WO2023005504A1 - 接收电路、芯片、电子设备、充电***及充电方法 - Google Patents

接收电路、芯片、电子设备、充电***及充电方法 Download PDF

Info

Publication number
WO2023005504A1
WO2023005504A1 PCT/CN2022/099745 CN2022099745W WO2023005504A1 WO 2023005504 A1 WO2023005504 A1 WO 2023005504A1 CN 2022099745 W CN2022099745 W CN 2022099745W WO 2023005504 A1 WO2023005504 A1 WO 2023005504A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
voltage
bridge
switch
rectifier
Prior art date
Application number
PCT/CN2022/099745
Other languages
English (en)
French (fr)
Inventor
万世铭
曲春营
杨军
曾得志
匡国文
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023005504A1 publication Critical patent/WO2023005504A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J5/00Circuit arrangements for transfer of electric power between ac networks and dc networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode

Definitions

  • the present application relates to the technical field of charging, in particular to a receiving circuit, a chip, an electronic device, a charging system and a charging method.
  • the receiving end can receive the electromagnetic signal generated by the transmitting end, convert the received electromagnetic signal into electrical energy, and then process it through rectification and filtering to charge the battery.
  • the inductance of the coil at the receiving end is required to be 8-9uh (microhenry). If the inductance of the coil at the receiving end is reduced, such as to 3-6uh, the impedance of the receiving end can be reduced, and the receiving current at the receiving end can be increased to reduce Heat, capable of higher power wireless charging.
  • the embodiment of the application discloses a receiving circuit, a chip, an electronic device, a charging system and a charging method.
  • the embodiment of the present application discloses a receiving circuit, including:
  • a wireless receiving module configured to receive electromagnetic signals and generate AC voltages according to the electromagnetic signals
  • a rectification module configured to rectify the AC voltage to obtain a DC voltage
  • a control module configured to control the rectifier module to work in a half-bridge working mode
  • the boost module is configured to boost the DC voltage obtained by the rectifier module by charging and storing energy and releasing electric energy when the rectifier module is working in the half-bridge working mode.
  • the embodiment of the present application discloses a chip, the chip includes a receiving circuit, wherein the receiving circuit includes:
  • a receiving module configured to receive an electromagnetic signal, and generate an AC voltage according to the electromagnetic signal
  • a rectification module configured to rectify the AC voltage to obtain a DC voltage
  • a control module configured to control the rectifier module to work in a half-bridge working mode
  • the boost module is configured to boost the DC voltage obtained by the rectifier module by charging and storing energy and releasing electric energy when the rectifier module is working in the half-bridge working mode.
  • the embodiment of the present application discloses an electronic device, including a receiving circuit, wherein the receiving circuit includes:
  • a receiving module configured to receive an electromagnetic signal, and generate an AC voltage according to the electromagnetic signal
  • a rectification module configured to rectify the AC voltage to obtain a DC voltage
  • a control module configured to control the rectifier module to work in a half-bridge working mode
  • the boost module is configured to boost the DC voltage obtained by the rectifier module by charging and storing energy and releasing electric energy when the rectifier module is working in the half-bridge working mode.
  • the embodiment of the present application discloses a charging system, including a transmitting end and a receiving end, the transmitting end is used to generate an electromagnetic signal according to the voltage provided by the power supply; the receiving end includes the receiving circuit and the battery as described above, and the receiving end The terminal is used to charge the battery according to the voltage output by the receiving circuit.
  • the embodiment of the present application discloses a charging method, including:
  • the AC voltage is rectified by a rectification module to obtain a DC voltage
  • Fig. 1 is a schematic diagram of a wireless charging system in an embodiment
  • Fig. 2A is a structural block diagram of a receiving circuit in an embodiment
  • Fig. 2B is a circuit structural diagram of a receiving circuit in an embodiment
  • FIG. 3A is a structural block diagram of a receiving circuit in another embodiment
  • FIG. 3B is a structural block diagram of a receiving circuit in yet another embodiment
  • Fig. 4A is a structural block diagram of a control module and a second switch unit in an embodiment
  • Fig. 4B is a structural block diagram of a control module and a second switch unit in another embodiment
  • Fig. 5 is a schematic circuit structure diagram of a bootstrap circuit in an embodiment
  • FIG. 6 is a schematic diagram of a circuit structure of a bootstrap circuit in another embodiment
  • Fig. 7A is a structural block diagram of a control module in yet another embodiment
  • Fig. 7B is a structural block diagram of a control module in another embodiment
  • Fig. 8 is a structural block diagram of a chip in an embodiment
  • Fig. 9 is a structural block diagram of a charging system in an embodiment
  • FIG. 10 is a flowchart of a charging method in one embodiment.
  • FIG. 1 is a schematic diagram of a wireless charging system in one embodiment.
  • the wireless charging system may include a transmitting end 110 and a receiving end 120, wherein the transmitting end 110 may include a power supply, an inverter circuit 112, a capacitor C P , a transmitting end coil L P , and the transmitting end coil L P and Capacitor C P forms a resonant circuit.
  • the inverter circuit 112 is connected to the power supply, and is used to invert and convert the DC voltage output by the power supply, and output the AC voltage obtained after the inversion conversion to the capacitor C P , and the AC voltage generates an electromagnetic signal and an electromotive force V through the resonant circuit P.
  • the receiving end 120 may include a receiving end coil L S , a capacitor C S , a capacitor C d , a modulation circuit 122 , a rectification circuit 124 , an output capacitor C, and an output load R m .
  • the coil L S at the receiving end forms a receiving loop with the capacitor C S and the capacitor C d .
  • the receiving coil L S and the capacitor CS of the receiving end 120 can form a receiving loop, and the capacitor C d can be used for presence detection (ie, judging whether there is a transmitting end).
  • the receiving circuit can receive the electromagnetic signal generated by the coil L P at the transmitting end to form a corresponding AC voltage, and the AC voltage is input into the rectifying circuit 124 through the modulating circuit 122 .
  • the rectification circuit 124 performs full-bridge rectification on the received AC voltage to obtain a DC voltage, and the DC voltage passes through the output capacitor C and the output load Rm to obtain an output voltage.
  • the output voltage can be used to start the receiving end chip, and when the receiving end chip is started, it can realize the wireless charging operation for the device including the receiving end chip.
  • the inductance of the receiving coil LS at the receiving end 120 will affect the output voltage of the receiving circuit.
  • the generated AC voltage will decrease, resulting in a decrease in the output voltage. Small.
  • the relative positions of the receiving coil LS and the transmitting coil LP of the receiving terminal 120 are shifted, the generated AC voltage will also decrease, resulting in a decrease in the output voltage.
  • an undervoltage situation may occur, causing the receiving chip to fail to start, and the normal wireless charging of the device containing the receiving chip cannot be guaranteed.
  • a receiving circuit, a chip, an electronic device, a charging system and a charging method are provided, which can increase the output voltage of the receiving circuit to avoid undervoltage, so as to ensure that the chip where the receiving circuit is located can start normally, and further It can ensure that the electronic equipment containing the chip can perform wireless charging normally.
  • a receiving circuit 200 can include a wireless receiving module 210, a rectifying module 230, a boost module 220 and a control module 240, wherein the rectifying module 230 can be respectively It is electrically connected with the wireless receiving module 210 and the control module 240 , and the rectification module 230 can be electrically connected with the boost module 220 .
  • the wireless receiving module 210 is configured to receive electromagnetic signals and generate AC voltages according to the electromagnetic signals.
  • the receiving circuit 200 can be applied to the receiving end in the wireless charging system, and the wireless receiving module 210 can include a receiving end coil, which can be used to receive the electromagnetic signal generated by the transmitting end in the wireless charging system, and transmit the electromagnetic signal The signal is converted into electrical energy, and an AC voltage is generated based on this electromagnetic signal.
  • AC voltage can refer to a voltage whose magnitude and direction change periodically with time.
  • the way the wireless receiving module 210 receives electromagnetic signals may include but not limited to electromagnetic induction, electromagnetic resonance, electromagnetic coupling, etc. The embodiment of the present application does not limit the way the wireless receiving module 210 receives electromagnetic signals.
  • the wireless receiving module 210 may include a first output terminal and a second output terminal.
  • a cycle of the AC voltage output by the wireless receiving module 210 may include a positive half cycle and a negative half cycle.
  • the voltage at the first output end of the wireless receiving module 210 is higher than the voltage at the second output end.
  • the voltage of the second output terminal of the wireless receiving module 210 is higher than the voltage of the first output terminal.
  • the rectification module 230 is configured to rectify the AC voltage to obtain a DC voltage.
  • the DC voltage can refer to the voltage whose direction of the voltage does not change with the time period.
  • the DC voltage can be a pulsating DC voltage, such as a pulsating DC voltage in the shape of a steamed bun wave or a square wave.
  • the DC voltage can also be a stable DC voltage, such as Constant DC voltage or approximately constant DC voltage (very small amplitude), constant DC voltage refers to a DC voltage with a fixed voltage.
  • the control module 240 is configured to control the rectification module 230 to work in a half-bridge working mode.
  • the boost module 220 is configured to boost the DC voltage obtained by the rectifier module 230 by charging and releasing electric energy when the rectifier module 230 works in the half-bridge mode.
  • the half-bridge working mode can refer to that the two switching tubes in the rectifying module 230 switch back and forth between the on state and the off state, and the rectifying module 230 working in the half-bridge working mode can output the wireless receiving module 210
  • the AC voltage is half-bridge rectified.
  • the rectifier module 230 when the rectifier module 230 works in the half-bridge mode, the rectifier module 230 can charge the boost module 220, so that the boost module 220 can store energy, and the rectifier can be rectified by the electric energy released by the boost module 220.
  • the DC voltage obtained by the module 230 is boosted to increase the output voltage of the receiving circuit.
  • the boost module 220 may include a first energy storage capacitor C1 and a second energy storage capacitor C2, the first energy storage capacitor C1 and the second energy storage capacitor C2 may be connected in series, And be connected with the output end of the rectification module 230 .
  • the rectification module 230 may include a full bridge rectification circuit, the full bridge rectification circuit may include a first switch D11, a second switch D12, a third switch D13 and a fourth switch D14, and the first output terminal of the wireless receiving module 210 may be connected to the second switch D14.
  • the intermediate connection point of the first switch D11 and the second switch D12 is electrically connected, and the second output terminal of the wireless receiving module 210 can be electrically connected with the intermediate connection point of the third switch D13 and the fourth switch D14.
  • the first energy storage capacitor C1 is used for charging and storing energy when the AC voltage is in the first half cycle.
  • the second energy storage capacitor C2 is used for charging and storing energy when the AC voltage is in the second half cycle.
  • the direction of the AC voltage in the first half cycle and the second half cycle is different, the first half cycle can be the positive half cycle of the AC voltage, and the second half cycle can be the negative half cycle; the first half cycle can also be the AC voltage negative half cycle, and the second half cycle is positive half cycle.
  • the control module 240 can control the rectifier module 230 to work in the half-bridge mode.
  • the first switch D11 and the second switch D12 can be in the on state and the off state. The working state of switching back and forth.
  • the first switch D11 is turned on, the second switch D12 is turned off, and the voltage output by the rectifier module 230 can charge the first energy storage capacitor C1;
  • the second half cycle eg negative half cycle
  • the first switch D11 is turned off, the second switch D12 is turned on, and the voltage output by the rectification module 230 can charge the second energy storage capacitor C2.
  • the receiving circuit 200 may further include a first switch unit 250, and the first switch unit 250 may be arranged between the boost module 220 and the rectifier module 230. Further, the first The switch unit 250 may be electrically connected to the intermediate connection point of the third switch D13 and the fourth switch D14, and electrically connected to the intermediate connection point of the first energy storage capacitor C1 and the second energy storage capacitor C2. The first switch unit 250 may also be electrically connected to the control module 240 .
  • the control module 240 is also used to control the first switch unit 250 to turn on the charging and energy storage path of the first energy storage capacitor C1 when the AC voltage is in the first half cycle;
  • the first switch unit 250 is controlled to turn on the charging and energy storage path of the second energy storage capacitor C2.
  • the first switch unit 250 can be in a conduction state.
  • the first switch D11 is turned on, the second switch D12 is turned off, and the current output by the wireless receiving module 210 flows to the first output end of the wireless receiving module 210 -
  • the first switch D11 When the current voltage is in the second half cycle (such as a negative half cycle), the first switch D11 is turned off, the second switch D12 is turned on, and the current output by the wireless receiving module 210 flows to the second output end of the wireless receiving module 210 -
  • the voltage of the AC voltage output by the wireless receiving module 210 is V
  • the voltage of the first energy storage capacitor C1 is charged to V
  • the second The voltage of the storage capacitor C2 is charged to V.
  • the first energy storage capacitor C1 and the second energy storage capacitor C2 can increase the output voltage of the receiving circuit 200 to 2V by releasing electric energy.
  • the first switch unit 250 may comprise a MOS transistor, as shown in FIG. GaN) switching devices, etc., are not limited here.
  • the control module 240 may output a driving signal to the first switch unit 250 to drive the first switch unit 250 to be in a conduction state, for example, may provide a driving voltage to the MOS transistor Q1 and the like.
  • the rectifier module 230 working in the half-bridge working mode realizes the charging and energy storage of the booster module 220, and the DC voltage obtained by the rectifier module 230 is boosted by the electric energy released by the booster module 220 , so that the boosted voltage can normally start the receiving end chip, increase the output voltage of the receiving circuit, and avoid the occurrence of the inductance of the receiving end coil or the deviation of the placement position of the receiving end coil Undervoltage phenomenon, to ensure that the receiving end chip can start normally.
  • the receiver chip may refer to a chip that can support the wireless receiving function in wireless charging, may be a chip that only supports the wireless receiving function, or may be a chip that supports both the wireless receiving function and the wireless transmitting function. In one embodiment, the receiver chip may be a chip including all or at least some of the modules in FIG. 2A or FIG. 3A .
  • the receiving circuit 200 may include a wireless receiving module 210 , a boosting module 220 , a rectifying module 230 and a control module 240 .
  • the boost module 220 can be electrically connected with the wireless receiving module 210 and the rectifier module 230 respectively, and the rectifier module 230 can be electrically connected with the control module 240 .
  • the boost module 220 is also used to charge and store energy if the AC voltage is in the first half cycle when the rectifier module 230 works in the half-bridge mode, and if the AC voltage is in the second half cycle, The electric energy is released to boost the DC voltage obtained by the rectifier module 230 .
  • the first half cycle can be a positive half cycle of the AC voltage, and the second half cycle can be a negative half cycle; the first half cycle can also be a negative half cycle of the AC voltage, and the second half cycle can be a positive half cycle.
  • the booster module 220 can charge and store energy in half a cycle of the AC voltage, and boost the DC voltage obtained by the rectifier module 230 through the stored electric energy in the other half cycle of the AC voltage, improving The output voltage of the receiving circuit.
  • the rectification module 230 may include a full-bridge rectification circuit composed of four switches. In some embodiments, the rectification module may also be used to work in a half-bridge mode to perform half-bridge rectification on the AC voltage to obtain a DC voltage.
  • the half-bridge working mode may refer to a working state in which only two of the switches are constantly switched back and forth between on and off, and the rectifier module 230 working in the half-bridge working mode can output the wireless receiving module 210 The AC voltage is half-bridge rectified to obtain a DC voltage.
  • the rectifier module 230 can charge the booster module 220 in the first half cycle of the AC voltage, and charge the booster module 220 in the second half cycle of the AC voltage.
  • the voltage module 220 releases electric energy to boost the DC voltage obtained by the rectifier module 230 .
  • the rectifier module 230 is also used to charge the boost module 220 when the AC voltage is in the first half cycle, and the boost module 220 is also used to release electric energy when the AC voltage is in the second half cycle, To boost the DC voltage obtained by the rectifier module 230 .
  • whether to charge the booster module 220 in the positive half cycle or the negative half cycle of the AC voltage can be determined based on the connection relationship between the switch for half-bridge rectification in the rectification module 230 and the wireless receiving module 210 .
  • the switch for half-bridge rectification in the rectification module 230 can charge the booster module 220 when the AC voltage is in the negative half cycle;
  • the switch for half-bridge rectification in the module 230 is connected to the second output terminal of the wireless receiving module 210, and the rectification module 230 can charge the booster module 220 when the AC voltage is in a positive half cycle.
  • the boost module 220 is charged by the rectifier module 230 working in the half-bridge mode, and the DC voltage obtained by the rectifier module 230 is boosted by the boost module 220, which improves the output of the receiving circuit. voltage.
  • the rectification module 230 includes a full-bridge rectification circuit, and the full-bridge rectification circuit may include a first switch 231, a second switch 232, a third switch 233, and a fourth switch 234.
  • the first The switch 231 is connected in series with the second switch 232
  • the third switch 233 and the fourth switch 234 are connected in series.
  • the boost module 220 may include a third energy storage capacitor C3, and the third energy storage capacitor is disposed between the wireless receiving module 210 and the rectification module 230 .
  • the third energy storage capacitor C3 is used for charging and storing energy when the AC voltage is in the first half cycle, and releasing electric energy when the AC voltage is in the second half cycle.
  • the first end of the third energy storage capacitor C3 is electrically connected to the first output end of the wireless receiving module 210, and the second end of the third energy storage capacitor C3 is connected to the first switch and the second switch circuit respectively. Furthermore, the second end of the third energy storage capacitor C3 is electrically connected to the middle connection point of the first switch 231 and the second switch 232 .
  • the third energy storage capacitor C3 can form a receiving circuit together with the wireless receiving module 210.
  • the second output end of the wireless receiving module 210 can be electrically connected to the third switch 233 and the fourth switch 234 respectively, further, the second output end of the wireless receiving module 210 can be connected to the middle of the third switch 233 and the fourth switch 234 Click on the electrical connection.
  • the control module 240 controls the rectifier module 230 to be in the half-bridge working mode by controlling the lower switch (ie, the grounded switch) of the rectifier module 230 to be in a normally-on state or in an inactive state. If the second switch 232 and the fourth switch 234 of the rectification module 230 are the lower switches of the rectification module 230, then the second switch 232 or the fourth switch 234 can be in the normal conduction state, or the second switch 232 or the fourth switch 234 can be turned on. The four switches 234 are in an invalid state, so that the rectifier module 230 is in a half-bridge working mode.
  • the receiving circuit 200 may further include a second switch unit 260, and the second switch unit 260 may be electrically connected to the first switch tube in the full-bridge rectifier circuit, optionally , the first switching tube may be a grounded switching tube (such as the second switch 232 or the fourth switch 234 ) in the full bridge rectifier circuit.
  • the control module 240 is also used to control the turn-on and turn-off of the second switch unit, so that the rectifier module 230 works in the half-bridge working mode.
  • control module 240 may include a bootstrap circuit 242 , and the bootstrap circuit 242 may be connected to the second switch unit 260 and the wireless receiving module 210 respectively.
  • the bootstrap circuit 242 is configured to convert and boost the AC voltage output by the wireless receiving module 210 to obtain a driving voltage, and provide the driving voltage to the second switch unit 260 .
  • the second switch unit 260 is configured to be in a conduction state driven by a driving voltage.
  • the second switch unit 260 can be connected in parallel with the second switch 232 in the full-bridge rectifier circuit, and the full-bridge rectifier circuit is also used when the second switch unit 260 is in a conducting state.
  • the AC voltage output by the wireless receiving module 210 is half-bridge rectified through the third switch 233 and the fourth switch 234 .
  • the second switch unit 260 In the case where the second switch unit 260 is connected in parallel with the second switch 232, if the second switch unit 260 is in a conduction state, then the second switch 232 will not work, and the first switch 231 can always be in an off state, then the The third switch 233 and the fourth switch 234 perform half-bridge rectification on the AC voltage, the third switch 233 and the fourth switch 234 can switch back and forth between the on state and the off state respectively, and when the third switch 233 is on state, the fourth switch 234 is in the off state, and when the third switch 233 is in the off state, the fourth switch 234 is in the on state, realizing half-bridge rectification.
  • the rectifier module 230 may further include a filter capacitor C0, which may be connected to the output terminal of the full-bridge rectifier circuit, and the filter capacitor C0 is used to filter the DC voltage output by the full-bridge rectifier circuit, so that The DC voltage output by the rectification module 230 is more stable.
  • the fourth switch 234 is turned on, the third switch 233 is turned off, and the current flow can be the first output terminal of the wireless receiving module 210 - the third energy storage capacitor C3 - the second switch unit 260 - the fourth switch 234 - the second output terminal of the wireless receiving module 210, which can charge the third energy storage capacitor C3. If the voltage of the AC voltage is V, the voltage of the third energy storage capacitor C3 can also be charged to V.
  • the third switch 233 When the AC voltage output by the wireless receiving module 210 is in the negative half cycle, the third switch 233 is turned on, the fourth switch 234 is turned off, and the flow direction of the current can be the second output terminal of the wireless receiving module 210-the third switch 233-filtering Capacitor C0-the fifth switch-the third energy storage capacitor C3-the first output terminal of the wireless receiving module 210, the voltage of the output terminal of the full-bridge rectifier circuit is equal to the voltage output by the wireless receiving module 210 and the voltage of the third energy storage capacitor C3 and, to achieve a boost effect.
  • the third energy storage capacitor C3 can release electric energy
  • the wireless receiving module 210 and the third energy storage capacitor C3 can jointly charge the filter capacitor C0
  • the voltage of the filter capacitor C0 can be charged to 2V, so that the output of the rectification module 230
  • the DC voltage achieves a voltage doubling effect.
  • the full-bridge rectifier circuit does not output voltage, and continues to charge the third energy storage capacitor C3.
  • the filter capacitor C0 can continuously provide electric energy, it can ensure that the rectifier module 230 can still Continue to output DC voltage.
  • the energy of the positive half cycle of the AC voltage is stored for the load of the whole cycle, and the DC voltage output by the rectifier module 230 is sufficient to start the receiving end chip without undervoltage phenomenon.
  • the second switch unit 260 can be connected in parallel with the fourth switch 234 in the full-bridge rectifier circuit, and the full-bridge rectifier circuit is also used when the second switch unit 260 is in the conduction state.
  • the AC voltage output by the wireless receiving module 210 is half-bridge rectified through the first switch 231 and the second switch 232 .
  • the fourth switch 234 will not work, and the third switch 233 can always be in an off state, then it can pass
  • the first switch 231 and the second switch 232 perform half-bridge rectification on the AC voltage, the first switch 231 and the second switch 232 can switch back and forth between the on state and the off state respectively, and when the first switch 231 is on state, the second switch 232 is in the off state, and when the first switch 231 is in the off state, the second switch 232 is in the on state, realizing half-bridge rectification.
  • the second switch 232 when the AC voltage output by the wireless receiving module 210 is in a negative half cycle, the second switch 232 is turned on, and the first switch 231 is turned off, so as to charge the third energy storage capacitor C3. If the voltage of the AC voltage is V, the voltage of the third energy storage capacitor C3 can also be charged to V.
  • the first switch 231 When the AC voltage output by the wireless receiving module 210 is in a positive half cycle, the first switch 231 is turned on, the second switch 232 is turned off, the third energy storage capacitor C3 can release electric energy, and the wireless receiving module 210 and the third energy storage capacitor C3 can Together, the filter capacitor C0 is charged, and the voltage of the filter capacitor C0 can be charged to 2V, so that the DC voltage output by the rectifier module 230 achieves a voltage doubling effect.
  • the full bridge rectifier circuit When the AC voltage is in the next negative half cycle, the full bridge rectifier circuit does not output voltage, and continues to charge the third energy storage capacitor C3.
  • the bootstrap circuit 242 can convert and boost the voltage provided by the wireless receiving module 210 to obtain a driving voltage capable of driving the second switch unit 260 to maintain an on state.
  • the bootstrap circuit 242 may include a first capacitor C41 and a second capacitor C42, the first end of the first capacitor C41 is electrically connected to the second output end of the wireless receiving module 210, and the second capacitor C41 is electrically connected to the second output end of the wireless receiving module 210.
  • a second end of a capacitor C41 is electrically connected to a first end of a second capacitor C42.
  • the second capacitor C42 is used for charging according to the voltage provided by the wireless receiving module 210 when the AC voltage output by the wireless receiving module 210 is in the negative half cycle; and for charging the first capacitor C41 when the AC voltage is in the positive half cycle The electrical energy is released to charge the first capacitor C41.
  • the first capacitor C41 is also used to boost the voltage provided by the wireless receiving module 210 after charging to obtain a driving voltage.
  • the bootstrap circuit 242 may also include a first diode D21 and a second diode D22, wherein the anode of the first diode D21 is connected to the second output terminal of the wireless receiving module 210, and the first diode
  • the cathode of the tube D21 is connected to the first end of the second capacitor C42
  • the anode of the second diode D22 is connected to the first end of the second capacitor C42
  • the cathode of the second diode D22 is connected to the second end of the first capacitor C41. end connection.
  • the second capacitor C42 is also used for receiving the voltage provided by the wireless receiving module 210 through the first diode D21 when the AC voltage is in the negative half cycle, and charging according to the voltage provided by the wireless receiving module 210; During the positive half cycle, the second diode D22 discharges electric energy to the first capacitor C41 to charge the first capacitor C41.
  • the wireless receiving module 210 may include a receiving end coil L2, the first output end of the receiving end coil L2 (ie, the upper end in FIG. 5 ) may be electrically connected to the third energy storage capacitor C3, and the second output end of the receiving end coil L2 (i.e. The lower end in FIG. 5) can be electrically connected to the first capacitor C41 and the anode of the first diode D21. Further, the second output end of the coil L2 at the receiving end may also be connected in series with the resistor R3.
  • the first diode D21 When the AC voltage output by the coil L2 at the receiving end is in the negative half cycle (that is, the voltage at the lower end is higher than the voltage at the upper end), the first diode D21 is turned on, and the second capacitor C42 can be charged by the voltage provided by the coil L2 at the receiving end . If the voltage of the AC voltage is V, the voltage of the second capacitor C42 can be charged to V. Further, when the AC voltage output by the receiving end coil L2 is in the negative half cycle, if the voltage output by the receiving end coil L2 is less than the voltage of the second capacitor C42, the first diode D21 is cut off, which can pass through the receiving end coil The voltage output by L2 charges the first capacitor C41.
  • the second diode D22 When the AC voltage output by the coil L2 at the receiving end is in a positive half cycle (that is, the voltage at the lower end is lower than the voltage at the upper end), since the voltage of the second capacitor C42 is charged to V, the second diode D22 is turned on, and the second capacitor C42 can be The second diode D22 releases electric energy to the first capacitor C41 to charge the first capacitor C41. Further, the second capacitor C42 can charge the voltage of the first capacitor C41 to V.
  • the bootstrap circuit 242 may further include a third diode D23, a third capacitor C43, a first resistor R21, a second resistor R22, a fourth capacitor C44, and a fourth diode D24.
  • the anode of the third diode D23 can be connected to the second end of the first capacitor C41, and the cathode of the third diode D23 can be connected to the third capacitor C43.
  • the voltage of the third capacitor C43 can be the sum of the voltage output by the first capacitor C41 and the receiving end coil L2 to achieve a voltage boosting effect.
  • the first resistor R21 and the second resistor R22 can be connected in series, and the fourth capacitor C44 can be connected in parallel with the second resistor R22.
  • a driving voltage is obtained, and the driving voltage is output to the second switch unit 260 to drive the second switch unit 260 to maintain a conduction state.
  • the first diode D21, the second diode D22, the third diode D23 and the fourth diode D24 in the bootstrap circuit 242 can all be Zener diodes, which can ensure the output The driving voltage is more stable.
  • the first switch 231 in the rectifier module 230 may include a switch tube D11
  • the second switch 232 may include a switch tube D12
  • the third switch 233 may include a switch tube D13
  • the fourth switch 234 may include a switch tube D14.
  • the switching tube D11, the switching tube D12, the switching tube D13 and the switching tube D14 can all be diodes.
  • the switch tube D11 may be connected in series with a first load R11
  • the switch tube D12 may be connected in series with a second load R12
  • the switch tube D13 may be connected in series with a third load R13
  • the switch tube D14 may be connected in series with a fourth load R14.
  • the full bridge rectifier circuit can be protected by connecting the load in series to improve stability.
  • the second switch unit 260 may include an N-type MOS transistor M1 , and the output end of the bootstrap circuit 242 may be electrically connected to the gate (G pole) of the MOS transistor M1 .
  • the MOS transistor M1 When the MOS transistor M1 is connected in parallel with the second switch 232, the drain (D pole) of the MOS transistor M1 is electrically connected to the second end of the third energy storage capacitor C3, that is, the D pole of the MOS transistor M1 can be connected to The cathode of the switch tube D12 is connected, and the source (S pole) of the MOS transistor M1 can be connected to the anode of the switch tube D12.
  • the drain of the MOS transistor M1 is electrically connected to the second output terminal of the wireless receiving module 210, that is, the D pole of the MOS transistor M1 can be connected to The cathode of the switching tube D14 is connected, and the S pole of the MOS transistor M1 can be connected to the anode of the switching tube D14.
  • first switch 231 , the second switch 232 , the third switch 233 , and the fourth switch 234 may also be other switches, such as MOS transistors, which are not limited herein.
  • FIG. 6 is a schematic diagram of a circuit structure of a bootstrap circuit in another embodiment.
  • the bootstrap circuit 242 may include a fifth diode D31, a sixth diode D32, a fifth capacitor C45, a sixth capacitor C46, a seventh capacitor C47, a Three resistors R31, a fourth resistor R32 and a seventh diode D33.
  • the anode of the fifth diode D31 can be electrically connected to the first output end of the wireless receiving module 210
  • the cathode of the fifth diode D31 can be connected to the first end of the fifth capacitor C45
  • the fifth capacitor C45 is connected to the first end of the fifth capacitor C45.
  • the six capacitors C46 can be connected in series, and the intermediate connection point between the fifth capacitor C45 and the sixth capacitor C46 can be electrically connected to the second output terminal of the wireless receiving module 210 .
  • the anode of the sixth diode D32 can be connected to the second terminal of the sixth capacitor C46 , and the cathode of the sixth diode D32 can be electrically connected to the first output terminal of the wireless receiving module 210 .
  • the fifth diode D31 When the AC voltage output by the receiving end coil L2 is in the positive half cycle, the fifth diode D31 is turned on, and the fifth capacitor C45 can be charged by the voltage provided by the receiving end coil L2, and the voltage of the fifth capacitor C45 can be charged to V.
  • the sixth diode D32 When the AC voltage output by the coil L2 at the receiving end is in the negative half cycle, the sixth diode D32 is turned on, and the voltage provided by the coil L2 at the receiving end can charge the sixth capacitor C46, and the voltage of the sixth capacitor C46 can be charged to V, then the voltage difference between the first terminal of the fifth capacitor C45 and the second terminal of the seventh voltage C7 is 2V, which realizes the effect of converting and boosting the AC voltage output by the coil L2 at the receiving end.
  • the third resistor R31 and the fourth resistor R32 can be connected in series, and the seventh capacitor C47 can be connected in parallel with the fourth resistor R32.
  • the seven capacitors C47 can obtain a driving voltage and output it to the second switch unit 260 .
  • the fifth diode D31 , the sixth diode D32 , and the seventh diode D33 in the bootstrap circuit 242 can all be Zener diodes, which can ensure a more stable output driving voltage.
  • the second switch unit 260 may also be other switches, and is not limited to the above-mentioned N-type MOS transistor.
  • the bootstrap circuit 242 is used to realize the bootstrap, and the second switch unit 260 is driven to maintain a normally-on state, so as to drive the rectifier module 230 to work in the half-bridge mode, so that the receiving circuit 200 can be started At the same time, it works in the half-bridge mode by self-driving. .
  • control module 240 is also used to control the turn-on and turn-off of at least one switch in the full-bridge rectifier circuit, so that the full-bridge rectifier circuit works in a half-bridge working mode.
  • the at least one switch tube may be at least one switch tube among the switch tubes grounded in the full-bridge rectifier circuit, and the switch tube may be the switch tube D12 or the switch tube D14.
  • a separate driving circuit may also be provided for the second switch 232 or the fourth switch 234 to drive the second switch 232 or the fourth switch 234 to maintain a normally-on state.
  • the control module 240 may include a first driving circuit 702 and a second driving circuit 704 .
  • the first drive circuit 702 can be connected to the second switch 232, the first drive circuit 702 is used to send a first drive signal to the second switch 232, and the first drive signal is used to drive the second switch 232 to maintain conduction state.
  • the second driving circuit 704 can be connected to the third switch 233 and the fourth switch 234 respectively, and the second driving circuit 704 is used to send a second driving signal to the third switch 233 and the fourth switch 234, and the second driving signal is used for Drive the third switch 233 and the fourth switch 234 to switch between the on-state and the off-state, so that the full-bridge rectifier circuit performs a half-bridge on the AC voltage output by the wireless receiving module 210 through the third switch 233 and the fourth switch 234. rectification.
  • the first driving signal may include a driving voltage
  • the first driving circuit 702 may provide the driving voltage to the second switch 232 to drive the second switch 232 to be in a conducting state, and at this time, the first switch 231 may be in a closed state
  • the second driving circuit 704 can output the driving voltage to the third switch 233 and the fourth switch 234 in turn, so as to drive the third switch 233 and the fourth switch 234 to switch back and forth between the on state and the off state, so as to realize the AC half-bridge rectification of the voltage.
  • the second switch 232 When the second switch 232 is normally on, if the AC voltage output by the wireless receiving module 210 is in a positive half cycle, the second drive circuit 704 can drive the fourth switch 234 to be on, and the third switch 233 is in an off state, Then the flow direction of the current can be the first output end of the wireless receiving module 210-the third energy storage capacitor C3-the second switch 232-the fourth switch 234-the second output end of the wireless receiving module 210, realizing the third energy storage capacitor Charging of C3.
  • the second drive circuit 704 can drive the third switch 233 to turn on, and the fourth switch 234 to turn off, then the current flow can be the second output terminal of the wireless receiving module 210 - the third switch 233 - the output end of the rectification module 230 - the second switch 232 - the third energy storage capacitor C3 - the first output end of the wireless receiving module 210 .
  • the third energy storage capacitor C3 releases electric energy, and the third energy storage capacitor C3 and the wireless receiving module 210 jointly provide a voltage to boost the DC voltage output by the rectification module 230 .
  • the first drive circuit 702 can be connected to the fourth switch 234, the first drive circuit 702 is used to send a first drive signal to the fourth switch 234, and the first drive signal is used to drive the fourth switch 234 to maintain conduction state.
  • the second driving circuit 704 can be connected to the first switch 231 and the second switch 232 respectively, and the second driving circuit 704 is used to send a second driving signal to the first switch 231 and the second switch 232, and the second driving signal is used for Drive the first switch 231 and the second switch 232 to switch between the on-state and the off-state, so that the full-bridge rectifier circuit performs a half-bridge on the AC voltage output by the wireless receiving module 210 through the first switch 231 and the second switch 232 rectification.
  • the first driving signal may include a driving voltage
  • the first driving circuit 702 may provide a driving voltage to the fourth switch 234 to drive the fourth switch 234 to be in a conducting state, and at this time, the first switch 233 may be in a closed state
  • the second driving circuit 704 can output the driving voltage to the first switch 231 and the second switch 232 in turn, so as to drive the first switch 231 and the second switch 232 to switch back and forth between the on state and the off state, so as to realize the AC half-bridge rectification of the voltage.
  • the fourth switch 234 When the fourth switch 234 is normally on, if the AC voltage output by the wireless receiving module 210 is in a negative half cycle, the second drive circuit 704 can drive the second switch 232 to be on, and the first switch 231 is in an off state. Then the flow direction of the current can be the second output end of the wireless receiving module 210-the fourth switch 234-the second switch 232-the third energy storage capacitor C3-the first output end of the wireless receiving module 210, realizing the third energy storage capacitor Charging of C3.
  • the second drive circuit 704 can drive the first switch 231 to turn on, and the second switch 232 to turn off, then the current flow can be the first output terminal of the wireless receiving module 210 - the third energy storage capacitor C3 - the first switch 231 - the output end of the rectification module 230 - the fourth switch 234 - the second output end of the wireless receiving module 210 .
  • the third energy storage capacitor C3 releases electric energy, and the third energy storage capacitor C3 and the wireless receiving module 210 jointly provide a voltage to boost the DC voltage output by the rectification module 230 .
  • first driving circuit 702 and the second driving circuit 704 are not limited in this embodiment of the application, for example, the first driving circuit 702 and the second driving circuit 704 can be independent driving circuits, or It may be a drive circuit implemented by a charge pump, or a drive circuit composed of N-type MOS transistors, P-type MOS transistors, and a control module, etc., which are not limited herein.
  • a separate driving circuit can be set for the second switch 232 or the fourth switch 234 to drive the second switch 232 or the fourth switch 234 to be in a normally-on state, so that the rectifier module 230 can work at half
  • the step-up module 220 can boost the DC voltage obtained by the rectification module 230 to increase the output voltage of the receiving circuit.
  • control module 240 is further configured to control the rectification module 230 to work in a half-bridge working mode when the receiving circuit 200 starts up.
  • the rectifier module 230 can work in the half-bridge mode by default, and the DC voltage output by the rectifier module 230 can be boosted by the booster module 220, which can ensure that the receiving end chip can have enough power from the beginning.
  • the starting voltage realizes the self-starting of the receiving end chip, thus ensuring the normal wireless charging.
  • control module 240 is further configured to control the rectification module 230 to work in the half-bridge mode when the power of the electromagnetic signal is less than the first threshold;
  • the rectifier module 230 is controlled to work in the full-bridge working mode, and the first threshold is less than or equal to the second threshold.
  • the power of the electromagnetic signal can be used to determine the working mode of the transmitter. If the power of the electromagnetic signal is less than the first threshold, it can be determined that the transmitting end is working in the normal mode. In the normal mode, the transmitting end transmits a fixed voltage and controls the power and voltage of the receiving end through frequency modulation. Therefore, in the normal mode , the rectifier module 230 of the receiving circuit 200 can work in the half-bridge mode, and the boost module 220 can compensate for the decrease in the inductance of the coil at the receiving end or the decrease in voltage caused by the offset of the position of the coil at the receiving end, so as to ensure The receiver chip has enough startup voltage for normal startup.
  • the transmitter can adjust the maximum value of the working voltage, and the output voltage can be set according to actual needs. Therefore, the rectifier module 230 of the receiving circuit 200 can work in the full-bridge mode, and the four switches in the rectifier module 230 can be switched back and forth between the on state and the off state at the same time, so as to realize the full-bridge rectification of the AC voltage. Improve the overall charging efficiency and realize high-power charging.
  • the transmitting end can adjust the receiving power of the receiving circuit 200 by adjusting at least one of the operating frequency, the operating voltage, and the duty cycle.
  • the operating voltage of the transmitting end By increasing the maximum value of the operating voltage of the transmitting end, because the inductance is reduced, to achieve the same operating voltage of the receiving circuit, the operating voltage of the transmitting end must be doubled compared to before.
  • the coil of the receiving circuit 9uh works at 20V
  • the highest operating voltage of the transmitter is also 20V.
  • the highest operating voltage of the transmitter must be 40V.
  • control module 240 is further configured to control the rectification module 230 to work in the half-bridge working mode when it is determined to adopt the EPP mode or the BPP mode in the Qi standard charging protocol.
  • the Qi standard charging protocol is a standard charging protocol issued by the Wireless Charging Alliance.
  • the EPP mode supports power below 5W (watts), and the BPP mode supports power from 5W to 15W.
  • the rectifier module 230 can Working in the half-bridge working mode, the DC voltage output by the rectifier module 230 is boosted by the booster module 220, which can ensure that the receiving end chip has sufficient starting voltage, thereby ensuring normal wireless charging.
  • control module 240 is further configured to control the rectification module to work in the half-bridge mode when the maximum charging power corresponding to the adopted charging protocol is lower than the third threshold.
  • the third threshold can be set according to actual requirements or according to experimental data, and the third threshold can be a power threshold at which the chip at the receiving end may fail to start normally due to insufficient startup voltage. If the maximum charging power corresponding to the charging protocol adopted by the receiving circuit 200 is lower than the third threshold, the rectifying module 230 can work in the half-bridge mode, and the DC voltage output by the rectifying module 230 can be boosted by the boosting module 220, which can ensure The receiver chip has enough start-up voltage to ensure normal wireless charging.
  • the control module 240 can control the rectification module 230 to work in the full-bridge working mode, and the fourth threshold can be greater than the third threshold.
  • control module 240 is also used to control the rectification module 230 to work in the half-bridge mode when the receiving circuit 200 is started, and the power of the electromagnetic signal received by the wireless receiving module 210 is less than the first threshold or adopts the Qi standard In the EPP mode or BPP mode in the charging protocol, the rectifier module 230 can be controlled to work in the half-bridge working mode; if the power of the electromagnetic signal received by the wireless receiving module 210 is greater than the second threshold or the charging power of the charging protocol adopted is higher than the EPP mode and the charging power supported by the BPP mode, the rectifier module 230 can be controlled to work in the full bridge mode.
  • the operating voltage of the control module 240 can be provided by the DC voltage output by the rectification module 230, the control module 240 can be connected to the output end of the rectification module 230, and the DC voltage obtained by the rectification module 230 can be processed by the boost module 220 After boosting, the boosted voltage can be input into the control module 240 as the working voltage of the control module 240 to ensure the normal operation of the control module 240 .
  • the target condition when the AC voltage input to the rectifier module 230 satisfies the target condition, the DC voltage output by the rectifier module 230 in the half-bridge mode is higher than the DC voltage output in the full-bridge mode.
  • the target condition may include but not limited to at least one of the same voltage, same duty cycle, and same frequency.
  • the rectifier module 230 operating in the half-bridge mode can boost the DC voltage obtained by the rectifier module 230 due to the electric energy released by the booster module 220, therefore,
  • the DC voltage output by the rectifier module 230 in the half-bridge mode can be higher than the DC voltage output in the full-bridge mode. Further, the DC voltage output by the rectifier 230 in the half-bridge mode can be higher than that in the full-bridge mode. Double the output DC voltage to achieve the voltage doubling effect of the half bridge.
  • the receiving circuit 200 may include more or less electronic components than those described in the above embodiments, and the embodiment of the present application does not limit the specific electronic components included in the receiving circuit 200 .
  • the above-mentioned control module 240 may only include a circuit structure (such as the above-mentioned bootstrap circuit 242 ), or may include a controller capable of executing a control program (such as a control chip, etc.).
  • free switching between the half-bridge working mode and the full-bridge working mode of the rectifying module 230 can be realized, and the output voltage of the receiving circuit 200 can be improved.
  • the compatibility of the receiving end can be improved, so that the receiving end can be adapted to various transmitting ends.
  • a chip 800 is provided, and the chip 800 may include the receiving circuit 200 described in the foregoing embodiments.
  • the chip 800 may be a receiver chip in the wireless charging technology, and is used to wirelessly charge an electronic device including the chip.
  • an electronic device may include the above-mentioned chip 800, or may include the receiving circuit 200 described in the above-mentioned embodiments. Furthermore, the electronic device may also include a battery, and when the user places the electronic device or is close to the wireless charging transmitter, the receiving circuit 200 can start working to wirelessly charge the battery in the electronic device.
  • a charging system may include a transmitting end 910 and a receiving end 920 .
  • the transmitting end 910 can be connected to a power supply, and the transmitting end 910 is used to generate an electromagnetic signal according to the voltage provided by the power supply.
  • the receiving end 920 may include the receiving circuit 200 and the battery 922 as described in the above embodiments, and the receiving end 920 is used to charge the battery 922 according to the voltage output by the receiving circuit 200 .
  • the battery 922 can be charged directly by using the voltage output by the receiving circuit 200 , or the voltage output by the receiving circuit 200 can be further processed (such as boosting, filtering, etc.), and then the battery 922 can be charged.
  • the receiving end 920 may include a communication module, and the receiving end 920 may send a communication signal to the transmitting end 910 through the communication module, through which the maximum value of the working voltage, the transmitting power or the output duty of the transmitting end 910 may be adjusted.
  • the empty ratio, etc. further improve the charging efficiency in the wireless charging process.
  • a charging method is provided, which can be applied to the above-mentioned receiving circuit 200 , or to the above-mentioned chip 800 , or to the above-mentioned electronic equipment and the like.
  • the charging method may include the following steps:
  • Step 1010 receiving the electromagnetic signal through the wireless receiving module, and generating an AC voltage according to the electromagnetic signal.
  • Step 1020 the AC voltage is rectified by the rectification module to obtain a DC voltage.
  • Step 1030 control the rectifier module to work in the half-bridge mode, and when the rectifier module works in the half-bridge mode, boost the DC voltage obtained by the rectifier module by charging and storing energy and releasing electric energy from the booster module.
  • the boost module includes a first energy storage capacitor and a second energy storage capacitor.
  • the step is to step up the DC voltage obtained by the rectification module by charging and releasing the electric energy of the boost module, including: when the AC voltage is in the first half cycle, controlling the first switch unit to turn on the charging of the first energy storage capacitor An energy storage path, so that the first energy storage capacitor is charged and stored; when the AC voltage is in the second half cycle, the first switch unit is controlled to turn on the charging and energy storage path of the second energy storage capacitor, so that the second energy storage The capacitor is charged and stored; and the DC voltage obtained by the rectifier module is boosted by the electric energy released by the first energy storage capacitor and the second energy storage capacitor.
  • the step of controlling the rectification module to work in the half-bridge working module includes: controlling the on and off of the second switch unit, so that the rectifier module works in the half-bridge working mode; wherein, the second switch unit and the full The first switch tube of the bridge rectifier circuit is connected, and the first switch tube is a switch tube grounded in the full bridge rectifier circuit.
  • the rectification module includes a full-bridge rectification circuit.
  • the step of controlling the rectifier module to work in the half-bridge working module includes: controlling the on and off of the second switch unit, so that the rectifier module works in the half-bridge working mode; wherein, the second switch unit and the first full-bridge rectifier circuit
  • the switching tubes are connected, and the first switching tube is a grounded switching tube in the full-bridge rectifier circuit.
  • the rectification module includes a full-bridge rectification circuit.
  • the step of controlling the rectifier module to work in the half-bridge working module includes: controlling the on and off of at least one switching tube in the full-bridge rectifying circuit, so that the full-bridge rectifying circuit works in the half-bridge working mode; wherein, at least one switching tube It is at least one of the switch tubes grounded in the full bridge rectifier circuit.
  • the boost module includes at least one third energy storage capacitor.
  • the step is to boost the DC voltage obtained by the rectifier module by charging and storing energy and releasing electric energy of the boost module, including: when the AC voltage is in the first half cycle, the third energy storage capacitor is charged and stored, When the voltage is in the second half cycle, the electric energy released by the third energy storage capacitor boosts the DC voltage obtained by the rectification module.
  • the step of controlling the rectification module to work in the half-bridge working mode includes: controlling the rectifying module to work in the half-bridge working mode when the receiving circuit is started.
  • the step of controlling the rectifier module to work in the half-bridge working mode includes: when the power of the electromagnetic signal is less than a first threshold, controlling the rectifier module to work in the half-bridge working mode; and when the power of the electromagnetic signal is greater than the first threshold When there are two thresholds, the rectifier module is controlled to work in a full-bridge working mode, and the first threshold is less than or equal to the second threshold.
  • the step of controlling the rectification module to work in the half-bridge working mode includes: controlling the rectifying module to work in the half-bridge working mode when it is determined to adopt the EPP mode or the BPP mode in the Qi standard charging protocol.
  • the step of controlling the rectification module to work in the half-bridge working mode includes: when the maximum charging power corresponding to the adopted charging protocol is lower than the third threshold, controlling the rectifying module to work in the half-bridge working mode.
  • the DC voltage obtained by the rectifier module can be boosted by charging and storing energy and releasing electric energy of the booster module, thereby increasing the output voltage of the receiving circuit. It can avoid the undervoltage phenomenon that occurs when the inductance of the coil at the receiving end decreases or the position of the coil at the receiving end deviates, and ensures that the chip at the receiving end can start normally.
  • the embodiment of the present application discloses an electronic device, which includes a memory and a processor, where a computer program is stored in the memory, and when the computer program is executed by the processor, the processor implements the methods described in the foregoing embodiments.
  • the embodiment of the present application discloses a computer-readable storage medium, which stores a computer program, wherein, when the computer program is executed by a processor, the methods described in the foregoing embodiments are implemented.
  • the embodiment of the present application discloses a computer program product, which includes a non-transitory computer-readable storage medium storing a computer program, and the computer program can be executed by a processor to implement the methods described in the foregoing embodiments.
  • Non-volatile memory may include ROM, Programmable ROM (PROM), Erasable PROM (Erasable PROM, EPROM), Electrically Erasable PROM (Electrically Erasable PROM, EEPROM) or flash memory.
  • Volatile memory can include random access memory (RAM), which acts as external cache memory.
  • RAM is available in various forms such as Static RAM (SRAM), Dynamic RAM (Dynamic Random Access Memory, DRAM), Synchronous DRAM (Synchronous DRAM, SDRAM), Double Data Rate SDRAM ( Double Data Rate SDRAM, DDR SDRAM), enhanced SDRAM (Enhanced Synchronous DRAM, ESDRAM), synchronous link DRAM (Synchlink DRAM, SLDRAM), memory bus direct RAM (Rambus DRAM, RDRAM) and direct memory bus dynamic RAM (Direct Rambus DRAM, DRDRAM).
  • SRAM Static RAM
  • DRAM Dynamic RAM
  • Synchronous DRAM Synchronous DRAM
  • SDRAM Double Data Rate SDRAM
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced Synchronous DRAM
  • SLDRAM synchronous link DRAM
  • memory bus direct RAM Rabus DRAM, RDRAM
  • DRDRAM direct memory bus dynamic RAM
  • DRDRAM Direct Rambus DRAM

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Rectifiers (AREA)

Abstract

提供了一种接收电路(200)、芯片(800)、电子设备、充电***及充电方法。接收电路(200),包括:无线接收模块(210),用于接收电磁信号,并根据电磁信号生成交流电压;整流模块(230),用于对交流电压进行整流,得到直流电压;控制模块(240),用于控制整流模块(230)工作在半桥工作模式;升压模块(220),用于在整流模块(240)工作在半桥工作模式时,通过充电储能和释放电能,对整流模块(240)得到的直流电压进行升压。

Description

接收电路、芯片、电子设备、充电***及充电方法
本申请要求于2021年07月30日提交、申请号为202110871795.3、发明名称为“接收电路、芯片、电子设备、充电***及充电方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及充电技术领域,具体涉及一种接收电路、芯片、电子设备、充电***及充电方法。
背景技术
在无线充电技术中,接收端可接收发射端产生的电磁信号,将接收的电磁信号转换为电能,再通过整流及滤波等处理供电池进行充电。通常,接收端的线圈的电感量要求在8-9uh(微亨),若是将接收端的线圈电感量降低,如减少到3-6uh,可以减小接收端的阻抗,增大接收端的接收电流,以减少发热,能够进行更大功率的无线充电。
但是,将接收端线圈的电感量减小,或在接收端的线圈的放置位置出现偏移时,会导致接收端出现欠压情况,导致无法启动接收端中的接收端芯片。
发明内容
本申请实施例公开了一种接收电路、芯片、电子设备、充电***及充电方法。
本申请实施例公开了一种接收电路,包括:
无线接收模块,用于接收电磁信号,并根据所述电磁信号生成交流电压;
整流模块,用于对所述交流电压进行整流,得到直流电压;
控制模块,用于控制所述整流模块工作在半桥工作模式;
升压模块,用于在在所述整流模块工作在所述半桥工作模式时,通过充电储能和释放电能,对所述整流模块得到的直流电压进行升压。
本申请实施例公开了一种芯片,所述芯片包括接收电路,其中,所述接收电路包括:
接收模块,用于接收电磁信号,并根据所述电磁信号生成交流电压;
整流模块,用于对所述交流电压进行整流,得到直流电压;
控制模块,用于控制所述整流模块工作在半桥工作模式;
升压模块,用于在所述整流模块工作在所述半桥工作模式时,通过充电储能和释放电能,对所述整流模块得到的直流电压进行升压。
本申请实施例公开了一种电子设备,包括接收电路,其中,所述接收电路包括:
接收模块,用于接收电磁信号,并根据所述电磁信号生成交流电压;
整流模块,用于对所述交流电压进行整流,得到直流电压;
控制模块,用于控制所述整流模块工作在半桥工作模式;
升压模块,用于在所述整流模块工作在所述半桥工作模式时,通过充电储能和释放电能,对所述整流模块得到的直流电压进行升压。
本申请实施例公开了一种充电***,包括发射端及接收端,所述发射端用于根据电源提供的电压产生电磁信号;所述接收端包括如上所述的接收电路及电池,所述接收端用于根据所述接收电路输出的电压对所述电池进行充电。
本申请实施例公开了一种充电方法,包括:
通过无线接收模块接收电磁信号,并根据所述电磁信号生成交流电压;
通过整流模块对所述交流电压进行整流,得到直流电压;
控制所述整流模块工作在半桥工作模块,并在所述整流模块工作在所述半桥工作模式时,通过升压模块的充电储能和释放电能,对所述整流模块得到的直流电压进行升压。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征和有益效果将从说明书、附图以及权利要求书中体现。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一个实施例中无线充电***的示意图;
图2A为一个实施例中接收电路的结构框图;
图2B为一个实施例中接收电路的电路结构图;
图3A为另一个实施例中接收电路的结构框图;
图3B为又一个实施例中接收电路的结构框图;
图4A为一个实施例中控制模块及第二开关单元的结构框图;
图4B为另一个实施例中控制模块及第二开关单元的结构框图;
图5为一个实施例中自举电路的电路结构示意图;
图6为另一个实施例中自举电路的电路结构示意图;
图7A为又一个实施例中控制模块的结构框图;
图7B为再一个实施例中控制模块的结构框图;
图8为一个实施例中芯片的结构框图;
图9为一个实施例中充电***的结构框图;
图10为一个实施例中充电方法的流程图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,本申请实施例及附图中的术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、***、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
可以理解,本申请所使用的术语“第一”、“第二”等可在本文中用于描述各种元件,但这些元件不受这些术语限制。这些术语仅用于将第一个元件与另一个元件区分。举例来说,在不脱离本申请的范围的情况下,可以将第一开关称为第二开关,且类似地,可将第二开关称为第一开关。第一开关和第二开关两者都是开关,但其不是同一开关。
图1为一个实施例中无线充电***的示意图。如图1所示,该无线充电***可包括发射端110及接收端120,其中,发射端110可包括电源、逆变电路112、电容C P、发射端线圈L P,发射端线圈L P与电容C P可形成谐振电路。可选地,逆变电路112与电源连接,用于对电源输出的直流电压进行逆变转换,向电容C P输出逆变转换之后得到的交流电压,交流电压通过谐振电路产生电磁信号和电动势V P
接收端120可包括接收端线圈L S、电容C S、电容C d、调制电路122、整流电路124、以及输出电容C、输出负载R m。其中,接收端线圈L S与电容C S、电容C d形成接收回路。 可选地,接收端120的接收端线圈L S和电容C S可组成接收回路,电容C d可用于进行在位检测(即判断是否存在发射端)。该接收回路可接收发射端线圈L P产生的电磁信号,形成相应的交流电压,交流电压经过调制电路122输入至整流电路124中。整流电路124对接收到的交流电压进行全桥整流,得到直流电压,直流电压经过输出电容C、输出负载Rm,得到输出电压。该输出电压可用于启动接收端芯片,当该接收端芯片被启动可以实现对包含接收端芯片的设备进行无线充电的操作。
接收端120的接收端线圈L S的电感量会影响接收电路的输出电压,在接收端线圈L S的电感量减少的情况下,会使得生成的交流电压减小,从而导致输出电压也会减小。或者,在接收端120的接收端线圈L S与发射端线圈L P的相对位置发生偏移的情况下,也会使得生成的交流电压减小,从而导致输出电压也会减小。在输出电压减小的情况下,可能出现欠压情况,导致接收端芯片无法启动,无法保证包含该接收端芯片的设备的进行正常的无线充电。
在本申请实施例中,提供一种接收电路、芯片、电子设备、充电***及充电方法,能够提高接收电路输出的电压,避免出现欠压现象,以保证接收电路所在的芯片能够正常启动,进一步可保证包含该芯片的电子设备能够正常进行无线充电。
如图2A所示,在一个实施例中,提供一种接收电路200,该接收电路200可包括无线接收模块210、整流模块230、升压模块220及控制模块240,其中,整流模块230可分别与无线接收模块210及控制模块240电连接,整流模块230可与升压模块220电连接。
无线接收模块210,用于接收电磁信号,并根据电磁信号生成交流电压。
在本申请实施例中,接收电路200可应用于无线充电***中的接收端,无线接收模块210可包括接收端线圈,可用于接收无线充电***中的发射端产生的电磁信号,并将该电磁信号转化为电能,基于该电磁信号生成交流电压。交流电压可指的是电压的大小及方向随时间作周期性变化的电压。可选地,该无线接收模块210接收电磁信号的方式可包括但不限于电磁感应、电磁共振、电磁耦合等方式,本申请实施例对无线接收模块210接收电磁信号的方式不作限定。
无线接收模块210可包括第一输出端及第二输出端。无线接收模块210输出的交流电压的一个周期可包括正半周期及负半周期,在交流电压处于正半周期时,无线接收模块210的第一输出端的电压高于第二输出端的电压,在交流电压处于负半周期时,无线接收模块210的第二输出端的电压高于第一输出端的电压。
整流模块230,用于对交流电压进行整流,得到直流电压。
直流电压可指的是电压的方向不随时间周期变化的电压,直流电压可为脉动直流电压,例如可以是馒头波、方波等形状的脉动直流电压,直流电压也可以是稳定的直流电压,例如恒定直流电压或是近似恒定的直流电压(波幅极小),恒定直流电压指的是电压固定的直流电压。
控制模块240,用于控制整流模块230工作在半桥工作模式。
升压模块220,用于在整流模块230工作在半桥工作模式时,通过充电储能和释放电能,对整流模块230得到的直流电压进行升压。
半桥工作模式可指的是整流模块230中的两个开关管在导通状态及关断状态之间来回切换工作,工作在半桥工作模式下的整流模块230可对无线接收模块210输出的交流电压进行半桥整流。
在一些实施例中,在整流模块230工作在半桥工作模式时,整流模块230可对升压模块220进行充电,使得升压模块220进行储能,并通过升压模块220释放的电能对整流模块230得到的直流电压进行升压,以提高接收电路输出的电压。
如图2B所示,在一个实施例中,升压模块220可包括第一储能电容C1及第二储能电容C2,该第一储能电容C1与第二储能电容C2可串联连接,并与整流模块230的输出端连接。该整流模块230可包括全桥整流电路,该全桥整流电路可包括第一开关D11、第二开关D12、第三开关D13及第四开关D14,无线接收模块210的第一输出端可与第一开关D11及第二开关D12的中间连接点电连接,无线接收模块210的第二输出端可与第三开关D13及第四开关D14的中间连接点电连接。
第一储能电容C1,用于在交流电压处于第一半周期时,进行充电储能。
第二储能电容C2,用于在交流电压处于第二半周期时,进行充电储能。
其中,第一半周期与第二半周期的交流电压的方向不同,第一半周期可以是交流电压的正半周期,第二半周期则为负半周期;第一半周期也可以是交流电压的负半周期,第二半周期则为正半周期。
控制模块240可控制整流模块230工作在半桥工作模式,可选地,在整流模块230工作在半桥工作模式时,第一开关D11及第二开关D12可处于在导通状态与断开状态之间来回切换的工作状态。在交流电压处于第一半周期(如正半周期)时,第一开关D11导通,第二开关D12断开,整流模块230输出的电压可对第一储能电容C1进行充电;在交流电压处于第二半周期(如负半周期)时,第一开关D11断开,第二开关D12导通,整流模块230输出的电压可对第二储能电容C2进行充电。
请再如图2B所示,在一个实施例中,接收电路200还可包括第一开关单元250,第一开关单元250可设置在升压模块220及整流模块230之间,进一步地,第一开关单元250可与第三开关D13及第四开关D14的中间连接点电连接,以及与第一储能电容C1及第二储能电容C2的中间连接点电连接。第一开关单元250还可与控制模块240电连接。
控制模块240,还用于在交流电压处于第一半周期时,控制第一开关单元250导通第一储能电容C1的充电储能通路;以及用于在交流电压处于第二半周期时,控制第一开关单元250导通第二储能电容C2的充电储能通路。
在整流模块230处于半桥工作模式时,第一开关单元250可处于导通状态。在交流电压处于第一半周期(如正半周期)时,第一开关D11导通,第二开关D12断开,无线接收模块210输出的电流流向可为无线接收模块210的第一输出端-第一开关D11-第一储能电容C1-第一开关单元250-无线接收模块210的第二输出端,实现对第一储能电容C1的充电。在流电压处于第二半周期(如负半周期)时,第一开关D11断开,第二开关D12导通,无线接收模块210输出的电流流向可为无线接收模块210的第二输出端-第一开关单元250-第二储能电容C2-第二开关D12-无线接收模块210的第一输出端,实现对第二储能电容C2的充电。若无线接收模块210输出的交流电压的电压为V,则在交流电压处于第一半周期时,第一储能电容C1的电压被充电到V,在交流电压处于第二半周期时,第二储能电容C2的电压被充电到V。第一储能电容C1及第二储能电容C2可通过释放电能,使得接收电路200的输出电压升高到2V。
可选地,第一开关单元250可包括MOS管,如图2B所示,作为一种具体实施方式,该MOS管可包括N型MOS管Q1,也可以是其它的开关管,如GaN(氮化镓)开关器件等,在此不作限定。控制模块240可向第一开关单元250输出驱动信号,以驱动第一开关单元250处于导通状态,如可向MOS管Q1提供驱动电压等。
在本申请实施例中,通过工作在半桥工作模式下的整流模块230,实现升压模块220的充电储能,并通过升压模块220释放的电能对整流模块230得到的直流电压进行升压,以使得升压后的电压能够正常启动接收端芯片,提高了接收电路输出的电压,能够避免在接收端线圈的电感量减小,或接收端的线圈的放置位置出现偏移的情况下出现的欠压现象, 保证接收端芯片能够正常启动。需要说明的是,该接收端芯片可指的是能够支持无线充电中的无线接收功能的芯片,可以是仅支持无线接收功能的芯片,也可以是同时支持无线接收功能及无线发射功能的芯片。在一个实施例中,接收端芯片可为包括图2A或图3A中的所有模块或至少部分模块的芯片。
如图3A所示,在一个实施例中,提供另一种接收电路200,该接收电路200可包括无线接收模块210、升压模块220、整流模块230及控制模块240。升压模块220可分别与无线接收模块210与整流模块230电连接,整流模块230可与控制模块240电连接。
在一个实施例中,升压模块220,还用于在整流模块230工作在半桥工作模式时,若交流电压处于第一半周期,进行充电储能,若交流电压处于第二半周期时,释放电能,以对整流模块230得到的直流电压进行升压。
第一半周期可以是交流电压的正半周期,第二半周期则为负半周期;第一半周期也可以是交流电压的负半周期,第二半周期则为正半周期。
在本申请实施例中,升压模块220可在交流电压的一半周期内进行充电储能,并在交流电压的另一半周期内通过存储的电能对整流模块230得到的直流电压进行升压,提高了接收电路输出的电压。
整流模块230可包括由四个开关组成的全桥整流电路,在一些实施例中,整流模块还可用于工作在半桥工作模式下,对交流电压进行半桥整流,得到直流电压。该半桥工作模式可指的是仅其中的两个开关处于在导通与关断之间不断来回切换的工作状态,工作在半桥工作模式下的整流模块230可对无线接收模块210输出的交流电压进行半桥整流,得到直流电压。
由于整流模块230处于半桥工作模式,因此,在一些实施例中,整流模块230可在交流电压的第一半周期内对升压模块220进行充电,在交流电压的第二半周期内,升压模块220释放电能,以对整流模块230得到的直流电压进行升压。
在一些实施例中,整流模块230还用于在交流电压处于第一半周期时,对升压模块220进行充电,升压模块220还用于在交流电压处于第二半周期时,释放电能,以对整流模块230得到的直流电压进行升压。具体的是在交流电压的正半周期还是负半周期对升压模块220进行充电,可基于整流模块230中进行半桥整流的开关与无线接收模块210的连接关系确定。进一步地,若整流模块230中进行半桥整流的开关与无线接收模块210的第一输出端连接,则整流模块230可在交流电压处于负半周期时,对升压模块220进行充电;若整流模块230中进行半桥整流的开关与无线接收模块210的第二输出端连接,则整流模块230可在交流电压处于正半周期时,对升压模块220进行充电。
在本申请实施例中,通过工作在半桥工作模式下的整流模块230对升压模块220进行充电,并通过升压模块220对整流模块230得到的直流电压进行升压,提高了接收电路输出的电压。
如图3B所示,在一个实施例中,整流模块230包括全桥整流电路,该全桥整流电路可包括第一开关231、第二开关232、第三开关233及第四开关234,第一开关231与第二开关232串联连接,第三开关233及第四开关234串联连接。
升压模块220可包括第三储能电容C3,第三储能电容设置在无线接收模块210与整流模块230之间。第三储能电容C3,用于在交流电压处于第一半周期时,进行充电储能,在交流电压处于第二半周期时,释放电能。
作为一种实施方式,该第三储能电容C3的第一端与无线接收模块210的第一输出端电连接,第三储能电容C3的第二端分别与第一开关及第二开关电连接,进一步地,第三储能电容C3的第二端与第一开关231和第二开关232的中间连接点电连接。可选地,第三储能 电容C3可与无线接收模块210共同组成接收电路。无线接收模块210的第二输出端可分别与第三开关233及第四开关234电连接,进一步地,无线接收模块210的第二输出端可与第三开关233和第四开关234的中间连接点电连接。
在一些实施例中,控制模块240控制整流模块230处于半桥工作模式,可通过控制整流模块230的下开关(即接地的开关)处于常导通状态或是处于无效状态。如整流模块230的第二开关232及第四开关234为整流模块230的下开关,则可通过使得第二开关232或第四开关234处于常导通状态,或是使得第二开关232或第四开关234处于无效状态,让整流模块230处于半桥工作模式。
在一个实施例中,如图4A及图4B所示,接收电路200还可包括第二开关单元260,第二开关单元260可与全桥整流电路中的第一开关管电连接,可选地,该第一开关管可为全桥整流电路中接地的开关管(如第二开关232或第四开关234)。
控制模块240,还用于控制第二开关单元的导通和关断,使得整流模块230工作在半桥工作模式下。
在一些实施例中,控制模块240可包括自举电路242,自举电路242可分别与第二开关单元260及无线接收模块210连接。
自举电路242,用于对无线接收模块210输出的交流电压进行转换及升压处理,得到驱动电压,并向第二开关单元260提供该驱动电压。
第二开关单元260,用于在驱动电压的驱动下,处于导通状态。
如图4A所示,在一个实施例中,第二开关单元260可与全桥整流电路中的第二开关232并联连接,全桥整流电路还用于在第二开关单元260处于导通状态时,通过第三开关233及第四开关234对无线接收模块210输出的交流电压进行半桥整流。
第二开关单元260与第二开关232并联连接的情况下,若第二开关单元260处于导通状态,则第二开关232不起作用,第一开关231可一直处于断开状态,则可通过第三开关233及第四开关234对交流电压进行半桥整流,第三开关233及第四开关234可分别在导通状态及断开状态之间来回切换,且在第三开关233处于导通状态时第四开关234处于断开状态,第三开关233处于断开状态时第四开关234处于导通状态,实现半桥整流。
在一些实施例中,整流模块230还可包括滤波电容C0,该滤波电容C0可与全桥整流电路的输出端连接,滤波电容C0用于对全桥整流电路输出的直流电压进行滤波,以使得整流模块230输出的直流电压更为稳定。在无线接收模块210输出的交流电压处于正半周期时,第四开关234导通,第三开关233断开,电流的流向可为无线接收模块210的第一输出端-第三储能电容C3-第二开关单元260-第四开关234-无线接收模块210的第二输出端,可对第三储能电容C3进行充电。若交流电压的电压为V,则第三储能电容C3的电压也可被充电至V。
在无线接收模块210输出的交流电压处于负半周期时,第三开关233导通,第四开关234断开,电流的流向可为无线接收模块210的第二输出端-第三开关233-滤波电容C0-第五开关-第三储能电容C3-无线接收模块210的第一输出端,全桥整流电路的输出端的电压等于无线接收模块210输出的电压与第三储能电容C3的电压之和,实现升压效果。进一步地,第三储能电容C3可释放电能,无线接收模块210及第三储能电容C3可共同对滤波电容C0进行充电,滤波电容C0的电压可充电至2V,以使得整流模块230输出的直流电压达到倍压效果。在交流电压处于下一正半周期时,全桥整流电路不输出电压,继续对第三储能电容C3进行充电,而此时由于滤波电容C0可持续提供电能,因此可保证整流模块230依然能够继续输出直流电压。通过对交流电压的正半周期的能量进行存储,以供整个周期的负载,且可保证整流模块230输出的直流电压足够启动接收端芯片,不会出现欠压现象。
如图4B所示,在一个实施例中,第二开关单元260可与全桥整流电路中的第四开关234并联连接,全桥整流电路还用于在第二开关单元260处于导通状态时,通过第一开关231及第二开关232对无线接收模块210输出的交流电压进行半桥整流。
第二开关单元260与第四开关234并联连接的情况下,若第二开关单元260处于导通状态,则第四开关234不起作用,第三开关233可一直处于断开状态,则可通过第一开关231及第二开关232对交流电压进行半桥整流,第一开关231及第二开关232可分别在导通状态及断开状态之间来回切换,且在第一开关231处于导通状态时第二开关232处于断开状态,第一开关231处于断开状态时第二开关232处于导通状态,实现半桥整流。
在一些实施例中,在无线接收模块210输出的交流电压处于负半周期时,第二开关232导通,第一开关231断开,可对第三储能电容C3进行充电。若交流电压的电压为V,则第三储能电容C3的电压也可被充电至V。
在无线接收模块210输出的交流电压处于正半周期时,第一开关231导通,第二开关232断开,三储能电容C3可释放电能,无线接收模块210及第三储能电容C3可共同对滤波电容C0进行充电,滤波电容C0的电压可充电至2V,以使得整流模块230输出的直流电压达到倍压效果。在交流电压处于下一负半周期时,全桥整流电路不输出电压,继续对第三储能电容C3进行充电。
自举电路242可对无线接收模块210提供的电压进行转换及升压处理,得到能够驱动第二开关单元260保持导通状态的驱动电压。
如图5所示,在一个实施例中,自举电路242可包括第一电容C41及第二电容C42,第一电容C41的第一端与无线接收模块210的第二输出端电连接,第一电容C41的第二端与第二电容C42的第一端电连接。
第二电容C42,用于在无线接收模块210输出的交流电压处于负半周期时,根据无线接收模块210提供的电压进行充电;以及用于在交流电压处于正半周期时,向第一电容C41释放电能,以对第一电容C41进行充电。
第一电容C41,还用于在充电后,对无线接收模块210提供的电压进行升压,得到驱动电压。
进一步地,自举电路242还可包括第一二极管D21及第二二极管D22,其中,第一二极管D21的阳极与无线接收模块210的第二输出端连接,第一二极管D21的阴极与第二电容C42的第一端连接,第二二极管D22的阳极与第二电容C42的第一端连接,第二二极管D22的阴极与第一电容C41的第二端连接。
第二电容C42还用于在交流电压处于负半周期时,通过第一二极管D21接收无线接收模块210提供的电压,并根据无线接收模块210提供的电压进行充电;以及用于在交流电压处于正半周期时,通过第二二极管D22向第一电容C41释放电能,以对第一电容C41进行充电。
无线接收模块210可包括接收端线圈L2,接收端线圈L2的第一输出端(即图5中的上端)可与第三储能电容C3电连接,接收端线圈L2的第二输出端(即图5中的下端)可与第一电容C41及第一二极管D21的阳极电连接。进一步地,接收端线圈L2的第二输出端还可与电阻R3串联。
在接收端线圈L2输出的交流电压处于负半周期时(即下端电压高于上端电压),则第一二极管D21导通,可通过接收端线圈L2提供的电压对第二电容C42进行充电。若交流电压的电压为V,则第二电容C42的电压可被充电到V。进一步地,在接收端线圈L2输出的交流电压处于负半周期的过程中,若接收端线圈L2输出的电压小于第二电容C42的电压,则第一二极管D21截止,可通过接收端线圈L2输出的电压对第一电容C41进行充 电。
在接收端线圈L2输出的交流电压处于正半周期时(即下端电压低于上端电压),由于第二电容C42的电压被充电到V,第二二极管D22导通,第二电容C42可通过第二二极管D22向第一电容C41释放电能,对第一电容C41进行充电。进一步地,第二电容C42可将第一电容C41的电压充电到V。
在一些实施例中,自举电路242还可包括第三二极管D23、第三电容C43、第一电阻R21、第二电阻R22、第四电容C44及第四二极管D24。第三二极管D23的阳极可与第一电容C41的第二端连接,第三二极管D23的阴极可与第三电容C43连接。在交流电压处于下一负半周期时,由于第一电容C41的电压充电到V,第三二极管D23导通,接收端线圈L2与第一电容C41共同向第三电容C43释放电能,则第三电容C43的电压可为第一电容C41与接收端线圈L2输出的电压之和,实现升压效果。
第一电阻R21与第二电阻R22可串联连接,第四电容C44可与第二电阻R22并联连接,第三电容C43输出的电压经由第一电阻R21、第二电阻R22及第四电容C44后可得到驱动电压,并将驱动电压输出至第二开关单元260,以驱动第二开关单元260保持导通状态。
在一些实施例中,自举电路242中的第一二极管D21、第二二极管D22、第三二极管D23及第四二极管D24均可为稳压二极管,能够保证输出的驱动电压更加稳定。
在一些实施例中,整流模块230中的第一开关231可包括开关管D11,第二开关232可包括开关管D12,第三开关233可包括开关管D13,第四开关234可包括开关管D14,可选地,开关管D11、开关管D12、开关管D13及开关管D14均可为二极管。可选地,开关管D11可串联有第一负载R11,开关管D12可串联有第二负载R12,开关管D13可串联有第三负载R13,开关管D14可串联有第四负载R14。通过串联负载可保护全桥整流电路,提高稳定性。
在一些实施例中,如图5所示,第二开关单元260可包括N型的MOS管M1,自举电路242的输出端可与MOS管M1的栅极(G极)电连接。在MOS管M1与第二开关232并联连接的情况下,MOS管M1的漏极(D极)与第三储能电容C3的第二端电连接,也即,MOS管M1的D极可与开关管D12的阴极连接,MOS管M1的源极(S极)可与开关管D12的阳极连接。
在MOS管M1与第四开关234并联连接的情况下(图未示),MOS管M1的漏极与无线接收模块210的第二输出端电连接,也即,MOS管M1的D极可与开关管D14的阴极连接,MOS管M1的S极可与开关管D14的阳极连接。
需要说明的是,第一开关231、第二开关232、第三开关233、第四开关234也可以是其它开关,例如MOS管等,在此不作限定。
图6为另一个实施例中自举电路的电路结构示意图。如图6所示,在另一种实施例中,自举电路242可包括第五二极管D31、第六二极管D32、第五电容C45、第六电容C46、第七电容C47、第三电阻R31、第四电阻R32及第七二极管D33。其中,第五二极管D31的阳极可与无线接收模块210的第一输出端电连接,第五二极管D31的阴极可与第五电容C45的第一端连接,第五电容C45与第六电容C46可串联连接,第五电容C45与第六电容C46的中间连接点可与无线接收模块210的第二输出端电连接。第六二极管D32的阳极可与第六电容C46的第二端连接,第六二极管D32的阴极可与无线接收模块210的第一输出端电连接。
在接收端线圈L2输出的交流电压处于正半周期时,第五二极管D31导通,可通过接收端线圈L2提供的电压对第五电容C45进行充电,可将第五电容C45的电压充电到V。在接收端线圈L2输出的交流电压处于负半周期时,第六二极管D32导通,可通过接收端 线圈L2提供的电压对第六电容C46充电,可将第六电容C46的电压充电到V,则第五电容C45的第一端与第七电压C7的第二端之间的电压差为2V,实现对接收端线圈L2输出的交流电压进行转换及升压的效果。
第三电阻R31与第四电阻R32可串联连接,第七电容C47可与第四电阻R32并联连接,第五电容C45及第六电容C46输出的电压经由第三电阻R31、第四电阻R32及第七电容C47,可得到驱动电压,并输出至第二开关单元260。
需要说明的是,自举电路242中的第五二极管D31、第六二极管D32、第七二极管D33均可为稳压二极管,能够保证输出的驱动电压更加稳定。第二开关单元260也可以是其它开关,并不仅限于上述的N型MOS管。
在本申请实施例中,通过自举电路242实现自举,驱动第二开关单元260保持常导通的状态,以驱动整流模块230能够工作在半桥工作模式下,能够使得接收电路200在启动时通过自驱动的方式工作在半桥工作模式下。。
在一些实施例中,控制模块240,还用于控制全桥整流电路中的至少一个开关管的导通和关断,以使全桥整流电路工作在半桥工作模式。
可选地,该至少一个开关管可以是全桥整流电路中接地的开关管中的至少一个开关管,该开关管可以是开关管D12或开关管D14。
在一个实施例中,也可针对第二开关232或第四开关234设置单独的驱动电路,以驱动第二开关232或第四开关234保持常导通的状态。如图7A及图7B所示,控制模块240可包括第一驱动电路702及第二驱动电路704。
如图7A所示,第一驱动电路702可与第二开关232连接,第一驱动电路702用于向第二开关232发送第一驱动信号,该第一驱动信号用于驱动第二开关232保持导通状态。
第二驱动电路704,可分别与第三开关233及第四开关234连接,第二驱动电路704用于向第三开关233及第四开关234发送第二驱动信号,该第二驱动信号用于驱动第三开关233及第四开关234在导通状态与断开状态之间切换,以使全桥整流电路通过第三开关233及第四开关234对无线接收模块210输出的交流电压进行半桥整流。
可选地,第一驱动信号可包括驱动电压,第一驱动电路702可向第二开关232提供驱动电压,以驱动第二开关232处于导通状态,此时,第一开关231可处于闭合状态,第二驱动电路704可轮流向第三开关233及第四开关234输出驱动电压,以驱动第三开关233及第四开关234在导通状态与断开状态之间回来进行切换,实现对交流电压的半桥整流。
在第二开关232处于常导通的情况下,若无线接收模块210输出的交流电压处于正半周期,第二驱动电路704可驱动第四开关234导通,第三开关233处于断开状态,则电流的流向可为无线接收模块210的第一输出端-第三储能电容C3-第二开关232-第四开关234-无线接收模块210的第二输出端,实现对第三储能电容C3的充电。若无线接收模块210输出的交流电压处于负半周期,第二驱动电路704可驱动第三开关233导通,第四开关234断开,则电流的流向可为无线接收模块210的第二输出端-第三开关233-整流模块230的输出端-第二开关232-第三储能电容C3-无线接收模块210的第一输出端。第三储能电容C3释放电能,第三储能电容C3与无线接收模块210共同提供电压,以对整流模块230输出的直流电压进行升压。
如图7B所示,第一驱动电路702可与第四开关234连接,第一驱动电路702用于向第四开关234发送第一驱动信号,该第一驱动信号用于驱动第四开关234保持导通状态。
第二驱动电路704,可分别与第一开关231及第二开关232连接,第二驱动电路704用于向第一开关231及第二开关232发送第二驱动信号,该第二驱动信号用于驱动第一开关231及第二开关232在导通状态与断开状态之间切换,以使全桥整流电路通过第一开关 231及第二开关232对无线接收模块210输出的交流电压进行半桥整流。
可选地,第一驱动信号可包括驱动电压,第一驱动电路702可向第四开关234提供驱动电压,以驱动第四开关234处于导通状态,此时,第一开关233可处于闭合状态,第二驱动电路704可轮流向第一开关231及第二开关232输出驱动电压,以驱动第一开关231及第二开关232在导通状态与断开状态之间回来进行切换,实现对交流电压的半桥整流。
在第四开关234处于常导通的情况下,若无线接收模块210输出的交流电压处于负半周期,第二驱动电路704可驱动第二开关232导通,第一开关231处于断开状态,则电流的流向可为无线接收模块210的第二输出端-第四开关234-第二开关232-第三储能电容C3-无线接收模块210的第一输出端,实现对第三储能电容C3的充电。若无线接收模块210输出的交流电压处于正半周期,第二驱动电路704可驱动第一开关231导通,第二开关232断开,则电流的流向可为无线接收模块210的第一输出端-第三储能电容C3-第一开关231-整流模块230的输出端-第四开关234-无线接收模块210的第二输出端。第三储能电容C3释放电能,第三储能电容C3与无线接收模块210共同提供电压,以对整流模块230输出的直流电压进行升压。
需要说明的是,第一驱动电路702及第二驱动电路704的实现方式在本申请实施例中不作限定,例如,第一驱动电路702及第二驱动电路704均可以是独立的驱动电路,也可以是通过电荷泵等实现的驱动电路,或是由N型MOS管、P型MOS管及控制模块组成的驱动电路等,在此不作限定。
在本申请实施例中,针对第二开关232或第四开关234可设置单独的驱动电路,以驱动第二开关232或第四开关234处于常导通的状态,使得整流模块230能够工作在半桥工作模式下,以保证升压模块220能够对整流模块230得到的直流电压进行升压,提高了接收电路的输出电压。
在一个实施例中,控制模块240,还用于在接收电路200启动时,控制整流模块230工作在半桥工作模式。
在接收电路200启动时,整流模块230可默认工作在半桥工作模式下,并通过升压模块220对整流模块230输出的直流电压进行升压,能够保证接收端芯片一开始就能够有足够的启动电压,实现接收端芯片的自启动,从而保证正常进行无线充电。
在一个实施例中,控制模块240,还用于在电磁信号的功率小于第一阈值时,控制整流模块230工作在半桥工作模式下;以及用于在电磁信号的功率大于第二阈值时,控制整流模块230工作在全桥工作模式下,该第一阈值小于或等于第二阈值。
在一些实施例中,在无线接收模块210接收到发射端发射的电磁信号后,可通过该电磁信号的功率确定发射端的工作模式。若电磁信号的功率小于第一阈值,则可确定发射端工作在正常模式,在正常模式下发射端发射固定电压,并通过调频的方式来控制接收端的功率及电压,因此,在该正常模式下,接收电路200的整流模块230可工作在半桥工作模式下,通过升压模块220弥补接收端线圈的电感量减小或是接收端线圈的位置出现偏移出现的电压减小的情况,保证接收端芯片具备足够的启动电压进行正常启动。
若电磁信号的功率大于第二阈值,则可确定发射端工作在大功率的私有模式,在私有模式下发射端可调整工作电压的最大值,输出的电压可根据实际需求进行设置。因此,接收电路200的整流模块230可工作在全桥工作模式下,整流模块230中的四个开关同时在导通状态及断开状态之间回来切换,实现对交流电压的全桥整流,可提高整体的充电效率,实现大功率充电。在私有模式下,发射端可通过调节工作频率、调节工作电压及调节占空比等中的至少一种方式调节接收电路200的接收功率。可通过提高发射端的工作电压的最大值,由于电感量减小,所以若要实现接收电路同等的工作电压,发射端的工作电压相比 之前要升高一倍,例如,接收电路9uh的线圈工作在20V,发射端工作电压最高也是20V,对于小电感量方案,若要实现线图工作在20V,则发射端工作电压最高要到40V。以弥补接收端线圈的电感量减小或是接收端线圈的位置出现偏移出现的电压减小的情况,保证接收端芯片具备足够的启动电压进行正常启动。
在一个实施例中,控制模块240还用于在确定采用Qi标准充电协议中的EPP模式或BPP模式时,控制整流模块230工作在半桥工作模式。
Qi标准充电协议是无线充电联盟发布的标准充电协议,EPP模式支持5W(瓦)以下的功率,BPP模式支持5W~15W的功率,在接收电路200采用EPP模式或BPP模式时,整流模块230可工作在半桥工作模式下,通过升压模块220对整流模块230输出的直流电压进行升压,能够保证接收端芯片具备足够的启动电压,从而保证正常进行无线充电。
在一个实施例中,控制模块240还用于当采用的充电协议对应的最大充电功率低于第三阈值时,控制整流模块工作在半桥工作模式。
该第三阈值可根据实际需求或根据实验数据进行设置,该第三阈值可以是接收端芯片可能出现因启动电压不足导致无法正常启动的功率阈值。若接收电路200采用的充电协议对应的最大充电功率低于第三阈值,整流模块230可工作在半桥工作模式下,通过升压模块220对整流模块230输出的直流电压进行升压,能够保证接收端芯片具备足够的启动电压,从而保证正常进行无线充电。
若接收电路200采用的充电协议对应的最大充电功率高于第四阈值,控制模块240可控制整流模块230工作在全桥工作模式下,该第四阈值可大于第三阈值。
在一些实施例中,控制模块240还用于在接收电路200启动时,控制整流模块230工作在半桥工作模式下,在无线接收模块210接收的电磁信号的功率小于第一阈值或采用Qi标准充电协议中的EPP模式或BPP模式时,可控制整流模块230工作在半桥工作模式下;若无线接收模块210接收的电磁信号的功率大于第二阈值或采用的充电协议的充电功率高于EPP模式及BPP模式所支持的充电功率时,可控制整流模块230工作在全桥工作模式下。
在一些实施例中,控制模块240的工作电压可由整流模块230输出的直流电压提供,该控制模块240可与整流模块230的输出端连接,通过升压模块220对整流模块230得到的直流电压进行升压后,升压后的电压可作为控制模块240的工作电压输入到控制模块240中,以保证控制模块240的正常运行。
在一些实施例中,在输入到整流模块230的交流电压满足目标条件时,整流模块230在半桥工作模式下输出的直流电压高于在全桥工作模式下输出的直流电电压。可选地,该目标条件可包括但不限于电压大小相同、占空比相同、频率相同中的至少一种。
若向整流模块230输入的交流电压满足上述的目标条件,工作在半桥工作模式下的整流模块230,由于升压模块220释放的电能能够对整流模块230得到的直流电压进行升压,因此,整流模块230在半桥工作模式下输出的直流电压可高于在全桥工作模式下输出的直流电电压,进一步地,整流模块230在半桥工作模式下输出的直流电压可以是在全桥工作模式下输出的直流电电压的2倍,实现半桥的倍压效果。
需要说明的是,接收电路200可包括比上述各实施例中所描述的更多或更少的电子元器件,本申请实施例不对接收电路200中包含的具体的电子元器件进行限定。上述的控制模块240可以仅包括电路架构(如上述的自举电路242),也可包括能够执行控制程序的控制器(如控制芯片等)。
在本申请实施例中,能够实现整流模块230在半桥工作模式及全桥工作模式的自由切换,提高了接收电路200的输出电压。而且可提高接收端的兼容性,使得接收端可与各种不同的发射端进行适配。
如图8所示,在一个实施例中,提供一种芯片800,该芯片800可包括上述各实施例中所描述的接收电路200。可选地,该芯片800可为无线充电技术中的接收端芯片,用于对实现对包含该芯片的电子设备进行无线充电。
在一个实施例中,提供一种电子设备,该电子设备可包括上述的芯片800,或可包括上述各实施例中描述的接收电路200。进一步地,电子设备还可包括电池,当用户将该电子设备放置或靠近无线充电的发射端时,接收电路200即可开始进行工作,以对电子设备中的电池进行无线充电。
在一个实施例中,提供一种充电***,该充电***可包括发射端910及接收端920。发射端910可与电源连接,发射端910用于根据电源提供的电压产生电磁信号。接收端920可包括如上述各实施例中所描述的接收电路200及电池922,接收端920用于根据接收电路200输出的电压对电池922进行充电。可选地,可直接利用接收电路200输出的电压对电池922进行充电,也可对接收电路200输出的电压进行进一步地处理(如升压、滤波等),再对电池922进行充电。
在一些实施例中,接收端920可包括通信模块,接收端920可通过通信模块向发射端910发送通信信号,通过该通信信号可调整发射端910的工作电压的最大值、发射功率或输出占空比等,进一步提高无线充电过程中的充电效率。
如图10所示,在一个实施例中,提供一种充电方法,可应用于上述的接收电路200,或是应用于上述的芯片800,也可以应用于上述的电子设备等。该充电方法可包括以下步骤:
步骤1010,通过无线接收模块接收电磁信号,并根据电磁信号生成交流电压。
步骤1020,通过整流模块对交流电压进行整流,得到直流电压。
步骤1030,控制整流模块工作在半桥工作模块,并在整流模块工作在半桥工作模式时,通过升压模块的充电储能和释放电能,对整流模块得到的直流电压进行升压。
在一个实施例中,升压模块包括第一储能电容和第二储能电容。步骤通过升压模块的充电储能和释放电能,对整流模块得到的直流电压进行升压,包括:在交流电压处于第一半周期时,控制第一开关单元导通第一储能电容的充电储能通路,以使第一储能电容进行充电储能;在交流电压处于第二半周期时,控制第一开关单元导通第二储能电容的充电储能通路,以使第二储能电容进行充电储能;以及通过第一储能电容和第二储能电容释放的电能对整流模块得到的直流电压进行升压。
在一个实施例中,步骤控制整流模块工作在半桥工作模块,包括:控制第二开关单元的导通和关断,使得整流模块工作在半桥工作模式下;其中,第二开关单元与全桥整流电路的第一开关管连接,第一开关管为所述全桥整流电路中接地的开关管。
在一个实施例中,整流模块包括全桥整流电路。步骤控制整流模块工作在半桥工作模块,包括:控制第二开关单元的导通和关断,使得整流模块工作在半桥工作模式下;其中,第二开关单元与全桥整流电路的第一开关管连接,第一开关管为全桥整流电路中接地的开关管。
在一个实施例中,整流模块包括全桥整流电路。步骤控制整流模块工作在半桥工作模块,包括:控制全桥整流电路中的至少一个开关管的导通和关断,以使全桥整流电路工作在半桥工作模式;其中,至少一个开关管为全桥整流电路中接地的开关管中的至少一个开关管。
在一个实施例中,升压模块包括至少一个第三储能电容。步骤通过升压模块的充电储能和释放电能,对所述整流模块得到的直流电压进行升压,包括:在交流电压处于第一半周期时,第三储能电容进行充电储能,在交流电压处于第二半周期时,通过第三储能电容 释放的电能对整流模块得到的直流电压进行升压。
在一个实施例中,步骤控制整流模块工作在半桥工作模式,包括:在接收电路启动时,控制整流模块工作在半桥工作模式。
在一个实施例中,步骤控制整流模块工作在半桥工作模式,包括:在电磁信号的功率小于第一阈值时,控制整流模块工作在半桥工作模式;以及用于在电磁信号的功率大于第二阈值时,控制整流模块工作在全桥工作模式,第一阈值小于或等于第二阈值。
在一个实施例中,步骤控制整流模块工作在半桥工作模式,包括:在确定采用Qi标准充电协议中的EPP模式或BPP模式时,控制整流模块工作在半桥工作模式。
在一个实施例中,步骤控制整流模块工作在半桥工作模式,包括:当采用的充电协议对应的最大充电功率低于第三阈值时,控制整流模块工作在半桥工作模式。
需要说明的是,本申请实施例提供的充电方法的描述可参考上述各实施例中提供的接收电路的相关描述,在此不再一一进行赘述。
在本申请实施例中,在整流模块工作在半桥工作模式时,通过升压模块的充电储能及释放电能,能够对整流模块得到的直流电压进行升压,提高了接收电路输出的电压,能够避免在接收端线圈的电感量减小,或接收端的线圈的放置位置出现偏移的情况下出现的欠压现象,保证接收端芯片能够正常启动。
本申请实施例公开一种电子设备,包括存储器及处理器,该存储器中存储有计算机程序,该计算机程序被该处理器执行时,使得处理器实现如上述各实施例中描述的方法。
本申请实施例公开一种计算机可读存储介质,其存储计算机程序,其中,该计算机程序被处理器执行时实现如上述各实施例中描述的方法。
本申请实施例公开一种计算机程序产品,该计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,且该计算机程序可被处理器执行时实现如上述各实施例描述的方法。
如此处所使用的对存储器、存储、数据库或其它介质的任何引用可包括非易失性和/或易失性存储器。合适的非易失性存储器可包括ROM、可编程ROM(Programmable ROM,PROM)、可擦除PROM(Erasable PROM,EPROM)、电可擦除PROM(Electrically Erasable PROM,EEPROM)或闪存。易失性存储器可包括随机存取存储器(random access memory,RAM),它用作外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(Static RAM,SRAM)、动态RAM(Dynamic Random Access Memory,DRAM)、同步DRAM(synchronous DRAM,SDRAM)、双倍数据率SDRAM(Double Data Rate SDRAM,DDR SDRAM)、增强型SDRAM(Enhanced Synchronous DRAM,ESDRAM)、同步链路DRAM(Synchlink DRAM,SLDRAM)、存储器总线直接RAM(Rambus DRAM,RDRAM)及直接存储器总线动态RAM(Direct Rambus DRAM,DRDRAM)。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定特征、结构或特性可以以任意适合的方式结合在一个或多个实施例中。本领域技术人员也应该知悉,说明书中所描述的实施例均属于可选实施例,所涉及的动作和模块并不一定是本申请所必须的。
在本申请的各种实施例中,应理解,上述各过程的序号的大小并不意味着执行顺序的必然先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
以上对本申请实施例公开的一种接收电路、芯片、电子设备、充电***及充电方法进 行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想。同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (27)

  1. 一种接收电路,其特征在于,包括:
    无线接收模块,用于接收电磁信号,并根据所述电磁信号生成交流电压;
    整流模块,用于对所述交流电压进行整流,得到直流电压;
    控制模块,用于控制所述整流模块工作在半桥工作模式;
    升压模块,用于在所述整流模块工作在所述半桥工作模式时,通过充电储能和释放电能,对所述整流模块得到的直流电压进行升压。
  2. 根据权利要求1所述的接收电路,其特征在于,所述升压模块包括第一储能电容和第二储能电容;
    所述第一储能电容,用于在所述交流电压处于第一半周期时,进行充电储能;
    所述第二储能电容,用于在所述交流电压处于第二半周期时,进行充电储能,其中,所述第一半周期与所述第二半周期的交流电压的方向不同。
  3. 根据权利要求2所述的接收电路,其特征在于,所述接收电路还包括第一开关单元;
    所述控制模块,还用于在所述交流电压处于所述第一半周期时,控制所述第一开关单元导通所述第一储能电容的充电储能通路;以及用于在所述交流电压处于所述第二半周期时,控制所述第一开关单元导通所述第二储能电容的充电储能通路。
  4. 根据权利要求1所述的接收电路,其特征在于,所述整流模块包括全桥整流电路;所述接收电路还包括第二开关单元,所述第二开关单元与所述全桥整流电路中的第一开关管连接;
    所述控制模块,还用于控制所述第二开关单元的导通和关断,使得所述整流模块工作在所述半桥工作模式下。
  5. 根据权利要求4所述的接收电路,其特征在于,所述第一开关管为所述全桥整流电路中接地的开关管。
  6. 根据权利要求4所述的接收电路,其特征在于,所述控制模块包括自举电路;
    所述自举电路,用于对所述无线接收模块输出的交流电压进行转换及升压处理,得到驱动电压,并向所述第二开关单元提供所述驱动电压;
    所述第二开关单元,用于在所述驱动电压的驱动下,处于导通状态。
  7. 根据权利要求1所述的接收电路,其特征在于,所述整流模块包括全桥整流电路;
    所述控制模块,还用于控制所述全桥整流电路中的至少一个开关管的导通和关断,以使所述全桥整流电路工作在所述半桥工作模式。
  8. 根据权利要求7所述的接收电路,其特征在于,所述至少一个开关管为所述全桥整流电路中接地的开关管中的至少一个开关管。
  9. 根据权利要求4~8任一所述的接收电路,其特征在于,所述升压模块包括至少一个第三储能电容,所述第三储能电容设置在所述无线接收模块与所述整流模块之间;
    所述第三储能电容,用于在所述交流电压处于第一半周期时,进行充电储能,在所述交流电压处于第二半周期时,释放电能。
  10. 根据权利要求1所述的接收电路,其特征在于,所述控制模块,还用于在所述接收电路启动时,控制所述整流模块工作在所述半桥工作模式。
  11. 根据权利要求1或10所述的接收电路,其特征在于,所述控制模块,还用于在所述电磁信号的功率小于第一阈值时,控制所述整流模块工作在所述半桥工作模式;以及用于在所述电磁信号的功率大于第二阈值时,控制所述整流模块工作在全桥工作模式,所述第一阈值小于或等于所述第二阈值。
  12. 根据权利要求1或10所述的接收电路,其特征在于,所述控制模块,还用于在确 定采用Qi标准充电协议中的EPP模式或BPP模式时,控制所述整流模块工作在所述半桥工作模式。
  13. 根据权利要求1或10所述的接收电路,其特征在于,所述控制模块,还用于当采用的充电协议对应的最大充电功率低于第三阈值时,控制所述整流模块工作在所述半桥工作模式。
  14. 根据权利要求1所述的接收电路,其特征在于,所述控制模块的工作电压由所述整流模块输出的直流电压提供。
  15. 根据权利要求1所述的接收电路,其特征在于,在输入到所述整流模块的交流电压满足目标条件时,所述整流模块在所述半桥工作模式下输出的直流电压高于在全桥工作模式下输出的直流电压;
    所述目标条件包括电压大小相同、占空比相同、频率相同中的至少一种。
  16. 一种芯片,其特征在于,所述芯片包括接收电路,其中,所述接收电路包括:
    接收模块,用于接收电磁信号,并根据所述电磁信号生成交流电压;
    整流模块,用于对所述交流电压进行整流,得到直流电压;
    控制模块,用于控制所述整流模块工作在半桥工作模式;
    升压模块,用于在所述整流模块工作在所述半桥工作模式时,通过充电储能和释放电能,对所述整流模块得到的直流电压进行升压。
  17. 一种电子设备,其特征在于,包括接收电路,其中,所述接收电路包括:
    接收模块,用于接收电磁信号,并根据所述电磁信号生成交流电压;
    整流模块,用于对所述交流电压进行整流,得到直流电压;
    控制模块,用于控制所述整流模块工作在半桥工作模式;
    升压模块,用于在所述整流模块工作在所述半桥工作模式时,通过充电储能和释放电能,对所述整流模块得到的直流电压进行升压。
  18. 一种充电***,其特征在于,包括发射端及接收端,所述发射端用于根据电源提供的电压产生电磁信号;
    所述接收端包括接收电路,其中,
    所述接收电路包括:
    接收模块,用于接收电磁信号,并根据所述电磁信号生成交流电压;
    整流模块,用于对所述交流电压进行整流,得到直流电压;
    控制模块,用于控制所述整流模块工作在半桥工作模式;
    升压模块,用于在所述整流模块工作在所述半桥工作模式时,通过充电储能和释放电能,对所述整流模块得到的直流电压进行升压。
  19. 一种充电方法,其特征在于,包括:
    通过无线接收模块接收电磁信号,并根据所述电磁信号生成交流电压;
    通过整流模块对所述交流电压进行整流,得到直流电压;
    控制所述整流模块工作在半桥工作模块,并在所述整流模块工作在所述半桥工作模式时,通过升压模块的充电储能和释放电能,对所述整流模块得到的直流电压进行升压。
  20. 根据权利要求19所述的方法,其特征在于,所述升压模块包括第一储能电容和第二储能电容;
    所述通过升压模块的充电储能和释放电能,对所述整流模块得到的直流电压进行升压,包括:
    在所述交流电压处于第一半周期时,控制第一开关单元导通所述第一储能电容的充电储能通路,以使所述第一储能电容进行充电储能;
    在所述交流电压处于所述第二半周期时,控制所述第一开关单元导通所述第二储能电容的充电储能通路,以使所述第二储能电容进行充电储能;
    通过所述第一储能电容和第二储能电容释放的电能对所述整流模块得到的直流电压进行升压。
  21. 根据权利要求19所述的方法,其特征在于,所述整流模块包括全桥整流电路,所述控制所述整流模块工作在半桥工作模式,包括:
    控制第二开关单元的导通和关断,使得所述整流模块工作在所述半桥工作模式下;其中,所述第二开关单元与所述全桥整流电路的第一开关管连接,所述第一开关管为所述全桥整流电路中接地的开关管。
  22. 根据权利要求19所述的方法,其特征在于,所述整流模块包括全桥整流电路,所述控制所述整流模块工作在半桥工作模式,包括:
    控制所述全桥整流电路中的至少一个开关管的导通和关断,以使所述全桥整流电路工作在所述半桥工作模式;其中,所述至少一个开关管为所述全桥整流电路中接地的开关管中的至少一个开关管。
  23. 根据权利要求21或22所述的方法,其特征在于,所述升压模块包括至少一个第三储能电容;所述通过升压模块的充电储能和释放电能,对所述整流模块得到的直流电压进行升压,包括:
    在所述交流电压处于第一半周期时,所述第三储能电容进行充电储能,在所述交流电压处于第二半周期时,通过所述第三储能电容释放的电能对所述整流模块得到的直流电压进行升压。
  24. 根据权利要求19所述的方法,其特征在于,所述控制所述整流模块工作在半桥工作模式,包括:
    在所述接收电路启动时,控制所述整流模块工作在半桥工作模式。
  25. 根据权利要求19或24所述的方法,其特征在于,所述控制所述整流模块工作在半桥工作模式,包括:
    在所述电磁信号的功率小于第一阈值时,控制所述整流模块工作在半桥工作模式;以及用于在所述电磁信号的功率大于第二阈值时,控制所述整流模块工作在全桥工作模式,所述第一阈值小于或等于所述第二阈值。
  26. 根据权利要求19或24所述的方法,其特征在于,所述控制所述整流模块工作在半桥工作模式,包括:
    在确定采用Qi标准充电协议中的EPP模式或BPP模式时,控制所述整流模块工作在半桥工作模式。
  27. 根据权利要求19或24所述的方法,其特征在于,所述控制所述整流模块工作在半桥工作模式,包括:
    当采用的充电协议对应的最大充电功率低于第三阈值时,控制所述整流模块工作在所述半桥工作模式。
PCT/CN2022/099745 2021-07-30 2022-06-20 接收电路、芯片、电子设备、充电***及充电方法 WO2023005504A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110871795.3 2021-07-30
CN202110871795.3A CN115700964A (zh) 2021-07-30 2021-07-30 接收电路、芯片、电子设备、充电***及充电方法

Publications (1)

Publication Number Publication Date
WO2023005504A1 true WO2023005504A1 (zh) 2023-02-02

Family

ID=85087502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099745 WO2023005504A1 (zh) 2021-07-30 2022-06-20 接收电路、芯片、电子设备、充电***及充电方法

Country Status (2)

Country Link
CN (1) CN115700964A (zh)
WO (1) WO2023005504A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116388588A (zh) * 2023-05-29 2023-07-04 成都市易冲半导体有限公司 整流控制电路、电能接收装置和电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6137700A (en) * 1997-10-08 2000-10-24 Daikin Industries, Ltd. Converter with a high power factor using a DC center point voltage
CN101232170A (zh) * 2007-01-26 2008-07-30 固纬电子实业股份有限公司 自动切换电路及具有自动切换功能的电源供应电路
CN104682680A (zh) * 2015-01-29 2015-06-03 广州金升阳科技有限公司 一种整流滤波方法及电路
DE102014012703A1 (de) * 2014-08-28 2016-03-03 Universität Stuttgart Empfangseinheit, induktives Energieübertragungssystem, Verfahren zur induktiven Energieübertragung und Verwendung
CN107147199A (zh) * 2017-06-09 2017-09-08 宁波微鹅电子科技有限公司 无线电能接收端和无线充电***
CN109067192A (zh) * 2018-08-13 2018-12-21 深圳市佳士科技股份有限公司 一种用于宽电压输入的逆变焊割电源的控制电路及装置
US20210021207A1 (en) * 2019-07-19 2021-01-21 Samsung Electronics Co., Ltd. Electronic device and power supply
CN112366760A (zh) * 2019-07-25 2021-02-12 Oppo广东移动通信有限公司 充电电路、充电方法及无线发射设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6137700A (en) * 1997-10-08 2000-10-24 Daikin Industries, Ltd. Converter with a high power factor using a DC center point voltage
CN101232170A (zh) * 2007-01-26 2008-07-30 固纬电子实业股份有限公司 自动切换电路及具有自动切换功能的电源供应电路
DE102014012703A1 (de) * 2014-08-28 2016-03-03 Universität Stuttgart Empfangseinheit, induktives Energieübertragungssystem, Verfahren zur induktiven Energieübertragung und Verwendung
CN104682680A (zh) * 2015-01-29 2015-06-03 广州金升阳科技有限公司 一种整流滤波方法及电路
CN107147199A (zh) * 2017-06-09 2017-09-08 宁波微鹅电子科技有限公司 无线电能接收端和无线充电***
CN109067192A (zh) * 2018-08-13 2018-12-21 深圳市佳士科技股份有限公司 一种用于宽电压输入的逆变焊割电源的控制电路及装置
US20210021207A1 (en) * 2019-07-19 2021-01-21 Samsung Electronics Co., Ltd. Electronic device and power supply
CN112366760A (zh) * 2019-07-25 2021-02-12 Oppo广东移动通信有限公司 充电电路、充电方法及无线发射设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116388588A (zh) * 2023-05-29 2023-07-04 成都市易冲半导体有限公司 整流控制电路、电能接收装置和电子设备
CN116388588B (zh) * 2023-05-29 2023-08-18 成都市易冲半导体有限公司 整流控制电路、电能接收装置和电子设备

Also Published As

Publication number Publication date
CN115700964A (zh) 2023-02-07

Similar Documents

Publication Publication Date Title
CN107210678B (zh) 软切换回扫转换器
US9054592B2 (en) Synchronous rectifying control method and circuit for isolated switching power supply
CN110266192B (zh) 发送电路和电源电路
US9479072B2 (en) Flyback converter
US20160141951A1 (en) System and Method for a Startup Cell Circuit
US20210194374A1 (en) Switching power supply circuit
KR20010080701A (ko) 공진 모드 전원 장치
JP2000078836A (ja) 昇圧型コンバータ装置
JPWO2009025157A1 (ja) スイッチング電源装置
JP4751513B2 (ja) バーストモードを備えた零電圧スイッチング電源
JP2021517449A (ja) スイッチング電源回路
US9343981B2 (en) Charging device for charging a battery pack
KR20050050674A (ko) 용량성 연결된 전원 공급기
TWI513164B (zh) 返馳式主動箝位電源轉換器
US8503195B1 (en) System and method for zero volt switching of half bridge converters during startup and short circuit conditions
US6798672B2 (en) Power converter module with an active snubber circuit
US7002323B2 (en) Switching power supply circuit capable of reducing switching loss and control method used therein
WO2023005504A1 (zh) 接收电路、芯片、电子设备、充电***及充电方法
CN111682769B (zh) 有源钳位正激变换器的自适应同步整流数字控制方法
JP3760379B2 (ja) スイッチング電源装置
TWI650927B (zh) 用於主開關切換轉換的零電壓開關式返馳變換器
CN115276418A (zh) 一种高频开关电源电路、开关电源以及开关单元
TW201843915A (zh) 具有主動式突波吸收器的控制模組及相關的返馳式電源轉換裝置
WO2023226896A1 (zh) 电源模组的控制电路、电源模组及电子设备
WO2023236524A1 (zh) 变换电路、电路控制方法、电子设备、介质和程序产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848111

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE