WO2023005726A1 - 一种抗静电聚酰胺组合物及其制备方法和应用 - Google Patents

一种抗静电聚酰胺组合物及其制备方法和应用 Download PDF

Info

Publication number
WO2023005726A1
WO2023005726A1 PCT/CN2022/106378 CN2022106378W WO2023005726A1 WO 2023005726 A1 WO2023005726 A1 WO 2023005726A1 CN 2022106378 W CN2022106378 W CN 2022106378W WO 2023005726 A1 WO2023005726 A1 WO 2023005726A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
polyamide
antistatic
carbon
polyamide composition
Prior art date
Application number
PCT/CN2022/106378
Other languages
English (en)
French (fr)
Inventor
叶少勇
杨硕
陈家达
黄险波
徐显骏
姜苏俊
曹民
龙杰明
麦杰鸿
陈平绪
叶南飚
Original Assignee
金发科技股份有限公司
珠海万通特种工程塑料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金发科技股份有限公司, 珠海万通特种工程塑料有限公司 filed Critical 金发科技股份有限公司
Publication of WO2023005726A1 publication Critical patent/WO2023005726A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/08Oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/04Antistatic

Definitions

  • the invention relates to the technical field of polymer materials, in particular to an antistatic polyamide composition and its preparation method and application.
  • the imaging system is rapidly popularized in daily life.
  • the key to the imaging system is the lens.
  • lenses such as mobile phone camera module lenses, laptop/AIO all-in-one machine lenses, and monitoring lenses.
  • the current lens has been modularized, called a camera module, which is mainly composed of a lens, a voice coil motor, a photosensitive chip, a sensor, an infrared filter, and a circuit board.
  • the plastic lens bracket needs to have the following characteristics: heat resistance, adhesiveness, dimensional stability, formability, low dust generation, and surface smoothness.
  • the imaging effect of the camera will continue to decrease with the prolongation of use time.
  • the main reason is that the lens is polluted by granular dust (size greater than 10 ⁇ m), which mainly comes from two
  • one is the external dust caused by the poor packaging of the module, and this kind of dust pollution is closely related to the electrostatic dust absorption effect of the insulating plastic material in the module.
  • Another important source is that the plastic lens holder is vibrated or driven. The particles that fall out due to friction (the main component is the filler in it), therefore, as a lens holder material, it should have the highest possible anti-static dust absorption and low self-dusting characteristics to keep the lens clean for a long time.
  • the plastic material lens bracket not only plays a role of supporting the lens, but also plays a role of transmission support when the lens expands and contracts.
  • the surface smoothness of the material has an important influence on the lubrication and wear resistance characteristics during the transmission movement , Therefore, the material is required to have high surface smoothness in order to obtain excellent lubrication and wear resistance.
  • workpieces with uneven surfaces are prone to drop tiny particles during long-term use. Therefore, surface smoothness is also closely related to low dust generation.
  • heat resistance, adhesiveness, dimensional stability, and molding performance can be satisfied by the optimization of matrix resin or other means, and high surface smoothness can be adjusted by plastic filling substances.
  • high surface smoothness and low dust generation at the same time is still a difficult problem in the industry, which involves the self-dust generation and electrostatic dust collection properties of the material.
  • the object of the present invention is to overcome the above-mentioned technical defects, and provide an antistatic polyamide composition, which has the advantages of smooth surface, good antistatic dust absorption and dust generation resistance.
  • Another object of the present invention is to provide the preparation method and application of the above antistatic polyamide composition.
  • An antistatic polyamide composition by weight, comprises the following components:
  • the mineral fiber is selected from at least one of wollastonite fiber, calcium sulfate fiber, calcium silicate fiber, aluminum silicate fiber and sepiolite fiber.
  • the polyamide resin is selected from at least one of semi-aromatic polyamide and aliphatic polyamide; the semi-aromatic polyamide is selected from PA6T/66, PA6I, PA6T/6I, PA6T/M5T, PA9T, PA9T/ 66. At least one of PA10T, PA10T/66, PA10T/10I, PA10T/1010, PA12T, PA12I; the aliphatic polyamide is selected from PA6, PA66, PA610, PA612, PA1010, PA1012, PA1212, PA11, At least one of PA12.
  • the present invention has no special requirement on the weight-average molecular weight of the polyamide resin. Generally speaking, the purpose of the present invention can be achieved if the weight-average molecular weight is within the range of 5000-100000 g/mol.
  • the polyamide resin of the present invention can be selected from pure aliphatic polyamide, pure semi-aromatic polyamide, a combination of aliphatic polyamide and semi-aromatic polyamide resin.
  • the combination of aliphatic polyamide and semi-aromatic polyamide resin or pure semi-aromatic polyamide preferably, based on the total weight of polyamide resin, semi-aromatic polyamide is 75-100wt%, and aliphatic polyamide is 0-100wt%. 25 wt%; more preferably, based on the total weight of polyamide resin, semi-aromatic polyamide is 85-100 wt%, and aliphatic polyamide is 0-15 wt%.
  • the average diameter of the isotropic pitch-based carbon fibers is 2-20 microns; preferably, the average diameter of the isotropic pitch-based carbon fibers is 12-14 microns.
  • the nanostructure carbon is selected from at least one of single-arm carbon nanotubes, multi-arm carbon nanotubes, and bifurcated array carbon nanostructures; preferably, the nanostructure carbon is selected from multi-arm carbon nanostructures. Tube.
  • the percolation structure network formed by the preferred nanostructured carbon is better, and at the same time, the surface smoothness of the antistatic polyamide composition is better, and self-grinding dust is not easy to be generated after long-term use.
  • nano-conductive carbon materials also include graphene, graphyne, C60, nano-carbon black, and the like.
  • the dispersibility of the above-mentioned nano-conductive carbon material is not as good as that of nano-structured carbon, thereby reducing the surface smoothness of the workpiece, and self-wearing dust will be generated after long-term use.
  • the nano-dimensional size of the nano-structured carbon is 0.5-50 nanometers.
  • the meaning of the nano-dimensional size is: the size range of the nano-dimensional in the three dimensions of the nano-object (for an object, the shape and size of the material can be defined through the three spatial dimensions, and for nano-scale materials, the nano-scale The concept does not require all three dimensions to reach the nanometer level, only one of the dimensions needs to reach the nanometer level to be called a nanomaterial). Such as average diameter, diameter, average thickness, thickness, length, average length, particle size, average particle size, etc.
  • the average diameter of the mineral fibers is 0.5-15 microns; preferably, the average diameter of the mineral fibers is 2-8 microns; preferably, the mineral fibers are selected from calcium sulfate fibers.
  • the volume resistivity value of the antistatic polyamide composition of the present invention is less than or equal to 9.9 ⁇ 10 8 ohm ⁇ cm.
  • antioxidants and UV-resistant agents can be added according to actual needs to improve oxidation resistance, UV resistance, etc.
  • the antioxidant can be antioxidant 1010, etc., and technicians can choose the type of antioxidant to add according to the actual situation.
  • the polyamide resin and nano-structured carbon are uniformly mixed according to the ratio, and then added to the main feeding port of the twin-screw extruder, and the isotropic pitch-based carbon fiber is fed through the first side.
  • the feeder is added to the twin-screw extruder, and the mineral fiber is added to the twin-screw extruder through the second side feeder, melted, extruded, and granulated to obtain an antistatic polyamide composition; wherein, the screw speed range is 200 ⁇ 500rpm, aspect ratio is 40:1 ⁇ 48:1, temperature range is 270-320°C.
  • the application of the antistatic polyamide composition of the present invention is used for preparing camera module components.
  • the present invention has the following beneficial effects
  • the existing technology mainly forms the percolation structure network required for antistatic by compounding a certain amount of carbon fiber and nano-structured carbon (or other nano-conductive carbon materials).
  • carbon fiber content is too high, it will cause floating fiber defects due to its large microscopic size and excellent heat transfer characteristics; if the nanostructured carbon (or other nano-conductive carbon materials) (or other nano-conductive carbon materials) too much internal air entrainment and agglomeration will cause the surface of the part to be uneven, which will easily cause self-dusting, and will also lead to the destruction of the percolation structure network.
  • the present invention increases the viscosity of the system by adding mineral fibers, so that the screw rod can effectively transmit the shearing effect on the melt of the composition during extrusion processing, so that the filler (isotropic pitch-based carbon fiber, nano Structural carbon, mineral fibers) dispersion/distribution is significantly better. It can not only make the isotropic pitch-based carbon fiber and nano-structure carbon form a good percolation structure network at a low content, but also inhibit the damage to surface smoothness at a high content of the isotropic pitch-based carbon fiber and nano-structure carbon.
  • the raw material sources used in the present invention are as follows:
  • PA6T/66 Vicnyl 4X, Kingfa Science & Technology Co., Ltd., weight average molecular weight 30000g/mol;
  • PA10T Vicnyl 7X, Kingfa Science & Technology Co., Ltd., weight average molecular weight 10000g/mol;
  • PA10T/1010 Vicnyl 8X, Kingfa Science & Technology Co., Ltd., weight average molecular weight 7000g/mol;
  • PA66 PA66 EPR24, China Shenma Group, weight average molecular weight 20000g/mol;
  • PA612 Zytel 153HSL NC010, DuPont, USA, weight average molecular weight 100000g/mol;
  • PA12 Grilamid L 20HL, Swiss EMS company, weight average molecular weight 70000g/mol;
  • Calcium sulfate fiber A DL-40H, average diameter 2 ⁇ m, Changzhou Guangwei New Material Co., Ltd.;
  • Calcium sulfate fiber B DL-30, with an average diameter of 4 ⁇ m, Changzhou Guangwei New Material Co., Ltd.;
  • Calcium sulfate fiber C DL-10, with an average diameter of 8 ⁇ m, Changzhou Guangwei New Material Co., Ltd.;
  • Calcium sulfate fiber D NP-M01, average diameter 0.7 ⁇ m, Jiangxi Fengzhu New Material Technology Co., Ltd.;
  • Calcium sulfate fiber E calcium sulfate whiskers, average diameter 14 ⁇ m, Jinan Qingyuyuan New Material Co., Ltd.;
  • Wollastonite fiber needle-shaped wollastonite, with an average diameter of 10 ⁇ m, Jiangxi Huajietai Mineral Fiber Technology Co., Ltd.;
  • Calcium silicate fiber MD1250-10012, average diameter 7 ⁇ m, Shanghai Huazhongrong Trading Co., Ltd.;
  • Aluminum silicate fiber aluminum silicate powder, diameter 7 ⁇ m, Shandong Minye Refractory Fiber Co., Ltd.;
  • Sepiolite fiber sepiolite fiber, diameter 15 ⁇ m, Shijiazhuang Huijin Mining Products Co., Ltd.;
  • Glass fiber EC11-3.0, round chopped glass fiber, with an average diameter of 10 ⁇ m, Bicheng Company, Taiwan province, China;
  • Magnesium sulfate fiber NP-YW2, average diameter 4 ⁇ m, Shanghai Fengzhu Composite New Material Technology Co., Ltd.;
  • Polycrystalline mullite fiber T-1600, average diameter 4 ⁇ m, Zhejiang Jiahua Crystal Fiber Co., Ltd.;
  • Alumina fiber T-1700, average diameter 4 ⁇ m, Zhejiang Jiahua Crystal Fiber Co., Ltd.;
  • Isotropic pitch-based carbon fiber A DONACARBO S-242, average diameter 13 ⁇ m, Osaka Gas Chemical Co., Ltd., Japan;
  • Isotropic pitch-based carbon fiber B DONACARBO S-344, average diameter 18 ⁇ m, Osaka Gas Chemical Co., Ltd., Japan;
  • Anisotropic pitch-based carbon fiber XN80, average diameter 11 ⁇ m, Japan Graphite Fiber Company;
  • PAN-based carbon fiber PX35CA0250-65, with an average diameter of 7 ⁇ m, Toray Corporation of Japan;
  • Single-armed carbon nanotubes TUBALL single-armed carbon nanotubes, with an average diameter of 2.0nm, Okosi Air Trading (Shenzhen) Co., Ltd.;
  • Multi-armed carbon nanotubes NANOCYL NC7000, average diameter 9.5nm, Belgian NANOCYL company;
  • Forked array carbon nanostructures CNS, average nano-dimensional size 5.0nm, Cabot Corporation;
  • Nano-scale carbon black nano-carbon black, average particle size 15nm, Cabot Corporation;
  • Graphene highly conductive graphene powder, flake shape, sheet thickness of 0.5nm, Deyang Carbon Technology Co., Ltd.;
  • Antioxidant Antioxidant 1010, BASF.
  • Examples and comparative examples The preparation method of the antistatic polyamide composition: mix the polyamide resin and nanostructure carbon evenly according to the proportion, then add the main feeding port of the twin-screw extruder, pass the isotropic pitch-based carbon fiber through the first The feeder on one side is fed into the twin-screw extruder, and the mineral fiber is fed into the twin-screw extruder through the second side feeder, melted, extruded, and granulated to obtain an antistatic polyamide composition; wherein, the rotational speed of the screw The range is 300-400rpm, the aspect ratio is 48:1, and the temperature range is 270-320°C.
  • Dust generation test The sample is injection molded into samples A and B of 40mm ⁇ 40mm ⁇ 1.0mm.
  • the sample test scene is as follows: (1) The dust generation test is carried out immediately within 2 hours after the injection molding is completed. This sample is called A Sample; (2) After being placed in a daily house (temperature 23°C, humidity 67%) for 168 hours, the dust generation test (to characterize the antistatic and dust-absorbing properties of the material), this sample is called B sample.
  • the dust generation rating is defined as follows : Grade 1 (excellent) is Fa ⁇ 5, Grade 2 (excellent) is 5 ⁇ Fa ⁇ 20, Grade 3 (good) is 20 ⁇ Fa ⁇ 35, Grade 4 (medium) is 35 ⁇ Fa ⁇ 50, Grade 5 (difference) is 50 ⁇ Fa.
  • the instrument model of the liquid particle counter is RION KS-42BF
  • the instrument model of the ultrasonic cleaner is BK-240J.
  • grades 1-3 are qualified, and grades 1 and 2 belong to the low self-dusting level.
  • volume resistivity measured with reference to IEC 60093-1980, the material sample (100mm ⁇ 100mm ⁇ 2.0mm) was kept under 500V DC for 1 minute, and the current passing through the sample material was measured, and calculated to obtain the material Volume resistivity, in ohm cm.
  • Example 1 Example 2
  • Example 3 Example 4
  • PA6T/66 60 the the the the PA10T the 60 the the PA10T/1010 the the 60 the the PA66 the the the 60 the PA612 the the the the 60 PA12 the the the the the
  • Example 6 Example 7
  • Example 8 Example 9
  • Example 10 Example 11 PA6T/66 the the the the 45 the PA10T 59 51 45 39 the the PA10T/1010 the the the the the 45 PA66 the the the the 15 the PA612 1 9 15 twenty one the the PA12 the the the the the 15 Isotropic pitch-based carbon fiber
  • a 10 10 10 10 10 10 10 10 10 10 10 Calcium Sulfate Fiber
  • the average diameter of the mineral fibers is preferably in the range of 2-8 microns.
  • Example 8/21 It can be known from Example 8/21 that the preferred antistatic polyamide composition of isotropic pitch-based carbon fibers has a lower volume resistivity.
  • Comparative example 8 Comparative example 9 Comparative example 10 Comparative example 11
  • PA612 15 15 15 15 Isotropic pitch-based carbon fiber
  • a sample level 2 level 2
  • Level 5 level 4 Level 5 level 4 Volume resistivity, ohm cm 8.1 ⁇ 10 11 4.8 ⁇ 10 9 1.3 ⁇ 10 10 6.1 ⁇ 10 9 Surface roughness, ⁇ m 0.16 0.21 0.12 0.27

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种抗静电聚酰胺组合物,按重量份计,包括以下组分:聚酰胺树脂60份;各项同性沥青系碳纤维2-18份;矿物纤维10-40份;纳米结构碳0.05-5份;所述的矿物纤维选自硅灰石纤维、硫酸钙纤维、硅酸钙纤维、硅酸铝纤维、海泡石纤维中的至少一种。通过各项同性沥青系碳纤维、矿物纤维、纳米结构碳的复配,既能够有效降低制件表面的缺陷,也能够具有良好的抗静电吸尘性、抗自发尘性。

Description

一种抗静电聚酰胺组合物及其制备方法和应用 技术领域
本发明涉及高分子材料技术领域,特别是涉及一种抗静电聚酰胺组合物及其制备方法和应用。
背景技术
随着现代科技技术的发展,成像***在日常生活中急速普及,成像***的关键为镜头,镜头的品种各式各样,如手机照相机模组镜头、笔记本电脑/AIO一体机镜头、监控用镜头、车载镜头、扫描仪镜头、多媒体电视内置摄像头镜头等。目前的镜头均已模块化,称为摄像头模组,主要由镜头、音圈马达、感光芯片、传感器、红外线滤光片及电路板等部件组成。
塑料镜头支架作为摄像头模组的重要组成部分,需要具备如下特点:耐热性、粘接性、尺寸稳定性、成型性、低发尘性、表面平滑性。
在使用的过程中,摄像头的成像效果将会随着使用时间的加长而清晰度不断下降,主要原因是镜头受到了颗粒状粉尘的污染(尺寸大于10μm),此类颗粒状粉尘主要来源于两方面,其一为因模组封装不严导致的外部粉尘,而此类粉尘污染与模组中的绝缘塑料材料静电吸尘作用有较大关联,另一重要来源为塑料镜头支架受震动或者传动摩擦而掉落出来的颗粒(主要成分为其中的填充物),因此,作为镜头支架材料,应该具备尽可能高的抗静电吸尘及低的自发尘特性以较长时间保持镜头的清洁。
关于表面平滑性,一方面,塑料材料镜头支架不仅起到镜头的支撑作用,在镜头伸缩时也起到了传动支撑作用,材料的表面平滑性对传动运动过程中的润滑耐磨特性有重要的影响,因此,要求材料具有高的表面平滑性以获得优异的润滑耐磨性。另一方面,表面不平滑的制件在长时间的使用过程中很容易掉落微小颗粒。因此,表面平滑性也与低发尘性密切相关。
其中,耐热性、粘接性、尺寸稳定性、成型性能通过基体树脂的优选或其他手段进行满足,高表面平滑性可通过塑料填充物质进行表面调节。但是,同时实现高表面平滑性与低发尘性则仍为业界难题,其中涉及材料的自发尘性和静电吸尘性。
发明内容
本发明的目的在于,克服上述技术缺陷,提供一种抗静电聚酰胺组合物,具有表面平滑性,并且抗静电吸尘性、抗发尘性良好的优点。
本发明的另一目的在于,提供上述抗静电聚酰胺组合物的制备方法和应用。
本发明是通过以下技术方案实现的:
一种抗静电聚酰胺组合物,按重量份计,包括以下组分:
Figure PCTCN2022106378-appb-000001
所述的矿物纤维选自硅灰石纤维、硫酸钙纤维、硅酸钙纤维、硅酸铝纤维、海泡石纤维中的至少一种。
所述的聚酰胺树脂选自半芳香聚酰胺、脂肪族聚酰胺中的至少一种;所述的半芳香聚酰胺选自PA6T/66、PA6I、PA6T/6I、PA6T/M5T、PA9T、PA9T/66、PA10T、PA10T/66、PA10T/10I、PA10T/1010、PA12T、PA12I中的至少一种;所述的脂肪族聚酰胺选自PA6、PA66、PA610、PA612、PA1010、PA1012、PA1212、PA11、PA12中的至少一种。
本发明对于聚酰胺树脂的重均分子量没有特别的要求,一般来说重均分子量在5000-100000g/mol范围内都可以实现本发明的目的。
本发明的聚酰胺树脂可以选用纯脂肪族聚酰胺、纯半芳香族聚酰胺、脂肪族聚酰胺与半芳香族聚酰胺树脂的组合。当选用脂肪族聚酰胺与半芳香族聚酰胺树脂的组合或者纯半芳香族聚酰胺时,优选,以聚酰胺树脂的总重量计,半芳香聚酰胺75-100wt%,脂肪族聚酰胺0-25wt%;更优选的,以聚酰胺树脂的总重量计,半芳香聚酰胺85-100wt%,脂肪族聚酰胺0-15wt%。
所述的各项同性沥青系碳纤维的平均直径为2-20微米;优选的,所述的各项同性沥青系碳纤维的平均直径为12-14微米。
所述的纳米结构碳选自单臂碳纳米管、多臂碳纳米管、分叉状阵列型碳纳米结构物中的至少一种;优选的,所述的纳米结构碳选自多臂碳纳米管。优选的纳米结构碳形成的逾渗结构网络更优,同时抗静电聚酰胺组合物制件的表面平滑性更好,长时间使用也不容易产生自磨粉尘。
现有技术中,作为纳米导电碳材料除了上述纳米结构碳外,还包括石墨烯、石墨炔、C60、纳米炭黑等。但是在本发明体系中上述纳米导电碳材料的分散性不如纳米结构碳,因而会降低制件的表面平滑性,长时间使用会产生自磨损粉尘。
优选的,所述的纳米结构碳的纳米维度尺寸为0.5~50纳米。
纳米维度尺寸的含义为:该纳米物3个维度中达到纳米维度的尺寸范围(对一个物体而言,通过3个空间维度可以定义出材料的形状大小,而对于纳米级材料而言,纳米的概念并 不需要3个维度都达到纳米级,只需要其中一个维度尺寸达到纳米级即可称之为纳米材料)。如平均直径、直径、平均厚度、厚度、长度、平均长度、粒径、平均粒径等。
所述矿物纤维的平均直径是0.5-15微米;优选的,所述矿物纤维的平均直径是2-8微米;优选的,所述的矿物纤维选自硫酸钙纤维。
本发明的抗静电聚酰胺组合物的体积电阻率值小于等于9.9×10 8ohm·cm。
可以根据实际需求添加0-2份的抗氧剂、耐紫外线剂以提升抗氧化性、耐紫外线性等。
抗氧剂可以是抗氧剂1010等,技术人员可根据实际情况选择抗氧剂种类添加。
本发明的抗静电聚酰胺组合物的制备方法,按照配比聚酰胺树脂、纳米结构碳混合均匀,再加入双螺杆挤出机主喂料口,将各项同性沥青系碳纤维通过第一侧喂料机加入双螺杆挤出机,将矿物纤维通过第二侧喂料机加入双螺杆挤出机,熔融挤出、造粒,即得到抗静电聚酰胺组合物;其中,螺杆的转速范围是200~500rpm,长径比是40:1~48:1,温度范围是270-320℃。
本发明的抗静电聚酰胺组合物的应用,用于制备摄像头模组部件。
本发明与现有技术相比,具有如下有益效果
为了实现良好的抗静电性能,现有技术主要是通过复配一定含量的碳纤维和纳米结构碳(或其他纳米导电碳材料)形成抗静电所需的逾渗结构网络。但是,如果碳纤维含量过高,因其较大的微观尺寸和极其优异的传热特性会导致浮纤缺陷;如果纳米结构碳(或其他纳米导电碳材料)含量过高,也会因为纳米结构碳(或其他纳米导电碳材料)内部夹气过多以及团聚现象导致制件表面不平滑,容易带来自发尘,也会导致逾渗结构网络被破坏。
为了解决上述技术缺陷,本发明通过添加矿物纤维来提高体系的粘度,使组合物在挤出加工时螺杆对其熔体剪切作用得到有效传递,使填充物(各项同性沥青系碳纤维、纳米结构碳、矿物纤维)分散/分布情况显著变好。既能够使各项同性沥青系碳纤维和纳米结构碳在低含量下形成良好的逾渗结构网络,也能够抑制各项同性沥青系碳纤维和纳米结构碳高含量下对表面平滑性的破坏。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
本发明所用原材料来源如下:
PA6T/66:Vicnyl 4X,金发科技股份有限公司,重均分子量30000g/mol;
PA10T:Vicnyl 7X,金发科技股份有限公司,重均分子量10000g/mol;
PA10T/1010:Vicnyl 8X,金发科技股份有限公司,重均分子量7000g/mol;
PA66:PA66 EPR24,中国神马集团,重均分子量20000g/mol;
PA612:Zytel 153HSL NC010,美国杜邦公司,重均分子量100000g/mol;
PA12:Grilamid L 20HL,瑞士EMS公司,重均分子量70000g/mol;
硫酸钙纤维A:DL-40H,平均直径2μm,常州广威新材料公司;
硫酸钙纤维B:DL-30,平均直径4μm,常州广威新材料公司;
硫酸钙纤维C:DL-10,平均直径8μm,常州广威新材料公司;
硫酸钙纤维D:NP-M01,平均直径0.7μm,江西峰竺新材料科技有限公司;
硫酸钙纤维E:硫酸钙晶须,平均直径14μm,济南青玉元新材料有限公司;
硅灰石纤维:针状硅灰石,平均直径10μm,江西华杰泰矿纤科技有限公司;
硅酸钙纤维:MD1250-10012,平均直径7μm,上海华仲荣贸易有限公司;
硅酸铝纤维:硅酸铝粉,直径7μm,山东民烨耐火纤维有限公司;
海泡石纤维:海泡石纤维,直径15μm,石家庄汇锦矿产品有限公司;
[根据细则91更正 25.08.2022] 
玻璃纤维:EC11-3.0,圆形短切玻纤,平均直径10μm,中国台湾省必成公司;
硫酸镁纤维:NP-YW2,平均直径4μm,上海峰竺复合新材料科技有限公司;
多晶莫来石纤维:T-1600,平均直径4μm,浙江嘉华晶体纤维有限公司;
氧化铝纤维:T-1700,平均直径4μm,浙江嘉华晶体纤维有限公司;
各项同性沥青系碳纤维A:DONACARBO S-242,平均直径13μm,日本大阪燃气化学公司;
各项同性沥青系碳纤维B:DONACARBO S-344,平均直径18μm,日本大阪燃气化学公司;
各向异性沥青系碳纤维:XN80,平均直径11μm,日本石墨纤维公司;
PAN系碳纤维:PX35CA0250-65,平均直径7μm,日本东丽公司;
单臂碳纳米管:TUBALL单臂碳纳米管,平均直径2.0nm,奥科希艾尔贸易(深圳)有限公司;
多臂碳纳米管:NANOCYL NC7000,平均直径9.5nm,比利时NANOCYL公司;
分叉状阵列碳纳米结构物:CNS,平均纳米维度尺寸5.0nm,卡博特公司;
石墨炔:平均厚度3nm,中科院化学所;
C60:富勒烯C60,平均粒径0.71nm,上海皓鸿生物医药科技有限公司;
纳米级炭黑:纳米炭黑,平均粒径15nm,卡博特公司;
石墨烯:高导电型石墨烯粉体,片状形貌,片层厚度为0.5nm,德阳烯碳科技有限公司;
抗氧剂:抗氧剂1010,巴斯夫公司。
实施例和对比例抗静电聚酰胺组合物的制备方法:按照配比将聚酰胺树脂、纳米结构碳混合均匀,再加入双螺杆挤出机主喂料口,将各项同性沥青系碳纤维通过第一侧喂料机加入双螺杆挤出机,将矿物纤维通过第二侧喂料机加入双螺杆挤出机,熔融挤出、造粒,即得到抗静电聚酰胺组合物;其中,螺杆的转速范围是300-400rpm,长径比是48:1,温度范围是270-320℃。
测试方法:
(1)发尘性测试:将样品注塑为40mm×40mm×1.0mm的样板A、B,样板测试场景如下:(1)刚完成注塑后2h内立即进行发尘性测试,此样品称为A样板;(2)放置于日常房屋(温度23℃,湿度67%)中168h后进行发尘性测试(表征材料的抗静电吸尘性),此样品称为B样板。将样板放置于由烧杯承装的500mL去离子水中,将装有样品的烧杯放入超声波清洗机,洗涤后(超声频率40kHz,时间A板20分钟,B板2分钟),将清洗过样板的去离子水取出并置于液体池中,在23℃下用液体粒子计数器测试5min,使用软件程序统计直径大于10μm的粉尘的数量Fa,作为材料发尘性的表征参数,发尘性评级定义如下:1级(极优)为Fa<5,2级(优)为5≤Fa<20,3级(良)为20≤Fa<35,4级(中)为35≤Fa<50,5级(差)为50≤Fa。其中液体粒子计数器的仪器型号为RION KS-42BF,超声波清洗机的仪器型号为BK-240J。其中,1-3级合格,1级和2级属于低自发尘水平。
(2)体积电阻率:参照IEC 60093-1980进行测定,将材料样板(100mm×100mm×2.0mm)在500V直流电下保持1分钟,并测量通过该样板材料的电流,并以此计算获得材料的体积电阻率,单位为ohm·cm。
(3)表面粗糙度:参照GB/T 1031-2009进行测定,使用轮廓法测试40mm×40mm×1.0mm的注塑样板的表面粗糙度,采用中线制(轮廓法)评定表面粗糙度,选取轮廓的算术平均偏差Ra值作为表征参数,取样基准长度lr优选为2.5mm,测量时选取5×lr的评定长度值,以保证测试的准确度,算术平均偏差Ra值的单位为μm。
表1:实施例1-11抗静电聚酰胺组合物各组分含量(重量份)及测试结果
  实施例1 实施例2 实施例3 实施例4 实施例5
PA6T/66 60        
PA10T   60      
PA10T/1010     60    
PA66       60  
PA612         60
PA12          
各项同性沥青系碳纤维A 10 10 10 10 10
硫酸钙纤维A 20 20 20 20 20
单臂碳纳米管 2 2 2 2 2
抗氧剂 0.3 0.3 0.3 0.3 0.3
发尘性测试(A样板) 1级 1级 1级 2级 2级
发尘性测试(B样板) 1级 1级 1级 1级 1级
体积电阻率,ohm·cm 5.3×10 6 8.8×10 6 7.0×10 6 9.2×10 6 8.7×10 6
表面粗糙度,μm 0.10 0.11 0.09 0.18 0.19
由实施例1-11可知,当采用脂肪族聚酰胺与半芳香族聚酰胺树脂的组合时,优选的半芳香、脂肪族配比内,抑制发尘性更好(自发尘、静电吸尘),并且表面光滑度高(粗糙度低)。特别是,纯脂肪族聚酰胺组合物的表面粗糙度较高,这样会导致自抗发尘性稍差一些。
续表1:
  实施例6 实施例7 实施例8 实施例9 实施例10 实施例11
PA6T/66         45  
PA10T 59 51 45 39    
PA10T/1010           45
PA66         15  
PA612 1 9 15 21    
PA12           15
各项同性沥青系碳纤维A 10 10 10 10 10 10
硫酸钙纤维A 20 20 20 20 20 20
单臂碳纳米管 2 2 2 2 2 2
抗氧剂 0.3 0.3 0.3 0.3 0.3 0.3
发尘性测试(A样板) 1级 1级 1级 1级 1级 1级
发尘性测试(B样板) 1级 2级 2级 3级 2级 2级
体积电阻率,ohm·cm 1.6×10 7 4.2×10 7 6.6×10 7 5.1×10 8 3.8×10 7 5.0×10 7
表面粗糙度,μm 0.10 0.11 0.13 0.14 0.13 0.15
表2:实施例12-20抗静电聚酰胺组合物各组分含量(重量份)及测试结果
Figure PCTCN2022106378-appb-000002
Figure PCTCN2022106378-appb-000003
由实施例8/12-15可知,优选矿物纤维的平均直径范围是微米2-8微米。
由实施例8/16-20可知,随着各项同性沥青系碳纤维、单臂碳纳米管含量的增加,体积电阻率下降,但是表面粗糙度会上升,带来自发尘性的上升。
表3:实施例21-28抗静电聚酰胺组合物各组分含量(重量份)及测试结果
Figure PCTCN2022106378-appb-000004
由实施例8/21可知,优选的各项同性沥青系碳纤维的抗静电聚酰胺组合物的体积电阻率更低。
由实施例8/22/23可知,优选多臂碳纳米管与分叉状阵列碳纳米结构,更优选多臂碳纳米管。
由实施例8/24-27可知,优选硫酸钙纤维。
表4:对比例1-7抗静电聚酰胺组合物各组分含量(重量份)及测试结果
Figure PCTCN2022106378-appb-000005
Figure PCTCN2022106378-appb-000006
由对比例1/2可知,在本发明体系中,其他碳纤维的技术效果不好。
由对比例3可知,玻璃纤维无法替代本发明的矿物纤维。
由对比例4-7可知,石墨炔、C60、纳米级炭黑、石墨烯的技术效果都不好。
表5:对比例8-11抗静电聚酰胺组合物各组分含量(重量份)及测试结果
  对比例8 对比例9 对比例10 对比例11
PA10T 45 45 45 45
PA612 15 15 15 15
各项同性沥青系碳纤维A 1 20 10 10
硫酸钙纤维A 20 20 20 20
单臂碳纳米管 2 2 0.01 6
抗氧剂 0.3 0.3 0.3 0.3
发尘性测试(A样板) 2级 2级 1级 3级
发尘性测试(B样板) 5级 4级 5级 4级
体积电阻率,ohm·cm 8.1×10 11 4.8×10 9 1.3×10 10 6.1×10 9
表面粗糙度,μm 0.16 0.21 0.12 0.27
表6:对比例12-14抗静电聚酰胺组合物各组分含量(重量份)及测试结果
  对比例12 对比例13 对比例14
PA10T 45 45 45
PA612 15 15 15
各项同性沥青系碳纤维A 10 10 10
硫酸镁纤维 20    
多晶莫来石纤维   20  
氧化铝纤维     20
单臂碳纳米管 2 2 2
抗氧剂 0.3 0.3 0.3
发尘性测试(A样板) 3级 4级 4级
发尘性测试(B样板) 5级 4级 5级
体积电阻率,ohm·cm 1.6×10 11 8.4×10 9 5.3×10 10
表面粗糙度,μm 0.27 0.36 0.41

Claims (10)

  1. 一种抗静电聚酰胺组合物,其特征在于,按重量份计,包括以下组分:
    Figure PCTCN2022106378-appb-100001
    所述的矿物纤维选自硅灰石纤维、硫酸钙纤维、硅酸钙纤维、硅酸铝纤维、海泡石纤维中的至少一种。
  2. 根据权利要求1所述的抗静电聚酰胺组合物,其特征在于,所述的聚酰胺树脂选自半芳香聚酰胺、脂肪族聚酰胺中的至少一种;所述的半芳香聚酰胺选自PA6T/66、PA6I、PA6T/6I、PA6T/M5T、PA9T、PA9T/66、PA10T、PA10T/66、PA10T/10I、PA10T/1010、PA12T、PA12I中的至少一种;所述的脂肪族聚酰胺选自PA6、PA66、PA610、PA612、PA1010、PA1012、PA1212、PA11、PA12中的至少一种。
  3. 根据权利要求2所述的抗静电聚酰胺组合物,其特征在于,优选的,以聚酰胺树脂的总重量计,半芳香聚酰胺75-100wt%,脂肪族聚酰胺0-25wt%;更优选的,以聚酰胺树脂的总重量计,半芳香聚酰胺85-100wt%,脂肪族聚酰胺0-15wt%。
  4. 根据权利要求1所述的抗静电聚酰胺组合物,其特征在于,所述的各项同性沥青系碳纤维的平均直径为2-20微米;优选的,所述的各项同性沥青系碳纤维的平均直径为12-14微米。
  5. 根据权利要求1所述的抗静电聚酰胺组合物,其特征在于,所述的纳米结构碳选自单臂碳纳米管、多臂碳纳米管、分叉状阵列型碳纳米结构物中的至少一种;优选的,所述的纳米结构碳选自多臂碳纳米管。
  6. 根据权利要求1或5所述的抗静电聚酰胺组合物,其特征在于,所述的纳米结构碳的纳米维度尺寸为0.5~50纳米。
  7. 根据权利要求1所述的抗静电聚酰胺组合物,其特征在于,所述矿物纤维的平均直径是0.5-15微米;优选的,所述矿物纤维的平均直径是2-8微米;优选的,所述的矿物纤维选自硫酸钙纤维。
  8. 根据权利要求1-7任一项所述的抗静电聚酰胺组合物,其特征在于,抗静电聚酰胺组合物的体积电阻率值小于等于9.9×10 8ohm·cm。
  9. 根据权利要求1-8任一项所述的抗静电聚酰胺组合物的制备方法,其特征在于,按照配比将聚酰胺树脂、纳米结构碳混合均匀,再加入双螺杆挤出机主喂料口,将各项同性沥青系碳 纤维通过第一侧喂料机加入双螺杆挤出机,将矿物纤维通过第二侧喂料机加入双螺杆挤出机,熔融挤出、造粒,即得到抗静电聚酰胺组合物;其中,螺杆的转速范围是200~500rpm,长径比是40:1~48:1,温度范围是270-320℃。
  10. 权利要求1-8任一项所述的抗静电聚酰胺组合物的应用,其特征在于,用于制备摄像头模组部件。
PCT/CN2022/106378 2021-07-29 2022-07-19 一种抗静电聚酰胺组合物及其制备方法和应用 WO2023005726A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110862523.7A CN113667299B (zh) 2021-07-29 2021-07-29 一种抗静电聚酰胺组合物及其制备方法和应用
CN202110862523.7 2021-07-29

Publications (1)

Publication Number Publication Date
WO2023005726A1 true WO2023005726A1 (zh) 2023-02-02

Family

ID=78540673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106378 WO2023005726A1 (zh) 2021-07-29 2022-07-19 一种抗静电聚酰胺组合物及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN113667299B (zh)
WO (1) WO2023005726A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113667299B (zh) * 2021-07-29 2023-04-11 金发科技股份有限公司 一种抗静电聚酰胺组合物及其制备方法和应用
CN114276679A (zh) * 2022-01-14 2022-04-05 昆山聚威工程塑料有限公司 一种抗静电透明尼龙材料及其制备方法
CN114561098B (zh) * 2022-03-09 2023-08-15 珠海万通特种工程塑料有限公司 一种半芳香聚酰胺复合材料及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179753A (ja) * 2006-12-26 2008-08-07 Kuraray Co Ltd ポリアミド樹脂組成物およびそれからなる成形品
CN102532869A (zh) * 2012-02-17 2012-07-04 南京聚隆科技股份有限公司 一种导热抗静电碳纤维改性聚酰胺复合材料及其制备方法
WO2012161064A1 (ja) * 2011-05-20 2012-11-29 東洋紡株式会社 光学部材用ポリアミド樹脂組成物
US20130165576A1 (en) * 2010-08-20 2013-06-27 Cheil Industries Inc. Bracket for Protecting Liquid Crystal Display (LCD) of Portable Display Device
US20150287493A1 (en) * 2014-04-08 2015-10-08 Ems-Patent Ag Electrically conductive polyamide moulding materials
JP2016150992A (ja) * 2015-02-18 2016-08-22 ユニチカ株式会社 ポリアミド樹脂組成物
CN108929540A (zh) * 2018-06-27 2018-12-04 合肥卓创新材料有限公司 一种无卤阻燃抗静电聚酰胺材料及其制备工艺
CN113667299A (zh) * 2021-07-29 2021-11-19 金发科技股份有限公司 一种抗静电聚酰胺组合物及其制备方法和应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1934303B (zh) * 2004-03-22 2012-10-03 株式会社吴羽 各向同性沥青系碳纤维细纱、使用了该细纱的复合丝和织物及它们的制造方法
JP4725118B2 (ja) * 2005-02-02 2011-07-13 三菱化学株式会社 導電性ポリアミド樹脂組成物
JPWO2010024462A1 (ja) * 2008-09-01 2012-01-26 帝人株式会社 ピッチ系黒鉛化短繊維及びそれを用いた成形体
JP6796951B2 (ja) * 2016-05-27 2020-12-09 三菱エンジニアリングプラスチックス株式会社 ポリアミド樹脂組成物、成形品およびポリアミド樹脂組成物の製造方法
CN108752919A (zh) * 2018-07-10 2018-11-06 芜湖市元奎新材料科技有限公司 导热耐磨尼龙复合材料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179753A (ja) * 2006-12-26 2008-08-07 Kuraray Co Ltd ポリアミド樹脂組成物およびそれからなる成形品
US20130165576A1 (en) * 2010-08-20 2013-06-27 Cheil Industries Inc. Bracket for Protecting Liquid Crystal Display (LCD) of Portable Display Device
WO2012161064A1 (ja) * 2011-05-20 2012-11-29 東洋紡株式会社 光学部材用ポリアミド樹脂組成物
CN102532869A (zh) * 2012-02-17 2012-07-04 南京聚隆科技股份有限公司 一种导热抗静电碳纤维改性聚酰胺复合材料及其制备方法
US20150287493A1 (en) * 2014-04-08 2015-10-08 Ems-Patent Ag Electrically conductive polyamide moulding materials
JP2016150992A (ja) * 2015-02-18 2016-08-22 ユニチカ株式会社 ポリアミド樹脂組成物
CN108929540A (zh) * 2018-06-27 2018-12-04 合肥卓创新材料有限公司 一种无卤阻燃抗静电聚酰胺材料及其制备工艺
CN113667299A (zh) * 2021-07-29 2021-11-19 金发科技股份有限公司 一种抗静电聚酰胺组合物及其制备方法和应用

Also Published As

Publication number Publication date
CN113667299B (zh) 2023-04-11
CN113667299A (zh) 2021-11-19

Similar Documents

Publication Publication Date Title
WO2023005726A1 (zh) 一种抗静电聚酰胺组合物及其制备方法和应用
JP6047569B2 (ja) ナノチューブ及び微粉砕炭素繊維ポリマー複合組成物ならびに作製方法
Advani Processing and properties of nanocomposites
TW200918282A (en) Process for the production of an electrically conducting polymer composite material
WO2023016498A1 (zh) 一种半芳香族聚酰胺树脂组合物及其制备方法与应用
JP2011038078A (ja) 高度に熱伝導性で成形可能な熱可塑性の複合材および組成物
WO2007100573A2 (en) Nanotube polymer composite compositions and methods of making
Chouit et al. Synthesis and characterization of HDPE/N-MWNT nanocomposite films
JP2008155210A (ja) カーボンナノチューブで補強したフルオロポリマー被覆剤の調製プロセス
JP2010043169A (ja) ポリマー組成物および導電性材料
WO2010038784A1 (ja) 炭素繊維を含有する複合材料
US20130207052A1 (en) Method for preparing carbon nano material/polymer composites
JP2011132264A (ja) 熱伝導性樹脂組成物
JP2015000937A (ja) 熱伝導性樹脂組成物
JP2005263828A (ja) 長繊維強化ポリアミド樹脂材料
CN111073040B (zh) 一种HGM-CNTs键合物的制备方法及轻质抗静电聚丙烯材料
KR101308183B1 (ko) 전도성 고분자 복합체 및 이의 성형방법
JP2006137939A (ja) 燃料チューブ用導電性熱可塑性樹脂組成物及び燃料チューブ
EP4320070A1 (en) Electrostatic dissipative polyamide composition and article comprising it
Jagannathan et al. A Systematic Study on Mechanical Properties of CNT Reinforced HDPE Composites Developed Using 3D Printing.
JP6480845B2 (ja) 導電性樹脂組成物及びその製造方法
CN115216145A (zh) 一种高抗冲导电聚酰胺复合材料
JP6095761B1 (ja) 炭素系導電材料が添着した顆粒状組成物及びその製造方法
JP6808418B2 (ja) 半導電性ポリアミド樹脂組成物、それを用いた成形体及び電子写真用シームレスベルト
WO2009069565A1 (en) Molded articles, process for producing the molded articles, and use of the molded articles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848331

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE