WO2023005207A1 - 气路***和呼吸机 - Google Patents

气路***和呼吸机 Download PDF

Info

Publication number
WO2023005207A1
WO2023005207A1 PCT/CN2022/079281 CN2022079281W WO2023005207A1 WO 2023005207 A1 WO2023005207 A1 WO 2023005207A1 CN 2022079281 W CN2022079281 W CN 2022079281W WO 2023005207 A1 WO2023005207 A1 WO 2023005207A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
air
oxygen
valve
assembly
Prior art date
Application number
PCT/CN2022/079281
Other languages
English (en)
French (fr)
Inventor
唐克锋
叶巧
王瑞强
Original Assignee
深圳市安保科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市安保科技有限公司 filed Critical 深圳市安保科技有限公司
Publication of WO2023005207A1 publication Critical patent/WO2023005207A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/021Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes operated by electrical means
    • A61M16/022Control means therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/08Bellows; Connecting tubes ; Water traps; Patient circuits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/12Preparation of respiratory gases or vapours by mixing different gases
    • A61M16/122Preparation of respiratory gases or vapours by mixing different gases with dilution
    • A61M16/125Diluting primary gas with ambient air

Definitions

  • the present application relates to the technical field of ventilators, in particular to an air circuit system and a ventilator using the air circuit system.
  • the current transfer therapy ventilators in the market mainly include pneumatic electronically controlled ventilators and electric electronically controlled ventilators.
  • Pneumatic electronically controlled ventilators need to be driven by high-pressure air sources to work. Gas supply, resulting in reduced transport flexibility.
  • the electric and electronically controlled ventilator needs to be equipped with a turbine for air supply. Although it can solve the problem of the input of the hospital's in-hospital luck source, in terms of long-term treatment in the hospital, the function is unstable and the working noise is large. At the same time, the turbine works for a long time. There are drawbacks such as increased turbine aging and reduced machine sensitivity resulting in risk of treatment. Therefore, the function of the existing ventilator is relatively single, which cannot meet the needs of medical institutions to improve the transfer and treatment of critically ill patients.
  • the main purpose of this application is to provide an air circuit system, which aims to provide a solution for the transportation and treatment of critically ill patients in medical institutions, and at the same time reduce the risk of ventilator working for a long time, and reduce the The purchase and maintenance cost of medical equipment by medical institutions.
  • an air circuit system which includes:
  • An electric air assembly the electric air assembly is connected with the oxygen supply assembly, the electric air assembly includes a turbine, and the turbine is used to inhale external air and pressurize it to mix with the oxygen output by the oxygen supply assembly;
  • a pneumatic air assembly the pneumatic air assembly is connected to the oxygen supply assembly, the pneumatic air assembly includes a connected gas cylinder interface and a first pressure sensor, and the pneumatic air assembly is used to connect the gas cylinder interface
  • the gas is mixed with the oxygen in the oxygen supply assembly, the first pressure sensor is electrically connected to the turbine, and the first pressure sensor is used to detect the gas in the gas cylinder interface and feedback control the turbine;
  • a gas output assembly is respectively connected with the electric air assembly and the pneumatic air assembly for receiving mixed gas and outputting it.
  • the electric air assembly includes an external air interface, a first noise reduction chamber and a second noise reduction chamber, the first noise reduction chamber communicates with the air inlet, and the first noise reduction chamber communicates with the air inlet.
  • the second noise reduction chamber is connected to the first noise reduction chamber through the turbine, and the second noise reduction chamber is connected to the oxygen supply assembly.
  • the turbine inhales the external air through the external air interface,
  • the first noise reduction chamber and the second noise reduction chamber are mixed with the oxygen in the oxygen supply assembly and output to the gas output assembly after being mixed in the second noise reduction chamber.
  • the electric air assembly further includes a first one-way valve connected between the second noise reduction chamber and the gas output assembly to guide the The mixed gas flows to the gas output assembly;
  • the electric air assembly further includes a first flow sensor connected to the external air interface for monitoring the flow of the external air interface;
  • the electric air assembly further includes a first filter, the first filter is connected between the external air interface and the first noise reduction chamber, for filtering of outside air.
  • the pneumatic air assembly further includes a first pressure reducing valve, the first pressure reducing valve is electrically connected to the first pressure sensor, and the first pressure reducing valve is connected to the The gas cylinder interface is connected to decompress the gas passing through the gas cylinder interface;
  • the pneumatic air component further includes a first proportional valve, the first proportional valve is in communication with the gas cylinder interface and the oxygen supply component, and the first proportional valve is used to adjust the oxygen passing through the gas cylinder The flow rate of the gas at the interface is mixed with the oxygen in the oxygen supply component and then output to the gas output component;
  • the pneumatic air assembly further includes a second filter connected to the gas cylinder interface for filtering the gas passing through the gas cylinder interface.
  • the oxygen supply assembly includes a high-pressure oxygen plug port, a low-pressure oxygen plug port, a gas source switching valve and an oxygen three-way valve, and the gas source switching valve is connected to the high-pressure oxygen plug port and the oxygen three-way valve respectively.
  • the low-pressure oxygen plug interface is connected to switch the conduction between the high-pressure oxygen plug interface and the low-pressure oxygen plug interface
  • the oxygen three-way valve is connected with the gas source switching valve, the electric air component and the
  • the pneumatic air assembly communicates with the air outlet of the air source switching valve to communicate with the electric air assembly or the pneumatic air assembly respectively.
  • the oxygen supply assembly further includes a second pressure sensor and a second decompression valve connected, and both the second pressure sensor and the second decompression valve are connected to the gas source
  • the switching valve is connected, the second pressure sensor is used to detect the oxygen at the gas outlet of the gas source switching valve, and the second pressure reducing valve is used to decompress the oxygen passing through the gas source switching valve;
  • the oxygen supply assembly further includes a connected second flow sensor and a second proportional valve, and the second flow sensor is in communication with the gas source switching valve for monitoring the gas source switching valve
  • the oxygen flow rate at the outlet of the outlet, the second proportional valve is arranged between the gas source switching valve and the oxygen three-way valve to adjust the oxygen flow from the gas source switching valve to the oxygen three-way valve flow.
  • the gas output assembly includes:
  • a third flow sensor in communication with the electrodynamic air assembly and the pneumatic air assembly, respectively, for receiving the mixed gas
  • the air-oxygen mixer communicates with the third flow sensor, and is electrically connected to the oxygen supply component, the electric air component, and the pneumatic air component respectively, and the air-oxygen mixer is used for detecting the oxygen concentration of the mixed gas, and feedback-controlling the oxygen supply component, the electric air component and the pneumatic air component;
  • An inhalation valve the inhalation valve is in communication with the air-oxygen mixer.
  • the gas output assembly further includes a second one-way valve, and the second one-way valve communicates with the air-oxygen mixer and the inhalation valve respectively, so as to guide the The mixed gas flows to the suction valve;
  • the gas output assembly further includes a free breathing valve, the free breathing valve is connected between the air-oxygen mixer and the inhalation valve, and is used for receiving ambient air to flow to the inhalation valve.
  • the air circuit system further includes a connected atomizing three-way valve and a first switch valve, and the atomizing three-way valve is connected to the oxygen supply component and the pneumatic air component respectively.
  • Communication, the first switch valve is used to connect with the nebulizer, so as to atomize the medicine in the nebulizer with the oxygen of the oxygen supply component or the gas of the pneumatic air component;
  • the air circuit system further includes an exhalation valve, a second switch valve and a fourth flow sensor, the exhalation valve is used for the patient to exhale, and the fourth flow sensor is connected to the exhalation valve to For detecting the gas flow rate of the exhalation valve, the second switch valve is respectively communicated with the fourth flow sensor and the gas output assembly, and is used for mixing the gas of the gas output assembly to the The fourth flow sensor is conducted.
  • the present application also proposes a ventilator, the ventilator includes an air circuit system, and the air circuit system includes:
  • An electric air assembly the electric air assembly is connected with the oxygen supply assembly, the electric air assembly includes a turbine, and the turbine is used to inhale external air and pressurize it to mix with the oxygen output by the oxygen supply assembly;
  • a pneumatic air assembly the pneumatic air assembly is connected to the oxygen supply assembly, the pneumatic air assembly includes a connected gas cylinder interface and a first pressure sensor, and the pneumatic air assembly is used to connect the gas cylinder interface
  • the gas is mixed with the oxygen in the oxygen supply assembly, the first pressure sensor is electrically connected to the turbine, and the first pressure sensor is used to detect the gas in the gas cylinder interface and feedback control the turbine;
  • a gas output assembly is respectively connected with the electric air assembly and the pneumatic air assembly for receiving mixed gas and outputting it.
  • the air circuit system of the technical solution of the present application can be applied to a ventilator.
  • the air flow system includes an oxygen supply component, an electric air component and a pneumatic air component respectively communicated with the oxygen supply component, and is used to receive the mixed gas and output it to the patient gas output components.
  • the first pressure sensor of the pneumatic air component detects whether there is gas flowing through the gas cylinder interface.
  • the turbine of the air component works, so that the external air is inhaled by the turbine, pressurized, mixed with the oxygen output by the oxygen supply component, and output to the gas output component, so as to treat the patient.
  • the gas circuit system of this application can choose the corresponding gas circuit scheme according to different environmental factors.
  • electric air components can be selected to work, so as to avoid the need to match bulky gas cylinders during transportation, and realize the in-hospital
  • the seamless connection between transfer and in-hospital treatment provides a solution for medical institutions to transfer and treat critically ill people.
  • the hospital can work with high-pressure gas cylinders and pneumatic air components to avoid long-term turbochargers.
  • the electric air component can be started to work accordingly, so as to ensure the safety of the ventilator when it is used.
  • the ventilator using the gas circuit system is multifunctional, which not only reduces the risk of patients being replaced during the transfer period, but also reduces the purchase and maintenance costs of medical equipment for medical institutions.
  • Fig. 1 is a schematic structural diagram of an embodiment of the gas system of the present application
  • Fig. 2 is a schematic cross-sectional structure diagram of the gas source switching valve of the gas circuit system of the present application
  • Fig. 3 is another cross-sectional structural schematic diagram of the gas source switching valve of the gas circuit system of the present application.
  • connection and “fixation” should be interpreted in a broad sense, for example, “fixation” can be a fixed connection, a detachable connection, or an integral body; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be an internal communication between two elements or an interaction relationship between two elements, unless otherwise clearly defined.
  • fixing can be a fixed connection, a detachable connection, or an integral body; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be an internal communication between two elements or an interaction relationship between two elements, unless otherwise clearly defined.
  • This application proposes an air circuit system 100, which is applied to a ventilator.
  • the air circuit system 100 includes an oxygen supply assembly 10 , an electric air assembly 20 , a pneumatic air assembly 30 and a gas output assembly 40 , the electric air assembly 20 and the oxygen supply assembly 10 Connected, the electric air assembly 20 includes a turbine 21, the turbine 21 is used to inhale outside air and mix it with the oxygen output from the oxygen supply assembly 10 after being pressurized; the pneumatic air assembly 30 is connected with the oxygen supply assembly
  • the pneumatic air assembly 30 includes a connected gas cylinder interface 31 and a first pressure sensor 32, and the pneumatic air assembly 30 is used to connect the gas in the gas cylinder interface 31 with the oxygen supply assembly 10 Oxygen mixing, the first pressure sensor 32 is electrically connected to the turbine 21, the first pressure sensor 32 is used to detect the gas of the gas cylinder interface 31 and feedback control the turbine 21; the gas output
  • the components 40 are respectively connected with the electric air component 20 and the pneumatic air component 30 for receiving and outputting the mixed gas.
  • the oxygen supply assembly 10, the electric air assembly 20, the pneumatic air assembly 30, and the gas output assembly 40 can be connected through gas pipelines for conduction, so as to facilitate the early installation and later maintenance of each component, Avoid mutual interference.
  • the pressure value of the high-pressure gas in this application is higher than 0.25 MPa, and the pressure value of the low-pressure gas is the same as the pressure in atmospheric pressure.
  • the air circuit system 100 of the technical solution of the present application can be applied to a ventilator.
  • the air flow system includes an oxygen supply assembly 10, an electric air assembly 20 and a pneumatic air assembly 30 respectively communicated with the oxygen supply assembly 10, and a gas flow system for receiving the mixed gas. And output to the gas output assembly 40 at the patient.
  • the first pressure sensor 32 of the pneumatic air assembly 30 detects whether gas flows through the gas cylinder interface 31, and when the gas cylinder interface 31 is connected with a high-pressure gas cylinder for gas supply, the pneumatic air assembly 30, the high-pressure air is mixed with the oxygen of the oxygen supply assembly 10 and output to the gas output assembly 40 to treat the patient; , then the first pressure sensor 32 feeds back and controls the turbine 21 of the electric air assembly 20 to work, so that the turbine 21 sucks in the outside air and pressurizes it, mixes it with the oxygen output by the oxygen supply assembly 10, and outputs it to the gas output assembly 40 to treat patients. Therefore, the air circuit system 100 of the present application can select the corresponding air circuit scheme according to different environmental factors.
  • the electric air assembly 20 can be selected to work, so as to avoid the need to match bulky gas cylinders during transportation, and achieve It realizes the seamless connection between in-hospital transfer and in-hospital treatment, and provides a solution for medical institutions to transfer and treat critically ill people.
  • the electric air assembly 20 can be started to work accordingly, so as to ensure the safety of the ventilator.
  • the ventilator applied with the air circuit system 100 has multiple functions, which not only reduces the risks caused by changing the ventilator during the transfer period of the patient, but also reduces the procurement and maintenance costs of medical equipment for medical institutions.
  • the electric air assembly 20 includes an external air interface 22, a first noise reduction chamber 23 and a second noise reduction chamber 24, and the first noise reduction chamber 23 is connected to the The air inlet is connected, the second noise reduction chamber 24 is connected with the first noise reduction chamber 23 through the turbine 21, and the second noise reduction chamber 24 is connected with the oxygen supply assembly 10, the The turbine 21 inhales the outside air through the outside air interface 22, the first noise reduction chamber 23 and the second noise reduction chamber 24 in sequence, and is mixed with the oxygen of the oxygen supply assembly 10 in the second noise reduction chamber. 24 and then output to the gas output assembly 40.
  • the outside air in the external environment will be inhaled by the turbine 21 from the outside air interface 22, and pass through the first noise reduction chamber 23 and the second noise reduction chamber 24 in sequence, thus passing through the front and back of the turbine 21.
  • All are equipped with noise reduction chambers for noise reduction, so as to perform secondary noise reduction on the outside air to reduce the working noise generated when the turbine 21 is working, further improve the noise reduction effect, and improve the comfort of the ventilator during use.
  • the first noise reduction chamber 23 and the second noise reduction chamber 24 can be silenced by providing sound-absorbing structures such as sound-absorbing cotton inside, which can be selected by those skilled in the art according to specific conditions, and will not be elaborated here. .
  • the electric air assembly 20 also includes a first one-way valve 25, the first one-way valve 25 is connected between the second noise reduction chamber 24 and the gas output assembly 40 to guide the The mixed gas flows to the gas output assembly 40; wherein, the first one-way valve 25 is connected between the second noise reduction chamber 24 and the gas output assembly 40, so as to prevent the mixed gas from flowing back to the second air outlet assembly.
  • the safety of the gas system 100 is further improved.
  • the electric air assembly 20 also includes a first flow sensor 26, the first flow sensor 26 is connected to the outside air interface 22 for monitoring the flow of the outside air interface 22; wherein, by The first flow sensor 26 is set to detect the flow of the outside air interface 22 in real time, so that the medical staff can adjust the running speed of the turbine 21 according to the flow of the first flow sensor 26, and then adjust the ratio of the mixed gas to the outside air .
  • the electric air assembly 20 further includes a first filter 27, which is connected between the external air interface 22 and the first noise reduction chamber 23 for filtering passing The external air of the external air interface 22 .
  • a filter can be set between the external air interface 22 and the first noise reduction chamber 23 to filter harmful substances in the external air, thereby preventing the harmful substances in the external air from mixing and flowing to the patient. , to further ensure the safety of treatment.
  • the pneumatic air assembly 30 further includes a first pressure reducing valve 33, and the first pressure reducing valve 33 is electrically connected to the first pressure sensor 32, so
  • the first decompression valve 33 communicates with the gas cylinder interface 31 for decompressing the gas passing through the gas cylinder interface 31; wherein, since the pressure of the therapeutic gas required by different patients is different, by setting The first decompression valve 33 can adjust the gas in the gas cylinder interface 31 to decompress according to the treatment needs of the patient, so as to achieve the gas pressure that meets the treatment needs of the patient and improve the treatment effect.
  • the pneumatic air assembly 30 further includes a first proportional valve 34, the first proportional valve 34 communicates with the gas bottle interface 31 and the oxygen supply assembly 10, and the first proportional valve 34 is used for Adjust the flow rate of the gas passing through the gas cylinder interface 31, and mix it with the oxygen in the oxygen supply assembly 10 and output it to the gas output assembly 40; wherein, since the oxygen concentration of the treatment gas required by different patients is different, in order to To improve the therapeutic effect, when the external high-pressure gas cylinder is connected to the gas cylinder interface 31, in order to adjust the oxygen concentration of the mixed gas, the flow rate of the gas passing through the gas cylinder interface 31 can be adjusted through the first proportional valve 34, so that To control the oxygen concentration of the mixed gas to meet the oxygen concentration required for the treatment of different patients.
  • the pneumatic air assembly 30 further includes a second filter 35 connected to the gas cylinder interface 31 for filtering the gas passing through the gas cylinder interface 31 .
  • the second filter 35 can be installed on the gas cylinder interface 31 to filter the harmful substances in the external gas, so as to prevent the harmful substances in the gas from mixing and flowing to the patient, so as to further ensure the safety of treatment. sex.
  • the oxygen supply assembly 10 includes a high pressure oxygen plug port 11, a low pressure oxygen plug port 12, a gas source switching valve 13 and an oxygen three-way valve 14, the gas source switching valve 13 respectively communicate with the high pressure oxygen plug port 11 and the low pressure oxygen plug port 12 for switching the conduction between the high pressure oxygen plug port 11 and the low pressure oxygen plug port 12, and the oxygen three-way valve 14 communicate with the air source switching valve 13, the electric air assembly 20 and the pneumatic air assembly 30 respectively, so as to connect the air outlet of the air source switching valve 13 to the electric air assembly 20 or the The pneumatic air assembly 30 conducts.
  • the gas source switching valve 13 will automatically switch to the high-pressure oxygen input port, so that the ventilator uses high-pressure oxygen preferentially.
  • the ventilator uses low-pressure oxygen to work when low-pressure oxygen is connected to the gas circuit.
  • the ventilator can be connected to oxygen cylinders of various gas source specifications at the same time, and the corresponding gas path conduction can be selected according to the treatment needs, so as to improve the convenience of using the ventilator and expand the use area of the ventilator.
  • the corresponding opening of the oxygen three-way valve 14 can be opened according to the corresponding air assembly, such as when the turbine 21 works, the oxygen three-way The valve 14 is selected to be switched to open the valve port A and close the valve port B, and the oxygen is directly connected to the second noise reduction chamber 24, mixed with the air and then flows into the subsequent air circuit components. Conversely, when the turbine 21 is not working, the oxygen three-way valve 14 switches the valve port A to close, and the valve port B to open. After the oxygen mixes with the gas in the pneumatic air assembly 30, it flows into the subsequent air circuit components. In this way, the oxygen supply assembly 10 can open the corresponding valve port according to the selection of the electric air assembly 20 and the pneumatic air assembly 30, which is more intelligent.
  • the gas source switching valve 13 includes a valve main body 131 and a valve core 1322 assembly 132, the valve main body 131 is formed with an air passage cavity 131, and the valve main body 131 is opened to communicate with the passage The first airflow passage 131B, the second airflow passage 131C and the air outlet passage 131D of the air chamber 131; the valve core 1322 assembly 132 is movably arranged in the air passage 131, and is connected between the first airflow passage 131B and the air outlet passage 131D; The movement between the second airflow channels 131C is used to block the connection between the first airflow channel 131B and the outlet channel 131D or to block the connection between the second airflow channel 131C and the outlet channel 131D.
  • valve core 1322 assembly 132 can be directly driven by the gas pressure to move back and forth in the valve body 131, so as to selectively block the conduction of the first air flow channel 131B and the air outlet channel 131D or block the second air flow channel 131B.
  • the connection between the two air flow passages 131C and the air outlet passage 131D of course, the valve core 1322 assembly 132 can also be manually or electrically pushed by the user to move back and forth in the valve body 131 .
  • the valve core 1322 assembly 132 can be selectively blocked by sliding relative to the valve body 131, or can be selectively blocked by rotating relative to the valve body 131. situation to choose.
  • the air passage chamber 131 includes a first cavity segment 131a, a second cavity segment 131b and a third cavity segment 131c connected in sequence, and the first air flow channel 131B and the first cavity segment 131a
  • the second airflow channel 131C communicates with the third cavity segment 131c
  • the outlet channel 131D communicates with the second cavity segment 131b
  • the valve core 1322 assembly 132 slides with the valve body 131 connected to slidably block the conduction of the second cavity segment 131b and the third cavity segment 131c or slide to block the conduction of the first cavity segment 131a and the second cavity segment 131b Pass.
  • the first cavity section 131a, the second cavity section 131b and the third cavity section 131c are arranged in a straight line, and the gas outlet channel 131D is connected to the second cavity section 131b, so as to facilitate processing and make the oxygen switching valve
  • the whole body can be arranged relatively compactly, so as to avoid the overall volume of the oxygen switching valve being too large.
  • the pressure will resist the valve core 1322 and the component 132 will move downward.
  • the spool 1322 assembly 132 is pushed toward the direction of the second airflow passage 131C to block the conduction between the second airflow passage 131C and the outlet passage 131D, thereby keeping the first airflow passage 131B in a state of preferential conduction, when the first airflow After the gas in the passage 131B is supplied, the second airflow passage 131C will push the valve core 1322 assembly 132 to push toward the direction of the first airflow passage 131B again, so as to block the connection between the first airflow passage 131B and the outlet passage 131D, and the valve
  • the core 1322 assembly 132 can be arranged in the air chamber 131 in a relatively sliding manner, so as to play the role of sliding sealing.
  • the valve core 1322 assembly 132 is mainly driven by gas pressure
  • the cross-sectional area of the first airflow passage 131B is larger than the cross-sectional area of the second airflow passage 131C, so that the first airflow
  • the gas flow capacity of the channel 131B is relatively large, so as to ensure that the gas pressure will withstand the valve core 1322 and the component 132 moves toward the low-pressure oxygen gas flow channel.
  • valve core 1322 assembly 132 includes an elastic member 1321, a valve core 1322, a first sealing member 1323 and a second sealing member 1324, the elastic member 1321 is arranged in the third cavity segment 131c, and is connected with The valve main body 131 is fixed; the valve core 1322 can reciprocally slide between the first cavity section 131a, the second cavity section 131b and the third cavity section 131c, and is in contact with the elastic
  • the first sealing member 1321 is elastically abutted against;
  • the first sealing member 1323 is sheathed on the valve core 1322, so as to seal the first cavity section 131a and the second cavity section 131b driven by the valve core 1322 to move between the first cavity section 131a and the second cavity section 131b;
  • the second sealing member 1324 is sleeved on the valve core 1322 to Driven by the valve core 1322, it moves between the second cavity section 131b and the third cavity section 131c, so as to block the second cavity section 131b and the third
  • the elastic member 1321 can be a spring, one end of the spring is fixed in the third cavity section 131c of the valve main body 131, and the valve core 1322 is connected to the other end of the spring, and the first sealing member 1323 and the second sealing member 1323
  • the component 1324 can be a sealing washer, so that it can be sleeved on the outer wall of the valve core 1322 .
  • the segment 131a is connected to the second cavity segment 131b, and the second gas flow channel 131C is connected to the gas outlet channel 131D, so that the low pressure oxygen is output from the gas outlet channel 131D.
  • the valve body 131 includes a housing 1311 and a bottom cover 1312, the housing 1311 is provided with a relief port, and the bottom cover 1312 is set on the Relief port, the bottom cover 1312 cooperates with the housing 1311 to form the air passage chamber 131, and the side wall of the housing 1311 is provided with the first air flow channel 131B, the second air flow channel 131C and The air outlet channel 131D.
  • the bottom cover 1312 can be fixed on the casing 1311 by means of screw connection to enclose and form the air chamber 131. This fixing method is relatively simple to install and operate, and is easy to disassemble, so that the valve core 1322 assembly 132 can be assembled first.
  • the bottom cover 1312 is closed to facilitate subsequent maintenance of the spool 1322 assembly 132 .
  • the bottom cover 1312 and the housing 1311 can also be fixed by pin connection, rivet connection and other common connection methods in the field.
  • the oxygen switching valve also includes an auxiliary seal member 133 , the auxiliary sealing member 133 is connected to the side of the valve core 1322 assembly 132 facing the bottom cover 1312 , so as to reciprocate between the second air flow channel 131C and the relief port.
  • an auxiliary sealing member 133 is provided on the side of the valve core 1322 assembly 132 facing the bottom cover 1312, thereby preventing the air flow in the air chamber 131 from flowing out from the direction of the relief port. In order to ensure the stability of the air flow and improve the reliability of the oxygen switching valve.
  • the oxygen switching valve further includes a high-pressure oxygen inlet pipe body 134, a low-pressure oxygen inlet pipe body 135 and an air outlet pipe body 136, and the high-pressure oxygen inlet pipe body 134 Connected to the valve main body 131 and communicated with the first airflow passage 131B; the low-pressure oxygen inlet pipe body 135 is connected to the valve main body 131 and communicated with the second airflow passage 131C; the low-pressure oxygen The air inlet pipe body 135 is connected to the valve body 131 and communicated with the air outlet channel 131D.
  • the high-pressure oxygen inlet pipe body 134, the low-pressure oxygen inlet pipe body 135 and the gas outlet pipe body 136 can be integrated with the valve body 131, so as to ensure the stability and support strength of the overall structure of the oxygen switching valve. And through the high-pressure oxygen inlet pipe body 134, the low-pressure oxygen inlet pipe body 135 and the gas outlet pipe body 136 are located outside the valve body 131 and communicate with the first airflow channel 131B, the second airflow channel 131C and the gas outlet channel 131D respectively, so as to make the oxygen switch
  • the convenience of connecting the valve with other connecting parts improves the efficiency of installation.
  • the high pressure oxygen intake pipe body 134 and the low pressure oxygen intake pipe body 135 are located on the same side of the valve body 131 .
  • the high-pressure oxygen inlet pipe body 134 and the low-pressure oxygen inlet pipe body 135 are located on the same side of the valve body 131, so that when connecting the oxygen cylinder, the medical staff can only operate on one side of the valve body 131, which is convenient operation, improving the efficiency of the oxygen switching valve installation.
  • the orientation of the air inlet of the high-pressure oxygen intake pipe body 134 and the orientation of the air inlet of the low-pressure oxygen intake pipe body 135 are set opposite to each other; it can be understood that when the high-pressure oxygen cylinder and the When the low-pressure oxygen cylinder is used, the pipelines of the two are likely to interfere with each other, so by making the direction of the air inlet of the high-pressure oxygen inlet pipe body 134 and the direction of the air inlet of the low-pressure oxygen inlet pipe body 135 facing away from each other, this avoids installation At this time, the pipeline of the high-pressure oxygen cylinder and the pipeline of the low-pressure oxygen cylinder extend in different directions, thereby avoiding mutual interference between the two, and further improving the stability of the oxygen switching valve.
  • the gas outlet pipe body 136 and the high pressure oxygen inlet pipe body 134 are disposed on opposite sides of the valve main body 131 .
  • the air outlet pipe body 136 and the high pressure oxygen inlet pipe body 134 are respectively arranged on opposite sides of the valve body 131, so that the air inlet direction and the air outlet direction are symmetrical, so that it is easier for medical staff to carry out accurate installation, and there will be no mutual interference during connection. , Improve the usability of the oxygen switching valve.
  • the oxygen supply assembly 10 further includes a second pressure sensor 15 and a second decompression valve 16 connected, and the second pressure sensor 15 and the second The pressure reducing valves 16 are all in communication with the gas source switching valve 13, the second pressure sensor 15 is used to detect the oxygen at the gas outlet of the gas source switching valve 13, and the second pressure reducing valve 16 is used to The oxygen of the gas source switching valve 13 is decompressed; wherein, since the pressure of the oxygen gas required by different patients is different, the second pressure sensor 15 is provided to detect the pressure input through the gas outlet of the gas source switching valve 13. Oxygen pressure, and by setting the second decompression valve 16 so that the oxygen can be adjusted according to the patient's treatment needs for decompression, so as to achieve the oxygen pressure that meets the patient's treatment needs and improve the treatment effect.
  • the oxygen supply assembly 10 further includes a connected second flow sensor 17 and a second proportional valve 18, the second flow sensor 17 is in communication with the gas source switching valve 13 for monitoring the The oxygen flow rate at the outlet of the gas source switching valve 13, the second proportional valve 18 is arranged between the gas source switching valve 13 and the oxygen three-way valve 14 to adjust the flow rate from the gas source switching valve 13 Oxygen flow to the oxygen three-way valve 14.
  • the flow value of oxygen can be detected in real time by setting the second flow sensor 17, and the flow of oxygen can be adjusted by the second proportional valve 18, so that This is to control the oxygen concentration of the mixed gas to meet the oxygen concentration required by different patients for treatment.
  • the gas output assembly 40 includes a third flow sensor 41 , an air-oxygen mixer 42 and an inhalation valve 43 , and the third flow sensor 41 is connected to the electric air flow sensor respectively.
  • the component 20 communicates with the pneumatic air component 30 for receiving the mixed gas;
  • the air-oxygen mixer 42 communicates with the third flow sensor 41, and is connected with the oxygen supply component 10, the
  • the electric air component 20 and the pneumatic air component 30 are electrically connected, the air-oxygen mixer 42 is used to detect the oxygen concentration of the mixed gas, and feedback control the oxygen supply component 10, the electric air
  • the suction valve 43 communicates with the air-oxygen mixer 42 .
  • the third flow sensor 41 is used for real-time detection of the mixed gas flow rate
  • the air-oxygen mixer 42 is used for detection of the oxygen concentration of the mixed gas, so that the medical personnel can know in real time the flow rate of the gas used for patient treatment.
  • the flow rate and oxygen concentration of the gas so that the medical personnel can adjust and control the flow rate and flow rate of the oxygen supply component 10, the electric air component 20 and the pneumatic air component 30 respectively according to these two values, so as to adjust the flow rate and the flow rate of the mixed gas Oxygen concentration to meet the treatment needs of the patient during treatment, and enter the patient's lungs through the inspiratory valve 43 to complete the inspiratory phase.
  • the gas output assembly 40 also includes a second one-way valve 44, and the second one-way valve 44 communicates with the air-oxygen mixer 42 and the suction valve 43 respectively, so as to guide the The mixed gas flows to the inhalation valve 43; wherein, in order to avoid the backflow of the mixed gas, a second one-way valve 44 is set between the air-oxygen mixer 42 and the inhalation valve 43, so as to prevent the mixed gas
  • the gas flows back into the oxygen supply assembly 10 , the electric air assembly 20 and the pneumatic air assembly 30 , further improving the safety of the air circuit system 100 .
  • the gas output assembly 40 further includes a free breathing valve 45, the free breathing valve 45 is connected between the air-oxygen mixer 42 and the suction valve 43, and is used to receive the outside air flowing to the Said suction valve 43.
  • the free breathing valve 45 is a one-way valve, and the air inlet is connected to the atmosphere.
  • the air circuit system 100 further includes an atomizing three-way valve 50 and a first on-off valve 60 connected to each other.
  • the atomizing three-way valve 50 is connected to the supply
  • the oxygen component 10 communicates with the pneumatic air component 30, and the first switch valve 60 is used to connect with the nebulizer, so that the oxygen of the oxygen supply component 10 or the gas of the pneumatic air component 30 can be used for atomizing
  • the medicine in the nebulizer is atomized; wherein, since the patient needs to use additional medicine to be atomized for treatment in the process of using the ventilator, by setting the connected atomizing three-way valve 50 and the first switch valve 60, the atomization three-way valve 50 can be an electromagnetic three-way valve, and the first switch valve 60 is used to connect with the atomizer, so that the operator can set which gas (oxygen/air) to use as the atomization gas, The atomizing three-way valve 50 will selectively switch the gas into the first switch valve
  • the atomizing three-way valve 50 can also select a certain gas (oxygen/air) as the atomizing gas by default according to the setting, so that the valve leading to the gas of this path remains normally open.
  • the first switching valve 60 is opened or closed according to the instructions of the machine to realize the opening or closing of the atomization, so that the air circuit system 100 has the atomization function and improves the usability of the ventilator.
  • the air circuit system 100 further includes an exhalation valve 70, a second on-off valve 80 and a fourth flow sensor 90, the exhalation valve 70 is used for the patient to exhale, the fourth flow sensor 90 is connected with the The exhalation valve 70 is connected to detect the gas flow of the exhalation valve 70, and the second on-off valve 80 is respectively communicated with the fourth flow sensor 90 and the gas output assembly 40 for connecting the The mixed gas of the gas output assembly 40 conducts to the fourth flow sensor 90 .
  • a fourth flow sensor 90 when exhaling, the gas in the patient's lungs is discharged into the atmosphere through the exhalation valve 70 to maintain the breathing cycle, and in order to detect the gas flow rate when the patient exhales, a fourth flow sensor 90 will be set at the same time for detection , and because there is water vapor in the gas when the patient exhales, in order to ensure the accuracy of monitoring, at the same time, by connecting the second switch valve 80 to the gas output assembly 40 and the fourth flow sensor 90, the ventilator will control the second switch according to the set frequency
  • the valve 80 is opened and then closed at regular intervals, so that the airflow of the gas output assembly 40 enters the fourth flow sensor 90 and blows out the water in the fourth flow sensor 90 to ensure the accuracy of the value measured by the fourth flow sensor 90 .
  • the present application also proposes a ventilator, which includes an air circuit system 100.
  • a ventilator which includes an air circuit system 100.
  • the air circuit system 100 For the specific structure of the air circuit system 100, refer to the above-mentioned embodiments. Since this ventilator adopts all the technical solutions of all the above-mentioned embodiments, it has at least the above-mentioned All the beneficial effects brought by the technical solutions of the embodiments will not be repeated here.

Landscapes

  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)

Abstract

一种气路***(100)和呼吸机,气路***(100)包括:电动空气组件(20)与供氧组件(10)连接,电动空气组件(20)包括涡轮(21)以用于吸入外界空气并进行加压后与供氧组件(10)输出的氧气混合;气动空气组件(30)与供氧组件(10)连接,气动空气组件(30)用于将气瓶接口(31)的气体与供氧组件(10)的氧气混合,第一压力传感器(32)与涡轮(21)电性连接,第一压力传感器(32)用于检测气瓶接口(31)的气体并反馈控制涡轮(21);气体输出组件(40)分别与电动空气组件(20)和气动空气组件(30)连接,以用于接收混合后的气体并输出。

Description

气路***和呼吸机 技术领域
本申请涉及呼吸机技术领域,特别涉及一种气路***和应用该气路***的呼吸机。
背景技术
当前市场中的转运治疗呼吸机主要包括气动电控呼吸机和电动电控呼吸机,气动电控呼吸机需要高压气源驱动才能工作,在医院的院内转运过程中需要配备较为笨重的气瓶进行供气,导致降低了转运的灵便性。而电动电控型呼吸机则需要搭配涡轮进行供气,虽然能解决医院的院内转运气源输入问题,但是在院内长时间治疗方面,功能不稳定且工作噪声大,同时涡轮长时间工作,会增加涡轮的老化和降低机器的灵敏度而导致存在治疗风险等缺点。因此现有的呼吸机的功能较为单一,无法满足医疗机构提高对危重症病人的转运与治疗需求。
上述内容仅用于辅助理解本申请的技术方案,并不代表承认上述内容是现有技术。
申请内容
本申请的主要目的是提供一种气路***,旨在提供一种可以为医疗机构对危重症病人的转运与治疗提供解决方案的气路***,同时降低呼吸机长时间工作的风险,且降低医疗机构对医疗设备的采购和维护成本。
为实现上述目的,本申请提出的气路***,所述气路***包括:
供氧组件;
电动空气组件,所述电动空气组件与所述供氧组件连接,所述电动空气组件包括涡轮,所述涡轮以用于吸入外界空气并进行加压后与所述供氧组件输出的氧气混合;
气动空气组件,所述气动空气组件与所述供氧组件连接,所述气动空气组件包括相连接的气瓶接口和第一压力传感器,所述气动空气组件以用于将所述气瓶接口的气体与所述供氧组件的氧气混合,所述第一压力传感器与所述涡轮电性连接,所述第一压力传感器用于检测所述气瓶接口的气体并反馈控制所述涡轮;以及
气体输出组件,所述气体输出组件分别与所述电动空气组件和所述气动空气组件连接,以用于接收混合后的气体并输出。
在本申请的一实施例中,所述电动空气组件包括外界空气接口、第一降噪室以及第二降噪室,所述第一降噪室与所述空气进气口连通,所述第二降噪室与所述第一降噪室通过所述涡轮连接,且所述第二降噪室与所述供氧组件连接,所述涡轮吸入所述外界空气依次经过所述外界空气接口、第一降噪室以及所述第二降噪室,并与所述供氧组件的氧气在所述第二降噪室内混合后输出至所述气体输出组件。
在本申请的一实施例中,所述电动空气组件还包括第一单向阀,所述第一单向阀连接于所述第二降噪室和所述气体输出组件之间,以导向所述混合后的气体流向所述气体输出组件;
和/或,所述电动空气组件还包括第一流量传感器,所述第一流量传感器与所述外界空气接口连接,以用于监测所述外界空气接口的流量;
和/或,所述电动空气组件还包括第一过滤器,所述第一过滤器连接于所述外界空气接口和所述第一降噪室之间,以用于过滤经过所述外界空气接口的外界空气。
在本申请的一实施例中,所述气动空气组件还包括第一减压阀,所述第一减压阀与所述第一压力传感器电性连接,所述第一减压阀与所述气瓶接口连通,以用于对经过所述气瓶接口的气体进行减压;
和/或,所述气动空气组件还包括第一比例阀,所述第一比例阀与所述气瓶接口和所述供氧组件连通,所述第一比例阀用于调节经过所述气瓶接口的 气体的流量,并与所述供氧组件的氧气混合后输出至所述气体输出组件;
和/或,所述气动空气组件还包括第二过滤器,所述第二过滤器连接于所述气瓶接口,以用于过滤经过所述气瓶接口的气体。
在本申请的一实施例中,所述供氧组件包括高压氧插接口,低压氧插接口,气源切换阀以及氧气三通阀,所述气源切换阀分别与所述高压氧插接口和所述低压氧插接口连通,以用于切换所述高压氧插接口和所述低压氧插接口的导通,所述氧气三通阀分别与所述气源切换阀、所述电动空气组件以及所述气动空气组件连通,以用于将所述气源切换阀的出气口分别与所述电动空气组件或所述气动空气组件导通。
在本申请的一实施例中,所述供氧组件还包括相连接的第二压力传感器和第二减压阀,所述第二压力传感器和所述第二减压阀均与所述气源切换阀连通,所述第二压力传感器用于检测所述气源切换阀的出气口的氧气,所述第二减压阀用于对经过所述气源切换阀的氧气进行减压;
和/或,所述供氧组件还包括相连接的第二流量传感器和第二比例阀,所述第二流量传感器均与所述气源切换阀连通,以用于监测所述气源切换阀的出口的氧气流量,所述第二比例阀设置于所述气源切换阀和所述氧气三通阀之间,以用于调节从所述气源切换阀流向所述氧气三通阀的氧气流量。
在本申请的一实施例中,所述气体输出组件包括:
第三流量传感器,所述第三流量传感器分别与所述电动空气组件和所述气动空气组件连通,以用于接收所述混合后的气体;
空氧混合器,所述空氧混合器与所述第三流量传感器连通,并分别与所述供氧组件、所述电动空气组件以及所述气动空气组件电性连接,所述空氧混合器用于检测所述混合后的气体的氧浓度,并反馈控制所述供氧组件、所述电动空气组件以及所述气动空气组件;以及
吸气阀,所述吸气阀与所述空氧混合器连通。
在本申请的一实施例中,所述气体输出组件还包括第二单向阀,所述第二单向阀分别与所述空氧混合器和所述吸气阀连通,以用于导向所述混合后的气体流向所述吸气阀;
和/或,所述气体输出组件还包括自由呼吸阀,所述自由呼吸阀连接于所述空氧混合器和所述吸气阀之间,以用于接收外界空气流向所述吸气阀。
在本申请的一实施例中,所述气路***还包括相连接的雾化三通阀和第一开关阀,所述雾化三通阀分别与所述供氧组件和所述气动空气组件连通,所述第一开关阀用于与雾化器连接,以用于将所述供氧组件的氧气或所述气动空气组件的气体对雾化器内的药物进行雾化;
和/或,气路***还包括呼气阀、第二开关阀以及第四流量传感器,所述呼气阀用于供病人进行呼气,所述第四流量传感器与所述呼气阀连接以用于检测所述呼气阀的气体流量,所述第二开关阀分别与所述第四流量传感器和所述气体输出组件连通,以用于将所述气体输出组件的混合后的气体对所述第四流量传感器进行导通。
本申请还提出一种呼吸机,所述呼吸机包括气路***,所述气路***包括:
供氧组件;
电动空气组件,所述电动空气组件与所述供氧组件连接,所述电动空气组件包括涡轮,所述涡轮以用于吸入外界空气并进行加压后与所述供氧组件输出的氧气混合;
气动空气组件,所述气动空气组件与所述供氧组件连接,所述气动空气组件包括相连接的气瓶接口和第一压力传感器,所述气动空气组件以用于将所述气瓶接口的气体与所述供氧组件的氧气混合,所述第一压力传感器与所述涡轮电性连接,所述第一压力传感器用于检测所述气瓶接口的气体并反馈控制所述涡轮;以及
气体输出组件,所述气体输出组件分别与所述电动空气组件和所述气动空气组件连接,以用于接收混合后的气体并输出。
本申请技术方案气路***可应用于呼吸机,该气流***包括供氧组件,分别与供氧组件连通的电动空气组件和气动空气组件,以及用于接收到混合后的气体并输出至病人处的气体输出组件。如此当气路***工作时,该气动空气组件的第一压力传感器检测气瓶接口是否具有气体流过,当气瓶接口连接有高压气瓶进行供气时,该气动空气组件则将该高压空气与供氧组件的氧气混合并输出至气体输出组件处,以对病人进行治疗;而当气瓶接口没有连接高压气瓶或者高压气瓶的气体用尽时,则该第一压力传感器反馈控制电动空气组件的涡轮进行工作,以由涡轮吸入外界空气并进行加压后与所供氧组件输出的氧气混合并输出至气体输出组件处,以对病人进行治疗。
因此本申请的气路***可根据不同的环境因素选择相应的气路方案,在需要转运与治疗时,可以选择由电动空气组件进行工作,以避免运输时需要搭配笨重的气瓶,实现了院内转运与院内治疗的无缝对接,为医疗机构对危重症别人的转运与治疗提供解决方案,而在院内长时间治疗时,则可以通过搭配高压气瓶与气动空气组件进行工作,以避免涡轮长时间工作而存在安全隐患的问题,同时当高压气瓶用完时可以相应启动电动空气组件进行工作,以保证呼吸机使用时的安全性。进而应用该气路***的呼吸机具有多功能性,不仅降低病人在转运期间因换机而带来的风险,且降低医疗机构对医疗设备的采购和维护成本。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请气路***一实施例的结构示意图;
图2为本申请气路***的气源切换阀的剖视结构示意图;
图3为本申请气路***的气源切换阀的另一剖视结构示意图。
附图标号说明:
标号 名称 标号 名称
100 气路*** 17 第二流量传感器
10 供氧组件 18 第二比例阀
11 高压氧插接口 20 电动空气组件
12 低压氧插接口 21 涡轮
13 气源切换阀 22 外界空气接口
131 阀主体 23 第一降噪室
1311 壳体 24 第二降噪室
131A 过气腔 25 第一单向阀
131a 第一腔体段 26 第一流量传感器
131b 第二腔体段 27 第一过滤器
131c 第三腔体段 30 气动空气组件
131B 第一气流通道 31 气瓶接口
131C 第二气流通道 32 第一压力传感器
131D 出气通道 33 第一减压阀
1312 底盖 34 第一比例阀
132 阀芯组件 35 第二过滤器
1321 弹性件 40 气体输出组件
1322 阀芯 41 第三流量传感器
1323 第一密封构件 42 空氧混合器
1324 第二密封构件 43 吸气阀
133 辅助密封构件 44 第二单向阀
134 高压氧进气管体 45 自由呼吸阀
135 低压氧进气管体 50 雾化三通阀
136 出气管体 60 第一开关阀
14 氧气三通阀 70 呼气阀
15 第二压力传感器 80 第二开关阀
16 第二减压阀 90 第四流量传感器
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
在本申请中,除非另有明确的规定和限定,术语“连接”、“固定”等应做广义理解,例如,“固定”可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
另外,在本申请中如涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,全文中出现的“和/或”的含义为,包括三个并列的方案,以“A和/或B为例”,包括A方案,或B方案,或A和B同时满足的方案。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
本申请提出一种气路***100,应用于呼吸机。
参照图1,在本申请实施例中,该气路***100包括供氧组件10、电动空气组件20、气动空气组件30以及气体输出组件40,所述电动空气组件20与所述供氧组件10连接,所述电动空气组件20包括涡轮21,所述涡轮21以用于吸入外界空气并进行加压后与所述供氧组件10输出的氧气混合;所述气动空气组件30与所述供氧组件10连接,所述气动空气组件30包括相连接的气瓶接口31和第一压力传感器32,所述气动空气组件30以用于将所述气瓶接口31的气体与所述供氧组件10的氧气混合,所述第一压力传感器32与所述涡轮21电性连接,所述第一压力传感器32用于检测所述气瓶接口31的气体并反馈控制所述涡轮21;所述气体输出组件40分别与所述电动空气组件20和所述气动空气组件30连接,以用于接收混合后的气体并输出。
可以理解的是,供氧组件10、电动空气组件20、气动空气组件30以及气体输出组件40之间可以通过气体管路进行连接以进行导通,如此以便于各个部件的前期安装和后期维修,避免互相干涉。需要说明的是,本申请中的高压气体的压力值高于0.25MPa,而低压气体的压力值与大气压中压强相同。
本申请技术方案气路***100可应用于呼吸机,该气流***包括供氧组件10,分别与供氧组件10连通的电动空气组件20和气动空气组件30,以及用于接收到混合后的气体并输出至病人处的气体输出组件40。如此当气路***100工作时,该气动空气组件30的第一压力传感器32检测气瓶接口31是否具有气体流过,当气瓶接口31连接有高压气瓶进行供气时,该气动空气组件30则将该高压空气与所述供氧组件10的氧气混合并输出至气体输出组件40处,以对病人进行治疗;而当气瓶接口31没有连接高压气瓶或者高压气瓶的气体用尽时,则该第一压力传感器32反馈控制电动空气组件20的涡轮21进行工作,以由涡轮21吸入外界空气并进行加压后与所供氧组件10输出的氧气混合并输出至气体输出组件40处,以对病人进行治疗。因此本申请的气路***100可根据不同的环境因素选择相应的气路方案,在需要转运与治疗时,可以选择由电动空气组件20进行工作,以避免运输时需要搭配笨重的气瓶,实现了院内转运与院内治疗的无缝对接,为医疗机构对危重症别人的转运与治疗提供解决方案,而在院内长时间治疗时,则可以通过搭配高压气瓶与气动空气组件30进行工作,以避免涡轮21长时间工作而存在安全隐患的 问题,同时当高压气瓶用完时可以相应启动电动空气组件20进行工作,以保证呼吸机使用时的安全性。进而应用该气路***100的呼吸机具有多功能性,不仅降低病人在转运期间因换机而带来的风险,且降低医疗机构对医疗设备的采购和维护成本。
参照图1,在本申请的一实施例中,所述电动空气组件20包括外界空气接口22、第一降噪室23以及第二降噪室24,所述第一降噪室23与所述空气进气口连通,所述第二降噪室24与所述第一降噪室23通过所述涡轮21连接,且所述第二降噪室24与所述供氧组件10连接,所述涡轮21吸入所述外界空气依次经过所述外界空气接口22、第一降噪室23以及所述第二降噪室24,并与所述供氧组件10的氧气在所述第二降噪室24内混合后输出至所述气体输出组件40。其中,当该涡轮21启动时,外界环境中的外界空气会被涡轮21从外界空气接口22中吸入,并依次经过第一降噪室23和第二降噪室24,如此通过在涡轮21前后均设置有降噪室进行降噪,从而以对外界空气进行二级降噪,以减少涡轮21工作时产生的工作噪音,进一步提高降噪效果,以提高呼吸机使用时的舒适性。可以理解的是,该第一降噪室23和第二降噪室24可以通过在内部设有消音棉等消音结构进行消音,具体可由本领域技术人员根据具体情况进行选择,在此不再阐述。
进一步地,所述电动空气组件20还包括第一单向阀25,所述第一单向阀25连接于所述第二降噪室24和所述气体输出组件40之间,以导向所述混合后的气体流向所述气体输出组件40;其中,通过设置第一单向阀25连接于第二降噪室24和气体输出组件40之间,如此以防止混合后的气体回流至第二降噪室24内,进一步地提高气路***100使用的安全性。
可选地,所述电动空气组件20还包括第一流量传感器26,所述第一流量传感器26与所述外界空气接口22连接,以用于监测所述外界空气接口22的流量;其中,通过设置第一流量传感器26以用于实时检测外界空气接口22的流量,如此以使得医护人员可以根据第一流量传感器26的流量调节涡轮21的运行速度,进而调节混合后的气体的外界空气的比例。
可选地,所述电动空气组件20还包括第一过滤器27,所述第一过滤器27连接于所述外界空气接口22和所述第一降噪室23之间,以用于过滤经过 所述外界空气接口22的外界空气。其中,为了提高使用的安全性,可以通过在外界空气接口22和第一降噪室23之间设置过滤器,以过滤外界空气中的有害物质,进而避免外界空气中的有害物质混合后流向病人,以进一步保证治疗的安全性。
在本申请的一实施例中,结合参照图1,所述气动空气组件30还包括第一减压阀33,所述第一减压阀33与所述第一压力传感器32电性连接,所述第一减压阀33与所述气瓶接口31连通,以用于对经过所述气瓶接口31的气体进行减压;其中,由于不同病人所需要的治疗气体的压强不同,所以通过设置第一减压阀33可以根据病人的治疗需求调节气瓶接口31的气体进行减压,以达到满足病人治疗需求的气体压强,提高治疗的效果。
可选地,所述气动空气组件30还包括第一比例阀34,所述第一比例阀34与所述气瓶接口31和所述供氧组件10连通,所述第一比例阀34用于调节经过所述气瓶接口31的气体的流量,并与所述供氧组件10的氧气混合后输出至所述气体输出组件40;其中,由于不同病人所需要的治疗气体的氧气浓度不同,为了提高治疗效果,当该外接高压气瓶于气瓶接口31时,为了调节混合后的气体的氧气浓度,如此可以通过第一比例阀34调节经过所述气瓶接口31的气体的流量,以此来控制混合后的气体的氧气浓度,以满足不同病人治疗时所需要的氧气浓度。
可选地,所述气动空气组件30还包括第二过滤器35,所述第二过滤器35连接于所述气瓶接口31,以用于过滤经过所述气瓶接口31的气体。其中,为了提高使用的安全性,可以通过在气瓶接口31设置第二过滤器35,以过滤外接气体中的有害物质,进而避免气体中的有害物质混合后流向病人,以进一步保证治疗的安全性。
参照图1,在本申请的一实施例中,所述供氧组件10包括高压氧插接口11,低压氧插接口12,气源切换阀13以及氧气三通阀14,所述气源切换阀13分别与所述高压氧插接口11和所述低压氧插接口12连通,以用于切换所述高压氧插接口11和所述低压氧插接口12的导通,所述氧气三通阀14分别与所述气源切换阀13、所述电动空气组件20以及所述气动空气组件30连通,以用于将所述气源切换阀13的出气口分别与所述电动空气组件20或所述气 动空气组件30导通。其中,由于不同的氧气浓度对治疗效果不同,在使用时当高压氧气和低压氧气同时接入时,气源切换阀13会自动切换到高压氧气输入端,以使呼吸机优先使用高压氧气。反之当高压氧气未接入气路,低压氧气接入气路呼吸机则使用低压氧气进行工作。进而使得呼吸机可以同时连接多种气源规格的氧气气瓶,并根据治疗需求选择相应的气路导通,提高呼吸机使用的便捷性,拓展呼吸机的使用区域。而通过设置氧气三通阀14分别与电动空气组件20以及气动空气组件30连通,如此以可以根据相应的空气组件而打开氧气三通阀14相应的开口,如当涡轮21工作时,氧气三通阀14选择切换到阀口A打开,阀口B关闭,氧气直接接入第二降噪室24,与空气混合后经过流入后续气路部件。反之当涡轮21不工作,氧气三通阀14切换阀口A关闭,阀口B打开,氧气与气动空气组件30内的气体混合后,流入后续气路部件。如此以使得供氧组件10可以根据电动空气组件20和气动空气组件30的选择而打开相应的阀口,更加智能化。
此外,结合图2和图3,该气源切换阀13包括阀主体131和阀芯1322组件132,所述阀主体131内形成有过气腔131,所述阀主体131开设有连通所述过气腔131的第一气流通道131B、第二气流通道131C以及出气通道131D;所述阀芯1322组件132活动设于所述过气腔131内,并于所述第一气流通道131B和所述第二气流通道131C之间移动,以用于封堵所述第一气流通道131B和所述出气通道131D的导通或者封堵所述第二气流通道131C和所述出气通道131D的导通。可以理解的是,该阀芯1322组件132即可以直接通过气体压力流动以推动在阀主体131内来回运动,以达到选择性封堵第一气流通道131B和出气通道131D的导通或者封堵第二气流通道131C和出气通道131D的导通,当然该阀芯1322组件132也可以通过用户手动推动或者电动推动在阀主体131内来回运动。此外,该阀芯1322组件132既可以通过相对于阀主体131滑动的方式进行选择性封堵,也可以通过相对于阀主体131转动的方式进行选择性封堵,具体可由本领域技术人员根据具体情况进行选择。
进一步地,所述过气腔131包括依次连接的第一腔体段131a、第二腔体段131b以及第三腔体段131c,所述第一气流通道131B与所述第一腔体段131a连通,所述第二气流通道131C与所述第三腔体段131c连通,所述出气通道 131D与所述第二腔体段131b连通,所述阀芯1322组件132与所述阀主体131滑动连接,以可滑动封堵所述第二腔体段131b和所述第三腔体段131c的导通或者滑动封堵所述第一腔体段131a和所述第二腔体段131b的导通。其中,第一腔体段131a、第二腔体段131b以及第三腔体段131c呈直线依次排布,且该出气通道131D连接于第二腔体段131b,以便于加工且使氧气切换阀的整体可以设置较为紧凑,避免氧气切换阀的整体体积过大。同时当高压氧气和低压氧气同时接入气路,压力会顶住阀芯1322组件132向下运动。因此会阀芯1322组件132朝向第二气流通道131C方向推动,以封堵第二气流通道131C和出气通道131D的导通,从而保持第一气流通道131B处于优先导通的状态,当第一气流通道131B内的气体供完后,第二气流通道131C会推动阀芯1322组件132重新朝向第一气流通道131B方向推动,以封堵第一气流通道131B和出气通道131D的导通,而该阀芯1322组件132可以通过相对滑动的方式设置于过气腔131,如此以起到滑动封堵的作用,该安装方式较为方便,提高安装的效率。此外,需要说明的是,当阀芯1322组件132主要由气体压力进行推动时,该第一气流通道131B的通道的横截面积大于第二气流通道131C的横截面积,如此以使得第一气流通道131B的气流容量较大,以便于保证气体压力会顶住阀芯1322组件132向低压氧气气流通道方向运动。
进一步地,所述阀芯1322组件132包括弹性件1321,阀芯1322,第一密封构件1323以及第二密封构件1324,所述弹性件1321设于所述第三腔体段131c内,并与所述阀主体131固定;所述阀芯1322可在所述第一腔体段131a、所述第二腔体段131b以及所述第三腔体段131c之间往复滑动,并与所述弹性件1321弹性抵接;所述第一密封构件1323套设于所述阀芯1322,以在所述阀芯1322的带动下于所述第一腔体段131a和所述第二腔体段131b之间移动,以用于封堵所述第一腔体段131a和所述第二腔体段131b的导通;所述第二密封构件1324套设于所述阀芯1322,以在所述阀芯1322的带动下于所述第二腔体段131b和所述第三腔体段131c之间移动,以用于封堵所述第二腔体段131b和所述第三腔体段131c的导通。其中,该弹性件1321可以为弹簧,该弹簧的一端固定于阀主体131的第三腔体段131c内,而阀芯1322连接于弹簧的另一端,而该第一密封构件1323和第二密封构件1324可以为 密封垫圈,从而可以套设于阀芯1322的外侧壁。
而当氧气切换阀的第一气流通道131B未接入高压氧时,仅在第二气流通道131C接入低压氧时,此时该弹簧为未被压缩的状态时,且在弹簧的作用下顶住阀芯1322,从而该第一密封构件1323封堵第一腔体段131a和第二腔体段131b的导通,进而该第二气流通道131C与出气通道131D连通,以使低压氧从出气通道131D输出;
而当氧气切换阀的第二气流通道131C未接入低压氧时,仅在第一气流通道131B接入高压氧时,此时该弹簧会被高压氧气流所压缩,以使并使阀芯1322朝向第二气流通道131C滑动,从而使第二密封构件1324封堵第二腔体段131b和第三腔体段131c的导通,以使高压氧从出气通道131D输出;
而当高压氧和低压氧分别同时接入氧气切换阀的第一气流通道131B和第二气流通道131C时,由于高压氧的压强较大,如此会先压缩弹簧发生形变,并使阀芯1322朝向第二气流通道131C滑动,从而使第二密封构件1324封堵第二腔体段131b和第三腔体段131c的导通,以使高压氧从出气通道131D输出。而当高压氧供完后,施加于弹簧形变的外力消失,从而弹簧复位且在低压氧气流推动阀芯1322重新朝向第一气流通道131B滑动,以使第一密封构件1323封堵第一腔体段131a和第二腔体段131b的导通,进而该第二气流通道131C与出气通道131D连通,以使低压氧从出气通道131D输出。
结合参照图2和图3,在本申请的一实施例中,阀主体131包括壳体1311和底盖1312,所述壳体1311开设有让位口,所述底盖1312盖设于所述让位口,所述底盖1312与所述壳体1311配合形成所述过气腔131,所述壳体1311的侧壁开设有所述第一气流通道131B、所述第二气流通道131C以及所述出气通道131D。其中,该底盖1312可由通过螺钉连接的方式固定于壳体1311处,以围合形成过气腔131,该固定方式安装操作较为简单,而且易于进行拆卸,以便于阀芯1322组件132可以先从让位口安装于壳体1311内,再盖合底盖1312,方便后续对阀芯1322组件132进行维护保养。当然了,其它实施例中,也可以是销钉连接、铆钉连接等本领域常用的连接方式将底盖1312与壳体1311相固定。
进一步地,所述第一气流通道131B、所述出气通道131D以及所述第二 气流通道131C沿所述壳体1311朝向所述底盖1312的方向依次设置;所述氧气切换阀还包括辅助密封构件133,所述辅助密封构件133连接于所述阀芯1322组件132朝向所述底盖1312的一侧,以在所述第二气流通道131C和所述让位口之间往复移动。其中,为了保证过气腔131的密封性,如此在阀芯1322组件132朝向底盖1312的一侧设置辅助密封构件133,进而可以防止过气腔131内的气流从让位口的方向流出,以保证气流流动的稳定性,提高氧气切换阀使用的可靠性。
在本申请的一实施例中,参照图2和图3,所述氧气切换阀还包括高压氧进气管体134,低压氧进气管体135以及出气管体136,所述高压氧进气管体134与所述阀主体131连接,并与所述第一气流通道131B连通;所述低压氧进气管体135与所述阀主体131连接,并与所述第二气流通道131C连通;所述低压氧进气管体135与所述阀主体131连接,并与所述出气通道131D连通。其中,该高压氧进气管体134,低压氧进气管体135以及出气管体136可以与阀主体131为一体设置,如此以保证氧气切换阀整体结构的稳定性和支撑强度。而通过高压氧进气管体134,低压氧进气管体135以及出气管体136位于阀主体131外并分别与第一气流通道131B、第二气流通道131C和出气通道131D连通,以便于使得氧气切换阀与其他连接部件连接的便利性,提高安装的效率。
进一步地,所述高压氧进气管体134和所述低压氧进气管体135位于所述阀主体131的同一侧。其中该高压氧进气管体134和低压氧进气管体135位于阀主体131的同一侧,如此以便于医护人员在连接氧气气瓶时,可以仅在阀主体131的一侧便可以进行操作,便于操作,提高氧气切换阀安装的效率。
更进一步地,所述高压氧进气管体134的进气口的朝向和所述低压氧进气管体135的进气口的朝向背对设置;可以理解的是,当分别同时连接高压氧气瓶和低压氧气瓶时,两者的管路容易互相干涉,从而通过使高压氧进气管体134的进气口的朝向和低压氧进气管体135的进气口的朝向背对设置,如此以避免安装时以使高压氧气瓶的管路和低压氧气瓶的管路朝向不同的方向延伸,进而避免两者互相干涉,以进一步提高氧气切换阀使用的稳定性。
可选地,所述出气管体136与所述高压氧进气管体134设置于所述阀主体131的相对两侧。其中,该出气管体136与高压氧进气管体134分别设置阀主体131的相对两侧,如此使得进气方向和出气方向对称,以更便于医护人员进行精确安装,且连接时不会相互干涉,提高氧气切换阀的使用性。
在本申请的一实施例中,结合参照图1,所述供氧组件10还包括相连接的第二压力传感器15和第二减压阀16,所述第二压力传感器15和所述第二减压阀16均与所述气源切换阀13连通,所述第二压力传感器15用于检测所述气源切换阀13的出气口的氧气,所述第二减压阀16用于对经过所述气源切换阀13的氧气进行减压;其中,由于不同病人所需要的氧气气体的压强不同,从而通过设置第二压力传感器15以用于检测输入经过气源切换阀13的出气口的氧气的压强,并通过设置第二减压阀16以使得可以根据病人的治疗需求调节氧气进行减压,以达到满足病人治疗需求的氧气压强,提高治疗的效果。
可选地,所述供氧组件10还包括相连接的第二流量传感器17和第二比例阀18,所述第二流量传感器17均与所述气源切换阀13连通,以用于监测所述气源切换阀13的出口的氧气流量,所述第二比例阀18设置于所述气源切换阀13和所述氧气三通阀14之间,以用于调节从所述气源切换阀13流向所述氧气三通阀14的氧气流量。其中,由于不同病人所需要的治疗气体的氧气浓度不同,为了提高治疗效果,通过设置第二流量传感器17可以实时检测氧气的流量数值,并且通过第二比例阀18可以调节氧气的流量,如此以此来控制混合后的气体的氧气浓度,以满足不同病人治疗时所需要的氧气浓度。
参照图1,在本申请的一实施例中,所述气体输出组件40包括第三流量传感器41,空氧混合器42以及吸气阀43,所述第三流量传感器41分别与所述电动空气组件20和所述气动空气组件30连通,以用于接收所述混合后的气体;所述空氧混合器42与所述第三流量传感器41连通,并分别与所述供氧组件10、所述电动空气组件20以及所述气动空气组件30电性连接,所述空氧混合器42用于检测所述混合后的气体的氧浓度,并反馈控制所述供氧组件10、所述电动空气组件20以及所述气动空气组件30;所述吸气阀43与所述空氧混合器42连通。其中,该第三流量传感器41用于实时检测混合后的 气体流量,而该空氧混合器42用于检测所述混合后的气体的氧浓度,如此以使得医护人员可以实时了解用于病人治疗的气体的流量和氧气浓度,从而医护人员可以根据这两个数值分别调节控制供氧组件10、电动空气组件20以及气动空气组件30的流量和流速,以此来调节混合后的气体的流量和氧气浓度,以满足病人治疗时所需要的治疗需求,并通过吸气阀43进入病人肺部,完成吸气相。
进一步地,所述气体输出组件40还包括第二单向阀44,所述第二单向阀44分别与所述空氧混合器42和所述吸气阀43连通,以用于导向所述混合后的气体流向所述吸气阀43;其中,为了避免混合后的气体回流,从而在空氧混合器42和吸气阀43之间设置第二单向阀44,如此以防止混合后的气体回流至供氧组件10、电动空气组件20以及气动空气组件30内,进一步地提高气路***100使用的安全性。
可选地,所述气体输出组件40还包括自由呼吸阀45,所述自由呼吸阀45连接于所述空氧混合器42和所述吸气阀43之间,以用于接收外界空气流向所述吸气阀43。其中,自由呼吸阀45为单向阀,进气端与大气相连。当气路***100出现故障,不能向病人端输送气体或者气路堵塞时,自由呼吸阀45会打开,病人可以吸入大气,以防止病人因窒息而发生生命危险。
在本申请的一实施例中,参照图1,所述气路***100还包括相连接的雾化三通阀50和第一开关阀60,所述雾化三通阀50分别与所述供氧组件10和所述气动空气组件30连通,所述第一开关阀60用于与雾化器连接,以用于将所述供氧组件10的氧气或所述气动空气组件30的气体对雾化器内的药物进行雾化;其中,由于病人在使用呼吸机的过程中存在需要额外使用药物进行雾化进行治疗的需求,从而通过设置相连接的雾化三通阀50和第一开关阀60,该雾化三通阀50可以为电磁三通阀,而该第一开关阀60用于与雾化器连接,从而操作者可以设置使用何种气体(氧气/空气)作为雾化气体,雾化三通阀50会根据设置选择切换将气体接入第一开关阀60。雾化三通阀50也可根据设置选择默认某种气体(氧气/空气)为雾化气体,使通向这路的气体的阀门保持常开。第一开关阀60根据机器的指令,开启或者关闭来实现雾化开启或关闭,如此以使该气路***100具有雾化功能,提高呼吸机的使用性。
可选地,气路***100还包括呼气阀70、第二开关阀80以及第四流量传感器90,所述呼气阀70用于供病人进行呼气,所述第四流量传感器90与所述呼气阀70连接以用于检测所述呼气阀70的气体流量,所述第二开关阀80分别与所述第四流量传感器90和所述气体输出组件40连通,以用于将所述气体输出组件40的混合后的气体对所述第四流量传感器90进行导通。可以理解的是,呼气时病人肺部的气体经过呼气阀70排到大气中,以保持呼吸循环,而为了检测病人呼气时的气体流速,从而会同时设置第四流量传感器90进行检测,而由于病人呼气时的气体存在水汽,为了保证监测的准确性,同时通过将第二开关阀80接入气体输出组件40和第四流量传感器90,呼吸机会根据设置的频率控制第二开关阀80定时打开再关闭,使气体输出组件40的气流进入第四流量传感器90,吹出第四流量传感器90里面的水,以保证第四流量传感器90测出的数值的准确性。
本申请还提出一种呼吸机,该呼吸机包括气路***100,该气路***100的具体结构参照上述实施例,由于本呼吸机采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。
以上所述仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是在本申请的申请构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (10)

  1. 一种气路***,应用于呼吸机,所述气路***包括:
    供氧组件;
    电动空气组件,所述电动空气组件与所述供氧组件连接,所述电动空气组件包括涡轮,所述涡轮以用于吸入外界空气并进行加压后与所述供氧组件输出的氧气混合;
    气动空气组件,所述气动空气组件与所述供氧组件连接,所述气动空气组件包括相连接的气瓶接口和第一压力传感器,所述气动空气组件以用于将所述气瓶接口的气体与所述供氧组件的氧气混合,所述第一压力传感器与所述涡轮电性连接,所述第一压力传感器用于检测所述气瓶接口的气体并反馈控制所述涡轮;以及
    气体输出组件,所述气体输出组件分别与所述电动空气组件和所述气动空气组件连接,以用于接收混合后的气体并输出。
  2. 如权利要求1所述的气路***,其特征在于,所述电动空气组件包括外界空气接口、第一降噪室以及第二降噪室,所述第一降噪室与所述空气进气口连通,所述第二降噪室与所述第一降噪室通过所述涡轮连接,且所述第二降噪室与所述供氧组件连接,所述涡轮吸入所述外界空气依次经过所述外界空气接口、第一降噪室以及所述第二降噪室,并与所述供氧组件的氧气在所述第二降噪室内混合后输出至所述气体输出组件。
  3. 如权利要求2所述的气路***,其特征在于,所述电动空气组件还包括第一单向阀,所述第一单向阀连接于所述第二降噪室和所述气体输出组件之间,以导向所述混合后的气体流向所述气体输出组件;
    和/或,所述电动空气组件还包括第一流量传感器,所述第一流量传感器与所述外界空气接口连接,以用于监测所述外界空气接口的流量;
    和/或,所述电动空气组件还包括第一过滤器,所述第一过滤器连接于所 述外界空气接口和所述第一降噪室之间,以用于过滤经过所述外界空气接口的外界空气。
  4. 如权利要求1所述的气路***,其特征在于,所述气动空气组件还包括第一减压阀,所述第一减压阀与所述第一压力传感器电性连接,所述第一减压阀与所述气瓶接口连通,以用于对经过所述气瓶接口的气体进行减压;
    和/或,所述气动空气组件还包括第一比例阀,所述第一比例阀与所述气瓶接口和所述供氧组件连通,所述第一比例阀用于调节经过所述气瓶接口的气体的流量,并与所述供氧组件的氧气混合后输出至所述气体输出组件;
    和/或,所述气动空气组件还包括第二过滤器,所述第二过滤器连接于所述气瓶接口,以用于过滤经过所述气瓶接口的气体。
  5. 如权利要求1所述的气路***,其特征在于,所述供氧组件包括高压氧插接口,低压氧插接口,气源切换阀以及氧气三通阀,所述气源切换阀分别与所述高压氧插接口和所述低压氧插接口连通,以用于切换所述高压氧插接口和所述低压氧插接口的导通,所述氧气三通阀分别与所述气源切换阀、所述电动空气组件以及所述气动空气组件连通,以用于将所述气源切换阀的出气口分别与所述电动空气组件或所述气动空气组件导通。
  6. 如权利要求5所述的气路***,其特征在于,所述供氧组件还包括相连接的第二压力传感器和第二减压阀,所述第二压力传感器和所述第二减压阀均与所述气源切换阀连通,所述第二压力传感器用于检测所述气源切换阀的出气口的氧气,所述第二减压阀用于对经过所述气源切换阀的氧气进行减压;
    和/或,所述供氧组件还包括相连接的第二流量传感器和第二比例阀,所述第二流量传感器均与所述气源切换阀连通,以用于监测所述气源切换阀的出口的氧气流量,所述第二比例阀设置于所述气源切换阀和所述氧气三通阀之间,以用于调节从所述气源切换阀流向所述氧气三通阀的氧气流量。
  7. 如权利要求1所述的气路***,其特征在于,所述气体输出组件包括:
    第三流量传感器,所述第三流量传感器分别与所述电动空气组件和所述气动空气组件连通,以用于接收所述混合后的气体;
    空氧混合器,所述空氧混合器与所述第三流量传感器连通,并分别与所述供氧组件、所述电动空气组件以及所述气动空气组件电性连接,所述空氧混合器用于检测所述混合后的气体的氧浓度,并反馈控制所述供氧组件、所述电动空气组件以及所述气动空气组件;以及
    吸气阀,所述吸气阀与所述空氧混合器连通。
  8. 如权利要求7所述的气路***,其特征在于,所述气体输出组件还包括第二单向阀,所述第二单向阀分别与所述空氧混合器和所述吸气阀连通,以用于导向所述混合后的气体流向所述吸气阀;
    和/或,所述气体输出组件还包括自由呼吸阀,所述自由呼吸阀连接于所述空氧混合器和所述吸气阀之间,以用于接收外界空气流向所述吸气阀。
  9. 如权利要求1至8任意一项中所述的气路***,其特征在于,所述气路***还包括相连接的雾化三通阀和第一开关阀,所述雾化三通阀分别与所述供氧组件和所述气动空气组件连通,所述第一开关阀用于与雾化器连接,以用于将所述供氧组件的氧气或所述气动空气组件的气体对雾化器内的药物进行雾化;
    和/或,气路***还包括呼气阀、第二开关阀以及第四流量传感器,所述呼气阀用于供病人进行呼气,所述第四流量传感器与所述呼气阀连接以用于检测所述呼气阀的气体流量,所述第二开关阀分别与所述第四流量传感器和所述气体输出组件连通,以用于将所述气体输出组件的混合后的气体对所述第四流量传感器进行导通。
  10. 一种呼吸机,其特征在于,包括如权利要求1至9任意一项所述的气路***。
PCT/CN2022/079281 2021-07-29 2022-03-04 气路***和呼吸机 WO2023005207A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110868535.0 2021-07-29
CN202110868535.0A CN113577477A (zh) 2021-07-29 2021-07-29 气路***和呼吸机

Publications (1)

Publication Number Publication Date
WO2023005207A1 true WO2023005207A1 (zh) 2023-02-02

Family

ID=78252593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079281 WO2023005207A1 (zh) 2021-07-29 2022-03-04 气路***和呼吸机

Country Status (2)

Country Link
CN (1) CN113577477A (zh)
WO (1) WO2023005207A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113577477A (zh) * 2021-07-29 2021-11-02 深圳市安保科技有限公司 气路***和呼吸机
CN113769214A (zh) * 2021-08-23 2021-12-10 河南辉瑞生物医电技术有限公司 一种呼吸机控制***

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5494028A (en) * 1986-11-04 1996-02-27 Bird Products Corporation Medical ventilator
CN202387074U (zh) * 2011-11-28 2012-08-22 李保端 便携式呼吸机
CN104548296A (zh) * 2014-12-31 2015-04-29 深圳市心之星医疗技术有限公司 一种呼吸机气路控制装置
CN106470725A (zh) * 2014-07-04 2017-03-01 欧根·卡根 呼吸装置
CN110464933A (zh) * 2019-07-10 2019-11-19 湖南明康中锦医疗科技发展有限公司 呼吸支持设备气道及安全控制***和控制方法
CN111801129A (zh) * 2017-09-13 2020-10-20 深圳迈瑞生物医疗电子股份有限公司 呼吸机及其供气控制方法
CN113577477A (zh) * 2021-07-29 2021-11-02 深圳市安保科技有限公司 气路***和呼吸机
CN216258620U (zh) * 2021-07-29 2022-04-12 深圳市安保科技有限公司 气路***和呼吸机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5494028A (en) * 1986-11-04 1996-02-27 Bird Products Corporation Medical ventilator
CN202387074U (zh) * 2011-11-28 2012-08-22 李保端 便携式呼吸机
CN106470725A (zh) * 2014-07-04 2017-03-01 欧根·卡根 呼吸装置
CN104548296A (zh) * 2014-12-31 2015-04-29 深圳市心之星医疗技术有限公司 一种呼吸机气路控制装置
CN111801129A (zh) * 2017-09-13 2020-10-20 深圳迈瑞生物医疗电子股份有限公司 呼吸机及其供气控制方法
CN110464933A (zh) * 2019-07-10 2019-11-19 湖南明康中锦医疗科技发展有限公司 呼吸支持设备气道及安全控制***和控制方法
CN113577477A (zh) * 2021-07-29 2021-11-02 深圳市安保科技有限公司 气路***和呼吸机
CN216258620U (zh) * 2021-07-29 2022-04-12 深圳市安保科技有限公司 气路***和呼吸机

Also Published As

Publication number Publication date
CN113577477A (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
WO2023005207A1 (zh) 气路***和呼吸机
EP2037991B1 (en) Ventilator adaptable for use with either a dual-limb or a single-limb circuit
US8960193B2 (en) Mobile medical ventilator
JP4212244B2 (ja) 人工呼吸装置
CN102366647B (zh) 一种带双气源的cpap给氧仪
CN102500021B (zh) 一种先导式控制带智能peep呼吸机气路***
US5848591A (en) Respirator with oxygen enrichment
CN106039607B (zh) 一种数字式呼吸跟随供氧***及其供氧方法
JPH11137689A (ja) ベンチレーター
AU2001246266A1 (en) Rebreathing circuit
NZ595112A (en) A nebuliser with a valve in the outlet port keeping exhaled fluid from the patient from the aerosolising chamber
WO2007102866A2 (en) Ventilator adaptable for use with either a dual-limb or a single-limb circuit
CN104014062A (zh) 吸氧仪
CN102500020A (zh) 一种先导式控制呼吸机气路***
US20160339202A1 (en) Ventilators and ventilator systems
CN111110969A (zh) 一种呼吸机气路控制装置
CN216258620U (zh) 气路***和呼吸机
CN105169539B (zh) 一种急救呼吸机
CN109481804B (zh) 呼吸机
WO2021203189A1 (en) Portable piston icu ventilator
CN109771767B (zh) 一种麻醉机的气动备用流量计控制***
US20140144447A1 (en) Conduit
CN211096766U (zh) 一种医用雾化吸入器
CN211611180U (zh) 一种呼吸机气路控制装置
CN215780723U (zh) 呼吸机构及兽用麻醉呼吸机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22847827

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE