 may be a general-purpose one that is not assumed to be mounted in the package 307 . From another point of view, the crystal oscillator 68 may be distributed alone. However, the crystal oscillator 68 may be one that is assumed to be mounted in the package 307 . In the illustrated example, the crystal oscillator 68 has only the crystal element 3 as an electronic element. However, the crystal oscillator 68 may have other electronic elements such as a temperature sensor.
  • the configuration of the package 67 is arbitrary.
  • the package 67 has a base portion having a recess and a lid that closes (seales) the recess, although no particular reference numerals are attached.
  • a crystal pad 33 (not shown here) is provided on the bottom surface of the recess. Then, the crystal element 3 is mounted in the package 67 by, for example, bonding the lead-out electrodes 17 (not shown here) and the crystal pads 33 with the conductive adhesive 41 in the same manner as in the first embodiment. be.
  • the package 67 may have a plate-like base (substrate) on which the crystal element 3 is mounted, and a cap-like lid that covers the base from above the crystal element 3 .
  • the package 67 may have two or more recesses like the package 307, or may be H-shaped like the package 407 (FIG. 11) described later.
  • the description of the package 7 may be appropriately applied to the package 67, except that the IC5 is not mounted inside the package 67.
  • the base may have a base made of an insulating material such as ceramic, and a conductive layer and through conductors provided on the base.
  • the lid may be a metal plate that is secured to the base by seam welding or the like.
  • the configuration of pads, bumps 69 and terminals for mounting the package 67 on the package 307 is arbitrary.
  • the description of the IC pads 35 , bumps 245 and IC terminals 21 may be incorporated into the pads, bumps 69 and terminals associated with mounting the package 67 .
  • the bonding between the pads and the bumps 69 and/or the bonding between the bumps 69 and the terminals may be Au-to-Au bonding.
  • the IC 5 may be covered with a sealing resin 49 (see FIG. 11, in other words, an underfill) at least partly (for example, the surface where the IC terminals 21 are located). good.
  • a sealing resin 49 see FIG. 11, in other words, an underfill
  • the crystal element 3 is positioned below the IC 5 (on the -D3 side).
  • the positional relationship between the IC 5 and the crystal element 3 is not limited to the configuration in which the crystal element 3 cannot be mounted unless the IC 5 is mounted.
  • the IC 5 may be positioned below the crystal element 3 as in the first or second embodiment.
  • the bump 245 is taken as an example of the connection member.
  • the bonding wire 45 may be used as the connecting member as in the first embodiment.
  • the IC 5 may be arranged so that the IC terminal 21 faces the +D3 side and fixed to the bottom surface of the first recess 325 .
  • the IC pads 35 may be provided on the bottom surface of the first recess 325 or on the top surface of a pedestal provided on the bottom surface.
  • a bonding wire 45 may be bonded to the IC terminal 21 and the IC pad 35 .
  • the connecting members are made of gold (Au)
  • the IC terminals 21 are made of the first Au layer (Au layer 57), as in the first and second embodiments. have.
  • the Au layer 57 constitutes the surface of the IC terminal 21, and the bump 245 is bonded thereto. Therefore, the same effects as those of the first and second embodiments can be obtained. For example, the probability of occurrence of voids V1 and cracks C1 is reduced.
  • the crystal element 3 is housed in the package 67 .
  • the process of heating the conductive adhesive 41 is performed before the crystal oscillator 68 and the IC 5 are mounted on the package 307 .
  • the probability and/or frequency that the connection member (bump 245) is exposed to high temperatures is reduced.
  • the same inconvenience as the inconvenience described with reference to FIG. is reduced.
  • FIG. 11 is a cross-sectional view showing the configuration of a crystal oscillator 401 according to the fourth embodiment.
  • the package 407 of the oscillator 401 is a so-called H-shaped one that exhibits an H shape in cross section. That is, the base 409 of the package 407 has a first recess 425 and a second recess 427 that opens on the side opposite to the first recess 425 .
  • the crystal element 3 is housed in the first concave portion 425 .
  • IC5 is housed in the second recess 427 .
  • the first recess 425 is sealed with the lid 11 .
  • the crystal element 3 does not have to be arranged in the same space (recess) as the IC 5 .
  • the base portion 409 has a base 423 made of an insulating material, and a conductor layer and through conductors provided on the base 423 .
  • the base 423 is integrally formed as a whole. As described in the description of the substrate 23 in the first embodiment, such a substrate 423 may be produced by stacking insulating layers, or may be produced by another method. Lid 11 may be a metal plate secured to base 409 by seam welding or the like, as in other embodiments.
  • the first recess 425 contributes to housing the crystal element 3 .
  • a crystal pad 33 (not shown here) is provided on the bottom surface of the first recess 425 . Then, the crystal element 3 is mounted in the package 407 by, for example, bonding the extraction electrodes 17 (not shown here) and the crystal pads 33 with the conductive adhesive 41 in the same manner as in the first embodiment. be.
  • the second recess 427 contributes to housing the IC5.
  • An IC pad 35 (not shown here, see FIG. 8) is provided on the bottom surface of the second recess 427 .
  • the IC 5 is provided with an IC terminal 21 (not shown here, see FIG. 8) on the +D3 side surface.
  • the IC 5 is mounted on the package 407 by bonding the IC terminals 21 and the IC pads 35 with the bumps 245 .
  • FIG. 8 can be regarded as a cross-sectional view of the bump 245 and its surroundings in this embodiment, with the sign of the D3 direction reversed.
  • the IC 5 is entirely covered with a sealing resin 49 .
  • the sealing resin 49 may be provided so that the ⁇ D3 side surface is located at any position in the range from the +D3 side surface of the IC 5 to the ⁇ D3 side surface. Also, the sealing resin 49 may not be provided.
  • the sealing resin 49 may be made of, for example, a thermosetting resin that hardens when heated.
  • thermosetting resins include silicone resins and epoxy resins.
  • the sealing resin 49 may be the same as or different from the resin forming the conductive adhesive 41 and/or the resin forming the adhesive 43 .
  • the bump 245 is taken as an example of the connection member.
  • the bonding wire 45 may be used as the connection member.
  • the IC 5 may be arranged so that the IC terminal 21 faces the ⁇ D 3 side and fixed to the bottom surface of the second recess 427 .
  • the IC pads 35 may be provided on the bottom surface of the second recess 427 or on the top surface (surface on the -D3 side) of the pedestal provided on the bottom surface. Then, the IC terminal 21 and the IC pad 35 may be bonded by the bonding wire 45 .
  • the H-shaped package has a container-shaped package similar to the package 67 shown in the third embodiment, and a circuit board bonded to the lower surface (the outer surface on the ⁇ D3 side) of the container-shaped package. you can By forming the opening in the circuit board, an H shape in a cross-sectional view may be obtained.
  • the IC 5 may be mounted on the bottom surface of the container-type package and housed in the opening.
  • the connection member (bump 245) is made of gold (Au)
  • the IC terminal 21 is made of the first Au layer (Au layer 57).
  • the Au layer 57 constitutes the surface of the IC terminal 21, and the bump 245 is bonded thereto. Therefore, the same effects as those of the first to third embodiments can be obtained. For example, the probability of occurrence of voids V1 and cracks C1 is reduced.
  • the crystal element 3 can be mounted on the package 407 before the IC 5 is mounted.
  • the process of heating the conductive adhesive 41 is performed before the IC 5 is mounted on the package 407 .
  • the probability and/or frequency that the connection member (bump 245) is exposed to high temperatures is reduced.
  • the same inconvenience as the inconvenience described with reference to FIG. is reduced.
  • the oscillator 1 may further include an insulating resin (sealing resin 49) covering at least the surface of the IC 5 where the IC terminal 21 is located (the surface on the +D3 side in this embodiment).
  • an insulating resin covering at least the surface of the IC 5 where the IC terminal 21 is located (the surface on the +D3 side in this embodiment).
  • the sealing resin 49 contributes to reducing the probability that the plurality of IC terminals 21 are short-circuited with each other and that foreign matter enters between the IC 5 and the package 7 .
  • the sealing resin 49 when the sealing resin 49 is provided, stress is applied to the IC terminals 21 due to shrinkage during curing. As a result, the void V1 or crack C1 in the bonding wire 45 may expand.
  • the probability of voids V1 and cracks C1 being generated is reduced, so naturally the probability of expansion of voids V1 and cracks C1 is also reduced. As a result, the probability that the characteristics of the oscillator 1 will deteriorate is reduced.
  • FIG. 12 is a diagram showing temporal changes in the characteristics of the oscillator according to the comparative example.
  • the horizontal axis indicates the elapsed time (unit: hours), and is on a logarithmic scale.
  • the vertical axis indicates the ratio DF/D (ppm) of the change amount DF of the frequency F with elapsed time to the initial value F of the frequency of the oscillation signal output by the oscillator.
  • a plurality of lines in the figure indicate changes over time in DF/D of a plurality of prototypes.
  • the configuration of the comparative example has been described with reference to FIG. That is, in the oscillator 1 according to the first embodiment, the IC terminals are configured only by the first layer 51 (specifically, Al).
  • a prototype according to this comparative example was produced under the same conditions as those of the manufacturing method described with reference to FIG. 5, and then exposed to an environment of 125.degree.
  • FIG. 12 shows the change over time of DF/D under the 125° C. environment.
  • the absolute value of DF/D after 1000 hours is 3 ppm or more.
  • the absolute value of DF/D after 1000 hours has passed is 10 ppm or less, and the oscillator according to the comparative example has the ability to maintain characteristics required for general oscillators.
  • FIG. 13 is a diagram showing temporal changes in the characteristics of the oscillator according to the example.
  • FIG. 12 This figure is similar to FIG. However, unlike FIG. 12, the horizontal axis does not have a logarithmic scale. Similar to the comparative example, the example also shows changes over time in DF/D of a plurality of prototypes.
  • the configuration of the oscillator according to the example is the same as the configuration of the oscillator 1 of the first embodiment.
  • the IC terminal in the comparative example is replaced with an IC terminal composed of four layers (specifically, Al/Ni/Pd/Au).
  • Other conditions are the same between the example and the comparative example.
  • the absolute value of DF/D after 1000 hours is 3 ppm or less (more specifically, less than 2 ppm). That is, the DF/D after 1000 hours in the example is smaller than the DF/D after 1000 hours in the example. As a result, it was confirmed that the ability to maintain characteristics of the examples was higher than the ability to maintain characteristics of the comparative examples.
  • the bonding wires 45 and the bumps 245 are examples of connection members.
  • the IC terminal 21 is an example of a terminal that the IC has.
  • the Au layer 57 of the IC terminal 21 is an example of the first Au layer.
  • the sealing resin 49 is an example of an insulating resin that covers the surface of the IC where the terminals are located.
  • the IC pad 35 is an example of a pad to which a connection member is bonded.
  • the upper layer 61 of the IC pad 35 is an example of the second Au layer.
  • the main layer 65 of the excitation electrode 15 is an example of the third Au layer.
  • Step ST1 is an example of a joining step.
  • Each of steps ST2, ST3, ST5 and ST8 is an example of a heating step.
  • the oscillator may be a clock oscillator, a voltage controlled oscillator (abbreviation: VCXO), a temperature compensated oscillator (abbreviation: TCXO), or a It may be an oscillator in a constant temperature oven of an oscillator (abbreviation: OCXO).
  • VCXO voltage controlled oscillator
  • TCXO temperature compensated oscillator
  • OCXO constant temperature oven of an oscillator
  • the number and arrangement of external terminals, IC pads, and IC terminals may be appropriately set according to the functions required of these oscillators.
  • the oscillator had only a crystal element and an IC as electronic elements.
  • the oscillator may have other elements.
  • a temperature sensor may be provided separately from the IC.
  • a piezoelectric device a piezoelectric oscillator, or a crystal device, which are higher concepts than crystal oscillators.
  • a piezoelectric element containing a piezoelectric material other than crystal may be used in place of the crystal element.
  • the piezoelectric and crystal devices need not be oscillators.
  • piezoelectric devices and crystal devices may be vibrators with temperature sensors instead of ICs.
  • connection member wire bonding or bump
  • IC terminal whose surface at least is made of Au.
  • the surfaces of the connecting members and the IC terminals may be made of a material other than Au (for example, Al or Cu).

Abstract

This crystal oscillator comprises a crystal element, an IC, a package and a connection member. The IC has a terminal. The package holds the crystal element and the IC. The connection member is composed of gold (Au), and is a bump or bonding wire bonded to the terminal and package. The terminal has an Au layer which constitutes the surface of the terminal and to which the connection member is bonded.

Description

水晶発振器及びその製造方法Crystal oscillator and its manufacturing method
 本開示は、水晶発振器及びその製造方法に関する。 The present disclosure relates to crystal oscillators and manufacturing methods thereof.
 水晶素子と、IC(Integrated Circuit)と、これらを保持しているパッケージとを有する水晶発振器が知られている(例えば下記特許文献1)。水晶素子は、例えば、水晶ブランクと、水晶ブランクに重なっている励振電極とを有している。ICは、例えば、発振回路を含んでおり、パッケージを介して励振電極と電気的に接続されている。発振回路は、励振電極に交流電圧を印加することによって水晶ブランクを振動させ、この振動を利用して発振信号を生成する。特許文献1では、ICは、半田からなるバンプによってパッケージに実装されている。 A crystal oscillator having a crystal element, an IC (Integrated Circuit), and a package holding them is known (for example, Patent Document 1 below). The crystal element has, for example, a crystal blank and excitation electrodes that overlap the crystal blank. The IC includes, for example, an oscillator circuit and is electrically connected to excitation electrodes via a package. The oscillating circuit vibrates the crystal blank by applying an alternating voltage to the excitation electrodes, and uses this vibration to generate an oscillating signal. In Patent Document 1, an IC is mounted on a package by bumps made of solder.
特開2017-118393号公報JP 2017-118393 A
 本開示の一態様に係る水晶発振器は、水晶素子と、ICと、パッケージと、接続部材と、第1Au層と、を有している。前記ICは、端子を有している。前記パッケージは、前記水晶素子及び前記ICを保持している。前記接続部材は、金からなり、前記端子と前記パッケージとに接合されている、バンプ又はボンディングワイヤである。前記端子は、当該端子の表面を構成しており、前記接続部材が接合されている、第1Au層を有している。 A crystal oscillator according to one aspect of the present disclosure includes a crystal element, an IC, a package, a connecting member, and a first Au layer. The IC has terminals. The package holds the crystal element and the IC. The connecting members are bumps or bonding wires made of gold and bonded to the terminals and the package. The terminal has a first Au layer forming a surface of the terminal and to which the connection member is bonded.
第1実施形態に係る水晶発振器の概略構成を示す分解斜視図。1 is an exploded perspective view showing a schematic configuration of a crystal oscillator according to a first embodiment; FIG. 図1のII-II線における水晶発振器の断面図。FIG. 2 is a cross-sectional view of the crystal oscillator taken along line II-II of FIG. 1; 図1の水晶発振器の内部を示す平面図。FIG. 2 is a plan view showing the inside of the crystal oscillator of FIG. 1; 図2の領域IVを拡大して示す断面図。Sectional drawing which expands and shows the area|region IV of FIG. 図1の水晶発振器の製造方法の手順の一例を示すフローチャート。2 is a flow chart showing an example of the procedure of a method for manufacturing the crystal oscillator of FIG. 1; 比較例の構成を示す図4の一部に相当する断面図。Sectional drawing corresponding to a part of FIG. 4 which shows the structure of a comparative example. 第2実施形態に係る水晶発振器の概略構成を示す断面図。FIG. 5 is a cross-sectional view showing a schematic configuration of a crystal oscillator according to a second embodiment; 図7の領域VIIIの拡大図。FIG. 8 is an enlarged view of region VIII of FIG. 7; 比較例の構成を示す図8に相当する断面図。FIG. 9 is a cross-sectional view corresponding to FIG. 8 showing the configuration of a comparative example; 第3実施形態に係る水晶発振器の概略構成を示す断面図。FIG. 5 is a cross-sectional view showing a schematic configuration of a crystal oscillator according to a third embodiment; 第4実施形態に係る水晶発振器の概略構成を示す断面図。FIG. 5 is a cross-sectional view showing a schematic configuration of a crystal oscillator according to a fourth embodiment; 比較例に係る発振器の特性の経時変化を示す図。FIG. 5 is a diagram showing temporal changes in the characteristics of an oscillator according to a comparative example; 実施例に係る発振器の特性の経時変化を示す図。FIG. 4 is a diagram showing temporal changes in the characteristics of the oscillator according to the example;
 以下、本開示に係る実施形態について、図面を参照して説明する。なお、以下の説明で用いられる図は模式的なものである。従って、例えば、図面上の寸法比率等は現実のものとは必ずしも一致していない。図面同士で寸法比率等が一致していないこともある。また、一部の形状等が誇張されたり、細部が省略されたりすることがある。 Hereinafter, embodiments according to the present disclosure will be described with reference to the drawings. Note that the diagrams used in the following description are schematic. Therefore, for example, the dimensional ratios and the like on the drawings do not necessarily match the actual ones. Dimensional ratios and the like may not match between the drawings. In addition, some shapes and the like may be exaggerated, and details may be omitted.
 図面には、図面相互の関係を明確にする等の目的で、便宜的に直交座標系D1-D2-D3を付すことがある。本実施形態の水晶発振器は、いずれの方向が上方又は下方とされてもよいが、以下では、便宜的に、+D3側を上方として、上面又は下面等の語を用いることがある。 For the purpose of clarifying the relationship between the drawings, etc., the drawings may be labeled with an orthogonal coordinate system D1-D2-D3 for convenience. In the crystal oscillator of this embodiment, any direction may be the upper side or the lower side, but for the sake of convenience, the +D3 side may be referred to as the upper side, and terms such as the upper surface and the lower surface may be used hereinafter.
 同一又は類似する構成について、「第1絶縁層31A」、「第2絶縁層31B」のように番号及び付加符号で区別することがあり、また、単に、「絶縁層31」のように、番号及び付加符号を省略して、これらを区別しないことがある。 The same or similar configurations may be distinguished by numbers and additional symbols such as "first insulating layer 31A" and "second insulating layer 31B", and simply "insulating layer 31" may be indicated by a number and additional signs may be omitted to distinguish between them.
 実施形態の説明において、例えば、「矩形」は、特に断りがない限り、角部が面取りされた形状を含んでよい。他の多角形についても同様である。また、多角形以外の形状についても、厳密に数学で定義されるような形状である必要はない。もちろん、各種の形状は、厳密に数学で定義されるような形状とされても構わない。 In the description of the embodiments, for example, "rectangle" may include a shape with chamfered corners unless otherwise specified. The same is true for other polygons. Also, shapes other than polygons do not have to be shapes that are strictly defined by mathematics. Of course, the various shapes may be strictly mathematically defined shapes.
 実施形態の説明において、「主成分」は、例えば、材料の50質量%以上を占める成分とされてよい。2種以上の成分が主成分の場合は、その2種以上の成分の合計が50質量%以上である。なお、後述する種々の主成分の質量%は、実施に際して、例えば、80質量%以上又は90質量%以上とされてもよい。 In the description of the embodiments, the "main component" may be, for example, a component that accounts for 50% by mass or more of the material. When two or more components are the main components, the total of the two or more components is 50% by mass or more. It should be noted that the mass % of various main components to be described later may be, for example, 80 mass % or more or 90 mass % or more upon implementation.
 部材が「金」(又はAu)からなるという場合、上記部材は、Auの質量%が99.9%以上の金属とされてよい。すなわち、上記部材は、0.1質量%未満の不純物を含んでよい。不純物は、不可避に混入するもの(意図されていないもの)であってもよいし、意図的に添加されるものであってもよい。意図的に添加される不純物としては、例えば、結晶状態を調整するものが挙げられる。なお、後述するAuからなる種々の部材におけるAuの質量%は、実施に際して、99.99%以上若しくはそれ以上とされてもよい。 When the member is made of "gold" (or Au), the member may be made of metal containing 99.9% or more by mass of Au. That is, the member may contain less than 0.1% by mass of impurities. Impurities may be unavoidably mixed (unintended) or intentionally added. Impurities that are intentionally added include, for example, those that adjust the crystalline state. In addition, the mass % of Au in various members made of Au, which will be described later, may be 99.99% or more or more in practice.
 完成された発振器(デバイス)における金属は、導電ペーストの焼成によって形成されたものであってよい。従って、以下の説明で単に金属として言及される材料であっても、導電ペーストに含まれていた無機材料を含んでいてもよい。 The metal in the completed oscillator (device) may be formed by firing a conductive paste. Therefore, even materials referred to simply as metals in the following description may include inorganic materials contained in the conductive paste.
 第1実施形態の説明の後、他の実施形態(又は変形例等)の説明においては、基本的に先に説明された実施形態(又は変形例等)との相違点について述べる。特に言及がない事項については、先に説明された実施形態等と同様とされたり、先に説明された実施形態等から類推されたりしてよい。 After the description of the first embodiment, in the description of other embodiments (or modifications, etc.), differences from the previously described embodiments (or modifications, etc.) will be basically described. Matters not particularly mentioned may be the same as those of the previously described embodiments, etc., or may be inferred from the previously described embodiments, etc.
<第1実施形態>
 図1は、第1実施形態に係る水晶発振器1(以下、「水晶」は省略することがある。)の概略構成を示す分解斜視図である。図2は、図1のII-II線における断面図である。図3は、発振器1の内部を示す平面図である。なお、図2では、便宜上、厳密には同一断面に位置していない部材同士も共に示されている。
<First embodiment>
FIG. 1 is an exploded perspective view showing a schematic configuration of a crystal oscillator 1 (hereinafter, "crystal" may be omitted) according to the first embodiment. FIG. 2 is a cross-sectional view taken along line II--II of FIG. FIG. 3 is a plan view showing the inside of the oscillator 1. FIG. In addition, in FIG. 2, for the sake of convenience, strictly speaking, members that are not located on the same cross section are also shown together.
 発振器1は、例えば、全体として、概略、薄型の直方体状とされる電子部品である。発振器1の寸法は任意である。例えば、長辺及び短辺の長さは、1mm以上10mm以下である。厚さは、短辺の長さよりも小さいことを前提として、0.2mm以上2mm以下である。 The oscillator 1 is, for example, an electronic component that generally has a thin rectangular parallelepiped shape as a whole. The dimensions of oscillator 1 are arbitrary. For example, the length of the long side and short side is 1 mm or more and 10 mm or less. The thickness is 0.2 mm or more and 2 mm or less on the premise that it is smaller than the length of the short side.
 発振器1は、例えば、所定の電圧の直流電力が供給されることによって発振信号を生成する。発振信号は、一定の周期で信号レベル(例えば電位)が振動する信号である。発振器1が生成する発振信号の周波数は任意である。例えば、実施形態に適用される水晶素子(後述)の態様(形状及び振動モード等)が種々のものであり得ると仮定した場合において、発振信号の周波数は、1kHz以上1GHz以下とされてよい。 The oscillator 1 generates an oscillation signal, for example, by being supplied with DC power of a predetermined voltage. An oscillating signal is a signal whose signal level (for example, potential) oscillates at a constant period. The frequency of the oscillation signal generated by the oscillator 1 is arbitrary. For example, when it is assumed that the crystal element (described later) applied to the embodiment may have various aspects (shape, vibration mode, etc.), the frequency of the oscillation signal may be 1 kHz or more and 1 GHz or less.
 発振器1は、例えば、図1において特に示されているように、水晶素子3と、IC5と、これらの素子を保持(例えば収容)するパッケージ7とを有している。パッケージ7は、基部9及び蓋11を有している。なお、図3では、蓋11が省略されることによって、発振器1の内部が示されている。 The oscillator 1 has, for example, a crystal element 3, an IC 5, and a package 7 that holds (for example, accommodates) these elements, as particularly shown in FIG. Package 7 has a base 9 and a lid 11 . Note that FIG. 3 shows the inside of the oscillator 1 by omitting the lid 11 .
 水晶素子3は、交流電圧が印加されると固有振動を生じる。IC5は、不図示の発振回路を含んで構成されている。当該発振回路は、水晶素子3に電圧を印加して、水晶素子3内の固有振動を利用して発振信号を生成する。パッケージ7は、水晶素子3及びIC5の保護、及びこれらの素子に対する電気信号の伝達等に寄与する。 The crystal element 3 generates natural vibration when an AC voltage is applied. The IC5 includes an oscillation circuit (not shown). The oscillation circuit applies a voltage to the crystal element 3 and utilizes the natural oscillation in the crystal element 3 to generate an oscillation signal. The package 7 contributes to protection of the crystal element 3 and the IC 5, transmission of electrical signals to these elements, and the like.
 パッケージ7の基部9は、例えば、水晶素子3及びIC5が実装される。すなわち、水晶素子3及びIC5は、基部9に固定されるとともに電気的に接続される。パッケージ7の蓋11は、水晶素子3及びIC5が収容される密閉空間S1が構成されるように基部9に固定される。密閉空間S1は、例えば、真空状態とされ、又は、適宜なガス(例えば窒素)が封入されている。 The crystal element 3 and the IC 5 are mounted on the base 9 of the package 7, for example. That is, the crystal element 3 and the IC 5 are fixed to the base 9 and electrically connected. A lid 11 of the package 7 is fixed to the base 9 so as to form a closed space S1 in which the crystal element 3 and the IC 5 are accommodated. The closed space S1 is, for example, evacuated or filled with an appropriate gas (eg, nitrogen).
 水晶素子3は、2つの導電性接着剤41(図2及び図3)によって基部9に対して固定されるとともに電気的に接続されている。IC5は、接着剤43(図2)によって基部9に対して固定されているとともに、複数(図示の例では8本)のボンディングワイヤ45(図2及び図3)によって基部9に対して電気的に接続されている。なお、IC5は、少なくとも一部が封止樹脂49(後述する図11参照)によって覆われていてもよい。 The crystal element 3 is fixed and electrically connected to the base 9 by two conductive adhesives 41 (FIGS. 2 and 3). The IC 5 is fixed to the base 9 by an adhesive 43 (FIG. 2) and electrically connected to the base 9 by a plurality (eight in the example shown) of bonding wires 45 (FIGS. 2 and 3). It is connected to the. At least part of the IC 5 may be covered with a sealing resin 49 (see FIG. 11 described later).
 なお、図2では、8本のボンディングワイヤ45のうち、II-II線に位置する1本のみが示されている。また、図3では、8本のボンディングワイヤ45のうち2本は、水晶素子3に隠れて不図示となっている。 Note that FIG. 2 shows only one of the eight bonding wires 45 located on line II-II. 3, two of the eight bonding wires 45 are hidden behind the crystal element 3 and are not shown.
 IC5とパッケージ7(基部9)とを電気的に接続する部材(図示の例ではボンディングワイヤ45)を接続部材ということがある。発振器1は、例えば、接続部材とIC5との接合に関して新たな構成を有している。他の構成は、種々の態様とされてよく、例えば、公知の態様とされても構わない。換言すれば、図1~図3に示されている、水晶素子3の構成、IC5の構成(上記の接合に係る構成を除く)、パッケージ7の構成、並びに各素子の実装構造(上記の接合に係る構成を除く)等は、一例に過ぎない。例えば、既述の説明とは異なり、発振器1の外形は、直方体状でなくても構わない。 A member (bonding wire 45 in the illustrated example) that electrically connects the IC 5 and the package 7 (base 9) is sometimes called a connection member. The oscillator 1 has, for example, a new configuration regarding the bonding between the connecting member and the IC 5 . Other configurations may be in various aspects, for example, may be in known aspects. In other words, the structure of the crystal element 3, the structure of the IC 5 (excluding the structure related to the bonding described above), the structure of the package 7, and the mounting structure of each element (the bonding described above) shown in FIGS. ) etc. is merely an example. For example, unlike the above description, the outer shape of the oscillator 1 does not have to be rectangular parallelepiped.
 以下では、概ね、下記の順に説明を行う。
 (1)種々の態様(公知の態様を含む)とされて構わない構成の概要(図1~図3)
 (2)接続部材(ボンディングワイヤ45)の接合に係る構成(図4)
 (3)水晶素子3における導体の材料(図4)
 (4)発振器1の製造方法(図5)
 (5)第1実施形態のまとめ
In the following, the description will generally be given in the following order.
(1) Overview of configurations that may be in various modes (including known modes) (Figs. 1 to 3)
(2) Configuration related to bonding of connecting member (bonding wire 45) (Fig. 4)
(3) Conductor material in crystal element 3 (Fig. 4)
(4) Manufacturing method of oscillator 1 (Fig. 5)
(5) Summary of the first embodiment
 (1)の説明は、特に断りなく、新規な態様の説明を含むことがある。また、(1)の説明は、図1~図3に示された態様を例にとって行う。(1)の説明では、水晶素子3、IC5、パッケージ7(基部9及び蓋11)、及び実装に係る部材(導電性接着剤41、接着剤43及びボンディングワイヤ45)、のそれぞれについて順に説明を行い、その後、水晶素子3及びIC5等の位置関係について説明する。 The description of (1) may include description of novel aspects without any particular notice. Also, the description of (1) will be made by taking the mode shown in FIGS. 1 to 3 as an example. In the explanation of (1), the crystal element 3, the IC 5, the package 7 (the base portion 9 and the lid 11), and the members involved in mounting (the conductive adhesive 41, the adhesive 43 and the bonding wire 45) are explained in order. After that, the positional relationship between the crystal element 3 and the IC 5 will be described.
(水晶素子)
 水晶素子3は、例えば、水晶ブランク13と、水晶ブランク13に電圧を印加するための2以上(図示の例では1対)の励振電極15と、水晶素子3をパッケージ7の基部9に実装するための2以上(図示の例では1対)の引出電極17とを有している。
(crystal element)
The crystal element 3 includes, for example, a crystal blank 13 , two or more (one pair in the illustrated example) excitation electrodes 15 for applying a voltage to the crystal blank 13 , and the crystal element 3 mounted on the base 9 of the package 7 . It has two or more (one pair in the illustrated example) extraction electrodes 17 for the purpose.
 水晶素子3は、例えば、厚み滑り振動を利用するものである。このような水晶素子3においては、水晶ブランク13は、例えば、板状に構成されている。水晶ブランク13のカット角は、例えば、ATカット又はBTカットである。1対の励振電極15は、板状の水晶ブランク13の両面に重なっている。1対の引出電極17は、1対の励振電極15に個別に接続されている。水晶ブランク13、励振電極15及び引出電極17のより具体的な構成(平面形状等)は適宜に設定されてよい。 The crystal element 3 uses, for example, thickness-shear vibration. In such a crystal element 3, the crystal blank 13 is configured in a plate shape, for example. The cut angle of the crystal blank 13 is, for example, AT cut or BT cut. A pair of excitation electrodes 15 overlaps both surfaces of the plate-like crystal blank 13 . A pair of extraction electrodes 17 are individually connected to a pair of excitation electrodes 15 . A more specific configuration (planar shape, etc.) of the crystal blank 13, the excitation electrode 15, and the extraction electrode 17 may be appropriately set.
 例えば、水晶ブランク13、励振電極15及び引出電極17の形状は、水晶素子3の両面のいずれが実装側(-D3側)とされてもよいように、D1方向(図示の例では水晶素子3の長手方向)に延びる不図示の中心線に対して概略180°回転対称の形状に形成されてよい。ただし、図示の例とは異なり、水晶ブランク13、励振電極15及び引出電極17の形状は、回転対称の形状でなくてもよい。 For example, the shape of the crystal blank 13, the excitation electrode 15, and the extraction electrode 17 is such that either of the two surfaces of the crystal element 3 may be the mounting side (-D3 side). (longitudinal direction)), and may be formed into a shape approximately 180° rotationally symmetrical with respect to a center line (not shown). However, unlike the illustrated example, the shapes of the crystal blank 13, the excitation electrode 15, and the extraction electrode 17 do not have to be rotationally symmetrical.
 また、例えば、水晶ブランク13の平面形状は、矩形状(図示の例)、円形状又は楕円形状とされてよい。また、水晶ブランク13の厚さは、一定であってもよいし、一定でなくてもよい(図示の例)。後者の例としては、特に図示しないが、中央部分が外周部分よりも厚い、いわゆるメサ型を挙げることができる。 Further, for example, the planar shape of the crystal blank 13 may be rectangular (example shown), circular, or elliptical. Also, the thickness of the crystal blank 13 may be constant or may not be constant (example shown). As an example of the latter, although not shown, a so-called mesa shape in which the central portion is thicker than the outer peripheral portion can be cited.
 図示の例では、水晶ブランク13は、相対的に薄い部分と、相対的に厚い部分とを有している。薄い部分には1対の励振電極15が位置している。厚い部分は、例えば、水晶ブランク13の一端(1辺)に位置しており、また、1対の引出電極17が位置している。励振電極15が位置している部分が薄くされていることによって、発振信号の周波数を高くすることができる。その一方で、厚い部分によって、例えば、水晶ブランク13の強度を向上させることができる。なお、厚い部分は、図示の例とは異なり、例えば、水晶ブランク13の2辺、3辺又は4辺に形成されてもよい。別の観点では、厚い部分は、引出電極17が位置しない領域に形成されてもよい。 In the illustrated example, the crystal blank 13 has a relatively thin portion and a relatively thick portion. A pair of excitation electrodes 15 are located in the thin portion. The thick portion is located, for example, at one end (one side) of the crystal blank 13, and a pair of extraction electrodes 17 are located. By thinning the portion where the excitation electrode 15 is located, the frequency of the oscillation signal can be increased. On the other hand, the thicker portions can, for example, increase the strength of the crystal blank 13 . In addition, unlike the illustrated example, the thick portions may be formed, for example, on two sides, three sides, or four sides of the crystal blank 13 . From another point of view, the thick portion may be formed in a region where the extraction electrode 17 is not located.
 また、例えば、励振電極15の平面形状は、円形状(図示の例)であってもよいし、矩形状であってもよいし、楕円形状であってもよい。また、励振電極15の平面形状は、水晶ブランク13の平面形状(又はメサ部の平面形状)に対して類似する形状であってもよいし、そのような形状でなくてもよい(図示の例)。前者としては、矩形状-矩形状の組み合わせ、円形状‐円形状の組み合わせ、楕円形状‐楕円形状の組み合わせを挙げることができる。 Further, for example, the planar shape of the excitation electrode 15 may be a circular shape (example shown in the drawing), a rectangular shape, or an elliptical shape. Further, the planar shape of the excitation electrode 15 may be a shape similar to the planar shape of the crystal blank 13 (or the planar shape of the mesa portion), or may not be such a shape (example shown in the figure). ). The former includes a rectangular-rectangular combination, a circular-circular combination, and an elliptical-elliptical combination.
 1対の引出電極17は、例えば、励振電極15から水晶ブランク13の一端側へ引き出されている。従って、引出電極17がパッケージ7の基部9に接合されると、水晶素子3は、片持ち梁状に支持される。ただし、1対の引出電極17は、水晶ブランク13の両端へ引き出され、水晶素子3の両端支持に寄与してもよい。 A pair of extraction electrodes 17 are extracted from the excitation electrode 15 to one end side of the crystal blank 13, for example. Therefore, when the extraction electrode 17 is joined to the base portion 9 of the package 7, the crystal element 3 is supported in a cantilever manner. However, the pair of lead electrodes 17 may be led out to both ends of the crystal blank 13 and contribute to supporting both ends of the crystal element 3 .
 引出電極17は、より詳細には、例えば、特に符号を付さないが、励振電極15から延びる配線部と、配線部の先端に接続されているパッド状の端子部とを有している。端子部は、パッケージ7の基部9に接合される部分である。1つの引出電極17が含む端子部は、既述のように、水晶素子3の両面のいずれが実装側となってもよいように、水晶ブランク13の両面に位置している2つの部分を有している。この2つの部分は、例えば、水晶ブランク13の端面(-D1側の面)、水晶ブランク13の側面(+D2側の面又は‐D2側の面)、水晶ブランク13に形成された不図示の貫通穴の少なくとも1つを介して、互いに接続されている。 More specifically, the lead-out electrode 17 has, for example, a wiring portion extending from the excitation electrode 15 and a pad-like terminal portion connected to the tip of the wiring portion, although no particular reference numeral is attached. The terminal portion is a portion that is joined to the base portion 9 of the package 7 . As described above, the terminal portion included in one extraction electrode 17 has two portions located on both sides of the crystal blank 13 so that either side of the crystal element 3 can be the mounting side. are doing. These two portions are, for example, the end surface of the crystal blank 13 (the surface on the -D1 side), the side surface of the crystal blank 13 (the surface on the +D2 side or the -D2 side), and a through hole (not shown) formed in the crystal blank 13. They are connected to each other through at least one of the holes.
 厚み滑り振動を利用する水晶素子3においては、水晶ブランク13の厚さ(特に断りがない限り、励振電極15が重なっている部分における厚さ。以下、同様。)は、発振信号の周波数を決定する因子となっている。例えば、公知のように、ATカットの水晶素子においては、基本的には、f=1.67×n/tの関係が成り立つ。ここで、fは周波数(MHz)、nは利用される振動の次数、t(mm)は厚さである。既述のように、発振信号の周波数は任意であり、ひいては、水晶ブランク13の厚さも任意である。例えば、水晶ブランク13の厚さは、5μm以上30μm以下とされてよい。この厚さは、基本波(n=1)を利用する発振器1において、概ね、50MHz以上300MHz以下に対応する。 In the crystal element 3 that utilizes thickness-shear vibration, the thickness of the crystal blank 13 (unless otherwise specified, the thickness at the portion where the excitation electrode 15 overlaps; the same shall apply hereinafter) determines the frequency of the oscillation signal. It is a factor that For example, as is well known, in an AT-cut crystal element, a relationship of f=1.67×n/t is basically established. where f is the frequency (MHz), n is the order of vibration used, and t (mm) is the thickness. As mentioned above, the frequency of the oscillation signal is arbitrary, and the thickness of the crystal blank 13 is also arbitrary. For example, the thickness of the crystal blank 13 may be 5 μm or more and 30 μm or less. This thickness generally corresponds to 50 MHz or more and 300 MHz or less in the oscillator 1 using the fundamental wave (n=1).
 水晶素子3は、上記以外の構成とされてもよい。例えば、水晶素子3は、屈曲振動を利用する音叉型の素子、輪郭すべり振動を利用するCTカット若しくはDTカットの素子、又はSAW(surface acoustic wave)を利用する素子であってもよい。なお、このような素子も、水晶ブランク13と、水晶ブランク13に重なる2以上の励振電極15とを有している。SAWを利用する素子においては、水晶ブランク(水晶の層)は、他の材料からなる層と重なっていてもよい。 The crystal element 3 may have a configuration other than the above. For example, the crystal element 3 may be a tuning fork type element using bending vibration, a CT cut or DT cut element using contour shear vibration, or an element using SAW (surface acoustic wave). Such an element also has a crystal blank 13 and two or more excitation electrodes 15 overlapping the crystal blank 13 . In devices utilizing SAW, the crystal blank (layer of crystal) may overlap layers of other materials.
 板状でない水晶ブランク13、及び/又は厚さが周波数を決定する因子となっていない水晶ブランク13において、水晶ブランク13の厚さは適宜に設定されてよい。例えば、そのような水晶ブランク13における厚さは、上記の5μm以上30μm以下とされてよい。板状でない水晶ブランク13の厚さ方向は、その全体的な形状から合理的に決定されてよい。例えば、音叉型においては、並列に延びる2以上の腕が延びる方向、及び上記2以上の腕の並び方向の双方に直交する方向の寸法が厚さである。 The thickness of the crystal blank 13 may be set as appropriate for the crystal blank 13 that is not plate-shaped and/or the crystal blank 13 whose thickness is not a factor that determines the frequency. For example, the thickness of such a crystal blank 13 may be 5 μm or more and 30 μm or less. The thickness direction of the non-platy crystal blank 13 may be reasonably determined from its overall shape. For example, in a tuning fork type, the dimension in the direction orthogonal to both the direction in which two or more arms extend in parallel and the direction in which the two or more arms are arranged is the thickness.
(IC)
 IC5は、内部に種々の回路を有しているチップ本体19と、上記の回路とIC5の外部との接続を仲介する複数のIC端子21とを有している。なお、図示の例では、図1に示されているように、8つのIC端子21が示されている。図2では、-D1側の1つのIC端子21のみが示されている。図3では、-D1側の2つのIC端子は、水晶素子3に隠れて不図示となっている。
(IC)
The IC 5 has a chip body 19 having various circuits inside, and a plurality of IC terminals 21 that mediate connections between the circuits and the outside of the IC 5 . In the illustrated example, eight IC terminals 21 are shown as shown in FIG. In FIG. 2, only one IC terminal 21 on the -D1 side is shown. In FIG. 3, the two IC terminals on the -D1 side are hidden by the crystal element 3 and are not shown.
 チップ本体19は、特に図示しないが、例えば、半導体(例えばシリコン)からなる基板を有しており、当該基板に対して、不純物がドーピングされたり、導電層が形成されたりすることによって、適宜な回路を有している。チップ本体19が有している回路としては、例えば、既述の発振回路が挙げられる。チップ本体19は、温度センサ、及び、温度センサの検出した温度に基づいて発振信号の温度変化を補償する温度補償回路を含んでいてもよい。IC5(チップ本体19)は、パッケージングされたものであってもよいし、ベアチップであってもよい。 Although not shown, the chip body 19 has a substrate made of, for example, a semiconductor (eg, silicon). have a circuit. The circuit included in the chip body 19 is, for example, the oscillation circuit described above. The chip body 19 may include a temperature sensor and a temperature compensation circuit that compensates for temperature changes in the oscillation signal based on the temperature detected by the temperature sensor. The IC 5 (chip body 19) may be packaged or may be a bare chip.
 チップ本体19の形状は任意である。一般には、チップ本体19の形状は、図示の例のように、薄型の直方体状である。また、チップ本体19の寸法も任意である。例えば、チップ本体19の平面視における広さ(面積)は、水晶素子3の平面視における広さに対して、大きくてもよいし(図示の例)、同等でもよいし、小さくてもよい。なお、上記の水晶素子3の平面視における広さは、水晶素子3が音叉型のように板状でない場合においては、水晶素子3を包含する最小の矩形の広さとされてよい。また、例えば、チップ本体19の厚さは、水晶素子3の厚さ(励振電極15が重なる部分の厚さ、又は最大厚さ)に対して、厚くてもよいし(図示の例)、同等でもよいし、薄くてもよい。 The shape of the chip body 19 is arbitrary. In general, the shape of the chip body 19 is a thin rectangular parallelepiped, as shown in the drawing. Moreover, the dimensions of the chip body 19 are also arbitrary. For example, the width (area) of the chip body 19 in plan view may be larger than the width of the crystal element 3 in plan view (example shown), may be the same, or may be smaller. The width of the crystal element 3 in plan view may be the minimum rectangular width that includes the crystal element 3 when the crystal element 3 is not plate-shaped like a tuning fork. Further, for example, the thickness of the chip body 19 may be thicker than the thickness of the crystal element 3 (the thickness of the portion where the excitation electrode 15 overlaps, or the maximum thickness) (example shown), or may be the same. It may be fine, or it may be thin.
 IC端子21の数及び役割は、IC5(発振器1)に要求される機能等に応じて適宜に設定されてよい。例えば、IC端子21は、以下の端子を含んでよい。基準電位であるグランド電位をIC5に供給するための1つのIC端子21。電源電圧(基準電位とは異なる電位)をIC5に供給するための1つのIC端子21。水晶素子3に電圧を印加するための2つのIC端子21。生成した発振信号を出力するための1つの端子21。さらに、IC端子21は、以下の端子を含んでもよい。発振信号の周波数を調整する制御信号をIC5に入力するための1つのIC端子21。発振信号の生成又は停止を指示するイネーブル・ディセーブル信号をIC5に入力するためのIC端子21。 The number and roles of the IC terminals 21 may be appropriately set according to the functions required of the IC 5 (oscillator 1). For example, the IC terminals 21 may include the following terminals. One IC terminal 21 for supplying a ground potential, which is a reference potential, to the IC 5 . One IC terminal 21 for supplying a power supply voltage (potential different from the reference potential) to the IC 5 . Two IC terminals 21 for applying voltage to the crystal element 3 . One terminal 21 for outputting the generated oscillation signal. Furthermore, the IC terminals 21 may include the following terminals. One IC terminal 21 for inputting a control signal for adjusting the frequency of the oscillation signal to IC5. An IC terminal 21 for inputting an enable/disable signal to the IC 5 to instruct generation or stop of the oscillation signal.
 IC端子21は、例えば、IC5の2つの主面(最も広い面。表裏)のうちの一方の面に重なるパッドによって構成されている。IC端子21の平面形状、寸法及び配置位置は任意である。例えば、複数のIC端子21の平面形状及び寸法は、互いに同一であってもよいし(図示の例)、互いに異なっていてもよい。IC端子21の平面形状は、矩形状(図示の例)、円形状又は楕円形状とされてよい。1つのIC端子21の平面視における広さは、1つの引出電極17の端子部の-D3側に面する部分の広さに対して、小さくてもよいし(図示の例)、同等でもよいし、大きくてもよい。また、複数のIC端子21は、概ねチップ本体19の外縁に沿って1列に配列されていてもよいし(図示の例)、図示の例とは異なり、外縁に沿って1列に配列された複数のIC端子21の内側に位置する他のIC端子21を含んでいてもよい。 The IC terminal 21 is composed of, for example, a pad that overlaps one of the two main surfaces (the widest surface; front and back) of the IC 5 . The planar shape, size and arrangement position of the IC terminal 21 are arbitrary. For example, the planar shape and dimensions of the plurality of IC terminals 21 may be the same (example shown) or may be different. The planar shape of the IC terminal 21 may be rectangular (illustrated example), circular, or elliptical. The width of one IC terminal 21 in plan view may be smaller than the width of the portion facing the -D3 side of the terminal portion of one extraction electrode 17 (example shown), or may be the same. and can be larger. Also, the plurality of IC terminals 21 may be arranged in a row generally along the outer edge of the chip body 19 (example shown), or unlike the example shown in the figure, may be arranged in a row along the outer edge. It may also include another IC terminal 21 positioned inside the plurality of IC terminals 21 .
(パッケージ)
 パッケージ7は、既述のように、基部9と、基部9に固定される蓋11とを有している。基部9及び蓋11は、水晶素子3及びIC5を収容する密閉空間S1を構成している。基部9及び蓋11の具体的な形状、水晶素子3及びIC5の基部9に対する実装構造、及び水晶素子3及びIC5の相対位置等は、適宜なものとされてよい。
(package)
The package 7 has a base 9 and a lid 11 fixed to the base 9, as described above. The base 9 and the lid 11 form a sealed space S1 that accommodates the crystal element 3 and the IC5. The specific shapes of the base portion 9 and the lid 11, the mounting structure of the crystal element 3 and the IC 5 with respect to the base portion 9, the relative positions of the crystal element 3 and the IC 5, and the like may be made as appropriate.
 図示の例では、基部9は、+D3側に面している第1面9a(図示の例では凹部の底面)を有している。蓋11は、第1面9a上に密閉空間S1が構成されるように基部9に固定されている。IC5は、第1面9aに固定されて密閉空間S1に収容されている。水晶素子3は、IC5を介して第1面9aに対向する位置にて密閉空間S1に収容されている。すなわち、図示の例のパッケージ7は、第1面9a上に水晶素子3及びIC5を積層的に収容している。具体的には、以下のとおりである。 In the illustrated example, the base portion 9 has a first surface 9a (the bottom surface of the recess in the illustrated example) facing the +D3 side. The lid 11 is fixed to the base 9 so as to form a closed space S1 on the first surface 9a. The IC 5 is fixed to the first surface 9a and accommodated in the sealed space S1. The crystal element 3 is accommodated in the closed space S1 at a position facing the first surface 9a through the IC5. That is, the illustrated package 7 accommodates the crystal element 3 and the IC 5 in a stacked manner on the first surface 9a. Specifically, it is as follows.
(パッケージの基部)
 基部9は、例えば、絶縁性の基体23と、基体23に設けられた各種の導体(例えば金属)とを有している。基体23は、例えば、基部9の大部分を占めており、基部9の形状は、基体23の形状と概ね同等である。各種の導体は、例えば、水晶素子3及びIC5が電気的に接続されるパッド等を構成している。
(base of package)
The base 9 has, for example, an insulating substrate 23 and various conductors (eg, metal) provided on the substrate 23 . The base 23 , for example, occupies most of the base 9 , and the base 9 has substantially the same shape as the base 23 . Various conductors constitute, for example, pads to which the crystal element 3 and the IC 5 are electrically connected.
(基部の基体)
 基体23の形状、寸法及び材料は任意である。図示の例では、基体23の外形は、概略直方体状である。また、図示の例では、基体23は、上面に開口している第1凹部25と、第1凹部25の底面に開口している第2凹部27と、第2凹部27の底面に開口している第3凹部29とを有している。第3凹部29は、IC5を収容している。第3凹部29の底面(厳密には当該底面に重なる後述するダイパッド42)は、上述した第1面9aの一例となっている。第2凹部27は、ボンディングワイヤ45を収容している。第1凹部25は、水晶素子5を収容している。
(base substrate)
The shape, size and material of the substrate 23 are arbitrary. In the illustrated example, the outer shape of the base 23 is substantially rectangular parallelepiped. In the illustrated example, the base 23 includes a first recess 25 opening on the top surface, a second recess 27 opening on the bottom surface of the first recess 25, and a bottom surface of the second recess 27 opening on the bottom surface. and a third recessed portion 29 which is provided. The third recess 29 accommodates the IC5. The bottom surface of the third concave portion 29 (strictly speaking, a die pad 42 described later overlapping with the bottom surface) is an example of the first surface 9a described above. The second recess 27 accommodates the bonding wire 45 . The first recess 25 accommodates the crystal element 5 .
 なお、特に符号を付さないが、基体23は、1つの凹部を有していると捉えられてもよい。また、上記1つの凹部として、第3凹部29の底面(第1面9a)を含む第1底面を有するものを想定し、当該第1底面に第1台座(その上面は第2凹部27の底面を含む)が形成され、第1台座の上面に第2台座(その上面は第1凹部25の底面を含む)が形成されていると捉えられてもよい。 Although not specifically numbered, the base 23 may be regarded as having one recess. Further, assuming that the one concave portion has a first bottom surface including the bottom surface (first surface 9a) of the third concave portion 29, the first bottom surface is provided with a first pedestal (the upper surface of which is the bottom surface of the second concave portion 27). ) is formed, and the second pedestal (the upper surface of which includes the bottom surface of the first recess 25 ) is formed on the upper surface of the first pedestal.
 基体23は、例えば、複数(本実施形態では4つ)の第1絶縁層31A~第4絶縁層31Dによって構成されている。具体的には、例えば、基部9は、基部9の下面側から順に、第1絶縁層31Aと、第3凹部29を構成する開口を有する第2絶縁層31Bと、第2凹部27を構成する開口を有する第3絶縁層31Cと、第1凹部25を構成する開口を有する第4絶縁層31Dとを有している。 The base 23 is composed of, for example, a plurality of (four in this embodiment) first insulating layers 31A to fourth insulating layers 31D. Specifically, for example, the base 9 comprises a first insulating layer 31A, a second insulating layer 31B having an opening forming a third recess 29, and a second recess 27, in this order from the bottom surface of the base 9. It has a third insulating layer 31</b>C having an opening and a fourth insulating layer 31</b>D having an opening forming the first recess 25 .
 なお、基体23は、絶縁層31を積層して作製されてもよいし、そのような製造方法とは異なる製造方法によって作製されてもよい。前者としては、例えば、複数の絶縁層31となる複数のセラミックグリーンシートを積層して焼成する方法が挙げられる。後者としては、例えば、1つのセラミックグリーンシートにプレスによって凹部(25、27及び29)を形成して焼成する方法が挙げられる。前者の製造方法と後者の製造方法とは組み合わされてもよい。後者の製造方法から理解されるように、絶縁層31は、基体23の形状及び/又は基体23内の導体層に基づいて概念される便宜上のものであってよい。 Note that the substrate 23 may be produced by laminating the insulating layer 31, or may be produced by a manufacturing method different from such a manufacturing method. As the former method, for example, a method of laminating and firing a plurality of ceramic green sheets to be a plurality of insulating layers 31 can be used. As the latter method, for example, there is a method of forming concave portions (25, 27 and 29) in one ceramic green sheet by pressing and firing. The former manufacturing method and the latter manufacturing method may be combined. As will be understood from the latter manufacturing method, the insulating layer 31 may be of convenience that is conceived based on the shape of the substrate 23 and/or the conductor layers within the substrate 23 .
 複数の絶縁層31の外縁の形状は、例えば、基体23の外形が直方体状であることに対応して矩形状である。各凹部(25、27及び29)の平面形状は、例えば、絶縁層31の外縁の矩形と平行な4辺を有する矩形状である。各絶縁層31の厚さ(各凹部の深さ)は、互いに同一であってもよいし、互いに異なっていてもよく、水晶素子3及びIC5の厚さ等に応じて適宜に設定されてよい。 The shape of the outer edges of the plurality of insulating layers 31 is, for example, a rectangular shape corresponding to the rectangular parallelepiped shape of the substrate 23 . The planar shape of each recess (25, 27 and 29) is, for example, a rectangular shape having four sides parallel to the rectangle of the outer edge of the insulating layer 31. As shown in FIG. The thickness of each insulating layer 31 (the depth of each recess) may be the same as or different from each other, and may be appropriately set according to the thicknesses of the crystal element 3 and the IC 5. .
 第2凹部27は、例えば、D1方向(基体23の長手方向)及びD2方向(基体23の短手方向)の少なくとも一方(図示の例ではD1方向)において、第1凹部25よりも小さい。これにより、第1凹部25の底面(第3絶縁層31Cの上面)は、第2凹部27の周囲にて上方に露出している。なお、以下において、第1凹部25の底面は、第2凹部27の周囲の領域のみ(第2凹部27が開口している領域を除く領域のみ)を指すことがある。第1凹部25の底面は、例えば、水晶素子3の実装に利用される。 The second recess 27 is, for example, smaller than the first recess 25 in at least one of the D1 direction (longitudinal direction of the base 23) and the D2 direction (lateral direction of the base 23) (the D1 direction in the illustrated example). As a result, the bottom surface of the first recess 25 (the upper surface of the third insulating layer 31C) is exposed upward around the second recess 27 . In the following, the bottom surface of the first recess 25 may refer to only the area around the second recess 27 (only the area excluding the area where the second recess 27 is open). The bottom surface of the first concave portion 25 is used for mounting the crystal element 3, for example.
 第3凹部29は、例えば、D1方向(基体23の長手方向)及びD2方向(基体23の短手方向)の少なくとも一方(図示の例では双方)において、第2凹部27よりも小さい。これにより、第2凹部27の底面(第2絶縁層31Bの上面)は、第3凹部29の周囲にて上方に露出している。なお、以下において、第2凹部27の底面は、第3凹部29の周囲の領域のみ(第3凹部29が開口している領域を除く領域のみ)を指すことがある。第2凹部27の底面は、例えば、IC5との基部9の導体との電気的接続に利用される。 The third recess 29 is smaller than the second recess 27, for example, in at least one (both in the illustrated example) of the D1 direction (longitudinal direction of the base 23) and the D2 direction (lateral direction of the base 23). As a result, the bottom surface of the second recess 27 (the upper surface of the second insulating layer 31B) is exposed upward around the third recess 29 . In the following, the bottom surface of the second recess 27 may refer to only the area around the third recess 29 (only the area excluding the area where the third recess 29 is open). The bottom surface of the second recess 27 is used, for example, for electrical connection with the IC 5 and the conductors of the base 9 .
 平面視における複数の凹部(25、27及び29)の相対位置及び相対的な大きさは任意である。これらは、例えば、各凹部に収容される素子の大きさ、及び各凹部の底面に形成される導体層(例えば各種の素子と接続されるパッド)の配置位置等を考慮して適宜に設定されてよい。その具体例については、導体層の説明とともに後述する。 The relative positions and relative sizes of the plurality of recesses (25, 27 and 29) in plan view are arbitrary. These are appropriately set in consideration of, for example, the size of the elements accommodated in each recess, and the arrangement position of a conductor layer (for example, pads connected to various elements) formed on the bottom surface of each recess. you can A specific example thereof will be described later together with the description of the conductor layer.
 既に触れたように、基体23の材料は、例えば、セラミックとされてよい。複数の絶縁層31は、例えば、セラミックからなり、一体的に形成されている。セラミックの具体的な種類は任意であり、例として、酸化アルミニウム(アルミナ、Al)、窒化アルミニウム(AlN)、及びLTCC(Low Temperature Co-fired Ceramics)を挙げることができる。上記材料の線膨張率は、例えば、3ppm/K以上13ppm/K以下である。上記材料のヤング率は、例えば、50GPa以上350GPa以下である。ただし、基体23の材料は、セラミック以外の絶縁材料(例えば樹脂)であっても構わない。 As already mentioned, the material of the substrate 23 may be ceramic, for example. The plurality of insulating layers 31 are made of ceramic, for example, and are integrally formed. Any specific type of ceramic may be used, and examples include aluminum oxide (alumina, Al 2 O 3 ), aluminum nitride (AlN), and LTCC (Low Temperature Co-fired Ceramics). The coefficient of linear expansion of the material is, for example, 3 ppm/K or more and 13 ppm/K or less. The Young's modulus of the material is, for example, 50 GPa or more and 350 GPa or less. However, the material of the substrate 23 may be an insulating material other than ceramic (for example, resin).
(基部の導体)
 基部9の導体は、例えば、以下のものを含んでいる。水晶素子3(より詳細には引出電極17)に電気的に接続される1対の水晶用パッド33。IC5(より詳細にはIC端子21)に電気的に接続される複数(図示の例では8つ)のIC用パッド35。発振器1を不図示の回路基板等に電気的に接続するための複数(図示の例では4つ)の外部端子37。上記の導体(33、35及び37)を互いに接続する不図示の配線導体。蓋11を基部9に接合するための第1接合用金属層39。IC5が固定されるダイパッド42。なお、4つの外部端子37のうち、1つは、いずれの図面においても基体23に隠れて不図示である。
(base conductor)
The conductors of base 9 include, for example: A pair of crystal pads 33 electrically connected to the crystal element 3 (more specifically, the extraction electrodes 17). A plurality of (eight in the illustrated example) IC pads 35 electrically connected to the IC 5 (more specifically, the IC terminal 21). A plurality of (four in the illustrated example) external terminals 37 for electrically connecting the oscillator 1 to a circuit board or the like (not shown). Wiring conductors (not shown) connecting the above conductors (33, 35 and 37) to each other. A first bonding metal layer 39 for bonding the lid 11 to the base 9 . A die pad 42 to which the IC5 is fixed. One of the four external terminals 37 is hidden behind the base 23 and not shown in any of the drawings.
 1対の水晶用パッド33は、基部9の配線導体を介して、2つのIC用パッド35と接続されている。これにより、IC5は、水晶素子3に電圧を印加可能となっている。また、上記の2つのIC用パッド35以外のIC用パッド35は、例えば、基部9の配線導体を介して外部端子37と接続されている。これにより、IC5は、発振器1の外部からの電気信号の入力、及び発振器1の外部への電気信号の出力が可能となっている。 A pair of crystal pads 33 are connected to two IC pads 35 via wiring conductors of the base 9 . This allows the IC 5 to apply voltage to the crystal element 3 . IC pads 35 other than the two IC pads 35 are connected to external terminals 37 via, for example, wiring conductors of the base portion 9 . This allows the IC 5 to input an electric signal from outside the oscillator 1 and output an electric signal to the outside of the oscillator 1 .
(水晶用パッド)
 水晶用パッド33は、例えば、第1凹部25の底面(第2凹部27の周囲の領域)に位置している。第1凹部25の底面の平面形状及び寸法、並びに水晶用パッド33の平面形状及び寸法は任意であり、両者の相対関係も任意である。また、水晶用パッド33は、第2凹部27に対して、-D1側(図示の例)、+D1側、-D2側及び+D2側のいずれに位置してもよい。
(Crystal pad)
The crystal pad 33 is positioned, for example, on the bottom surface of the first recess 25 (the area around the second recess 27). The planar shape and dimensions of the bottom surface of the first recess 25 and the planar shape and dimensions of the crystal pad 33 are arbitrary, and the relative relationship between them is also arbitrary. Also, the crystal pad 33 may be positioned on any of the -D1 side (example shown), +D1 side, -D2 side and +D2 side with respect to the second concave portion 27 .
 図示の例では、第2凹部27は、D2方向において第1凹部25との同等の大きさを有している。また、第2凹部27の+D1側の縁部は、第1凹部25の+D1側の縁部に一致している。すなわち、第1凹部25の底面(第2凹部27の周囲の領域)は、-D1側においてのみ露出している。1対の水晶用パッド33は、第1凹部25の底面に対してD1方向の全体に広がっている。また、1対の水晶用パッド33は、D2方向において互いに離れており、かつ第1凹部25の底面に対してD2方向の端部にまで広がっている。このような構成では、例えば、水晶用パッド33の面積と、第2凹部27の面積との双方を大きくできる。 In the illustrated example, the second recess 27 has the same size as the first recess 25 in the D2 direction. The +D1 side edge of the second recess 27 coincides with the +D1 side edge of the first recess 25 . That is, the bottom surface of the first recess 25 (the area surrounding the second recess 27) is exposed only on the -D1 side. The pair of crystal pads 33 extends over the bottom surface of the first recess 25 in the D1 direction. The pair of crystal pads 33 are separated from each other in the D2 direction and extend to the end of the bottom surface of the first recess 25 in the D2 direction. With such a configuration, for example, both the area of the crystal pad 33 and the area of the second recess 27 can be increased.
 図示の例とは異なり、例えば、水晶用パッド33のD1方向の長さは、第1凹部25の底面のD1方向の長さよりも短くてもよい。また、水晶用パッド33は、第1凹部25の底面のD2方向の端部にまで広がっていなくてもよい。第1凹部25の底面(第2凹部27の周囲の領域)は、-D1側に位置する部分に加えて、又は代えて、+D1側、-D2側及び/又は+D2側に位置する部分を有していてもよい。これらの部分は、平面透視において、水晶素子3と重なっていてもよいし、重なっていなくてもよい。なお、水晶素子3が両端支持される構成である場合においては、例えば、第1凹部25の底面のうちの、-D1側の部分と+D1側の部分とに支持されてよい。また、例えば、1対の水晶用パッド33の間に第2凹部27の一部が位置していてもよい。 Unlike the illustrated example, for example, the length of the crystal pad 33 in the D1 direction may be shorter than the length of the bottom surface of the first recess 25 in the D1 direction. Further, the crystal pad 33 does not have to extend to the end of the bottom surface of the first recess 25 in the D2 direction. The bottom surface of the first recess 25 (region around the second recess 27) has a portion located on the +D1 side, the −D2 side and/or the +D2 side in addition to or instead of the portion located on the −D1 side. You may have These portions may or may not overlap with the crystal element 3 in planar see-through. When the crystal element 3 is supported at both ends, for example, it may be supported by the −D1 side portion and the +D1 side portion of the bottom surface of the first concave portion 25 . Also, for example, part of the second recess 27 may be located between the pair of crystal pads 33 .
(IC用パッド)
 IC用パッド35は、例えば、第2凹部27の底面(第3凹部29の周囲の領域)に位置している。第2凹部27の底面の平面形状及び寸法、並びにIC用パッド35の平面形状及び寸法は任意であり、両者の相対関係も任意である。IC用パッド35は、第3凹部29に対して、-D1側(図示の例)、+D1側、-D2側(図示の例)及び+D2側(図示の例)のいずれに位置してもよい。
(IC pad)
The IC pad 35 is located, for example, on the bottom surface of the second recess 27 (region around the third recess 29). The planar shape and dimensions of the bottom surface of the second recess 27 and the planar shape and dimensions of the IC pad 35 are arbitrary, and the relative relationship between them is also arbitrary. The IC pad 35 may be located on the -D1 side (illustrated example), the +D1 side, the -D2 side (illustrated example), or the +D2 side (illustrated example) with respect to the third recess 29. .
 図示の例では、第3凹部29は、D1方向及びD2方向の双方において、第2凹部27よりも小さい。また、第3凹部29は、第2凹部27に対して+D1側に偏っている。これにより、第2凹部27の底面(第3凹部29の周囲の領域)は、主として、-D1側、-D2側及び+D2側において露出している。複数のIC用パッド35は、IC端子21と同数(図示の例では8個)で設けられ、第3凹部29の開口縁部に沿って配列されている。IC用パッド35は、例えば、第2凹部27の底面に対して内周側(第3凹部29側)から外周側への全体に広がっている。 In the illustrated example, the third recess 29 is smaller than the second recess 27 in both the D1 direction and the D2 direction. Also, the third recess 29 is biased toward the +D1 side with respect to the second recess 27 . As a result, the bottom surface of the second recess 27 (region around the third recess 29) is mainly exposed on the -D1 side, the -D2 side and the +D2 side. A plurality of IC pads 35 are provided in the same number as the IC terminals 21 (eight in the illustrated example), and are arranged along the opening edge of the third recess 29 . For example, the IC pad 35 extends over the bottom surface of the second recess 27 from the inner peripheral side (the third recess 29 side) to the outer peripheral side.
 図示の例とは異なり、例えば、IC用パッド35の数は、IC端子21の数よりも多くてもよい。換言すれば、使用されないダミーのIC用パッド35が存在してよい。また、例えば、IC用パッド35の内周側から外周側への長さは、第2凹部27の底面の内周側から外周側への長さよりも短くてもよい。第2凹部27の底面(第3凹部29の周囲の領域)は、+D1側に十分な広さを有していてもよいし、逆に、-D1側、-D2側及び/又は+D2側に位置する部分を有していなくてもよい。また、例えば、第3凹部29の開口縁部に沿って互いに隣り合うIC用パッド35の間それぞれに、第3凹部29の一部が位置していてもよい。 Unlike the illustrated example, for example, the number of IC pads 35 may be greater than the number of IC terminals 21 . In other words, there may be dummy IC pads 35 that are not used. Further, for example, the length from the inner circumference side to the outer circumference side of the IC pad 35 may be shorter than the length from the inner circumference side to the outer circumference side of the bottom surface of the second recess 27 . The bottom surface of the second recess 27 (the area surrounding the third recess 29) may have a sufficient width on the +D1 side, or conversely, may be wide enough on the -D1 side, the -D2 side and/or the +D2 side. It does not have to have a portion to be located. Also, for example, a part of the third recess 29 may be positioned between the IC pads 35 adjacent to each other along the opening edge of the third recess 29 .
 水晶用パッド33の材料は任意である。水晶用パッド33は、1層の金属層から構成されてもよいし、2層以上の金属層から構成されてもよい。水晶用パッド33の材料の少なくとも一部は、基部9が有する他の導体層の材料(例えばIC用パッド35の材料(後述))の少なくとも一部と同じであってもよいし、全く異なっていてもよい。いずれにせよ、後述するIC用パッド35の材料の説明は、水晶用パッド33の材料に援用されてよい。 The material of the crystal pad 33 is arbitrary. The crystal pad 33 may be composed of one metal layer, or may be composed of two or more metal layers. At least part of the material of the crystal pads 33 may be the same as at least part of the material of other conductor layers (for example, the material of the IC pads 35 (described later)) of the base 9, or may be completely different. may In any case, the description of the material of the IC pads 35 to be described later may be applied to the material of the crystal pads 33 .
 水晶用パッド33の厚さも任意である。水晶用パッド33の厚さは、IC用パッド35の厚さ(後述)と同じであってもよいし、異なっていてもよい。ずれにせよ、IC用パッド35の厚さの説明は、水晶用パッド33の厚さに援用されてよい。 The thickness of the crystal pad 33 is also arbitrary. The thickness of the crystal pad 33 may be the same as or different from the thickness of the IC pad 35 (described later). In any case, the description of the thickness of the IC pad 35 may be used for the thickness of the crystal pad 33 .
(外部端子)
 複数の外部端子37は、例えば、基体23の下面に位置する層状の導体(パッド状)によって構成されている。発振器1は、不図示の回路基板のパッドと外部端子37とが、その間に介在する半田等によって接合されることによって、上記回路基板に実装される。すなわち、図示の例の発振器1は、表面実装型のものである。
(external terminal)
The plurality of external terminals 37 are composed of, for example, layered conductors (pads) located on the lower surface of the substrate 23 . The oscillator 1 is mounted on the circuit board by joining the pads of the circuit board (not shown) and the external terminals 37 with solder or the like interposed therebetween. That is, the oscillator 1 in the illustrated example is of a surface mount type.
 外部端子37の数、平面形状、寸法及び下面における位置等は任意である。図示の例では、4つの外部端子37が矩形状の基体23の4隅に位置している。外部端子37の形状は、例えば、矩形状である。なお、図示の例とは異なり、外部端子37の数は、5以上とされてもよい。また、外部端子37は、ピン状とされてもよい。すなわち、発振器1は、表面実装型のものでなくてもよい。 The number of external terminals 37, planar shape, size, position on the bottom surface, etc. are arbitrary. In the illustrated example, four external terminals 37 are positioned at four corners of the rectangular base 23 . The shape of the external terminal 37 is, for example, rectangular. Note that, unlike the illustrated example, the number of external terminals 37 may be five or more. Also, the external terminal 37 may be pin-shaped. That is, the oscillator 1 does not have to be of the surface mount type.
 外部端子37の数及び役割は、発振器1に要求される機能に応じて適宜に設定されてよい。例えば、複数の外部端子37は、少なくとも、IC端子21の説明で述べたグランド電位、電源電圧及び発振信号に対応する3つの外部端子37を含んでいる。複数の外部端子37は、さらに、制御信号等に対応する外部端子37を含んでよい。また、外部端子37は、発振器1を回路基板に接合するためのみに利用される(電気信号の伝達に利用されない)ダミーの外部端子37を含んでいてもよい。 The number and roles of the external terminals 37 may be appropriately set according to the functions required of the oscillator 1. For example, the plurality of external terminals 37 includes at least three external terminals 37 corresponding to the ground potential, power supply voltage and oscillation signal described in the description of the IC terminal 21 . The plurality of external terminals 37 may further include external terminals 37 corresponding to control signals and the like. Moreover, the external terminals 37 may include dummy external terminals 37 that are used only for joining the oscillator 1 to the circuit board (not used for transmitting electrical signals).
 外部端子37の材料は任意である。外部端子37は、1層の金属層から構成されてもよいし、2層以上の金属層から構成されてもよい。外部端子37の材料の少なくとも一部は、基部9が有する他の導体層の材料(例えばIC用パッド35の材料(後述))の少なくとも一部と同じであってもよいし、全く異なっていてもよい。いずれにせよ、後述するIC用パッド35の材料の説明は、水晶用パッド33の材料に援用されてよい。外部端子37の厚さも任意である。 The material of the external terminal 37 is arbitrary. The external terminal 37 may be composed of one metal layer, or may be composed of two or more metal layers. At least part of the material of the external terminals 37 may be the same as at least part of the material of other conductor layers (for example, the material of the IC pads 35 (described later)) of the base 9, or may be completely different. good too. In any case, the description of the material of the IC pads 35 to be described later may be applied to the material of the crystal pads 33 . The thickness of the external terminal 37 is also arbitrary.
(基部の配線導体)
 基部9の配線導体(不図示)の構成は適宜なものとされてよい。例えば、配線導体は、絶縁層31の上面又は下面に位置する層状導体(層状配線)、及び/又は絶縁層31を貫通する貫通導体(ビア導体)によって構成されてよい。
(base wiring conductor)
The configuration of the wiring conductors (not shown) of the base 9 may be made appropriate. For example, the wiring conductor may be composed of a layered conductor (layered wiring) located on the upper surface or the lower surface of the insulating layer 31 and/or a penetrating conductor (via conductor) penetrating the insulating layer 31 .
 配線導体の材料は任意である。例えば、これらの材料の少なくとも一部は、基部9が有する他の導体層の材料の少なくとも一部と同じであってもよいし、全く異なっていてもよい。例えば、配線導体のうち、基体23に埋設されている部分の材料は、IC用パッド35の下層59(後述)の材料と同じとされてよい。いずれにせよ、IC用パッド35の材料(後述)の説明は、適宜に配線導体に援用されてよい。 Any material can be used for the wiring conductor. For example, at least part of these materials may be the same as at least part of the materials of the other conductor layers of the base 9, or may be completely different. For example, the material of the portion of the wiring conductor embedded in the substrate 23 may be the same as the material of the lower layer 59 (described later) of the IC pad 35 . In any case, the description of the material of the IC pads 35 (described later) may be applied to the wiring conductors as appropriate.
(第1接合用金属層)
 第1接合用金属層39は、例えば、シーム溶接によって蓋11に接合される部材である。第1接合用金属層39は、基体23の上面(第1凹部25の周囲の部分)に位置しているとともに、第1凹部25の全周に亘って延びている。第1接合用金属層39の幅は、例えば、基体23の上面の幅と同等である。ただし、前者は後者よりも細くてもよい。
(First bonding metal layer)
The first joining metal layer 39 is a member joined to the lid 11 by seam welding, for example. The first bonding metal layer 39 is located on the upper surface of the base 23 (the portion surrounding the first recess 25 ) and extends over the entire circumference of the first recess 25 . The width of the first bonding metal layer 39 is, for example, equivalent to the width of the upper surface of the base 23 . However, the former may be thinner than the latter.
 第1接合用金属層39の材料及び厚さは適宜に設定されてよい。例えば、第1接合用金属層39の材料は、基部9が有する他の導体層の材料(例えばIC用パッド35の材料(後述))と同じであってもよいし、異なっていてもよい。いずれにせよ、後述するIC用パッド35の材料の説明は第1接合用金属層39の材料に援用されてよい。また、第1接合用金属層39は、W若しくはMo又はこれらの少なくとも1つを主成分として含む合金からなる層と、当該層に重なるNi層と、当該Ni層に重なるAu層とによって構成されてよい。第1接合用金属層39の厚さは、例えば、10μm以上25μm以下である。 The material and thickness of the first joining metal layer 39 may be set as appropriate. For example, the material of the first bonding metal layer 39 may be the same as or different from the material of the other conductor layers of the base 9 (for example, the material of the IC pads 35 (described later)). In any case, the description of the material of the IC pad 35 to be described later may be applied to the material of the first bonding metal layer 39 . The first bonding metal layer 39 is composed of a layer made of W or Mo or an alloy containing at least one of these as a main component, a Ni layer overlapping the layer, and an Au layer overlapping the Ni layer. you can The thickness of the first bonding metal layer 39 is, for example, 10 μm or more and 25 μm or less.
(ダイパッド)
 ダイパッド42は、その上面にIC5の下面が接着される部材である。ダイパッド42は、例えば、IC5と基部9との接着強度の向上、IC5の放熱性の向上及び/又はノイズ低減に寄与する。ダイパッド42の材料は任意である。例えば、ダイパッド42の材料は、基部9が有する他の導体層の材料(例えばIC用パッド35の材料(後述))と同じであってもよいし、異なっていてもよい。いずれにせよ、後述するIC用パッド35の材料の説明はダイパッド42の材料に援用されてよい。なお、ダイパッド42は、設けられなくても構わない。
(die pad)
The die pad 42 is a member to which the lower surface of the IC 5 is adhered on its upper surface. The die pad 42 contributes, for example, to improving the adhesive strength between the IC 5 and the base 9, improving the heat dissipation of the IC 5, and/or reducing noise. Any material can be used for the die pad 42 . For example, the material of the die pad 42 may be the same as or different from the material of other conductor layers of the base 9 (for example, the material of the IC pads 35 (described later)). In any case, the description of the material of the IC pad 35 to be described later may be applied to the material of the die pad 42 . Note that the die pad 42 may not be provided.
(蓋)
 蓋11は、例えば、板状の部材である。蓋11は、例えば、下面に、枠状に形成された第2接合用金属層47を有している。第1接合用金属層39及び第2接合用金属層47がシーム溶接等によって接合されることにより、パッケージ7の内部は密閉される。すなわち、密閉空間S1が構成される。なお、蓋11の接合は、シーム溶接以外の方法によって実現されても構わない。
(lid)
The lid 11 is, for example, a plate-like member. The lid 11 has, for example, a frame-shaped second bonding metal layer 47 on its lower surface. The inside of the package 7 is hermetically sealed by joining the first joining metal layer 39 and the second joining metal layer 47 by seam welding or the like. That is, a closed space S1 is formed. Note that the lid 11 may be joined by a method other than seam welding.
 蓋本体(蓋11のうちの第2接合用金属層47を除く部分)の形状、材料及び寸法は任意である。例えば、蓋本体の平面視における外縁の形状及び寸法は、概ね、基部9の上面の平面視における外縁の形状及び寸法と同様である。蓋本体の材料は、例えば、金属とされてよい。金属は、例えば、鉄、ニッケル若しくはコバルト、又はこれらの少なくとも1つを主成分とする合金とされてよい。 The shape, material and dimensions of the lid body (the portion of the lid 11 excluding the second bonding metal layer 47) are arbitrary. For example, the shape and size of the outer edge of the lid body in plan view are generally the same as the shape and size of the outer edge of the upper surface of the base 9 in plan view. The material of the lid body may be, for example, metal. The metal may be, for example, iron, nickel or cobalt, or an alloy based on at least one of these.
 第2接合用金属層47の形状、材料及び寸法は任意である。例えば、平面視において、第2接合用金属層47の形状及び寸法は、第1接合用金属層39の形状及び寸法と概ね同様とされている。第2接合用金属層47は、例えば、銀ロウ又は金錫によって構成されている。第2接合用金属層47の厚さは、例えば、10μm以上40μmである。金錫の場合、Auの質量%は、例えば、75質量%以上85質量%以下とされてよい。 The shape, material and dimensions of the second bonding metal layer 47 are arbitrary. For example, in plan view, the shape and dimensions of the second bonding metal layer 47 are substantially the same as the shape and dimensions of the first bonding metal layer 39 . The second bonding metal layer 47 is made of, for example, silver solder or gold tin. The thickness of the second bonding metal layer 47 is, for example, 10 μm or more and 40 μm. In the case of gold and tin, the mass % of Au may be, for example, 75 mass % or more and 85 mass % or less.
(導電性接着剤)
 導電性接着剤41は、特に図示しないが、絶縁性のバインダーと、当該バインダーに分散されている導電性フィラー(導電性粉末)とを有している。バインダーは、有機材料(例えば樹脂)であってもよいし、無機材料であってもよい。樹脂は、例えば、シリコーン樹脂、エポキシ樹脂、ポリイミド樹脂又はビスマレイミド樹脂とされてよい。導電性フィラーの材料は、例えば、金属とされてよい。金属は、例えば、アルミニウム、モリブデン、タングステン、白金、パラジウム、銀、チタン、ニッケル若しくは鉄、又はこれらの1つ以上を主成分とする合金とされてよい。
(Conductive adhesive)
Although not shown, the conductive adhesive 41 has an insulating binder and conductive filler (conductive powder) dispersed in the binder. The binder may be an organic material (eg, resin) or an inorganic material. The resin may be, for example, a silicone resin, an epoxy resin, a polyimide resin, or a bismaleimide resin. The material of the conductive filler may be metal, for example. The metal may be, for example, aluminum, molybdenum, tungsten, platinum, palladium, silver, titanium, nickel or iron, or an alloy based on one or more of these.
 導電性接着剤41は、引出電極17(より詳細にはその端子部)と、水晶用パッド33との間に介在して両者を接合する。導電性接着剤41は、例えば、少なくとも引出電極17のうち-D3側に面している領域に接合されている。この他、導電性接着剤41は、引出電極17のうち、-D1側に面している領域、及び/又は-D2側若しくは+D2側に面している領域に接合されていてもよい。 The conductive adhesive 41 is interposed between the extraction electrode 17 (more specifically, its terminal portion) and the crystal pad 33 to join them together. The conductive adhesive 41 is bonded, for example, to at least the area of the extraction electrode 17 facing the -D3 side. In addition, the conductive adhesive 41 may be bonded to the area facing the -D1 side and/or the area facing the -D2 side or the +D2 side of the extraction electrode 17 .
(接着剤及びボンディングワイヤ)
 接着剤43は、IC5の下面と第3凹部29の底面(第1面9a、ダイパッド42)との間に介在して両者を接合する。接着剤43は、例えば、IC5の下面の概ね全面に亘って広がっている。
(adhesive and bonding wire)
The adhesive 43 is interposed between the bottom surface of the IC 5 and the bottom surface of the third recess 29 (the first surface 9a and the die pad 42) to bond them together. The adhesive 43 spreads over substantially the entire lower surface of the IC 5, for example.
 接着剤43の材料は任意である。例えば、接着剤43の材料は、絶縁材料であってもよいし、導電材料であってもよい。絶縁材料は、有機材料であってもよいし、無機材料であってもよい。有機絶縁材料は、例えば、樹脂であり、より詳細には、例えば、加熱されることによって硬化する熱硬化性樹脂とされてよい。当該樹脂は、導電性接着剤41を構成する樹脂と同一のものであってもよいし、異なるものであってもよい。導電材料は、例えば、適宜な金属とされてよい。導電材料がはんだの場合においては、後述するアニール処理等によって溶融しないように、融点が比較的高いものが選択されてよい。 The material of the adhesive 43 is arbitrary. For example, the material of the adhesive 43 may be an insulating material or a conductive material. The insulating material may be an organic material or an inorganic material. The organic insulating material is, for example, a resin, and more specifically, may be a thermosetting resin that hardens when heated. The resin may be the same as the resin forming the conductive adhesive 41, or may be different. The conductive material may be, for example, a suitable metal. When the conductive material is solder, a material with a relatively high melting point may be selected so as not to be melted by an annealing treatment or the like, which will be described later.
 各ボンディングワイヤ45は、一端がIC端子21に接合されているとともに、他端がIC用パッド35に接合されている。これにより、IC5は、パッケージ7(基部9)と電気的に接続されている。なお、以下の説明においては、図4(後述)も適宜に参照されたい。 Each bonding wire 45 has one end joined to the IC terminal 21 and the other end joined to the IC pad 35 . Thereby, the IC 5 is electrically connected to the package 7 (base portion 9). In the following description, please also refer to FIG. 4 (described later) as appropriate.
 ボンディングワイヤ45は、いわゆるボールボンディングによって形成されるものであってもよいし(図示の例)、ウェッジボンディングによって形成されるものであってもよい。換言すれば、ボンディングワイヤ45の一端は、他の部分の径よりも大きい径を有するボール状(接合後はドーム状又は円盤状。以下、拡径部ということがある。)であってもよいし(図示の例)、そのような形状でなくてもよい。ボールボンディングが行われる場合、拡径部は、IC端子21に位置してもよいし(図示の例)、IC用パッド35に位置してもよい。特に図示しないが、例えば、2ndボンドがなされるパッド(図示の例ではIC用パッド35)上に、1stボンドの前にボンダによってバンプを形成することによって、ボンディングワイヤ45の両端に拡径部が構成されてもよい。 The bonding wires 45 may be formed by so-called ball bonding (the example shown in the figure) or may be formed by wedge bonding. In other words, one end of the bonding wire 45 may be ball-shaped (dome-shaped or disk-shaped after bonding; hereinafter sometimes referred to as an enlarged diameter portion) having a diameter larger than that of the other portion. (illustrated example), but need not be such a shape. If ball bonding is used, the enlarged diameter portion may be located at the IC terminal 21 (example shown) or at the IC pad 35 . Although not shown in particular, for example, by forming bumps with a bonder on the pad (IC pad 35 in the illustrated example) to which the second bond is made, before the first bond, enlarged diameter portions are formed at both ends of the bonding wire 45. may be configured.
 ボンディングワイヤ45の具体的な形状及び寸法は任意である。例えば、ボンディングワイヤ45は、両端を除いて概ね一定の断面で延びている。断面形状は、例えば、円形である。また、ボンディングワイヤ45は、上方(+D3側)に凸となる曲線状(ループ状)に延びている。平面視において、ボンディングワイヤ45は直線状に延びている。その延びる方向は適宜に設定されてよい。別の観点では、互いに接続されるIC端子21及びIC用パッド35の相対位置は任意である。ボンディングワイヤの両端を除く部分の直径は、例えば、10μm以上50μm以下である。ボンディングワイヤ45の拡径部の平面視における直径(接合後)は、例えば、70μm以上100μm以下である。 The specific shape and dimensions of the bonding wire 45 are arbitrary. For example, the bonding wire 45 extends with a generally constant cross-section except at both ends. The cross-sectional shape is, for example, circular. Further, the bonding wire 45 extends in a curved shape (loop shape) that is convex upward (+D3 side). In plan view, the bonding wire 45 extends linearly. The extending direction may be set appropriately. From another point of view, the relative positions of the IC terminals 21 and the IC pads 35 that are connected to each other are arbitrary. The diameter of the portion of the bonding wire excluding both ends is, for example, 10 μm or more and 50 μm or less. The diameter of the enlarged diameter portion of the bonding wire 45 in plan view (after bonding) is, for example, 70 μm or more and 100 μm or less.
(水晶素子及びIC等の位置関係)
 既述のように、図示の例では、水晶素子3は、IC5を介して第1面9a(第3凹部29の底面)と対向している。水晶素子3とIC5とが重なる広さ等は任意である。例えば、以下のとおりである。なお、重なりに関する以下の説明において、「IC5」の語は、矛盾等が生じない限り、「第1面9a」に置換されてよい。
(Positional relationship between crystal element and IC, etc.)
As described above, in the illustrated example, the crystal element 3 faces the first surface 9a (bottom surface of the third recess 29) via the IC5. The width, etc., where the crystal element 3 and the IC 5 overlap is arbitrary. For example: In addition, in the following description of overlapping, the term "IC5" may be replaced with "first surface 9a" as long as there is no contradiction.
 水晶素子3の一部(図示の例では-D1側の一部)は、第1凹部25の底面に対して重なって導電性接着剤41によって上記底面に接合される。従って、水晶素子3は、残りの部分のうちの一部(図示の例)又は全部がIC5に重なってよい。前者の場合において、重なる領域の水晶素子3における相対的な広さは任意である。例えば、重なる領域の面積が水晶素子3の面積に占める割合は、1/2未満であってもよいし(図示の例)、1/2以上であってもよい。また、重なる領域は、水晶素子3の薄い部分の一部(図示の例)又は全部を占めてよく、励振電極15の一部(図示の例)又は全部を占めてよい。 A portion of the crystal element 3 (a portion on the -D1 side in the illustrated example) overlaps the bottom surface of the first concave portion 25 and is bonded to the bottom surface with a conductive adhesive 41 . Therefore, the crystal element 3 may partially (illustrated example) or all of the remaining portion overlap the IC 5 . In the former case, the relative extent of the overlapping regions in the crystal element 3 is arbitrary. For example, the ratio of the area of the overlapping region to the area of the crystal element 3 may be less than 1/2 (the example shown in the figure) or may be 1/2 or more. Moreover, the overlapping region may occupy a part (illustrated example) or the whole of the thin portion of the crystal element 3 and may occupy a part (illustrated example) or the whole of the excitation electrode 15 .
 また、IC5は、その一部又は全部が水晶素子3に重なってよい。前者の場合において、重なる領域のIC5における相対的な広さは任意である。例えば、重なる領域の面積がIC5の面積に占める割合は、1/2未満であってもよいし(図示の例)、1/2以上であってもよい。 Also, the IC 5 may partially or wholly overlap the crystal element 3 . In the former case, the relative width of the overlapping region at IC5 is arbitrary. For example, the ratio of the area of the overlapping region to the area of the IC 5 may be less than 1/2 (the example shown in the figure) or may be 1/2 or more.
 図示の例では、平面視において、水晶素子3の幾何中心のD2方向の位置と、IC5の幾何中心のD2方向の位置とは一致している。図示の例とは異なり、両者は互いにずれていてもよい。また、水晶素子3のD2方向の幅は、IC5のD2方向の幅よりも小さい。そして、前者の幅は、後者の幅に収まっている。図示の例とは異なり、前者の幅は後者の幅よりも大きくされてもよいし、これにより、又は幾何中心のずれにより、前者の幅が後者の幅からはみ出していてもよい。 In the illustrated example, in plan view, the position of the geometric center of the crystal element 3 in the D2 direction and the position of the geometric center of the IC 5 in the D2 direction match. Unlike the illustrated example, both may be offset from each other. Also, the width of the crystal element 3 in the D2 direction is smaller than the width of the IC 5 in the D2 direction. The width of the former is within the width of the latter. Unlike the illustrated example, the width of the former may be greater than the width of the latter, or the width of the former may protrude from the width of the latter due to this or due to the displacement of the geometric center.
 水晶素子3は、少なくとも1つのIC用パッド35の少なくとも一部、少なくとも1つのボンディングワイヤ45の少なくとも一部、及び/又は少なくとも1つのIC端子21の少なくとも一部に対して、重なっていてもよいし、これらの部材に対して全く重なっていなくてもよい。図示の例では、水晶素子3は、-D1側の2つのIC用パッド35の一部、当該IC用パッド35に接続される2つのボンディングワイヤ45の全部、及び当該2つのボンディングワイヤ45に接続される2つのIC端子21の全部に対して重なっている。なお、本段落において、「水晶素子3」の語は、矛盾等が生じない限り、「水晶素子3の薄い部分」又は「励振電極15」の語に置換されてよい。 The crystal element 3 may overlap at least a portion of at least one IC pad 35, at least a portion of at least one bonding wire 45, and/or at least a portion of at least one IC terminal 21. However, it does not have to overlap these members at all. In the illustrated example, the crystal element 3 is part of the two IC pads 35 on the -D1 side, all of the two bonding wires 45 connected to the IC pads 35, and connected to the two bonding wires 45. are overlapped for all of the two IC terminals 21 connected. In this paragraph, the term "crystal element 3" may be replaced with the term "thin portion of crystal element 3" or "excitation electrode 15" as long as there is no contradiction.
(接続部材の接合)
 図4は、図2の領域IVを拡大して示す断面図である。
(Joining connection members)
FIG. 4 is a cross-sectional view showing an enlarged region IV of FIG.
 ボンディングワイヤ45(接続部材の一例)は、金(Au)によって構成されている。また、IC端子21は、少なくとも表面(より厳密には上面(+D3側の面))がAuによって構成されている。従って、ボンディングワイヤ45及びIC端子21の接合は、Au同士の接合となっている。これにより、後に詳述するように、ボンディングワイヤ45にボイド(さらにはクラック)が生じる蓋然性が低減される。 A bonding wire 45 (an example of a connection member) is made of gold (Au). At least the surface (more strictly, the upper surface (+D3 side surface)) of the IC terminal 21 is made of Au. Therefore, the bonding between the bonding wire 45 and the IC terminal 21 is a Au-to-Au bonding. This reduces the possibility of voids (and cracks) occurring in the bonding wires 45, as will be described in detail later.
 ボンディングワイヤ45の接合に係る構成は、上記のようにボンディングワイヤ45及びIC端子21の表面がAuによって構成される点を除いて、種々の態様とされてよく、例えば、公知の態様とされても構わない。もちろん、新規な態様が適用されてもよい。以下では、図示の例を中心に、IC端子21の材料及びIC用パッド35の材料について説明する。 The structure related to the bonding of the bonding wire 45 may take various forms, for example, a known form, except that the surfaces of the bonding wire 45 and the IC terminal 21 are made of Au as described above. I don't mind. Of course, novel aspects may also be applied. The material of the IC terminal 21 and the material of the IC pad 35 will be described below, focusing on the illustrated example.
(IC端子の材料)
 IC端子21は、例えば、4層の金属層から構成されている。具体的には、IC端子21においては、IC5のチップ本体19側から順に、互いに異なる材料からなる第1層51、第2層53、第3層55及びAu層57が積層されている。Au層57は、その名のとおり、Auからなる層である。Au層57がIC端子21の上面を構成していることによって、IC端子21の上面はAuによって構成されている。
(Material of IC terminal)
The IC terminal 21 is composed of, for example, four metal layers. Specifically, in the IC terminal 21 , a first layer 51 , a second layer 53 , a third layer 55 and an Au layer 57 made of different materials are laminated in order from the chip body 19 side of the IC 5 . The Au layer 57 is, as its name suggests, a layer made of Au. Since the Au layer 57 forms the upper surface of the IC terminal 21, the upper surface of the IC terminal 21 is made of Au.
 なお、図4では、全ての層がチップ本体19上に位置している。図示の例とは異なり、少なくともチップ本体19側の一部の層は、D3方向において、チップ本体19の上面(+D3側の面)に対して、同じ位置又は下方に位置してもよい。例えば、第1層51は、チップ本体19が有している絶縁性の保護層よりも下方に位置し、保護層に形成された開口から露出する部分によってIC端子21を構成していてよい。 It should be noted that all layers are located on the chip body 19 in FIG. Unlike the illustrated example, at least some layers on the chip body 19 side may be located at the same position or below the top surface of the chip body 19 (+D3 side surface) in the D3 direction. For example, the first layer 51 may be located below the insulating protective layer of the chip body 19, and the IC terminal 21 may be formed by a portion exposed through an opening formed in the protective layer.
 また、図4では、各層の側面が露出している。図示の例とは異なり、少なくともチップ本体19側の一部の層の側面は、チップ本体19(例えば上述の保護層)によって覆われていてもよい。また、相対的に下方(-D3側)の層の側面は、相対的に上方(+D3側)の層(例えばAu層57)によって覆われていてよい。なお、導体層において、側面の影響は限定的である。従って、導体層の説明では、上面と表面とを区別しないことがある。 Also, in FIG. 4, the side surface of each layer is exposed. Unlike the illustrated example, at least the side surfaces of some layers on the chip body 19 side may be covered with the chip body 19 (for example, the protective layer described above). Also, the side surface of the relatively lower (−D3 side) layer may be covered with the relatively upper (+D3 side) layer (for example, the Au layer 57). In addition, in the conductor layer, the influence of the side surface is limited. Therefore, the description of the conductor layer may not distinguish between the upper surface and the front surface.
 第1層51、第2層53及び第3層55の材料は任意である。例えば、第1層51は、アルミニウム又はアルミニウムを主成分とする合金からなる。第2層53は、ニッケル又はニッケルを主成分とする合金からなる。第3層55は、パラジウム又はパラジウムを主成分とする合金からなる。 The materials of the first layer 51, the second layer 53 and the third layer 55 are arbitrary. For example, the first layer 51 is made of aluminum or an alloy containing aluminum as a main component. The second layer 53 is made of nickel or an alloy containing nickel as a main component. The third layer 55 is made of palladium or a palladium-based alloy.
 IC端子21を構成する各層の厚さは任意である。例えば、各層は、概略、一定の厚さで構成されている。ただし、各層は、外縁側において薄くなるなど、厚さが変化していても構わない。また、例えば、これらのいずれが他の層よりも厚くてもよい。例えば、第1層51及び第2層53は、いずれが他方よりも厚くてもよい。第3層55及びAu層57は、例えば、第1層51及び/又は第2層53よりも薄くされてよい。第3層55及びAu層57は、いずれが他方よりも厚くてもよい。各層の厚さは、例えば、0.05μm以上10μm以下とされてよい。 The thickness of each layer constituting the IC terminal 21 is arbitrary. For example, each layer generally has a constant thickness. However, each layer may have a different thickness, such as being thinner on the outer edge side. Also, for example, any of these layers may be thicker than the other layers. For example, one of the first layer 51 and the second layer 53 may be thicker than the other. The third layer 55 and the Au layer 57 may be thinner than the first layer 51 and/or the second layer 53, for example. Either the third layer 55 or the Au layer 57 may be thicker than the other. The thickness of each layer may be, for example, 0.05 μm or more and 10 μm or less.
 図示の例とは異なり、例えば、第2層53及び/又は第3層55が省略されてもよい。逆に、さらに他の層が追加されてもよい。また、第1層51に代えて、貫通導体(層状でない導体)がチップ本体19から露出し、その上に、他の層(第2層53、第3層55又はAu層57)が重なっていてもよい。第1層51、第2層53及び第3層55の材料は、上述した材料以外とされてもよい。例えば、W、Cu、Ti若しくはCr、又はこれらの少なくとも1つを主成分とする合金が用いられてもよい。 Unlike the illustrated example, for example, the second layer 53 and/or the third layer 55 may be omitted. Conversely, additional layers may be added. Further, instead of the first layer 51, a through conductor (non-layered conductor) is exposed from the chip body 19, and another layer (second layer 53, third layer 55 or Au layer 57) is superimposed thereon. may The materials of the first layer 51, the second layer 53 and the third layer 55 may be other than the materials described above. For example, W, Cu, Ti or Cr, or an alloy containing at least one of these as a main component may be used.
(IC用パッドの材料)
 IC用パッド35は、例えば、2層の金属層から構成されている。具体的には、IC用パッド35においては、基部9の基体23側から順に、互いに異なる材料からなる下層59及び上層61が積層されている。なお、図4では、各層の側面が露出している。図示の例とは異なり、下層59の側面は、上層61によって覆われていてもよい。
(Material for IC pads)
The IC pad 35 is composed of, for example, two metal layers. Specifically, in the IC pad 35 , a lower layer 59 and an upper layer 61 made of different materials are laminated in order from the substrate 23 side of the base 9 . In addition, in FIG. 4, the side surface of each layer is exposed. In contrast to the illustrated example, the sides of lower layer 59 may be covered by upper layer 61 .
 下層59及び上層61の材料は任意である。例えば、下層59の材料は、Ni、W、Cu若しくはAl、又はこれらの少なくとも1つを主成分として含む合金とされてよい。上層61の材料は、Au、Ag若しくはPt又はこれらの少なくとも1つを主成分とする合金とされてよい。 Materials for the lower layer 59 and the upper layer 61 are arbitrary. For example, the material of the lower layer 59 may be Ni, W, Cu, Al, or an alloy containing at least one of these as a main component. The material of the upper layer 61 may be Au, Ag, Pt, or an alloy containing at least one of these as a main component.
 上層61がAuからなる場合、IC用パッド35は、少なくとも表面(厳密には上面(+D3側の面)がAuによって構成される。この場合、接続部材(ボンディングワイヤ45)とIC端子21との接合と同様に、接続部材とIC用パッド35との接合も、Au同士の接合となる。 When the upper layer 61 is made of Au, at least the surface (strictly, the upper surface (+D3 side surface)) of the IC pad 35 is made of Au. Similar to the bonding, the bonding between the connection member and the IC pad 35 is also bonding between Au.
 図示の例とは異なり、IC用パッド35は、1層の金属によって構成されていてもよいし、3層以上の金属によって構成されていてもよい。3層以上の金属によって構成される態様においては、上述したIC端子21の材料の説明がIC用パッド35の材料に援用されてよい。 Unlike the illustrated example, the IC pad 35 may be composed of one layer of metal, or may be composed of three or more layers of metal. In a mode composed of three or more layers of metal, the above description of the material of the IC terminal 21 may be applied to the material of the IC pad 35 .
 IC用パッド35及びその各層の厚さ(本段落では次段落で述べる薄くなっている部分は考慮外とする。)は任意である。例えば、IC用パッド35の厚さは、IC端子21の厚さに対して、薄くてもよいし、同等でもよいし、厚くてもよい。IC用パッド35の厚さは、例えば、1μm以上10μm以下とされてよい。上層61は、例えば、下層59よりも薄くされてよい。下層59の厚さは、例えば、1μm以上10μm以下とされてよい。上層61の厚さは、例えば、0.1μm以上2μm以下とされてよい。 The thickness of the IC pad 35 and its layers (thinned portions described in the next paragraph are excluded from consideration in this paragraph) are arbitrary. For example, the thickness of the IC pad 35 may be thinner than, equal to, or thicker than the thickness of the IC terminal 21 . The thickness of the IC pad 35 may be, for example, 1 μm or more and 10 μm or less. Top layer 61 may be thinner than bottom layer 59, for example. The thickness of the lower layer 59 may be, for example, 1 μm or more and 10 μm or less. The thickness of the upper layer 61 may be, for example, 0.1 μm or more and 2 μm or less.
(水晶素子における導体の材料)
 水晶素子3の導体層(励振電極15及び引出電極17)の材料は任意である。水晶素子3の導体層は、1層の金属層から構成されてもよいし、2層以上の金属層から構成されてもよい。
(Conductor material in crystal element)
The material of the conductor layer (the excitation electrode 15 and the extraction electrode 17) of the crystal element 3 is arbitrary. The conductor layer of the crystal element 3 may be composed of one metal layer, or may be composed of two or more metal layers.
 図示の例では、水晶素子3の導体層は、2層の金属層から構成されている。具体的には、水晶ブランク13側から順に、互いに異なる材料からなる下地層63及び主層65が積層されている。なお、図4では、各層の側面が露出している。図示の例とは異なり、下地層63の側面は、主層65によって覆われていてもよい。 In the illustrated example, the conductor layer of the crystal element 3 is composed of two metal layers. Specifically, a base layer 63 and a main layer 65 made of different materials are laminated in order from the crystal blank 13 side. In addition, in FIG. 4, the side surface of each layer is exposed. Unlike the illustrated example, the side surface of the underlying layer 63 may be covered with the main layer 65 .
 下地層63及び主層65の材料は任意である。例えば、下地層63の材料は、Ni若しくはCr、又はこれらの少なくとも1つを主成分として含む合金とされてよい。主層65の材料は、Au若しくはAg、又はこれらの少なくとも1つを主成分とする合金とされてよい。 Any material can be used for the base layer 63 and the main layer 65 . For example, the material of the underlying layer 63 may be Ni, Cr, or an alloy containing at least one of these as a main component. The material of the main layer 65 may be Au, Ag, or an alloy containing at least one of these as a main component.
 主層65がAuからなる場合、励振電極15は、少なくとも表面(厳密には上面(+D3側の励振電極15の+D3側の面及び-D3側の励振電極15の-D3側の面))がAuによって構成される。この場合、励振電極15の表面、接続部材(ボンディングワイヤ45)及びIC端子21の表面は、同一の金属(Au)で構成されている。 When the main layer 65 is made of Au, at least the surface (strictly, the upper surface (+D3 side surface of the excitation electrode 15 on the +D3 side and -D3 side surface of the -D3 side excitation electrode 15)) of the excitation electrode 15 is composed of Au. In this case, the surface of the excitation electrode 15, the connection member (bonding wire 45) and the surface of the IC terminal 21 are made of the same metal (Au).
 水晶素子3の導体層(励振電極15及び引出電極17)の厚さは任意である。例えば、導体層の厚さは、1000Å以上4000Å以下とされてよい。主層65は、上記の厚さの大部分(例えば8割以上又は9割以上)を占めてよい。下地層63の厚さは、例えば、10Å以上100Å以下とされてよい。 The thickness of the conductor layer (excitation electrode 15 and extraction electrode 17) of the crystal element 3 is arbitrary. For example, the thickness of the conductor layer may be 1000 Å or more and 4000 Å or less. The main layer 65 may occupy most of the above thickness (eg, 80% or more or 90% or more). The thickness of the underlying layer 63 may be, for example, 10 Å or more and 100 Å or less.
(発振器の製造方法)
 発振器1の製造方法は、接続部材(ボンディングワイヤ45)及びIC端子21の具体的な材料を除いて、種々の製造方法と同様とされてよく、例えば、公知の製造方法とされても構わない。以下では、発振器1の製造方法の手順のうち、パッケージングに係る手順の例を示す。
(Oscillator manufacturing method)
The manufacturing method of the oscillator 1 may be the same as various manufacturing methods except for the specific materials of the connection member (bonding wire 45) and the IC terminal 21, and may be, for example, a known manufacturing method. . An example of a procedure relating to packaging among the procedures of the method for manufacturing the oscillator 1 will be described below.
 図5は、発振器1の製造方法の手順の一例を示すフローチャートである。 FIG. 5 is a flow chart showing an example of the procedure of the method for manufacturing the oscillator 1. FIG.
 ステップST1では、IC5がパッケージ7の基部9に実装される。具体的には、例えば、まず、接着剤43によってIC5を基部9の第1面9a(ダイパッド42)に接着する。次に、ボンディングワイヤ45を形成して、IC端子21とIC用パッド35とを電気的に接続する。 In step ST1, the IC 5 is mounted on the base 9 of the package 7. Specifically, for example, first, the IC 5 is adhered to the first surface 9 a (die pad 42 ) of the base 9 with the adhesive 43 . Next, a bonding wire 45 is formed to electrically connect the IC terminal 21 and the IC pad 35 .
 ボンディングワイヤ45のIC端子21及びIC用パッド35に対する接合は、例えば、ボンディングワイヤ45(並びに必要に応じてIC端子21及びIC用パッド35)に対して、超音波、圧力及び熱を付与することによって行われる。超音波が付与されることから、Au同士は、その融点よりも低い温度で接合される。加熱温度は、例えば、100℃以上200℃未満である。 Bonding of the bonding wire 45 to the IC terminal 21 and the IC pad 35 is performed by, for example, applying ultrasonic waves, pressure and heat to the bonding wire 45 (and the IC terminal 21 and the IC pad 35 as necessary). done by Since ultrasonic waves are applied, Au is joined at a temperature lower than its melting point. The heating temperature is, for example, 100° C. or more and less than 200° C.
 加熱方法は、種々の方法とされてよく、例えば、公知の方法とされて構わない。例えば、パッケージ7が載置される加熱テーブルの温度を上昇させることによって加熱がなされてよい。加熱温度としては、加熱される対象物を加熱する加熱手段(例えば加熱テーブル)の温度が参照されてよい。ただし、便宜上、加熱される対象物の温度と、加熱温度とを区別せずに表現することがある。本段落で述べた事項は、接続部材の接合のための加熱だけでなく、他のステップ(例えばST2、ST3、ST5及びST8)における加熱に援用されてよい。 The heating method may be various methods, for example, it may be a known method. For example, heating may be done by raising the temperature of a heating table on which the package 7 rests. As the heating temperature, the temperature of the heating means (for example, a heating table) that heats the object to be heated may be referred to. However, for the sake of convenience, the temperature of the object to be heated and the heating temperature are sometimes expressed without distinction. The matter described in this paragraph may be applied not only to heating for bonding connecting members, but also to heating in other steps (eg, ST2, ST3, ST5 and ST8).
 ステップST2では、水晶素子3がパッケージ7の基部9に実装される。具体的には、例えば、未硬化状態の導電性接着剤41が水晶用パッド33に供給される。次に、水晶素子3が導電性接着剤41の上に載置される。その後、加熱処理によって導電性接着剤41が硬化される。このときの加熱温度は、例えば、200℃以上400℃以下である。別の観点では、ここでの加熱温度は、例えば、接続部材(ボンディングワイヤ45)を接合するときの加熱温度よりも高い。加熱時間は、例えば、10分以上1時間以下である。 In step ST2, the crystal element 3 is mounted on the base 9 of the package 7. Specifically, for example, an uncured conductive adhesive 41 is supplied to the crystal pad 33 . Next, the crystal element 3 is placed on the conductive adhesive 41 . After that, the conductive adhesive 41 is cured by heat treatment. The heating temperature at this time is, for example, 200° C. or higher and 400° C. or lower. From another point of view, the heating temperature here is, for example, higher than the heating temperature when bonding the connection member (bonding wire 45). The heating time is, for example, 10 minutes or more and 1 hour or less.
 なお、導電性接着剤41の熱硬化性樹脂の種類がシリコーン樹脂である態様の加熱温度は、導電性接着剤41の熱硬化性樹脂の種類がエポキシ樹脂である態様の加熱温度よりも高くなりやすい。例えば、前者は、350℃程度であり、後者は、200℃程度である。 Note that the heating temperature for the embodiment in which the type of thermosetting resin of the conductive adhesive 41 is a silicone resin is higher than the heating temperature in the embodiment in which the type of the thermosetting resin for the conductive adhesive 41 is an epoxy resin. Cheap. For example, the former is about 350°C and the latter is about 200°C.
 ステップST3では、加熱処理(ステップST2の導電性接着剤41の硬化のための加熱処理とは別の加熱処理)が行われる。この加熱処理によって、例えば、導電性接着剤41の残留応力の低減(アニール処理)、及び/又は導電性接着剤41からの脱ガスが行われる。このときの加熱温度は、例えば、200℃以上400℃以下である。別の観点では、ここでの加熱温度は、例えば、接続部材(ボンディングワイヤ45)を接合するときの加熱温度よりも高い。加熱時間は、例えば、1時間以上5時間以下である。この加熱処理は、例えば、真空雰囲気下で行われてよい。 In step ST3, heat treatment (a heat treatment different from the heat treatment for curing the conductive adhesive 41 in step ST2) is performed. By this heat treatment, for example, the residual stress of the conductive adhesive 41 is reduced (annealing treatment) and/or the conductive adhesive 41 is degassed. The heating temperature at this time is, for example, 200° C. or higher and 400° C. or lower. From another point of view, the heating temperature here is, for example, higher than the heating temperature when bonding the connection member (bonding wire 45). The heating time is, for example, 1 hour or more and 5 hours or less. This heat treatment may be performed, for example, under a vacuum atmosphere.
 ステップST4では、水晶素子3の周波数の調整が行われる。具体的には、例えば、水晶素子3に電気的に接続されている基部9のパッドを介して水晶素子3を励振してその周波数特性を計測し、その計測結果に応じて、励振電極15の質量を増加及び/又は減少させる。 In step ST4, the frequency of the crystal element 3 is adjusted. Specifically, for example, the crystal element 3 is excited through the pads of the base portion 9 electrically connected to the crystal element 3 to measure the frequency characteristics of the crystal element 3, and depending on the measurement result, the excitation electrode 15 is measured. Increase and/or decrease mass.
 ステップST5では、加熱処理が行われる。ステップST3の説明は、本ステップに援用されてよい。 In step ST5, heat treatment is performed. The description of step ST3 may be incorporated into this step.
 ステップST6では、水晶素子3の周波数の調整が行われる。ステップST4の説明は、本ステップに援用されてよい。 At step ST6, the frequency of the crystal element 3 is adjusted. The description of step ST4 may be incorporated into this step.
 ステップST7では、蓋11の長辺が基部9の上面に対してシーム溶接によって接合される。 In step ST7, the long sides of the lid 11 are joined to the upper surface of the base 9 by seam welding.
 ステップST8では、加熱処理が行われる。ステップST3の説明は、概ね、本ステップに援用されてよい。ただし、加熱時間は、ステップST3における加熱時間以下とされてよく、例えば、10分以上1時間以下である。 In step ST8, heat treatment is performed. The description of step ST3 may generally be used for this step. However, the heating time may be equal to or less than the heating time in step ST3, and is, for example, 10 minutes or more and 1 hour or less.
 ステップST9では、蓋11の短辺が基部9の上面に対してシーム溶接によって接合される。これにより、基部9の凹部が密閉され、密閉空間S1が構成される。なお、このとき、適宜な雰囲気下でシーム溶接が行われることによって、密閉空間S1は、真空状態又は適宜なガス(例えば窒素)が封入された状態となる。 In step ST9, the short sides of the lid 11 are joined to the upper surface of the base 9 by seam welding. As a result, the concave portion of the base portion 9 is sealed to form a sealed space S1. At this time, seam welding is performed in an appropriate atmosphere, so that the closed space S1 is in a vacuum state or in a state in which an appropriate gas (for example, nitrogen) is enclosed.
(第1実施形態のまとめ)
 以上のとおり、第1実施形態に係る水晶発振器1は、水晶素子3と、IC5と、パッケージ7と、接続部材(ボンディングワイヤ45)と、を有している。IC5は、IC端子21を有している。パッケージ7は、水晶素子3及びIC5を保持している。ボンディングワイヤ45は、金(Au)からなり、IC端子21とパッケージ7とに接合されている。IC端子21は、当該IC端子21の表面を構成しており、ボンディングワイヤ45が接合されている、第1Au層(Au層57)を有している。
(Summary of the first embodiment)
As described above, the crystal oscillator 1 according to the first embodiment has the crystal element 3, the IC 5, the package 7, and the connecting members (bonding wires 45). IC 5 has an IC terminal 21 . A package 7 holds the crystal element 3 and the IC 5 . The bonding wires 45 are made of gold (Au) and are joined to the IC terminals 21 and the package 7 . The IC terminal 21 has a first Au layer (Au layer 57) that constitutes the surface of the IC terminal 21 and to which the bonding wire 45 is bonded.
 従って、例えば、ボンディングワイヤ45にボイド及び/又はクラックが発生する蓋然性を低減でき、ひいては、発振器1の特性低下を低減できる。具体的には、例えば、以下のとおりである。 Therefore, for example, the probability of voids and/or cracks occurring in the bonding wires 45 can be reduced, and the deterioration of the characteristics of the oscillator 1 can be reduced. Specifically, for example, it is as follows.
 図6は、比較例に係るボンディングワイヤ45とIC端子(第1層51)との接合構造を示す図であり、図4の一部に相当している。 FIG. 6 is a diagram showing a bonding structure between bonding wires 45 and IC terminals (first layer 51) according to a comparative example, and corresponds to part of FIG.
 この比較例では、IC端子は、実施形態の第1層51のみで構成されている。第1層51の材料は、例えば、実施形態の説明で述べたように、Alである。出願人の鋭意検討の結果、このような接合構造においては、ボンディングワイヤ45のうちIC端子の近くの部分に複数のボイドV1及び/又は1以上のクラックC1が形成されることがあることが分かった。なお、ボイドV1の直径及びクラックC1の幅は、例えば、0.1μm以上3μm以下である。 In this comparative example, the IC terminal is composed only of the first layer 51 of the embodiment. The material of the first layer 51 is, for example, Al as described in the description of the embodiment. As a result of diligent investigation by the applicant, it has been found that in such a bonding structure, a plurality of voids V1 and/or one or more cracks C1 may be formed in a portion of the bonding wire 45 near the IC terminal. rice field. The diameter of the void V1 and the width of the crack C1 are, for example, 0.1 μm or more and 3 μm or less.
 しかし、本実施形態のように、IC端子21の少なくとも表面をAuにすることによって、ボイドV1及びクラックC1を低減することができる。出願人は、比較例及び実施例に係る試作品について図6のような断面写真を撮影し、上記の効果を確認している。より詳細には、実施例では、比較例で見られたボイドV1及びクラックC1は確認されなかった。 However, by forming at least the surface of the IC terminal 21 with Au as in the present embodiment, voids V1 and cracks C1 can be reduced. The applicant has confirmed the above effects by taking cross-sectional photographs as shown in FIG. 6 for prototypes according to comparative examples and examples. More specifically, voids V1 and cracks C1 seen in Comparative Examples were not observed in Examples.
 そして、ボイドV1及びクラックC1が低減されることによって、これらに起因する特性低下を低減できる。出願人は、比較例及び実施例に係る試作品の特性を調べることによって、当該効果を確認している。これについては、後に例を示す。 Further, by reducing voids V1 and cracks C1, it is possible to reduce deterioration in characteristics caused by them. The applicant confirmed this effect by investigating the characteristics of prototypes according to comparative examples and examples. An example of this will be given later.
 本実施形態における接合構造によって、ボイドV1及びクラックC1を低減できる理由としては、例えば、以下のものが挙げられる。 Reasons why the voids V1 and cracks C1 can be reduced by the bonding structure of the present embodiment include, for example, the following.
 ボンディングワイヤ45及びIC端子には、発振器の製造過程、発振器をデバイスに組み込む過程(例えばリフロー工程)、上記デバイスの使用過程において、比較的高い熱が加えられることがある。例えば、図5を参照して説明したように、発振器の製造過程においては、ボンディングワイヤ45は、その接合(ステップST1)の後、200℃以上又は300℃以上の熱に晒される(ステップST2、ST3、ST5及びST8)。 Relatively high heat may be applied to the bonding wires 45 and IC terminals during the manufacturing process of the oscillator, the process of incorporating the oscillator into the device (for example, the reflow process), and the process of using the device. For example, as described with reference to FIG. 5, in the manufacturing process of the oscillator, the bonding wire 45 is exposed to heat of 200° C. or higher or 300° C. or higher after bonding (step ST1) (step ST2, ST3, ST5 and ST8).
 比較例においては、ボンディングワイヤ45(Au)とIC端子(Al)とは、上記のように高熱に晒されることによって相互に拡散する。すなわち、AuとAlとの合金層が成長する。このとき、複数種類の合金が成長する。より具体的には、例えば、AuAl(9ppm/℃)、AuAl(12ppm/℃)、AuAl(13ppm/℃)、AuAl(14ppm/℃)及びAuAl(12ppm/℃)が形成される。上記の組成式の後の括弧内に示した数値は、各合金の線膨張係数である。種々の合金は、互いに線膨張係数が異なっている。合金層の成長後、比較例に係る発振器がその使用過程等において温度サイクルに晒されると、線膨張係数が互いに異なる合金の間に熱膨張差が生じ、ボイドV1及びクラックC1が発生する。 In the comparative example, the bonding wire 45 (Au) and the IC terminal (Al) are mutually diffused by exposure to high heat as described above. That is, an alloy layer of Au and Al grows. At this time, multiple kinds of alloys grow. More specifically, for example, AuAl 2 (9 ppm/° C.), AuAl (12 ppm/° C.), Au 2 Al (13 ppm/° C.), Au 5 Al 2 (14 ppm/° C.) and Au 4 Al (12 ppm/° C.) is formed. The numerical values shown in parentheses after the above compositional formulas are the linear expansion coefficients of the respective alloys. Various alloys have different coefficients of linear expansion. After the growth of the alloy layer, if the oscillator according to the comparative example is exposed to temperature cycles during its use, etc., a difference in thermal expansion occurs between the alloys having different coefficients of linear expansion, causing voids V1 and cracks C1.
 一方、実施形態に係る発振器1では、ボンディングワイヤ45とIC端子21との接合は、Au同士の接合となっている。従って、これらが高熱に晒されても、両者の間の合金層の成長は低減され、ひいては、線膨張係数が互いに異なる複数の合金層の成長も低減される。その結果、発振器1が温度サイクルに晒されても、ボイドV1及びクラックC1が発生しにくい。 On the other hand, in the oscillator 1 according to the embodiment, the bonding between the bonding wire 45 and the IC terminal 21 is Au-to-Au bonding. Therefore, even if they are exposed to high heat, the growth of an alloy layer between them is reduced, and the growth of a plurality of alloy layers having different coefficients of linear expansion is also reduced. As a result, voids V1 and cracks C1 are less likely to occur even when the oscillator 1 is exposed to temperature cycles.
 実施形態に係る発振器1において、IC端子21は、第1層51、第2層53及び第3層55を有してよい。第1層51は、アルミニウム又はアルミニウムを主成分とする合金から構成されてよい。第2層53は、ニッケル又はニッケルを主成分とする合金から構成されてよく、また、前記第1層に対してAu層57の側に重なってよい。第3層55は、パラジウム又はパラジウムを主成分とする合金から構成されてよく、また、第2層に対してAu層57の側に重なってよい。Au層57は、第3層に重なってよい。 In the oscillator 1 according to the embodiment, the IC terminal 21 may have the first layer 51 , the second layer 53 and the third layer 55 . The first layer 51 may be made of aluminum or an alloy containing aluminum as a main component. The second layer 53 may be made of nickel or a nickel-based alloy, and may overlap the first layer on the Au layer 57 side. The third layer 55 may be composed of palladium or a palladium-based alloy, and may overlap the Au layer 57 side with respect to the second layer. Au layer 57 may overlay the third layer.
 この場合、例えば、Au層57と第1層51(Al)との間で、比較例におけるボンディングワイヤ45(Au)とIC端子(Al)との間において生じる上記の現象と類似した現象が生じる蓋然性が低減される。具体的には、例えば、第3層55(Pd)によって、Au層57のIC端子21側への拡散が低減される。また、第2層53(Ni)によって、例えば、第1層51と第3層55との接合強度が向上する。 In this case, for example, between the Au layer 57 and the first layer 51 (Al), a phenomenon similar to the above phenomenon occurring between the bonding wire 45 (Au) and the IC terminal (Al) in the comparative example occurs. Probability is reduced. Specifically, for example, diffusion of the Au layer 57 to the IC terminal 21 side is reduced by the third layer 55 (Pd). Also, the bonding strength between the first layer 51 and the third layer 55 is improved by the second layer 53 (Ni), for example.
 パッケージ7は、基部9と、蓋11と、を有してよい。基部9は、第1面9aを有してよい。蓋11は、第1面9a上に密閉空間S1が構成されるように基部9に固定されてよい。IC5は、第1面9aに固定されて密閉空間S1に収容されていてよい。水晶素子3は、IC5を介して第1面9aと対向する位置にて密閉空間S1に収容されてよく、かつ導電性フィラーが分散されている樹脂からなる導電性接着剤41によって基部9に接合されていてよい。 The package 7 may have a base 9 and a lid 11 . The base 9 may have a first surface 9a. The lid 11 may be fixed to the base 9 such that the closed space S1 is formed on the first surface 9a. The IC 5 may be fixed to the first surface 9a and accommodated in the sealed space S1. The crystal element 3 may be accommodated in the sealed space S1 at a position facing the first surface 9a via the IC 5, and is bonded to the base 9 with a conductive adhesive 41 made of a resin in which conductive filler is dispersed. It can be.
 この場合、例えば、上述したボイドV1及びクラックC1の発生が低減される効果が特に有効である。その理由は、以下のとおりである。上記のような構造においては、水晶素子3を導電性接着剤41によって基部9に接合する前に、IC5を基部9に実装する必要がある。その結果、ボンディングワイヤ45及びIC端子21は、導電性接着剤41のアニール処理及び/又は脱ガスのための熱に晒されることになる。従って、既述の比較例が上記のような構造を有している場合においては、ボンディングワイヤ45とIC端子(第1層51)との間で種々の合金層が成長しやすく、ひいては、ボイドV1及びクラックC1が発生する蓋然性が特に高くなる。しかし、本実施形態では、そのような不都合は低減される。 In this case, for example, the effect of reducing the occurrence of voids V1 and cracks C1 described above is particularly effective. The reason is as follows. In the structure as described above, it is necessary to mount the IC 5 on the base portion 9 before bonding the crystal element 3 to the base portion 9 with the conductive adhesive 41 . As a result, the bonding wires 45 and the IC terminals 21 are exposed to heat for annealing and/or degassing the conductive adhesive 41 . Therefore, in the case where the aforementioned comparative example has the structure as described above, various alloy layers tend to grow between the bonding wire 45 and the IC terminal (the first layer 51), which in turn causes voids. The probability of occurrence of V1 and crack C1 is particularly high. However, in this embodiment, such inconvenience is reduced.
 水晶素子3は、水晶ブランク13と、水晶ブランク13に重なっている励振電極15と、を有してよい。水晶ブランク13の励振電極15が重なっている部分の厚さは、5μm以上30μm以下とされてよい。 The crystal element 3 may have a crystal blank 13 and an excitation electrode 15 overlapping the crystal blank 13 . The thickness of the portion of the crystal blank 13 where the excitation electrode 15 overlaps may be 5 μm or more and 30 μm or less.
 この場合、例えば、上述したボイドV1及びクラックC1の発生が低減される効果が特に有効である。具体的には、例えば、以下のとおりである。上記のように水晶ブランク13が比較的薄い場合においては、例えば、導電性接着剤41から発生して水晶素子3に付着するガスの付着量が、水晶素子3の励振領域における質量及び/又は体積に対して大きくなる。ひいては、ガスの付着が水晶素子3の特性に及ぼす影響が大きくなる。従って、導電性接着剤41の脱ガスのための加熱が入念に行われることになる。その結果、ボンディングワイヤ45にボイドV1及びクラックC1が生じる蓋然性が特に高くなる。しかし、本実施形態では、そのような不都合は低減される。 In this case, for example, the effect of reducing the occurrence of voids V1 and cracks C1 described above is particularly effective. Specifically, for example, it is as follows. When the crystal blank 13 is relatively thin as described above, for example, the adhesion amount of the gas generated from the conductive adhesive 41 and adhering to the crystal element 3 increases the mass and/or volume of the excitation region of the crystal element 3. increases relative to As a result, the effect of gas adhesion on the characteristics of the crystal element 3 increases. Therefore, heating for degassing the conductive adhesive 41 is carefully performed. As a result, the probability of voids V1 and cracks C1 occurring in the bonding wires 45 is particularly high. However, in this embodiment, such inconvenience is reduced.
 パッケージ7は、接続部材(ボンディングワイヤ45)が接合されているパッド(IC用パッド35)を有してよい。IC用パッド35は、第2Au層(上層61)を有してよい。上層61は、IC用パッド35の表面を構成しており、ボンディングワイヤ45が接合されてよい。 The package 7 may have pads (IC pads 35) to which connection members (bonding wires 45) are bonded. The IC pad 35 may have a second Au layer (upper layer 61). The upper layer 61 constitutes the surface of the IC pad 35 and may be bonded with the bonding wire 45 .
 この場合、例えば、ボンディングワイヤ45は、IC端子21だけでなく、IC用パッド35に対しても、Au同士の接合がなされる。従って、IC端子21側と同様に、ボンディングワイヤ45にボイドV1及びクラックC1が発生する蓋然性が低減される。 In this case, for example, bonding wires 45 are Au-to-Au bonding not only to IC terminals 21 but also to IC pads 35 . Therefore, as with the IC terminal 21 side, the probability of voids V1 and cracks C1 occurring in the bonding wires 45 is reduced.
 水晶素子3及びIC5は、同一の密閉空間S1に収容されてよい。水晶素子3の励振電極15は、当該励振電極15の表面を構成している第3Au層(主層65)を有してよい。 The crystal element 3 and IC 5 may be accommodated in the same closed space S1. The excitation electrode 15 of the crystal element 3 may have a third Au layer (main layer 65 ) forming the surface of the excitation electrode 15 .
 この場合、接続部材(ボンディングワイヤ45)、IC端子21の表面及び励振電極15の表面が共にAuによって構成されていることになる。その結果、例えば、製造過程又は完成後にパッケージ7内に存在する何らかの物質がAuに及ぼす影響(溶解及び/又は還元等)が、これらの部材に分散されやすい。上記物質が1つの部材に対してのみ影響を及ぼし、ひいては、当該1つの部材の特性変化が大きくなる場合に比較すれば、発振器1全体としての特性変化が抑制される。 In this case, the connection member (bonding wire 45), the surface of the IC terminal 21, and the surface of the excitation electrode 15 are all made of Au. As a result, for example, the effects (dissolution and/or reduction, etc.) of any material present in the package 7 during the manufacturing process or after completion on the Au are likely to be distributed to these members. The change in the characteristics of the oscillator 1 as a whole is suppressed compared to the case where the substance affects only one member, and thus the change in the characteristics of the one member becomes large.
 第1実施形態に係る水晶発振器1の製造方法は、上記のような、Auからなる接続部材(ボンディングワイヤ45)と、IC端子21のAu層57とが接合される構成の発振器1を製造する。従って、上述した種々の効果が奏される。 The method of manufacturing the crystal oscillator 1 according to the first embodiment manufactures the oscillator 1 configured such that the connecting member (bonding wire 45) made of Au and the Au layer 57 of the IC terminal 21 are bonded as described above. . Therefore, the various effects described above are achieved.
 発振器1の製造方法は、接合ステップ(ステップST1を参照)と、1つ以上の加熱ステップ(ステップST2、ST3、ST5及びST8を参照)とを有している。接合ステップでは、第1Au層(Au層57)とパッケージ7の基部9とに接続部材(ボンディングワイヤ45)が接合される。加熱ステップでは、接合ステップの後、接合ステップにおけるボンディングワイヤ45の温度(既述のようにボンディングワイヤ45を加熱する加熱手段の温度であってよい。)よりも高い温度にボンディングワイヤ45が晒される。 The manufacturing method of the oscillator 1 includes a bonding step (see step ST1) and one or more heating steps (see steps ST2, ST3, ST5 and ST8). In the bonding step, the connection member (bonding wire 45 ) is bonded to the first Au layer (Au layer 57 ) and the base 9 of the package 7 . In the heating step, after the bonding step, the bonding wires 45 are exposed to a temperature higher than the temperature of the bonding wires 45 during the bonding step (which may be the temperature of the heating means for heating the bonding wires 45 as described above). .
 この場合、例えば、ボンディングワイヤ45は、接合後に、接合時の温度よりも高い温度に晒されるから、既述のように合金層の成長に起因して、ボイドV1及びクラックC1が発生しやすい。裏を返せば、本実施形態における、Au同士の接合によってボイドV1及びクラックC1の発生を低減する効果が有効に奏される。なお、加熱ステップにおいて、ボンディングワイヤが所定の温度に晒されるというとき、ボンディングワイヤ45の温度は、必ずしもその加熱ステップにおいて用いられている加熱手段の温度に達していなくてもよい。 In this case, for example, the bonding wire 45 is exposed to a temperature higher than the temperature at the time of bonding after bonding, so voids V1 and cracks C1 are likely to occur due to the growth of the alloy layer as described above. In other words, the effect of reducing the occurrence of voids V1 and cracks C1 is effectively exhibited by the bonding between Au layers in this embodiment. When it is said that the bonding wires are exposed to a predetermined temperature in the heating step, the temperature of the bonding wires 45 does not necessarily have to reach the temperature of the heating means used in the heating step.
<第2実施形態>
 図7は、第2実施形態に係る水晶発振器201の構成を示す断面図である。
<Second embodiment>
FIG. 7 is a cross-sectional view showing the configuration of a crystal oscillator 201 according to the second embodiment.
 第1実施形態では、IC5とパッケージ7とを電気的に接続する接続部材はボンディングワイヤ45であった。これに対して、第2実施形態では、接続部材がバンプ245となっている。具体的には、例えば、以下のとおりである。 In the first embodiment, the connecting member for electrically connecting the IC 5 and the package 7 was the bonding wire 45 . In contrast, in the second embodiment, the connection member is the bump 245 . Specifically, for example, it is as follows.
 発振器201は、第1実施形態の発振器1と同様に、水晶素子3と、IC5と、パッケージ207とを有している。パッケージ207は、第1実施形態のパッケージ7と同様に、基部209と、基部209の凹部を塞ぐ蓋11とを有している。水晶素子3及びIC5は、上記凹部に収容されている。また、第1実施形態と同様に、IC5は、基部209の第1面209a(図示の例では凹部の最下面)に対向しており、水晶素子3は、IC5を介して第1面9aに対向している。 The oscillator 201 has a crystal element 3, an IC 5, and a package 207, like the oscillator 1 of the first embodiment. The package 207 has a base 209 and a lid 11 that closes the recess of the base 209, like the package 7 of the first embodiment. The crystal element 3 and IC 5 are accommodated in the recess. As in the first embodiment, the IC 5 faces the first surface 209a of the base portion 209 (the bottom surface of the recess in the illustrated example), and the crystal element 3 faces the first surface 9a through the IC 5. facing each other.
 ただし、基部209の具体的な形状は、IC5の実装構造の相違に伴って、第1実施形態のものとは異なっている。例えば、第1実施形態の基部9は、3つの凹部を有していたところ、基部209は、第1凹部225と、第1凹部225の底面に開口する第2凹部227と、の2つの凹部を有している。また、これに伴い、図7では、基部209の絶縁性の基体223は、3つの絶縁層(第1絶縁層31E、第2絶縁層31F及び第3絶縁層31G)の積層体として描かれている。 However, the specific shape of the base 209 differs from that of the first embodiment due to the difference in the mounting structure of the IC5. For example, while the base 9 of the first embodiment has three recesses, the base 209 has two recesses, a first recess 225 and a second recess 227 opening at the bottom surface of the first recess 225. have. 7, the insulating substrate 223 of the base 209 is drawn as a laminate of three insulating layers (first insulating layer 31E, second insulating layer 31F and third insulating layer 31G). there is
 第1凹部225は、第1実施形態の第1凹部25に相当する。すなわち、第1凹部225は、水晶素子3の収容に寄与している。そして、第1実施形態と同様に、水晶素子3は、第1凹部225の底面に実装されている。 The first concave portion 225 corresponds to the first concave portion 25 of the first embodiment. That is, the first concave portion 225 contributes to accommodation of the crystal element 3 . The crystal element 3 is mounted on the bottom surface of the first concave portion 225 as in the first embodiment.
 第2凹部227は、第1実施形態の第2凹部27及び第3凹部29に相当する。すなわち、第2凹部227は、IC5及び接続部材(バンプ245)の収容に寄与している。ただし、第1実施形態とは異なり、IC5は、第1面209aとしての第2凹部227の底面(別の観点では基部209の凹部の最下面)に表面実装されている。 The second recessed portion 227 corresponds to the second recessed portion 27 and the third recessed portion 29 of the first embodiment. That is, the second concave portion 227 contributes to accommodation of the IC 5 and the connection member (bump 245). However, unlike the first embodiment, the IC 5 is surface-mounted on the bottom surface of the second recess 227 (from another point of view, the bottom surface of the recess of the base 209) as the first surface 209a.
 具体的には、基部209は、第2凹部227の底面にIC用パッド35を有している。IC5は、IC端子21をIC用パッド35に対向させるように配置される。IC用パッド35とIC端子21とがその間に介在するバンプ245によって接合されることによって、IC5は、パッケージ7に固定されるとともに電気的に接続される。 Specifically, the base 209 has the IC pad 35 on the bottom surface of the second recess 227 . The IC 5 is arranged so that the IC terminal 21 faces the IC pad 35 . The IC 5 is fixed and electrically connected to the package 7 by bonding the IC pads 35 and the IC terminals 21 with the bumps 245 interposed therebetween.
 IC用パッド35は、第1面209aに設けられ、かつIC端子21に対向している点を除いて、基本的に、第1実施形態のIC用パッド35と同様のものである。IC用パッド35の数、平面形状及び寸法は、第1実施形態と同様に、任意である。例えば、IC用パッド35は、平面透視において、IC端子21に対して、広くてもよいし(図示の例)、同等の広さであってもよいし、狭くてもよい。 The IC pads 35 are basically the same as the IC pads 35 of the first embodiment, except that they are provided on the first surface 209a and face the IC terminals 21 . The number, planar shape and dimensions of the IC pads 35 are arbitrary, as in the first embodiment. For example, the IC pad 35 may be wider than the IC terminal 21 (the example shown in the figure), may be of the same width, or may be narrower than the IC terminal 21 when viewed through the plane.
 IC端子21については、第1実施形態で説明したとおりである。ただし、接続部材(ボンディングワイヤ45及びバンプ245)の相違に伴って、第1実施形態とは細部が異なっていても構わない。例えば、本実施形態では、IC端子21(並びにバンプ245及びIC用パッド35)は、IC5を支持する役割を担う。そこで、複数のIC端子21は、IC5をバランスよく支持できるように、D1方向及びD2方向それぞれにおいて対称配置されてよい。 The IC terminal 21 is as described in the first embodiment. However, the details may differ from the first embodiment due to the difference in connection members (bonding wires 45 and bumps 245). For example, in this embodiment, the IC terminals 21 (as well as the bumps 245 and IC pads 35) serve to support the IC5. Therefore, the plurality of IC terminals 21 may be arranged symmetrically in each of the D1 direction and the D2 direction so as to support the IC 5 in a well-balanced manner.
 バンプ245の形状及び寸法は任意である。例えば、バンプ245の側面は、外側に膨らんでいてもよいし(図示の例)、内側に凹んでいてもよいし、前者のいずれとも言えない形状であってもよい。バンプ245とIC端子21とが接合されている面積と、バンプ245とIC用パッド35とが接合されている面積とは、いずれが大きくてもよい。バンプ245の直径(例えば最大径)の例を挙げると、90μm以上120μm以下である。 The shape and dimensions of the bump 245 are arbitrary. For example, the side surface of the bump 245 may bulge outward (the example shown), may be recessed inward, or may have a shape that cannot be said to be either of the former. Either the area where the bump 245 and the IC terminal 21 are bonded or the area where the bump 245 and the IC pad 35 are bonded may be larger. An example of the diameter (for example, maximum diameter) of the bump 245 is 90 μm or more and 120 μm or less.
 なお、特に図示しないが、IC5は、その少なくとも一部(例えばIC端子21が位置している面)が封止樹脂49(後述する図11参照。換言すればアンダーフィル)によって覆われていてもよい。 Although not shown, the IC 5 may be covered with a sealing resin 49 (see FIG. 11, in other words, an underfill) at least partly (for example, the surface where the IC terminals 21 are located). good.
 図8は、図7の領域VIIIの拡大図である。 FIG. 8 is an enlarged view of region VIII in FIG.
 バンプ245は、ボンディングワイヤ45と同様に、Auによって構成されている。従って、本実施形態においても、接続部材(バンプ245)とIC端子21(少なくとも表面がAuからなる)との接合は、Au同士の接合となっている。また、第1実施形態と同様に、バンプ245とIC用パッド35との接合もAu同士の接合とされてよい。 The bumps 245 are made of Au, like the bonding wires 45 . Therefore, in this embodiment as well, the bonding between the connection member (bump 245) and the IC terminal 21 (at least the surface of which is made of Au) is Au-to-Au bonding. Also, similarly to the first embodiment, bonding between the bumps 245 and the IC pads 35 may be performed by bonding between Au.
 以上の実施形態によれば、第1実施形態と同様に、接続部材(バンプ245)は、金(Au)からなり、また、IC端子21は、第1Au層(Au層57)を有している。Au層57は、IC端子21の表面を構成しており、バンプ245が接合されている。従って、第1実施形態と同様の効果が奏される。具体的には、以下のとおりである。 According to the above embodiment, the connection member (bump 245) is made of gold (Au), and the IC terminal 21 has the first Au layer (Au layer 57), as in the first embodiment. there is The Au layer 57 constitutes the surface of the IC terminal 21, and the bump 245 is bonded thereto. Therefore, the same effects as those of the first embodiment can be obtained. Specifically, it is as follows.
 図9は、比較例に係るバンプ245とIC端子(第1層51)との接合構造を示す図であり、図8に相当している。 FIG. 9 is a diagram showing a bonding structure between the bump 245 and the IC terminal (first layer 51) according to the comparative example, and corresponds to FIG.
 この比較例では、IC端子は、図4の比較例と同様に、実施形態の第1層51のみで構成されている。この場合、図4の比較例においてボンディングワイヤ45のうちIC端子の近くの部分にボイドV1及びクラックC1が発生した原理と同様の原理によって、バンプ245のうちIC端子の近くの部分にボイドV1及びクラックC1が発生する。そして、実施形態に係る発振器201では、第1実施形態の発振器1と同様の原理によって、ボイドV1及びクラックC1が発生する蓋然性が低減される。 In this comparative example, the IC terminal is composed only of the first layer 51 of the embodiment, similar to the comparative example in FIG. In this case, voids V1 and cracks C1 are generated in portions of the bumps 245 near the IC terminals by the same principle as the voids V1 and cracks C1 in the portions of the bonding wires 45 near the IC terminals in the comparative example of FIG. A crack C1 occurs. Further, in the oscillator 201 according to the embodiment, the probability of occurrence of voids V1 and cracks C1 is reduced by the same principle as in the oscillator 1 of the first embodiment.
<第3実施形態>
 図10は、第3実施形態に係る水晶発振器301の構成を示す断面図である。
<Third Embodiment>
FIG. 10 is a cross-sectional view showing the configuration of a crystal oscillator 301 according to the third embodiment.
 本実施形態では、水晶素子3は、パッケージ67に実装されている。パッケージ67は、パッケージ307に実装されている。パッケージ307は、第1及び第2実施形態のパッケージ7及び207に相当する。換言すれば、パッケージ307は、IC5に接合される接続部材(図示の例ではバンプ245)が接合されるパッケージである。 The crystal element 3 is mounted on the package 67 in this embodiment. Package 67 is mounted on package 307 . The package 307 corresponds to the packages 7 and 207 of the first and second embodiments. In other words, the package 307 is a package to which connection members (bumps 245 in the illustrated example) that are bonded to the IC 5 are bonded.
 このように、水晶素子3は、接続部材(ボンディングワイヤ45又はバンプ245)が接合されるパッケージ7又は207に直接的に保持されるのではなく、間接的にパッケージ307に保持されてよい。水晶素子3がパッケージ307に間接的に保持される態様は、種々可能である。図示の例では、以下のとおりである。 Thus, the crystal element 3 may be indirectly held by the package 307 rather than directly by the package 7 or 207 to which the connection member (bonding wire 45 or bump 245) is bonded. Various modes of indirectly holding the crystal element 3 in the package 307 are possible. In the illustrated example:
 パッケージ307は、他の実施形態と同様に、基部309と、蓋11とを有している。基部309の絶縁性の基体323は、第1凹部325と、第1凹部325の底面に開口する第2凹部327とを有している。 The package 307 has a base 309 and a lid 11 as in other embodiments. The insulating substrate 323 of the base portion 309 has a first recess 325 and a second recess 327 opening at the bottom surface of the first recess 325 .
 第1凹部325は、IC5を収容することに寄与している。第1凹部325の底面(第2凹部327の開口の周囲)には、IC用パッド35(ここでは不図示。図8参照)が設けられている。IC5は、-D3側の面にIC端子21(ここでは不図示。図8参照)が設けられている。そして、第2実施形態と同様に、IC5は、IC端子21とIC用パッド35とがバンプ245によって接合されることによって、パッケージ307に実装されている。図8は、本実施形態におけるバンプ245及びその周囲の断面図として捉えられてよい。 The first concave portion 325 contributes to housing the IC5. An IC pad 35 (not shown here, see FIG. 8) is provided on the bottom surface of the first recess 325 (around the opening of the second recess 327). The IC 5 is provided with an IC terminal 21 (not shown here, see FIG. 8) on the surface on the -D3 side. As in the second embodiment, the IC 5 is mounted on the package 307 by bonding the IC terminals 21 and the IC pads 35 with the bumps 245 . FIG. 8 may be taken as a cross-sectional view of the bump 245 and its surroundings in this embodiment.
 第2凹部327は、パッケージ67を収容することに寄与している。第2凹部327の底面には、不図示のパッドが形成されている。また、パッケージ67は、その下面に不図示の端子を有している。そして、上記のパッドと端子とがバンプ69によって接合されることによって、パッケージ67はパッケージ307(基部309)に実装されている。すなわち、パッケージ67は、パッケージ307に固定されるとともに電気的に接続される。 The second recess 327 contributes to housing the package 67. A pad (not shown) is formed on the bottom surface of the second recess 327 . The package 67 also has terminals (not shown) on its lower surface. The package 67 is mounted on the package 307 (base portion 309) by bonding the pads and terminals with the bumps 69. As shown in FIG. That is, the package 67 is fixed and electrically connected to the package 307 .
 水晶素子3とパッケージ67との組み合わせは、水晶振動子68と捉えられてよい。水晶振動子68は、パッケージ307に実装されることが前提とされていない汎用のものとされてよい。別の観点では、水晶振動子68は、それ単体で流通されるものであってよい。ただし、水晶振動子68は、パッケージ307に実装されることが前提とされたものであっても構わない。図示の例では、水晶振動子68は、電子素子として、水晶素子3のみを有している。ただし、水晶振動子68は、温度センサ等の他の電子素子を有していても構わない。 A combination of the crystal element 3 and the package 67 may be regarded as a crystal oscillator 68 . The crystal oscillator 68 may be a general-purpose one that is not assumed to be mounted in the package 307 . From another point of view, the crystal oscillator 68 may be distributed alone. However, the crystal oscillator 68 may be one that is assumed to be mounted in the package 307 . In the illustrated example, the crystal oscillator 68 has only the crystal element 3 as an electronic element. However, the crystal oscillator 68 may have other electronic elements such as a temperature sensor.
 パッケージ67の構成は任意である。図示の例では、パッケージ67は、特に符号を付さないが、凹部を有する基部と、上記凹部を塞ぐ(密閉する)蓋とを有している。凹部の底面には、水晶用パッド33(ここでは不図示)が設けられている。そして、水晶素子3は、例えば、第1実施形態と同様に、引出電極17(ここでは不図示)と水晶用パッド33とが導電性接着剤41によって接合されることによって、パッケージ67に実装される。 The configuration of the package 67 is arbitrary. In the illustrated example, the package 67 has a base portion having a recess and a lid that closes (seales) the recess, although no particular reference numerals are attached. A crystal pad 33 (not shown here) is provided on the bottom surface of the recess. Then, the crystal element 3 is mounted in the package 67 by, for example, bonding the lead-out electrodes 17 (not shown here) and the crystal pads 33 with the conductive adhesive 41 in the same manner as in the first embodiment. be.
 パッケージ67は、図示の例以外にも種々可能である。例えば、パッケージ67は、水晶素子3が実装される板状の基部(基板)と、水晶素子3の上から基部に被せられるキャップ状の蓋とを有する構成であってもよい。また、例えば、パッケージ67は、パッケージ307のように2段以上の凹部を有するものであってもよいし、後述するパッケージ407(図11)のようにH型のものであってもよい。 Various packages 67 are possible other than the illustrated example. For example, the package 67 may have a plate-like base (substrate) on which the crystal element 3 is mounted, and a cap-like lid that covers the base from above the crystal element 3 . Also, for example, the package 67 may have two or more recesses like the package 307, or may be H-shaped like the package 407 (FIG. 11) described later.
 パッケージ7(又は207)の説明は、IC5がパッケージ67の内部に実装されない点を除いて、適宜にパッケージ67に援用されて構わない。例えば、基部は、セラミック等の絶縁材料からなる基体と、当該基体に設けられた導電層及び貫通導体とを有してよい。蓋は、シーム溶接等によって基部に固定される金属板とされてよい。 The description of the package 7 (or 207) may be appropriately applied to the package 67, except that the IC5 is not mounted inside the package 67. For example, the base may have a base made of an insulating material such as ceramic, and a conductive layer and through conductors provided on the base. The lid may be a metal plate that is secured to the base by seam welding or the like.
 パッケージ307に対するパッケージ67の実装に係る、パッド、バンプ69及び端子の構成は任意である。例えば、IC用パッド35、バンプ245及びIC端子21の説明は、パッケージ67の実装に係る、パッド、バンプ69及び端子に援用されてよい。例えば、パッケージ67の実装において、パッドとバンプ69との接合、及び/又はバンプ69と端子との接合は、Au同士の接合とされてよい。 The configuration of pads, bumps 69 and terminals for mounting the package 67 on the package 307 is arbitrary. For example, the description of the IC pads 35 , bumps 245 and IC terminals 21 may be incorporated into the pads, bumps 69 and terminals associated with mounting the package 67 . For example, in mounting the package 67, the bonding between the pads and the bumps 69 and/or the bonding between the bumps 69 and the terminals may be Au-to-Au bonding.
 なお、特に図示しないが、IC5は、その少なくとも一部(例えばIC端子21が位置している面)が封止樹脂49(後述する図11参照。換言すればアンダーフィル)によって覆われていてもよい。 Although not shown, the IC 5 may be covered with a sealing resin 49 (see FIG. 11, in other words, an underfill) at least partly (for example, the surface where the IC terminals 21 are located). good.
 本実施形態では、第1及び第2実施形態とは逆に、IC5に対して水晶素子3が下方(-D3側)に位置している。このように、IC5と水晶素子3との位置関係は、IC5を実装しなければ水晶素子3を実装できない構成に限定されない。ただし、水晶素子3がパッケージ67を介してパッケージ307に実装される態様において、第1又は第2実施形態と同様に、IC5が水晶素子3の下方に位置してもよい。 In this embodiment, contrary to the first and second embodiments, the crystal element 3 is positioned below the IC 5 (on the -D3 side). As described above, the positional relationship between the IC 5 and the crystal element 3 is not limited to the configuration in which the crystal element 3 cannot be mounted unless the IC 5 is mounted. However, in a mode where the crystal element 3 is mounted on the package 307 via the package 67, the IC 5 may be positioned below the crystal element 3 as in the first or second embodiment.
 図示の例では、接続部材として、バンプ245を例に取った。ただし、水晶素子3がパッケージ67を介してパッケージ307に実装される態様において、第1実施形態と同様に、接続部材として、ボンディングワイヤ45が用いられてもよい。例えば、IC5は、+D3側にIC端子21が面するように配置され、第1凹部325の底面に固定されてよい。第1凹部325の底面又は当該底面に設けられた台座部の上面にIC用パッド35が設けられてよい。そして、IC端子21とIC用パッド35とにボンディングワイヤ45が接合されてよい。 In the illustrated example, the bump 245 is taken as an example of the connection member. However, in a mode where the crystal element 3 is mounted on the package 307 via the package 67, the bonding wire 45 may be used as the connecting member as in the first embodiment. For example, the IC 5 may be arranged so that the IC terminal 21 faces the +D3 side and fixed to the bottom surface of the first recess 325 . The IC pads 35 may be provided on the bottom surface of the first recess 325 or on the top surface of a pedestal provided on the bottom surface. A bonding wire 45 may be bonded to the IC terminal 21 and the IC pad 35 .
 以上の実施形態によれば、第1及び第2実施形態と同様に、接続部材(バンプ245)は、金(Au)からなり、また、IC端子21は、第1Au層(Au層57)を有している。Au層57は、IC端子21の表面を構成しており、バンプ245が接合されている。従って、第1及び第2実施形態と同様の効果が奏される。例えば、ボイドV1及びクラックC1が発生する蓋然性が低減される。 According to the above embodiments, the connecting members (bumps 245) are made of gold (Au), and the IC terminals 21 are made of the first Au layer (Au layer 57), as in the first and second embodiments. have. The Au layer 57 constitutes the surface of the IC terminal 21, and the bump 245 is bonded thereto. Therefore, the same effects as those of the first and second embodiments can be obtained. For example, the probability of occurrence of voids V1 and cracks C1 is reduced.
 また、本実施形態では、水晶素子3は、パッケージ67に収容されている。この場合、例えば、導電性接着剤41を加熱する処理は、水晶振動子68及びIC5がパッケージ307に実装される前に行われる。ひいては、接続部材(バンプ245)が高温に晒される蓋然性及び/又は頻度が低減される。その結果、例えば、Au同士の接合となっていない接合部(接合部材とIC端子21との接合部以外のいずれかの接合部)において、図6等を参照して説明した不都合と同様の不都合が生じる蓋然性が低減される。 Also, in this embodiment, the crystal element 3 is housed in the package 67 . In this case, for example, the process of heating the conductive adhesive 41 is performed before the crystal oscillator 68 and the IC 5 are mounted on the package 307 . As a result, the probability and/or frequency that the connection member (bump 245) is exposed to high temperatures is reduced. As a result, for example, the same inconvenience as the inconvenience described with reference to FIG. is reduced.
<第4実施形態>
 図11は、第4実施形態に係る水晶発振器401の構成を示す断面図である。
<Fourth Embodiment>
FIG. 11 is a cross-sectional view showing the configuration of a crystal oscillator 401 according to the fourth embodiment.
 発振器401のパッケージ407は、断面視においてH形状を呈する、いわゆるH型のものとなっている。すなわち、パッケージ407の基部409は、第1凹部425と、第1凹部425とは反対側に開口している第2凹部427とを有している。水晶素子3は、第1凹部425に収容されている。IC5は、第2凹部427に収容されている。第1凹部425は、蓋11によって密閉されている。このように、水晶素子3は、IC5と同一の空間(凹部)に配置されていなくてもよい。 The package 407 of the oscillator 401 is a so-called H-shaped one that exhibits an H shape in cross section. That is, the base 409 of the package 407 has a first recess 425 and a second recess 427 that opens on the side opposite to the first recess 425 . The crystal element 3 is housed in the first concave portion 425 . IC5 is housed in the second recess 427 . The first recess 425 is sealed with the lid 11 . Thus, the crystal element 3 does not have to be arranged in the same space (recess) as the IC 5 .
 H型パッケージの具体的な構成は種々可能である。図示の例では、以下のとおりである。 Various specific configurations of the H-type package are possible. In the illustrated example:
 基部409は、絶縁材料からなる基体423と、基体423に設けられた導体層及び貫通導体を有している。基体423は、その全体が一体的に形成されている。なお、第1実施形態の基体23の説明で述べたように、このような基体423は、絶縁層の積層によって作製されてもよいし、他の方法によって作製されてもよい。蓋11は、他の実施形態と同様に、シーム溶接等によって基部409に固定される金属板とされてよい。 The base portion 409 has a base 423 made of an insulating material, and a conductor layer and through conductors provided on the base 423 . The base 423 is integrally formed as a whole. As described in the description of the substrate 23 in the first embodiment, such a substrate 423 may be produced by stacking insulating layers, or may be produced by another method. Lid 11 may be a metal plate secured to base 409 by seam welding or the like, as in other embodiments.
 第1凹部425は、水晶素子3を収容することに寄与している。第1凹部425の底面には、水晶用パッド33(ここでは不図示)が設けられている。そして、水晶素子3は、例えば、第1実施形態と同様に、引出電極17(ここでは不図示)と水晶用パッド33とが導電性接着剤41によって接合されることによって、パッケージ407に実装される。 The first recess 425 contributes to housing the crystal element 3 . A crystal pad 33 (not shown here) is provided on the bottom surface of the first recess 425 . Then, the crystal element 3 is mounted in the package 407 by, for example, bonding the extraction electrodes 17 (not shown here) and the crystal pads 33 with the conductive adhesive 41 in the same manner as in the first embodiment. be.
 第2凹部427は、IC5を収容することに寄与している。第2凹部427の底面には、IC用パッド35(ここでは不図示。図8参照)が設けられている。IC5は、+D3側の面にIC端子21(ここでは不図示。図8参照)が設けられている。そして、第2実施形態と同様に、IC5は、IC端子21とIC用パッド35とがバンプ245によって接合されることによって、パッケージ407に実装されている。図8は、D3方向の正負を逆にして、本実施形態におけるバンプ245及びその周囲の断面図として捉えられてよい。 The second recess 427 contributes to housing the IC5. An IC pad 35 (not shown here, see FIG. 8) is provided on the bottom surface of the second recess 427 . The IC 5 is provided with an IC terminal 21 (not shown here, see FIG. 8) on the +D3 side surface. As in the second embodiment, the IC 5 is mounted on the package 407 by bonding the IC terminals 21 and the IC pads 35 with the bumps 245 . FIG. 8 can be regarded as a cross-sectional view of the bump 245 and its surroundings in this embodiment, with the sign of the D3 direction reversed.
 図示の例では、IC5は、その全体が封止樹脂49によって覆われている。ただし、封止樹脂49は、-D3側の面がIC5の+D3側の面から-D3側の面までの範囲のいずれかの位置に位置するように設けられてよい。また、封止樹脂49は、設けられなくてもよい。 In the illustrated example, the IC 5 is entirely covered with a sealing resin 49 . However, the sealing resin 49 may be provided so that the −D3 side surface is located at any position in the range from the +D3 side surface of the IC 5 to the −D3 side surface. Also, the sealing resin 49 may not be provided.
 封止樹脂49は、例えば、加熱されることによって硬化する熱硬化性樹脂によって構成されてよい。熱硬化性樹脂としては、例えば、シリコーン樹脂及びエポキシ樹脂を挙げることができる。封止樹脂49は、導電性接着剤41を構成する樹脂及び/又は接着剤43を構成する樹脂と同一のものであってもよいし、異なるものであってもよい。 The sealing resin 49 may be made of, for example, a thermosetting resin that hardens when heated. Examples of thermosetting resins include silicone resins and epoxy resins. The sealing resin 49 may be the same as or different from the resin forming the conductive adhesive 41 and/or the resin forming the adhesive 43 .
 図示の例では、接続部材として、バンプ245を例に取った。ただし、パッケージ407がH型のものである場合において、接続部材として、ボンディングワイヤ45が用いられてもよい。例えば、IC5は、-D3側にIC端子21が面するように配置され、第2凹部427の底面に固定されてよい。第2凹部427の底面又は当該底面に設けられた台座部の上面(-D3側の面)にIC用パッド35が設けられてよい。そして、IC端子21とIC用パッド35とがボンディングワイヤ45によって接合されてよい。 In the illustrated example, the bump 245 is taken as an example of the connection member. However, when the package 407 is of H type, the bonding wire 45 may be used as the connection member. For example, the IC 5 may be arranged so that the IC terminal 21 faces the −D 3 side and fixed to the bottom surface of the second recess 427 . The IC pads 35 may be provided on the bottom surface of the second recess 427 or on the top surface (surface on the -D3 side) of the pedestal provided on the bottom surface. Then, the IC terminal 21 and the IC pad 35 may be bonded by the bonding wire 45 .
 H型のパッケージは、図示の例以外にも種々可能である。例えば、H型のパッケージは、第3実施形態に示したパッケージ67と類似した容器型のパッケージと、当該容器型のパッケージの下面(-D3側の外面)に接合される回路基板とを有してよい。そして、回路基板に開口が形成されることによって、断面視においてH形状が得られてよい。IC5は、容器型のパッケージの下面に実装され、上記の開口に収容されてよい。 Various types of H-type packages are possible other than the example shown in the figure. For example, the H-shaped package has a container-shaped package similar to the package 67 shown in the third embodiment, and a circuit board bonded to the lower surface (the outer surface on the −D3 side) of the container-shaped package. you can By forming the opening in the circuit board, an H shape in a cross-sectional view may be obtained. The IC 5 may be mounted on the bottom surface of the container-type package and housed in the opening.
 以上の実施形態によれば、第1~第3実施形態と同様に、接続部材(バンプ245)は、金(Au)からなり、また、IC端子21は、第1Au層(Au層57)を有している。Au層57は、IC端子21の表面を構成しており、バンプ245が接合されている。従って、第1~第3実施形態と同様の効果が奏される。例えば、ボイドV1及びクラックC1が発生する蓋然性が低減される。 According to the above embodiments, as in the first to third embodiments, the connection member (bump 245) is made of gold (Au), and the IC terminal 21 is made of the first Au layer (Au layer 57). have. The Au layer 57 constitutes the surface of the IC terminal 21, and the bump 245 is bonded thereto. Therefore, the same effects as those of the first to third embodiments can be obtained. For example, the probability of occurrence of voids V1 and cracks C1 is reduced.
 また、本実施形態では、水晶素子3は、IC5よりも先にパッケージ407に実装可能である。この場合、例えば、導電性接着剤41を加熱する処理は、IC5がパッケージ407に実装される前に行われる。ひいては、接続部材(バンプ245)が高温に晒される蓋然性及び/又は頻度が低減される。その結果、例えば、Au同士の接合となっていない接合部(接合部材とIC端子21との接合部以外のいずれかの接合部)において、図6等を参照して説明した不都合と同様の不都合が生じる蓋然性が低減される。 Also, in this embodiment, the crystal element 3 can be mounted on the package 407 before the IC 5 is mounted. In this case, for example, the process of heating the conductive adhesive 41 is performed before the IC 5 is mounted on the package 407 . As a result, the probability and/or frequency that the connection member (bump 245) is exposed to high temperatures is reduced. As a result, for example, the same inconvenience as the inconvenience described with reference to FIG. is reduced.
 発振器1は、IC5のうち少なくともIC端子21が位置している面(本実施形態では+D3側の面)を覆っている絶縁性の樹脂(封止樹脂49)を更に有してよい。 The oscillator 1 may further include an insulating resin (sealing resin 49) covering at least the surface of the IC 5 where the IC terminal 21 is located (the surface on the +D3 side in this embodiment).
 この場合、例えば、ボイドV1及びクラックC1の発生が低減されることによって、発振器1の特性が低下する蓋然性が低減されるという効果が特に有効である。具体的には、例えば、以下のとおりである。まず、封止樹脂49は、複数のIC端子21が互いに短絡する蓋然性を低減したり、異物がIC5とパッケージ7との間に侵入する蓋然性を低減したりすることに寄与する。一方、封止樹脂49を設けると、硬化時の収縮によってIC端子21に応力が加えられる。その結果、ボンディングワイヤ45のボイドV1又はクラックC1が拡大する可能性がある。しかし、本実施形態では、ボイドV1及びクラックC1が発生する蓋然性が低減されるから、当然に、ボイドV1及びクラックC1が拡大する蓋然性も低減される。ひいては、発振器1の特性が低下する蓋然性が低減される。 In this case, for example, it is particularly effective to reduce the possibility of deterioration of the characteristics of the oscillator 1 by reducing the generation of voids V1 and cracks C1. Specifically, for example, it is as follows. First, the sealing resin 49 contributes to reducing the probability that the plurality of IC terminals 21 are short-circuited with each other and that foreign matter enters between the IC 5 and the package 7 . On the other hand, when the sealing resin 49 is provided, stress is applied to the IC terminals 21 due to shrinkage during curing. As a result, the void V1 or crack C1 in the bonding wire 45 may expand. However, in the present embodiment, the probability of voids V1 and cracks C1 being generated is reduced, so naturally the probability of expansion of voids V1 and cracks C1 is also reduced. As a result, the probability that the characteristics of the oscillator 1 will deteriorate is reduced.
<実施例>
 比較例及び実施例に係る発振器を試作し、熱が発振器の特性低下に及ぼす影響を調べた。その結果、接続部材(ここではボンディングワイヤ45)とIC端子21との接合をAu同士の接合とすることによって、特性低下が低減されることが確認された。具体的には、以下のとおりである。
<Example>
Oscillators according to the comparative example and the working example were prototyped, and the influence of heat on deterioration of oscillator characteristics was investigated. As a result, it was confirmed that deterioration in characteristics was reduced by joining the connection member (bonding wire 45 in this case) and the IC terminal 21 to the Au-to-Au joint. Specifically, it is as follows.
(比較例)
 図12は、比較例に係る発振器の特性の経時変化を示す図である。
(Comparative example)
FIG. 12 is a diagram showing temporal changes in the characteristics of the oscillator according to the comparative example.
 この図において、横軸は、経過時間(単位:時間)を示しており、また、対数スケールとなっている。縦軸は、発振器が出力する発振信号の周波数の初期値Fに対する、経過時間に伴う周波数Fの変化量DFとの比DF/D(ppm)を示している。図中の複数の線は、複数の試作品のDF/Dの経時変化を示している。 In this figure, the horizontal axis indicates the elapsed time (unit: hours), and is on a logarithmic scale. The vertical axis indicates the ratio DF/D (ppm) of the change amount DF of the frequency F with elapsed time to the initial value F of the frequency of the oscillation signal output by the oscillator. A plurality of lines in the figure indicate changes over time in DF/D of a plurality of prototypes.
 比較例の構成は、図6を参照して説明したものである。すなわち、第1実施形態に係る発振器1において、IC端子を第1層51(具体的にはAl)のみによって構成したものである。この比較例に係る試作品を図5を参照して説明した製造方法の条件と同様の条件で作製し、その後、125℃の環境下に晒した。図12は、その125℃の環境下におけるDF/Dの経時変化を示している。 The configuration of the comparative example has been described with reference to FIG. That is, in the oscillator 1 according to the first embodiment, the IC terminals are configured only by the first layer 51 (specifically, Al). A prototype according to this comparative example was produced under the same conditions as those of the manufacturing method described with reference to FIG. 5, and then exposed to an environment of 125.degree. FIG. 12 shows the change over time of DF/D under the 125° C. environment.
 この図に示されているように、1000時間経過後のDF/Dは、絶対値で3ppm以上となっている。なお、1000時間経過後のDF/Dは、絶対値で10ppm以下であり、比較例に係る発振器は、一般的な発振器に要求される程度の特性維持の能力は有している。 As shown in this figure, the absolute value of DF/D after 1000 hours is 3 ppm or more. The absolute value of DF/D after 1000 hours has passed is 10 ppm or less, and the oscillator according to the comparative example has the ability to maintain characteristics required for general oscillators.
(実施例)
 図13は、実施例に係る発振器の特性の経時変化を示す図である。
(Example)
FIG. 13 is a diagram showing temporal changes in the characteristics of the oscillator according to the example.
 この図は、図12と同様の図である。ただし、図12とは異なり、横軸は、対数スケールとはなっていない。比較例と同様に、実施例についても、複数の試作品のDF/Dの経時変化が示されている。 This figure is similar to FIG. However, unlike FIG. 12, the horizontal axis does not have a logarithmic scale. Similar to the comparative example, the example also shows changes over time in DF/D of a plurality of prototypes.
 実施例に係る発振器の構成は、第1実施形態の発振器1の構成と同様である。換言すれば、実施例の構成は、比較例において、IC端子を4層(具体的にはAl/Ni/Pd/Au)からなるIC端子に置換したものである。他の条件は、実施例と比較例とで同様である。 The configuration of the oscillator according to the example is the same as the configuration of the oscillator 1 of the first embodiment. In other words, in the configuration of the example, the IC terminal in the comparative example is replaced with an IC terminal composed of four layers (specifically, Al/Ni/Pd/Au). Other conditions are the same between the example and the comparative example.
 図13に示されているように、実施例では、1000時間経過後のDF/Dは、絶対値で3ppm以下(より具体的には2ppm未満)となっている。すなわち、実施例における1000時間経過後のDF/Dは、実施例における1000時間経過後のDF/Dよりも小さい。これにより、実施例の特性維持の能力が比較例の特性維持の能力よりも高いことが確認できた。 As shown in FIG. 13, in the example, the absolute value of DF/D after 1000 hours is 3 ppm or less (more specifically, less than 2 ppm). That is, the DF/D after 1000 hours in the example is smaller than the DF/D after 1000 hours in the example. As a result, it was confirmed that the ability to maintain characteristics of the examples was higher than the ability to maintain characteristics of the comparative examples.
 なお、以上の実施形態において、ボンディングワイヤ45及びバンプ245は、それぞれ接続部材の一例である。IC端子21は、ICが有している端子の一例である。IC端子21のAu層57は、第1Au層の一例である。封止樹脂49は、ICの端子が位置している面を覆う絶縁性の樹脂の一例である。IC用パッド35は、接続部材が接合されているパッドの一例である。IC用パッド35の上層61は、第2Au層の一例である。励振電極15の主層65は、第3Au層の一例である。ステップST1は、接合ステップの一例である。ステップST2、ST3、ST5及びST8は、それぞれ加熱ステップの一例である。 It should be noted that in the above embodiments, the bonding wires 45 and the bumps 245 are examples of connection members. The IC terminal 21 is an example of a terminal that the IC has. The Au layer 57 of the IC terminal 21 is an example of the first Au layer. The sealing resin 49 is an example of an insulating resin that covers the surface of the IC where the terminals are located. The IC pad 35 is an example of a pad to which a connection member is bonded. The upper layer 61 of the IC pad 35 is an example of the second Au layer. The main layer 65 of the excitation electrode 15 is an example of the third Au layer. Step ST1 is an example of a joining step. Each of steps ST2, ST3, ST5 and ST8 is an example of a heating step.
 本開示に係る技術は、以上の実施形態に限定されず、種々の態様で実施されてよい。 The technology according to the present disclosure is not limited to the above embodiments, and may be implemented in various aspects.
 発振器の用途乃至は機能は適宜に設定されてよい。例えば、発振器は、クロック用発振器であってもよいし、電圧制御型発振器(略語:VCXO)であってもよいし、温度補償型発振器(略語:TCXO)であってもよいし、恒温槽付発振器(略語:OCXO)の恒温槽内の発振器であってもよい。既述のように、外部端子、IC用パッド及びIC端子の数及びその配置は、これらの発振器に要求される機能に応じて適宜に設定されてよい。 The usage or function of the oscillator may be set as appropriate. For example, the oscillator may be a clock oscillator, a voltage controlled oscillator (abbreviation: VCXO), a temperature compensated oscillator (abbreviation: TCXO), or a It may be an oscillator in a constant temperature oven of an oscillator (abbreviation: OCXO). As described above, the number and arrangement of external terminals, IC pads, and IC terminals may be appropriately set according to the functions required of these oscillators.
 実施形態では、発振器は、電子素子として、水晶素子及びICのみを有した。ただし、発振器は、これ以外の素子を有していてもよい。例えば、ICとは別個に温度センサを有していてもよい。 In the embodiment, the oscillator had only a crystal element and an IC as electronic elements. However, the oscillator may have other elements. For example, a temperature sensor may be provided separately from the IC.
 なお、本開示からは、水晶発振器よりも上位概念の圧電デバイス、圧電発振器又は水晶デバイスを抽出可能である。圧電デバイス及び圧電発振器においては、水晶素子に代えて、水晶以外の圧電体を含む圧電素子が用いられてよい。また、圧電デバイス及び水晶デバイスは、発振器でなくてよい。例えば、圧電デバイス及び水晶デバイスは、ICに代えて温度センサを有する振動子とされてよい。 From the present disclosure, it is possible to extract a piezoelectric device, a piezoelectric oscillator, or a crystal device, which are higher concepts than crystal oscillators. In the piezoelectric device and piezoelectric oscillator, a piezoelectric element containing a piezoelectric material other than crystal may be used in place of the crystal element. Also, the piezoelectric and crystal devices need not be oscillators. For example, piezoelectric devices and crystal devices may be vibrators with temperature sensors instead of ICs.
 実施形態の説明では、Auからなる接続部材(ワイヤボンディング又はバンプ)と、少なくとも表面がAuからなるIC端子との接合に着目した。ただし、本開示からは、他の構成に着目した発明が抽出されてもよい。この場合、接続部材及びIC端子の表面は、Au以外の材料(例えばAl又はCu)によって構成されていても構わない。 In the description of the embodiment, attention was paid to the bonding between the connection member (wire bonding or bump) made of Au and the IC terminal whose surface at least is made of Au. However, inventions focusing on other configurations may be extracted from the present disclosure. In this case, the surfaces of the connecting members and the IC terminals may be made of a material other than Au (for example, Al or Cu).
1…水晶発振器、3…水晶素子、5…IC、7…パッケージ、21…IC端子(端子)、…、45…ボンディングワイヤ(接続部材)、57…Au層(第1Au層)。 DESCRIPTION OF SYMBOLS 1... Crystal oscillator, 3... Crystal element, 5... IC, 7... Package, 21... IC terminal (terminal),..., 45... Bonding wire (connection member), 57... Au layer (first Au layer).

Claims (10)

  1.  水晶素子と、
     端子を有しているICと、
     前記水晶素子及び前記ICを保持しているパッケージと、
     金からなり、前記端子と前記パッケージとに接合されている、バンプ又はボンディングワイヤである、接続部材と、
     を有しており、
     前記端子は、当該端子の表面を構成しており、前記接続部材が接合されている、第1Au層を有している
     水晶発振器。
    a crystal element;
    an IC having terminals;
    a package holding the crystal element and the IC;
    a connection member, which is a bump or a bonding wire, made of gold and bonded to the terminal and the package;
    and
    The terminal comprises a first Au layer forming a surface of the terminal and to which the connecting member is bonded.
  2.  前記端子は、
      アルミニウム又はアルミニウムを主成分とする合金からなる第1層と、
      ニッケル又はニッケルを主成分とする合金からなり、前記第1層に対して前記第1Au層の側に重なる第2層と、
      パラジウム又はパラジウムを主成分とする合金からなり、前記第2層に対して前記第1Au層の側に重なる第3層と、を更に有しており、
     前記第1Au層は、前記第3層に重なっている
     請求項1に記載の水晶発振器。
    The terminal is
    a first layer made of aluminum or an alloy containing aluminum as a main component;
    a second layer made of nickel or an alloy containing nickel as a main component and overlapping the first layer on the side of the first Au layer;
    a third layer made of palladium or an alloy containing palladium as a main component and overlapping the second layer on the side of the first Au layer;
    The crystal oscillator according to claim 1, wherein the first Au layer overlaps the third layer.
  3.  前記パッケージは、
      第1面を有している基部と、
      前記第1面上に密閉空間が構成されるように前記基部に固定されている蓋と、を有しており、
     前記ICは、前記第1面に固定されて前記密閉空間に収容されており、
     前記水晶素子は、前記ICを介して前記第1面と対向する位置にて前記密閉空間に収容されており、かつ導電性フィラーが分散されている樹脂からなる導電性接着剤によって前記基部に接合されている
     請求項1又は2に記載の水晶発振器。
    The package includes:
    a base having a first surface;
    a lid secured to the base such that an enclosed space is defined on the first surface;
    The IC is fixed to the first surface and housed in the sealed space,
    The crystal element is accommodated in the sealed space at a position facing the first surface via the IC, and is bonded to the base by a conductive adhesive made of a resin in which a conductive filler is dispersed. 3. The crystal oscillator according to claim 1 or 2.
  4.  前記パッケージは、
      第1凹部と、当該第1凹部とは反対側に開口する第2凹部とを有している基部と、
      前記第1凹部を塞ぐ蓋と、を有しており、
     前記水晶素子は、前記第1凹部に収容されており、
     前記ICは、前記第2凹部に収容されている
     請求項1又は2に記載の水晶発振器。
    The package includes:
    a base having a first recess and a second recess opening on the side opposite to the first recess;
    and a lid that closes the first recess,
    The crystal element is accommodated in the first recess,
    3. The crystal oscillator according to claim 1, wherein said IC is accommodated in said second recess.
  5.  前記水晶素子は、
      水晶ブランクと、
      前記水晶ブランクに重なっている励振電極と、を有しており、
     前記水晶ブランクの前記励振電極が重なっている部分の厚さは、5μm以上30μm以下である
     請求項3に記載の水晶発振器。
    The crystal element is
    a crystal blank;
    an excitation electrode overlying the crystal blank;
    4. The crystal oscillator according to claim 3, wherein the thickness of the portion of the crystal blank where the excitation electrodes overlap is 5 [mu]m or more and 30 [mu]m or less.
  6.  前記ICのうち少なくとも前記端子が位置している面を覆っている絶縁性の樹脂を更に有している
     請求項1~5のいずれか1項に記載の水晶発振器。
    The crystal oscillator according to any one of claims 1 to 5, further comprising an insulating resin covering at least a surface of the IC on which the terminals are located.
  7.  前記パッケージは、前記接続部材が接合されているパッドを有しており、
     前記パッドは、当該パッドの表面を構成しており、前記接続部材が接合されている第2Au層を有している
     請求項1~6のいずれか1項に記載の水晶発振器。
    The package has a pad to which the connection member is bonded,
    The crystal oscillator according to any one of claims 1 to 6, wherein the pad has a second Au layer that constitutes the surface of the pad and to which the connection member is bonded.
  8.  前記水晶素子及び前記ICは、同一の密閉空間に収容されており、
     前記水晶素子は、
      水晶ブランクと、
      前記水晶ブランクに重なる励振電極と、を有しており、
     前記励振電極は、当該励振電極の表面を構成している第3Au層を有している
     請求項1~7のいずれか1項に記載の水晶発振器。
    The crystal element and the IC are housed in the same sealed space,
    The crystal element is
    a crystal blank;
    and an excitation electrode overlapping the crystal blank,
    8. The crystal oscillator according to claim 1, wherein the excitation electrode has a third Au layer forming a surface of the excitation electrode.
  9.  請求項1~8のいずれか1項に記載の水晶発振器の製造方法。 A method for manufacturing the crystal oscillator according to any one of claims 1 to 8.
  10.  前記第1Au層と前記パッケージが有する基部とに前記接続部材を接合する接合ステップと、
     前記接合ステップの後、前記接合ステップにおける前記接続部材の温度よりも高い温度に前記接続部材が晒される1つ以上の加熱ステップと、
     を有している請求項9に記載の水晶発振器の製造方法。
    a bonding step of bonding the connection member to the first Au layer and a base portion of the package;
    after the bonding step, one or more heating steps in which the connecting member is exposed to a temperature higher than the temperature of the connecting member during the bonding step;
    10. The method of manufacturing a crystal oscillator according to claim 9, comprising:
PCT/JP2022/027066 2021-07-30 2022-07-08 Crystal oscillator and manufacturing method therefor WO2023008138A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023538393A JPWO2023008138A1 (en) 2021-07-30 2022-07-08

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-125058 2021-07-30
JP2021125058 2021-07-30

Publications (1)

Publication Number Publication Date
WO2023008138A1 true WO2023008138A1 (en) 2023-02-02

Family

ID=85086804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027066 WO2023008138A1 (en) 2021-07-30 2022-07-08 Crystal oscillator and manufacturing method therefor

Country Status (2)

Country Link
JP (1) JPWO2023008138A1 (en)
WO (1) WO2023008138A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012090203A (en) * 2010-10-22 2012-05-10 Seiko Epson Corp Piezoelectric oscillator
JP2013207686A (en) * 2012-03-29 2013-10-07 Nippon Dempa Kogyo Co Ltd Crystal oscillator
JP2017130823A (en) * 2016-01-21 2017-07-27 京セラ株式会社 Piezoelectric oscillator and manufacturing method of the same
JP2018074350A (en) * 2016-10-28 2018-05-10 株式会社大真空 Surface-mount type piezoelectric oscillator and mounting structure to circuit board
JP2020136999A (en) * 2019-02-22 2020-08-31 京セラ株式会社 Crystal element, crystal device, and electronic apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012090203A (en) * 2010-10-22 2012-05-10 Seiko Epson Corp Piezoelectric oscillator
JP2013207686A (en) * 2012-03-29 2013-10-07 Nippon Dempa Kogyo Co Ltd Crystal oscillator
JP2017130823A (en) * 2016-01-21 2017-07-27 京セラ株式会社 Piezoelectric oscillator and manufacturing method of the same
JP2018074350A (en) * 2016-10-28 2018-05-10 株式会社大真空 Surface-mount type piezoelectric oscillator and mounting structure to circuit board
JP2020136999A (en) * 2019-02-22 2020-08-31 京セラ株式会社 Crystal element, crystal device, and electronic apparatus

Also Published As

Publication number Publication date
JPWO2023008138A1 (en) 2023-02-02

Similar Documents

Publication Publication Date Title
JP3406845B2 (en) Surface mount type crystal oscillator
JP2006279872A (en) Piezoelectric vibrator, manufacturing method therefor, and manufacturing method of piezoelectric oscillator using the piezoelectric vibrator
US7745978B2 (en) Quartz crystal device
JP2010252051A (en) Piezoelectric device, and method of manufacturing the same
JP2010050778A (en) Piezoelectric device
JP5152012B2 (en) Piezoelectric vibration device and method for manufacturing piezoelectric vibration device
WO2022025227A1 (en) Thermostatic bath-type piezoelectric oscillator
JP2000232332A (en) Surface mounted piezoelectric resonator
WO2023008138A1 (en) Crystal oscillator and manufacturing method therefor
JP2013031133A (en) Piezoelectric vibration device
WO2022050414A1 (en) Thermostatic bath-type piezoelectric oscillator
JP2009239475A (en) Surface mounting piezoelectric oscillator
WO2022181546A1 (en) Thermostatic bath-type piezoelectric oscillator
WO2021199790A1 (en) Constant temperature bath-type piezoelectric oscillator
WO2022186124A1 (en) Thermostatic bath-type piezoelectric oscillator
JP4085549B2 (en) Piezoelectric device and manufacturing method thereof
JP2018056303A (en) Bump terminal and piezoelectric device having the same built in, and manufacturing method therefor
US20230208388A1 (en) Vibrator device and method for manufacturing vibrator device
WO2022149541A1 (en) Piezoelectric oscillation device
WO2022181547A1 (en) Thermostatic bath-type piezoelectric oscillator
US20240136976A1 (en) Oven-controlled crystal oscillator
WO2022024880A1 (en) Piezoelectric device
WO2023074616A1 (en) Thermistor-mounted piezoelectric vibration device
JP2011055033A (en) Piezoelectric oscillator
JP2011233977A (en) Piezoelectric oscillator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849203

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023538393

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE