WO2023005947A1 - 电致变色膜、装置及其制作方法、电致变色玻璃和车辆 - Google Patents

电致变色膜、装置及其制作方法、电致变色玻璃和车辆 Download PDF

Info

Publication number
WO2023005947A1
WO2023005947A1 PCT/CN2022/108066 CN2022108066W WO2023005947A1 WO 2023005947 A1 WO2023005947 A1 WO 2023005947A1 CN 2022108066 W CN2022108066 W CN 2022108066W WO 2023005947 A1 WO2023005947 A1 WO 2023005947A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
conductive layer
electrode sub
layer
electrochromic
Prior art date
Application number
PCT/CN2022/108066
Other languages
English (en)
French (fr)
Inventor
王灿灿
王加赋
林寿
冯涛
Original Assignee
福耀玻璃工业集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福耀玻璃工业集团股份有限公司 filed Critical 福耀玻璃工业集团股份有限公司
Priority to EP22848552.0A priority Critical patent/EP4361718A1/en
Priority to KR1020247003921A priority patent/KR20240027823A/ko
Publication of WO2023005947A1 publication Critical patent/WO2023005947A1/zh
Priority to US18/424,065 priority patent/US20240210780A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J3/00Antiglare equipment associated with windows or windscreens; Sun visors for vehicles
    • B60J3/04Antiglare equipment associated with windows or windscreens; Sun visors for vehicles adjustable in transparency
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/1533Constructional details structural features not otherwise provided for

Definitions

  • the present application relates to the field of electrochromic elements, in particular to an electrochromic film, a device and a manufacturing method thereof, electrochromic glass and a vehicle.
  • Electrochromism refers to the phenomenon that the optical properties (reflectivity, transmittance, absorptivity, etc.) of materials undergo stable and reversible changes under the action of an external electric field. If electrochromic technology is applied to automotive glass, it can not only adjust the light intensity inside the car to improve the comfort of the car and play a role in preventing peeping, but also selectively absorb or reflect heat radiation inside and outside the car. , so that the use of air conditioning can be reduced to save energy.
  • the existing electrochromic film 100' includes a first transparent conductive layer, an electrochromic functional layer and a second transparent conductive layer stacked in sequence, and the first transparent conductive layer and the second transparent conductive layer pass through the electrode
  • the wire 120 introduces an external power source 200 to generate an electric field between the two transparent conductive layers, thereby changing the color and transparency of the electrochromic film 100 ′.
  • the electrode wires 120 are arranged on the edge of the transparent conductive layer, and the existing wiring method generally adopts the two-side wiring method.
  • openings 163 are usually dug at the edge of the electrochromic film 100 ′ to improve the fit between the two, thereby reducing wrinkles.
  • digging the opening 163 at the edge of the electrochromic film 100' will cut off the attached electrode wire 120, thus causing a large section of electrode wire 120 to fail, for example, the large section of electrode wire 120 below the left opening 163 in FIG. 1 It will fail, and the excessive voltage drop will cause uneven electric field in a large area in the transparent conductive layer, reducing the response rate and color uniformity of the electrochromic film 100 ′.
  • the application aims to solve at least one of the technical problems existing in the prior art. To this end, the application proposes an electrochromic film, a device and a manufacturing method thereof, electrochromic glass and a vehicle.
  • the first aspect of the present application provides an electrochromic film, which includes a first transparent conductive layer, a second transparent conductive layer and an electrochromic functional layer.
  • a plurality of electrode sub-wires are intermittently arranged, wherein, the plurality of electrode sub-wires are on the plane where the first transparent conductive layer or the second transparent conductive layer is located.
  • Orthographic projections have at least non-overlapping parts.
  • the electrochromic functional layer is disposed between the first transparent conductive layer and the second transparent conductive layer. Wherein, the extension directions of the electrode sub-wires in each segment are parallel to their corresponding transparent conductive layers.
  • a second aspect of the present application provides an electrochromic device, which includes a first substrate, a second substrate, and the electrochromic film described in the first aspect above.
  • the electrochromic film is arranged between the first substrate and the second substrate; the first substrate faces the first transparent conductive layer, and the second substrate faces the second transparent conductive layer. layer.
  • a third aspect of the present application provides a method for manufacturing an electrochromic device, the method comprising: providing a first substrate and a second substrate. A first transparent conductive layer is formed on the first substrate, and a second transparent conductive layer is formed on the second substrate. An electrochromic functional layer disposed between the first transparent conductive layer and the second transparent conductive layer is formed. On the edge of at least one side of each layer of the transparent conductive layer, a plurality of electrode sub-lines arranged intermittently are formed, wherein the plurality of electrode sub-lines are on the first transparent conductive layer or the second transparent conductive layer.
  • the orthographic projections on the plane have at least non-overlapping parts. Wherein, the extension directions of the electrode sub-wires in each segment are parallel to their corresponding transparent conductive layers.
  • the fourth aspect of the present application provides an electrochromic glass, which includes a first glass layer, a second glass layer, and the electrochromic device described in the second aspect above, wherein the electrochromic The device is disposed between the first glass layer and the second glass layer; the first glass layer faces the first substrate, and the second glass layer faces the second substrate.
  • a fifth aspect of the present application provides a vehicle, the vehicle comprising the electrochromic glass described in the fourth aspect above.
  • Electrochromic film provided by the present application, multiple sections of electrode sub-wires are arranged on the edge of at least one side of each transparent conductive layer, so that when openings are dug on the edge of the at least one side, the electrode sub-wires can be reduced.
  • the failure range is damaged, the influence of the pressure drop on the uniformity of discoloration and the response rate is reduced, and the electrochromic film after opening is ensured to change discoloration quickly and uniformly.
  • Fig. 1 is a schematic structural diagram of an existing electrochromic film.
  • Fig. 2 is a schematic structural diagram of the electrochromic film provided by the first embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of the transparent conductive layer in FIG. 2 .
  • Fig. 4a is a schematic structural diagram of the transparent conductive layer of the electrochromic film provided in the second embodiment of the present application.
  • Fig. 4b is a schematic structural diagram of the transparent conductive layer of the electrochromic film provided in the third embodiment of the present application.
  • Fig. 4c is a schematic structural diagram of the transparent conductive layer of the electrochromic film provided by the fourth embodiment of the present application.
  • Fig. 5 is a schematic structural view of the transparent conductive layer of the electrochromic film provided by the fifth embodiment of the present application.
  • Fig. 6 is a schematic structural view of the transparent conductive layer of the electrochromic film provided by the sixth embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of the transparent conductive layer of the electrochromic film provided by the seventh embodiment of the present application.
  • FIG. 8 is a schematic structural view of the transparent conductive layer of the electrochromic film provided by the eighth embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an electrochromic device provided in an embodiment of the present application.
  • FIG. 10 is a flow chart of the steps of the manufacturing method of the electrochromic device provided in the first embodiment of the present application.
  • FIG. 11 is a flow chart of the steps of the manufacturing method of the electrochromic device provided by the second embodiment of the present application.
  • FIG. 12 is a flow chart of the steps of the manufacturing method of the electrochromic device provided by the third embodiment of the present application.
  • Fig. 13 is a schematic structural diagram of the electrochromic glass provided by the embodiment of the present application.
  • Second transparent conductive layer 20 Second transparent conductive layer 20
  • the first conductive unit 51 The first conductive unit 51
  • the first substrate 41 is the first substrate 41
  • orientations or positional relationships indicated by the terms “upper”, “lower”, “left”, “right”, etc. are based on the orientations or positional relationships shown in the drawings, and are only for It is convenient to describe the application and simplify the description, but not to indicate or imply that the device or element referred to must have a specific orientation, be constructed and operate in a specific orientation, and thus should not be construed as limiting the application.
  • the terms “first”, “second”, etc. are used for descriptive purposes only, and should not be construed as indicating or implying relative importance.
  • the first embodiment of the present application provides an electrochromic film 100
  • the electrochromic film 100 includes a first transparent conductive layer 10, a second transparent conductive layer 20, an electrochromic functional layer 30, a multi-segment The first electrode sub-wire 11 and a plurality of second electrode sub-wires 21 .
  • FIG. 2 is only an example of the electrochromic film 100, and does not constitute a limitation to the electrochromic film 100.
  • the electrochromic film 100 may include more "layers" than shown in the figure, For example, an isolation layer, an electron transport layer, an optical adhesive layer, etc. may also be included, which are not limited here.
  • the electrochromic functional layer 30 is disposed between the first transparent conductive layer 10 and the second transparent conductive layer 20 .
  • the first transparent conductive layer 10 and the second transparent conductive layer 20 have characteristics of high light transmittance and good conductivity.
  • the first transparent conductive layer 10 and the second transparent conductive layer 20 may include, but are not limited to, conductive films containing materials such as indium tin oxide (ITO), metal oxides, metal nanowires, or carbon nanotubes. .
  • the materials of the first transparent conductive layer 10 and the second transparent conductive layer 20 may be the same or different.
  • a multi-segment electrode sub-wire means that the number of electrode sub-wires is not less than 2 segments. Quantity is not limited.
  • multiple sections of electrode sub-lines are intermittently arranged on the edge of at least one side of each layer of the transparent conductive layer, wherein the plurality of sections of the electrode sub-lines are on the first transparent conductive layer 10 or the second transparent conductive layer 10
  • Orthographic projections on the plane where the two transparent conductive layers 20 are located have at least non-overlapping portions, wherein the extension directions of the electrode sub-lines in each segment are parallel to their corresponding transparent conductive layers.
  • the discontinuous arrangement of multiple segments of electrode sub-wires means that two adjacent segments of the electrode sub-wires on the same side of each layer of the transparent conductive layer are spaced from each other and not connected.
  • the orthographic projection of the multiple segments of first electrode sub-wires 11 on the first transparent conductive layer 10 on the preset plane and the orthographic projection of the multiple segments of second electrode sub-wires 21 on the second transparent conductive layer 20 on the preset plane do not completely overlap, wherein the preset plane is the plane where the first transparent conductive layer 10 or the second transparent conductive layer 20 is located, and the extension direction of each segment of the first electrode sub-line 11 is parallel to the first A transparent conductive layer 10 , the extension direction of each segment of the second electrode sub-line 21 is parallel to the second transparent conductive layer 20 .
  • the orthographic projections of the plurality of electrode sub-wires on the plane where the first transparent conductive layer 10 or the second transparent conductive layer 20 are located do not have overlapping parts.
  • multiple segments of electrode sub-wires on each layer of the transparent conductive layer are arranged on the edges of a group of opposite sides or on the edges of two adjacent sides, and the electrode sub-wires on at least one side are spaced apart from each other arranged.
  • the multi-segment electrode sub-wires on each layer of the transparent conductive layer are arranged on the edges of a group of opposite sides, and the electrode sub-wires on the same side are arranged at intervals from each other, and the electrode sub-wires on the opposite sides The electrode sub-wires are arranged alternately.
  • first electrode sub-wires 11 on the first transparent conductive layer 10 are arranged at intervals on the edges of the first group of opposite sides, and the first electrode sub-wires on the same side 11 are arranged at intervals, and the first electrode sub-lines 11 on the opposite sides are arranged alternately.
  • the multiple sections of second electrode sub-lines 21 on the second transparent conductive layer 20 are arranged at intervals on the edges of the second group of opposite sides, and the second electrode sub-lines 21 on the same side are arranged at intervals, and on the opposite sides The second electrode sub-lines 21 are arranged alternately.
  • the orthographic projection of the second group of opposite sides on the plane where the first transparent conductive layer 10 is located coincides with the first group of opposite sides.
  • first electrode sub-wires 11 in the first transparent conductive layer 10 are arranged on the first group of opposite edges thereof close to the electrochromic
  • the first electrode sub-lines 11 on the same side are arranged at intervals, and the first electrode sub-lines 11 on the opposite side are arranged alternately.
  • the multiple segments of first electrode sub-wires 11 on the first transparent conductive layer 10 may also be arranged on the first group of opposite edges of the first transparent conductive layer 10 away from the electrochromic functional layer. 30 on the side. As shown in FIG.
  • the first set of opposite sides of the first transparent conductive layer 10 are opposite sides extending along the OY direction. Specifically, along the OY direction, odd-numbered segments of the first electrode sub-lines 11 in the first transparent conductive layer 10 are arranged at intervals on the edge of its second side, and even-numbered segments of the first electrode sub-wires 11 are arranged at intervals On the edge of the first side, and the first electrode sub-lines 11 on the first side and the first electrode sub-lines 11 on the second side are interlaced and complementary, the first electrode sub-lines 11 The total length is approximately equal to the length of the first side of the first transparent conductive layer 10 .
  • multiple segments (for example, 4 segments) of second electrode sub-wires 21 on the second transparent conductive layer 20 are arranged on the second group of opposite edges of the second transparent conductive layer 20 close to the electro-conductive layer 20.
  • the multi-segment second electrode sub-lines 21 on the second transparent conductive layer 20 can also be arranged on the second group of opposite edges of the second transparent conductive layer 20
  • the total length of the second electrode sub-wires 21 is approximately equal to the length of the first side of the second transparent conductive layer 20 .
  • the second group of opposite sides of the second transparent conductive layer 20 is opposite sides extending along the OY direction.
  • the structure of the second transparent conductive layer 20 is different from that of the first transparent conductive layer 10 in that: along the OY direction, the odd-numbered segments of the second electrode sub-lines 21 in the second transparent conductive layer 20 are arranged at intervals On the edge of the first side, even segments of the second electrode sub-wires 21 are arranged at intervals on the edge of the second side.
  • the multi-section The orthographic projection of the electrode sub-lines on the plane where the first transparent conductive layer 10 or the second transparent conductive layer 20 is located does not overlap, therefore, it is possible to prevent the first electrode sub-lines 11 from the second transparent conductive layer A short circuit occurs between the electrode sub-wires 21 .
  • the first electrode sub-wire 11 and the second electrode sub-wire 21 can be used including but not limited to coated copper foil and/or silver paste, adhered metal sheet, flexible circuit board (FPC ) and so on.
  • FPC flexible circuit board
  • an insulating layer needs to be added on the electrode sub-line to ensure that there is no short circuit between the two transparent conductive layers.
  • the lengths of the multiple segments of the first electrode sub-wires 11 may be equal or unequal, and the lengths of the multiple segments of the second electrode sub-wires 21 may be equal or unequal.
  • the lengths of the multiple segments of the first electrode sub-wires 11 and the multiple segments of the second electrode sub-wires 21 are all equal, and the multiple segments of the first electrode sub-wires 11 and the multiple segments of the second electrode sub-wires 21 are one by one. relatively arranged.
  • the lengths of the multiple segments of the first electrode sub-wire 11 and the multiple segments of the second electrode sub-wire 21 may also be different, which is not limited here.
  • the electrochromic film 100 further includes a first bus line 14 , a second bus line 24 and a plurality of lead-out lines electrically connected to the plurality of electrode sub-wires in one-to-one correspondence.
  • the multiple segments of the first electrode sub-wires 11 arranged on the first transparent conductive layer 10 are electrically connected to the first bus lines 14 through their corresponding first lead-out lines 12, and the first bus lines 14 It is used to introduce external power to the multiple segments of the first electrode sub-wire 11 connected thereto.
  • the multiple segments of the second electrode sub-wires 21 arranged on the second transparent conductive layer 20 are electrically connected to the second bus lines 24 through their corresponding second lead-out lines 22, and the second bus lines 24 are used for The multi-segment second electrode sub-wires 21 connected thereto lead to external power supply.
  • the external power source When the electrochromic film 100 is connected to an external power source, the external power source generates an electric field between the first transparent conductive layer 10 and the second transparent conductive layer 20, so that the electrochromic film 100 realizes discoloration .
  • the term "discoloration" refers to changes in appearance or optical parameters (such as reflectivity, transmittance, chromaticity, etc.).
  • the first bus line 14 may include one bus line or multiple bus lines.
  • the second bus line 24 may include one bus line or multiple bus lines, which is not limited here.
  • the electrode sub-wires on the transparent conductive layers of each layer may also be introduced into the external power supply uniformly without passing through the corresponding bus lines, and each segment of the electrode sub-wires may be separately introduced into the external power supply, as long as It only needs to ensure that when the electrochromic film 100 is connected to an external power source, the electrode sub-wires of each section on the same layer of the transparent conductive layer maintain the same potential.
  • the operating current will generate a voltage drop in the process of being conducted to the entire layer area of the transparent conductive layer, and if the voltage drop is too large, it will Slower response rate causing discoloration, uneven discoloration.
  • the electrochromic film 100 or 100' is applied to an electrochromic glass with a large crown height, before the electrochromic film 100 or 100' is combined with the finished glass, in order to improve the bonding degree and reduce the Wrinkles require digging openings 163 at the edge of the electrochromic film 100 or 100'. Obviously, as shown in FIG.
  • the openings 163 will only cause all A small section of the first electrode sub-line 11 in the second section of the first edge of the first transparent conductive layer 10 along the OY direction fails, so the conduction of the operating current on the other first electrode sub-lines 11 is almost Not affected. It can be understood that, the shorter the electrode sub-wires arranged on the edge of each layer of the transparent conductive layer are, and the denser they are, the smaller the effect of digging the opening 163 on the conduction effect of the working current will be. In particular, when the opening 163 is provided in the area where the electrode sub-wires are not arranged, the influence on the conduction effect of the working current is smaller.
  • the electrochromic film 100 provided by the present application, multiple sections of electrode sub-wires are arranged on the edge of at least one side of each transparent conductive layer, so that when openings are dug on the edge of the at least one side, the number of electrode sub-wires can be reduced.
  • the damage and failure range of the electrochromic film 100 after opening can be ensured to change color quickly and uniformly by reducing the influence of pressure drop on the uniformity of color change and response rate.
  • each layer of the transparent conductive layer of the electrochromic film 100 is formed with a plurality of separation grooves running through its opposite sides or adjacent sides.
  • the separation groove is used to divide the entire layer area of the transparent conductive layer where it is located into a plurality of conductive units, wherein each of the conductive units corresponds to a section of the electrode sub-line, and between two adjacent conductive units The rooms are kept independent from each other by the separation groove.
  • Each section of the electrode sub-wire is used to conduct the working current to its corresponding conductive unit substantially uniformly when the external power source is introduced.
  • each of the separation grooves runs through the opposite two sides or two adjacent sides of the transparent conductive layer, which means that the separation grooves are in the depth direction (the OZ direction as shown in Figure 4a) Cut off the transparent conductive layer on the top, extending from one side of the transparent conductive layer to the opposite or adjacent other side in the extension direction (OX direction as shown in Figure 4a) so that the transparent conductive layer is completely separated Open, as shown in Figure 4a, three separation grooves 13 extend from the first side of the first transparent conductive layer 10 to the second side, and the first transparent conductive layer 10 is separated into four independent first conductive layers. Unit 51.
  • each separation groove 13 is formed in the first transparent conductive layer 10, and the separation grooves 13 extend along the OX direction through the first group of opposite sides, and each separation groove 13
  • the two ends of the first transparent conductive layer 10 are respectively connected to the ends of the two adjacent electrode sub-lines along the OY direction, and the three separation grooves 13 divide the entire layer area of the first transparent conductive layer 10 into four first Conductive units 51, wherein each of the first conductive units 51 corresponds to a section of the first electrode sub-wire 11, and each section of the first electrode sub-wire 11 is used to divert the operating current to approximately uniformly conduct to its corresponding first conductive unit 51 .
  • each second conductive unit 52 corresponds to a section of the second electrode sub-line 21 .
  • the plurality of separation grooves in each layer of the transparent conductive layer are substantially parallel to each other. It can be understood that when a section of the electrode sub-wire corresponding to each conductive unit substantially covers its edge, the uniformity of the operating current during conduction is the best.
  • the two ends of the separation groove 13 may not be in contact with the ends of the two adjacent electrode sub-lines along the OY direction, as shown in FIG. 4b,
  • the extension direction of the separation grooves in the transparent conductive layers of each layer is at a certain angle to the OX direction, for example, 1° to 5°.
  • a section of the electrode sub-wire corresponding to each conductive unit is not laid. If the edge is completely filled, then the uniformity of the working current conduction in each of the conductive units is not as good as that of the embodiment shown in FIG. 4a.
  • a plurality of the separation grooves in each layer of the transparent conductive layer intersect.
  • the two separation grooves 13 intersect, and the two separation grooves 13 separate the first transparent conductive layer 10 into four first conductive units 51, each of the first conductive units 51 and A segment of the first electrode sub-line 11 corresponds.
  • the two separation grooves 23 intersect, and the two separation grooves 23 separate the second transparent conductive layer 20 into four second conductive units 52, each of the second conductive units 52 is connected to a section of the The second electrode sub-line 21 corresponds.
  • multiple segments of electrode sub-lines on each transparent conductive layer are intermittently arranged on the edge of one side thereof.
  • first electrode sub-wires 11 in the first transparent conductive layer 10 are arranged on the edge of the first side thereof, and multiple segments of second electrode sub-wires in the second transparent conductive layer 20
  • the electrode sub-wires 21 are arranged on the edge of the second side, wherein the orthographic projection of the second side on the plane where the first transparent conductive layer 10 is located coincides with the opposite side of the first side.
  • the separation grooves are limited to a width that cannot be distinguished by the naked eye as much as possible.
  • the width of the plurality of separation grooves is 5 ⁇ m ⁇ 200 ⁇ m.
  • the plurality of separation grooves in each layer of the transparent conductive layer are substantially parallel to each other and arranged at equal intervals. It can be understood that when the plurality of separation grooves are substantially parallel to each other and distributed at equal intervals, the size of each of the conductive units is approximately equal, and the uniformity of the operation current conduction in each of the conductive units is better.
  • the plurality of separation grooves in each transparent conductive layer separates the transparent conductive layer into a plurality of conductive units, so that each segment of the electrode sub-line corresponds to a segment of the conductive unit. Since the conductive units remain independent from each other, when digging the opening 163 on the edge of the electrochromic film 100, only the electrode sub-wires on the conductive unit where the opening 163 is located will be cut off, so that the opening 163 can be dug. The scope of influence is narrowed to the conductive unit where the opening 163 is located, so as to ensure that the effect of the conduction of the working current in other complete conductive units is not affected.
  • the first electrode sub-lines 11 in the first transparent conductive layer 10 are arranged on the edges of the first group of opposite sides, and the first electrodes on the same side
  • the sub-wires 11 are arranged at intervals, and the first electrode sub-wires 11 on opposite sides are arranged alternately.
  • the multiple sections of second electrode sub-lines 21 in the second transparent conductive layer 20 are arranged on the edges of the second group of opposite sides, and the second electrode sub-lines 21 on the same side are arranged at intervals from each other, and the second electrode sub-lines 21 on the opposite sides are arranged at intervals.
  • the two-electrode sub-wires 21 are arranged alternately. Wherein, the orthographic projection of the second group of opposite sides on the plane where the first transparent conductive layer is located intersects with the first group of opposite sides.
  • first electrode sub-lines 11 in the first transparent conductive layer 10 are arranged at intervals on the edges of the first group of opposite sides.
  • the first set of opposite sides of the first transparent conductive layer 10 are opposite sides extending along the OY direction. Specifically, along the OY direction, odd-numbered segments of the first electrode sub-lines 11 in the first transparent conductive layer 10 are spaced on the edge of the second side, and even-numbered segments of the first electrode sub-lines 11 are spaced on the edge of the second side.
  • the first electrode sub-lines 11 on the first side and the first electrode sub-lines 11 on the second side are mutually complementary.
  • the separation grooves 13 are formed in the first transparent conductive layer 10, the separation grooves 13 extend through the first group of opposite sides along the OX direction, and the two ends of each separation groove 13 are respectively connected to the direction along the OY direction.
  • the ends of two adjacent sections of the first electrode sub-wire 11 are connected, and the three separation grooves 13 divide the entire layer area of the first transparent conductive layer 10 into four first conductive units 51, wherein, Each of the first conductive units 51 corresponds to a section of the first electrode sub-line 11.
  • the length of the first electrode sub-line 11 fully covers the edge of the first conductive unit 51, but does not cross phases.
  • each section of the first electrode sub-wire 11 Adjacent to the separation groove, each section of the first electrode sub-wire 11 is used to conduct the working current to its corresponding first conductive unit 51 approximately uniformly when an external power source is introduced.
  • the multiple sections of second electrode sub-lines 21 in the second transparent conductive layer 20 are arranged at intervals on the edges of the second group of opposite sides, as shown in FIG. 5 , in this embodiment, the second transparent conductive layer 20
  • the second group of opposite sides are opposite sides extending along the OX direction. Specifically, along the OX direction, odd-numbered segments of the second electrode sub-lines 21 in the second transparent conductive layer 20 are spaced on the edge of the fourth side, and even-numbered segments of the second electrode sub-lines 21 are spaced on the edge of the fourth side.
  • Three separation grooves 23 are formed in the second transparent conductive layer 20, the separation grooves 23 extend through the second group of opposite sides along the OY direction, and the two ends of each separation groove 23 are respectively connected to the two sides along the OX direction.
  • each section of the second electrode sub-wire 21 is used to conduct the operating current to its corresponding second conductive unit 52 approximately uniformly when an external power source is introduced.
  • the multiple segments of the first electrode sub-lines 11 on the first transparent conductive layer 10 are arranged on the first group of opposite sides (that is, the opposite sides extending along the OY direction), and the second transparent conductive layer
  • the plurality of sections of the second electrode sub-wires 21 on 20 are arranged on the second group of opposite sides (that is, the opposite sides extending along the OX direction), so that the edge of the electrochromic film 100 is left without the electrode sub-wires. Therefore, if an opening is dug in the openable area 40, the first electrode sub-line 11 and the second electrode sub-line 21 will not be cut off.
  • the electrode sub-wires on the two transparent conductive layers are arranged on different opposite sides of the electrochromic film 100, and the electrode sub-wires on a group of opposite sides on the same transparent conductive layer
  • the lines are arranged in a staggered interval, which can ensure that the openable area 40 remains on the surrounding edges of the electrochromic film 100 . Therefore, when it is necessary to open the openings 163 around the electrochromic film 100, it can be ensured that multiple sections of the electrode sub-wires will not be cut off, so that the conduction effect of the operating current is not affected at all. The rapid and uniform discoloration of the electrochromic film 100 is realized.
  • the distance between two adjacent separation grooves is determined according to the width of the opening 163 at the edge of the transparent conductive layer.
  • the distance between two adjacent separation grooves is not less than twice the width of the opening 163 .
  • the shape of the separation groove may include but not limited to straight line, wavy line (as shown in FIG. 6 ), and zigzag line, as long as the transparent conductive layer can be separated It is enough to form a plurality of said conductive units, preferably linear.
  • the plurality of separation grooves in each layer of the transparent conductive layer are substantially parallel to each other and arranged at equal intervals.
  • the lengths of the electrode sub-wires on each layer of the transparent conductive layer may be equal or different, preferably equal, so that the operating current can be conducted more uniformly .
  • a section of the electrode sub-wire corresponding to each conductive unit substantially covers the edge where it is located, in other words, the length of the electrode sub-wire does not exceed the length of the edge where it is located.
  • the electrochromic film 100 is in the shape of a parallelogram.
  • the length of the first electrode sub-line 11 fully covers the edge of the first conductive unit 51, but does not cross the adjacent separation groove
  • the length of the second electrode sub-line 21 fully covers the second conductive unit 51.
  • the edge of the unit 52, but not across the adjacent separation grooves, the separation grooves 13 in the first transparent conductive layer 10 are arranged parallel to and equidistant from the first group of opposite sides, and the separation grooves in the second transparent conductive layer 20
  • the slots 23 and their second set of opposite sides are parallel and arranged at equal intervals. In this way, the working current can be conducted more uniformly.
  • the electrochromic film 100 is in the shape of a trapezoid
  • the first electrode sub-lines 11 on the first transparent conductive layer 10 are arranged on the edges of the first group of opposite sides, and The first electrode sub-lines 11 on the two sides of the first group of opposite sides are arranged alternately.
  • the length of the first electrode sub-lines 11 fully covers the edge of the first conductive unit 51, but does not across adjacent dividers.
  • the multiple sections of second electrode sub-wires 21 in the second transparent conductive layer 20 are arranged at intervals on the edges of the second group of opposite sides, and the second electrode sub-wires 21 on two sides of the second group of opposite sides are mutually connected.
  • the length of the second electrode sub-wires 21 completely covers the edge of the second conductive unit 52, but does not cross adjacent separation grooves.
  • the electrochromic film 100 can conduct the operating current to the entire layer area of the transparent conductive layer approximately uniformly, and at the same time, an openable area 40 is left for opening 163 to ensure that the operating current The conduction of is hardly affected by the opening 163.
  • the electrode sub-wires on the two transparent conductive layers are arranged on different opposite sides, so that the edge of the electrochromic film 100 is left without the electrode sub-wires.
  • the openable area 40 when the opening is dug on the openable area 40, the electrode sub-wire will not be cut off, so that the uniformity of the electric field in the transparent conductive layer can be greatly improved, thereby ensuring that the electric field
  • the response rate of the electrochromic film 100 realizes rapid and uniform discoloration of the electrochromic film 100 .
  • the embodiment of the present application also provides an electrochromic device 1, the electrochromic device 1 includes a first substrate 41, a second substrate 42 and the above-mentioned electrochromic film 100, wherein the electrochromic device The chromic film 100 is disposed between the first substrate 41 and the second substrate 42 .
  • the first substrate 41 faces the first transparent conductive layer 10
  • the second substrate 42 faces the second transparent conductive layer 20 .
  • the first substrate 41 and the second substrate 42 are strong and transparent, and can protect the electrochromic film 100 from external physical damage.
  • the first substrate 41 and the second substrate 42 can be made of flexible or non-flexible materials, wherein the flexible material can be made of a polymer material, and the polymer material can include but not limited to polymer Ethylene terephthalate, polycarbonate, polyacrylic, glass or acrylic for non-flexible materials.
  • the materials of the first substrate 41 and the second substrate 42 may be the same or different. The above is only an example of the materials of the first substrate 41 and the second substrate 42 , and should not be construed as a limitation to the first substrate 41 and the second substrate 42 .
  • each layer of the transparent conductive layer and its adjacent substrate form a stacked structure, and a plurality of partitions are formed on each stacked structure through the opposite sides or adjacent sides of the transparent conductive layer.
  • a plurality of said separation grooves are used to separate the whole area of the transparent conductive layer where it is located into a plurality of conductive units, wherein each said conductive unit corresponds to a section of electrode sub-wire, and two adjacent said The conductive units remain independent from each other.
  • the separation groove extends along a direction in which the transparent conductive layer included in the stack structure where it is located points to the substrate, and the depth of the separation groove is greater than or equal to the thickness of the transparent conductive layer included in the stack structure where it is located, and less than or equal to Its stacked structure includes the sum of the thickness of the transparent conductive layer and 0.5 times the thickness of the substrate.
  • a plurality of separation grooves 13 are formed on the first stack structure formed by the first substrate 41 and the first transparent conductive layer 10 by means of laser ablation, mechanical cutting or etching. The groove 13 completely cuts off the first transparent conductive layer 10 while ensuring that the cut depth of the first substrate 41 does not exceed 50% of its thickness.
  • the formation method of the separation groove 23 is similar to that of the separation groove 13 .
  • the electrochromic device 1 provided by the present application adopts the above-mentioned electrochromic film 100, and arranges a plurality of sections of electrode sub-wires on the edge of at least one side of each transparent conductive layer, so that an opening is dug on the edge of the at least one side , it can reduce the damaged failure range of the electrode sub-wire, thereby improving the uniformity of the electric field in the transparent conductive layer, thereby ensuring the response rate of the electrochromic device 1, and realizing the electrochromic device. 1 Quickly and evenly change color.
  • the present application also provides a method for manufacturing an electrochromic device 1, the method includes the following steps:
  • Step 101 providing a first substrate 41 and a second substrate 42 .
  • the first substrate 41 and the second substrate 42 are strong and transparent, and can protect the electrochromic film 100 from external physical damage.
  • the first substrate 41 and the second substrate 42 can be made of flexible or non-flexible materials, wherein the flexible material can be made of a polymer material, and the polymer material can include but not limited to polymer Ethylene terephthalate, polycarbonate, polyacrylic, glass or acrylic for non-flexible materials.
  • the materials of the first substrate 41 and the second substrate 42 may be the same or different. The above is only an example of the materials of the first substrate 41 and the second substrate 42 , and should not be construed as a limitation to the first substrate 41 and the second substrate 42 .
  • Step 102 forming a first transparent conductive layer 10 on the first substrate 41 , and forming a second transparent conductive layer 20 on the second substrate 42 .
  • the first transparent conductive layer 10 and the second transparent conductive layer 20 have the characteristics of high light transmittance and good conductivity.
  • the first transparent conductive layer 10 and the second transparent conductive layer 20 may include, but are not limited to, conductive films containing materials such as indium tin oxide (ITO), metal oxides, metal nanowires, or carbon nanotubes. .
  • the materials of the first transparent conductive layer 10 and the second transparent conductive layer 20 may be the same or different.
  • the first transparent conductive layer 10 may be formed by sputtering on the first substrate 41 by means of magnetron sputtering. Further, the first The transparent conductive layer may be an ITO layer.
  • the formation method of the second transparent conductive layer 20 is similar to the formation method of the first transparent conductive layer 10 .
  • Step 103 forming an electrochromic functional layer 30 disposed between the first transparent conductive layer 10 and the second transparent conductive layer 20 .
  • Step 104 forming a plurality of segments of electrode sub-lines arranged intermittently on the edge of at least one side of each layer of the transparent conductive layer.
  • the orthographic projections of the plurality of electrode sub-wires on the plane where the first transparent conductive layer 10 or the second transparent conductive layer 20 are located have at least non-overlapping parts. It can be understood that, the orthographic projection of the multiple segments of first electrode sub-wires 11 on the first transparent conductive layer 10 on a preset plane is in the preset plane with the multiple segments of second electrode sub-wires 21 on the second transparent conductive layer 20 The orthographic projections on the planes do not completely overlap, wherein the preset plane is the plane where the first transparent conductive layer 10 or the second transparent conductive layer 20 is located. Preferably, the orthographic projections of the plurality of electrode sub-wires on the plane where the first transparent conductive layer 10 or the second transparent conductive layer 20 are located do not have overlapping parts.
  • step 103 and step 104 is not limited. In some embodiments, step 104 may be performed first, and then step 103 may be performed.
  • multiple segments of the electrode sub-wires may be formed by means including but not limited to coating copper foil and/or silver paste, adhering metal sheets, flexible printed circuit (FPC), and the like.
  • the material of the electrode sub-wire is a transparent material, for example, materials including but not limited to silver nanowire conductive film, carbon nanotube transparent conductive film or graphene transparent conductive film can be selected.
  • multiple electrode sub-wires are arranged on the edge of at least one side of each transparent conductive layer, so that when digging an opening on the edge of the at least one side, the The damage and failure range of the electrode sub-wires reduces the influence of the voltage drop on the uniformity of discoloration and the response rate, and ensures that the electrochromic device 1 after the opening changes discoloration quickly and uniformly.
  • the present application also provides another manufacturing method of the electrochromic device 1, the method includes the following steps:
  • Step 101 providing a first substrate 41 and a second substrate 42 .
  • Step 102 forming a first transparent conductive layer 10 on the first substrate 41 , and forming a second transparent conductive layer 20 on the second substrate 42 .
  • Step 1021 forming a plurality of separation grooves 13 in the first transparent conductive layer 10 through its opposite sides or two adjacent sides, so that the entire layer area of the first transparent conductive layer 10 is covered by the plurality of separation grooves 13 Separated into a plurality of first conductive units 51 .
  • a plurality of separation grooves 23 are formed in the second transparent conductive layer 20 through its opposite sides or two adjacent sides, so that the entire layer area of the second transparent conductive layer 20 is divided into multiple divisions by the plurality of separation grooves 23.
  • a second conductive unit 52 is formed in the second transparent conductive layer 20 through its opposite sides or two adjacent sides.
  • the first substrate 41 and the first transparent conductive layer 10 form a first stack structure
  • the second substrate 42 and the second transparent conductive layer 20 form a second stack structure.
  • the first transparent conductive layer 10 and the Multiple separation grooves are formed in the second transparent conductive layer 20 .
  • each of the separation grooves runs through the opposite two sides or two adjacent sides of the transparent conductive layer, which means that the separation grooves cut off the transparent conductive layer in the depth direction, and separate from the transparent conductive layer in the extending direction.
  • One side of the conductive layer extends to its opposite or adjacent side such that the transparent conductive layers are completely separated.
  • the depth of each separation groove is greater than or equal to the thickness of the transparent conductive layer included in the stacked structure where it is located, and less than or equal to 0.5 of the thickness of the transparent conductive layer included in the stacked structure where it is located and the substrate.
  • the sum of double thickness In this way, it can be ensured that two adjacent conductive units in the same transparent conductive layer are kept independent of each other through the separation groove, and the integrity of the stacked structure can be ensured, which is convenient for performing subsequent mechanical processing procedures.
  • Step 103 forming an electrochromic functional layer 30 disposed between the first transparent conductive layer 10 and the second transparent conductive layer 20 .
  • the electrochromic functional layer is formed, and part of the material of the electrochromic functional layer is filled into the separation grooves, which can reduce the visibility of the separation grooves. , Improve the user's visual experience.
  • Step 104 forming a plurality of segments of electrode sub-lines arranged intermittently on the edge of at least one side of each layer of the transparent conductive layer.
  • step 104 specifically includes the following steps:
  • a section of the electrode sub-lines that substantially covers the edge of one side of each conductive unit is formed.
  • each of the conductive units corresponds to a segment of electrode sub-wires, and each segment of electrode sub-wires roughly covers its edge. Therefore, the length of each segment of electrode sub-wires is determined according to the length of its edge. Preferably, each segment of the electrode sub-wires The length of the electrode sub-line is less than or equal to the length of the edge where it is located.
  • the electrode sub-wires cover the edge of the side where they are located, which can ensure that when an external power source is introduced, the working current can be substantially uniformly conducted to the entire area of the conductive unit.
  • step 1021 and step 104 is not limited. In some embodiments, step 104 may be performed first, and then step 1021 may be performed. In this way, forming multiple sections of the electrode sub-wire first and then forming a plurality of the separation grooves can ensure that the separation grooves can completely isolate the two adjacent conductive units, thereby avoiding the occurrence of a section of electrode sub-wires spanning two conductive units. The situation of the unit, thus avoiding reprocessing.
  • multiple segments of electrode sub-wires on each layer of the transparent conductive layer are arranged on the edge of one side thereof, and step 1021 and step 104 can be combined into one step 104', wherein step 104' is specifically Including: forming a first electrode line substantially covering the edge of the first side on the edge of the first side of the first transparent conductive layer 10, and then forming a plurality of electrodes running through the first side and its opposite side or adjacent side.
  • the plurality of separation grooves 13 divide the entire layer area of the first transparent conductive layer 10 into a plurality of first conductive units 51, and the plurality of separation grooves 13 also divide the first
  • the electrode lines are divided into multiple sections of first electrode sub-lines 11, and each of the first conductive units 51 corresponds to a section of the first electrode sub-lines 11; on the edge of the second side of the second transparent conductive layer 20 Forming a second electrode line substantially covering the edge of the second side, and then forming a plurality of separation grooves 23 penetrating through the second side and its opposite side or adjacent side, wherein the plurality of separation grooves 23 divide the first side
  • the entire layer area of the two transparent conductive layers 20 is divided into a plurality of second conductive units 52, and the plurality of separation grooves 23 also divide the second electrode lines into a plurality of second electrode sub-lines 21, and each of the first The two conductive units 52 correspond to a section of the second electrode sub-line 21 .
  • Step 105 opening at least one opening 163 on the edge of the electrochromic device 1 through its multi-layer stack in the depth direction.
  • the multi-layer stacked layer of the electrochromic device includes the first substrate 41, the first transparent conductive layer 10, the electrochromic functional layer 30, the second transparent conductive layer 20 and the the second substrate 42 .
  • the electrochromic device 1 when the electrochromic device 1 is applied to electrochromic glass with a relatively large crown height, before combining the electrochromic device 1 with the finished glass, in order to improve the bonding degree and reduce wrinkles, It is necessary to open an opening 163 at the edge of the electrochromic device 1 .
  • the location of the opening 163 is selected in the openable area 40 of the edge of the electrochromic device 1 , so as to ensure that multiple sections of the electrode sub-wires are not cut off.
  • the opening 163 may be formed by laser ablation, mechanical cutting or etching.
  • Step 106 forming the first bus line 14 and the second bus line 24, and electrically connecting each section of the first electrode sub-line 11 arranged on the first transparent conductive layer 10 to the first bus line 14 respectively, Each segment of the second electrode sub-line 21 laid on the second transparent conductive layer 20 is electrically connected to the second bus line 24 respectively.
  • the electrode sub-wires on the transparent conductive layers of each layer may be directly electrically connected to the corresponding bus wires.
  • the manufacturing method of the electrochromic device 1 further includes forming a plurality of lead-out wires that are electrically connected to the plurality of electrode sub-wires in one-to-one correspondence, and each segment of the electrode sub-wire is connected to the corresponding lead-out wire through the lead-out wires.
  • the bus wires are electrically connected.
  • first bus line 14 and the second bus line 24 are used to introduce an external power supply. It can be understood that when an external power supply is introduced, the first bus line 14 can ensure that the first transparent conductive layer 10 is laid Each segment of the first electrode sub-wire 11 maintains the same potential, and the second bus line 24 can ensure that each segment of the second electrode sub-wire 21 laid on the second transparent conductive layer 20 maintains the same potential.
  • this embodiment divides each transparent conductive layer into multiple conductive units by forming multiple dividing lines, and then forms a A section of electrode sub-wire, so that when digging the opening 163 on the edge of the electrochromic device 1, it will only cut off the electrode sub-wire on the conductive unit where the opening 163 is located, so that the scope of influence of the digging opening 163 can be cut. It is narrowed down to the conductive unit where the opening 163 is located, so as to ensure that the effect of working current conduction in other complete conductive units is not affected.
  • the present application also provides another method for manufacturing an electrochromic device 1, the method includes the following steps:
  • Step 101 providing a first substrate 41 and a second substrate 42 .
  • Step 102 forming a first transparent conductive layer 10 on the first substrate 41 , and forming a second transparent conductive layer 20 on the second substrate 42 .
  • Step 103 forming an electrochromic functional layer 30 disposed between the first transparent conductive layer 10 and the second transparent conductive layer 20 .
  • Step 104 forming a plurality of segments of electrode sub-lines arranged intermittently on the edge of at least one side of each layer of the transparent conductive layer.
  • Step 1041 forming a plurality of separation grooves 13 in the first transparent conductive layer 10 through its opposite sides or two adjacent sides, so that the entire layer area of the first transparent conductive layer 10 is covered by the plurality of separation grooves 13 Separated into a plurality of first conductive units 51 .
  • a plurality of separation grooves 23 are formed in the second transparent conductive layer 20 through its opposite sides or two adjacent sides, so that the entire layer area of the second transparent conductive layer 20 is divided into multiple divisions by the plurality of separation grooves 23.
  • a second conductive unit 52 is formed in the second transparent conductive layer 20 through its opposite sides or two adjacent sides.
  • the multiple separation grooves in this embodiment are formed by the first substrate 41, the first transparent conductive layer 10, the electrochromic functional layer 30, the second transparent conductive Layer 20 and the multi-layer stack formed by the second substrate 42, for example, can be formed on the side of the transparent conductive layer (such as the plane parallel to the OZ direction in Figure 4a) by using laser ablation A plurality of said separation grooves are formed in a penetrating manner.
  • Step 105 opening at least one opening 163 on the edge of the electrochromic device 1 through its multi-layer stack in the depth direction.
  • the difference between this embodiment and the embodiment shown in FIG. 11 is that, since the forming process of the plurality of separation grooves is similar to the forming process of at least one opening 163, it can be After step 104, the steps of forming the plurality of separation grooves and the step of forming at least one opening 163 are uniformly performed, so that the operation is more convenient and the processing efficiency can be improved.
  • the present application also provides an electrochromic glass 2, which includes a first glass layer 3, a second glass layer 4, and the electrochromic device 1 as described above, wherein the The electrochromic device 1 is arranged between the first glass layer 3 and the second glass layer 4 .
  • the first glass layer 3 faces the first substrate 41
  • the second glass layer 4 faces the second substrate 42 .
  • FIG. 13 is only an example of the electrochromic glass 2, and does not constitute a limitation to the electrochromic glass 2.
  • the electrochromic glass 2 may include more "layers" than shown in the figure.
  • an adhesive layer between the substrate and the glass layer may also be included, which is not limited here.
  • the present application also provides a vehicle, which includes the above-mentioned electrochromic glass 2 .

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

一种电致变色膜(100)、装置及其制作方法、电致变色玻璃和车辆,电致变色膜(100)包括第一透明导电层(10)、第二透明导电层(20)以及电致变色功能层(30)。每一层透明导电层的至少一条边的边缘上间断布设多段电极子线(11,21),其中,多段电极子线(11,21)在第一透明导电层(10)或第二透明导电层(20)所在平面上的正投影至少存在不重叠部分。电致变色功能层(30)设于第一透明导电层(10)和第二透明导电层(20)之间。每一透明导电层的边缘上布设多段电极子线(11,21),可以解决因挖开口引起工作电流传导不均匀的问题,确保电致变色膜(100)能够快速、均匀地变色。

Description

电致变色膜、装置及其制作方法、电致变色玻璃和车辆
本申请要求于2021年07月28日提交中国专利局、申请号为202110855824.7,发明名称为“电致变色膜、装置及其制作方法、电致变色玻璃和车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电致变色元件领域,尤其涉及一种电致变色膜、装置及其制作方法、电致变色玻璃和车辆。
背景技术
电致变色(Electrochromism,简称EC)是指在外加电场的作用下材料的光学属性(反射率、透过率、吸收率等)发生稳定、可逆的变化的现象。若将电致变色技术应用到汽车玻璃上,不仅可以调节汽车内部的光线强度,以提高车内的舒适度且能够起到防偷窥的作用,还可以选择性地吸收或反射车内外的热辐射,从而能够减少空调的使用以节约能源。
如图1所示,现有的电致变色膜100'包括依次层叠的第一透明导电层、电致变色功能层和第二透明导电层,第一透明导电层和第二透明导电层通过电极线120引入外部电源200,使得两层透明导电层之间产生电场,从而使得电致变色膜100'的颜色和透明度产生变化。电极线120布设在透明导电层的边缘,现有的布线方式通常采用两边布线方式。
然而,在将电致变色膜100'与曲面的成品玻璃进行合片后,会出现较多褶皱,这种褶皱源自平面的电致变色膜100'与曲面的玻璃间的贴合度较差。为了解决这一问题,如图1所示,在生产过程中,一般会采取在电致变色膜100'的边缘挖开口163的方式来提高两者之间的贴合度,从而减少褶皱。但是,在电致变色膜100'边缘挖开口163,会切断贴附的电极线120,如此,会造成大段电极线120失效,例如图1中的左侧开口163以下的大段电极线120将失效,过大的压降引起透明导电层内大面积区域电场不均匀、降低电致变色膜100'的响应速率及变色均匀性。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请提出一种电致变色膜、装置及其制作方法、电致变色玻璃和车辆。
本申请的第一方面提供一种电致变色膜,所述电致变色膜包括第一透明导电层、第二透明导电层以及电致变色功能层。每一层所述透明导电层的至少一条边的边缘上间断布设多段电极子线,其中,多段所述电极子线在所述第一透明导电层或所述第二透明导电层所在平面上的正投影至少存在不重叠部分。所述电致变色功能层设于所述第一透明导电层和所述第二透明导电层之间。其中,各段所述电极子线的延伸方向均平行于其对应的透明导电层。
本申请的第二方面提供一种电致变色装置,所述电致变色装置包括第一基板、第二基板以及上述第一方面所述的电致变色膜。其中,所述电致变色膜设于所述第一基板和所述第二基板之间;所述第一基板朝向所述第一透明导电层,所述第二基板朝向所述第二透明导电层。
本申请的第三方面提供一种电致变色装置的制作方法,所述方法包括:提供第一基板和第二基板。在所述第一基板上形成第一透明导电层,在所述第二基板上形成第二透明导电层。形成设于所述第一透明导电层和所述第二透明导电层之间的电致变色功能层。在每一层所述 透明导电层的至少一条边的边缘上形成间断排布的多段电极子线,其中,多段所述电极子线在所述第一透明导电层或所述第二透明导电层所在平面上的正投影至少存在不重叠部分。其中,各段所述电极子线的延伸方向均平行于其对应的透明导电层。
本申请的第四方面提供一种电致变色玻璃,所述电致变色玻璃包括第一玻璃层、第二玻璃层以及上述第二方面所述的电致变色装置,其中,所述电致变色装置设于所述第一玻璃层和所述第二玻璃层之间;所述第一玻璃层朝向所述第一基板,所述第二玻璃层朝向所述第二基板。
本申请的第五方面提供一种车辆,所述车辆包括上述第四方面所述的电致变色玻璃。
本申请提供的电致变色膜,在每一透明导电层的至少一条边的边缘上布设多段电极子线,使得在所述至少一条边的边缘上挖开口时,能够减少所述电极子线的受损失效范围,减小压降对变色均匀性及响应速率的影响,确保开口后的所述电致变色膜快速、均匀地变色。
附图说明
为了更清楚地说明本申请实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是现有的电致变色膜的结构示意图。
图2是本申请第一实施例提供的电致变色膜的结构示意图。
图3是图2中的透明导电层的结构示意图。
图4a是本申请第二实施例提供的电致变色膜的透明导电层的结构示意图。
图4b是本申请第三实施例提供的电致变色膜的透明导电层的结构示意图。
图4c是本申请第四实施例提供的电致变色膜的透明导电层的结构示意图。
图5是本申请第五实施例提供的电致变色膜的透明导电层的结构示意图。
图6是本申请第六实施例提供的电致变色膜的透明导电层的结构示意图。
图7是本申请第七实施例提供的电致变色膜的透明导电层的结构示意图。
图8是本申请第八实施例提供的电致变色膜的透明导电层的结构示意图。
图9是本申请实施例提供的电致变色装置的结构示意图。
图10是本申请第一实施例提供的电致变色装置的制作方法的步骤流程图。
图11是本申请第二实施例提供的电致变色装置的制作方法的步骤流程图。
图12是本申请第三实施例提供的电致变色装置的制作方法的步骤流程图。
图13是本申请实施例提供的电致变色玻璃的结构示意图。
主要元件符号说明
电致变色装置                  1
电致变色膜                    100、100'
电极线                        120
开口                          163
第一透明导电层                10
第二透明导电层                 20
电致变色功能层                 30
电极子线                       11、21
引出线                         12、22
分隔槽                         13、23
可开口区域                     40
第一导电单元                   51
第二导电单元                   52
第一汇流线                     14
第二汇流线                     24
第一基板                       41
第二基板                       42
外部电源                       200
步骤                           101-106、1021、1041
电致变色玻璃                   2
第一玻璃层                     3
第二玻璃层                     4
如下具体实施方式将结合上述附图进一步说明本申请。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,术语“上”、“下”、“左”、“右”等指示的方位或者位置关系为基于附图所示的方位或者位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
请参阅图2,本申请第一实施例提供一种电致变色膜100,所述电致变色膜100包括第一透明导电层10、第二透明导电层20、电致变色功能层30、多段第一电极子线11以及多段第二电极子线21。
可以理解的是,图2仅仅是电致变色膜100的示例,并不构成对所述电致变色膜100的限定,所述电致变色膜100可以包括比图示更多的“层”,例如,还可以包括隔离层、电子传输层、光学胶层等,此处不作限定。
在本申请实施例中,所述电致变色功能层30设于所述第一透明导电层10和所述第二透明导电层20之间。
其中,所述第一透明导电层10、所述第二透明导电层20具有透光性高、导电性好的特性。示例性的,所述第一透明导电层10、所述第二透明导电层20可以包括但不限于含氧化铟锡(ITO)、金属氧化物、金属纳米线或碳纳米管等材料的导电膜。所述第一透明导电层10和所述第二透明导电层20的材质可以相同,也可以不同。
需要说明的是,本申请实施例中的术语“多”是指在数量上不少于2,例如,多段电极子线是指电极子线的数量不少于2段,对电极子线的具体数量不作限定。
在本申请实施例中,每一层所述透明导电层的至少一条边的边缘上间断布设多段电极子线,其中,多段所述电极子线在所述第一透明导电层10或所述第二透明导电层20所在平面上的正投影至少存在不重叠部分,其中,各段所述电极子线的延伸方向均平行于其对应的透明导电层。具体地,所述间断布设多段电极子线,是指每一层所述透明导电层中同一条边上的相邻两段所述电极子线之间相互间隔、不连接。所述第一透明导电层10上的多段第一电极子线11在预设平面上的正投影与所述第二透明导电层20上的多段第二电极子线21在预设平面上的正投影不完全重叠,其中,所述预设平面为所述第一透明导电层10或所述第二透明导电层20所在的平面,各段第一电极子线11的延伸方向平行于所述第一透明导电层10,各段第二电极子线21的延伸方向平行于所述第二透明导电层20。优选地,多段所述电极子线在所述第一透明导电层10或所述第二透明导电层20所在平面上的正投影不存在重叠部分。
在一些实施例中,每一层所述透明导电层上的多段电极子线布设在其一组对边的边缘上或两条相邻边的边缘上,且至少一边上的电极子线相互间隔排布。
进一步地,请参阅图3,每一层所述透明导电层上的多段电极子线布设在其一组对边的边缘上,且同一边上的电极子线相互间隔排布,对边上的电极子线相互交错排布。
进一步地,在一种实施例中,所述第一透明导电层10上的多段第一电极子线11间隔布设在其第一组对边的边缘上,且同一边上的第一电极子线11相互间隔排布,对边上的第一电极子线11相互交错排布。所述第二透明导电层20上的多段第二电极子线21间隔布设在在其第二组对边的边缘上,且同一边上的第二电极子线21相互间隔排布,对边上的第二电极子线21相互交错排布。其中,所述第二组对边在所述第一透明导电层10所在平面上的正投影和所述第一组对边重合。
示例性地,如图2-图3所示,所述第一透明导电层10中的多段(例如4段)第一电极子线11布设在其第一组对边边缘靠近所述电致变色功能层30的侧面上,且同一边上的第一电极子线11相互间隔排布,对边上的第一电极子线11相互交错排布。在其他实施例中,所述第一透明导电层10上的多段第一电极子线11也可以布设在所述第一透明导电层10的第一组对边边缘远离所述电致变色功能层30的侧面上。如图3所示,在本实施例中,所述第一透明导电层10的第一组对边为沿OY方向延伸的对边。具体地,沿OY方向,所述第一透明导电层10中的奇数段所述第一电极子线11间隔布设在其第二边的边缘上,偶数段所述第一电极子线11间隔布设在其第一边的边缘上,且第一边上的所述第一电极子线11与第二边上的所述第一电极子线11相互交错互补,所述第一电极子线11的总长度与所述第一透明导电层10第一边的边长大致相等。在本实施例中,所述第二透明导电层20上的多段(例如4段)第二电极子线21布设在所述第二透明导电层20的第二组对边边缘靠近所述电致变色功能层30的侧面上,在其他实施例中,所述第二透明导电层20上的多段第二电极子线21也可以布设在 所述第二透明导电层20的第二组对边边缘远离所述电致变色功能层30的侧面上,所述第二电极子线21的总长度与所述第二透明导电层20第一边的边长大致相等。其中,所述第二透明导电层20的第二组对边为沿OY方向延伸的对边。第二透明导电层20的结构与所述第一透明导电层10的不同之处在于:沿OY方向,所述第二透明导电层20中的奇数段所述第二电极子线21间隔布设在其第一边的边缘上,偶数段所述第二电极子线21间隔布设在其第二边的边缘上。在本实施例中,在组装后,将所述第一透明导电层10上的第一电极子线11和所述第二透明导电层20上的第二电极子线21错位布设时,多段所述电极子线在所述第一透明导电层10或所述第二透明导电层20所在平面上的正投影不存在重叠部分,因此,可以防止所述第一电极子线11与所述第二电极子线21之间发生短路。
在本申请实施例中,所述第一电极子线11、所述第二电极子线21可以采用包括但不限于涂覆铜箔和/或银浆、粘附金属薄片、柔性线路板(FPC)等方式形成。当与电极子线相对的透明导电层的投影覆盖到所述电极子线时,则需要在所述电极子线上加上绝缘层,以确保两层所述透明导电层间不短路。当然,也可以将电极子线在与之相对的另一透明导电层上的投影覆盖区域内的导电材料去除或绝缘化处理,以确保两层所述透明导电层间不会发生短路。
示例性地,多段所述第一电极子线11的长度可以相等也可以不等,多段所述第二电极子线21的长度可以相等也可以不等。示例性地,多段所述第一电极子线11和多段所述第二电极子线21的长度均相等,且多段所述第一电极子线11与多段所述第二电极子线21一一相对排布。在一些实施例中,多段所述第一电极子线11和多段所述第二电极子线21的长度也可以不等,此处不作限定。
在本申请实施例中,所述电致变色膜100还包括第一汇流线14、第二汇流线24以及与多段所述电极子线一一对应电连接的多段引出线。具体地,所述第一透明导电层10上布设的多段所述第一电极子线11通过各自对应的第一引出线12与所述第一汇流线14电连接,所述第一汇流线14用于为其所连接的多段所述第一电极子线11引入外部电源。所述第二透明导电层20上布设的多段所述第二电极子线21通过各自对应的第二引出线22与所述第二汇流线24电连接,所述第二汇流线24用于为其所连接的多段第二电极子线21引入外部电源。所述电致变色膜100连接外部电源时,所述外部电源使得所述第一透明导电层10和所述第二透明导电层20之间产生电场,从而使得所述电致变色膜100实现变色。在本申请实施例中,术语“变色”即表示外观或光学参数(如反射率、透过率、色度等)产生变化。所述第一汇流线14可以包括一条汇流线,也可以包括多条汇流线,同样的,所述第二汇流线24可以包括一条汇流线,也可以包括多条汇流线,此处不作限定。
在一些实施例中,各层所述透明导电层上的电极子线也可以不经过对应的汇流线统一引入所述外部电源,而由各段所述电极子线单独引入所述外部电源,只要能够确保在所述电致变色膜100连接外部电源时,同一层所述透明导电层上的各段所述电极子线保持等电位即可。
需要说明的是,由于所述透明导电层存在较高的面电阻,那么,所述工作电流在传导至所述透明导电层的整层区域的过程中会产生压降,压降过大则会引起变色的响应速率变慢、变色不均匀。若将所述电致变色膜100或100'应用于拱高值较大的电致变色玻璃,将所述电致变色膜100或100'与成品玻璃合片前,为提升贴合度、减少褶皱,需要在所述电致变色膜100或100'的边缘挖开口163。显然,如图1所示,在现有的电致变色膜100'的边缘挖开口163时,会造成大段电极线120失效,因此,当所述工作电流传导至所述透明导电层的左侧开口163以下部分区域的过程中会产生较大压降,从而会引起所述透明导电层内大面积区域电场 不均匀、延长所述电致变色膜100'的响应时间。与现有技术相比,在本申请实施例提供的电致变色膜100的边缘挖开口163时,只有小段电极子线被切断而失效,如图3所示,所述开口163只会造成所述第一透明导电层10的第一边沿OY方向的第二段所述第一电极子线11的小段部分失效,因此,其他所述第一电极子线11上的所述工作电流的传导几乎不受影响。可以理解的是,每一层所述透明导电层的边缘上布设所述电极子线长度越短、排布越密集,挖开口163对工作电流的传导效果的影响就越小。特别的,当开口163设在未布设所述电极子线的区域时,则对工作电流的传导效果的影响更小。
本申请提供的电致变色膜100,在每一透明导电层的至少一条边的边缘上布设多段电极子线,使得在所述至少一条边的边缘上挖开口时,能够减少所述电极子线的受损失效范围,减小压降对变色均匀性及响应速率的影响,保证开口后的所述电致变色膜100快速、均匀地变色。
请参阅图4a,在本申请第二实施例中,所述电致变色膜100的每一层所述透明导电层中形成有贯穿其相对两边或相邻两边的多条分隔槽,多条所述分隔槽用于将其所在的透明导电层的整层区域分隔成多个导电单元,其中,每一个所述导电单元与一段所述电极子线对应,且相邻两个所述导电单元之间通过所述分隔槽保持相互独立。每一段所述电极子线用于在引入所述外部电源时将工作电流大致均匀地传导至其对应的所述导电单元。可以理解的是,由于多个所述导电单元之间保持相互独立,每一个所述导电单元内所述工作电流的传导效果不受其他导电单元的影响,因此,即使一个所述导电单元对应的电极子线被切断,也不会造成其他导电单元中所述工作电流传导不均匀。
需要说明的是,本申请实施例中,每一所述分隔槽贯穿所述透明导电层的相对两边或相邻两边,是指所述分隔槽在深度方向(如图4a所示的OZ方向)上隔断所述透明导电层,在延伸方向(如图4a所示的OX方向)上从所述透明导电层的一边延伸至其相对或相邻的另一边使得所述透明导电层被完全分隔开,如图4a所示,3条分隔槽13从所述第一透明导电层10的第一边延伸至第二边,将所述第一透明导电层10分隔成4个独立的第一导电单元51。
具体地,如图4a所示,所述第一透明导电层10中形成有3条分隔槽13,所述分隔槽13沿OX方向延伸贯穿第一组对边,且每一所述分隔槽13的两端分别与沿OY方向上相邻的两段所述电极子线的端部相接,3条所述分隔槽13将所述第一透明导电层10的整层区域分成4个第一导电单元51,其中,每一个所述第一导电单元51与一段所述第一电极子线11对应,每一段所述第一电极子线11用于在引入外部电源时将所述工作电流大致均匀地传导至其对应的第一导电单元51。同样地,每一个所述第二导电单元52与一段所述第二电极子线21对应。在本实施例中,每一层所述透明导电层中的多条所述分隔槽相互大致平行。可以理解的是,每一个所述导电单元对应的一段所述电极子线大致铺满其所在边缘时,所述工作电流在传导过程中均匀性最佳。
请参阅图4b,在一种实施例中,所述分隔槽13的两端也可以不与沿OY方向上相邻的两段所述电极子线的端部相接,如图4b所示,各层所述透明导电层中的分隔槽的延伸方向与OX方向呈一定角度,例如1°~5°,显然,本实施例中每一个所述导电单元对应的一段所述电极子线未铺满其所在边缘,那么,每一个所述导电单元中所述工作电流传导的均匀性不及图4a所示的实施例。
请参阅图4c,在一种实施例中,每一层所述透明导电层中的多条所述分隔槽相交。具体地,两条所述分隔槽13相交,两条所述分隔槽13将所述第一透明导电层10分隔成4个所述 第一导电单元51,每一个所述第一导电单元51与一段所述第一电极子线11对应。两条所述分隔槽23相交,两条所述分隔槽23将所述第二透明导电层20分隔成4个所述第二导电单元52,每一个所述第二导电单元52与一段所述第二电极子线21对应。
在一些实施例中,每一所述透明导电层上的多段电极子线间断布设在其一条边的边缘上。
进一步地,在一种实施例中,所述第一透明导电层10中的多段第一电极子线11布设在其第一边的边缘上,所述第二透明导电层20中的多段第二电极子线21布设在其第二边的边缘上,其中,所述第二边在所述第一透明导电层10所在平面上的正投影和所述第一边的对边重合。
在本申请实施例中,为了提升用户的视觉感受,因此,尽可能地将所述分隔槽限制在肉眼不可分辨的宽度,示例性地,多条所述分隔槽的宽度为5μm~200μm。
优选地,每一层所述透明导电层中的多条所述分隔槽相互大致平行且等间距排布。可以理解的是,多条所述分隔槽相互大致平行且等间距分布时,各个所述导电单元的尺寸大小大致相等,各个所述导电单元中所述工作电流传导的均匀性较好。
本申请提供的电致变色膜100,每一层透明导电层中的多条分隔槽将所述透明导电层分隔成多个导电单元,使得每一段电极子线对应一段所述导电单元。由于所述导电单元之间保持相互独立,在所述电致变色膜100的边缘上挖开口163时,只会切断所述开口163所在导电单元上的电极子线,如此,可以将挖开口163的影响的范围缩小到所述开口163所在导电单元,从而确保在其他完整的导电单元内所述工作电流传导的效果不受影响。
请参阅图5-8,在一些实施例中,所述第一透明导电层10中的多段第一电极子线11布设在其第一组对边的边缘上,且同一边上的第一电极子线11相互间隔排布,对边上的第一电极子线11相互交错排布。所述第二透明导电层20中的多段第二电极子线21布设在其第二组对边的边缘上,且同一边上的第二电极子线21相互间隔排布,对边上的第二电极子线21相互交错排布。其中,所述第二组对边在所述第一透明导电层所在平面上的正投影和所述第一组对边相交。
示例性地,如图5所示,所述第一透明导电层10中的多段第一电极子线11间隔布设在第一组对边的边缘上,如图5所示,在本实施例中,所述第一透明导电层10的第一组对边为沿OY方向延伸的对边。具体地,沿OY方向,所述第一透明导电层10中的奇数段所述第一电极子线11间隔布设在第二边的边缘上,偶数段所述第一电极子线11间隔布设在第一边的边缘上,且第一边上的所述第一电极子线11与第二边上的所述第一电极子线11相互交错互补。所述第一透明导电层10中形成有3条分隔槽13,所述分隔槽13沿OX方向延伸贯穿第一组对边,且每一所述分隔槽13的两端分别与沿OY方向上相邻的两段所述第一电极子线11的端部相接,3条所述分隔槽13将所述第一透明导电层10的整层区域分成4个第一导电单元51,其中,每一个所述第一导电单元51与一段所述第一电极子线11对应,优选地,所述第一电极子线11的长度全覆盖所述第一导电单元51的边缘,但不跨越相邻分隔槽,每一段所述第一电极子线11用于在引入外部电源时将工作电流大致均匀地传导至其对应的第一导电单元51。所述第二透明导电层20中的多段第二电极子线21间隔布设在第二组对边的边缘上,如图5所示,在本实施例中,所述第二透明导电层20的第二组对边为沿OX方向延伸的对边。具体地,沿OX方向,所述第二透明导电层20中的奇数段所述第二电极子线21间隔布设在第四边的边缘上,偶数段所述第二电极子线21间隔布设在第三边的边缘上,且第三边上的所述第二电极子线21与第四边上的所述第二电极子线21相互交错互补。所述第二透明 导电层20中形成有3条分隔槽23,所述分隔槽23沿OY方向延伸贯穿第二组对边,且每一所述分隔槽23的两端分别与沿OX方向上相邻的两段所述第二电极子线21的端部相接,3条所述分隔槽23将所述第二透明导电层20的整层区域分成4个第二导电单元52,其中,每一个所述第二导电单元52与一段所述第二电极子线21对应,优选地,所述第二电极子线21的长度全覆盖所述第二导电单元52的边缘,但不跨越相邻分隔槽,每一段所述第二电极子线21用于在引入外部电源时将工作电流大致均匀地传导至其对应的第二导电单元52。需要说明的是,所述第一透明导电层10上的多段所述第一电极子线11布设在第一组对边(即沿OY方向延伸的对边)上,所述第二透明导电层20上的多段所述第二电极子线21布设在第二组对边(即沿OX方向延伸的对边)上,使得所述电致变色膜100的边缘留有未布设所述电极子线的可开口区域40,因此,若在所述可开口区域40上挖开口,不会切断所述第一电极子线11和所述第二电极子线21。
可以理解的是,两层所述透明导电层上的所述电极子线布设在所述电致变色膜100的不同对边上,且同一透明导电层上一组对边上的所述电极子线交错间隔布设,可以确保所述电致变色膜100的四周边缘都留有所述可开口区域40。因此,当需要在所述电致变色膜100的四周均开设所述开口163时,能确保多段所述电极子线都不会被切断,从而使得所述工作电流的传导效果完全不受影响,实现所述电致变色膜100快速、均匀地变色。
在本申请实施例中,相邻两条所述分隔槽之间的间距根据开口163在所述透明导电层边缘的宽度确定,示例性地,相邻两条所述分隔槽之间的间距不小于所述开口163的宽度的两倍。
示例性地,在本申请实施例中,所述分隔槽的形状可以包括但不限于直线型、波浪线型(如图6所示)、锯齿线型,只要能实现将所述透明导电层分隔成多个所述导电单元即可,优选为直线型。
示例性地,在一些实施例中,每一层所述透明导电层中的多条所述分隔槽相互大致平行且等间距排布。
示例性地,在本申请实施例中,每一层所述透明导电层上的电极子线的长度可以相等,也可以不等,优选为相等,如此,可以使得所述工作电流传导得更加均匀。优选地,每一个导电单元对应的一段所述电极子线大致铺满其所在边缘,换言之,所述电极子线的长度不超过其所在边缘的长度。
示例性地,请参阅图7,若所述电致变色膜100呈平行四边形。优选地,所述第一电极子线11的长度全覆盖所述第一导电单元51的边缘,但不跨越相邻分隔槽,所述第二电极子线21的长度全覆盖所述第二导电单元52的边缘,但不跨越相邻分隔槽,所述第一透明导电层10中的分隔槽13与其第一组对边平行且等间距排布,所述第二透明导电层20中的分隔槽23与其第二组对边平行且等间距排布。如此,可以使得所述工作电流传导得更加均匀。
示例性地,请参阅图8,若所述电致变色膜100呈不规则四边形,所述第一透明导电层10上的第一电极子线11布设在第一组对边的边缘上,且第一组对边中的两条边上的第一电极子线11相互交错排布,优选地,所述第一电极子线11的长度全覆盖所述第一导电单元51的边缘,但不跨越相邻分隔槽。所述第二透明导电层20中的多段第二电极子线21间隔地布设在第二组对边的边缘上,且第二组对边中的两条边上的第二电极子线21相互交错排布,优选地,所述第二电极子线21的长度全覆盖所述第二导电单元52的边缘,但不跨越相邻分隔槽。如此,使得所述电致变色膜100能够将所述工作电流大致均匀地传导至所述透明导电层 的整层区域,同时,还留有可开口区域40供开设开口163,确保所述工作电流的传导几乎不受所述开口163的影响。
本申请提供的电致变色膜100,两层所述透明导电层上的电极子线布设在不同的对边上,使得所述电致变色膜100的边缘留有未布设所述电极子线的可开口区域40,在所述可开口区域40上挖开口时,不会切断所述电极子线,从而能够较大程度地提升所述透明导电层内电场的均匀性,进而确保所述电致变色膜100的响应速率,实现所述电致变色膜100快速、均匀地变色。
请参阅图9,本申请实施例还提供一种电致变色装置1,所述电致变色装置1包括第一基板41、第二基板42以及上述的电致变色膜100,其中,所述电致变色膜100设于所述第一基板41和所述第二基板42之间。所述第一基板41朝向所述第一透明导电层10,所述第二基板42朝向所述第二透明导电层20。
示例性地,所述第一基板41、所述第二基板42具有强度大、透明的特性,能够保护所述电致变色膜100不受外在的物理性破坏。所述第一基板41、所述第二基板42可以为可挠性或非可挠性材料,其中,可挠性材料可以由高分子材料所制成,该高分子材料可以包括但不限于聚对苯二甲酸乙二酯、聚碳酸酯类材料、聚丙烯酸类材料,非可挠性材料则可为玻璃或压克力板。所述第一基板41与所述第二基板42的材质可以相同,也可以不同。上述只是对所述第一基板41、所述第二基板42材料的举例,不能理解为对所述第一基板41、所述第二基板42的限定。
在本申请实施例中,每一层所述透明导电层与其相邻的基板构成一堆叠结构,在每一所述堆叠结构上形成有贯穿其透明导电层相对两边或相邻两边的多条分隔槽,多条所述分隔槽用于将其所在的透明导电层的整层区域分隔成多个导电单元,其中,每一个所述导电单元与一段电极子线对应,且相邻两个所述导电单元之间保持相互独立。
进一步地,所述分隔槽沿其所在的堆叠结构包含的透明导电层指向基板的方向延伸,所述分隔槽的深度大于或等于其所在的堆叠结构包含的透明导电层的厚度,且小于或等于其所在的堆叠结构包含的透明导电层的厚度与基板的0.5倍厚度之和。具体地,所述分隔槽13的深度h1不超过h10且不小于H21,其中,h10=H21+0.5H11,H21为所述第一透明导电层10的厚度,H11为所述第一基板41的厚度。所述分隔槽23的深度h2不超过h20且不小于H22,其中,h20=H22+0.5H12,H22为所述第二透明导电层20的厚度,H12为所述第二基板42的厚度。需要说明的是,H11与H12可以相等,也可以不等。H21与H22可以相等,也可以不等。示例性地,在所述第一基板41和所述第一透明导电层10构成的第一堆叠结构上采取激光烧蚀、机械切割或蚀刻的方式形成多条所述分隔槽13,所述分隔槽13将所述第一透明导电层10完全切断,同时确保所述第一基板41的被切深度不超过其厚度的50%,如此,不仅可以确保相邻两个所述第一导电单元51通过所述分隔槽13保持相互独立,还能保证所述第一堆叠结构的完整性,便于执行后续机械加工工序。所述分隔槽23的形成方式与所述分隔槽13的形成方式类似。
本申请提供的电致变色装置1通过采用上述的电致变色膜100,在每一透明导电层的至少一条边的边缘上布设多段电极子线,使得在所述至少一条边的边缘上挖开口时,能够减少所述电极子线的受损失效范围,从而能够提升所述透明导电层内电场的均匀性,进而能够确保所述电致变色装置1的响应速率,实现所述电致变色装置1快速、均匀地变色。
请参阅图10,本申请还提供一种电致变色装置1的制作方法,所述方法包括以下步骤:
步骤101,提供第一基板41和第二基板42。
在本实施例中,所述第一基板41、所述第二基板42具有强度大、透明的特性,能够保护所述电致变色膜100不受外在的物理性破坏。所述第一基板41、所述第二基板42可以为可挠性或非可挠性材料,其中,可挠性材料可以由高分子材料所制成,该高分子材料可以包括但不限于聚对苯二甲酸乙二酯、聚碳酸酯类材料、聚丙烯酸类材料,非可挠性材料则可为玻璃或压克力板。所述第一基板41与所述第二基板42的材质可以相同,也可以不同。上述只是对所述第一基板41、所述第二基板42材料的举例,不能理解为对所述第一基板41、所述第二基板42的限定。
步骤102,在所述第一基板41上形成第一透明导电层10,在所述第二基板42上形成第二透明导电层20。
在本实施例中,所述第一透明导电层10、所述第二透明导电层20具有透光性高、导电性好的特性。示例性的,所述第一透明导电层10、所述第二透明导电层20可以包括但不限于含氧化铟锡(ITO)、金属氧化物、金属纳米线或碳纳米管等材料的导电膜。所述第一透明导电层10和所述第二透明导电层20的材质可以相同,也可以不同。
可选的,在本申请的一个具体的实施例中,可以采用磁控溅射的方式在所述第一基板41上溅镀形成所述第一透明导电层10,进一步的,所述第一透明导电层可以是ITO层。所述第二透明导电层20的形成方式与所述第一透明导电层10形成方式相类似。
在一些实施例中,为了防止所述基板中的杂质离子扩散到所述透明导电层中,对所述透明导电层的导电性造成影响,在所述基板和所述透明导电层之间还设有隔离层(图中未示)。
步骤103,形成设于所述第一透明导电层10和所述第二透明导电层20之间的电致变色功能层30。
步骤104,在每一层所述透明导电层的至少一条边的边缘上形成间断排布的多段电极子线。
其中,多段所述电极子线在所述第一透明导电层10或所述第二透明导电层20所在平面上的正投影至少存在不重叠部分。可以理解为,所述第一透明导电层10上的多段第一电极子线11在预设平面上的正投影与所述第二透明导电层20上的多段第二电极子线21在预设平面上的正投影不完全重叠,其中,所述预设平面为所述第一透明导电层10或所述第二透明导电层20所在的平面。优选地,多段所述电极子线在所述第一透明导电层10或所述第二透明导电层20所在平面上的正投影不存在重叠部分。
需要说明的是,在本申请中,不对步骤103和步骤104的先后顺序进行限定,在一些实施例中,可以先执行步骤104,再执行步骤103。
示例性地,可以采用包括但不限于涂覆铜箔和/或银浆、粘附金属薄片、柔性线路板(FPC)等方式形成多段所述电极子线。优选地,在一些实施例中,所述电极子线的材料为透明材料,例如,可以选用包括但不限于银纳米线导电膜、碳纳米导管透明导电膜或者石墨烯透明导电膜等材料。
通过本申请提供的方法制成的电致变色装置1,在每一透明导电层的至少一条边的边缘上布设多段电极子线,使得在所述至少一条边的边缘上挖开口时,能够减少所述电极子线的受损失效范围,减小压降对变色均匀性及响应速率的影响,保证开口后的所述电致变色装置1快速、均匀地变色。
请参阅图11,本申请还提供电致变色装置1的另一种制作方法,所述方法包括以下步骤:
步骤101,提供第一基板41和第二基板42。
步骤102,在所述第一基板41上形成第一透明导电层10,在所述第二基板42上形成第二透明导电层20。
步骤1021,在所述第一透明导电层10中形成贯穿其相对两边或相邻两边的多条分隔槽13,使得所述第一透明导电层10的整层区域被所述多条分隔槽13分隔成多个第一导电单元51。在所述第二透明导电层20中形成贯穿其相对两边或相邻两边的多条分隔槽23,使得所述第二透明导电层20的整层区域被所述多条分隔槽23分隔成多个第二导电单元52。
具体地,所述第一基板41和所述第一透明导电层10组成第一堆叠结构,所述第二基板42和所述第二透明导电层20组成第二堆叠结构。示例性地,在一些实施例中,对于所述第一堆叠结构和所述第二堆叠结构,可以通过采用激光烧蚀、机械切割或蚀刻等方式在所述第一透明导电层10和所述第二透明导电层20中形成多条所述分隔槽。
需要说明的是,每一所述分隔槽贯穿所述透明导电层的相对两边或相邻两边,是指所述分隔槽在深度方向上隔断所述透明导电层,在延伸方向上从所述透明导电层的一边延伸至其相对或相邻的另一边使得所述透明导电层被完全分隔开。
在本实施例中,各条所述分隔槽的深度大于或等于其所在的堆叠结构包含的透明导电层的厚度,且小于或等于其所在的堆叠结构包含的透明导电层的厚度与基板的0.5倍厚度之和。如此,可以确保同一透明导电层中相邻两个所述导电单元通过所述分隔槽保持相互独立,还能保证所述堆叠结构的完整性,便于执行后续机械加工工序。
步骤103,形成设于所述第一透明导电层10和所述第二透明导电层20之间的电致变色功能层30。
可以理解的是,在形成多条所述分隔槽之后,再形成所述电致变色功能层,部分电致变色功能层材质填充到所述分隔槽当中,能够降低所述分隔槽的可视度、提升用户的视觉体验。
步骤104,在每一层所述透明导电层的至少一条边的边缘上形成间断排布的多段电极子线。
在本实施例中,步骤104具体包括以下步骤:
在每一个所述导电单元的一条侧边的边缘上形成一段大致铺满其所在边缘的所述电极子线。
显然,每一个所述导电单元对应一段电极子线,每一段电极子线大致铺满其所在边缘,因此,每一段所述电极子线长度根据其所在边缘长度确定,优选地,每一段所述电极子线长度小于或者等于其所在边缘长度。
所述电极子线铺满其所在边的边缘,可以确保引入外部电源时,工作电流能够大致均匀地传导至所述导电单元的整个区域。
需要说明的是,在本申请中,不对步骤1021和步骤104的先后顺序进行限定,在一些实施例中,可以先执行步骤104,再执行步骤1021。如此,先形成多段所述电极子线再形成多条所述分隔槽,可以确保所述分隔槽能够将相邻两个所述导电单元彻底隔离,从而避免出现一段电极子线跨接两个导电单元的情况,进而可以避免重复加工。
在一些实施例中,每一层所述透明导电层上的多段电极子线布设在其一条边的边缘上,步骤1021与步骤104可以合并为一个步骤104’一起执行,其中,步骤104’具体包括:在所述第一透明导电层10的第一边的边缘上形成大致覆盖所述第一边边缘的第一电极线,再形成贯穿所述第一边和其对边或邻边的多条分隔槽13,其中,多条所述分隔槽13将所述第一透 明导电层10的整层区域分隔成多个第一导电单元51,所述多条分隔槽13还将所述第一电极线分隔成多段第一电极子线11,且每一个所述第一导电单元51与一段所述第一电极子线11对应;在所述第二透明导电层20的第二边的边缘上形成大致覆盖所述第二边边缘的第二电极线,再形成贯穿所述第二边和其对边或邻边的多条分隔槽23,其中,多条所述分隔槽23将所述第二透明导电层20的整层区域分隔成多个第二导电单元52,所述多条分隔槽23还将所述第二电极线分隔成多段第二电极子线21,且每一个所述第二导电单元52与一段所述第二电极子线21对应。如此,在形成多条所述分隔槽的同时切断对应的电极线而形成多段电极子线,使得每一个导电单元与一段电极子线对应,能够简化操作步骤、提高生产效率。
步骤105,在所述电致变色装置1的边缘上开设在深度方向上贯穿其多层堆叠层的至少一个开口163。
其中,所述电致变色装置的多层堆叠层包括所述第一基板41、所述第一透明导电层10、所述电致变色功能层30、所述第二透明导电层20以及所述第二基板42。
需要说明的是,当所述电致变色装置1应用于拱高值较大的电致变色玻璃,将所述电致变色装置1与成品玻璃合片前,为提升贴合度、减少褶皱,需要在所述电致变色装置1的边缘开设开口163。优选地,所述开口163的开设位置选在所述电致变色装置1边缘的可开口区域40,如此,可以确保多段所述电极子线不被切断。
示例性地,所述开口163可以通过采用激光烧蚀、机械切割或蚀刻等方式形成。
步骤106,形成第一汇流线14和第二汇流线24,将所述第一透明导电层10上布设的各段所述第一电极子线11分别与所述第一汇流线14电连接,将所述第二透明导电层20上布设的各段所述第二电极子线21分别与所述第二汇流线24电连接。
示例性地,各层所述透明导电层上的电极子线可以与对应的汇流线直接电连接。在一些实施例中,所述电致变色装置1的制作方法还包括在形成与多段所述电极子线一一对应电连接的多段引出线,各段电极子线通过其连接的引出线与对应的汇流线电连接。
其中,所述第一汇流线14和第二汇流线24用于引入外部电源,可以理解的是,引入外部电源时,所述第一汇流线14可以确保所述第一透明导电层10上布设的各段所述第一电极子线11保持等电位,所述第二汇流线24可以确保所述第二透明导电层20上布设的各段所述第二电极子线21保持等电位。
其中,所述步骤101~步骤104的具体技术细节可以参照如图10所示的实施例中相关的技术细节,此处不再进行赘述。
需要说明的是,与图10所示的实施例的不同之处在于,本实施例通过形成多条分割线将各层透明导电层分隔成多个导电单元,再在每个导电单元的边缘形成一段电极子线,如此,在所述电致变色装置1的边缘上挖开口163时,只会切断所述开口163所在导电单元上的电极子线,如此,可以将挖开口163的影响的范围缩小到所述开口163所在导电单元,从而确保在其他完整的导电单元内工作电流传导的效果不受影响。
请参阅图12,本申请还提供又一种电致变色装置1的制作方法,所述方法包括以下步骤:
步骤101,提供第一基板41和第二基板42。
步骤102,在所述第一基板41上形成第一透明导电层10,在所述第二基板42上形成第二透明导电层20。
步骤103,形成设于所述第一透明导电层10和所述第二透明导电层20之间的电致变色功能层30。
步骤104,在每一层所述透明导电层的至少一条边的边缘上形成间断排布的多段电极子线。
步骤1041,在所述第一透明导电层10中形成贯穿其相对两边或相邻两边的多条分隔槽13,使得所述第一透明导电层10的整层区域被所述多条分隔槽13分隔成多个第一导电单元51。在所述第二透明导电层20中形成贯穿其相对两边或相邻两边的多条分隔槽23,使得所述第二透明导电层20的整层区域被所述多条分隔槽23分隔成多个第二导电单元52。
需要说明的是,本实施例中的多条所述分隔槽是在由所述第一基板41、所述第一透明导电层10、所述电致变色功能层30、所述第二透明导电层20以及所述第二基板42形成的多层堆叠层上形成的,示例性地,可以在所述透明导电层的侧面(如图4a中与OZ方向平行的面)上通过采用激光烧蚀穿透的方式形成多条所述分隔槽。
步骤105,在所述电致变色装置1的边缘上开设在深度方向上贯穿其多层堆叠层的至少一个开口163。
其中,本实施例中的步骤101~105的具体技术细节可以参照如图11所示的实施例中相关的技术细节,此处不再进行赘述。
需要说明的是,本实施例与图11所示的实施例的不同之处在于,由于多条所述分隔槽的形成工序与至少一个所述开口163的形成工序相似,因此,可以在执行完步骤104之后再统一执行多条所述分隔槽的形成步骤与至少一个所述开口163的形成步骤,如此,操作更加方便,能够提升加工效率。
请参阅图13,本申请还提供一种电致变色玻璃2,所述电致变色玻璃2包括第一玻璃层3、第二玻璃层4以及如上述的电致变色装置1,其中,所述电致变色装置1设于所述第一玻璃层3和所述第二玻璃层4之间。所述第一玻璃层3朝向所述第一基板41,所述第二玻璃层4朝向所述第二基板42。
可以理解的是,图13仅仅是电致变色玻璃2的示例,并不构成对所述电致变色玻璃2的限定,所述电致变色玻璃2可以包括比图示更多的“层”,例如,还可以包括位于所述基板和所述玻璃层之间的粘结层等,此处不作限定。
本申请还提供一种车辆,所述车辆包括如上述的电致变色玻璃2。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (21)

  1. 一种电致变色膜,其特征在于,包括:
    第一透明导电层和第二透明导电层,每一层所述透明导电层的至少一条边的边缘上间断布设多段电极子线,其中,多段所述电极子线在所述第一透明导电层或所述第二透明导电层所在平面上的正投影至少存在不重叠部分;
    电致变色功能层,设于所述第一透明导电层和所述第二透明导电层之间;其中,各段所述电极子线的延伸方向均平行于其对应的透明导电层。
  2. 如权利要求1所述的电致变色膜,其特征在于,每一层所述透明导电层中形成有贯穿其相对两边或相邻两边的多条分隔槽,多条所述分隔槽用于将其所在的透明导电层的整层区域分隔成多个导电单元,其中,每一个所述导电单元与一段所述电极子线对应,且相邻两个所述导电单元之间通过所述分隔槽保持相互独立。
  3. 如权利要求1或2所述的电致变色膜,其特征在于,每一层所述透明导电层上的多段电极子线布设在其一组对边的边缘上或两条相邻边的边缘上,且至少一边上的电极子线相互间隔排布。
  4. 如权利要求3所述的电致变色膜,其特征在于,每一层所述透明导电层上的多段电极子线布设在其一组对边的边缘上,且同一边上的电极子线相互间隔排布,对边上的电极子线相互交错排布。
  5. 如权利要求4所述的电致变色膜,其特征在于,所述第一透明导电层在其第一组对边的边缘上布设多段所述电极子线,所述第二透明导电层在其第二组对边的边缘上布设多段所述电极子线,其中,所述第二组对边在所述第一透明导电层所在平面上的正投影和所述第一组对边重合。
  6. 如权利要求4所述的电致变色膜,其特征在于,所述第一透明导电层在其第一组对边的边缘上布设多段所述电极子线,所述第二透明导电层在其第二组对边的边缘上布设多段所述电极子线,其中,所述第二组对边在所述第一透明导电层所在平面上的正投影和所述第一组对边相交。
  7. 如权利要求1或2所述的电致变色膜,其特征在于,每一层所述透明导电层上的多段电极子线布设在其一条边的边缘上。
  8. 如权利要求7所述的电致变色膜,其特征在于,所述第一透明导电层上的多段电极子线布设在其第一边的边缘上,所述第二透明导电层上的多段电极子线布设在其第二边的边缘上,其中,所述第二边在所述第一透明导电层所在平面上的正投影和所述第一边的对边重合。
  9. 如权利要求2所述的电致变色膜,其特征在于,多条所述分隔槽的宽度为5μm~200μm。
  10. 如权利要求2所述的电致变色膜,其特征在于,每一层所述透明导电层中的多条所述分隔槽相互大致平行或相交。
  11. 一种电致变色装置,其特征在于,包括:
    第一基板和第二基板;以及
    如权利要求1-10中任意一项所述的电致变色膜,其中,所述电致变色膜设于所述第一基板和所述第二基板之间;所述第一基板朝向所述第一透明导电层,所述第二基板朝向所述第二透明导电层。
  12. 如权利要求11所述的电致变色装置,其特征在于,每一层所述透明导电层与其相邻的基板构成一堆叠结构,每一所述堆叠结构上形成有贯穿其包含的透明导电层的相对两边或相邻两边的多条分隔槽,多条所述分隔槽用于将其所在的透明导电层的整层区域分隔成多个导电单元,其中,每一个所述导电单元与一段所述电极子线对应,且相邻两个所述导电单元之间保持相互独立。
  13. 如权利要求12所述的电致变色装置,其特征在于,所述分隔槽沿其所在的堆叠结构包含的透明导电层指向基板的方向延伸,所述分隔槽的深度大于或等于其所在的堆叠结构包含的透明导电层的厚度,且小于或等于其所在的堆叠结构包含的透明导电层的厚度与基板的0.5倍厚度之和。
  14. 一种电致变色装置的制作方法,其特征在于,包括:
    步骤a:提供第一基板和第二基板;
    步骤b:在所述第一基板上形成第一透明导电层,在所述第二基板上形成第二透明导电层;
    步骤c:形成设于所述第一透明导电层和所述第二透明导电层之间的电致变色功能层;
    步骤d:在每一层所述透明导电层的至少一条边的边缘上形成间断排布的多段电极子线,其中,多段所述电极子线在所述第一透明导电层或所述第二透明导电层所在平面上的正投影至少存在不重叠部分;其中,各段所述电极子线的延伸方向均平行于其对应的透明导电层;
    其中,步骤c和步骤d的执行顺序包括如下顺序的任意一种:
    先执行步骤c,后执行步骤d;
    先执行步骤d,后执行步骤c。
  15. 如权利要求14所述的电致变色装置的制作方法,其特征在于,在步骤b之后,所述方法还包括步骤e,步骤e具体包括:
    在所述第一透明导电层中形成贯穿其相对两边或相邻两边的多条分隔槽,使得所述第一透明导电层的整层区域被所述多条分隔槽分隔成多个第一导电单元;
    在所述第二透明导电层中形成贯穿其相对两边或相邻两边的多条分隔槽,使得所述第二透明导电层的整层区域被所述多条分隔槽分隔成多个第二导电单元。
  16. 如权利要求15所述的电致变色装置的制作方法,其特征在于,步骤c、步骤d以及步骤e的执行顺序包括如下顺序的任意一种:
    先执行步骤e,再执行步骤c,后执行步骤d;
    先执行步骤e,再执行步骤d,后执行步骤c;
    先执行步骤c,再执行步骤d,后执行步骤e;
    先执行步骤c,再执行步骤e,后执行步骤d;
    先执行步骤c,再一起执行步骤d和步骤e。
  17. 如权利要求15所述的电致变色装置的制作方法,其特征在于,所述第一基板和所述第一透明导电层组成第一堆叠结构,所述第二基板和所述第二透明导电层组成第二堆叠结构;
    各条所述分隔槽的深度大于或等于其所在的堆叠结构包含的透明导电层的厚度,且小于或等于其所在的堆叠结构包含的透明导电层的厚度与基板的0.5倍厚度之和。
  18. 如权利要求16所述的电致变色装置的制作方法,其特征在于,步骤e位于步骤d之前,步骤d具体包括:
    在每一个所述导电单元的一条侧边的边缘上形成一段大致铺满其所在边缘的所述电极子线。
  19. 如权利要求15所述的电致变色装置的制作方法,其特征在于,所述方法还包括步骤f,步骤f具体包括:
    在所述电致变色装置的边缘上开设在深度方向上贯穿其多层堆叠层的至少一个开口,其中,所述电致变色装置的多层堆叠层包括所述第一基板、所述第一透明导电层、所述电致变色功能层、所述第二透明导电层以及所述第二基板。
  20. 一种电致变色玻璃,其特征在于,包括:
    第一玻璃层和第二玻璃层;以及
    如权利要求11-13中任意一项所述的电致变色装置,其中,所述电致变色装置设于所述第一玻璃层和所述第二玻璃层之间;所述第一玻璃层朝向所述第一基板,所述第二玻璃层朝向所述第二基板。
  21. 一种车辆,其特征在于,包括权利要求20所述的电致变色玻璃。
PCT/CN2022/108066 2021-07-28 2022-07-27 电致变色膜、装置及其制作方法、电致变色玻璃和车辆 WO2023005947A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22848552.0A EP4361718A1 (en) 2021-07-28 2022-07-27 Electrochromic film, electrochromic apparatus and manufacturing method therefor, and electrochromic glass and vehicle
KR1020247003921A KR20240027823A (ko) 2021-07-28 2022-07-27 전기변색 필름, 장치 및 그 제조 방법, 전기변색 유리와 차량
US18/424,065 US20240210780A1 (en) 2021-07-28 2024-01-26 Electrochromic film, electrochromic device, electrochromic glass, and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110855824.7 2021-07-28
CN202110855824.7A CN113759626B (zh) 2021-07-28 2021-07-28 电致变色膜、装置及其制作方法、电致变色玻璃和车辆

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/424,065 Continuation US20240210780A1 (en) 2021-07-28 2024-01-26 Electrochromic film, electrochromic device, electrochromic glass, and vehicle

Publications (1)

Publication Number Publication Date
WO2023005947A1 true WO2023005947A1 (zh) 2023-02-02

Family

ID=78788133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108066 WO2023005947A1 (zh) 2021-07-28 2022-07-27 电致变色膜、装置及其制作方法、电致变色玻璃和车辆

Country Status (5)

Country Link
US (1) US20240210780A1 (zh)
EP (1) EP4361718A1 (zh)
KR (1) KR20240027823A (zh)
CN (1) CN113759626B (zh)
WO (1) WO2023005947A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113759626B (zh) * 2021-07-28 2022-11-29 福耀玻璃工业集团股份有限公司 电致变色膜、装置及其制作方法、电致变色玻璃和车辆
CN116266024A (zh) * 2021-12-17 2023-06-20 光羿智能科技(苏州)有限公司 一种电致变色器件
WO2023109922A1 (zh) * 2021-12-17 2023-06-22 光羿智能科技(苏州)有限公司 一种电致变色器件
CN114545699B (zh) * 2022-02-23 2023-06-02 福耀玻璃工业集团股份有限公司 一种调光膜与大拱高的可调光玻璃及其应用
CN117289517A (zh) * 2022-06-16 2023-12-26 光羿智能科技(苏州)有限公司 一种电致变色膜片及变色玻璃
CN116699917B (zh) * 2023-08-09 2024-01-26 合肥威迪变色玻璃有限公司 一种电致变色器件及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100014145A1 (en) * 2007-01-22 2010-01-21 Ki-Seok Jang Electrode comprising lithium nickel oxide layer, method for preparing the same, and electrochromic device comprising the same
CN104834103A (zh) * 2015-05-25 2015-08-12 京东方科技集团股份有限公司 3d光栅、彩膜基板、显示装置及其控制方法
CN108646495A (zh) * 2018-07-17 2018-10-12 合肥威驰科技有限公司 用于交通工具的可分区变色调光玻璃
CN208126073U (zh) * 2018-01-19 2018-11-20 姜卫东 一种可独立控制分区变色的电致变色器件及单面电极片
CN110908208A (zh) * 2019-12-17 2020-03-24 深圳市光羿科技有限公司 一种电致变色器件及其制备方法和应用
CN111954846A (zh) * 2018-03-30 2020-11-17 株式会社村上开明堂 透光元件
CN113759626A (zh) * 2021-07-28 2021-12-07 福耀玻璃工业集团股份有限公司 电致变色膜、装置及其制作方法、电致变色玻璃和车辆

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11187955B2 (en) * 2018-05-11 2021-11-30 Halio, Inc. Electrochromic devices with patterned electrically conductive layers configured to minimize diffraction effects
EP3830641A4 (en) * 2018-08-03 2022-04-20 Sage Electrochromics, Inc. APPARATUS FOR MAINTAINING A CONTINUOUSLY DIMMED TRANSMISSION STATE

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100014145A1 (en) * 2007-01-22 2010-01-21 Ki-Seok Jang Electrode comprising lithium nickel oxide layer, method for preparing the same, and electrochromic device comprising the same
CN104834103A (zh) * 2015-05-25 2015-08-12 京东方科技集团股份有限公司 3d光栅、彩膜基板、显示装置及其控制方法
CN208126073U (zh) * 2018-01-19 2018-11-20 姜卫东 一种可独立控制分区变色的电致变色器件及单面电极片
CN111954846A (zh) * 2018-03-30 2020-11-17 株式会社村上开明堂 透光元件
CN108646495A (zh) * 2018-07-17 2018-10-12 合肥威驰科技有限公司 用于交通工具的可分区变色调光玻璃
CN110908208A (zh) * 2019-12-17 2020-03-24 深圳市光羿科技有限公司 一种电致变色器件及其制备方法和应用
CN113759626A (zh) * 2021-07-28 2021-12-07 福耀玻璃工业集团股份有限公司 电致变色膜、装置及其制作方法、电致变色玻璃和车辆

Also Published As

Publication number Publication date
KR20240027823A (ko) 2024-03-04
CN113759626A (zh) 2021-12-07
CN113759626B (zh) 2022-11-29
US20240210780A1 (en) 2024-06-27
EP4361718A1 (en) 2024-05-01

Similar Documents

Publication Publication Date Title
WO2023005947A1 (zh) 电致变色膜、装置及其制作方法、电致变色玻璃和车辆
JP6882500B2 (ja) タッチパネル、その製造方法及びタッチディスプレイ
TWI525490B (zh) Conductive sheet and manufacturing method thereof
JP2012524291A (ja) 透明度制御エレクトロクロミック素子
WO2021121172A1 (zh) 一种电致变色器件及其制备方法和应用
CN207198503U (zh) 电子设备
US9594454B2 (en) Touch-panel substrate and electronic device
JP2011018194A (ja) 大型ディスプレイ用のセンサパネル
TWI626567B (zh) 觸控面板及其製造方法
WO2018035934A1 (zh) 触摸屏及其触摸感应组件
KR20180034869A (ko) 전기변색소자
CN110275650B (zh) 触摸感应装置、触控显示面板及触控显示面板母板
CN111427468A (zh) 一种金属网格结构、触控屏与触控显示屏
JP2019128376A (ja) 調光体
JP7239878B2 (ja) 積層体
CN114168015A (zh) 一种触控面板、触控面板组及触控显示面板
EP4126541A1 (en) Laminated glazing with electrically connected layer and method of preparing a laminated glazing
CN111488069A (zh) 一种金属网格结构、触控屏与触控显示屏
CN112363358A (zh) 一种导电基材及电致变色器件
CN217213672U (zh) 一种触控屏与触控显示屏
JP2020126153A (ja) 調光シート及び光学平板、合わせガラス
US11161396B2 (en) Multilayer arrangement for a flat switchable glazing unit, switchable glazing unit and vehicle
TWI744516B (zh) 透明導電薄膜降低局部區域阻抗值的方法及其製成品
CN212749790U (zh) 一种金属网格结构、触控屏与触控显示屏
US20240045538A1 (en) Display panel and mobile terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848552

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024505189

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022848552

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20247003921

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247003921

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2022848552

Country of ref document: EP

Effective date: 20240126

NENP Non-entry into the national phase

Ref country code: DE