WO2023004787A1 - 制备微针的设备及方法 - Google Patents

制备微针的设备及方法 Download PDF

Info

Publication number
WO2023004787A1
WO2023004787A1 PCT/CN2021/109769 CN2021109769W WO2023004787A1 WO 2023004787 A1 WO2023004787 A1 WO 2023004787A1 CN 2021109769 W CN2021109769 W CN 2021109769W WO 2023004787 A1 WO2023004787 A1 WO 2023004787A1
Authority
WO
WIPO (PCT)
Prior art keywords
microneedle
female mold
chamber
vacuum
feeding
Prior art date
Application number
PCT/CN2021/109769
Other languages
English (en)
French (fr)
Inventor
陈宾文
颜平
黄远
刘龙
曲秋羽
Original Assignee
上海悦肤达生物科技有限公司
苏州悦肤达医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海悦肤达生物科技有限公司, 苏州悦肤达医疗科技有限公司 filed Critical 上海悦肤达生物科技有限公司
Publication of WO2023004787A1 publication Critical patent/WO2023004787A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C39/04Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles using movable moulds not applied
    • B29C39/06Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles using movable moulds not applied continuously movable, e.g. along a production line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/24Feeding the material into the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/42Casting under special conditions, e.g. vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/44Measuring, controlling or regulating

Definitions

  • the invention belongs to the technical field of microneedle preparation, and in particular relates to a device and method for preparing microneedles.
  • microneedles including micron-sized needles
  • transdermal administration is one of the methods to solve the above problems.
  • Microneedle transdermal drug delivery can achieve painless drug delivery, improving patient compliance and safety.
  • microneedles can also realize quantitative and targeted delivery of drugs, which can achieve precise drug delivery and good drug delivery effect.
  • microneedling can also be used as a skin pretreatment with the ability to enhance skin permeability. Therefore, microneedles have good prospects for clinical application.
  • the polymer microneedle patch uses polymer microneedles to puncture the human stratum corneum to form a channel that is conducive to drug delivery, thereby promoting the transdermal absorption of drugs.
  • the current technical route for making polymer microneedles is: first prepare the polymer solution for preparing microneedles, then fill the above polymer solution into the microneedle female mold with grooves, and then polymerize the microneedle female mold The material solution is solidified and shaped, and finally demolded to obtain soluble microneedles.
  • This technical route is currently more commonly used method is the method of silicone elastic female mold transfer.
  • a silicone elastic female mold with grooves in advance (the grooves are in the shape of microneedles); then apply the prepared polymer solution on the surface of the silicone elastic female mold with grooves, and Put it in a vacuum environment for a certain period of time; after the polymer solution completely fills the groove of the silicone elastic female mold, put it in the natural environment, and use a certain method (such as drying, cross-linking) to make it solidify, and finally form a flexible Melting microneedles.
  • a certain method such as drying, cross-linking
  • the most critical step of the above preparation method is to fill the polymer solution into the silicone elastic female mold with grooves. Because the size of the grooves in the silicone elastic female mold is small (some areas are even only a few microns), it is not only inefficient to fill each one independently, but also requires extremely high equipment, which is very unfavorable for mass production. Liquid filling can solve the problem of mass production. If the filling method is used to fill these tiny grooves together, when the polymer solution covers the surface of the silicone elastic female mold, the gas trapped in the grooves under the liquid surface will prevent the polymer solution from penetrating into the grooves, thereby affecting the solubility. Forming quality of microneedles.
  • the prior art proposes to pretreat the empty microneedle negative mold, that is, to use plasma gas to improve the hydrophilicity of the mold surface, so as to promote the filling of the polymer solution into the groove of the microneedle.
  • the hydrophilic property of the microneedle negative mold pretreated by plasma gas will decrease with time. Therefore, affected by the residence time of the pretreated microneedle female mold, the difference in hydrophilic properties between molds and different regions in the mold is relatively large, which will affect the filling of the grooves in the microneedle female mold, and then affect the solubility.
  • the consistency and stability of microneedle molding make it difficult to guarantee the molding quality of soluble microneedles.
  • the existing technology also proposes to cover the surface of the microneedle female mold with the polymer solution under negative pressure, and then use atmospheric pressure to fill the polymer solution into the groove, which can quickly complete the uniform casting of the large-plane microneedle casting mold, Realize high-precision and rapid replication of micro-nano-scale structures, but cannot meet the requirements of mass production, the production efficiency is low, and it is difficult to ensure the stability of the vacuum filling environment, which affects the molding quality of micro-needles. At the same time, it is less flexible and cannot be applied Due to the microneedle molds of different sizes, repeated disassembly and assembly are required, and the operation is cumbersome.
  • the existing technology also has the problem of poor homogenization treatment effect on the surface solution of the microneedle female mold, and the homogenization treatment will pollute the solution, and the problem that the air in the groove cannot be fully removed when the solution is cast, and it is difficult to effectively guarantee Microneedling quality.
  • the preparation of soluble microneedles still has problems such as low degree of automation, low production efficiency, and high labor costs.
  • the object of the present invention is to provide a device and method for preparing microneedles, which can realize mass production of microneedles, increase the production capacity of microneedles, improve production efficiency, and improve the molding quality of microneedles.
  • the present invention provides a kind of equipment for preparing microneedle, comprising microneedle female mold, vacuum chamber, filling mechanism and vacuum pumping mechanism;
  • the surface of described microneedle female mold is formed with microneedle matching grooves;
  • the filling mechanism is at least partly arranged in the vacuum chamber, and is used to release the solution for preparing microneedles;
  • the vacuum pumping mechanism is connected to the vacuum chamber, and is used for the vacuum chamber Vacuumizing;
  • the vacuum chamber includes a feed chamber, a filling chamber and a discharge chamber that are set independently of each other;
  • the feeding chamber is used to receive the microneedle female mold under non-negative pressure state
  • the vacuuming mechanism is used to vacuumize the feed cavity that has received the microneedle female mold
  • the filling chamber is used to receive the microneedle female mold transferred from the feeding chamber under a negative pressure state
  • the discharge chamber is used to receive the microneedle female mold transferred from the filling chamber under negative pressure state, and is used to break the vacuum after receiving the microneedle female mold.
  • the device also includes a communicatively connected controller and a vacuum breaking valve, the vacuum breaking valve includes a first vacuum breaking valve and a third vacuum breaking valve; the first vacuum breaking valve is arranged on the feed cavity, the third vacuum breaking valve is set on the discharge cavity;
  • the controller is used to control the opening of the first vacuum breaking valve to break the vacuum of the feeding cavity, and is also used to control the outlet when the microneedle female mold in the third state is transferred to a negative pressure state. After the material cavity, the controller is used to control the opening of the third vacuum breaking valve to break the vacuum of the material discharge cavity.
  • the controller is also connected in communication with the vacuum mechanism; the controller is used to control the vacuum mechanism to vacuumize the discharge chamber, the filling chamber and the feed chamber .
  • the device further includes a sensor assembly communicatively connected to the controller, the sensor assembly includes a first sensor, a second sensor, and a third sensor;
  • the feeding chamber is provided with the first sensor, the filling chamber is provided with the second sensor, the discharge chamber is provided with the third sensor, and the controller is used to respectively The pressure information detected by the second sensor and the third sensor controls the vacuum degree of the corresponding cavity.
  • the equipment also includes a homogenizing mechanism, and a pouring station and a homogenizing station are arranged in the filling cavity;
  • the microneedle female mold in the filling chamber is used to be arranged at the pouring station, and the filling mechanism is used to supply the microneedle female mold Pouring the solution on the surface;
  • the microneedle female mold in the filling cavity is used to transfer to the homogenization station after pouring the solution, and the homogenization mechanism is used to homogenize the microneedle female mold that has poured the solution treatment so that the solution is evenly filled on the surface of the microneedle female mold.
  • the homogenizing mechanism includes a grabbing mechanism and a drive mechanism
  • the grabbing mechanism includes a spindle assembly and a clamping assembly
  • the drive mechanism includes a servo motor and a transmission assembly
  • the spindle assembly includes a spindle and a base
  • the bottom end of the main shaft is fixedly connected to the base
  • the clamping assembly includes at least three claws, at least three of which are evenly distributed on the base around the axis of the main shaft and are used for clamping and fixing
  • a tray the tray is loaded with the microneedle negative mold
  • the servo motor is used to drive the main shaft to rotate through the transmission assembly
  • the axis of the main shaft is parallel to the axis of the groove.
  • the drive mechanism further includes a cylinder assembly, an elastic component and a turntable; the turntable is sleeved on the main shaft and can rotate relative to the main shaft, one end of the elastic component is connected to the main shaft, and the other One end is connected to the turntable;
  • the elastic member When the turntable is driven by the cylinder assembly to rotate in the first direction, the elastic member is made to store elastic potential energy, and all the claws are moved to the released position;
  • the elastic component releases the elastic potential energy and drives the turntable to rotate in the second direction, so that all the claws move to the locking position.
  • the homogenizing mechanism further includes a pressing block, the pressing block is fixed on the base and used to press against the turntable in the axial direction; the number of the pressing blocks is at least three.
  • the clamping assembly further includes a guide rail, a slider, a fixing seat and a limit pin
  • the guide rail is arranged along the radial direction of the base, and the slide rail is slidably arranged on the guide rail
  • the fixing seat is fixed on the slider, each claw is fixed on a corresponding fixing seat, the limit pin is fixed on the fixing seat, and the turntable is provided with an arc-shaped limit slot, the limit pin is movably arranged in the limit slot, and the arc-shaped ends of the limit slot are different from the center of the turntable;
  • the limit pin moves from the proximal end of the arc-shaped limit slot to the distal end, and drives the claws to move outward until the limit pin and the The far end buckle of the limit slot;
  • the limit pin moves from the proximal end of the arc-shaped limit groove to the distal end, and drives the claws to move inward until the limit pin is in contact with the The proximal end of the limit slot is buckled.
  • the cylinder assembly includes a push rod, and a fixed post is arranged on the turntable, and the push rod is used to push the fixed post to drive the turntable to rotate in a first direction.
  • the device also includes a tray and a conveying line, the tray is used to load the microneedle negative mold, the conveying line is used to transport the tray; the homogenizing mechanism is used to drive the tray to move To uniformize the microneedle female mold, the movement of the tray includes at least one of horizontal rotation, horizontal movement, shake, and up and down swing.
  • the device further includes a tray for loading the microneedle female mold, and the same tray can be loaded with microneedle female molds of different sizes.
  • the equipment also includes a feeding conveyor line, a feeding conveyor line and a transfer conveyor line, the feeding conveyor line is set in the feeding area, and the unloading conveyor line is set in the unloading area;
  • the feeding conveying line is used to transfer the tray to the feeding chamber, and the discharging conveying line receives the tray from the discharging chamber;
  • the transfer conveying line is used for receiving the empty pallets from the unloading conveying line, and for transferring the empty pallets to the feeding area.
  • the transfer conveying line is arranged below the feeding conveying line and the discharging conveying line, and the equipment also includes an automatic transfer mechanism, which is used to transfer the materials on the discharging conveying line to The empty pallets are transferred to the transfer conveying line, and used to transfer the empty pallets on the transfer conveying line to the feeding conveying line.
  • the device also includes an automatic feeding mechanism and an automatic feeding mechanism arranged in the feeding area, and the automatic feeding mechanism is used to transport the microneedle female mold to a feeding station;
  • the automatic feeding mechanism is also used to remove the microneedle female mold from the feeding station and place it on the tray on the feeding conveying line.
  • the equipment also includes an automatic unloading mechanism and a transfer tray arranged in the unloading area, the automatic unloading mechanism is used to remove the Microneedle negative mold, and placed on the transfer tray.
  • the feed chamber, the filling chamber and the discharge chamber are arranged adjacently in sequence, a first gate is provided at the entrance of the feed chamber, and the outlet of the feed chamber and the filling chamber The inlet of the filling chamber shares the second gate, the outlet of the filling chamber and the inlet of the discharge chamber share the third gate, and the outlet of the discharge chamber is provided with a fourth gate.
  • the device further includes a first transmission line, a second transmission line and a third transmission line, the first transmission line is arranged in the feeding cavity, and the second transmission line is arranged in the tank In the loading cavity, the third transmission line is arranged in the discharge cavity.
  • the filling mechanism is used for pouring the solution onto the surface of the microneedle female mold in the negative pressure state.
  • the present invention also provides a method for preparing microneedles, the method comprising:
  • microneedle female mold the surface of the microneedle female mold is formed with a groove matching the microneedle body
  • the microneedle female mold is placed in the feed chamber in a non-negative pressure state, and then the feed chamber is vacuumed by the vacuum mechanism, so that the feed chamber and the microneedle female mold in a state of negative pressure;
  • microneedle negative mold with the solution is solidified and molded, and then demolded to obtain the microneedle.
  • the method also includes:
  • the vacuum in the feeding chamber in the negative pressure state is broken, so that The feed cavity is in a non-negative pressure state to receive the next microneedle female mold.
  • the method also includes:
  • the microneedle female mold with the solution is transferred from the discharge cavity in the non-negative pressure state to the outside, so that the non-negative pressure state
  • the discharge cavity is in an empty state
  • the discharge chamber in the non-negative pressure state is empty, the discharge chamber is vacuumed by the vacuum mechanism so that the discharge chamber is in a negative pressure state to receive the next homogenization treatment.
  • the negative mold of the microneedle is empty.
  • the method also includes:
  • the microneedle female mold after pouring the solution is homogenized by the homogenization mechanism.
  • the microneedle female mold is loaded on a tray, and the tray is driven to move by the homogenization mechanism, so as to homogenize the microneedle female mold, the
  • the movement of the tray includes at least one of horizontal rotation, horizontal movement, shake, and up and down swing.
  • the method includes: loading the female microneedle molds from a tray into the feeding chamber, the filling chamber and the outlet chamber in sequence, and the microneedle female molds of different sizes pass through the same Pallets are delivered.
  • the method also includes:
  • the tray is conveyed to the feeding chamber through a feeding conveying line in a feeding area, and the tray from the discharging chamber is received by an unloading conveying line in a lower feeding area;
  • the empty pallets from the unloading conveyor line are received by a transfer conveying line, and the empty pallets are transported to the loading area by the transfer conveying line.
  • the transfer conveying line is arranged below the feeding conveying line and the discharging conveying line, and the method further includes:
  • the method also includes:
  • the microneedle female mold is transported to a feeding station by an automatic feeding mechanism in the feeding area;
  • An automatic feeding mechanism in the feeding area removes the microneedle female mold from the feeding station and places it on the tray on the feeding conveyor line.
  • the method also includes:
  • An automatic unloading mechanism in the unloading area removes the microneedle female mold from the tray on the unloading conveying line, and places it on a transfer tray in the unloading area.
  • a controller controls the vacuum mechanism to vacuumize the feeding cavity, the filling cavity and the discharging cavity.
  • the homogenizing mechanism performs accelerated rotation, constant speed rotation and decelerated rotation in sequence when performing homogenization treatment on the microneedle female mold.
  • the present invention also provides a method for preparing microneedles, the method comprising:
  • the surface of the microneedle female mold is formed with a groove matching the microneedle needle body, and the vacuum chamber includes an independently provided filling chamber and a discharge chamber;
  • microneedle negative mold is homogenized by a homogenizing mechanism, so that the solution is evenly spread on the surface of the microneedle negative mold;
  • the vacuum in the discharge cavity in the negative pressure state is broken, so that the discharge cavity is in a non-negative pressure state, and obtain the microneedle negative mold with solution;
  • microneedle negative mold with the solution is solidified and molded, and demolded.
  • the method includes: loading the microneedle female mold through a tray and entering the filling chamber and the discharge chamber, and at the homogenizing position, driving the microneedle die through the homogenizing mechanism
  • the tray moves to uniformize the microneedle female mold, and the movement of the tray includes at least one of horizontal rotation, horizontal movement, shaking, and up and down swing.
  • the above-mentioned equipment and method for preparing microneedles realizes the separation of the processes of vacuuming, vacuum filling and vacuum breaking of the microneedle female mold through the independent feeding cavity, filling cavity and discharging cavity, so that the vacuum filling
  • the waiting time can be greatly reduced, improving the overall vacuum filling efficiency, and before vacuum filling, the microneedle female mold has been vacuumed for a long time, which greatly reduces the vacuum in the groove on the surface of the microneedle female mold.
  • the air allows the solution to completely fill the groove, and the filling effect is good, which can effectively ensure the molding quality of the microneedles, and at the same time greatly improve the production cycle, increase the equipment capacity, and realize the mass production of microneedles.
  • the above-mentioned equipment and method for preparing microneedles realizes pouring of the solution by vacuum filling the microneedle female mold in the filling cavity of the vacuum chamber, and can fully discharge the air in the groove of the microneedle female mold to ensure that the microneedle female mold is broken. After vacuuming, the groove of the microneedle female mold is filled with solution to ensure the molding quality of the microneedle.
  • the above equipment and method for preparing microneedles uses a homogenizing mechanism to homogenize the solution on the surface of the microneedle female mold, which can effectively flatten the viscous solution on the surface of the microneedle female mold, so that the solution can be evenly spread on the microneedle.
  • the surface of the female mold further ensures the quality of microneedle molding.
  • the homogenization of the microneedle female mold is achieved through the rotation of the homogenizing mechanism, wherein the axis of rotation of the main shaft is set parallel to the depth direction of the groove of the microneedle female mold (defined as the axial direction of the groove), so as to rely on the rotation of the main shaft.
  • Fig. 1 is a schematic front view of the structure of the equipment for preparing microneedles provided by the preferred embodiment of the present invention
  • FIG. 2 is a schematic top view of the external structure of the vacuum chamber provided by the preferred embodiment of the present invention.
  • Fig. 3 is a schematic diagram of the internal structure of the vacuum chamber provided by the preferred embodiment of the present invention.
  • Fig. 4 is a schematic top view of the structure of the device for preparing microneedles provided by the preferred embodiment of the present invention.
  • Fig. 5 is the front view of the homogenizing mechanism of the preferred embodiment of the present invention.
  • Fig. 6 is a front view of a spindle assembly and a clamping assembly of a preferred embodiment of the present invention
  • FIG. 7 is a perspective view of a spindle assembly and a clamping assembly in a preferred embodiment of the present invention.
  • Fig. 8 is a top view of the spindle assembly and the clamping assembly of the preferred embodiment of the present invention.
  • Fig. 9 is a schematic diagram of the ejection of the cylinder assembly in the preferred embodiment of the present invention to release the claws;
  • Fig. 10 is a schematic diagram of the retraction of the cylinder assembly in the preferred embodiment of the present invention, so that the claws are clamped under the action of the tension spring;
  • Fig. 11 is a rotational speed-time graph of the homogenizing mechanism in a preferred embodiment of the present invention when it is working.
  • FIG. 1 shows a schematic front view of the structure of a device for preparing microneedles in a preferred embodiment of the present invention
  • Fig. 2 shows a schematic top view of the external structure of a vacuum chamber in a preferred embodiment of the present invention
  • Fig. 3 shows the schematic diagram of the present invention.
  • FIG. 4 shows a schematic top view of the device for preparing microneedles provided by a preferred embodiment of the invention.
  • this embodiment provides a device for preparing microneedles, which can pierce the stratum corneum of the human body to form a channel that facilitates drug delivery, thereby promoting the transdermal absorption of drugs.
  • the present application does not limit the shape of the microneedle body, including but not limited to the needle body with a convex structure at the needle tip.
  • the needle tip can be a convex structure with a sharp shape or a non-sharp convex structure; the needle body Including but not limited to conical, pyramidal or fusiform.
  • the solution for preparing the microneedles has a certain viscosity, and the solution includes but is not limited to a polymer solution, and the application does not specifically limit the type of the solution.
  • the equipment for preparing microneedles specifically includes a microneedle female mold 1, a vacuum chamber 2, a filling mechanism 3 and a vacuuming mechanism 4; the surface of the microneedle female mold 1 is formed with grooves (not shown) that match the microneedle body. shown in the figure); the filling mechanism 3 is at least partly arranged in the vacuum chamber, and is used to release the solution for preparing the microneedle; the vacuum chamber 2 is used to provide a closed environment, so as to prepare the microneedle under vacuum conditions; pumping The vacuum mechanism 4 is connected with the vacuum chamber 2 and is used for evacuating the vacuum chamber 2 .
  • the vacuum chamber 2 includes three mutually independent vacuum chambers, which are respectively a feed chamber 21, a filling chamber 22 and a discharge chamber 23 arranged adjacently in sequence.
  • the feed cavity 21 is used to receive the microneedle female mold 1 under a non-negative pressure state, which is a normal pressure state; in this paper, it should be understood that normal pressure is not an absolute standard atmospheric pressure, but due to the geographical location , sea wave height, temperature, etc., the actual atmospheric pressure will not be equal to the standard atmospheric pressure, so the application has no special restrictions on the pressure value of normal pressure; the vacuum mechanism 4 is used to receive the microneedle female mold 1 in the feed cavity Finally, the feed chamber 21 is vacuumized so that the microneedle female mold 1 and the feed chamber 21 are all in a negative pressure state; the filling chamber 22 is used to receive the feed chamber 21 from the negative pressure state under the negative pressure state.
  • the transferred microneedle female mold 1; the filling mechanism 3 is used to pour the solution for preparing the microneedle on the surface of the microneedle female mold 1 in the filling cavity 22 in the negative pressure state, and obtain the microneedle female mold 1 after pouring the solution , it is further preferred to homogenize the microneedle female mold 1 that has poured the solution, so that the solution is evenly spread on the surface of the microneedle female mold 1;
  • the microneedle female mold 1 of the casting solution transferred from the filling cavity 22 in the pressurized state, and is used to break the vacuum after receiving the microneedle female mold 1 of the casting solution, so that the discharge chamber 23 is in a non-negative pressure state, and the belt with There is a microneedle female mold 1 with a solution.
  • the microneedle female mold 1 with the solution is in a normal pressure state; the microneedle female mold 1 with the solution is further solidified and molded, and then demolded to obtain a microneedle (integrated
  • This embodiment also provides a method for preparing microneedles, the method comprising:
  • Step 11 Place the microneedle female mold 1 in the feed chamber 21 in a non-negative pressure state, and then use the vacuum mechanism 4 to vacuum the feed chamber 21, so that the feed chamber 21 and the microneedle female mold 1 are in a state of Negative pressure state;
  • Step 12 Transfer the microneedle female mold 1 in the negative pressure state from the feed chamber 21 in the negative pressure state to the filling chamber 22 in the negative pressure state, and fill the cavity 22 through the filling mechanism 3 under the negative pressure state
  • Step 13 Transfer the microneedle female mold 1 of the casting solution from the filling chamber 22 in the negative pressure state to the discharge chamber 23 in the negative pressure state, and maintain the negative pressure state of the filling 22; the microneedle female mold of the casting solution is about to 1 After the filling chamber 22 is sent out, the filling chamber 22 is closed, so that the filling chamber 22 can still maintain a negative pressure state, so as to prepare to receive the next microneedle female mold 1 of the solution to be poured;
  • Step 14 After transferring the microneedle female mold 1 of the casting solution to the discharge cavity 23 in the negative pressure state, break the vacuum of the discharge cavity 23 in the negative pressure state, so that the discharge cavity 23 is in a non-negative pressure state, and Obtain the microneedle negative mold 1 with solution; It should be understood that the discharge cavity 23 has been vacuumized before receiving the microneedle negative mold 1 of the casting solution, and after the discharge cavity 23 breaks the vacuum, the solution is filled with the help of its own gravity. The groove of the microneedle female mold 1;
  • Step 15 The microneedle female mold with the solution is solidified and molded, and demolded to obtain the microneedle.
  • step 14 preferably also include the steps:
  • the discharge chamber 23 breaks the vacuum, open the outlet of the discharge chamber 23, and transfer the microneedle female mold 1 loaded with the casting solution to the outside of the discharge chamber 23, so that the discharge chamber 23 after the vacuum break is in an empty state , after the discharge chamber 23 is empty after the vacuum is broken, the discharge chamber 23 is closed, and the discharge chamber 23 is vacuumed until the vacuum degree in the discharge chamber 23 reaches the set value and then stops to prepare for receiving the next casting Solution of the microneedle negative mold 1.
  • step 12 after the microneedle female mold 1 in the negative pressure state is sent out of the feeding chamber 21, the feeding chamber 21 is closed, and the vacuum is broken for the feeding chamber 21 until the pressure in the feeding chamber 21 is the same as that of the outside. After the environment is consistent, stop to prepare to receive the next microneedle female mold 1 .
  • the arrangement of the above three independent vacuum chambers can greatly reduce the waiting time during the filling operation, and effectively improve the vacuum filling efficiency of microneedle preparation. It should be understood that if a single vacuum chamber performs repeated operations of vacuuming-breaking-vacuuming, not only the filling time will be long, the filling efficiency will be low, but also the energy consumption will be large and the production cost will be high.
  • the vacuum chamber of the present invention is composed of three independent vacuum chambers, wherein the filling chamber 22 does not need to repeatedly carry out the operations of vacuuming-breaking-vacuumizing, which reduces energy consumption and reduces the waiting time during filling. High filling efficiency. Therefore, three independent vacuum chambers can greatly increase the production rate and increase the equipment capacity.
  • the single machine capacity can be increased to 4 pieces/minute.
  • the microneedle female mold 1 has been evacuated for a long time, which greatly reduces the air content in the groove of the microneedle female mold 1, ensures the quality of the final formed microneedle, and improves the Yield rate of microneedle preparation.
  • the filling of the solution under vacuum conditions can fully discharge the air in the groove of the microneedle female mold to ensure that after the discharge chamber 23 breaks the vacuum, the groove of the microneedle female mold is filled with solution to ensure that the microneedle is formed. quality.
  • the viscous solution on the surface of the microneedle female mold can be effectively flattened, so that the solution is evenly spread on the surface of the microneedle female mold, further ensuring that the microneedle molding quality.
  • this embodiment also provides another method for preparing microneedles, which method includes:
  • Step 21 placing the microneedle female mold 1 in the filling cavity 22 in a non-negative pressure state, and pouring the solution onto the surface of the microneedle female mold 1 through the filling mechanism 3;
  • Step 22 Homogenize the microneedle female mold 1 through the homogenizing mechanism 6, so that the solution is evenly spread on the surface of the microneedle female mold 1;
  • Step 23 vacuumize the filling cavity 22 through the vacuuming mechanism 4, so that the filling cavity 22 and the microneedle female mold 1 are in a negative pressure state;
  • Step 24 After the homogenized microneedle female mold 1 is transferred to the discharge chamber 23 in the negative pressure state, the vacuum of the discharge chamber 23 in the negative pressure state is broken, so that the discharge chamber 23 is in a non-negative pressure state , and obtain the microneedle female mold 1 with the solution;
  • Step 25 demolding the microneedle female mold 1 with the solution after solidification and molding.
  • the vacuum pressure of each vacuum chamber is set according to the prepared microneedle product.
  • the vacuum pressure of each vacuum chamber needs to meet certain conditions. If the vacuum pressure is insufficient, it will affect the quality of microneedle forming, and if the vacuum pressure is too high, it will increase energy consumption, increase the time of vacuuming and breaking vacuum, and reduce the production capacity of the equipment.
  • the working pressures of the feeding chamber 21, the filling chamber 22 and the discharging chamber 23 are preferably equal, and the working pressure is preferably -95Kpa ⁇ -80Kpa. It can reduce the time of vacuuming and breaking vacuum, and increase the production capacity of equipment.
  • control precision of the working pressure of the feeding chamber 21, the filling chamber 22 and the discharging chamber 23 is ⁇ 1Kpa.
  • the vacuuming time of the feed chamber 21 and the discharge chamber 23 is 10 to 16 seconds
  • the vacuum breaking time of the feed chamber 21 and the discharge chamber 23 is 3 to 5 seconds
  • the filling chamber 22 is due to the production It is always in a negative pressure state, so there is no special requirement for the vacuum breaking time.
  • the device for preparing microneedles preferably also includes a tray 5, the tray 5 is used to load the microneedle female mold 1 to enter the feeding chamber 21, the filling chamber 22 and the discharge chamber 23 in sequence, more preferably microneedle female molds of different sizes 1 can be conveyed by the same pallet 5.
  • the preferred use steps of the vacuum chamber 5 include: at first the tray 5 loaded with the microneedle female mold 1 is transferred to the feed chamber 21 under normal pressure, and then the feed chamber 21 is closed so that the feed chamber 21 is separated from other The two vacuum chambers are isolated from the external environment. Then, vacuumize the feed chamber 21 until the vacuum pressure reaches the set value, stop vacuuming and maintain a negative pressure state; then open the outlet of the feed chamber 21, and the pumped The vacuum microneedle female mold 1 is transferred to the filling chamber 22 together with the tray 5, and the filling chamber 22 is closed to isolate the filling chamber 22 from the other two vacuum chambers and the external environment.
  • Vacuum has been drawn before entering the microneedle female mold 1; when the pouring of the microneedle female mold 1 is completed, the outlet of the filling chamber 22 is opened, and the microneedle female mold 1 filled with the solution is transferred to the discharge chamber 23 together with the tray 5 , close the discharge chamber 23, so that the discharge chamber 23 is isolated from the other two vacuum chambers and the external environment, and then the discharge chamber 23 is vacuum broken until the pressure in the discharge chamber 23 is consistent with the external environment.
  • the equipment for preparing microneedles also includes a homogenizing mechanism 6, and a pouring station and a homogenizing station are preferably set in the filling cavity 22; when the filling cavity 22 is in a negative pressure state, the microneedles are poured
  • the mold 1 is transferred to the pouring station by the tray 5, and then the filling mechanism 3 is used to pour the solution on the surface of the microneedle female mold 1 in a negative pressure state; and when the microneedle female mold 1 has poured the solution, the The tray 5 transfers the microneedle female mold 1 to the homogenization position, and the homogenizing mechanism 6 is used to homogenize the microneedle female mold 1 after pouring the solution, so that the solution is evenly filled in the microneedle female mold 1 surface.
  • the homogenizing mechanism 6 mainly drives the movement of the tray 5 to realize the homogenization treatment of the microneedle female mold 1, and the movement of the tray 5 can be various movements, such as horizontal rotation, horizontal movement, shaking, and up and down swinging. at least one of .
  • the homogenization mechanism 6 has no contact with the solution for preparing the microneedles, which reduces the risk of solution contamination, and the homogenization effect is good, and can be realized through a relatively simple structure and operation, thereby ensuring that each concave The stability and consistency of the solution content filled in the tank ensures the quality of microneedle molding.
  • the homogenizing mechanism 6 includes a grabbing structure and a driving mechanism, the driving mechanism is used to drive the grabbing mechanism to rotate horizontally around its own axis, and the grabbing mechanism is used to grab the tray 5 , and then the driving mechanism drives the tray 5 and the microneedle female mold 1 to rotate horizontally together through the grasping mechanism, so that the solution on the surface of the microneedle female mold 1 is evenly spread by centrifugal force, and fills each groove.
  • the homogenizing mechanism 6 and the liquid filling mechanism 3 can be arranged in the same filling chamber 22 , or an independent vacuum chamber can be set between the filling chamber 22 and the discharge chamber 23 to place the homogenizing mechanism 6 separately.
  • the homogenizing mechanism 6 includes a grabbing mechanism and a driving mechanism, the driving mechanism is used to drive the grabbing mechanism to swing up and down, the grabbing mechanism is used to grab the tray 5, and then drive The mechanism drives the tray 5 and the microneedle female mold 1 to swing up and down together through the grasping mechanism, so that the solution on the surface of the microneedle female mold 1 is evenly spread by the up and down swing, and fills each groove.
  • the grabbing mechanism can be eliminated, and the driving mechanism is configured as a moving platform carrying the tray 5, and the moving platform is used to drive the tray 5 to rotate horizontally or swing up and down or vibrate (including vibration) or move horizontally .
  • FIGS 5 to 10 show a homogenizing mechanism 6 according to a preferred embodiment.
  • the homogenizing mechanism 6 includes a grabbing mechanism and a driving mechanism, the grabbing mechanism includes a spindle assembly 610 and a clamping assembly 620 , and the driving mechanism includes a servo motor 630 and a transmission assembly 640 .
  • the main shaft assembly 610 includes a main shaft 611 and a base 612 , and the bottom end of the main shaft 611 is fixedly or detachably connected to the base 612 .
  • the clamping assembly 620 includes at least three claws 621 , and the at least three claws 621 are evenly distributed around the axis of the main shaft 611 on the base 612 .
  • the servo motor 630 is connected to the main shaft 611 through the transmission assembly 640 to drive the main shaft 611 to rotate horizontally around its own axis through the transmission assembly 640 .
  • the transmission assembly 640 is preferably a pulley assembly. Specifically, the transmission assembly 640 includes a driving pulley 641, a belt 642 and a driven pulley 643.
  • the driving pulley 641 is connected to the motor shaft (not marked) of the servo motor 630.
  • the belt 642 is sleeved on the driving pulley 641 and the driven pulley 643
  • the driven pulley 643 is sleeved on the top of the main shaft 611 .
  • the servo motor 630 is arranged parallel to the main shaft 611 .
  • the servo motor 630 drives the main shaft 611 and the base 612 to rotate through the pulley assembly, thereby driving the tray 5 and the microneedle female mold 1 to rotate together, so that the solution is evenly coated on the surface of the microneedle female mold 1 .
  • the main shaft 611 can be fixed on the bearing seat 615 through the bearing 613 and the nut 614 .
  • Both the bearing block 615 and the servo motor 630 are fixed on the machine base 650 .
  • the base 612 can be of various shapes, preferably circular. It should be understood that the rotation axis of the main shaft 611 is parallel to the depth direction of the groove of the microneedle female mold, that is, the rotation axis of the main shaft 611 is parallel to the axial direction of the groove, thereby relying on the rotation of the main shaft 611 to flatten the adhesive on the microneedle female mold.
  • Viscous solution that is, the solution for preparing microneedles
  • this method can effectively flatten the viscous solution on the surface of the microneedle female mold, and the homogenization effect is good, and No direct contact with the solution avoids contamination of the solution and further ensures the quality of microneedle molding.
  • the driving mechanism further includes a cylinder assembly 660 , an elastic member 670 and a turntable 680 .
  • the turntable 680 is sleeved on the main shaft 611 and can rotate relative to the main shaft 611 .
  • One end of the elastic member 670 is connected to the main shaft 611 , and the other end is connected to the turntable 680 .
  • the elastic member 670 stores elastic potential energy, and the claw 621 of the clamping assembly 620 is moved to the release position, so as to release the clamping or loosening of the tray 5.
  • the elastic member 670 is generally a tension spring 671 , one end of the tension spring 671 is fixed on the main shaft 611 , and the other end is fixed on the turntable 680 .
  • one end of the extension spring 671 is fixed on the first pin 672
  • the first pin 672 is fixed on the main shaft 611
  • the other end of the extension spring 671 is fixed on the second pin 673
  • the second pin 673 is fixed on the turntable 680 superior.
  • the first direction is opposite to the second direction.
  • the homogenizing mechanism 6 further includes an auxiliary component 690 that can be used to limit the axial position of the turntable 680 .
  • the auxiliary component 690 includes a pressing block 691, which is fixed on the base 612 and used to press against the turntable 680 in the axial direction. Set on 612.
  • the clamping assembly 620 may include a guide rail 622 , a sliding rail 623 , a fixing seat 624 and a limiting pin 625 .
  • the guide rail 622 is arranged along the radial direction of the base 612
  • the slide rail 623 is slidably disposed on the guide rail 622
  • the fixing base 624 is fixed on the sliding block 623
  • each claw 621 is fixed on a corresponding fixing base 624 .
  • the limit pin 625 is fixed on the fixed seat 624, the rotating disk 680 is provided with an arc-shaped limit groove 681, and the limit pin 625 is movably arranged in the arc-shaped limit groove 681, and the two arc-shaped limit grooves 681 The ends are different from the center of the turntable 680.
  • the clamping assembly 620 Before clamping, the clamping assembly 620 is in the initial position. At this time, the limit pin 625 is buckled against the arc-shaped proximal end of the limit groove 681, and the arc-shaped proximal end of the limit groove 681 is compared with the arc-shaped proximal end. The far end is closer to the center of the turntable.
  • the limit pin 625 moves from the proximal end of the arc-shaped limit groove 681 to the distal end, and drives the claw 621 to move outward until the limit The pin 625 is engaged with the distal end of the limiting groove 681; when the turntable 680 rotates in the second direction, the limiting pin 625 moves from the proximal end of the arc-shaped limiting groove 681 to the distal end , and drive the pawl 621 to move inward until the limiting pin 625 engages with the proximal end of the limiting groove 681 .
  • the cylinder assembly 660 includes a push rod 661 , and a fixed post 682 is arranged on the turntable 680 .
  • the cylinder drives the push rod 661 to stretch out and abut against the fixed column 682, and then pushes the fixed column 682 to make the turntable 680 rotate in the first direction, and is driven by the limit pin 625.
  • the fixing seat 624 slides radially outward along the conduit 622, thereby realizing the release of the claw 621 to the tray 5; as shown in FIG. Rotate in the second direction, and drive the fixing seat 624 to slide radially inward along the guide tube 622 through the limit pin 625 , so as to realize the clamping of the pallet 5 by the claw 621 .
  • the homogenization mechanism 6 of the present embodiment is configured to have different working stages, which are respectively an acceleration stage, a constant speed stage and a deceleration stage. Accelerate rotation, uniform rotation and decelerate rotation in turn, so that the solution is evenly filled on the surface of the microneedle female mold.
  • Fig. 11 shows the rotation speed-time curve of the homogenizing mechanism 6, wherein the abscissa is time (unit second), and the ordinate is rotation speed (unit rev/min).
  • the main shaft 611 rotates at an accelerated speed, and when the main shaft 611 accelerates to a predetermined rotational speed, it rotates at a constant speed.
  • the main shaft 611 After rotating at a constant speed for a certain period of time, the main shaft 611 decelerates until the homogenization operation is completed. Since the microneedle products are homogenized, the rotation speed and homogenization time of the spindle 611 will be different according to the solution viscosity. Therefore, the speed and time of each stage can be set according to the material and viscosity of the microneedle. Applications are not particularly limited here. Further optionally, the speed of the constant speed stage is 300-1000 rpm, the time of the acceleration stage can be within 2 seconds, the time of the constant speed stage can be 2-18 seconds, and the time of the deceleration stage can be 18-32 seconds .
  • the device for preparing microneedles further includes a conveying line, which is used to automatically transfer the tray 5 and realize the repeated use of the tray 5 .
  • the device for preparing microneedles is provided with a feeding area and a feeding area, the loading area is set on one side of the feeding cavity 21 , and the unloading area is set on one side of the discharging cavity 23 .
  • the conveying line can repeatedly transport the tray 5 in the unloading area to the loading area, so that the tray 5 can be reused.
  • the conveying line includes a feeding conveying line 7 , a discharging conveying line 8 and a transfer conveying line 9 .
  • the feeding conveying line 7 is arranged in the feeding area, that is, at the entrance of the vacuum chamber 5 .
  • the feeding conveying line 8 is arranged in the feeding area, that is, at the exit of the vacuum chamber 5 . That is, a vacuum chamber 2 is provided between the feeding conveying line 7 and the discharging conveying line 8 .
  • the transfer conveying line 9 can be directly connected with the feeding conveying line 7 and the unloading conveying line 8 to form a complete and continuous circular conveying line.
  • the transfer conveying line 9 can also be disconnected from the feeding conveying line 7 and the unloading conveying line 8 to form a discontinuous circular conveying line.
  • the pallet 5 on the unloading conveying line 8 can be transferred by an automatic transfer mechanism to the transfer conveying line 9, and then the pallet 5 on the transfer conveying line 9 is transferred to the feeding conveying line 7 by an automatic transfer mechanism. In this way, a production cycle is formed, and the degree of automation of microneedle preparation is high, which can greatly improve the production cycle and increase the production capacity of the equipment.
  • the tray 5 loaded with the microneedle female mold 1 in the normal pressure state is delivered to the feed chamber 21 by the feeding conveying line 7, and the tray 5 from the discharging chamber 23 is received by the feeding conveying line 8;
  • the conveying line 9 receives the empty pallet 5 from the unloading conveying line 8 , and transfers the empty pallet 5 to the loading area by the transfer conveying line 9 .
  • the position of the transfer conveying line 9 relative to the feeding conveying line 7 and the unloading conveying line 8 is not limited.
  • Fig. 1 shows that the transfer conveying line 9 is arranged below the feeding conveying line 7 and the unloading conveying line 8, saving space.
  • the device for preparing microneedles also includes a bracket 16 for setting the vacuum chamber 2 and the delivery line.
  • the equipment for preparing microneedles preferably also includes an automatic transfer mechanism, through which the empty tray 5 on the feeding conveyor line 8 is transferred to the transfer conveyor line 9, and the transfer conveyor is transported by the automatic transfer mechanism.
  • the empty pallets 5 on the line 9 are transferred to the feeding conveying line 7 .
  • the automatic transfer mechanism is preferably a lifting device, and the lifting device includes a loading elevator 10 and an unloading elevator 11, the loading elevator 10 is arranged in the feeding area, and the unloading elevator 11 is arranged in the unloading area.
  • the transfer conveying line 9 is set at different levels from the feeding conveying line 7 and the unloading conveying line 8. For example, FIG. 8 below, such as directly below.
  • the loading elevator 10 is connected to the transfer conveyor line 9 and the feeding conveyor line 7, the unloading elevator 11 is connected to the transfer conveyor line 9 and the unloading conveyor line 8, and the loading elevator 10 automatically lifts the empty pallet 5 on the transfer conveyor line 9 Transfer to the feeding conveying line 7, and the unloading elevator 11 transfers the empty tray 5 on the unloading conveying line 8 to the transfer conveying line 9 through automatic lifting.
  • the automatic transfer mechanism is not limited to the lifting device, for example, it may also be a mechanical arm, or an automated transport vehicle or an automated track.
  • an operation step of preparing microneedles using the above-mentioned equipment for preparing microneedles includes:
  • the microneedle female mold 1 is placed on the empty tray 5 of the feeding conveying line 7 by manual or mechanical automatic means, and the tray 5 is loaded with the microneedle female mold 1 and then conveyed by the feeding conveying line 7 into the In the feeding chamber 21 of the vacuum chamber 2; after the microneedle female mold 1 has poured the solution and homogenized treatment, it is transported to the discharge chamber 23 through the tray 5 to break the vacuum; after the vacuum is broken, the solution is filled through the tray 5
  • the microneedle female mold 1 enters the feeding conveying line 8; in the feeding area, the microneedle female mold 1 filled with the solution is taken out from the tray 5 manually or mechanically; during this process, the microneedle female mold 1 After being taken out from the tray 5, it is usually placed on the transfer tray 12, and then the transfer tray 12 transports the solution-filled microneedle female mold 1 to the next process (such as drying and drying); After the needle die 1 is taken out from the tray 5, the empty tray 5 is transferred to the transfer conveyor
  • the feed chamber 21 is provided with a first vacuum valve 211 .
  • the first vacuum valve 211 communicates with the feed chamber 21, the first vacuum valve 211 is connected to the vacuum mechanism 4, and the vacuum mechanism 4 vacuumizes the feed chamber 21 through the first vacuum valve 211, so that the feed chamber 21 maintain a negative pressure state.
  • the device for preparing microneedles also includes a sensor assembly, the sensor assembly includes a first sensor 212, the first sensor 212 is provided on the feeding chamber 21, and the first sensor 212 is used to detect the feeding chamber in real time.
  • the first sensor 212 is preferably connected to the controller in communication with the vacuum degree in the chamber 21, and the first sensor 212 preferably feeds back the vacuum degree to the controller, and the controller controls the pressure in the feed chamber 21 according to the feedback vacuum degree.
  • the feeding chamber 21 is provided with a first vacuum breaking valve 213 , and the first vacuum breaking valve 213 is used to communicate with the external environment, so as to realize the vacuum breaking of the feeding chamber 21 .
  • the first vacuum breaking valve 213 is connected in communication with the controller, and the opening and closing of the first vacuum breaking valve 213 is controlled by the controller.
  • the first vacuum valve 211 is communicated with the controller, and the controller controls the opening and closing of the first vacuum valve 211 .
  • FIG. 2 also shows a filling chamber 22 in an exemplary embodiment.
  • the filling chamber 22 is provided with a second vacuum valve 221 .
  • the second vacuum valve 221 communicates with the filling cavity 22, and the second vacuum valve 221 is connected to the vacuum mechanism 4, and the vacuum mechanism 4 vacuumizes the filling cavity 22 through the second vacuum valve 221, so that the filling cavity 22 maintain a negative pressure state.
  • the sensor assembly also includes a second sensor 222, the filling chamber 22 is provided with a second sensor 222, the second sensor 222 is used to detect the vacuum degree in the filling chamber 22 in real time, the second sensor 222 is preferably Communicatively connected with the controller, the second sensor 222 preferably feeds back the vacuum degree to the controller, and the controller controls the pressure in the filling chamber 22 according to the feedback vacuum degree.
  • the filling chamber 22 is provided with a second vacuum breaking valve 223 , and the second vacuum breaking valve 223 is used to communicate with the external environment so as to break the vacuum of the filling chamber 22 .
  • the second vacuum breaking valve 223 is connected in communication with the controller, and the opening and closing of the second vacuum breaking valve 223 is controlled by the controller.
  • the second vacuum valve 221 is communicated with the controller, and the controller controls the opening and closing of the second vacuum valve 221 .
  • FIG. 2 also shows a discharge chamber 23 in an exemplary embodiment.
  • a third vacuum valve 231 is disposed on the discharge chamber 23 .
  • the third vacuum valve 231 communicates with the discharge cavity 23, the third vacuum valve 231 is connected to the vacuum mechanism 4, and the vacuum mechanism 4 vacuumizes the discharge cavity 23 through the third vacuum valve 231, so that the discharge cavity 232 maintains a negative pressure state.
  • the sensor assembly also includes a third sensor 232, the third sensor 232 is arranged on the discharge cavity 23, the third sensor 232 is used to detect the vacuum degree in the discharge cavity 23 in real time, the third sensor 232 is preferably Communicatively connected with the controller, the third sensor 232 preferably feeds back the vacuum degree to the controller, and the controller controls the pressure in the discharge chamber 23 according to the feedback vacuum degree.
  • the discharge chamber 23 is provided with a third vacuum breaking valve 233 , and the third vacuum breaking valve 233 is used to communicate with the external environment to realize the vacuum breaking of the discharge chamber 23 .
  • the third vacuum breaking valve 233 is in communication with the controller, and the opening and closing of the third vacuum breaking valve 233 is controlled by the controller.
  • the third vacuum valve 231 is communicated with the controller, and the controller controls the opening and closing of the third vacuum valve 231 .
  • FIG. 3 shows the internal structure of the vacuum chamber 2 of an exemplary embodiment.
  • the inlet of the feeding chamber 21 is provided with a first gate 241, preferably the outlet of the feeding chamber 21 and the inlet of the filling chamber 22 share a second gate 243, and preferably the outlet of the filling chamber 22 and the outlet chamber
  • the inlets of 23 share a third gate 247, and the outlet of the discharge chamber 23 is provided with a fourth gate 249.
  • the first gate 241 is used to control the opening and closing of the inlet of the feeding chamber 21, the second gate 243 is used to control the on-off between the feeding chamber 21 and the filling chamber 22, and the third gate 247 is used for the filling chamber 22.
  • the connection between the discharge chamber 23 and the fourth gate 249 is used to control the opening and closing of the outlet of the discharge chamber 23 .
  • the steps of using the above-mentioned gate can be: when the feeding chamber 21 is in a normal pressure state, the first gate 241 is opened, the tray 5 with the microneedle female mold 1 is transported to the first conveying line 242 of the feeding chamber 21, and then The first gate 241 is closed, and the feeding chamber 21 is vacuumized; after the vacuuming is completed, the second gate 243 is opened, and the tray 5 enters the filling chamber 22 via the first transmission line 242 and the second transmission line 244, wherein the second The conveying line 244 is set in the filling chamber 22; when the tray 5 reaches the station of the liquid filling mechanism 3, the second gate 243 is closed, and after the second gate 243 is closed, the vacuum of the feeding chamber 21 can be broken, and the feeding After the chamber 21 breaks the vacuum, open the first gate 241 and wait for the next tray 5 to enter; after the tray 5 reaches the station of the liquid filling mechanism 3, the liquid filling mechanism 3 starts to inject the set amount of solution into the microneedle female mold 1 After the liquid fill
  • the device for preparing microneedles further includes a controller, which is preferably communicatively connected with the vacuum valve, the vacuum breaking valve, the vacuum mechanism 4 and the sensor assembly, so as to control the automatic operation of these devices.
  • the vacuum mechanism 4 preferably includes a first vacuum pump, a second vacuum pump and a third vacuum pump, and the first vacuum pump is used to vacuumize the feed chamber 21 through the first vacuum valve 211;
  • the second vacuum pump is used to vacuum the filling chamber 22 through the second vacuum valve 221 ;
  • the third vacuum pump is used to vacuum the discharge chamber 23 through the third vacuum valve 231 .
  • the controller is used to control the opening of the first vacuum breaking valve 213 to break the vacuum of the feed chamber 21, and is used to control the opening of the second vacuum breaking valve 223 to break the vacuum of the perfusion chamber 22, and is also used to control the third breaking vacuum
  • the valve 233 is opened to break the vacuum of the discharge chamber 23 .
  • the controller is used to control the vacuum degree of the corresponding cavity according to the information detected by the first sensor 212, the second sensor 222 and the third sensor 232 respectively, that is, control the corresponding vacuum pump to evacuate according to the information detected by these sensors And controlled within the required vacuum.
  • the controller controls the third vacuum pump to vacuumize the discharge chamber 23 .
  • the controller controls the opening of the first vacuum breaking valve 213 to break the vacuum in the feeding chamber 21 .
  • the device for preparing microneedles further includes an automatic feeding mechanism 13 and an automatic feeding mechanism 14 , both of which are arranged in the feeding area.
  • the automatic feeding of the microneedle female mold 1 is completed by the automatic feeding mechanism 13 and the automatic feeding mechanism 14 instead of manual work.
  • the automatic feeding mechanism 13 is used to automatically transport the microneedle female mold 1 under normal pressure to a loading station.
  • the automatic feeding mechanism 14 is used to automatically remove the microneedle female mold 1 under normal pressure from the feeding station and place it on the tray 5 of the feeding conveying line 7 .
  • the present application does not limit the structure of the automatic feeding mechanism 13, for example, it can be an automatic lifting platform, which can be designed as multiple layers, and one or more microneedle female molds 1 to be filled can be placed on each layer.
  • the automatic feeding mechanism 14 is preferably a feeding manipulator, which is flexible and easy to operate, and does not take up space.
  • the device for preparing microneedles preferably also includes an automatic unloading mechanism 15 and a transfer tray 12 arranged in the unloading area, and the automatic unloading machine 15 is used to remove the tray 5 from the unloading conveyor line 8. Take away the microneedle negative mold 1 of the fourth state, and place it on the transfer tray 12. Therefore, the automatic blanking mechanism 15 replaces the manual operation to complete the blanking operation of the microneedle female mold 1, so as to further realize the automation of microneedle preparation.
  • the automatic unloading mechanism 15 automatically removes the filled microneedle female mold 1 from the tray 5 in the unloading area and places it in the transfer area.
  • the filled microneedle female mold 1 is placed on the transfer tray 12, and then the microneedle female mold 1 is regularly removed from the transfer tray 12 manually. In this way, operators can manage multiple devices at the same time, which greatly reduces manpower input and labor costs.
  • the automatic unloading mechanism 12 is usually an unloading manipulator.
  • the present application does not impose special limitations on the structure of the filling mechanism 3 .
  • the liquid filling mechanism 3 may include a liquid outlet head for releasing the solution for preparing the microneedles.
  • a liquid outlet head for releasing the solution for preparing the microneedles.
  • there are multiple liquid outlets and the multiple liquid outlets are arranged side by side. Each liquid outlet is used to release the solution, and the multiple liquid outlets release the solution at the same time.
  • the solution pouring efficiency is high and the solution pouring effect is good.
  • the present embodiment does not have special limitation to the kind of controller, can be the hardware that carries out logic operation, for example, single-chip microcomputer, microprocessor, programmable logic controller (PLC, Programmable Logic Controller) or field programmable logic gate array (FPGA) , Field-Programmable Gate Array), or software programs, functional modules, functions, object libraries (Object Libraries) or dynamic link libraries (Dynamic-Link Libraries) that realize the above functions on the basis of hardware. Or, a combination of the above two.
  • PLC programmable logic controller
  • FPGA field programmable logic gate array
  • FPGA field programmable logic gate array
  • Dynamic-Link Libraries Dynamic-Link Libraries

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dermatology (AREA)
  • Medical Informatics (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

一种制备微针的设备和方法,所述设备包括微针阴模(1)、真空腔室(2)、灌装机构(3)和抽真空机构(4),真空腔室(2)包括相互独立设置的进料腔(21)、灌装腔(22)和出料腔(23);进料腔(21)用于在非负压状态下接收微针阴模(1),抽真空机构(4)用于对已接收微针阴模(1)的进料腔(21)进行抽真空,灌装腔(22)用于在负压状态下接收来自负压状态的进料腔(21)转移的微针阴模(1),出料腔(23)用于在负压状态下接收来自负压状态的灌装腔(22)转移的微针阴模(1),并用于在接收微针阴模(1)后进行破真空。该制备微针的设备和方法,可实现微针的大批量生产,提高微针制备的效率,并可以确保微针的成型质量。

Description

制备微针的设备及方法 技术领域
本发明属于微针制备技术领域,特别涉及一种制备微针的设备及方法。
背景技术
大多数治疗药物通过使用皮下注射进入人体,这是一种低成本、快速和直接的给药方式。然而患者自身却不能较容易地使用注射器,且注射器带来的疼痛和恐惧也进一步限制了患者的依从性。微针(包括尺寸为微米级的针头)上载药并经皮给药,这是解决上述问题的方法之一。微针经皮给药方式可实现无痛感的药物传输,提高了患者的依从性和安全性。同时微针还能实现药物等定量和定位输送,可以做到精确给药,给药效果好。除此之外,微针还可以用作皮肤预处理,具有增强皮肤渗透性的能力。因此,微针具有较好的临床应用前景。
其中聚合物微针贴片利用聚合物微针穿刺人体角质层,形成有利于药物输送的通道,从而促进药物的透皮吸收。目前制作聚合物微针的技术路线为:先准备制备微针的聚合物溶液,再将上述聚合物溶液填充到带有凹槽的微针阴模内,然后通过再将微针阴模内聚合物溶液固化成型,最后脱模得到可溶微针。这种技术路线目前较为普遍采用的方法是硅胶弹性阴模转写的方法。具体为:首先需要提前制备好带有凹槽的硅胶弹性阴模(凹槽即为微针形状);然后将制备好的聚合物溶液涂覆于带有凹槽的硅胶弹性阴模表面,并置于真空环境下一定时间;待聚合物溶液完全填充硅胶弹性阴模的凹槽中后,将其置于自然环境,并采用某种方法(例如干燥、交联)使其固化,最终形成可溶微针。
上述制备方法最为关键的步骤是,将聚合物溶液填充至带有凹槽的硅胶弹性阴模内。因硅胶弹性阴模中的凹槽尺寸微小(其部分区域甚至只有几微米),若一个个独立填充不仅效率低下,且对设备的要求极高,非常不利于批量生产。而液体灌装可以解决批量生产的问题。如果采用灌装方式一起填充这些微小凹槽,当聚合物溶液覆盖硅胶弹性阴模表面后,液面下凹槽中滞留 的气体,会阻止聚合物溶液下渗到凹槽内,从而影响可溶微针的成型质量。
为了解决上述技术问题,现有技术提出对空的微针阴模进行预处理,即利用等离子气体改善模具表面的亲水性能,达到促进聚合物溶液填充到微针凹槽内的目的。但经过等离子气体预处理的微针阴模的亲水性能会随时间而降低。因此,受预处理后的微针阴模滞留时间的影响,模具与模具间、模具中不同区域的亲水性能的差异较大,这会影响微针阴模中凹槽填充,进而影响可溶微针成型的一致性和稳定性,难以保证可溶微针的成型质量。
现有技术还提出在负压状态下,将聚合物溶液覆盖至微针阴模表面,后利用大气压强将聚合物溶液填充到凹槽中,能够快速完成大平面微针浇注模具的均匀浇注,实现微纳米级结构高精度快速复制,但是,无法满足大批量生产的要求,生产效率低,而且还难以保证真空灌装环境的稳定性,影响微针的成型质量,同时灵活较差,无法适用于不同尺寸的微针模具,导致需要反复拆装,操作繁琐。除此之外,现有技术还存在对微针阴模表面溶液均化处理效果差,且均化处理会污染溶液,以及浇铸溶液时无法充分排除凹槽内空气的问题,最终难以有效的保证微针成型质量。此外,可溶微针的制备还存在自动化程度不高、生产效率低、人力成本高等问题。
发明内容
本发明的目的在于提供一种制备微针的设备及方法,可以实现微针的大批量生产,并提高微针制备的产能,提高生产效率,而且提高微针的成型质量。
为实现上述目的,本发明提供了一种制备微针的设备,包括微针阴模、真空腔室、灌装机构和抽真空机构;所述微针阴模的表面形成有与微针针体匹配的凹槽;所述灌装机构至少部分设置在所述真空腔室内,并用于释放制备微针的溶液;所述抽真空机构与所述真空腔室连接,并用于对所述真空腔室抽真空;所述真空腔室包括相互独立设置的进料腔、灌装腔和出料腔;
所述进料腔用于在非负压状态下接收所述微针阴模;
所述抽真空机构用于对已接收所述微针阴模的所述进料腔进行抽真空;
所述灌装腔用于在负压状态下接收来自负压状态的所述进料腔转移的所述微针阴模;
所述出料腔用于在负压状态下接收来自负压状态的所述灌装腔转移的所述微针阴模,并用于在接收所述微针阴模后进行破真空。
可选地,所述设备还包括通信连接的控制器和破真空阀,所述破真空阀包括第一破真空阀和第三破真空阀;所述第一破真空阀设置于所述进料腔上,所述第三破真空阀设置于所述出料腔上;
所述控制器用于控制所述第一破真空阀打开,以对所述进料腔进行破真空,并还用于当第三状态的所述微针阴模转移至负压状态的所述出料腔后,所述控制器用于控制所述第三破真空阀打开,以对所述出料腔进行破真空。
可选地,所述控制器还与所述抽真空机构通信连接;所述控制器用于控制所述抽真空机构对所述出料腔、所述灌装腔和所述进料腔进行抽真空。
可选地,所述设备还包括与所述控制器通信连接的传感器组件,所述传感器组件包括第一传感器、第二传感器和第三传感器;
所述进料腔设置所述第一传感器,所述灌装腔设置所述第二传感器,所述出料腔设置所述第三传感器,所述控制器用于分别根据所述第一传感器、第二传感器和第三传感器所检测的压力信息控制对应腔体的真空度。
可选地,所述设备还包括均化机构,且所述灌装腔内设置有浇注工位和均化工位;
当所述灌装腔处于负压状态时,所述灌装腔内的所述微针阴模用于设置于所述浇注工位,且所述灌装机构用于向所述微针阴模的表面浇注所述溶液;
当所述灌装腔内的所述微针阴模浇注完溶液后用于转移至所述均化工位,且所述均化机构用于对浇注完溶液的所述微针阴模进行均匀化处理,以使所述溶液均匀地填充在所述微针阴模的表面。
可选地,所述均化机构包括抓取机构和驱动机构,所述抓取机构包括主轴组件和夹持组件,所述驱动机构包括伺服电机和传动组件,所述主轴组件包括主轴和底座,所述主轴的底端与所述底座固定连接,所述夹持组件包括至少三个卡爪,至少三个所述卡爪在所述底座上围绕所述主轴的轴线均匀分 布并用于夹持固定托盘,所述托盘装载所述微针阴模,所述伺服电机用于通过所述传动组件驱动所述主轴旋转,所述主轴的轴线与所述凹槽的轴线平行。
可选地,所述驱动机构还包括气缸组件、弹性部件和转盘;所述转盘套设在所述主轴上,并能够相对于所述主轴转动,所述弹性部件的一端连接所述主轴,另一端连接所述转盘;
当所述转盘由所述气缸组件驱动朝第一方向转动时,使所述弹性部件存储弹性势能,并使所有所述卡爪移动至松开位置;
当所述转盘被解除所述气缸组件的作用力后,所述弹性部件释放弹性势能,并驱使所述转盘朝第二方向转动,使得所有所述卡爪移动至锁紧位置。
可选地,所述均化机构还包括压块,所述压块固定在所述底座上,并用于在轴向上压抵所述转盘;所述压块的数量为至少三个。
可选地,所述夹持组件还包括导轨、滑块、固定座和限位销,所述导轨沿着所述底座的径向布置,所述滑轨可滑动地设置在所述导轨上,所述固定座固定在所述滑块上,每个所述卡爪固定在对应的一个固定座上,所述限位销固定在所述固定座上,所述转盘设置有弧形的限位槽,所述限位销可活动地设置在所述限位槽中,所述限位槽的弧形的两端距离转盘中心不同;
当所述转盘朝第一方向转动时,所述限位销由弧形的所述限位槽的近端向远端移动,并驱动卡爪向外移动,直至所述限位销与所述限位槽的远端抵扣;
当所述转盘朝第二方向转动时,所述限位销由弧形的所述限位槽的近端向远端移动,并驱动卡爪向内移动,直至所述限位销与所述限位槽的近端抵扣。
可选地,所述气缸组件包括推杆,所述转盘上设置有固定柱,所述推杆用于推动所述固定柱以驱动所述转盘朝第一方向转动。
可选地,所述设备还包括托盘和输送线,所述托盘用于装载所述微针阴模,所述输送线用于传送所述托盘;所述均化机构用于驱动所述托盘运动以对所述微针阴模进行均匀化处理,所述托盘的运动包括水平转动、水平移动、抖动、上下摆动中的至少一种。
可选地,所述设备还包括托盘,所述托盘用于装载所述微针阴模,且同一个所述托盘能够装载不同尺寸的微针阴模。
可选地,所述设备还包括上料输送线、下料输送线和转运输送线,所述上料输送线设置在上料区,所述下料输送线设置在下料区;
所述上料输送线用于将所述托盘传送至所述进料腔,并由所述下料输送线接收来自所述出料腔的托盘;
所述转运输送线用于接收来自所述下料输送线上的空载的所述托盘,并用于将空载的所述托盘传送至所述上料区。
可选地,所述转运输送线设置在所述上料输送线和下料输送线的下方,所述设备还包括自动转运机构,所述自动转运机构用于将所述下料输送线上的空载的所述托盘转移至所述转运输送线,并用于将所述转运输送线上的空载的所述托盘转移至所述上料输送线。
可选地,所述设备还包括设置在所述上料区的自动供料机构和自动上料机构,所述自动供料机构用于将所述微针阴模输送至一上料工位;
所述自动上料机构还用于从所述上料工位取走所述微针阴模,并放置于所述上料输送线上的所述托盘。
可选地,所述设备还包括设置在所述下料区的自动下料机构和转运托盘,所述自动下料机构用于从所述下料输送线上的所述托盘上取走所述微针阴模,并放置于所述转运托盘上。
可选地,所述进料腔、所述灌装腔和所述出料腔依次相邻设置,所述进料腔的进口处设置第一闸门,所述进料腔的出口和所述灌装腔的进口共用第二闸门,所述灌装腔的出口和所述出料腔的进口共用第三闸门,所述出料腔的出口设置第四闸门。
可选地,所述设备还包括第一传送线、第二传送线和第三传送线,所述第一传送线设置于所述进料腔内,所述第二传送线设置于所述灌装腔内,所述第三传送线设置于所述出料腔内。
可选的,所述灌装机构用于向负压状态的所述灌装腔内的所述微针阴模的表面浇注所述溶液。
为实现上述目的,本发明还提供了一种制备微针的方法,所述方法包括:
提供一微针阴模,所述微针阴模的表面形成有与微针针体匹配的凹槽;
将所述微针阴模放置于非负压状态的进料腔,然后,通过所述抽真空机构对所述进料腔进行抽真空,以使所述进料腔和所述微针阴模处于负压状态;
将负压状态的所述微针阴模从负压状态的所述进料腔转移至负压状态的灌装腔,并在负压状态下,通过灌装机构向所述微针阴模的表面浇注所述溶液,并通过均化机构对浇注完溶液的所述微针阴模进行均匀化处理,以使所述溶液均匀地摊平在所述微针阴模的表面;
将浇铸溶液的所述微针阴模从负压状态的所述灌装腔转移至负压状态的出料腔,并维持所述灌装腔的负压状态;
将浇铸溶液的所述微针阴模转移至负压状态的所述出料腔后,对负压状态的所述出料腔进行破真空,以使所述出料腔处于非负压状态,并得到带有溶液的所述微针阴模;
带有溶液的所述微针阴模固化成型后进行脱模,即得到微针。
可选地,所述方法还包括:
将负压状态的所述微针阴模从负压状态的所述进料腔转移至负压状态的所述灌装腔后,对负压状态的所述进料腔进行破真空,以使所述进料腔处于非负压状态,以接收下一个所述微针阴模。
可选地,所述方法还包括:
对负压状态的所述出料腔进行破真空后,将带有溶液的所述微针阴模从非负压状态的所述出料腔转移至外部,以使非负压状态的所述出料腔处于空载状态;
非负压状态的所述出料腔空载后,通过所述抽真空机构对所述出料腔进行抽真空,以使所述出料腔处于负压状态,以接收下一个均匀化处理后的所述微针阴模。
可选地,所述方法还包括:
在所述灌装腔内的浇注工位,通过所述灌装机构向负压状态的所述微针阴模的表面浇注所述溶液;
在所述灌装腔内的均化工位,通过所述均化机构对浇注完溶液的所述微针阴模进行均匀化处理。
可选地,在所述均化工位,由一托盘装载所述微针阴模,并通过所述均化机构驱动所述托盘运动,以对所述微针阴模进行均匀化处理,所述托盘的运动包括水平转动、水平移动、抖动、上下摆动中的至少一种。
可选地,所述方法包括:由一托盘装载所述微针阴模依次进入所述进料腔、所述灌装腔和所述出料腔,且不同尺寸的微针阴模通过同一个托盘进行输送。
可选地,所述方法还包括:
通过一上料区的上料输送线将所述托盘传送至所述进料腔,并由一下料区的下料输送线接收来自所述出料腔的托盘;
通过一转运输送线接收来自所述下料输送线上的空载的所述托盘,并由所述转运输送线将空载的所述托盘传送至所述上料区。
可选地,所述转运输送线设置在所述上料输送线和下料输送线的下方,所述方法还包括:
通过一自动转运机构将所述下料输送线上的空载的所述托盘转移至所述转运输送线,并利用所述自动转运机构将所述转运输送线上的空载的所述托盘转移至所述上料输送线。
可选地,所述方法还包括:
由所述上料区的一自动供料机构将所述微针阴模输送至一上料工位;
由所述上料区的一自动上料机构从所述上料工位取走所述微针阴模,并放置于所述上料输送线上的所述托盘。
可选地,所述方法还包括:
由所述下料区的一自动下料机构从所述下料输送线上的所述托盘上取走所述微针阴模,并放置于所述下料区的转运托盘上。
可选地,由一控制器控制所述抽真空机构对所述进料腔、所述灌装腔和所述出料腔进行抽真空。
可选地,所述均化机构在对所述微针阴模执行均匀化处理时依次进行加 速转动、匀速转动和减速转动。
为实现上述目的,本发明还提供了一种制备微针的方法,所述方法包括:
提供一微针阴模和真空腔室,所述微针阴模的表面形成有与微针针体匹配的凹槽,所述真空腔室包括独立设置的灌装腔和出料腔;
将所述微针阴模放置于非负压状态的灌装腔,通过灌装机构向所述微针阴模的表面浇注所述溶液;
通过均化机构对所述微针阴模进行均匀化处理,以使所述溶液均匀地摊平在所述微针阴模的表面;
通过抽真空机构对所述灌装腔进行抽真空,以使所述灌装腔和所述微针阴模处于负压状态;
将均匀化处理后的所述微针阴模转移至负压状态的所述出料腔后,对负压状态的所述出料腔进行破真空,以使所述出料腔处于非负压状态,并得到带有溶液的所述微针阴模;
对带有溶液的所述微针阴模固化成型后进行脱模。
可选的,所述方法包括:通过一托盘装载所述微针阴模并进入所述灌装腔和所述出料腔,且在所述均化工位,通过所述均化机构驱动所述托盘运动,以对所述微针阴模进行均匀化处理,所述托盘的运动包括水平转动、水平移动、抖动、上下摆动中的至少一种。
上述制备微针的设备及方法通过相互独立设置的进料腔、灌装腔和出料腔,实现了微针阴模的抽真空、真空灌装和破真空的工序的分离,使得真空灌装等待时间能够极大的减少,提高整体真空灌装效率,而且在真空灌装之前,微针阴模已经过较长时间的抽真空,极大的减少了微针阴模表面的凹槽内的空气,使溶液能够完全填充凹槽,填充效果好,可以有效的保证微针的成型质量,同时还能极大的提高生产节拍,增加设备产能,实现微针的大批量生产。
上述制备微针的设备及方法通过在真空腔室的灌装腔内对微针阴模进行真空灌装,实现溶液的浇注,可充分地排出微针阴模的凹槽内的空气,保证破真空后,微针阴模的凹槽内充满溶液,确保微针成型质量。
上述制备微针的设备及方法通过均化机构对微针阴模的表面的溶液进行均匀化处理,可有效的摊平微针阴模表面上的黏性溶液,使溶液均匀地平铺在微针阴模的表面,进一步确保微针成型质量。尤其通过均化机构的旋转实现对微针阴模的均匀化处理,其中主轴的转动轴线与微针阴模的凹槽的深度方向(定义为凹槽的轴向)平行设置,以依靠主轴的旋转摊平微针阴模上的黏性溶液,然后黏性溶液依靠重力进入微针阴模的凹槽,该方式可利用离心力有效的摊平微针阴模表面上的黏性溶液,均匀化效果好,而且不直接接触溶液,避免了对溶液的污染,进一步保证了微针成型质量。
附图说明
本领域的普通技术人员将会理解,提供的附图用于更好地理解本发明,而不对本发明的范围构成任何限定。其中:
图1为本发明优选实施例提供的制备微针的设备的结构主视示意图;
图2为本发明优选实施例提供的真空腔室的外部结构俯视示意图;
图3为本发明优选实施例提供的真空腔室的内部结构示意图;
图4为本发明优选实施例提供的制备微针的设备的结构俯视示意图;
图5为本发明优选实施例的均化机构的主视图;
图6为本发明优选实施例的主轴组件和夹持组件的主视图;
图7为本发明优选实施例的主轴组件和夹持组件的立体图;
图8为本发明优选实施例的主轴组件和夹持组件的俯视图;
图9为本发明优选实施例的气缸组件顶出,使卡爪松开的原理图;
图10为本发明优选实施例的气缸组件缩回,使卡爪在拉簧作用下夹紧的原理图;
图11为本发明优选实施例的均化机构工作时的转速-时间曲线图。
具体实施方式
下面将结合示意图对本发明进行更详细的描述,其中表示了本发明的优选实施例,应该理解本领域技术人员可以修改在此描述的本发明,而仍然实 现本发明的有利效果。因此,下列描述应当被理解为对于本领域技术人员的广泛知道,而并不作为对本发明的限制。
为了清楚,不描述实际实施例的全部特征。在下列描述中,不详细描述公知的功能和结构,因为它们会使本发明由于不必要的细节而混乱。应当认为在任何实际实施例的开发中,必须做出大量实施细节以实现开发者的特定目标,例如按照有关***或有关商业的限制,由一个实施例改变为另一个实施例。另外,应当认为这种开发工作可能是复杂和耗费时间的,但是对于本领域技术人员来说仅仅是常规工作。
在下列段落中参照附图以举例方式更具体地描述本发明。根据下面说明,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
以下结合附图和实施例对本发明作进一步的描述。
图1示出了本发明一优选实施例的制备微针的设备的结构主视示意图,图2示出了本发明一优选实施例的真空腔室的外部结构俯视示意图,图3示出了本发明一优选实施例的真空腔室的内部结构示意图,图4示出了本发明一优选实施例提供的制备微针的设备的结构俯视示意图。
如图1至图4所示,本实施例提供一种制备微针的设备,该微针可穿刺人体角质层,形成有利于药物输送的通道,从而促进药物的透皮吸收。本申请对微针针体的形状不作限制,包括但不限于针尖部为凸状结构的针体,针尖部可以是具有尖锐形状的凸状结构,也可以是不尖锐的凸状结构;针体包括但不限于圆锥状、多棱锥状或梭形。制备微针的溶液具有一定的粘度,溶液包括但不限于为聚合物溶液,且本申请对溶液的种类没有特别的限定。
所述制备微针的设备具体包括微针阴模1、真空腔室2、灌装机构3和抽真空机构4;微针阴模1的表面形成有与微针针体匹配的凹槽(未图示);灌装机构3至少部分设置在所述真空腔室内,并用于释放制备微针的溶液;真空腔室2用于提供密闭的环境,以便于在真空的条件下制备微针;抽真空机构4与真空腔室2连接,并用于对真空腔室2进行抽真空。
如图2所示,真空腔室2包括三个相互独立的真空腔,分别是依次相邻 设置的进料腔21、灌装腔22和出料腔23。进料腔21用于在非负压状态下接收微针阴模1,非负压状态即为常压状态;本文中,应理解,常压并不是绝对的一个标准大气压,而是由于地理位置、海波高度、温度等不同,实际大气压同标准大气压也会不相等,因此本申请对常压的压力值没有特别的限制;抽真空机构4用于在进料腔21接收微针阴模1后,对进料腔21进行抽真空,以使微针阴模1和进料腔21都处于负压状态;灌装腔22用于在负压状态下接收来自负压状态的进料腔21转移的微针阴模1;灌装机构3用于向负压状态的灌装腔22内的微针阴模1的表面浇注制备微针的溶液,并得到浇注完溶液的微针阴模1,进一步优选对浇注完溶液的微针阴模1进行均匀化处理,以使所述溶液均匀地摊平在微针阴模1的表面;出料腔23则用于在负压状态下接收来自负压状态的灌装腔22转移的浇铸溶液的微针阴模1,并用于在接收浇铸溶液的微针阴模1后进行破真空,以使出料腔23处于非负压状态,且得到带有溶液的微针阴模1,此时,带有溶液的微针阴模1处于常压状态;带有溶液的微针阴模1进一步固化成型后进行脱模,即可得到微针(一体式微针)。
本实施例还提供一种制备微针的方法,该方法包括:
步骤11:将微针阴模1放置于非负压状态的进料腔21,然后,利用抽真空机构4对进料腔21进行抽真空,以使进料腔21和微针阴模1处于负压状态;
步骤12:将负压状态的微针阴模1从负压状态的进料腔21转移至负压状态的灌装腔22,并在负压状态下,通过灌装机构3向灌装腔22内的微针阴模1的表面浇注溶液,浇铸完溶液后,优选通过均化机构6对浇注完溶液的微针阴模1进行均匀化处理,以使所述溶液均匀地摊平在所述微针阴模1的表面;
步骤13:将浇铸溶液的微针阴模1从负压状态的灌装腔22转移至负压状态的出料腔23,并维持灌装22的负压状态;即将浇铸溶液的微针阴模1送出灌装腔22后,灌装腔22关闭,使灌装腔22仍然可以维持负压状态,以准备接收下一个待浇注溶液的微针阴模1;
步骤14:将浇铸溶液的微针阴模1转移至负压状态的出料腔23后,对负压状态的出料腔23进行破真空,以使出料腔23处于非负压状态,并得到带 有溶液的微针阴模1;应理解,出料腔23在接收浇铸溶液的微针阴模1之前已被抽真空,而且当出料腔23破真空后,溶液借助于自身重力充满微针阴模1的凹槽;
步骤15:带有溶液的所述微针阴模固化成型后进行脱模,即得到微针。
步骤14之后,优选还包括步骤:
当出料腔23破真空后,打开出料腔23的出口,将装载了浇铸溶液的微针阴模1转移至出料腔23的外部,使得破真空后的出料腔23处于空载状态,破真空后的出料腔23空载后,出料腔23关闭,对出料腔23开始抽真空,直至出料腔23内的真空度达到设定值后停止,以准备接收下一个浇铸溶液的微针阴模1。
此外,在步骤12中,将负压状态的微针阴模1送出进料腔21后,进料腔21关闭,便对进料腔21开始破真空,直至进料腔21内的压力与外部环境一致后停止,以准备接收下一个微针阴模1。
上述三个独立的真空腔的设置,可极大地减少灌装操作时的等待时间,有效的提高微针制备的真空灌装效率。应理解,如果单独一个真空腔进行抽真空-破真空-抽真空的反复操作,不仅灌装时间长,灌注效率低,而且能量消耗大,生产成本高。而本发明的真空腔室由三个独立的真空腔组成,其中灌装腔22无需反复进行抽真空-破真空-抽真空的操作,减少了能量消耗,而且减少了灌装时的等待时间,灌装效率高。因此,三个独立的真空腔可极大提高生产节拍,增加设备产能,这样做,可以使单机产能提升到4件/分钟。尤其在灌装前,微针阴模1已经经过较长时间的抽真空,极大的减少了微针阴模1的凹槽内的空气含量,保证了最终成型的微针的质量,提高了微针制备的良品率。而且在真空条件下进行溶液的灌装,可充分地排出微针阴模的凹槽内的空气,保证出料腔23破真空后,微针阴模的凹槽内充满溶液,确保微针成型质量。尤其在真空条件下,结合均化机构6的均匀化处理,可有效的摊平微针阴模表面上的黏性溶液,使溶液均匀地平铺在微针阴模的表面,进一步保证了微针成型质量。
在其他实施例中,也可以先在非负压状态下浇铸溶液,然后通过均化机 构6进行均匀化处理,均匀化处理后,再进行抽真空,抽真空后再破真空,实现溶液的填充。具体地,本实施例还提供另一种制备微针的方法,该方法包括:
步骤21:将微针阴模1放置于非负压状态的灌装腔22,通过灌装机构3向微针阴模1的表面浇注所述溶液;
步骤22:通过均化机构6对微针阴模1进行均匀化处理,以使溶液均匀地摊平在微针阴模1的表面;
步骤23:通过抽真空机构4对灌装腔22进行抽真空,以使灌装腔22和微针阴模1处于负压状态;
步骤24:将均匀化处理后的微针阴模1转移至负压状态的出料腔23后,对负压状态的出料腔23进行破真空,以使出料腔23处于非负压状态,并得到带有溶液的所述微针阴模1;
步骤25:对带有溶液的微针阴模1固化成型后进行脱模。
应理解,各个真空腔的真空压力根据所制备的微针产品进行设定。每个真空腔的真空压力需满足一定的条件,若真空压力不足会影响微针成型质量,而真空压力过大则会增加能量消耗,提高抽真空和破真空时间,降低设备产能。本实施例中,进料腔21、灌装腔22和出料腔23的工作压力优选相等,工作压力优选为-95Kpa~-80Kpa,在该工作压力下,既能保证微针成型质量,又能降低抽真空和破真空时间,提高设备产能。进一步的,进料腔21、灌装腔22和出料腔23的工作压力的控制精度为±1Kpa。进一步优选的,进料腔21和出料腔23的抽真空时间为10~16秒,进料腔21和出料腔23的破真空时间为3~5秒,而灌装腔22由于在生产时一直处于负压状态,因此对抽破真空时间没有特别的要求。
所述制备微针的设备优选还包括托盘5,托盘5用于装载微针阴模1以依次进入进料腔21、灌装腔22和出料腔23,更优选不同尺寸的微针阴模1可通过同一个托盘5进行输送。
进一步的,真空腔室5的优选使用步骤包括:首先将装载微针阴模1的托盘5传送至常压下的进料腔21内,然后关闭进料腔21,使进料腔21与其 他2个真空腔和外部环境隔绝,然后,对进料腔21进行抽真空,直至真空压力达到设定值,停止抽真空并维持负压状态;接着打开进料腔21的出口,将已被抽真空的微针阴模1连同托盘5传送至灌装腔22内,关闭灌装腔22,使灌装腔22与其他2个真空腔和外部环境隔绝,该过程中,灌装腔22在装入微针阴模1之前已被抽真空;当微针阴模1浇注完成后,打开灌装腔22的出口,将灌装好溶液的微针阴模1连同托盘5传送至出料腔23,关闭出料腔23,使出料腔23与其他2个真空腔和外部环境隔绝,然后对出料腔23进行破真空,直至出料腔23内的压力与外部环境一致。
此外在步骤13中,微针阴模1浇注完溶液后,继续在灌装腔22内进行均匀化处理,均匀化处理后,再打开灌装腔22的出口。也即,所述制备微针的设备还包括均化机构6,且灌装腔22内优选设置浇注工位和均化工位;当所述灌装腔22处于负压状态时,将微针阴模1由托盘5转移至所述浇注工位,之后,灌装机构3用于向负压状态的微针阴模1的表面浇注溶液;且当微针阴模1浇注完溶液后,再通过托盘5将微针阴模1转移至在所述均化工位,均化机构6再用于对浇注完溶液的微针阴模1进行均匀化处理,以使溶液均匀地填充在微针阴模1的表面。
本实施例中,所述均化机构6主要驱动托盘5运动以实现微针阴模1的均匀化处理,托盘5的运动可以是各种运动,如水平转动、水平移动、抖动、上下摆动中的至少一种。该方式中,所述均化机构6与制备微针的溶液无接触,减少了溶液受污染的风险,而且均匀化效果好,并可通过较为简单的结构和操作来实现,从而保证每个凹槽内填充的溶液含量的稳定性和一致性,确保微针成型质量。
在一些实施例中,所述均化机构6包括抓取结构和驱动机构,所述驱动机构用于驱动所述抓取机构绕自身轴线做水平转动,所述抓取机构用于抓取托盘5,然后所述驱动机构通过抓取机构带动托盘5及微针阴模1一起水平转动,从而通过离心力将微针阴模1表面的溶液均匀化地铺展开,并充满各个凹槽。均化机构6和灌液机构3可设置在同一个灌装腔22,也可在灌装腔22和出料腔23之间设置一个独立的真空腔,以单独放置均化机构6。
在另一些实施例中,所述均化机构6包括抓取机构和驱动机构,所述驱动机构用于驱动所述抓取机构上下摆动,所述抓取机构用于抓取托盘5,然后驱动机构通过抓取机构带动托盘5及微针阴模1一起上下摆动,从而通过上下摆动将微针阴模1表面的溶液均匀化地铺展开,并充满各个凹槽。在其他实施例中,可以取消抓取机构,所述驱动机构配置为承载托盘5的运动台,所述运动台用于驱动托盘5水平转动或上下摆动或进行抖动(包括振动)或进行水平移动。
图5至图10示出了根据一优选实施例的均化机构6。该均化机构6包括抓取机构和驱动机构,所述抓取机构包括主轴组件610和夹持组件620,所述驱动机构包括伺服电机630和传动组件640。所述主轴组件610包括主轴611和底座612,主轴611的底端与底座612固定连接或可拆卸连接。所述夹持组件620包括至少三个卡爪621,至少三个卡爪621在底座612上围绕主轴611的轴线均匀分布。至少三个卡爪621相互配合对托盘5进行夹持固定。优选的,卡爪621的数量为四个,夹持效果较为稳定。每个卡爪621可相对于底座612移动,以夹紧或松开托盘5。所述伺服电机630通过传动组件640与主轴611连接,以通过传动组件640驱动主轴611绕自身轴线进行水平转动。所述传动组件640优选为皮带轮组件,具体的,所述传动组件640包括主动带轮641、皮带642和从动带轮643,主动带轮641与伺服电机630的电机轴(未标注)连接,皮带642套设在主动带轮641和从动带轮643上,从动带轮643套设在主轴611的顶端。优选的,伺服电机630与主轴611平行布置。伺服电机630通过皮带轮组件驱动主轴611和底座612旋转,从而驱动托盘5和微针阴模1一起旋转,使溶液均匀涂布在微针阴模1表面。主轴611可通过轴承613和螺母614固定的轴承座615上。轴承座615和伺服电机630都固定在机座650上。底座612可以是各种形状,优选为圆形。应理解,主轴611的转动轴线与微针阴模的凹槽的深度方向平行,即主轴611的转动轴线与凹槽的轴向平行,从而依靠主轴611的旋转摊平微针阴模上的黏性溶液(即制备微针的溶液),然后黏性溶液依靠重力进入微针阴模的凹槽,该方式能够有效的摊平微针阴模表面上的黏性溶液,均匀化效果好,而且不直接接触溶 液,避免了对溶液的污染,进一步保证微针成型质量。
进一步优选的,所述驱动机构还包括气缸组件660、弹性部件670和转盘680。所述转盘680套设在主轴611上,并可相对于主轴611转动。所述弹性部件670的一端连接主轴611,另一端连接转盘680。当转盘680被气缸组件660驱动朝第一方向转动时,使弹性部件670存储弹性势能,并使夹持组件620的卡爪621移动至松开位置,以便于解除对托盘5的夹持或松开后便于对托盘5进行夹持;且当转盘680被解除气缸组件660的作用力后,弹性部件670释放弹性势能,并驱使转盘680朝第二方向转动,使得夹持组件620的卡爪621移动至锁紧位置,以便于夹紧托盘5或松开后托盘5恢复原位。这种利用气缸和储能元件控制卡爪621的松开和夹紧的方式,无需配置气路、电路等复杂的辅助设备,因此,结构简单,可靠性好,而且可通过伺服电机630控制主轴611的转动速度,达到较好的离心效果。所述弹性部件670一般选用拉簧671,拉簧671的一端固定在主轴611上,另一端固定在转盘680上。本实施例中,拉簧671的一端固定在第一销672上,第一销672固定的主轴611上,拉簧671的另一端固定在第二销673上,第二销673固定在转盘680上。第一方向与第二方向相反。
为了避免转盘680上下跳动,所述均化机构6还包括辅助部件690,所述辅助部件690可用于限制转盘680的轴向位置。可选的,所述辅助部件690包括压块691,压块691固定在底座612上,并用于在轴向上压抵转盘680,压块691的数量至少为三个并周向均匀地在底座612上设置。
所述夹持组件620可包括导轨622、滑轨623、固定座624和限位销625。导轨622沿着底座612的径向布置,滑轨623可滑动地设置在导轨622上,固定座624固定在滑块623上,每个卡爪621固定在对应的一个固定座624上。限位销625固定在固定座624上,转盘680设置有弧形的限位槽681,限位销625可活动地设置在弧形的限位槽681中,限位槽681的弧形的两端距离转盘680的中心不同。在夹紧之前,夹持组件620位于初始位置,此时,限位销625与限位槽681的弧形的近端抵扣,限位槽681的弧形的近端相比于弧形的远端更靠近转盘中心。当所述转盘680朝第一方向转动时,所述限 位销625由弧形的所述限位槽681的近端向远端移动,并驱动卡爪621向外移动,直至所述限位销625与所述限位槽681的远端抵扣;当所述转盘680朝第二方向转动时,所述限位销625由弧形的所述限位槽681的近端向远端移动,并驱动卡爪621向内移动,直至所述限位销625与所述限位槽681的近端抵扣。
结合图7至图8,气缸组件660包括推杆661,转盘680上设置有固定柱682。如图9所示,当需要松开卡爪621时,气缸驱动推杆661伸出并抵靠固定柱682,进而推动固定柱682使转盘680朝第一方向转动,并通过限位销625驱动固定座624沿导管622径向向外滑动,从而实现卡爪621对托盘5的松开;如图10所示,撤去推杆661后,在拉簧671的弹力作用下,转盘680被拉动朝第二方向转动,并通过限位销625驱动固定座624沿导管622径向向内滑动,从而实现卡爪621对托盘5的夹紧。
为了进一步改善均化效果,本实施例的均化机构6被配置为具有不同的工作阶段,分别为加速阶段、匀速阶段和减速阶段,均化机构6在对微针阴模1执行均匀化处理时依次进行加速转动、匀速转动和减速转动,以使溶液均匀地填充在微针阴模的表面。图11示出了均化机构6的转速-时间曲线,其中横坐标为时间(单位秒),纵坐标为转速(单位转/分)。实际使用中,首先主轴611加速转动,当主轴611加速转动至预定转速后进行匀速转动,匀速转动一定时间后,主轴611减速转动直至完成均化操作。由于微针产品在均化时,根据溶液黏度的不同,主轴611的转速和均化时间均会有所不同,因此,各个阶段的速度和时间可根据微针的材料和黏度进行设定,本申请在此不做特别的限制。进一步可选的,所述匀速阶段的转速为300~1000转/分,加速阶段的时间可为2秒以内,匀速阶段的时间可为2~18秒,减速阶段的时间可为18~32秒。
进一步的,所述制备微针的设备还包括输送线,所述输送线用于自动化传送托盘5并实现托盘5的重复使用。所述制备微针的设备设置有上料区和下料区,上料区设置于进料腔21的一侧,下料区设置在出料腔23的一侧。所述输送线可以将下料区的托盘5重复不断地输送至上料区,以便重复使用 托盘5。
如图1所示,所述输送线包括上料输送线7、下料输送线8和转运输送线9。上料输送线7设置在上料区,即真空腔室5的进口处。下料输送线8设置在下料区,即真空腔室5的出口处。即,所述上料输送线7和下料输送线8之间设置真空腔室2。
转运输送线9可以与上料输送线7和下料输送线8直接连接形成一条完整连续的循环式输送线。转运输送线9也可以与上料输送线7和下料输送线8不连接而形成一条不连续的循环式输送线,此时,可通过自动转运机构将下料输送线8上的托盘5传送至转运输送线9,再由自动转运机构将转运输送线9上的托盘5传送至上料输送线7。如此形成一个生产循环,微针制备的自动化程度高,可以极大提高生产节拍,增加设备产能。
进一步的,通过上料输送线7将装载有常压状态的微针阴模1的托盘5传送至进料腔21,并由下料输送线8接收来自出料腔23的托盘5;通过转运输送线9接收来自下料输送线8上的空载的托盘5,并由转运输送线9将空载的托盘5传送至上料区。转运输送线9相对于上料输送线7和下料输送线8的位置不作限制。图1示出了转运输送线9设置在上料输送线7和下料输送线8的下方,节省空间。相匹配的,所述制备微针的设备还包括支架16,用于设置真空腔室2和输送线。
所述制备微针的设备优选还包括自动转运机构,通过所述自动转运机构将下料输送线8上的空载的托盘5转移至转运输送线9,并利用所述自动转运机构将转运输送线9上的空载的托盘5转移至上料输送线7。所述自动转运机构优选为升降装置,所述升降装置包括上料升降机10和下料升降机11,上料升降机10设置在上料区,下料升降机11设置在下料区。此时,所述转运输送线9与上料输送线7和下料输送线8设置在不同的水平高度,例如图1示出了转运输送线9设置在上料输送线7和下料输送线8的下方,如正下方。上料升降机10对接转运输送线9和上料输送线7,下料升降机11对接转运输送线9和下料输送线8,上料升降机10通过自动升降将转运输送线9上的空载托盘5传送至上料输送线7,下料升降机11通过自动升降将下料输送线8 上的空载托盘5传送至转运输送线9。当然所述自动转运机构不限于升降装置,例如还可以是机械手臂、或自动化运输车或自动化轨道等。
进一步的,使用上述制备微针的设备制备微针的一操作步骤包括:
首先在上料区,通过手动或机械自动方式将微针阴模1摆放在上料输送线7的空载托盘5上,托盘5装载微针阴模1后由上料输送线7传送进入真空腔室2的进料腔21内;当微针阴模1浇注完溶液和均匀化处理后,通过托盘5传送至出料腔23进行破真空;破真空后,通过托盘5装载灌注好溶液的微针阴模1进入到下料输送线8上;在下料区,通过手动或机械自动方式将灌注好溶液的微针阴模1从托盘5中取出;在此过程中,微针阴模1从托盘5中取出后通常被放置到转运托盘12上,再由转运托盘12将灌注好溶液的微针阴模1输送至下一道工序(如干燥、烘干工序);灌注好溶液的微针阴模1从托盘5中取出后,空载托盘5通过下料升降机11传送至转运输送线9,由转运输送线9将空载托盘5传送至上料区,到达上料区后,由上料升降机10将空载托盘5传送至上料输送线7,从而空载托盘5重新接收下一个模具。
继续参阅图2,所述进料腔21上设置有第一抽真空阀211。第一抽真空阀211与进料腔21连通,第一抽真空阀211连接抽真空机构4,抽真空机构4通过第一抽真空阀211对进料腔21进行抽真空,以使进料腔21维持负压状态。进一步的,所述制备微针的设备还包括传感器组件,所述传感器组件包括第一传感器212,所述进料腔21上设置有第一传感器212,第一传感器212用于实时检测进料腔21内的真空度,第一传感器212优选与控制器通信连接,第一传感器212优选将真空度反馈于控制器,由控制器根据反馈的真空度控制进料腔21内的压力。所述进料腔21上设置有第一破真空阀213,第一破真空阀213用于与外部环境连通,以实现进料腔21的破真空。优选的,第一破真空阀213与控制器通信连接,由控制器控制第一破真空阀213的开闭。优选的,第一抽真空阀211与控制器通信连接,由控制器控制第一抽真空阀211的开闭。
图2还示出了一示意性实施方式的灌装腔22。所述灌装腔22上设置有第二抽真空阀221。第二抽真空阀221与灌装腔22连通,第二抽真空阀221连 接抽真空机构4,抽真空机构4通过第二抽真空阀221对灌装腔22进行抽真空,以使灌装腔22维持负压状态。优选的,所述传感器组件还包括第二传感器222,所述灌装腔22上设置有第二传感器222,第二传感器222用于实时检测灌装腔22内的真空度,第二传感器222优选与控制器通信连接,第二传感器222优选将真空度反馈于控制器,由控制器根据反馈的真空度控制灌装腔22内的压力。所述灌装腔22上设置有第二破真空阀223,第二破真空阀223用于与外部环境连通,以实现灌装腔22的破真空。优选的,第二破真空阀223与控制器通信连接,由控制器控制第二破真空阀223的开闭。优选的,第二抽真空阀221与控制器通信连接,由控制器控制第二抽真空阀221的开闭。
图2还示出了一示意性实施方式的出料腔23。所述出料腔23上设置有第三抽真空阀231。第三抽真空阀231与出料腔23连通,第三抽真空阀231连接抽真空机构4,抽真空机构4通过第三抽真空阀231对出料腔23进行抽真空,以使出料腔232维持负压状态。优选的,所述传感器组件还包括第三传感器232,所述出料腔23上设置有第三传感器232,第三传感器232用于实时检测出料腔23内的真空度,第三传感器232优选与控制器通信连接,第三传感器232优选将真空度反馈于控制器,由控制器根据反馈的真空度控制出料腔23内的压力。所述出料腔23上设置有第三破真空阀233,第三破真空阀233用于与外部环境连通,以实现出料腔23的破真空。优选的,第三破真空阀233与控制器通信连接,由控制器控制第三破真空阀233的开闭。优选的,第三抽真空阀231与控制器通信连接,由控制器控制第三抽真空阀231的开闭。
图3示出了一示意性实施方式的真空腔室2的内部结构。所述进料腔21的进口设置有第一闸门241,优选所述进料腔21的出口和灌装腔22的进口共用一个第二闸门243,且优选灌装腔22的出口和出料腔23的进口共用一个第三闸门247,所述出料腔23的出口设置有第四闸门249。第一闸门241用于控制进料腔21的进口的打开与关闭,第二闸门243用于控制进料腔21和灌装腔22之间的通断,第三闸门247用于灌装腔22和出料腔23之间的通断, 第四闸门249用于控制出料腔23的出口的打开与关闭。
上述闸门的使用步骤可为:进料腔21在常压状态时,第一闸门241打开,装有微针阴模1的托盘5被输送至进料腔21的第一传送线242上,然后第一闸门241关闭,对进料腔21开始抽真空;抽真空完毕后,第二闸门243打开,托盘5经由第一传送线242和第二传送线244进入灌装腔22内,其中第二传送线244设置在灌装腔22内;当托盘5到达灌液机构3的工位后,第二闸门243关闭,第二闸门243关闭后,便可对进料腔21进行破真空,进料腔21破真空后,打开第一闸门241,等待下一个托盘5进入;托盘5在到达灌液机构3的工位后,灌液机构3启动将设定量的溶液注入到微针阴模1的表面,灌液完毕后由第二传送线244将托盘5送至均化机构6的工位;托盘5到达均匀化工位后,均化机构6对微针阴模1进行均匀化处理,使得溶液能够快速、均匀、完整的覆盖微针阴模1表面;均匀化完毕后,第三闸门247打开,托盘5经第二传送线244和第三传送线248送至出料腔23内,其中第三传送线248设置在出料腔22内;托盘5到位后,第三闸门247关上,然后出料腔23开始破真空,直到出料腔23的内部气压与外界一致;然后第四闸门249打开,托盘5经第三传送线248送出下料输送线8,然后第四闸门249关闭,接着出料腔23开始抽真空,直到出料腔23内部的真空度到达设定值后停止。
优选的,所述制备微针的设备还包括控制器,优选与抽真空阀、破真空阀、抽真空机构4以及传感器组件通信连接,以控制这些设备的自动化运行。所述抽真空机构4优选包括第一抽真空泵、第二抽真空泵和第三抽真空泵,所述第一抽真空泵用于通过第一抽真空阀211对进料腔21进行抽真空;所述第二抽真空泵用于通过第二抽真空阀221对灌装腔22进行抽真空;所述第三抽真空泵用于通过第三抽真空阀231对出料腔23进行抽真空。所述控制器用于控制第一破真空阀213打开以对进料腔21进行破真空,并用于控制第二破真空阀223打开以对灌注腔22进行破真空,还用于控制第三破真空阀233打开以对出料腔23进行破真空。优选的,所述控制器用于分别根据第一传感器212、第二传感器222和第三传感器232所检测的信息控制对应腔体的真空度,即根据这些传感器所检测的信息控制对应的真空泵抽真空并控制在要求的真 空度内。进一步地,当将第四状态的微针阴模1从破真空后的出料腔23转移至外部后,所述控制器控制第三抽真空泵对出料腔23进行抽真空。进一步地,当负压状态的微针阴模1转移至负压状态的灌装腔22后,所述控制器控制第一破真空阀213打开,以对进料腔21进行破真空。
如图4所示,为了进一步提高自动化程度,优选所述制备微针的设备还包括自动供料机构13和自动上料机构14,均设置在上料区。通过自动供料机构13和自动上料机构14代替人工作业完成微针阴模1的自动上料。
所述自动供料机构13用于将常压下的微针阴模1自动化的运输至一上料工位。所述自动上料机构14用于自动地从所述上料工位取走常压下的微针阴模1并放置于上料输送线7的托盘5上。本申请对自动供料机构13的结构不作限定,例如可以是自动升降平台,该平台可以设计为多层,每层可放置一个或多个待灌装的微针阴模1。所述自动上料机构14优选为上料机械手,机械手的动作灵活且操作方便,而且不占用空间。
继续参阅图5,所述制备微针的设备优选还包括设置在下料区的自动下料机构15和转运托盘12,所述自动下料机,15用于从下料输送线8上的托盘5上取走第四状态的微针阴模1,并放置于转运托盘12上。从而通过自动下料机构15代替人工作业完成微针阴模1的下料操作,以进一步实现微针制备的自动化。自动下料机构15在下料区自动地将灌装好的微针阴模1从托盘5中取下并放置到转运区,如在转运区设置转运托盘12,自动下料机构15将取下的灌装好的微针阴模1放置到转运托盘12上,再由人工定期从转运托盘12上取走微针阴模1。如此一来,操作人员可以同时管理多台设备,大大的减少了人力投入,降低了人力成本。自动下料机构12通常为下料机械手。
本申请对灌液机构3的结构不作特别的限制。所述灌液机构3可包括出液头,所述出液头用于释放制备微针的溶液。优选所述出液头为多个,多个出液头并排地设置,每个出液头用于释放溶液,多个出液头同时释放溶液,溶液浇注效率高,溶液浇注效果好。
本实施例对控制器的种类没有特别的限制,可以是执行逻辑运算的硬件,例如,单片机、微处理器、可编程逻辑控制器(PLC,Programmable Logic  Controller)或者现场可编程逻辑门阵列(FPGA,Field-Programmable Gate Array),或者是在硬件基础上的实现上述功能的软件程序、功能模块、函数、目标库(Object Libraries)或动态链接库(Dynamic-Link Libraries)。或者,是以上两者的结合。本领域技术人在本申请公开的内容基础上,应当知晓如何具体实现控制器与其他设备间的通信。此外,采用控制器为本实施例的优选方式,本领域技术人员可以采用其他技术手段,例如手动控制,机械控制,可以实现同样的技术效果。
上述描述仅是对本发明优选实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于本发明的保护范围。

Claims (34)

  1. 一种制备微针的设备,其特征在于,包括微针阴模、真空腔室、灌装机构和抽真空机构;所述微针阴模的表面形成有与微针针体匹配的凹槽;所述灌装机构至少部分设置在所述真空腔室内,并用于释放制备微针的溶液;所述抽真空机构与所述真空腔室连接,并用于对所述真空腔室抽真空;所述真空腔室包括相互独立设置的进料腔、灌装腔和出料腔;
    所述进料腔用于在非负压状态下接收所述微针阴模;
    所述抽真空机构用于对已接收所述微针阴模的所述进料腔进行抽真空;
    所述灌装腔用于在负压状态下接收来自负压状态的所述进料腔转移的所述微针阴模;
    所述出料腔用于在负压状态下接收来自负压状态的所述灌装腔转移的所述微针阴模,并用于在接收所述微针阴模后进行破真空。
  2. 根据权利要求1所述的制备微针的设备,其特征在于,还包括通信连接的控制器和破真空阀,所述破真空阀包括第一破真空阀和第三破真空阀;所述第一破真空阀设置于所述进料腔上,所述第三破真空阀设置于所述出料腔上;
    所述控制器用于控制所述第一破真空阀打开,以对所述进料腔进行破真空,并还用于控制所述第三破真空阀打开,以对所述出料腔进行破真空。
  3. 根据权利要求2所述的制备微针的设备,其特征在于,所述控制器还与所述抽真空机构通信连接;所述控制器用于控制所述抽真空机构对所述出料腔、所述灌装腔和所述进料腔进行抽真空。
  4. 根据权利要求3所述的制备微针的设备,其特征在于,所述设备还包括与所述控制器通信连接的传感器组件,所述传感器组件包括第一传感器、第二传感器和第三传感器;
    所述进料腔设置所述第一传感器,所述灌装腔设置所述第二传感器,所述出料腔设置所述第三传感器,所述控制器用于分别根据所述第一传感器、第二传感器和第三传感器所检测的压力信息控制对应腔体的真空度。
  5. 根据权利要求1所述的制备微针的设备,其特征在于,所述设备还包括均化机构,且所述灌装腔内设置有浇注工位和均化工位;
    当所述灌装腔处于负压状态时,所述灌装腔内的所述微针阴模设置于所述浇注工位,且所述灌装机构用于向所述微针阴模的表面浇注所述溶液;
    当所述灌装腔内的所述微针阴模浇注完溶液后用于转移至所述均化工位,且所述均化机构用于对浇注完溶液的所述微针阴模进行均匀化处理,以使所述溶液均匀地填充在所述微针阴模的表面。
  6. 根据权利要求5所述的制备微针的设备,其特征在于,所述均化机构包括抓取机构和驱动机构,所述抓取机构包括主轴组件和夹持组件,所述驱动机构包括伺服电机和传动组件,所述主轴组件包括主轴和底座,所述主轴的底端与所述底座固定连接,所述夹持组件包括至少三个卡爪,至少三个所述卡爪在所述底座上围绕所述主轴的轴线均匀分布并用于夹持固定托盘,所述托盘装载所述微针阴模,所述伺服电机用于通过所述传动组件驱动所述主轴旋转,所述主轴的轴线与所述凹槽的轴线平行。
  7. 根据权利要求6所述的制备微针的设备,其特征在于,所述驱动机构还包括气缸组件、弹性部件和转盘;所述转盘套设在所述主轴上,并能够相对于所述主轴转动,所述弹性部件的一端连接所述主轴,另一端连接所述转盘;
    当所述转盘由所述气缸组件驱动朝第一方向转动时,使所述弹性部件存储弹性势能,并使所有所述卡爪移动至松开位置;
    当所述转盘被解除所述气缸组件的作用力后,所述弹性部件释放弹性势能,并驱使所述转盘朝第二方向转动,使得所有所述卡爪移动至锁紧位置。
  8. 根据权利要求7所述的制备微针的设备,其特征在于,所述均化机构还包括压块,所述压块固定在所述底座上,并用于在轴向上压抵所述转盘;所述压块的数量为至少三个。
  9. 根据权利要求7所述的制备微针的设备,其特征在于,所述夹持组件还包括导轨、滑块、固定座和限位销,所述导轨沿着所述底座的径向布置,所述滑轨可滑动地设置在所述导轨上,所述固定座固定在所述滑块上,每个所述卡爪固定在对应的一个固定座上,所述限位销固定在所述固定座上,所述 转盘设置有弧形的限位槽,所述限位销可活动地设置在所述限位槽中,所述限位槽的弧形的两端距离转盘中心不同;
    当所述转盘朝第一方向转动时,所述限位销由弧形的所述限位槽的近端向远端移动,并驱动卡爪向外移动,直至所述限位销与所述限位槽的远端抵扣;
    当所述转盘朝第二方向转动时,所述限位销由弧形的所述限位槽的近端向远端移动,并驱动卡爪向内移动,直至所述限位销与所述限位槽的近端抵扣。
  10. 根据权利要求9所述的制备微针的设备,其特征在于,所述气缸组件包括推杆,所述转盘上设置有固定柱,所述推杆用于推动所述固定柱以驱动所述转盘朝第一方向转动。
  11. 根据权利要求5所述的制备微针的设备,其特征在于,所述设备还包括托盘和输送线,所述托盘用于装载所述微针阴模,所述输送线用于传送所述托盘;所述均化机构用于驱动所述托盘运动以对所述微针阴模进行均匀化处理,所述托盘的运动包括水平转动、水平移动、抖动、上下摆动中的至少一种。
  12. 根据权利要求1所述的制备微针的设备,其特征在于,所述设备还包括托盘,所述托盘用于装载所述微针阴模,且同一个所述托盘能够装载不同尺寸的微针阴模。
  13. 根据权利要求12所述的制备微针的设备,其特征在于,所述设备还包括上料输送线、下料输送线和转运输送线,所述上料输送线设置在上料区,所述下料输送线设置在下料区;
    所述上料输送线用于将所述托盘传送至所述进料腔,并由所述下料输送线接收来自所述出料腔的托盘;
    所述转运输送线用于接收来自所述下料输送线上的空载的所述托盘,并用于将空载的所述托盘传送至所述上料区。
  14. 根据权利要求13所述的制备微针的设备,其特征在于,所述转运输送线设置在所述上料输送线和下料输送线的下方,所述设备还包括自动转运机 构,所述自动转运机构用于将所述下料输送线上的空载的所述托盘转移至所述转运输送线,并用于将所述转运输送线上的空载的所述托盘转移至所述上料输送线。
  15. 根据权利要求13所述的制备微针的设备,其特征在于,所述设备还包括设置在所述上料区的自动供料机构和自动上料机构,所述自动供料机构用于将所述微针阴模输送至一上料工位;
    所述自动上料机构还用于从所述上料工位取走所述微针阴模,并放置于所述上料输送线上的所述托盘。
  16. 根据权利要求13所述的制备微针的设备,其特征在于,所述设备还包括设置在所述下料区的自动下料机构和转运托盘,所述自动下料机构用于从所述下料输送线上的所述托盘上取走所述微针阴模,并放置于所述转运托盘上。
  17. 根据权利要求1所述的制备微针的设备,其特征在于,所述进料腔、所述灌装腔和所述出料腔依次相邻设置,所述进料腔的进口处设置第一闸门,所述进料腔的出口和所述灌装腔的进口共用第二闸门,所述灌装腔的出口和所述出料腔的进口共用第三闸门,所述出料腔的出口设置第四闸门。
  18. 根据权利要求17所述的制备微针的设备,其特征在于,所述设备还包括第一传送线、第二传送线和第三传送线,所述第一传送线设置于所述进料腔内,所述第二传送线设置于所述灌装腔内,所述第三传送线设置于所述出料腔内。
  19. 根据权利要求1所述的制备微针的设备,其特征在于,所述灌装机构用于向负压状态的所述灌装腔内的所述微针阴模浇注所述溶液。
  20. 一种制备微针的方法,其特征在于,包括:
    提供一微针阴模,所述微针阴模的表面形成有与微针针体匹配的凹槽;
    将所述微针阴模放置于非负压状态的进料腔,然后,通过抽真空机构对所述进料腔进行抽真空,以使所述进料腔和所述微针阴模处于负压状态;
    将负压状态的所述微针阴模从负压状态的所述进料腔转移至负压状态的灌装腔,并在负压状态下,通过灌装机构向所述微针阴模的表面浇注所述溶 液,并通过均化机构对浇注完溶液的所述微针阴模进行均匀化处理,以使所述溶液均匀地摊平在所述微针阴模的表面;
    将浇铸溶液的所述微针阴模从负压状态的所述灌装腔转移至负压状态的出料腔,并维持所述灌装腔的负压状态;
    将浇铸溶液的所述微针阴模转移至负压状态的所述出料腔后,对负压状态的所述出料腔进行破真空,以使所述出料腔处于非负压状态,并得到带有溶液的所述微针阴模;
    带有溶液的所述微针阴模固化成型后进行脱模,即得到微针。
  21. 根据权利要求20所述的制备微针的方法,其特征在于,所述方法还包括:
    将负压状态的所述微针阴模从负压状态的所述进料腔转移至负压状态的所述灌装腔后,对负压状态的所述进料腔进行破真空,以使所述进料腔处于非负压状态,以接收下一个所述微针阴模。
  22. 根据权利要求20所述的制备微针的方法,其特征在于,所述方法还包括:
    对负压状态的所述出料腔进行破真空后,将带有溶液的所述微针阴模从非负压状态的所述出料腔转移至外部,以使非负压状态的所述出料腔处于空载状态;
    非负压状态的所述出料腔空载后,通过所述抽真空机构对所述出料腔进行抽真空,以使所述出料腔处于负压状态,以接收下一个均匀化处理后的所述微针阴模。
  23. 根据权利要求20所述的制备微针的方法,其特征在于,所述方法还包括:
    在所述灌装腔内的浇注工位,通过所述灌装机构向负压状态的所述微针阴模的表面浇注所述溶液;
    在所述灌装腔内的均化工位,通过所述均化机构对浇注完溶液的所述微针阴模进行均匀化处理。
  24. 根据权利要求23所述的制备微针的方法,其特征在于,在所述均化工 位,由一托盘装载所述微针阴模,并通过所述均化机构驱动所述托盘运动,以对所述微针阴模进行均匀化处理,所述托盘的运动包括水平转动、水平移动、抖动、上下摆动中的至少一种。
  25. 根据权利要求20所述的制备微针的方法,其特征在于,所述方法包括:由一托盘装载所述微针阴模依次进入所述进料腔、所述灌装腔和所述出料腔,且不同尺寸的微针阴模通过同一个托盘进行输送。
  26. 根据权利要求25所述的制备微针的方法,其特征在于,所述方法还包括:
    通过一上料区的上料输送线将所述托盘传送至所述进料腔,并由一下料区的下料输送线接收来自所述出料腔的托盘;
    通过一转运输送线接收来自所述下料输送线上的空载的所述托盘,并由所述转运输送线将空载的所述托盘传送至所述上料区。
  27. 根据权利要求26所述的制备微针的方法,其特征在于,所述转运输送线设置在所述上料输送线和下料输送线的下方,所述方法还包括:
    通过一自动转运机构将所述下料输送线上的空载的所述托盘转移至所述转运输送线,并利用所述自动转运机构将所述转运输送线上的空载的所述托盘转移至所述上料输送线。
  28. 根据权利要求26所述的制备微针的方法,其特征在于,所述方法还包括:
    由所述上料区的一自动供料机构将所述微针阴模输送至一上料工位;
    由所述上料区的一自动上料机构从所述上料工位取走所述微针阴模,并放置于所述上料输送线上的所述托盘。
  29. 根据权利要求26所述的制备微针的方法,其特征在于,所述方法还包括:
    由所述下料区的一自动下料机构从所述下料输送线上的所述托盘上取走所述微针阴模,并放置于所述下料区的转运托盘上。
  30. 根据权利要求20所述的制备微针的方法,其特征在于,由一控制器控制所述抽真空机构对所述进料腔、所述灌装腔和所述出料腔进行抽真空。
  31. 根据权利要求24所述的制备微针的方法,其特征在于,所述均化机构在对所述微针阴模执行均匀化处理时依次进行加速转动、匀速转动和减速转动。
  32. 一种制备微针的方法,其特征在于,包括:
    提供一微针阴模和真空腔室,所述微针阴模的表面形成有与微针针体匹配的凹槽,所述真空腔室包括独立设置的灌装腔和出料腔;
    将所述微针阴模放置于非负压状态的灌装腔,通过灌装机构向所述微针阴模的表面浇注所述溶液;
    通过均化机构对所述微针阴模进行均匀化处理,以使所述溶液均匀地摊平在所述微针阴模的表面;
    通过抽真空机构对所述灌装腔进行抽真空,以使所述灌装腔和所述微针阴模处于负压状态;
    将均匀化处理后的所述微针阴模转移至负压状态的所述出料腔,对负压状态的所述出料腔进行破真空,以使所述出料腔处于非负压状态,并得到带有溶液的所述微针阴模;
    对带有溶液的所述微针阴模固化成型后进行脱模。
  33. 根据权利要求32所述的制备微针的方法,其特征在于,所述方法还包括:
    在所述灌装腔内的浇注工位,通过所述灌装机构向所述微针阴模的表面浇注所述溶液;
    在所述灌装腔内的均化工位,通过所述均化机构对浇注完溶液的所述微针阴模进行均匀化处理。
  34. 根据权利要求32或33所述的制备微针的方法,其特征在于,通过一托盘装载所述微针阴模并进入所述灌装腔和所述出料腔,且在所述均化工位,通过所述均化机构驱动所述托盘运动,以对所述微针阴模进行均匀化处理,所述托盘的运动包括水平转动、水平移动、抖动、上下摆动中的至少一种。
PCT/CN2021/109769 2021-07-28 2021-07-30 制备微针的设备及方法 WO2023004787A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110858134.7A CN115674523A (zh) 2021-07-28 2021-07-28 制备微针的设备及方法
CN202110858134.7 2021-07-28

Publications (1)

Publication Number Publication Date
WO2023004787A1 true WO2023004787A1 (zh) 2023-02-02

Family

ID=85059063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/109769 WO2023004787A1 (zh) 2021-07-28 2021-07-30 制备微针的设备及方法

Country Status (2)

Country Link
CN (1) CN115674523A (zh)
WO (1) WO2023004787A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5020080B2 (ja) * 2005-05-13 2012-09-05 久光製薬株式会社 医薬物運搬用器具の製造方法
CN203242709U (zh) * 2013-03-18 2013-10-16 东莞市德瑞精密设备有限公司 真空隧道式生产线
CN105498082A (zh) * 2015-12-24 2016-04-20 广州新济药业科技有限公司 微针芯片及其制备方法
CN105643839A (zh) * 2015-12-24 2016-06-08 广州新济药业科技有限公司 用于制备微针芯片的模具及其制备方法
CN106426687A (zh) * 2016-10-17 2017-02-22 中国科学院理化技术研究所 一种用于制作聚合物微针的设备
KR101905040B1 (ko) * 2017-04-19 2018-10-08 (주) 오스타테크 마이크로 니들 충전장치 및 충전방법
CN111300702A (zh) * 2020-02-03 2020-06-19 康迈丽德(深圳)生物科技有限公司 一种聚合物微针的制备方法和聚合物微针
CN212854350U (zh) * 2020-06-16 2021-04-02 苏州悦肤达医疗科技有限公司 一种微针浇注***

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5020080B2 (ja) * 2005-05-13 2012-09-05 久光製薬株式会社 医薬物運搬用器具の製造方法
CN203242709U (zh) * 2013-03-18 2013-10-16 东莞市德瑞精密设备有限公司 真空隧道式生产线
CN105498082A (zh) * 2015-12-24 2016-04-20 广州新济药业科技有限公司 微针芯片及其制备方法
CN105643839A (zh) * 2015-12-24 2016-06-08 广州新济药业科技有限公司 用于制备微针芯片的模具及其制备方法
CN106426687A (zh) * 2016-10-17 2017-02-22 中国科学院理化技术研究所 一种用于制作聚合物微针的设备
KR101905040B1 (ko) * 2017-04-19 2018-10-08 (주) 오스타테크 마이크로 니들 충전장치 및 충전방법
CN111300702A (zh) * 2020-02-03 2020-06-19 康迈丽德(深圳)生物科技有限公司 一种聚合物微针的制备方法和聚合物微针
CN212854350U (zh) * 2020-06-16 2021-04-02 苏州悦肤达医疗科技有限公司 一种微针浇注***

Also Published As

Publication number Publication date
CN115674523A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
JP3636776B2 (ja) コンタクトレンズを検査ならびに梱包用に準備する方法および装置
KR101420612B1 (ko) 파운데이션 충진장치
JP2003529497A (ja) 眼科レンズを取り扱うための装置および方法
WO2010124255A2 (en) Methods for manufacturing microprojection arrays
CN216127597U (zh) 制备微针的设备
KR101747198B1 (ko) 화장료 충진장치
WO2023004787A1 (zh) 制备微针的设备及方法
JP6730206B2 (ja) 樹脂供給装置、樹脂供給方法および樹脂成形装置
CN115027764A (zh) 一种袋装液态面膜灌装设备
JP4156041B2 (ja) コンタクトレンズ・モールドを充填し組み立てるための方法と装置
CN111167006B (zh) 一种制备聚合物微针贴片的装置
WO2005011966A1 (en) Methods and apparatus for use in contact lens manufacture and packaging
CN219153495U (zh) 一种灌注***
AU2008226055B2 (en) Machine for rotational molding with heated mold and with facilitated part extraction
CN110612197A (zh) 光学材料用单体的模具自动注入方法以及自动注入装置
KR20050027273A (ko) 캡슐 충전 장치
CN116477096A (zh) 皮下凝胶缓释剂预充针灌装旋帽机
CN111673967A (zh) 可多体组合的全自动镜片注胶机
US20240081364A1 (en) Method and Device for Demoulding a Confectionery Item from a Casting Mould
CN212331590U (zh) 可多体组合的全自动镜片注胶机
KR102367465B1 (ko) 플라스틱 앰풀병 주입 입구 밀봉 일체형 장치
TWM439560U (en) Rubber injection molding system
KR20180009283A (ko) 회전형 테이블을 구비한 왁스사출기
CN221182514U (zh) 一种具有摇匀功能的静脉用药调配机器人
KR20180009282A (ko) 전자동 왁스사출기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE