WO2023004996A1 - 电子烟雾化组件、雾化芯的制备方法和电子烟 - Google Patents

电子烟雾化组件、雾化芯的制备方法和电子烟 Download PDF

Info

Publication number
WO2023004996A1
WO2023004996A1 PCT/CN2021/122898 CN2021122898W WO2023004996A1 WO 2023004996 A1 WO2023004996 A1 WO 2023004996A1 CN 2021122898 W CN2021122898 W CN 2021122898W WO 2023004996 A1 WO2023004996 A1 WO 2023004996A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
barrier layer
porous body
atomization
atomizing
Prior art date
Application number
PCT/CN2021/122898
Other languages
English (en)
French (fr)
Inventor
唐建国
金奇斌
周虎
卢音波
Original Assignee
比亚迪精密制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪精密制造有限公司 filed Critical 比亚迪精密制造有限公司
Publication of WO2023004996A1 publication Critical patent/WO2023004996A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps

Definitions

  • the present application relates to the technical field of electronic cigarettes, and more specifically, relates to an atomizing component of an electronic cigarette, a method for preparing an atomizing core, and an electronic cigarette.
  • Electronic cigarettes generally include power components and atomizers. After the power supply component supplies power to the atomizer, the atomizer heats and atomizes the smoke liquid in the electronic cigarette, and the smoke liquid is transformed into mist and then inhaled by the user.
  • the power supply component supplies power to the atomizer
  • the atomizer heats and atomizes the smoke liquid in the electronic cigarette, and the smoke liquid is transformed into mist and then inhaled by the user.
  • users have a feeling similar to "puffing clouds" when smoking.
  • e-cigarettes have been favored by consumers for their convenience in smoking and low harm to the body.
  • the atomizer core usually adopts porous material to absorb e-liquid.
  • Porous materials have the properties of absorbing and conducting liquids. But this design may also cause smoke oil leakage. After the e-liquid is soaked in the porous material, it may accumulate on the surface and edges of the porous material, and then the liquid droplets will drop in the case of the electronic cigarette under the condition of vibration and airflow, and even drop on the airflow channel. This phenomenon will cause the e-liquid to leak from the gap of the electronic cigarette shell, the air inlet and other positions, which will seriously affect the user experience.
  • the microporous structure of the porous body is difficult to control during the processing process, and it is prone to situations where the micropore size does not meet the actual application requirements, which in turn causes the flow of e-liquid to be too fast or too slow. This phenomenon will affect the taste of atomized smoke.
  • One purpose of the present application is to provide a new technical solution for an electronic atomization component.
  • Another object of the present application is to provide a method for preparing an atomizing core of an electronic cigarette atomizing component.
  • Another object of the present application is to provide an electronic cigarette.
  • an electronic cigarette assembly including: a housing, the housing has a liquid storage chamber and an atomization chamber, and an air outlet channel communicating with the outside atmosphere is provided on the housing, The atomization chamber communicates with the air outlet channel; the atomization core, the atomization core is arranged in the housing, the atomization core includes a porous body and a heating element, the porous body has a liquid absorption surface, a mist The liquid-absorbing surface and the outer peripheral surface connecting the liquid-absorbing surface and the atomizing surface, the liquid-absorbing surface communicates with the liquid storage chamber, the atomizing surface communicates with the atomizing chamber, and the heating element is arranged on the The atomization surface; at least part of the outer surface of the porous body is provided with a barrier layer, the barrier material in the barrier layer fills at least part of the micropores on the outer surface of the porous body, and the thickness of the barrier layer is less than 0.1mm , and the thickness of the barrier layer is
  • the barrier layer has a thickness ranging from 0.05 ⁇ m to 90 ⁇ m.
  • the barrier layer has a thickness ranging from 0.3 ⁇ m to 50 ⁇ m.
  • the barrier layer has a thickness ranging from 0.4 ⁇ m to 30 ⁇ m.
  • the barrier layer has a thickness ranging from 0.1 ⁇ m to 1 ⁇ m.
  • the barrier layer is provided on at least a part of the peripheral surface of the porous body, and the barrier layer is provided on the peripheral surface of the porous body as a barrier region.
  • the barrier layer covers the entire outer peripheral surface.
  • the outer peripheral surface includes an upper side, a lower side and a stepped surface, the edge of the upper side is in contact with the liquid absorption surface, and the edge of the lower side is in contact with the atomization surface , the upper side and the lower side form the stepped surface, the stepped surface is opposite to the liquid-absorbing surface; the barrier layer is provided on the stepped surface.
  • the barrier layer is provided on the edge of the liquid-absorbing surface, and the region where the barrier layer is provided on the edge of the liquid-absorbing surface is a barrier region.
  • the barrier layer is provided on the edge of the atomization surface, and the area on the edge of the atomization surface provided with the barrier layer is a barrier region.
  • the barrier layer is provided on the area surrounding the heating element on the atomizing surface, and the area on the atomizing surface surrounding the heating element is a barrier area.
  • the porous body is provided with a ventilation channel, one end of the ventilation channel communicates with the liquid storage chamber, the other end of the ventilation channel communicates with the atomization chamber, and the ventilation channel communicates with the liquid storage chamber.
  • the air channel allows outside air to enter the liquid storage chamber and prevents the liquid in the liquid storage chamber from flowing out; the inner wall of the air exchange channel is provided with the barrier layer.
  • the ventilation channel is a through hole penetrating through the porous body along the extending direction from the liquid absorbing surface to the atomizing surface.
  • the ventilation channel is a groove provided on the outer peripheral surface, and the groove penetrates through the porous body along an extending direction from the atomizing surface to the liquid absorbing surface.
  • the number of the ventilation channels is one or more, and a plurality of the ventilation channels are arranged at intervals on the outer peripheral surface of the porous body.
  • the average pore diameter of the micropores in the barrier area is 2 ⁇ m-60 ⁇ m.
  • the average pore diameter of the micropores in the barrier area is 2 ⁇ m-30 ⁇ m.
  • the average pore diameter of the micropores in the barrier area is 3 ⁇ m-20 ⁇ m.
  • the number of micropores per unit area of the barrier region is 20-300/mm 2 .
  • the number of micropores per unit area of the barrier region is 20-100/mm 2 .
  • the number of micropores per unit area of the barrier region is 30-60/mm 2 .
  • the porosity of the porous body ranges from 40% to 60%; or, the porosity of the porous body is greater than 60%.
  • the barrier layer is provided on the liquid-absorbing surface as a whole, and after the barrier layer is provided on the liquid-absorbing surface, the porosity of the liquid-absorbing surface is less than or equal to 55%.
  • the average pore diameter of the micropores on the liquid-absorbing surface ranges from 40 ⁇ m to 60 ⁇ m.
  • the barrier layer is provided on the atomization surface as a whole, and after the barrier layer is provided on the atomization surface, the porosity of the atomization surface is less than or equal to 55%.
  • the average pore diameter of the micropores on the atomization surface ranges from 40 ⁇ m to 60 ⁇ m.
  • the barrier layer is a vapor deposition layer, a coating layer or a printing layer.
  • the barrier layer is a physical vapor deposition layer.
  • the barrier layer is a silicon dioxide layer, an aluminum oxide layer, a silicon layer or an aluminum layer.
  • the barrier material in the barrier layer is one or more of alumina, silicon dioxide, aluminum, silicon, borosilicate or nanosilicate.
  • the barrier material in the barrier layer is one of silicon dioxide, aluminum oxide, silicon or aluminum.
  • the electronic atomization assembly further includes an atomization core seal, the atomization core seal is sleeved on the porous body, and the atomization core seal covers at least the Part of the outer peripheral surface of the porous body and the edge of the liquid-absorbing surface.
  • the electronic vaping assembly further includes: an upper cover and an upper cover seal, the upper cover seal is sleeved on the outer periphery of the upper cover, and the outer surface of the upper cover seal is The surface is in an interference fit with the inner wall of the housing, and the upper cover has a mounting position and a liquid passage connected to the installation position, and the liquid passage communicates with the liquid storage chamber; the atomizing core is fixedly arranged At the installation position, the liquid-absorbing surface communicates with the liquid-through cavity.
  • the electronic aerosolization assembly further includes a lower cover, the lower cover is arranged at the end of the housing away from the air outlet channel, the lower cover and the atomization of the porous body
  • the area between the surfaces constitutes the atomization chamber, and the lower cover supports the atomization core
  • the lower cover is provided with an air inlet passage, and the air inlet passage communicates with the atomization chamber
  • a conductive element is arranged on the lower cover, and the heating element is electrically connected to the conductive element.
  • a method for preparing the atomization core of the above-mentioned electronic cigarette atomization component including the following steps: preparing a porous body, the porous body has a liquid absorption surface, an atomization surface and an outer peripheral surface; At least a part of the surface of the porous body is surface treated, and a barrier layer is formed on the outer surface of the porous body, and the barrier material in the barrier layer fills at least part of the micropores on the outer surface of the porous body; atomization in the porous body A heating element is arranged on the surface.
  • the surface treatment process includes vapor deposition, coating or printing.
  • the surface treatment process includes sputtering or vacuum evaporation.
  • an electronic cigarette including: the electronic cigarette assembly described in any one of the above-mentioned embodiments; a cigarette rod device, an electrical component is arranged in the cigarette rod device, and the electrical component An electrical connection is formed with the heating element, the electrical component is configured to supply power to the heating element, an air inlet is formed on the smoke rod device, and the air inlet communicates with the atomization chamber; the smoke The rod device is detachably connected to the electronic atomization assembly.
  • the barrier material fills the micropores of the porous body, thereby improving the liquid permeability of the porous body.
  • Fig. 1 is a schematic diagram of a cross-sectional explosion of the electronic atomization component provided by the present application
  • Fig. 2 is a schematic cross-sectional view of the assembly of the electronic vaporization component provided by the present application
  • Fig. 3 is a schematic cross-sectional view of the assembly of some parts of the electronic vaporization assembly provided by the present application;
  • Fig. 4 is a side sectional structural schematic diagram of the atomizing core provided by the present application.
  • Fig. 5 is a schematic structural diagram of an atomizing core provided by the present application.
  • Fig. 6 is a schematic structural diagram of an atomizing core provided by the present application.
  • Fig. 7 is a schematic structural diagram of an atomizing core provided by the present application.
  • Fig. 8 is a side sectional structural schematic diagram of an atomizing core provided by the present application.
  • Fig. 9 is a schematic structural diagram of an atomizing core provided by the present application.
  • Fig. 10 is a schematic structural diagram of an atomizing core provided by the present application.
  • Fig. 11 is a side sectional structural schematic diagram of an atomizing core provided by the present application.
  • Fig. 12 is a partially enlarged cross-sectional view of the surface of the porous body provided by the present application.
  • micropore 214
  • Ventilation channel 22
  • the electronic cigarette atomization assembly 100 provided by this solution includes a housing 10 and an atomizing core 20 .
  • the casing 10 has a liquid storage chamber 12 and an atomization chamber 13 .
  • the liquid storage chamber 12 is used for storing e-liquid.
  • the casing 10 is provided with an air outlet channel 11 communicating with the outside world, and the atomization chamber 13 communicates with the air outlet channel 11 .
  • the smoke liquid in the liquid storage chamber 12 is atomized to form smoke and enters the air outlet channel 11 through the atomization chamber 13 to be inhaled by the user.
  • the atomizing core 20 is arranged in the casing 10 .
  • the atomizing core 20 includes a porous body 21 and a heating body 23 .
  • the porous body 21 is used for infiltrating and absorbing e-liquid.
  • the porous body 21 has a liquid absorbing surface 211 , an atomizing surface 212 , and an outer peripheral surface 213 connecting the liquid absorbing surface 211 and the atomizing surface 212 .
  • the liquid absorbing surface 211 communicates with the liquid storage chamber 12 for contacting and absorbing the liquid in the liquid storage chamber 12 .
  • the atomizing surface 212 communicates with the atomizing chamber 13 , and the heating element 23 is disposed on the atomizing surface 212 .
  • the heating element 23 can heat and atomize the smoke liquid in the porous body 21 that is conducted to the atomizing surface 212, and the formed smoke enters the atomizing chamber 13, and enters the air outlet channel 11 through the atomizing chamber 13, so that it can be inhaled by the user .
  • At least one part of the outer surface of the porous body 21 is provided with a barrier layer 24, that is, at least one of the liquid absorption surface 211, the atomization surface 212, and the outer peripheral surface 213 is provided with a barrier layer 24; At least one of the surface 212 and the outer peripheral surface 213 is provided with a barrier layer 24; or, at least one of the liquid absorption surface 211, the atomization surface 212, and the outer peripheral surface 213 is provided with a barrier layer 24; or, A barrier layer 24 is provided on at least a partial area of at least one of the liquid-absorbing surface 211 , the atomizing surface 212 , and the outer peripheral surface 213 .
  • Micropores 214 are distributed on the porous body 21 , and these micropores 214 are distributed on the surface and inside of the porous body 21 , which can absorb and transfer liquid.
  • the porous body 21 is a material piece with holes, such as a ceramic porous body.
  • the barrier layer 24 is a layer structure in which a barrier material is formed on at least part of the outer surface of the porous body 21 by means of vapor deposition, coating, printing and the like.
  • the barrier material may be filled in the micropores 214 on the outer surface of the porous body 21 so as to occupy the spaces of the micropores 214 on the outer surface.
  • the structure of the micropores 214 on the outer surface of the porous body 21 can be changed, thereby adjusting the liquid permeability of the surface of the porous body 21 .
  • the thickness of the barrier layer 24 is generally less than 0.1 mm (millimeter) and greater than or equal to 0.05 ⁇ m (micrometer).
  • the thickness of the barrier layer 24 is small, and by making the fine and dense barrier material be arranged on the surface of the porous body 21 in a thin layer, on the one hand, the liquid permeability of the outer surface of the porous body 21 can be adjusted, and on the other hand, it will not affect the porous body.
  • the liquid absorbing and liquid permeable properties of the whole interior of the porous body 21 are affected, thereby ensuring good liquid absorbing capacity and liquid absorbing speed of the porous body 21 as a whole.
  • the barrier layer 24 with a smaller thickness will not affect the overall structure and shape of the porous body 21, and at the same time, because of its fine and compact characteristics, the smoothness of at least a part of the surface of the porous body 21 is improved, which is conducive to making the porous body 21 is stably and reliably positioned and installed in the vaping component 100, and is not easily shaken or damaged.
  • the barrier layer 24 has a thickness ranging from 0.05 ⁇ m (micrometer) to 90 ⁇ m (micrometer).
  • the barrier layer 24 has a thickness ranging from 0.3 ⁇ m to 50 ⁇ m.
  • the filling material formed by the barrier layer 24 in the above two thickness ranges is relatively thick, which can effectively weaken the liquid absorption and liquid permeability of the micropores 214 on the outer surface of the porous body 21, thereby preventing the appearance of liquid on the surface of the porous body 21 to a certain extent.
  • the phenomenon of drop accumulation reduces the possibility of leakage.
  • the barrier layer 24 in this thickness range can effectively improve the smoothness of the surface of the porous body 21 , thereby improving the assembly stability and sealing reliability of the porous body 21 in the casing 10 .
  • the barrier layer 24 has a thickness ranging from 0.4 ⁇ m to 30 ⁇ m.
  • a barrier layer 24 with a smaller thickness has a thinner filler material.
  • the barrier layer 24 has a more uniform thickness and can be used to adjust the liquid permeability rate of the outer surface of the porous body 21 .
  • the liquid permeation rate can be adjusted from the surface of the porous body 21 by setting a thinner and uniform barrier layer 24, so that the porous body 21
  • the body 21 achieves liquid-permeable and liquid-absorbent properties meeting application requirements.
  • the barrier layer 24 has a thickness ranging from 0.1 ⁇ m to 1 ⁇ m.
  • the thickness of the barrier layer 24 in this thickness range is extremely small, and it can be used in adjusting the liquid permeability and liquid absorption performance of the local area of the porous body 21 .
  • the e-liquid can be tended to gather in the area where the heating element 23 is located, thereby improving the atomization efficiency and atomization amount, and then achieving The purpose of improving the taste of smoke.
  • the thickness of the barrier layer 24 disposed on at least part of the outer surface of the porous body 21 may be uniform or non-uniform.
  • the outer surface of the porous body 21 can be partially or fully covered by using the above-mentioned barrier layer 24 of different thickness, so as to adjust the liquid absorption rate, liquid absorption uniformity, and surface smoothness of the porous body 21. In this way, the overall performance of the porous body 21 can be improved.
  • the above-mentioned thickness of the barrier layer 24 generally refers to the average thickness of the barrier layer 24 in a certain area.
  • the slightly uneven thickness of the barrier layer 24 caused by the micropores 214 and the surface structure of the porous body 21 does not affect the performance of the above technical features.
  • the barrier layer 24 can be formed on at least part of the outer surface of the porous body 21 by means of vapor deposition, coating, printing, etc.; according to one embodiment of the present application, the barrier layer 24 can be formed by physical vapor deposition or Chemical vapor deposition is formed on at least part of the outer surface of the porous body; according to one embodiment of the present application, the barrier layer 24 is formed on at least part of the outer surface of the porous body by sputtering, vacuum evaporation, or electroplating; according to this In one embodiment of the application, the barrier layer is formed on at least part of the outer surface of the porous body by means of sputtering or vacuum evaporation.
  • the barrier layer 24 When the barrier layer 24 is provided on the outer peripheral surface 213 , the barrier material may be filled in the pores 214 on the outer peripheral surface 213 of the porous body 21 .
  • Providing the barrier layer 24 on the outer peripheral surface 213 can reduce the liquid permeability of the outer peripheral surface 213 of the porous body 21 .
  • the edge of the porous body 21 often needs to cooperate with other components to realize sealing and prevent liquid from penetrating.
  • the micropores 214 on the outer peripheral surface 213 instead cause a hidden danger of liquid leakage.
  • the provision of the barrier layer 24 can effectively reduce the liquid penetration of the outer peripheral surface 213 and improve the sealing performance.
  • a barrier layer 24 may be provided on a part of the outer peripheral surface 213, for example, a barrier layer 24 is provided in the A region of the outer peripheral surface 213. At this time, the barrier region is the A region, and the barrier layer 24 will not be completely covered.
  • the outer peripheral surface 213 , part of the area on the outer peripheral surface 213 may not cover the barrier layer 24 , that is, be exposed. Under other conditions being the same, for example, when the distribution range and size of micropores 214 on the outer peripheral surface 213 are relatively uniform, compared with the unblocked area on the outer peripheral surface 213, the leakage rate of e-liquid corresponding to the blocked area smaller.
  • the barrier layer 24 can be provided on the entire area of the outer peripheral surface 213 , at this time, the barrier area is the entire area of the outer peripheral surface 213 , and the barrier layer 24 can completely cover the outer peripheral surface 213 .
  • the barrier layer 24 covers the entire area of the outer peripheral surface 213 , most of the micropores 214 on the outer peripheral surface 213 can be filled through the structural features of the barrier layer 24 .
  • the seepage rate of the e-liquid is greatly reduced, thereby effectively preventing the e-liquid from forming droplets on the outer peripheral surface 213 of the porous body 21 and causing leakage.
  • the surface flatness of the outer peripheral surface 213 of the porous body 21 can be improved by providing a barrier layer 24 with a relatively large thickness, thereby improving the positioning and installation reliability of the porous body 21 in the housing 10, and improving the performance of the porous body 21. The overall tightness of the weekly test.
  • the barrier material of the barrier layer 24 can fill part or all of the micropores 214 on the outer peripheral surface 213 , so as to achieve the above-mentioned requirement of reducing liquid permeability.
  • the outer peripheral surface 213 includes an upper side 2131 , a lower side 2132 and a stepped surface 2133 .
  • the edge of the upper side 2131 is in contact with the liquid-absorbing surface 211
  • the edge of the lower side 2132 is in contact with the atomizing surface 212
  • the upper side 2131 and the lower side 2132 form a stepped surface 2133
  • the stepped surface 2133 is opposite to the liquid-absorbing surface 211 .
  • a barrier layer 24 may be provided on the stepped surface 2133 .
  • liquid absorbing surface 211 and the atomizing surface 212 are respectively the top surface and the bottom surface of the porous body 21
  • the outer peripheral surface 213 may be the outer surface of the porous body 21 .
  • the outer peripheral surface 213 is mainly composed of an upper side 2131, a lower side 2132 and a stepped surface 2133, wherein the stepped surface 2133 is located between the upper side 2131 and the lower side 2132, and the upper side 2131 is located above the lower side 2132, that is, close to the top surface (suction The orientation of the liquid surface 211).
  • the upper edge of the upper side 2131 is connected to the liquid absorbing surface 211
  • the lower edge of the lower side 2132 is connected to the atomizing surface 212 .
  • the lower edge of the upper side 2131 is connected to the upper edge of the lower side 2132 , and a stepped surface 2133 is formed in the connection area between the upper side 2131 and the lower side 2132 .
  • the stepped surface 2133 can extend toward the center of the porous body 21 , so that the porous body 21 shrinks from top to bottom in the width direction, and the size of the atomizing surface 212 is smaller than that of the liquid-absorbing surface 211 .
  • the provision of the stepped surface 2133 facilitates the installation of the porous body 21 in the housing 10 , can increase the assembly speed of the porous body 21 , plays a positioning role, and improves installation stability.
  • the barrier layer 24 is provided on the stepped surface 2133 , which can further improve the anti-penetration effect of the outer peripheral surface 213 . In practical applications, sometimes the stepped surface 2133 cannot be well sealed, and it cannot form a tight sealing relationship with other components in the housing 10 . By arranging the barrier layer 24 on the stepped surface 2133, it is possible to effectively reduce the situation of the liquid permeating the stepped surface 2133, so as to achieve the effect of preventing liquid leakage.
  • the porous body 21 has a porous structure, and micropores 214 are exposed on the outer peripheral surface 213 , and the atomizing surface 212 and the liquid absorbing surface 211 also have micropores 214 for absorbing liquid.
  • the barrier material of the barrier layer 24 can block at least a part of the micropores 214 on the outer peripheral surface 213 .
  • the barrier material can block most of the micropores 214 on the outer peripheral surface 213 , or block some of the micropores 214 on the outer peripheral surface 213 .
  • the barrier material can not only block the single micropore 214 as a whole, but also fill a part of the space of the micropore 214 .
  • the porosity of the outer surface of the porous body 21 and/or the pore size of the micropores 214 can be reduced by setting the barrier layer 24, thereby reducing or even preventing the e-liquid in the micropores 214 inside the porous body 21 from seeping through the outer peripheral surface 213 into the mist of the electronic cigarette In the chemical chamber 13, and then prevent leakage.
  • the overall flatness of the outer peripheral surface 213 of the porous body 21 can also be improved by providing the barrier layer 24 .
  • This is beneficial to the positioning and installation stability of the porous body 21 in the casing 10 .
  • the shape and surface of the porous body 21 are not regular and flat easily due to the characteristics of the process during processing.
  • the barrier layer 24 on the outer peripheral surface 213 the above-mentioned problems can be alleviated to a certain extent, thereby improving the flatness of the outer surface and facilitating installation and positioning.
  • a barrier layer 24 may be provided at the edge of the liquid-absorbing surface 211 , and a barrier area is formed at the edge of the liquid-absorbing surface 211 .
  • the barrier layer 24 on the liquid-absorbing surface 211 may be in contact with the barrier layer 24 on the outer peripheral surface 213 , and the barrier layer 24 extends from the outer peripheral surface 213 to the edge of the liquid-absorbing surface 211 .
  • the barrier layer 24 By disposing the barrier layer 24 at the edge of the liquid-absorbing surface 211, the liquid permeability at the edge of the liquid-absorbing surface 211 is reduced. On the liquid-absorbing surface 211, the central region closer to the liquid-absorbing surface 211 still retains good liquid-permeable performance. The part of the edge of the liquid absorption surface 211 often needs to be in contact with the atomizing core seal 30 and other components to be sealed. This part of the area does not need to undertake the function of liquid absorption. If the liquid absorption performance is good, it may cause liquid leakage instead.
  • the part located in the central area of the liquid-absorbing surface 211 communicates with the liquid-storage chamber 12, and this part needs to bear the role of absorbing liquid, and its liquid-absorbing efficiency is greater than that of the edge of the liquid-absorbing surface 211, which can fully exert its liquid-absorbing effect.
  • Setting the barrier layer 24 at the edge of the liquid-absorbing surface 211 can not only enhance the liquid-absorbing efficiency of the area communicating with the liquid storage chamber 12, but also prevent liquid leakage caused by the liquid accumulation in the edge area.
  • the barrier layer 24 may also be provided on the edge of the atomization surface 212 , and the area on the edge of the atomization surface 212 provided with the barrier layer 24 is a barrier area.
  • the heating element 23 is arranged on the atomizing surface 212 , and the heating element 23 generates heat after being energized to heat and atomize the liquid smoke transmitted to the atomizing surface 212 .
  • the area near the edge of the atomizing surface 212 is relatively far away from the heating element 23, so it is less heated, and the droplet atomization efficiency at this position is low. Setting a barrier layer 24 at this position area can effectively prevent leakage. Oil.
  • the barrier layer 24 is provided on the edge of the atomizing surface 212, which can reduce the liquid-permeable effect at the edge of the atomizing surface 212, and then make the liquid flow to the area close to the heating element 23, thereby improving the heating element 23.
  • the amount of liquid permeated around can effectively improve the atomization efficiency, so that the liquid can be fully heated and atomized evenly.
  • a barrier layer 24 is provided on the area surrounding the heating element 23 on the liquid absorbing surface 211 , and a barrier area is formed on the atomizing surface 212 .
  • This embodiment further improves the atomization efficiency of the e-liquid.
  • the heating element 23 is a heating circuit formed by screen printing, and the heating element 23 is linearly extended.
  • the barrier layer 24 can be arranged on both sides of the heating element 23 on the atomizing surface 212 in the width direction, at a predetermined distance from the heating element 23 . In this way, the liquid on the porous body 21 gathers around the heating element 23 and is effectively atomized by the heating element 23 .
  • the aforementioned predetermined distance may be determined according to the heat radiation area of the heating element 23 and the thermal conductivity of the porous body 21 .
  • the barrier layer 24 does not need to be provided on the part that can be effectively heated and heated, and the barrier layer 24 can be provided on the part that cannot be effectively heated to prevent the liquid from flowing to these areas.
  • the barrier layer 24 on the atomizing surface 212 , it is also possible to prevent the condensed and non-atomized liquid droplets from falling into the atomizing chamber 13 , thereby reducing the risk of liquid leakage.
  • the porous body 21 is provided with a ventilating passage 22, and one end of the ventilating passage 22 communicates with the liquid storage cavity 12, and the ventilating passage 22 The other end communicates with the atomizing chamber 13 , and the ventilation channel 22 allows outside air to enter the liquid storage chamber 12 and prevents the liquid in the liquid storage chamber 13 from flowing out.
  • the ventilation channel 22 is used to ventilate the liquid storage chamber 12 . After the liquid in the liquid storage chamber 12 flows into the porous body 21 , the air pressure in the liquid storage chamber 12 decreases, which may prevent the liquid from further penetrating into the porous body 21 .
  • the ventilation channel 22 plays a role at this time, and after the air pressure of the liquid storage chamber 12 decreases, air can flow from the ventilation channel 22 into the liquid storage chamber 12 to achieve air pressure balance.
  • the porous body 21 is provided with at least one ventilation channel 22 , wherein the first end of the ventilation channel 22 can communicate with the outside atmosphere, and the second end of the ventilation channel 22 can communicate with the liquid storage chamber 12 .
  • the sensor in the vaping component 100 can be triggered, which can drive the heating element 23 to start heating, and the e-liquid on the atomizing surface 212 can be heated and atomized, and the formed aerosol can enter the vaping component
  • the air outlet channel 11 of 100 is for the user to inhale.
  • the porous body 21 After the liquid on the porous body 21 is atomized, the porous body 21 will continue to absorb the liquid from the liquid storage chamber 12. After the liquid in the liquid storage chamber 12 gradually decreases, the air pressure in the liquid storage chamber 12 will drop, and negative pressure will easily be formed. This makes it difficult for the e-liquid in the liquid storage chamber 12 to flow to the liquid absorption surface 211 . That is to say, during the pumping process of the user, the negative pressure generated inside the liquid storage chamber 12 is difficult to restore the balance of the internal and external pressure difference through the circulation of gas, so problems such as poor oil supply and sticky core are prone to occur.
  • the outside gas can enter the liquid storage chamber 12 through the ventilation channel 22, so that the air pressure in the liquid storage chamber 12 is equal to the external air pressure. balance, so that the liquid in the liquid storage chamber 12 can flow to the liquid suction surface 211 smoothly.
  • a barrier layer 24 may be formed on the inner wall of the ventilation channel 22 , and at least part of the micropores 214 on the inner wall of the ventilation channel 22 can be filled by the barrier material in the barrier layer 24 . That is to say, the e-liquid in the porous body 21 can enter the ventilation channel 22 through the inner wall surface of the ventilation channel 22, and by setting the barrier layer 24, it can effectively reduce or even prevent the e-liquid in the porous body 21 from entering the ventilation channel 22. In the air channel 22. If the e-liquid enters the ventilation channel 22, on the one hand, the e-liquid may flow into the atomization chamber 13 and cause liquid leakage; Absorb liquid. By disposing the barrier layer 24 on the inner wall surface of the ventilation channel 22, the above problems can be effectively improved.
  • the liquid absorption surface 211 and the atomization surface 212 of the porous body 21 are arranged oppositely, and the ventilation channel 22 runs through the porous body 21 along the extending direction from the liquid absorption surface 211 to the atomization surface 212. That is to say, by setting the liquid absorbing surface 211 and the atomizing surface 212 opposite to each other, the volume of the porous body 21 can be reduced, and the preparation process of the porous body 21 can be simplified. By setting the extension direction of the ventilation channel 22 along the extension direction from the liquid absorbing surface 211 to the atomizing surface 212 and passing through the porous body 21 , the time required for outside air to flow into the liquid storage chamber 12 can be shortened.
  • the ventilation channel 22 is a through hole penetrating through the porous body 21 along the extending direction from the liquid absorbing surface 211 to the atomizing surface 212 .
  • the ventilation channel 22 is a through hole penetrating through the porous body 21 along the extending direction from the liquid absorbing surface 211 to the atomizing surface 212 .
  • the ventilation channel 22 can be arranged on the porous body 21 and distributed at a distance from the outer peripheral surface 213 , and a through hole structure can be formed between the liquid absorbing surface 211 and the atomizing surface 212 .
  • the ventilation channel 22 can also be a groove provided on the outer peripheral surface 213 , and the groove penetrates the porous body 21 along the extending direction from the atomizing surface 212 to the liquid absorbing surface 211 .
  • the ventilation channel 22 is a groove provided on the outer peripheral surface 213 , and the groove penetrates through the porous body 21 along the extending direction from the atomizing surface 212 to the liquid absorbing surface 211 . That is to say, a groove with an opening is provided on the outer peripheral surface 213 , and a through groove structure may be formed between the liquid absorbing surface 211 and the atomizing surface 212 .
  • the inner wall of the groove can cooperate with other structures of the electronic cigarette, such as seals, to form a ventilation channel 22 .
  • the number of ventilation channels 22 is one or more, and the plurality of ventilation channels 22 are arranged at intervals on the outer peripheral surface 213 of the porous body 21 .
  • the number of ventilation channels 22 is one or more, and a plurality of ventilation channels 22 are arranged at intervals on the outer peripheral surface of the porous body 21 . Wherein, when the number of the ventilation channel 22 is one, the ventilation channel 22 may be provided on the outer peripheral surface 213 .
  • the plurality of ventilation channels 22 can be distributed on the outer peripheral surface of the porous body 21 at intervals. By increasing the number of ventilation channels 22, the rate of internal and external air pressure balance can be further improved. It should be noted that, when there are multiple ventilation channels 22, a barrier layer 24 may be provided on the inner wall of some of the ventilation channels 22, or a barrier layer may be provided on the inner wall of each ventilation channel 22. 24, without limitation here.
  • the average pore diameter of the micropores in the barrier area is 2 ⁇ m-60 ⁇ m. Further, the average pore diameter of the micropores 214 in the barrier area is 2 ⁇ m-30 ⁇ m. Further, the average pore diameter of the micropores 214 in the barrier area is 3 ⁇ m-20 ⁇ m.
  • the rate of e-liquid permeation from the barrier area is significantly reduced, and it is difficult for liquid to pass through the barrier layer 24 and form larger droplets on the barrier layer 24 . In this way, the barrier region of the porous body 21 is less prone to liquid leakage.
  • the number of micropores per unit area of the barrier region is 20-300/mm 2 . Further, the number of micropores 214 per unit area of the barrier area is 20-100/mm 2 . Further, the number of micropores 214 per unit area of the barrier area is 30-60/mm 2 .
  • the barrier material blocks the micropores 214 on the outer surface of the porous body 21 , so that the number of micropores 214 on the barrier area is significantly reduced compared with the original porous body 21 .
  • the porous body 21 generally has 160 or more micropores 214 per unit area. After being blocked by the barrier material, the number of micropores 214 is reduced to 100 or less per unit area.
  • the number of microholes 214 and the thickness of the barrier layer 24 can be controlled.
  • the thickness of the barrier layer 24 is larger, the number of micropores 214 can be reduced more easily.
  • the liquid permeability of the barrier layer 24 is also weaker.
  • the porosity of the porous body 21 may range from 40% to 60%. According to different factors such as e-liquid used in actual electronic cigarettes and required aerosol density, the present application can use porous bodies 21 with different porosities.
  • the porous body 21 with a porosity of 40%-60% can quickly transport the e-liquid from the liquid absorbing surface 211 to the atomizing surface 212, and the liquid absorbing speed can meet the user's normal pumping frequency and speed.
  • the porosity of the porous body 21 may also be greater than 60%.
  • the porous body 21 with a larger porosity has a faster liquid penetration rate, and the e-liquid will also quickly move to the atomizing surface 212 in the form of larger droplets.
  • This porous body 21 is suitable for e-liquid with relatively high viscosity.
  • a barrier layer 24 can be provided on the liquid-absorbing surface 211 as a whole, and the micropores 214 on the liquid-absorbing surface 211 can be filled and blocked with the barrier material , the porosity on the liquid-absorbing surface 211 can be reduced to less than or equal to 55%.
  • the porosity of the liquid-absorbing surface 211 may range from 40% to 50%.
  • the average pore diameter of the micropores 214 on the liquid-absorbing surface 211 ranges from 40 ⁇ m to 60 ⁇ m.
  • the average pore diameter of the micropores 214 within this range can ensure that the liquid flows from the liquid-absorbing surface 211 into the porous body 21 smoothly and at a uniform speed. At the same time, the liquid will not rush into the porous body 21 too quickly. If the average pore diameter of the micropores 214 of the liquid-absorbing surface 211 is too large, it may also cause a decrease in the adsorption force for liquid, which in turn reduces the liquid-absorbing rate.
  • a barrier layer 24 can be provided on the atomization surface 212 as a whole, and the micropores 214 on the atomization surface 212 can be filled and blocked with the barrier material .
  • the porosity of the atomizing surface 212 can be reduced to less than or equal to 55%. If the porosity of the atomizing surface 212 is too high, larger droplets may be formed on the atomizing surface 212. Such droplets are difficult to form a uniform aerosol during heating and atomization, which will affect user experience. Moreover, the larger porosity on the atomizing surface 212 may also cause the liquid to drip directly, resulting in the hidden danger of oil leakage.
  • the average pore diameter of the micropores 214 on the atomizing surface 212 ranges from 40 ⁇ m to 60 ⁇ m.
  • the average pore diameter of the micropores 214 within this range can ensure that the liquid flows from the liquid-absorbing surface 211 into the porous body 21 smoothly and at a uniform speed. Further, the liquid will not form too large droplets on the atomizing surface 212 , preventing uneven atomization and droplet dripping.
  • the diameter of the micropores 214 on the atomizing surface 212 is too large, it may cause the liquid droplets to flow out directly and separate from the porous body 21, which can neither achieve the atomization effect nor seriously increase the risk of liquid leakage. For this reason, a relatively thick barrier layer 24 can be provided on the atomizing surface 212 .
  • the barrier layer 24 is a vapor deposited layer, a coating or a printed layer.
  • the barrier layer 24 can be a vapor deposition layer, a coating or a printing layer, and when the barrier layer 24 is a vapor deposition layer, it can be either a physical deposition layer or a chemical deposition layer.
  • Physical vapor deposition includes sputtering and evaporation
  • chemical vapor deposition includes electroplating
  • the coating process for coating includes spray coating and flow coating.
  • the barrier layer 24 can be made by performing a process on the outer peripheral surface 213, and the process can be electroplating, sputtering, vapor deposition, spraying, shower coating, printing, soaking, glazing and the like.
  • the outer surface of the atomizing core 20 can adopt a glazing process (such as dipping glaze, swaying glaze, pouring glaze, brushing glaze, sprinkling glaze, wheel glaze, etc.), and the formed atomizing core 20 blank
  • a glazing process such as dipping glaze, swaying glaze, pouring glaze, brushing glaze, sprinkling glaze, wheel glaze, etc.
  • the surface of the body is glazed and fired at a temperature of 800°C-1400°C.
  • the material used for the outer surface of the atomizing core 20 using the glazing process is a food-grade, medical-grade safe lead-free glaze (the main components are silicon dioxide, zirconia, aluminum oxide, etc.) etc.), and because the non-appearance parts do not need to use colored glaze (usually made of metal oxides, such as oxides of vanadium, chromium, manganese, iron, cobalt, nickel, and copper, etc.) to reduce the possibility of heavy metal leakage from the atomizing core 20 .
  • the main components are silicon dioxide, zirconia, aluminum oxide, etc.
  • colored glaze usually made of metal oxides, such as oxides of vanadium, chromium, manganese, iron, cobalt, nickel, and copper, etc.
  • the barrier layer 24 is a physical vapor deposition layer, wherein physical vapor deposition may include sputtering and evaporation.
  • the barrier layer 24 is a silicon dioxide layer, an aluminum oxide layer, a silicon layer or an aluminum layer.
  • the barrier material in the barrier layer 24 is one or more of alumina, silicon dioxide, aluminum, silicon, borosilicate or nanosilicate.
  • the barrier material in the barrier layer is one of silicon dioxide, aluminum oxide, silicon or aluminum.
  • the resistance temperature of the barrier layer 24 is 200°C-1100°C.
  • the resistance temperature of the barrier layer 24 is 600°C-1000°C.
  • the number of pores per unit area corresponding to the barrier region is 20/mm 2 -300/mm 2 .
  • the number of pores per unit area corresponding to the barrier area is 30/mm 2 -240/mm 2 .
  • the permeability of the barrier area is 0m/s-0.2mm/s.
  • the barrier region has a permeability of 0m/s-0.17mm/s.
  • the electronic atomization assembly 100 further includes an atomizing core seal 30 , the atomizing core seal 30 is sleeved on the porous body 21 , and the atomizing core seal 30 At least part of the outer peripheral surface 213 of the porous body 21 and the edge of the liquid-absorbing surface 211 are covered.
  • the atomizing core seal 30 can cooperate with the barrier layer 24 disposed on the outer peripheral surface 213 and the edge of the liquid-absorbing surface 211 , so as to effectively improve the liquid leakage prevention performance.
  • the atomizing core sealing member 30 is in a bonded and sealed relationship with the outer peripheral surface 213 . This sealing relationship is used to prevent liquid from flowing from the gap between the atomizing core seal 30 and the porous body 21 to the atomizing chamber 13.
  • the outer peripheral surface 213 of the porous body 21 forms a barrier area, it is difficult for liquid to penetrate and move on the outer peripheral surface 213, and the liquid leakage-proof sealing performance between the atomizing core seal 30 and the outer peripheral surface 213 of the porous body 21 is significantly improved.
  • the combination of the two can basically eliminate the phenomenon that the liquid leaks from the gap to the atomizing chamber 13 .
  • the liquid absorbing surface 211 of the porous body 21 communicates with the liquid storage chamber 12 to absorb the e-liquid in the liquid storage chamber 12 .
  • the atomizing core seal 30 can be extended and wrapped around the edge of the liquid-absorbing surface 211 .
  • this edge-wrapping sealing method can also avoid liquid leakage caused by the loose connection between the liquid storage chamber 12 and the liquid-absorbing surface 211 .
  • the barrier layer 24 can be formed on the edge of the liquid-absorbing surface 211 , so that the porous body 21 has a lower liquid-permeable efficiency at the edge of the liquid-absorbing surface 211 .
  • the porous body 21 forms a blocking area at the position where it overlaps with the atomizing core sealing element 30 , and the two cooperate to form a better effect of sealing and blocking liquid.
  • the area where the liquid-absorbing surface 211 faces the liquid-storage chamber 12 can still exhibit good liquid-absorbing performance.
  • the vaping assembly 100 may further include an upper cover 40 and an upper cover sealing member 50 .
  • the upper cover sealing member 50 is sleeved on the outer periphery of the upper cover 40 , and the outer surface of the upper cover sealing member 50 forms an extrusion interference fit with the inner wall of the housing 10 . This interference fit creates a sealed relationship.
  • the top of the upper cover seal 50 can be used to form the liquid storage chamber 12 .
  • the upper cover seal 50 is used to define the area of the liquid storage chamber 12 .
  • the upper cover 40 may have an installation position and a liquid passage cavity communicating with the installation position, and the liquid passage cavity communicates with the liquid storage chamber 12 .
  • the upper cover sealing member 50 avoids the liquid passage chamber, so that the liquid in the liquid storage chamber 12 can flow into the liquid passage chamber.
  • the upper cover sealing member 50 encapsulates and seals the area except the liquid passage cavity, preventing liquid from flowing through.
  • the atomizing core 20 is fixedly arranged at the installation position, and the liquid-absorbing surface 211 communicates with the liquid-through cavity.
  • the liquid absorbing surface 211 of the porous body 21 communicates with the liquid storage chamber 12 through the liquid passage chamber.
  • the liquid in the liquid storage chamber flows to the liquid-absorbing surface 211 through the liquid-through cavity, so as to realize the infiltration of the porous body 21 .
  • the electronic cigarette atomization assembly 100 further includes a lower cover 60, the lower cover 60 is arranged in the housing 10, and the area between the lower cover 60 and the atomization surface 212 of the porous body 21 constitutes the atomization chamber 13,
  • the lower cover 60 supports the atomizing core 20 .
  • the upper part of the housing 10 is provided with an air outlet channel, and the lower part of the housing 10 is open.
  • the lower cover 60 is disposed on the lower portion of the casing 10 .
  • the lower cover 60 can form support for the atomizing core 20 and the atomizing core seal 30, the atomizing core 20 and the atomizing core seal 30 are fixed at the installation position of the upper cover 40, the lower cover 60 Cooperate with the upper cover 40 to fix the atomizing core 20 and the atomizing core seal 30; optionally, the lower cover 60 may have a supporting structure, which can be assembled on the housing 10 to support the atomizing core 20 and the atomizing core 20 through the supporting structure.
  • the atomizing core seal 30 forms a support function, cooperates with the upper cover 40 to fix the atomizing core 20 and the atomizing core seal 30 .
  • An air intake channel may be provided on the lower cover 60 , and the air intake channel communicates with the atomization chamber 13 .
  • the overall airflow path of the atomizing core 20 assembly can be as follows: air enters the air intake channel, enters the atomization chamber 13 and mixes with the smoke, and the mixed air flows into the air outlet channel 11, and finally is inhaled by the user through the air outlet channel 11.
  • a conductive member 70 may also be disposed on the lower cover 60 .
  • the heating element 23 is electrically connected to the conductive element 70 .
  • the conductive element 70 is used to supply power to the heating element 23, so as to realize the function of heating and atomizing.
  • the conductive member 70 can be electrically connected with the pin drawn out from the heating element 23 by abutting, contacting and other means.
  • the vaping assembly 100 may also include a middle cover.
  • the middle cover may be disposed between the upper cover 40 and the lower cover 60 .
  • the middle cover provides functions such as positioning and support for the atomizing core 20 and the atomizing core seal 30 . Utilizing the middle cover can increase the space of the atomizing chamber 13 and provide better support and positioning for the porous body 21 from both the outer peripheral surface 213 and the atomizing surface 212 of the porous body 21 .
  • the present application provides a method for preparing the atomizing core of the above-mentioned electronic atomizing device 100 .
  • the preparation method includes:
  • a porous body 21 having a liquid absorbing surface 211 , an atomizing surface 212 and an outer peripheral surface 213 is prepared.
  • the porous body 21 can be formed by sintering a ceramic material, and has a structure of micropores 214 inside and on the surface.
  • a barrier layer 24 is formed on the outer surface of the porous body 21 .
  • the barrier material in the barrier layer 24 fills at least part of the micropores 214 on the outer surface of the porous body 21 .
  • a barrier material is attached to the outer surface of the porous body 21, so that the outer surface has a barrier region, the liquid permeability efficiency of which is reduced.
  • the heating element 23 is provided on the atomization surface 212 of the porous body 21 .
  • the heating element 23 can be arranged on the atomizing surface 212 by printing, so as to heat and atomize the liquid adsorbed on the atomizing surface 212 .
  • the skeleton powder, surfactant, pore-forming agent carbon powder, sawdust, starch, polyvinyl chloride, etc.
  • one or more of crystalline quartz, alumina, silicon carbide, and titanium oxide are used.
  • the mixed slurry is molded in a molding machine to obtain a molded atomizing core body.
  • the formed atomizing core body can be sintered, and the sintering temperature can be 1000°C-1400°C.
  • At least part of the outer surface of the porous body 21 can form a barrier layer 24, and the barrier material in the barrier layer 24 fills at least part of the micropores 214 on the outer surface of the porous body 21 to form a barrier area.
  • the sintered green body after sintering may be subjected to surface treatment.
  • the surface treatment process includes but not limited to electroplating, sputtering, vapor deposition (deposition), spray coating, flow coating (coating), printing, soaking, glazing (coating), etc.
  • the material used for the barrier layer 24 includes but not Limited to gold, titanium, alumina, silica, carbon, etc.
  • the liquid-absorbing surface 211 and the atomizing surface 212 do not need surface treatment, they can be realized by methods such as shielding protection or material removal.
  • the surface treatment process is sputtering or vacuum evaporation;
  • the material used for the barrier layer 24 is one of silicon dioxide, aluminum oxide, silicon or aluminum.
  • the heat generating body 23 is disposed on the atomizing surface 212 of the porous body 21 .
  • the surface-treated atomizing surface 212 is subjected to heating circuit processing, and the silk-screened atomizing core 20 can be sintered in a reducing atmosphere to finally obtain the required atomizing core 20 .
  • the surface treatment process includes vapor deposition, coating or printing. Coating methods include spray coating and dipping, and this processing method is the easiest to handle, and the formed barrier layer 24 is relatively thick.
  • the thickness of the barrier layer 24 can be precisely controlled by using the vapor deposition process, and it is easy to realize the barrier layer 24 with a specific thickness required.
  • the surface treatment process adopts physical vapor deposition to effectively form the barrier layer 24 with precise size and thickness and the effect of filling the micropores 214 .
  • the porous body 21 is made of silicon oxide or a mixed material of silicon oxide/alumina.
  • the atomization core 20 according to the embodiment of the present invention will be described in detail below in conjunction with specific embodiments.
  • a porous ceramic body as a porous body, and measure the average pore diameter and the number of pores per unit area on the surface of the porous ceramic body at a size of 300 times the SEM window. * The number of holes in the area of 0.7mm is 160, and a barrier layer 24 is formed on the outer peripheral surface of the porous ceramic body; then, a heating circuit is arranged on the atomization surface 212 of the porous ceramic body by screen printing; wherein embodiments 1-2 , 8-11 is to adopt the sputtering method to form a silicon dioxide barrier layer on the outer peripheral surface of the porous body, and embodiment 3-4 is to adopt the sputtering method to form an aluminum oxide barrier layer on the outer peripheral surface of the porous body, wherein the sputtering
  • the specific method is: using magnetron sputtering technology, place the surface of the sample to be treated facing the sputtering direction, and the palladium atoms are continuously sputtered to the surface to be treated under the bombardment of the incident
  • the incident atoms are selected as Ar gas, the reaction gas is high-purity oxygen, the sputtering target is high-purity silicon or aluminum, and the substrate is a silicon wafer or an aluminum wafer;
  • the extending direction from the liquid-absorbing surface 211 to the atomizing surface 212 runs through the groove of the porous ceramic body; through-hole;
  • embodiment 5-6 is to adopt the method for vacuum evaporation to form an aluminum barrier layer on the outer peripheral surface of the porous body;
  • embodiment 7 is to adopt the method for vacuum evaporation to form a silicon barrier layer on the outer peripheral surface of the porous body;
  • the specific method of plating is as follows: the product is put into a vacuum coating machine, and the plating material evaporates a gaseous plating material under the action of a heat source, and forms a coating on the surface of the sample to be treated, and the plating material can be aluminum or silicon; in each embodiment
  • the thickness of barrier layer 24 and the material of barrier layer 24 are set as shown in table 1:
  • the permeability of the e-liquid on the peripheral surface of each embodiment and the comparison is shown in Table 2, wherein the permeability of the e-liquid on the peripheral surface of the porous ceramic body after the barrier layer 24 is set
  • the present application also provides an electronic cigarette.
  • the electronic cigarette includes the above-mentioned electronic cigarette atomization assembly 100 and a cigarette rod assembly. Electrical components are arranged in the tobacco rod device, and the electrical components are electrically connected to the heating element 23 , and the electrical components are configured to supply power to the heating element 23 .
  • An air inlet is formed on the tobacco rod device, and the air inlet communicates with the atomizing chamber 13 .
  • the cigarette rod device and the vaping device 100 are connected to each other in a detachable manner.
  • the electronic cigarette atomization component 100 atomizes liquid substrates such as e-liquid to generate aerosols (smoke), and the air in the atomization chamber 13 and the smoke generated by heating and atomizing the electronic atomization component 100 can be exported through the air outlet channel 11 after mixing .
  • the liquid base can be e-liquid such as e-liquid, and the e-liquid can be atomized by the electronic atomization component 100 to generate smoke.
  • the vaping assembly 100 may include an upper cover 40 , an upper cover seal 50 , a middle cover, a lower cover 60 and a lower cover sealing ring.
  • the liquid storage chamber 12 composed of the casing 10 , the upper cover 40 , the upper cover sealing member 50 , the atomizing core 20 and the sealing member 30 is used to hold the liquid substrate.
  • the upper cover sealing member 50 is fixed in the casing 10 by means of interference fit. This way can seal the assembly gap between the inner side wall of the casing 10 and the outer side wall of the upper cover 40 . Prevent the e-liquid from flowing from the liquid storage chamber 12 to the atomizing chamber 13 through the gap between the inner side wall of the casing 10 and the outer side wall of the upper cover 40 .
  • the atomizing core seal 30 is fixed in the upper cover 40 by interference fit.
  • This assembly method can seal the assembly gap between the outer wall of the atomizing core 20 and the inner wall of the upper cover 40, preventing the e-liquid from the liquid storage through the gap between the outer wall of the atomizing core 20 and the inner wall of the upper cover 40.
  • Chamber 12 flows to atomizing chamber 13 .
  • the poor sealing of the outer peripheral surface 213 of the porous ceramic often leads to liquid leakage.
  • the atomizing core seal 30 can better seal the outer peripheral surface 213 of the porous body 21, which can not only prevent the e-liquid from the liquid storage chamber 12 seeping into the atomizing chamber 13 can also prevent the e-liquid on the outer peripheral surface 213 from being sucked into the user's mouth, which can better meet the customer's use and test requirements, and improve the user's comprehensive use experience.
  • the lower cover 60 is equipped with a conductive member 70, and the conductive member 70 conducts with the battery assembly in the cigarette rod to provide electric energy.
  • the middle cover connects the upper cover 40 and the lower cover 60 , the middle cover mainly plays a supporting role, and the supporting conductive member 70 is in contact with the lead wire of the atomizing core 20 , and also plays a certain role in adjusting the airway suction resistance of the atomizing chamber 13 .
  • the middle cover also provides support for the positioning and installation of the atomizing core 20 .
  • the lower cover 60 and the housing 10 are snap-fitted, and the lower cover sealing ring is used to seal the assembly gap between the lower cover 60 and the housing 10 to prevent leakage of condensed oil in the atomization chamber 13 .
  • the lower cover 60 is provided with a first air inlet and a second air inlet, which mainly serve to connect the air inlet of the cigarette rod device with the air outlet channel 11 of the electronic cigarette device 100 . Furthermore, the cooperation between the first air inlet and the second air inlet provides the main suction resistance and provides users with a comfortable suction experience.
  • the sensor in the electronic cigarette When the user inhales, the sensor in the electronic cigarette is triggered, and a signal is sent to drive the atomizing core 20 to start heating.
  • the liquid matrix is heated and atomized in the atomizing surface 212, and the air passes through the first air inlet and the second air inlet. Enter the atomization chamber 13, and mix the smoke in the atomization chamber 13. After mixing, the smoke passes through the air outlet channel 11 and enters the mouth and nasal cavity of the user.
  • the atomizing core seal 30 can better seal the outer peripheral surface 213 of the porous body 21, preventing the e-liquid from seeping from the liquid storage chamber 12 of the electronic atomization device to the mist.
  • the chemical cavity 13 can also prevent the smoke oil on the outer peripheral surface 213 of the porous body 21 from being sucked into the user's mouth, which can better meet the customer's use and test requirements, and improve the user's comprehensive use experience.
  • the ventilation channel 22 of the atomization core 20 is separated from the e-liquid flow channel, and the ventilation channel 22 and the e-liquid flow channel have no influence on each other, avoiding the When it causes the problem of dry burning and sticky core caused by the backflow of e-liquid on the atomization surface.
  • the surface treatment process is adopted for the porous body 21
  • the surface coverage of the porous material is enhanced, which can greatly reduce the amount of ceramic damage that occurs during assembly (friction, extrusion, etc.) and use (extrusion, vibration, etc.). powder drop phenomenon.
  • the process layer on the outer surface of the porous body 21 can withstand the working temperature (180°C-500°C) of the atomization core 20 for atomization.
  • part of the process treatment layer on the outer peripheral surface 213 of the ceramic atomizing core 20 is removed through post-processing (machining: grinding, milling, polishing, etc., laser processing, etc.), Therefore, the surface area of the exposed ceramic porous surface is controlled (for example, ceramics with different surface areas are controlled to leak out), thereby controlling the e-liquid permeability of the outer peripheral surface 213 of the atomizing core 20 .
  • the atomizing core seal 30 is a sealing ring made of soft rubber, such as a silicone material.
  • the inner wall of the atomizing core seal 30 is in close contact with the outer peripheral surface 213 of the atomizing core 20, and with the cooperation of the upper cover 40, the sealing of the outer peripheral surface 213 of the atomizing core 20 is completed to prevent Leakage.
  • the atomizing core seal 30 can better seal the outer peripheral surface 213, prevent the e-liquid from seeping from the liquid storage chamber 12 to the atomizing chamber 13, and also prevent the smoke from the outer peripheral surface 213.
  • the oil is sucked into the user's mouth, which can better meet the customer's use and test requirements, and improve the user's comprehensive use experience.
  • the electronic cigarette of the embodiment of the present invention after the outer surface process treatment of the atomizing core 20 is carried out, since the surface coverage of the outer peripheral surface 213 of the atomizing core 20 is increased, unnecessary e-liquid reflux on the outer peripheral surface 213 is reduced The channel makes it difficult for the e-liquid near the atomizing surface 212 to flow back into the liquid storage chamber 12, thereby ensuring the consistency of the taste before and after the atomization. Moreover, by controlling the thickness or the surface pattern, the depth, pore size, pore size distribution and porosity of the micropores 214 on the surface of the atomization core 20 can be controlled.

Landscapes

  • Electrostatic Spraying Apparatus (AREA)

Abstract

一种电子烟雾化组件(100)、雾化芯(20)的制备方法和电子烟,电子烟雾化组件(100)包括:壳体(10),壳体(10)内具有储液腔(12)和雾化腔(13),壳体(10)上设有与外界大气连通的出气通道(11),雾化腔(13)与出气通道(11)连通;雾化芯(20),雾化芯(20)设置在壳体(10)内,雾化芯(20)包括多孔体(21)和发热体(23),多孔体(21)具有吸液面(211)、雾化面(212)以及连接吸液面(211)与雾化面(212)的外周面(213),吸液面(211)与储液腔(12)连通,雾化面(212)与雾化腔(13)连通,发热体(23)设于雾化面(212);多孔体(21)的至少部分外表面设有阻隔层(24),阻隔层(24)中的阻隔材料填充多孔体(21)的外表面的至少部分微孔,阻隔层(24)的厚度小于0.1mm,且大于0.05μm。

Description

电子烟雾化组件、雾化芯的制备方法和电子烟
本申请要求于2021年7月24日提交中国专利局,申请号为202110840538.3,申请名称为“电子烟雾化组件、雾化芯的制备方法和电子烟”的中国专利申请的优先权,其全部内容通过引用结合到本申请中。
技术领域
本申请涉及电子烟技术领域,更具体地,涉及一种电子烟的雾化组件、雾化芯的制备方法和电子烟。
背景技术
电子烟一般包括电源组件和雾化器。电源组件向雾化器供电后雾化器将电子烟中的烟液进行加热雾化,烟液转变成雾气后被用户吸食。用户在吸食电子烟时有一种类似吸烟时“吞云吐雾”的感觉。近年来电子烟以其吸食方便、对身体危害小等特点,得到消费者青睐。
在电子烟领域中,烟油浸满雾化芯的速度和均匀程度、烟油充分雾化的程度、雾化器的加热部件能否及时启动等均会严重影响用户体验。
在现有技术中,雾化器芯通常采用多孔材料以吸收烟油。多孔材料具有吸附、传导液体的性能。但是这种设计也有可能造成烟油泄漏。烟油浸满多孔材料后有可能在多孔材料的表面、棱边处堆积,进而液滴在振动、气流流动的情况下会滴落在电子烟的壳体内,甚至会滴落在气流通道上。这种现象会造成烟油从电子烟的壳体缝隙、进气口等位置漏出,严重影响用户的使用体验。
另一方面,多孔体的微孔结构在加工过程中难以控制,容易出现微孔尺寸不符合实际应用需求的情况,进而造成烟油的流动过快或过慢。这种现象会影响雾化烟气的使用口感。
由此,有必要对电子烟的内部结构进行改进。
发明内容
本申请的一个目的是提供一种电子烟雾化组件的新技术方案。
本申请的又一个目的是提供一种电子烟雾化组件的雾化芯的制备方法。
本申请的又一个目的是提供一种电子烟。
根据本申请的第一方面,提供了一种电子烟雾化组件,包括:壳体,所述壳体内具有储液腔和雾化腔,所述壳体上设有与外界大气连通的出气通道,所述雾化腔与所述出气通道连通;雾化芯,所述雾化芯设置在所述壳体内,所述雾化芯包括多孔体和发热体,所述多孔体具有吸液面、雾化面以及连接所述吸液面与雾化面的外周面,所述吸液面与所述储液腔连通,所述雾化面与所述雾化腔连通,所述发热体设于所述雾化面;所述多孔体的至少部分外表面设有阻隔层,所述阻隔层中的阻隔材料填充所述多孔体的外表面的至少部分微孔,所述阻隔层的厚度小于0.1mm,且所述阻隔层的厚度大于或等于0.05μm。
根据本申请的一个实施例,所述阻隔层的厚度范围为0.05μm-90μm。
根据本申请的一个实施例,所述阻隔层的厚度范围为0.3μm-50μm。
根据本申请的一个实施例,所述阻隔层的厚度范围为0.4μm-30μm。
根据本申请的一个实施例,所述阻隔层的厚度范围为0.1μm-1μm。
根据本申请的一个实施例,所述外周面上至少一部分区域设置有所述阻隔层,所述多孔体的外周面上设置有阻隔层的区域为阻隔区域。
根据本申请的一个实施例,所述阻隔层覆盖整个所述外周面。
根据本申请的一个实施例,所述外周面包括上侧面、下侧面和台阶面,所述上侧面的边缘与所述吸液面对接,所述下侧面的边缘与所述雾化面对接,所述上侧面与所述下侧面形成有所述台阶面,所述台阶面与所述吸液面相背;所述台阶面上设有所述阻隔层。
根据本申请的一个实施例,所述吸液面的边缘设置有所述阻隔层,所述吸液面的边缘设置有阻隔层的区域为阻隔区域。
根据本申请的一个实施例,所述雾化面的边缘设置有所述阻隔层,所 述雾化面的边缘设置有阻隔层的区域为阻隔区域。
根据本申请的一个实施例,所述雾化面上围绕所述发热体的区域上设有所述阻隔层,所述雾化面上围绕所述发热体设置有阻隔层的区域为阻隔区域。
根据本申请的一个实施例,所述多孔体设有换气通道,所述换气通道的一端与储液腔连通,所述换气通道的另一端与所述雾化腔连通,所述换气通道允许外界空气进入所述储液腔并阻止储液腔中的液体流出;所述换气通道的内壁上设有所述阻隔层。
根据本申请的一个实施例,所述换气通道为沿从所述吸液面至所述雾化面的延伸方向贯穿所述多孔体的通孔。
根据本申请的一个实施例,所述换气通道为设于所述外周面的凹槽,所述凹槽沿从所述雾化面到所述吸液面的延伸方向贯通所述多孔体。
根据本申请的一个实施例,所述换气通道数量为1个或多个,多个所述换气通道间隔设置在所述多孔体的外周面。
根据本申请的一个实施例,所述阻隔区域的微孔的平均孔径为2μm-60μm。
根据本申请的一个实施例,所述阻隔区域的微孔的平均孔径为2μm-30μm。
根据本申请的一个实施例,所述阻隔区域的微孔的平均孔径为3μm-20μm。
根据本申请的一个实施例,所述阻隔区域的单位面积的微孔数量为20-300个/mm 2
根据本申请的一个实施例,所述阻隔区域的单位面积的微孔数量为20-100个/mm 2
根据本申请的一个实施例,所述阻隔区域的单位面积的微孔数量为30-60个/mm 2
根据本申请的一个实施例,所述多孔体的孔隙率范围为40%-60%;或者,所述多孔体的孔隙率大于60%。
根据本申请的一个实施例,所述吸液面上整体设置有所述阻隔层,所 述吸液面设置所述阻隔层后,吸液面的孔隙率小于或等于55%。
根据本申请的一个实施例,所述吸液面设置所述阻隔层后,吸液面的微孔的平均孔径范围为40μm-60μm。
根据本申请的一个实施例,所述雾化面上整体设置有所述阻隔层,所述雾化面设置所述阻隔层后,雾化面的孔隙率小于或等于55%。
根据本申请的一个实施例,所述雾化面设置所述阻隔层后,雾化面的微孔的平均孔径范围为40μm-60μm。
根据本申请的一个实施例,所述阻隔层为气相沉积层、涂层或印刷层。
根据本申请的一个实施例,所述阻隔层为物理气相沉积层。
根据本申请的一个实施例,所述阻隔层为二氧化硅层、氧化铝层、硅层或铝层。
根据本申请的一个实施例,所述阻隔层中的阻隔材料为氧化铝、二氧化硅、铝、硅、硼硅酸盐或纳硅酸盐中的一种或几种。
根据本申请的一个实施例,所述阻隔层中的阻隔材料为二氧化硅、氧化铝、硅或铝中的一种。
根据本申请的一个实施例,所述的电子烟雾化组件还包括雾化芯密封件,所述雾化芯密封件套设在所述多孔体上,所述雾化芯密封件至少覆盖所述多孔体的部分所述外周面以及所述吸液面的边缘。
根据本申请的一个实施例,所述的电子烟雾化组件还包括:上盖及上盖密封件,所述上盖密封件套设在所述上盖的外周,所述上盖密封件的外表面与所述壳体的内壁过盈配合,所述上盖中具有安装位以及与安装位连通的通液腔,所述通液腔与所述储液腔连通;所述雾化芯固定设置在所述安装位处,所述吸液面与所述通液腔连通。
根据本申请的一个实施例,所述的电子烟雾化组件还包括下盖,所述下盖设置在所述壳体远离所述出气通道的一端,所述下盖与所述多孔体的雾化面之间的区域构成所述雾化腔,所述下盖对所述雾化芯形成支撑;所述下盖上设置有进气通道,所述进气通道与所述雾化腔连通;所述下盖上设置有导电件,所述发热体与所述导电件形成电连接。
根据本申请的第二方面,还提供了上述电子烟雾化组件的雾化芯的制 备方法,包括以下步骤:制备多孔体,所述多孔体具有吸液面、雾化面和外周面;对所述多孔体的至少一部分表面进行表面处理,在所述多孔体的外表面上形成阻隔层,阻隔层中的阻隔材料填充多孔体的外表面的至少部分微孔;在所述多孔体的雾化面上设置发热体。
根据本申请的一个实施例,所述表面处理的工艺包括气相沉积、涂覆或印刷。
根据本申请的一个实施例,所述表面处理的工艺包括溅射或真空蒸镀。
根据本申请的第三方面,还提供了一种电子烟,包括:上述任一实施例所述的电子烟雾化组件;烟杆装置,所述烟杆装置内设置有电气组件,所述电气组件与所述发热体形成电连接,所述电气组件被配置为向发热体供电,所述烟杆装置上形成有进气口,所述进气口与所述雾化腔形成连通;所述烟杆装置与所述电子烟雾化组件以可拆卸的方式相互连接。
根据本公开的一个实施例,通过在多孔体上设置阻隔层,使阻隔材料填充多孔体的微孔,改善多孔体的透液性能。
通过以下参照附图对本申请的示例性实施例的详细描述,本申请的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本申请的实施例,并且连同其说明一起用于解释本申请的原理。
图1是本申请提供的电子烟雾化组件的剖面***示意图;
图2是本申请提供的电子烟雾化组件的组装剖面示意图;
图3是本申请提供的电子烟雾化组件的部分零件的组装剖面示意图;
图4是本申请提供的雾化芯的侧面剖视结构示意图;
图5是本申请提供的一种雾化芯的结构示意图;
图6是本申请提供的一种雾化芯的结构示意图;
图7是本申请提供的一种雾化芯的结构示意图;
图8是本申请提供的一种雾化芯的侧面剖视结构示意图;
图9是本申请提供的一种雾化芯的结构示意图;
图10是本申请提供的一种雾化芯的结构示意图;
图11是本申请提供的一种雾化芯的侧面剖视结构示意图;
图12是本申请提供的多孔体的表面局部放大剖视图。
附图标记
电子烟雾化组件100;
壳体10;出气通道11;储液腔12;雾化腔13;
雾化芯20;
多孔体21;
吸液面211;
雾化面212;
外周面213;上侧面2131;下侧面2132;台阶面2133;
微孔214;
换气通道22;
发热体23;
阻隔层24;
雾化芯密封件30;
上盖40;
上盖密封件50;
下盖60;
导电件70;
具体实施方式
现在将参照附图来详细描述本申请的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本申请的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本申请及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨 论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
如图1至图12所示,本方案提供的电子烟雾化组件100包括壳体10和雾化芯20。
壳体10内具有储液腔12和雾化腔13。储液腔12用于存储烟油。壳体10上设有与外界连通的出气通道11,雾化腔13与出气通道11连通。储液腔12中的烟液被雾化后形成烟雾并经由雾化腔13进入出气通道11被用户吸食。
雾化芯20设置在壳体10内。雾化芯20包括多孔体21和发热体23。多孔体21用于浸润、吸收烟液。多孔体21具有吸液面211、雾化面212以及连接吸液面211和雾化面212的外周面213。吸液面211与储液腔12形成连通,以便用于接触、吸收储液腔12中的液体。雾化面212则与雾化腔13连通,发热体23设于雾化面212。发热体23在发热时能够将多孔体21中传导至雾化面212的烟液加热雾化,形成的烟雾进入雾化腔13中,并经由雾化腔13进入出气通道11,从而被用户吸食。
多孔体21的至少一部分外表面上设置有阻隔层24,即,吸液面211、雾化面212、外周面213的至少之一上设置有阻隔层24;或者,吸液面211、雾化面212、外周面213的中的至少一个面上设有阻隔层24;或者,吸液面211、雾化面212、外周面213的中的至少一个面上整个设有阻隔层24;或者,吸液面211、雾化面212、外周面213的中的至少一个面上的至少部分区域设置有阻隔层24。多孔体21上分布有微孔214,这些微孔214分布在多孔体21的表面以及内部,其能够起到吸附、传递液体的作用。多孔体21为具有孔洞的材料件,例如可以为陶瓷多孔体。阻隔层24为采用气相沉积、涂覆、印刷等方式将阻隔材料在多孔体21的至少部分外面上形成的 层结构。阻隔材料可以填充在多孔体21的外表面上的微孔214中,从而占据外表面上的微孔214的空间。多孔体21外表面上的微孔214的结构能够被改变,从而调节多孔体21表面的透液性能。
阻隔层24的厚度一般小于0.1mm(毫米)大于或等于0.05μm(微米)。阻隔层24的厚度较小,并且通过使细密的阻隔材料以薄层的方式设置在多孔体21表面,一方面能够调节多孔体21外表面的透液性能,另一方面又不会对多孔体21整体内部的吸液、透液性能产生影响,从而保证了多孔体21的整体良好的吸液量和吸液速度。此外,具有较小厚度的阻隔层24不会对多孔体21的整体结构、形状产生影响,同时因为其细密的特点而提高了多孔体21的至少一部分表面的平整程度,这样有利于使多孔体21稳定、可靠地在电子烟雾化组件100中实现定位和安装,并使其不易晃动、被损坏。
根据本申请的实施例,阻隔层24的厚度范围为0.05μm(微米)-90μm(微米)。可选地,阻隔层24的厚度范围为0.3μm-50μm。以上两种厚度范围的阻隔层24形成的填充材料较厚,其能够有效削弱多孔体21外表面上的微孔214的吸液、透液性能,从而一定程度上防止多孔体21的表面出现液滴堆积的现象,降低漏液的可能性。而且,该厚度范围的阻隔层24能够有效改善多孔体21表面的平整程度,从而提高多孔体21在壳体10内的装配稳定性、密封可靠性。
根据本申请的实施例,阻隔层24的厚度范围为0.4μm-30μm。厚度较小的阻隔层24具有较薄的填充材料。这种阻隔层24的厚度更加均匀且能够用于调节多孔体21的外表面的透液速率。在多孔体21的透液速率过快或者透液不均匀的情况下,可以通过设置较薄的、均匀的阻隔层24,来从多孔体21的表面对其透液速率进行调节,以使多孔体21达到符合应用需求的透液、吸液性能。
根据本申请的实施例,阻隔层24的厚度范围为0.1μm-1μm。这种厚度范围的阻隔层24的厚度极小,其可以应用在对多孔体21的局部区域的透液、吸液性能的调节方面。例如,在雾化面212一侧,通过在局部设计极薄的阻隔层24,可以使得烟油有倾向性地向发热体23所在的区域汇聚, 从而提高雾化效率和雾化量,进而达到改善烟气口感的目的。
本申请的技术方案中,设置于多孔体21的至少部分外面上的阻隔层24的厚度可以是均匀的,也可以是非均匀的。
在本申请的技术方案中,可以通过采用上述不同厚度的阻隔层24对多孔体21的外表面进行局部或全面的覆盖,从而起到调节多孔体21吸液速率、吸液均匀程度、表面平整度等方面的作用,这样,能够改善多孔体21的整体性能。
另外,由于多孔体21的外表面上形成有微孔214,微孔214的形状、均匀程度不是完全可控的。所以,上述阻隔层24的厚度通常指在一定区域内阻隔层24的平均厚度。由于微孔214以及多孔体21表面自身结构造成的阻隔层24厚度轻微不均,并不影响上述技术特征的性能发挥。
根据本申请的一个实施例,外周面213上至少一部分区域设置有阻隔层24,多孔体21的外周面213上设置有阻隔层24的区域为阻隔区域。也就是说,阻隔层24可以采用气相沉积、涂覆、印刷等方式将阻隔材料在多孔体21的至少部分外表面形成;根据本申请的其中一个实施例,阻隔层24采用可以物理气相沉积或化学气相沉积的方式在多孔体的至少部分外表面形成;根据本申请的其中一个实施例,阻隔层24采用溅射、真空蒸镀、电镀的方式在多孔体的至少部分外表面形成;根据本申请的其中一个实施例,所述阻隔层采用溅射、真空蒸镀的方式在多孔体的至少部分外表面形成。溅射、真空蒸镀、电镀、涂覆以及印刷工艺为本领技术人员公知,本申请中不做赘述。在将阻隔层24设置在外周面213上时,阻隔材料可以填充在多孔体21的外周面213上的微孔214内。在外周面213上设置阻隔层24可以降低多孔体21外周面213的透液性能。在实际应用中,多孔体21的边缘往往需要跟其它部件配合实现密封,防止液体透过。在这种情况下,外周面213上的微孔214反而造成了漏液的隐患。通过设置阻隔层24能够有效降低外周面213的液体渗透情况,提高密封性。
根据本申请的实施例,外周面213的一部分区域上可以设置有阻隔层24,例如在外周面213的A区域设置阻隔层24,此时阻隔区域即为A区域,阻隔层24不会完全覆盖外周面213,外周面213上的部分区域可以没有覆 盖阻隔层24,即暴露出来。在其他条件相同的情况下,例如外周面213上的微孔214分布的范围和尺寸均较为均匀时,相对于外周面213上未阻隔的区域而言,阻隔区域对应的烟油的渗出率较小。
又一方面,可以在外周面213的全部区域设置阻隔层24,此时阻隔区域即为外周面213的全部区域,阻隔层24可以完全覆盖外周面213。
在阻隔层24覆盖外周面213的整个区域的实施方式中,可以通过阻隔层24的结构特点,填充大部分外周面213上的微孔214。相比于未设置有阻隔层24的多孔体21而言,烟油的渗出速率大大降低,从而有效防止烟油在多孔体21的外周面213上结成液滴进而造成渗漏。进一步地,可以通过设置厚度相对较大的阻隔层24,改善多孔体21的外周面213的表面平整度,从而提高多孔体21在壳体10中的定位、安装可靠性,并且提高多孔体21周测的整体密封性。
在将阻隔层24设置在外周面213上时,阻隔层24的阻隔材料可以填充外周面213上的部分微孔214或者全部微孔214,以实现上述降低透液性能的需求。
在本申请的一些具体实施方式中,外周面213包括上侧面2131、下侧面2132和台阶面2133。上侧面2131的边缘与吸液面211对接,下侧面2132的边缘与雾化面212对接,上侧面2131与下侧面2132形成有台阶面2133,台阶面2133与吸液面211相背。可选地,台阶面2133上可以设有阻隔层24。
为了便于描述,可以理解为吸液面211和雾化面212分别为多孔体21的顶面和底面,外周面213则可以是多孔体21的外侧面。
外周面213主要由上侧面2131、下侧面2132和台阶面2133组成,其中台阶面2133位于上侧面2131和下侧面2132之间,上侧面2131位于下侧面2132的上方,也即靠近顶面(吸液面211)的方位。上侧面2131的上边缘与吸液面211连接,下侧面2132的下边缘与雾化面212连接。上侧面2131的下边缘和下侧面2132的上边缘连接,且上侧面2131和下侧面2132的连接区域形成有台阶面2133。台阶面2133可以朝向多孔体21的中心位置延伸,使得多孔体21由上向下在宽度方向有所收缩,雾化面212比 吸液面211的尺寸小一些。通过设置台阶面2133有利于将多孔体21安装在壳体10中,能够提高多孔体21的装配速率,起到定位作用,并且提高安装稳定性。在台阶面2133上设有阻隔层24,能够进一步提高外周面213的烟油防渗透效果。在实际应用中,台阶面2133处有时无法得到良好的密封,其无法与壳体10中的其它部件形成紧贴的密封配合关系。通过在台阶面2133上设置阻隔层24能够有效降低台阶面2133渗透液体的情况,从而达到防漏液的效果。
下面结合具体实施例对设置在外周面213上的阻隔层24的工作过程进行详细描述。
多孔体21为多孔结构,外周面213上也暴露有微孔214,雾化面212以及吸液面211上也具有微孔214结构以便吸收液体。在将阻隔层24设置在外周面213上后,阻隔层24的阻隔材料能够堵塞外周面213上的微孔214的至少一部分。阻隔材料可以是堵塞外周面213上的绝大部分微孔214,也可以堵塞外周面213上的部分微孔214。另外,阻隔材料既可以将单个微孔214整体堵塞,也可以是填充微孔214的一部分空间。通过设置阻隔层24能够降低多孔体21外表面的孔隙率和/或微孔214孔径,从而能够减少甚至避免多孔体21内部的微孔214的烟油穿过外周面213渗流到电子烟的雾化腔13内,进而防止漏液。
另一方面,通过设置阻隔层24还能够提高多孔体21外周面213的整体平整性。这有利于多孔体21在壳体10中的定位、安装稳定性。多孔体21本身在加工时由于工艺特点,就容易出现形状、表面不够规则、平整的情况。通过在外周面213上设计阻隔层24,能够一定程度上缓解上述问题,从而提高外表面的平整度,利于安装定位。
根据本申请的一个可选的实施例,吸液面211的边缘处可以设置有阻隔层24,吸液面211的边缘形成有阻隔区域。吸液面211上的阻隔层24可以是与外周面213上的阻隔层24相对接的,阻隔层24从外周面213上延伸至吸液面211的边缘处。
通过在吸液面211的边缘设置阻隔层24,从而降低吸液面211边缘处的透液性能。而吸液面211上较为靠近吸液面211的中心区域则仍然保留 着良好的透液性能。吸液面211边缘的部分往往需要与雾化芯密封件30等部件接触密封,这部分区域不需要承担吸液的功能,如果吸液性能较好,反而有可能造成漏液。而位于吸液面211中心区域的部分,其与储液腔12连通,这部分区域需要承担吸收液体的作用,其吸液效率大于吸液面211的边缘,能够充分发挥其吸液作用。在将阻隔层24设置在吸液面211的边缘位置,不仅能够强化与储液腔12形成连通的区域的吸液效率,还能够防止液体积存在边缘区域导致的漏液。
在本申请的一些具体实施方式中,雾化面212的边缘也可以设置有阻隔层24,雾化面212的边缘设置有阻隔层24的区域为阻隔区域。如上,雾化面212上设置有发热体23,发热体23通电后发热对传导至雾化面212上的烟液进行加热雾化。而雾化面212上靠近边缘的区域与发热体23的距离相对较远,其受热较少,该位置上的液滴雾化效率较低,在该位置区域设置阻隔层24,能够有效防止漏油。
在该实施方式中,将雾化面212的边缘上设置阻隔层24,能够降低雾化面212边缘处的透液效果,进而使得液体向靠近发热体23的区域流动,进而提高了发热体23周围渗透的液体的量,有效提高雾化效率,使得液体能够得到充分的加热而均匀雾化。
根据本申请的一个实施例,吸液面211上围绕发热体23的区域上设有阻隔层24,雾化面212上形成有阻隔区域。该实施方式进一步提高了烟油的雾化效率。例如,发热体23为通过丝网印刷形成的发热电路,发热体23呈线性延伸状。则,可以在雾化面212上的发热体23其宽度方向上两侧,与发热体23间隔预定距离处布设阻隔层24。这样,多孔体21上的液体就会像发热体23周围聚拢,从而高效的被发热体23雾化。上述预定距离可以根据发热体23的热辐射面积、多孔体21的导热性能而定。在雾化面212上,能够得到有效升温、加热的部分不必设置阻隔层24,而无法得到有效升温的部分,可以设置阻隔层24,以免液体流到这些区域。
另一方面,通过在雾化面212设置阻隔层24,还能够避免其上凝结的、未被雾化的液滴落到雾化腔13中,进而降低漏液的风险。
根据本申请的实施例,如图7、图8、图10和图11所示,多孔体21 设有换气通道22,换气通道22的一端与储液腔12连通,换气通道22的另一端与雾化腔13连通,换气通道22允许外界大气进入储液腔12并且阻止储液腔13中的液体流出。换气通道22用于向储液腔12中通气。储液腔12中的液体流入多孔体21内部后,储液腔12中的气压降低,会出现妨碍液体进一步向多孔体21内渗入的情况。换气通道22在此时发挥作用,在储液腔12的气压降低后,空气能够从换气通道22中流入储液腔12以实现气压平衡。
具体地,多孔体21上设有至少一个换气通道22,其中换气通道22的第一端可以与外界大气连通,换气通道22的第二端可以与储液腔12连通。当用户抽吸时,电子烟雾化组件100内的传感器可以被触发,能够驱使发热体23开始加热,雾化面212上的烟油能够被加热雾化,形成的气溶胶可以进入电子烟雾化组件100的出气通道11内供用户抽吸。
多孔体21上的液体被雾化后,多孔体21会从储液腔12继续吸收液体,储液腔12中的液体逐渐减少后,储液腔12中的气压会下降,容易形成负压,使得储液腔12中的烟油难以流向吸液面211。也就是说,在用户抽吸过程中,储液腔12内部产生的负压很难通过气体的流通恢复内外压差平衡,从而易出现供油不畅、糊芯的问题。因此,本申请实施例通过在多孔体21上设置至少一个换气通道22,可以使得外界的气体能够通过换气通道22进入储液腔12中,从而使得储液腔12内的气压与外界气压平衡,使得储液腔12中的液体可以顺利流至吸液面211。
在换气通道22的内壁可以形成有阻隔层24,通过阻隔层24中的阻隔材料能够填充换气通道22内壁的至少部分微孔214。也就是说,多孔体21内的烟油能够穿过换气通道22的内壁面进入换气通道22内,而通过设置阻隔层24,能够有效减少甚至避免多孔体21内的烟油进入至换气通道22内。如果烟油进入换气通道22内,一方面有可能出现烟油流到雾化腔13进而造成漏液;另一方面,有可能出现烟油随气流回流至储液腔12,妨碍多孔体21吸收液体。通过在换气通道22的内壁面上设置阻隔层24,能够有效改善上述问题。
根据本申请的实施例,多孔体21的吸液面211和雾化面212相对设 置,换气通道22沿吸液面211至雾化面212的延伸方向贯穿多孔体21。也就是说,通过使吸液面211和雾化面212相对设置,便于缩小多孔体21的体积,且能够简化多孔体21的制备工艺。通过将换气通道22的延伸方向设置为沿吸液面211至雾化面212的延伸方向,且贯穿多孔体21,能够缩小外界气体流至储液腔12内所需的时长。
在本发明的一些具体实施方式中,如图7和图8所示,换气通道22为沿从吸液面211至雾化面212的延伸方向贯穿多孔体21的通孔。
也就是说,换气通道22为沿吸液面211至雾化面212的延伸方向贯穿多孔体21的通孔。换气通道22可以设置在多孔体21上且与外周面213间隔开分布,在吸液面211和雾化面212之间可以形成有贯通的孔结构。
根据本申请的实施例,如图6所示,换气通道22也可以为设于外周面213的凹槽,凹槽沿从雾化面212到吸液面211的延伸方向贯通多孔体21。
具体地,换气通道22为设于外周面213的凹槽,凹槽沿雾化面212到吸液面211的延伸方向贯通多孔体21。也就是说,在外周面213上开设有具有开口的凹槽,在吸液面211和雾化面212之间可以形成有贯通的槽结构。凹槽的内壁面能够和电子烟的其他结构,例如密封件等,之间配合形成有换气通道22。
根据本申请的实施例,换气通道22数量为1个或多个,多个换气通道22间隔设置在多孔体21的外周面213。
具体地,换气通道22数量为1个或多个,多个换气通道22间隔设置在多孔体21的外周面。其中,当换气通道22的数量为1个时,该换气通道22可以设置在外周面213上。
当换气通道22的数量为多个时,多个换气通道22可以间隔开分布在多孔体21的外周面,通过提高换气通道22的数量,可以进一步提高内外气压平衡的速率。其中需要说明的是,当换气通道22的数量为多个时,可以在部分换气通道22的内壁面设置有阻隔层24,也可以在每个换气通道22的内壁面设置有阻隔层24,在此不作限定。
根据本申请的实施例,阻隔区域的微孔的平均孔径为2μm-60μm。进 一步地,阻隔区域的微孔214的平均孔径为2μm-30μm。进一步地,阻隔区域的微孔214的平均孔径为3μm-20μm。通过在多孔体21的外周面213上设置阻隔层24,能够有效对外周面213上的微孔214进行填充、封堵。设有阻隔层24的区域中的微孔214平均孔径相对更小,其吸收液体的性能被削弱。在上述孔径范围内,烟油从阻隔区域上透过的速率显著下降,液体不易通过阻隔层24,也不易在阻隔层24上结成较大的液滴。这样,多孔体21的阻隔区域不易出现漏液现象。
根据本申请的实施例,阻隔区域的单位面积的微孔数量为20-300个/mm 2。进一步地,阻隔区域的单位面积的微孔214数量为20-100个/mm 2。进一步地,阻隔区域的单位面积的微孔214数量为30-60个/mm 2。阻隔材料将多孔体21外表面上的微孔214封堵,使得阻隔区域上的微孔214数量相对于原本的多孔体21明显减少。多孔体21通常在单位面积内具有160个以上的微孔214。经过阻隔材料的封堵,微孔214数量降至单位面积100个及以下。通过控制阻隔层24的加工时长以及材料种类,可以对微孔214数量以及阻隔层24的厚度进行控制。阻隔层24的厚度较大的情况下,微孔214数量更容易降低。相应的,阻隔层24的其透液性能也越弱。通过上述工艺,可以调节多孔体21外表面的透液性能,达到防漏液、调节透液速度的作用。
在本申请的一些实施方式中,多孔体21的孔隙率范围可以为40%-60%。根据实际电子烟所采用的烟油、所需的气溶胶密度等因素的不同,本申请可以采用具有不同孔隙率的多孔体21。在40%-60%孔隙率的多孔体21可以快速的将烟油从吸液面211输送到雾化面212,吸液速度能够满足用户的正常抽吸频率和速度。
根据本申请的实施例,多孔体21的孔隙率也可以大于60%。孔隙率较大的多孔体21具有较快的透液速度,并且烟油也会以较大的液滴形式快速移动到雾化面212。这种多孔体21适用于粘度较大的烟油。
根据本申请的实施例,对于具有较大孔隙率的多孔体21,可以在吸液面211上整体设置有阻隔层24,利用阻隔材料对吸液面211上的微孔214进行填充、封堵,吸液面211上的孔隙率可以降低到小于或等于55%的程 度。这样,液体不会因为吸液面211的孔隙率过高而一下涌入多孔体21,进而降低液体涌入形成不均匀的大液滴或者漏液等现象。优选地,吸液面211的孔隙率范围可以为40%-50%。
根据本申请的实施例,经过阻隔材料的填充,吸液面211上的微孔214的平均孔径范围为40μm-60μm。微孔214的平均孔径在该范围内能够保证液体顺畅、匀速的从吸液面211流入多孔体21。同时,液体不会过快的涌入多孔体21内部。如果吸液面211的微孔214平均孔径过大,也有可能造成对于液体的吸附力降低,反而降低了吸液速率。
根据本申请的实施例,对于具有较大孔隙率的多孔体21,可以在雾化面212上整体设置有阻隔层24,利用阻隔材料对雾化面212上的微孔214进行填充、封堵。雾化面212的孔隙率可以降低到小于或等于55%程度。如果雾化面212的孔隙率过高,有可能造成雾化面212上形成较大尺寸的液滴,这种液滴在加热雾化时难以形成均匀的气溶胶,会影响使用体验。而且,雾化面212上较大的孔隙率也有可能造成液体直接滴落,造成漏油隐患。
根据本申请的实施例,经过阻隔材料的填充,雾化面212上的微孔214的平均孔径范围为40μm-60μm。微孔214的平均孔径在该范围内能够保证液体顺畅、匀速的从吸液面211流入多孔体21。进一步地,液体在雾化面212不会结成过大的液滴,防止出现雾化不均匀、液滴滴落的现象。特别的,雾化面212的微孔214孔径如果过大,有可能造成液滴直接流出、脱离多孔体21,既不能达到雾化效果,又严重增加了漏液风险。为此,可以在雾化面212上设置厚度相对较大的阻隔层24。
在本发明的一些具体实施方式中,阻隔层24为气相沉积层、涂层或印刷层。
也就是说,阻隔层24可以为气相沉积层、涂层或印刷层,其中在阻隔层24为气相沉积层时,既可以是物理沉积层,也可以为化学沉积层。物理气相沉积包括溅镀、蒸镀,化学气相沉积包括电镀,实现涂层的涂覆工艺包括喷涂、淋涂。
即,阻隔层24可以通过对外周面213进行工艺处理制得,工艺处理 可以为电镀、溅镀、蒸镀、喷涂、淋涂、印刷、浸泡、上釉等。
其中,在工艺处理采用上釉时,雾化芯20的外表面可以采用施釉工艺(例如蘸釉、荡釉、浇釉、刷釉、洒釉、轮釉等),在成型的雾化芯20坯体表面施以釉浆,并在800℃-1400℃温度烧制而成。
在本申请中,针对雾化芯20,雾化芯20外表面采用施釉工艺所采用的材料为食品级、医用级安全的无铅釉(主要成份为二氧化硅、氧化锆、三氧化二铝等),且由于非外观部件无需使用彩釉(常采用金属氧化物制备,如钒、铬、锰、铁、钴、镍、和铜等的氧化物)减少雾化芯20渗出重金属的可能。
优选地,阻隔层24为物理气相沉积层,其中物理气相沉积可以包括溅镀、蒸镀。
根据本申请的一个实施例,阻隔层24为二氧化硅层、氧化铝层、硅层或铝层。
根据本申请的一个实施例,阻隔层24中的阻隔材料为氧化铝、二氧化硅、铝、硅、硼硅酸盐或纳硅酸盐中的一种或几种。
根据本申请的一个实施例,阻隔层中的阻隔材料为二氧化硅、氧化铝、硅或铝中的一种。
可选地,阻隔层24的耐受温度为200℃-1100℃。优选地,阻隔层24的耐受温度为600℃-1000℃。
在本发明的一些具体实施方式中,阻隔区域对应的单位面积孔数量为20/mm 2-300/mm 2。优选地,阻隔区域对应的单位面积孔数量为30/mm 2-240/mm 2
根据本发明的一个实施例,阻隔区域的渗透率为0m/s-0.2mm/s。优选地,阻隔区域的渗透率为0m/s-0.17mm/s。
根据本申请的实施例,如图1和图2所示,电子烟雾化组件100还包括雾化芯密封件30,雾化芯密封件30套设在多孔体21上,雾化芯密封件30至少覆盖多孔体21的部分外周面213以及吸液面211的边缘。
雾化芯密封件30可以与设置在外周面213以及吸液面211的边缘的阻隔层24形成配合,从而有效提高防漏液性能。雾化芯密封件30与外周面213形成贴合、密封包围的关系。这种密封关系用于阻止液体从雾化芯 密封件30与多孔体21之间的缝隙流到雾化腔13。在多孔体21的外周面213形成阻隔区域的情况下,液体难以在外周面213上渗透、移动,雾化芯密封件30与多孔体21的外周面213之间的防漏液密封性显著提高。两者配合能够基本杜绝液体从缝隙处漏到雾化腔13的现象。
多孔体21的吸液面211与储液腔12连通,以吸收储液腔12中的烟液。为了提高多孔体21外周面213的防漏液性能,雾化芯密封件30可以延伸、包裹在吸液面211的边缘处。进一步地,这种边缘包裹的密封方式,也能够避免储液腔12与吸液面211对接不紧密造成的漏液。对于雾化芯密封件30的这种密封方式,可以配合在吸液面211的边缘形成阻隔层24,使得多孔体21在吸液面211的边缘处具有较低的透液效率。也即多孔体21在于与雾化芯密封件30重叠的位置处形成了阻隔区域,两者配合形成更好的密封、阻隔液体的效果。而吸液面211与储液腔12正对的区域仍可以发挥良好的吸液性能。
根据本申请的实施例,电子烟雾化组件100还可以包括上盖40及上盖密封件50。上盖密封件50套设在上盖40的外周,上盖密封件50的外表面与壳体10的内壁形成挤压过盈配合。这种过盈配合形成密封关系。在壳体10的内部,上盖密封件50的上方可以用于构成储液腔12。而上盖密封件50则用于限定出储液腔12的区域。上盖40中可以具有安装位以及与安装位连通的通液腔,通液腔与储液腔12连通。上盖密封件50避开通液腔,使得储液腔12中的液体能够流入通液腔。上盖密封件50则将除通液腔之外的区域包封、密封,阻止液体流过。
雾化芯20固定设置在安装位处,吸液面211与通液腔连通。多孔体21的吸液面211通过通液腔与上述储液腔12连通。储液仓内的液体经过通液腔流动到吸液面211上,实现对多孔体21的浸润。
根据本申请的实施例,电子烟雾化组件100还包括下盖60,下盖60设置在壳体10内,下盖60与多孔体21的雾化面212之间的区域构成雾化腔13,下盖60对雾化芯20形成支撑。在可选的实施方式中,壳体10的上部设置有出气通道,壳体10的下部敞开的结构。下盖60盖设在壳体10的下部。
根据本申请的实施例,下盖60能够对雾化芯20以及雾化芯密封件30形成支撑,雾化芯20及雾化芯密封件30固定在上盖40的安装位处,下盖60与上盖40配合对雾化芯20及雾化芯密封件30进行固定;可选地,下盖60上可以具有支撑结构,其装配在壳体10上能够通过支撑结构对雾化芯20以及雾化芯密封件30形成支撑作用,与上盖40配合对雾化芯20及雾化芯密封件30进行固定。
下盖60上可以设置有进气通道,进气通道与雾化腔13连通。雾化芯20组件的整体气流通路可以为:空气进入进气通道,并进入雾化腔13与烟雾混合混合空气后的烟雾流入出气通道11,最后通过出气通道11被用户吸入。
下盖60上还可以设置有导电件70。发热体23与导电件70形成电连接。导电件70用于为发热体23供电,从而实现加热雾化功能。导电件70可以通过抵顶、接触等方式与发热体23上引出的引脚电连接。
可选地,电子烟雾化组件100还可以包括中盖。中盖可以设置在上盖40与下盖60之间。中盖为雾化芯20以及雾化芯密封件30提供定位、支撑等作用。利用中盖能够增到雾化腔13的空间,并且能够更好的从多孔体21的外周面213、雾化面212两方面对多孔体21提供更好的支撑定位。
本申请提供了制备上述电子烟雾化组件100的雾化芯的制备方法。对于雾化芯20,制备方法包括:
制备多孔体21,多孔体21具有吸液面211、雾化面212和外周面213。多孔体21可以采用陶瓷材料经过烧结形成,其内部及表面具有微孔214结构。
对多孔体21的至少一部分表面进行表面处理,在多孔体21的外表面上形成阻隔层24,阻隔层24中的阻隔材料填充多孔体21的外表面的至少部分微孔214。通过表面处理,在多孔体21的外表面上附上阻隔材料,以使外表面上具有阻隔区域,该区域的透液效率被降低。
在多孔体21的雾化面212上设置发热体23。发热体23可以通过印刷的方式设置在雾化面212上,以便于对雾化面212上吸附的液体进行加热、雾化。
在制备多孔体21时,可以先将骨架粉、表面活性剂、造孔剂(碳粉、锯末、淀粉、聚氯乙烯等)和成型添加剂以及烧结助剂进行混合,其中骨架粉包括非定型石英、结晶石英、氧化铝、碳化硅、氧化钛的一种或者多种。然后,将混合后的浆料在成型机中进行成型,得到成型后的雾化芯坯体。随后,可以将成型后的雾化芯坯体进行烧结,烧结温度可以为1000℃-1400℃。
在对外表面进行表面处理后,能够使多孔体21的外表面的至少部分区域形成阻隔层24,阻隔层24中的阻隔材料填充多孔体21的位于外表面的至少部分微孔214形成阻隔区域。
需要说明的是,在对多孔体21的外表面进行表面处理时,可以将烧结后的烧结坯体,进行表面处理。其中表面处理工艺包含但不限于电镀、溅镀、蒸镀(沉积)、喷涂、淋涂(涂覆)、印刷、浸泡、上釉(涂覆)等),阻隔层24采用的材料包含但不限于金、钛、氧化铝、氧化硅、碳等。其中,吸液面211和雾化面212如无需表面处理,则可以采用遮蔽保护或去料等方法实现。
根据本申请的实施例,所述表面处理工艺为溅射或真空蒸镀;阻隔层24采用的材料为二氧化硅、氧化铝、硅或铝中的一种。
随后,在多孔体21的雾化面212上设置发热体23。例如,将表面处理后的雾化面212进行发热线路加工,并可以将丝印好的雾化芯20进行还原气氛烧结,最终得到所需的雾化芯20。
可选地,表面处理的工艺包括气相沉积、涂覆或印刷。涂覆方式包括喷涂和浸附,这种加工方式最容易处理,形成的阻隔层24相对较厚。采用气相沉积工艺能够对阻隔层24的厚度进行精确控制,易于实现所需的特定厚度的阻隔层24。其中优选地,表面处理的工艺采用物理气相沉积,有效形成精确尺寸厚度和填充微孔214效果的阻隔层24。
在本发明的一些具体实施方式中,多孔体21采用氧化硅材质或采用氧化硅/氧化铝的混合材质。
下面结合具体实施例对根据本发明实施例的雾化芯20进行详细说明。
实施例及对比例
制备多孔陶瓷体作为多孔体,在300倍SEM视窗大小对多孔陶瓷体表面的平均孔径及单位面积孔数量进行测量,测得多孔陶瓷体的表面的平均孔径为40μm,多孔陶瓷的表面在0.95mm*0.7mm的面积内的孔数量为160,在多孔陶瓷体的外周面形成阻隔层24;然后通过丝网印刷的方式在多孔陶瓷体的雾化面212设置发热线路;其中实施例1-2、8-11为采用溅射的方法在多孔体的外周面形成为二氧化硅阻隔层,实施例3-4为采用溅射的方法在多孔体的外周面形成氧化铝阻隔层,其中溅射的具体方法为:采用磁控溅射技术,将所需处理的样品表面正对于溅射方向放置,钯材原子在入射原子的轰击下不断往待处理面溅射,同时在反应气体的作用下,在样品表面形成对应氧化物的沉积层。所述入射原子选用为Ar气,反应气体为高纯氧气,溅射靶材为高纯硅或者铝,衬底为硅片或者铝片;其中实施例3中在多孔陶瓷体的外周面设沿吸液面211至雾化面212的延伸方向贯通多孔陶瓷体的凹槽;实施例4中在多孔陶瓷体的外周缘开设有沿吸液面211至雾化面212的延伸方向贯通多孔陶瓷体的通孔;实施例5-6为采用真空蒸镀的方法在多孔体的外周面形成铝阻隔层,实施例7为采用真空蒸镀的方法在多孔体的外周面形成硅阻隔层,真空蒸镀的具体方法为:产品放入真空镀膜机中,镀材在热源的作用下蒸发出气态镀材,并在样品所需处理表面而形成镀层,镀材可以为铝或者硅;各实施例中设置阻隔层24的厚度及阻隔层24的材料如表1所示:
表1
Figure PCTCN2021122898-appb-000001
Figure PCTCN2021122898-appb-000002
采用扫描电镜在300倍SEM视窗大小,测量陶瓷多孔体外周面经过表面处理形成有阻隔层24后,各实施例和对比例形成的阻隔区域的表面平均孔径及0.95mm*0.7mm面积的孔数量如表2所示,通过测量设置阻隔层24后,各实施例和对比例外周面烟油的渗透率如表2所示,其中设置阻隔层24后多孔陶瓷体外周面烟油的渗透率的测试方法具体为:在阻隔层24表面滴加0.02g烟油,测量烟油完全渗入多孔陶瓷所需时长t,将陶瓷切开测量烟油向陶瓷内部渗透深度h,渗透率为=h/t。
表2
Figure PCTCN2021122898-appb-000003
由实施例和对比例可以看出,通过在多孔体的至少部分外表面设置阻 隔层,能够极大减少烟油泄漏。
本申请还提供了一种电子烟。该电子烟包括上述电子烟雾化组件100以及烟杆组件。烟杆装置内设置有电气组件,电气组件与发热体23形成电连接,电气组件被配置为向发热体23供电。烟杆装置上形成有进气口,进气口与雾化腔13形成连通。烟杆装置与电子烟雾化组件100以可拆卸的方式相互连接。
电子烟雾化组件100对烟油等液态基质雾化产生气溶胶(烟气),雾化腔13的空气与电子烟雾化组件100加热雾化产生的烟气在混合后能够通过出气通道11被导出。该液态基质可以为烟油等烟油,烟油可以被电子烟雾化组件100雾化并产生烟气。
根据本发明的一个可选实施例,电子烟雾化组件100可以包括上盖40、上盖密封件50、中盖、下盖60和下盖密封圈。
其中,壳体10与上盖40、上盖密封件50、雾化芯20、密封件30组成的储液腔12用于盛放液态基质。
上盖密封件50采用过盈装配的方式固定在壳体10内。该方式能够密封壳体10的内侧壁与上盖40的外侧壁的装配间隙。防止烟油通过壳体10的内侧壁与上盖40的外侧壁的间隙从储液腔12流向雾化腔13。
雾化芯密封件30采用过盈装配方式固定在上盖40内。这种装配方式能够密封雾化芯20的外侧壁和上盖40的内侧壁之间的装配间隙,防止烟油通过雾化芯20外侧壁与上盖40的内侧壁之间的间隙从储液腔12流向雾化腔13。在实际生产加工中,由于上盖40内壁尺寸、陶瓷密封圈尺寸和雾化芯20尺寸等多方面的影响,多孔陶瓷常常出现外周面213的密封性差导致漏液的现象。根据本发明实施例的电子烟,通过对多孔体21的外表面进行工艺处理后,雾化芯密封件30能较好的密封多孔体21的外周面213,不仅能够防止烟油从储液腔12渗流到雾化腔13,还能够防止外周面213的烟油被吸入用户口中,能更好地满足客户的使用和测试要求,提高了用户的综合使用体验。
下盖60上装配有导电件70,导电件70与烟杆中的电池组件导通,提供电能。
中盖连接上盖40与下盖60,中盖主要起到支撑作用,支撑导电件70与雾化芯20引线接触,也对调节雾化腔13的气道吸阻起一定的作用。中盖还对雾化芯20的定位、安装提供支撑作用。
在本发明的一些具体实施方式中,下盖60与壳体10通过卡扣装配,并通过下盖密封圈来密封下盖60与壳体10的装配间隙,防止雾化腔13冷凝油漏油。
在本发明的一些具体实施方式中,下盖60上设有第一进气孔和第二进气孔,主要起连通烟杆装置的进气口与电子烟雾化组件100的出气通道11的作用。进一步地,第一进气口与第二进气口配合作用提供主要的抽吸阻力,为客户提供舒适的抽吸体验。
当用户抽吸时,电子烟内的传感器被触发,发出信号驱使雾化芯20开始加热,液态基质在雾化面212中被加热雾化,空气经由第一进气孔及第二进气孔进入雾化腔13,混合雾化腔13中的烟雾。混合后烟雾经过出气通道11,进入用户口腔和鼻腔中。
在本申请中,多孔体21通过外表面工艺处理后,雾化芯密封件30能较好地密封多孔体21的外周面213,防止烟油从电子雾化装置的储液腔12渗流到雾化腔13,也能防止多孔体21的外周面213的烟油被吸入使用者口中,能更好地满足客户的使用和测试要求,并提高用户的综合使用体验。
在本申请中,雾化芯20通过外表面工艺处理后,雾化芯20的换气通道22与烟油流动通道分离,换气通道22与烟油流动通道相互无影响,避免了由于换气时引起雾化表面烟油回流产生的干烧及糊芯问题。
此外,在本申请中,由于针对多孔体21采用了表面处理工艺,增强了多孔材质的表面覆盖,可以大幅减少装配(摩擦、挤压等)、使用(挤压、振动等)过程出现的陶瓷掉粉现象。
在本申请中,针对多孔体21的外表面的工艺层能耐受雾化芯20雾化的工作温度(180℃-500℃)。
在本申请中,针对多孔体21表面工艺处理后,通过后加工(机械加工:磨、铣、抛等,激光加工等),去除陶瓷上下面的部分或全部工艺处理层,从而露出陶瓷多孔面。
在本申请中,针对多孔体21进行表面工艺处理后,通过后加工(机械加工:磨、铣、抛等,激光加工等),去除陶瓷雾化芯20的外周面213的部分工艺处理层,从而控制露出陶瓷多孔面表面面积(例如控制漏出不同表面积的陶瓷),从而控制雾化芯20外周面213的烟油渗透率。
根据本发明的一个实施例,雾化芯密封件30采用软胶材质的密封圈,例如采用硅胶材质。在采用乳胶材质时,雾化芯密封件30的内侧壁与雾化芯20的外周面213紧密贴合,并且在上盖40的配合下完成对雾化芯20的外周面213的密封,防止漏液。
当雾化芯20通过外表面工艺处理后,雾化芯密封件30能较好的密封外周面213,防止烟油从储液腔12渗流到雾化腔13,也能防止外周面213的烟油被吸入使用者口中,能更好地满足客户的使用和测试要求,提高用户的综合使用体验。
总而言之,根据本发明实施例的电子烟,对雾化芯20进行外表面工艺处理后,由于增加了雾化芯20的外周面213的表面覆盖,减少了外周面213的不必要的烟油回流通道,使雾化面212附近的烟油难以回流至储液腔12,从而保证前后雾化口感的一致性。并且,通过控制厚度或者表面图案,能够控制雾化芯20的表面的微孔214的深度、孔径大小、孔径分布及孔隙率。
虽然已经通过例子对本申请的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本申请的范围。本领域的技术人员应该理解,可在不脱离本申请的范围和精神的情况下,对以上实施例进行修改。本申请的范围由所附权利要求来限定。

Claims (30)

  1. 一种电子烟雾化组件,其特征在于,包括:
    壳体,所述壳体内具有储液腔和雾化腔,所述壳体上设有与外界大气连通的出气通道,所述雾化腔与所述出气通道连通;
    雾化芯,所述雾化芯设置在所述壳体内,所述雾化芯包括多孔体和发热体,所述多孔体具有吸液面、雾化面以及连接所述吸液面与雾化面的外周面,所述吸液面与所述储液腔连通,所述雾化面与所述雾化腔连通,所述发热体设于所述雾化面;
    所述多孔体的至少部分外表面设有阻隔层,所述阻隔层中的阻隔材料填充所述多孔体的外表面的至少部分微孔,所述阻隔层的厚度小于0.1mm,且所述阻隔层的厚度大于或等于0.05μm。
  2. 根据权利要求1所述的电子烟雾化组件,其特征在于,所述阻隔层的厚度范围为0.05μm-90μm。
  3. 根据权利要求1或2所述的电子烟雾化组件,其特征在于,所述阻隔层的厚度范围为0.3μm-50μm。
  4. 根据权利要求1至3任意之一所述的电子烟雾化组件,其特征在于,所述阻隔层的厚度范围为0.4μm-30μm。
  5. 根据权利要求1或2所述的电子烟雾化组件,其特征在于,所述阻隔层的厚度范围为0.1μm-1μm。
  6. 根据权利要求1至5任意之一所述的电子烟雾化组件,其特征在于,所述外周面上至少一部分区域设置有所述阻隔层,所述多孔体的外周面上设置有阻隔层的区域为阻隔区域。
  7. 根据权利要求1至6任意之一所述的电子烟雾化组件,其特征在于,所述阻隔层覆盖整个所述外周面。
  8. 根据权利要求1至7任意之一所述的电子烟雾化组件,其特征在于,所述外周面包括上侧面、下侧面和台阶面,所述上侧面的边缘与所述吸液面对接,所述下侧面的边缘与所述雾化面对接,所述上侧面与所述下侧面形成有所述台阶面,所述台阶面与所述吸液面相背;
    所述台阶面上设有所述阻隔层。
  9. 根据权利要求1至5任意之一所述的电子烟雾化组件,其特征在于,所述吸液面的边缘设置有所述阻隔层,所述吸液面的边缘设置有阻隔层的区域为阻隔区域。
  10. 根据权利要求1至5任意之一所述的电子烟雾化组件,其特征在于,所述雾化面的边缘设置有所述阻隔层,所述雾化面的边缘设置有阻隔层的区域为阻隔区域。
  11. 根据权利要求1至5中任一项所述的电子烟雾化组件,其特征在于,所述雾化面上围绕所述发热体的区域设有所述阻隔层,所述雾化面上围绕所述发热体设置有阻隔层的区域为阻隔区域。
  12. 根据权利要求1至5任意之一所述的电子烟雾化组件,其特征在于,所述多孔体设有换气通道,所述换气通道的一端与储液腔连通,所述换气通道的另一端与所述雾化腔连通,所述换气通道允许外界空气进入所述储液腔并阻止储液腔中的液体流出;
    所述换气通道的内壁上设有所述阻隔层。
  13. 根据权利要求12所述的电子烟雾化组件,其特征在于,所述换气通道为沿从所述吸液面至所述雾化面的延伸方向贯穿所述多孔体的通孔。
  14. 根据权利要求12所述的电子烟雾化组件,其特征在于,所述换气通道为设于所述外周面的凹槽,所述凹槽沿从所述雾化面到所述吸液面的延伸方向贯通所述多孔体。
  15. 根据权利要求12所述的电子烟雾化组件,其特征在于,所述换气通道数量为1个或多个,多个所述换气通道间隔设置在所述多孔体的外周面。
  16. 根据权利要求6至15任意之一所述的电子烟雾化组件,其特征在于,所述阻隔区域的微孔的平均孔径为2μm-60μm。
  17. 根据权利要求6至15任意之一所述的电子烟雾化组件,其特征在于,所述阻隔区域的单位面积的微孔数量为20-300个/mm 2
  18. 根据权利要求1所述的电子烟雾化组件,其特征在于,所述多孔体的孔隙率范围为40%-60%;
    或者,所述多孔体的孔隙率大于60%。
  19. 根据权利要求18所述的电子烟雾化组件,其特征在于,所述吸液面上整体设置有所述阻隔层,所述吸液面设置所述阻隔层后,吸液面的孔隙率小于或等于55%。
  20. 根据权利要求19所述的电子烟雾化组件,其特征在于,所述吸液面设置所述阻隔层后,吸液面的微孔的平均孔径范围为40μm-60μm。
  21. 根据权利要求18所述的电子烟雾化组件,其特征在于,所述雾化面上整体设置有所述阻隔层,所述雾化面设置所述阻隔层后,雾化面的孔隙率小于或等于55%。
  22. 根据权利要求21所述的电子烟雾化组件,其特征在于,所述雾化面设置所述阻隔层后,雾化面的微孔的平均孔径范围为40μm-60μm。
  23. 根据权利要求1至22任意之一所述的电子烟雾化组件,其特征在于,所述阻隔层为气相沉积层、涂层或印刷层。
  24. 根据权利要求1至23任意之一所述的电子烟雾化组件,其特征在于,所述阻隔层为二氧化硅层、氧化铝层、硅层或铝层。
  25. 根据权利要求1至24任意之一所述的电子烟雾化组件,其特征在于,所述阻隔层中的阻隔材料为氧化铝、二氧化硅、铝、硅、硼硅酸盐或纳硅酸盐中的一种或几种。
  26. 根据权利要求1至25任意之一所述的电子烟雾化组件,其特征在于,还包括雾化芯密封件,所述雾化芯密封件套设在所述多孔体上,所述雾化芯密封件至少覆盖所述多孔体的部分所述外周面以及所述吸液面的边缘。
  27. 根据权利要求1至26任意之一所述的电子烟雾化组件,其特征在于,还包括:上盖及上盖密封件,所述上盖密封件套设在所述上盖的外周,所述上盖密封件的外表面与所述壳体的内壁过盈配合,所述上盖中具有安装位以及与安装位连通的通液腔,所述通液腔与所述储液腔连通;
    所述雾化芯固定设置在所述安装位处,所述吸液面与所述通液腔连通。
  28. 根据权利要求27所述的电子烟雾化组件,其特征在于,还包括下盖,所述下盖设置在所述壳体远离所述出气通道的一端,所述下盖与所述 多孔体的雾化面之间的区域构成所述雾化腔,所述下盖对所述雾化芯形成支撑;
    所述下盖上设置有进气通道,所述进气通道与所述雾化腔连通;
    所述下盖上设置有导电件,所述发热体与所述导电件形成电连接。
  29. 一种权利要求1至28任意之一所述的电子烟雾化组件的雾化芯的制备方法,其特征在于,包括以下步骤:
    制备多孔体,所述多孔体具有吸液面、雾化面和外周面;
    对所述多孔体的至少一部分表面进行表面处理,在所述多孔体的外表面上形成阻隔层,阻隔层中的阻隔材料填充多孔体的外表面的至少部分微孔;
    在所述多孔体的雾化面上设置发热体。
  30. 一种电子烟,其特征在于,包括:
    权利要求1-29任意之一所述的电子烟雾化组件;
    烟杆装置,所述烟杆装置内设置有电气组件,所述电气组件与所述发热体形成电连接,所述电气组件被配置为向发热体供电,所述烟杆装置上形成有进气口,所述进气口与所述雾化腔形成连通;
    所述烟杆装置与所述电子烟雾化组件以可拆卸的方式相互连接。
PCT/CN2021/122898 2021-07-24 2021-10-09 电子烟雾化组件、雾化芯的制备方法和电子烟 WO2023004996A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110840538.3A CN115670029A (zh) 2021-07-24 2021-07-24 电子烟雾化组件、雾化芯的制备方法和电子烟
CN202110840538.3 2021-07-24

Publications (1)

Publication Number Publication Date
WO2023004996A1 true WO2023004996A1 (zh) 2023-02-02

Family

ID=85044325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122898 WO2023004996A1 (zh) 2021-07-24 2021-10-09 电子烟雾化组件、雾化芯的制备方法和电子烟

Country Status (2)

Country Link
CN (1) CN115670029A (zh)
WO (1) WO2023004996A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070267031A1 (en) * 2004-04-14 2007-11-22 Lik Hon Electronic Atomization Cigarette
CN105394816A (zh) * 2015-10-22 2016-03-16 深圳麦克韦尔股份有限公司 电子烟及其雾化组件和雾化元件
CN109414078A (zh) * 2018-09-10 2019-03-01 深圳麦克韦尔股份有限公司 电子烟、雾化组件及其雾化元件
CN109674094A (zh) * 2019-01-26 2019-04-26 深圳市合元科技有限公司 电子烟雾化器及电子烟、雾化组件制备方法
CN110419779A (zh) * 2019-07-15 2019-11-08 深圳市合元科技有限公司 电子烟雾化器、电子烟及雾化组件的制备方法
CN210203364U (zh) * 2019-02-27 2020-03-31 深圳市合元科技有限公司 电子烟雾化器及电子烟
EP3827676A1 (en) * 2019-11-26 2021-06-02 Nerudia Limited Aerosol delivery component
CN113115987A (zh) * 2021-04-21 2021-07-16 东莞市阿尔法电子科技有限公司 雾化芯及烟弹

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070267031A1 (en) * 2004-04-14 2007-11-22 Lik Hon Electronic Atomization Cigarette
CN105394816A (zh) * 2015-10-22 2016-03-16 深圳麦克韦尔股份有限公司 电子烟及其雾化组件和雾化元件
CN109414078A (zh) * 2018-09-10 2019-03-01 深圳麦克韦尔股份有限公司 电子烟、雾化组件及其雾化元件
CN109674094A (zh) * 2019-01-26 2019-04-26 深圳市合元科技有限公司 电子烟雾化器及电子烟、雾化组件制备方法
CN210203364U (zh) * 2019-02-27 2020-03-31 深圳市合元科技有限公司 电子烟雾化器及电子烟
CN110419779A (zh) * 2019-07-15 2019-11-08 深圳市合元科技有限公司 电子烟雾化器、电子烟及雾化组件的制备方法
EP3827676A1 (en) * 2019-11-26 2021-06-02 Nerudia Limited Aerosol delivery component
CN113115987A (zh) * 2021-04-21 2021-07-16 东莞市阿尔法电子科技有限公司 雾化芯及烟弹

Also Published As

Publication number Publication date
CN115670029A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
EP3620071B1 (en) Composite ceramic atomizer and method for preparing same
CN106998822B (zh) 电子烟及其雾化器
US20220338543A1 (en) Electronic atomization apparatus, and atomizer and heating body of electronic atomization apparatus
US20220125113A1 (en) Atomization core
WO2017066955A1 (zh) 电子烟及其雾化组件和雾化元件
WO2015062136A1 (zh) 具有气流调节功能的雾化器
US20230050630A1 (en) Atomization component, atomizer, and electronic atomization device
WO2023000799A1 (zh) 一种雾化芯、雾化组件、雾化器及电子雾化装置
CN215381467U (zh) 雾化芯及其电子烟
TWI741822B (zh) 霧化裝置及其霧化元件
WO2020248230A1 (zh) 电子雾化装置及其雾化器和发热组件
CN113768192A (zh) 一种雾化芯、电子烟以及雾化芯的制作方法
WO2023004996A1 (zh) 电子烟雾化组件、雾化芯的制备方法和电子烟
CN214283302U (zh) 一种高稳定性玻璃雾化器及电子烟
CN113349426A (zh) 一种高性能电子烟雾化器
CN112056630A (zh) 一种雾化器及电子烟
CN210137812U (zh) 一种吸水吸油微孔陶瓷过滤烟嘴
WO2022193673A1 (zh) 雾化芯、雾化装置及电子烟
WO2022057921A1 (zh) 雾化芯、雾化器和电子雾化装置
CN114642273A (zh) 一种高稳定性玻璃雾化器及制备方法
WO2023019728A1 (zh) 电子烟雾化组件、雾化芯的制备方法和电子烟
CN220343650U (zh) 一种防漏油的电子烟雾化芯及其电子烟
CN216493509U (zh) 一种基于蜂窝渗透结构的发热片及包含其的电子烟
WO2023005059A1 (zh) 电子烟雾化芯、电子烟雾化芯的制备方法、电子烟雾化组件和电子烟
KR20230153214A (ko) 세라믹 무화기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951568

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE