WO2023002526A1 - Machine tool - Google Patents

Machine tool Download PDF

Info

Publication number
WO2023002526A1
WO2023002526A1 PCT/JP2021/026944 JP2021026944W WO2023002526A1 WO 2023002526 A1 WO2023002526 A1 WO 2023002526A1 JP 2021026944 W JP2021026944 W JP 2021026944W WO 2023002526 A1 WO2023002526 A1 WO 2023002526A1
Authority
WO
WIPO (PCT)
Prior art keywords
command
coolant
coolant pump
machine tool
operating state
Prior art date
Application number
PCT/JP2021/026944
Other languages
French (fr)
Japanese (ja)
Inventor
幸佑 山本
元気 船越
正裕 小菅
Original Assignee
Dmg森精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dmg森精機株式会社 filed Critical Dmg森精機株式会社
Priority to PCT/JP2021/026944 priority Critical patent/WO2023002526A1/en
Publication of WO2023002526A1 publication Critical patent/WO2023002526A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/12Arrangements for cooling or lubricating parts of the machine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • This invention relates to machine tools.
  • Patent Document 1 discloses a machine tool comprising a first pump unit for operating an unclamping cylinder of a tool and a second pump unit for operating a workpiece clamping device. is disclosed.
  • the rotation speed of the motor during the operation preparation process in which the motor is in an idling state and in the pressure holding process in which the workpiece is held in the clamped or unclamped state is adjusted to the workpiece clamping or unclamping operation. It is controlled to be lower than the rotational speed of the motor during the step of turning on.
  • Machine tools use various electrical devices such as coolant pumps and mist collectors. These electric devices do not need to be driven all the time while the machine tool is in operation, and generally the driving of the electric devices is repeatedly stopped and restarted in accordance with the progress of work machining. However, since the current flowing through the electrical equipment increases when the electrical equipment is restarted (inrush current), there is a problem that power consumption increases when the electrical equipment is repeatedly stopped and restarted.
  • the object of the present invention is to solve the above problems, and to provide a machine tool that can reduce the power consumption of electrical equipment.
  • a machine tool has a first operating state in which a first power is supplied, a second operating state in which a second power smaller than the first power is supplied, and a third operating state in which the power supply is stopped. It is possible to select one of the operating states and the operating state, and it is provided with an electric device that is driven by being supplied with electric power, and a control device for controlling the machine tool.
  • the control device includes a program execution unit for executing a workpiece machining program including a first command for commanding to drive the electrical device and a second command for commanding to temporarily stop driving the electrical device; is less than or equal to the first predetermined value, the second command controls the electrical device so that the operation of the electrical device is switched to the second operation state, and the second command drives the electrical device.
  • an electrical equipment control unit that controls the electrical equipment so that the operation of the electrical equipment is switched to the third operation state by the second command when the temporary stop time of is greater than the first predetermined value.
  • the drive suspension time of the electrical equipment when the drive suspension time of the electrical equipment is relatively long, the increase in power consumption caused by the continued consumption of the second power in the second operating state can be suppressed. To avoid this, the operation of the electrical equipment is switched to the third operating state.
  • the temporary stop time of the electric equipment when the temporary stop time of the electric equipment is relatively short, the operation of the electric equipment is put into the second operation state in order to avoid an increase in power consumption due to the rush current when the electric equipment is restarted. switch to As a result, the power consumption of the electrical equipment can be kept low.
  • the electrical device control unit when the suspension time of driving the electrical device according to the second command is equal to or less than a second predetermined value that is smaller than the first predetermined value, Along with the shift, the electrical equipment is controlled so that the operation of the electrical equipment continues in the first operating state.
  • the power consumption of the electrical equipment can be further reduced by continuing the operation of the electrical equipment in the first operating state when the temporary stop time of the driving of the electrical equipment is even shorter. can be suppressed.
  • the electrical device is a coolant pump or a mist collector. According to the machine tool configured in this way, the power consumption of the coolant pump or mist collector can be kept low.
  • the second command is executed during tool change by an automatic tool changer or pallet change by an automatic pallet changer.
  • the tool change by the automatic tool changer or the pallet change by the automatic pallet changer is executed in a short time. By doing so, the power consumption of the coolant pump or mist collector can be kept low.
  • the electric device is a coolant pump.
  • the machine tool includes a coolant tank for storing coolant pressure-fed by a coolant pump, a first flow channel for supplying the coolant from the coolant pump into the machining area, and a second flow channel for returning the coolant to the coolant tank. and a switching valve for switching between the channel and the channel.
  • the control device controls the switching valve to switch the coolant flow path from the coolant pump to the second flow path when the operation of the electric device is switched to the second operation state.
  • FIG. 2 is a cross-sectional view schematically showing the machine tool in FIG. 1;
  • FIG. 3 is a block diagram showing a control system in the machine tool in FIGS. 1 and 2;
  • FIG. 3 is a table showing the relationship between the work machining flow and the coolant pump drive command and operating state in the machine tool shown in FIGS. 1 and 2 ;
  • FIG. 3 is a graph showing changes in current flowing through a coolant pump in the machine tool shown in FIGS. 1 and 2.
  • FIG. 6 is a diagram schematically showing a spindle coolant system in a machine tool according to Embodiment 2 of the present invention
  • FIG. 7 is a table showing the relationship between the flow of work machining and the drive command and operating state of a coolant pump in the machine tool of FIG. 6
  • FIG. 7 is a graph showing changes in current flowing through a coolant pump in the machine tool shown in FIG. 6
  • 10 is a table showing the relationship between the work machining flow and the coolant pump drive command and operating state in the machine tool according to Embodiment 3 of the present invention.
  • 9 is a graph showing changes in current flowing through a coolant pump in a machine tool according to Embodiment 3 of the present invention.
  • FIG. 1 is a perspective view showing a machine tool according to Embodiment 1 of the present invention.
  • 2 is a cross-sectional view schematically showing the machine tool in FIG. 1.
  • FIG. 1 is a perspective view showing a machine tool according to Embodiment 1 of the present invention.
  • machine tool 100 is a machining center that processes a workpiece by bringing a rotating tool into contact with the workpiece. More specifically, the central axis of rotation of the tool extends horizontally. It is a horizontal machining center.
  • the machine tool 100 is an NC (Numerical Control) machine tool in which various operations for machining a workpiece are automated by numerical control by a computer.
  • NC Genetic Control
  • the machine tool 100 has a cover body 21 .
  • the cover body 21 partitions the machining area 120 and the setup station 130 and forms the appearance of the machine tool 100 .
  • the machining area 120 is a space in which the work is machined, and is sealed so that foreign matter such as chips or cutting oil that accompany the machining of the work does not leak out of the machining area 120 .
  • the setup station 130 is provided adjacent to the machining area 120 in the Z-axis direction.
  • the set-up station 130 is a space for mounting the work before machining in the machining area 120 on the pallet P and removing the work after machining in the machining area 120 from the pallet P.
  • a pallet placement table (not shown) for placing the pallet P is installed in the setup station 130 .
  • the cover body 21 has a first cover 23, a second cover 24, a ceiling cover 22, and a front door 25.
  • the first cover 23 and the second cover 24 are arranged facing each other in the X-axis direction.
  • a tool magazine (not shown) for storing tools is provided on the opposite side of the processing area 120 with the second cover 24 interposed therebetween.
  • the ceiling cover 22 is arranged on the ceiling of the machine tool 100 .
  • the ceiling cover 22 is arranged above the processing area 120 .
  • a first cover opening 26 is provided in the first cover 23 .
  • the first cover opening 26 opens the processing area 120 to the outside space.
  • the front door 25 is provided at the first cover opening 26 .
  • the front door 25 is operable between an open position that opens the first cover opening 26 and a closed position that closes the first cover opening 26 (the position of the front door 25 shown in FIG. 1). .
  • the cover body 21 further has a setup station cover 51 and a setup station door 52 .
  • a setup station cover 51 and a setup station door 52 define a setup station 130 .
  • a second cover opening 53 is provided in the setup station cover 51 .
  • a second cover opening 53 opens the setup station 130 to the outside space.
  • a worker can access the interior of the setup station 130 through the second cover opening 53 .
  • the setup station door 52 is provided in the second cover opening 53 .
  • the setup station door 52 is operable between an open position that opens the second cover opening 53 and a closed position that closes the second cover opening 53 (the position of the setup station door 52 shown in FIG. 1). is.
  • the machine tool 100 further has an operation unit 28.
  • the operation unit 28 is provided outside the processing area 120 .
  • the operating portion 28 is attached to the first cover 23 .
  • the operating portion 28 is provided adjacent to the first cover opening 26 .
  • the operation unit 28 includes various buttons and switches used by the operator to operate the machine tool 100, a display unit for indicating the machining state of the work in the machine tool 100, and the like.
  • the machine tool 100 further has a bed 14, a tool spindle 12 and a table 16. Tool spindle 12 and table 16 are arranged in machining area 120 .
  • the bed 14 is a base member for supporting the tool spindle 12, the table 16, etc., and is installed on the floor of a factory or the like.
  • Bed 14 is constructed from a casting.
  • the tool spindle 12 rotates a tool such as a drill, reamer, or milling cutter around a rotation center axis 110 parallel to the Z-axis.
  • the tool spindle 12 incorporates a clamp mechanism for detachably holding the tool.
  • the tool spindle 12 is supported on a bed 14 by a column or the like (not shown).
  • the tool spindle 12 can be moved in the X-axis direction and the Y-axis direction by various feed mechanisms, guide mechanisms, servomotors, etc. provided on a column or the like.
  • the table 16 is a device for holding a work.
  • a pallet P is detachably attached to the table 16 .
  • On the pallet P for example, jigs such as tombstones to which works are attached are mounted.
  • the table 16 can be moved in the Z-axis direction by various feed mechanisms, guide mechanisms, servo motors, and the like provided on the bed 14 and the like.
  • the machine tool 100 further has an automatic tool changer (ATC) 17 and an automatic pallet changer (APC) 18 (see FIG. 3 below).
  • ATC automatic tool changer
  • API automatic pallet changer
  • the automatic tool changer 17 automatically changes tools between the tool spindle 12 and a tool magazine (not shown).
  • the automatic pallet exchange device 18 automatically exchanges the pallet P between the table 16 in the processing area 120 and the pallet table in the setup station 130 .
  • the machine tool 100 further has a coolant tank 61 , a coolant pump 63 and a coolant discharge device 71 .
  • the coolant tank 61 has a tank shape capable of storing coolant.
  • the coolant tank 61 is configured to be able to collect coolant from within the machining area 120 . Coolant is stored in the coolant tank 61 .
  • the coolant tank 61 is installed on the floor of a factory or the like. A coolant tank 61 is provided side by side with the bed 14 .
  • the coolant pump 63 is provided in the coolant tank 61.
  • the coolant pump 63 pumps the coolant stored in the coolant tank 61 toward the machining area 120 as it is driven. Coolant pump 63 may pump coolant further toward setup station 130 .
  • the coolant discharge device 71 is arranged in the processing area 120 .
  • the coolant discharge device 71 is configured to discharge coolant.
  • the coolant discharge device 71 is composed of, for example, a cylindrical nozzle or a block body provided with a coolant discharge port.
  • the coolant discharge device 71 discharges the coolant pressure-fed from the coolant pump 63 in the machining area 120 .
  • the coolant discharge device 71 has a ceiling coolant discharge device 71C and a base coolant discharge device 71B.
  • the ceiling coolant discharge device 71C is attached to the ceiling cover 22.
  • the purpose of the ceiling coolant discharge device 71C is mainly to discharge chips generated during the machining of the workpiece from within the machining area 120 by supplying coolant from the ceiling cover 22 to the entire machining area 120 .
  • the base coolant discharge device 71B is attached to the bed 14. As shown in FIG.
  • the base coolant discharge device 71B is mainly intended to discharge chips generated by machining the workpiece from the machining area 120 by supplying coolant to the wall surface of the bed 14 .
  • the machine tool 100 further has a mist collector 31.
  • the mist collector 31 is provided on the ceiling cover 22 via support legs 33 .
  • the mist collector 31 is a device for collecting oil mist contained in the air and discharging clean air.
  • the mist collector 31 has a case body 36.
  • the case body 36 is made up of a housing that forms the appearance of the mist collector 31 .
  • the case body 36 as a whole has a cylindrical shape centered on a virtual central axis 101 .
  • the case body 36 is provided with an intake port 34 and an exhaust port 37 .
  • Air inlet 34 opens toward the axial direction of central axis 101 at one end of case body 36 in the axial direction of central axis 101 .
  • exhaust port 37 opens outward in the radial direction of central axis 101 .
  • the mist collector 31 is connected to the cover body 21 via a duct 32.
  • the space inside the case body 36 communicates with the processing area 120 through the duct 32 .
  • One end of the duct 32 is connected to the intake port 34 and the other end of the duct 32 is connected to the ceiling cover 22 .
  • the mist collector 31 further has a filter 44 , a mist collector motor 42 and a fan 43 .
  • the filter 44 is housed in the case body 36 .
  • Filter 44 is configured to be able to collect oil mist.
  • the filter 44 consists of a net-like mesh body in which fine holes are arranged.
  • the mist collector motor 42 and the fan 43 are housed in the case body 36 .
  • the output shaft of the mist collector motor 42 is connected to the fan 43 and the filter 44 .
  • the rotation output from the output shaft of the mist collector motor 42 is transmitted to the fan 43 and the filter 44 .
  • the fan 43 rotates, an air flow is formed in the case body 36 from the intake port 34 toward the exhaust port 37 .
  • Air containing oil mist generated in the processing area 120 is guided to the mist collector 31 through the duct 32 as the fan 43 rotates. Air is sucked into the case body 36 through the intake port 34 . Air passes through a rotating filter 44 inside the case body 36 . At this time, while the air passes through the mesh of the filter 44, the oil mist contained in the air cannot pass through the mesh of the filter 44 by colliding with the filter 44 rotating at high speed. As a result, the air that has passed through the filter 44 is separated from the liquefied oil mist blocked by the filter 44 .
  • the separated oil mist passes through a drain (not shown) and is collected in the machining area 120 of the machine tool 100 or in the coolant tank 61.
  • the clean air from which the oil mist has been separated is discharged to the external space through the exhaust port 37 .
  • the method of collecting the oil mist in the mist collector is not particularly limited.
  • the filter used in the mist collector may be a filter that is replaced periodically, and the oil mist collection method may be a centrifugal separation method.
  • FIG. 3 is a block diagram showing the control system in the machine tool in FIGS. 1 and 2.
  • machine tool 100 further has a control device 81 .
  • a control device 81 controls the machine tool 100 .
  • the control device 81 is installed in the machine tool 100 and incorporated in a control panel for controlling various operations in the machine tool 100 .
  • the control device 81 has a program storage unit 82, a program execution unit 83, a tool spindle control unit 84, a table control unit 85, an APC control unit 86, an ATC control unit 96, and an electrical equipment control unit 91. .
  • the program storage unit 82 stores an execution program (numerical control program) created by the operator of the machine tool 100 for machining the workpiece.
  • the program storage unit 82 is, for example, a flash memory.
  • the program execution unit 83 executes the execution program stored in the program storage unit 82. More specifically, the program execution unit 83 reads the instructions of the execution program and causes the tool spindle control unit 84, the table control unit 85, the APC control unit 86, the ATC control unit 96, and the electric equipment control unit 91 to control each of them. Output a signal.
  • the tool spindle control section 84 receives a control signal from the program execution section 83 and operates a tool spindle motor 87 for rotating the tool spindle 12 and a tool spindle motor 87 for moving the tool spindle 12 in the X-axis direction and the Y-axis direction. It controls the tool spindle feed motor 88 .
  • the table control section 85 receives a control signal from the program execution section 83 and controls a table feed motor 89 for moving the table 16 in the Z-axis direction.
  • the APC control unit 86 receives a control signal from the program execution unit 83 and controls the APC turning motor 97 for turning the arm of the automatic pallet changer 18 .
  • the ATC control unit 96 receives a control signal from the program execution unit 83 and controls an ATC turning motor 98 for turning the arm of the automatic tool changer 17 .
  • the electrical device control section 91 receives a control signal from the program execution section 83 and controls each electrical device such as the coolant pump 63 and the mist collector 31 (mist collector motor 42).
  • FIG. 4 is a table showing the relationship between the flow of work machining and the drive command and operating state of the coolant pump in the machine tool shown in FIGS.
  • FIG. 5 is a graph showing changes in the current flowing through the coolant pump in the machine tool shown in FIGS. 1 and 2.
  • the execution program stored in the program storage unit 82 includes a first command (ON command) for commanding the driving of the coolant pump 63 and a command for temporarily stopping the driving of the coolant pump 63. and a second instruction (OFF instruction).
  • Program execution unit 83 outputs control signals corresponding to the first command (ON command) and the second command (OFF command) stored in program storage unit 82 to electric device control unit 91 .
  • the coolant pump 63 has a first operating state in which the first power is supplied, a second operating state in which the second power smaller than the first power is supplied, and a third operating state in which the power supply is stopped. Either operating state can be selected.
  • the first operating state corresponds to the normal operating state of the coolant pump 63 .
  • the second operating state corresponds to the idling operation state of the coolant pump 63 .
  • the third operating state corresponds to the stopped state of the coolant pump 63 .
  • the electric device control unit 91 When receiving the second command (OFF command) for the coolant pump 63 from the program execution unit 83, the electric device control unit 91 first executes the second command (OFF command) based on the execution program stored in the program storage unit 82. ) specifies the time during which the coolant pump 63 is temporarily stopped.
  • the electrical device control unit 91 determines whether or not the specified suspension time of driving the coolant pump 63 is equal to or less than a predetermined first predetermined value.
  • the second command controls the coolant pump 63 so that the operation of the coolant pump 63 is switched to the second operation state (idling operation).
  • the electric device control unit 91 determines that the temporary stop time of the driving of the coolant pump 63 by the second command (OFF command) is longer than the first predetermined value
  • the electric device control unit 91 turns on the coolant pump by the second command (OFF command).
  • the coolant pump 63 is controlled so that the operation of the coolant pump 63 is switched to the third operation state (stopped state).
  • the program execution unit 83 outputs a control signal corresponding to the first command (ON command) to the electric device control unit 91 at the timing (time Ta) when step S101 is started.
  • the electrical device control unit 91 receives a control signal from the program execution unit 83 and controls the coolant pump 63 so that the coolant pump 63 operates in the first operating state (normal operation).
  • the program execution unit 83 outputs a control signal corresponding to the second command (OFF command) to the electric device control unit 91 at the timing (time Tb) at which the step of S101 ends and the step of S102 starts. do.
  • the electrical device control unit 91 calculates the execution time (Tc ⁇ Tb) of the step of S102 based on the execution program stored in the program storage unit 82, and uses the calculated value as the coolant pump power supply by the second command (OFF command). 63 is identified as the drive suspension time.
  • the electric device control unit 91 determines that the temporary stop time (Tc-Tb) of driving the coolant pump 63 by the second command (OFF command) is equal to or less than the predetermined first predetermined value X (Tc- Tb ⁇ X), the coolant pump 63 is controlled so that the operation of the coolant pump 63 is switched to the second operation state (idling operation).
  • the program execution unit 83 outputs a control signal corresponding to the first command (ON command) to the electric device control unit 91 at the timing (time Tc) at which the step of S102 is completed and the step of S103 is started. do.
  • the electrical device control unit 91 receives the control signal from the program execution unit 83 and controls the coolant pump 63 so that the operation of the coolant pump 63 is switched to the first operating state (normal operation).
  • the program execution unit 83 outputs a control signal corresponding to the second command (OFF command) to the electric device control unit 91 at the timing (time Td) at which the step of S103 ends and the step of S104 starts. do.
  • the electrical device control unit 91 calculates the execution time (Te-Td) of the step of S104 based on the execution program stored in the program storage unit 82, and uses the calculated value as the coolant pump power supply by the second command (OFF command). 63 is identified as the drive suspension time.
  • the electric device control unit 91 determines that the temporary stop time (Te-Td) of driving the coolant pump 63 by the second command (OFF command) is longer than a predetermined first predetermined value X (Te- Td>X), the coolant pump 63 is controlled so that the operation of the coolant pump 63 is switched to the third operation state (stopped state).
  • the program execution unit 83 outputs a control signal corresponding to the first command (ON command) to the electric device control unit 91 at the timing (time Te) at which the step of S104 ends and the step of S105 starts. do.
  • the electrical device control unit 91 receives the control signal from the program execution unit 83 and controls the coolant pump 63 so that the operation of the coolant pump 63 is switched to the first operating state (normal operation).
  • the program execution unit 83 outputs a control signal corresponding to the second command (OFF command) to the electric device control unit 91 at the timing (time Tf) at which the step of S105 ends and the step of S106 starts. do.
  • the electric device control unit 91 calculates the execution time (Tg ⁇ Tf) of the step of S106 based on the execution program stored in the program storage unit 82, and uses the calculated value as the coolant pump power supply by the second command (OFF command). 63 is identified as the drive suspension time.
  • the electric device control unit 91 determines that the temporary stop time (Tg-Tf) of driving of the coolant pump 63 by the second command (OFF command) is equal to or less than a predetermined first predetermined value X (Tg- Tf ⁇ X), the coolant pump 63 is controlled so that the operation of the coolant pump 63 is switched to the second operation state (idling operation).
  • a pre-reading function of the control device 81 that pre-reads programs for a predetermined number of blocks may be used.
  • the electric device control unit 91 uses the prefetch function of the program to issue a subsequent restart command (ON command) for the coolant pump 63.
  • the switching control of the coolant pump 63 may be performed by recognizing the command) and specifying the temporary stop time of driving the coolant pump 63 .
  • the electrical device control unit 91 uses the read-ahead function of the program to recognize the stop command (OFF command) of the coolant pump 63 and the following restart command (ON command) of the coolant pump 63 to be executed after this, and
  • the switching control of the coolant pump 63 may be provided by specifying the drive suspension time.
  • the electric device control unit 91 prefetches the program up to a predetermined number of lines (for example, 10 lines) ahead of the program execution unit 83 including the instruction to stop the coolant pump 63 (OFF instruction), and reads the prefetched program line. It may be specified whether or not a restart command (ON command) for the coolant pump 63 is included therein.
  • the electric device control unit 91 controls the driving of the coolant pump 63 until the restart command (ON command) is issued. It may be determined that the temporary stop time is short, and control may be performed to switch to idling operation without completely stopping the coolant pump 63 .
  • the coolant pump 63 receives a current Da in the first operating state (normal operation), and a current Db smaller than the current Da in the second operating state (idling operation). Therefore, while the second operating state (idling operation) continues, a certain amount of electric power continues to be consumed although it is smaller than the power consumption in the first operating state (normal operation).
  • the temporary stop time of driving the coolant pump 63 is relatively long. is switched from the first operating state (normal operation) to the third operating state (stopped state).
  • the power consumption of the coolant pump 63 can be kept low.
  • the temporary stop time of the coolant pump 63 is relatively short.
  • S105 to S106 the operation of the coolant pump 63 is switched from the first operating state (normal operation) to the second operating state (idling operation).
  • the power consumption of the coolant pump 63 can be kept low.
  • machine tool 100 has a first operating state (normal operation) in which first electric power is supplied, It is possible to select an operating state from a second operating state (idling operation) in which a second power smaller than 1 power is supplied and a third operating state (stopped state) in which the supply of power is stopped, It includes a coolant pump 63 as an electric device driven by being supplied with electric power, and a control device 81 for controlling the machine tool 100 .
  • the control device 81 executes a workpiece machining program including a first command (ON command) to command driving of the coolant pump 63 and a second command (OFF command) to temporarily stop driving the coolant pump 63.
  • the coolant pump 63 When the temporary stop time of the driving of the coolant pump 63 by the program execution unit 83 and the second command (OFF command) is equal to or less than the first predetermined value X, the coolant pump 63 is operated by the second command (OFF command). controls the coolant pump 63 to switch to the second operating state (idling operation), and when the temporary stop time of the coolant pump 63 by the second command (OFF command) is longer than the first predetermined value X, and an electric device control section 91 for controlling the coolant pump 63 so that the operation of the coolant pump 63 is switched to the third operating state (stopped state) in response to a second command (OFF command).
  • the power consumption of the coolant pump 63 is reduced, thereby improving the energy saving performance of the machine tool 100.
  • control of the coolant pump 63 has been described in the present embodiment, the present invention is not limited to this and may be applied to control of the mist collector 31 (mist collector motor 42), for example.
  • the machine tool in the present invention is not limited to a horizontal machining center. and a workpiece removal machining (SM (subtractive manufacturing) machining).
  • SM workpiece removal machining
  • FIG. 6 is a diagram schematically showing a spindle coolant system in a machine tool according to Embodiment 2 of the present invention.
  • FIG. 7 is a table showing the relationship between the work machining flow and the drive command and operating state of the coolant pump in the machine tool shown in FIG. 8 is a graph showing changes in the current flowing through the coolant pump in the machine tool shown in FIG. 6.
  • FIG. 7 is a table showing the relationship between the work machining flow and the drive command and operating state of the coolant pump in the machine tool shown in FIG. 8 is a graph showing changes in the current flowing through the coolant pump in the machine tool shown in FIG. 6.
  • the machine tool according to the present embodiment has basically the same structure as the machine tool 100 according to the first embodiment. Hereinafter, descriptions of overlapping structures will not be repeated.
  • the machine tool in the present embodiment further has a coolant pump 66.
  • a coolant pump 66 is provided in the coolant tank 61 .
  • the coolant pump 66 pumps the coolant stored in the coolant tank 61 toward the machining area 120 as it is driven.
  • the coolant discharge device 71 further has a spindle coolant discharge device 71S.
  • the spindle coolant discharge device 71S is provided on the tool spindle 12 .
  • the spindle coolant discharge device 71 ⁇ /b>S is of a spindle through specification that discharges coolant from the cutting edge of the tool held by the tool spindle 12 .
  • the main spindle coolant discharge device 71S is mainly intended to suppress heat generation at the machining point of the workpiece and to lubricate between the workpiece and the tool by supplying coolant to the machining point of the workpiece.
  • the spindle coolant discharge device 71S discharges coolant pressure-fed from the coolant pump 66 in the machining area 120 .
  • the machine tool in this embodiment further has a switching valve 79 , a first flow path 76 , a second flow path 77 and a third flow path 78 .
  • the switching valve 79 is provided on the flow path of the coolant supplied from the coolant pump 66 toward the tool spindle 12 (spindle coolant discharge device 71S).
  • a third flow path 78 extends from the coolant pump 66 and is connected to a switching valve 79 .
  • the first flow path 76 extends from the switching valve 79 and is connected to the tool spindle 12 (spindle coolant discharge device 71S).
  • the second flow path 77 extends from the switching valve 79 and returns to the coolant tank 61 .
  • the switching valve 79 has a first flow path 76 for supplying coolant from the coolant pump 66 toward the tool spindle 12 (spindle coolant discharge device 71S) in the machining area 120 and a coolant tank 61 for supplying the coolant. It is possible to switch between the second flow path 77 returning to the
  • the switching valve 79 switches the coolant flow path from the coolant pump 66 to the first flow path 76, the first flow path 76 and the third flow path 78 are communicated with each other, and the second flow path 77 and the third flow path 78 are communicated with each other. Between the flow paths 78 is cut off.
  • the switching valve 79 switches the coolant flow path from the coolant pump 66 to the second flow path 77, the second flow path 77 and the third flow path 78 are communicated with each other, and the first flow path 76 and the third flow path 78 are communicated with each other. Between the flow paths 78 is cut off.
  • the electric device control unit 91 operates the coolant pump 66 so that the operation of the coolant pump 66 is in the second operation state (idling operation) at the timing (time tb) at which the step of S111 is completed and the step of S112 is started. Control.
  • the program execution unit 83 responds to the first command (ON command) at a plurality of timings (tc, td, te, tf, tg, th) during step S112 in accordance with the progress of workpiece machining.
  • the control signal to turn on and the control signal corresponding to the second command (OFF command) are alternately repeated and output to the electrical equipment control section 91 .
  • the electrical device control unit 91 controls the coolant supply so that the coolant pump 66 is in the first operating state (normal operation). Control the pump 66;
  • the electric device control unit 91 executes the second command (OFF command) based on the execution program stored in the program storage unit 82.
  • the temporary stop time (te-td, tg-tf, tk-th) of driving the coolant pump 66 by command) is specified. Note that tk corresponds to the time when the next work machining using the through-spindle specification tool is started.
  • the electric device control unit 91 determines that the temporary stop time (te-td, tg-tf) of the driving of the coolant pump 66 by the second command (OFF command) is equal to or less than the predetermined first predetermined value X. (te-td ⁇ X, tg-tf ⁇ X), the coolant pump 66 is controlled so that the operation of the coolant pump 66 is switched to the second operation state (idling operation).
  • the electric device control unit 91 determines that the temporary stop time (tk-th) of driving of the coolant pump 66 by the second command (OFF command) is longer than the first predetermined value X (tk-th). th>X), the coolant pump 66 is controlled so that the operation of the coolant pump 66 is switched to the third operation state (stopped state).
  • the electrical device control unit 91 controls the coolant pump 66 to switch to the third operating state (stopped state) when executing the step (S113) of unclamping the spindle-through specification tool.
  • the control device 81 When the operation of the coolant pump 66 is switched to the first operating state (normal operation), the control device 81 operates the switching valve 79 so as to switch the coolant flow path from the coolant pump 66 to the first flow path 76. Control. The control device 81 operates the switching valve 79 so as to switch the coolant flow path from the coolant pump 66 to the second flow path 77 when the operation of the coolant pump 66 is switched to the second operation state (idling operation). Control.
  • the time during which the discharge of coolant is temporarily stopped is relatively short, so the operation of the coolant pump 66 is switched to the second operation state (idling operation). .
  • the coolant discharge is stopped for a relatively long time until the next step of machining a workpiece using a spindle-through specification tool. Switch to the running state (stopped state). As a result, the power consumption of the coolant pump 66 can be reduced as in the first embodiment.
  • the flow path of the coolant from the coolant pump 66 is switched to the second flow path 77 to return the coolant to the coolant tank 61. .
  • the coolant from being discharged from the tool spindle 12 (spindle coolant discharge device 71S) at a timing unnecessary for machining the workpiece in the machining area 120 .
  • Embodiment 2 of the present invention configured in this way, the effects described in Embodiment 1 can be achieved in the same manner.
  • FIG. 9 is a table showing the relationship between the work machining flow and the drive command and operating state of the coolant pump in the machine tool according to Embodiment 3 of the present invention.
  • FIG. 10 is a graph showing changes in the current flowing through the coolant pump in the machine tool according to Embodiment 3 of the present invention.
  • the machine tool according to the present embodiment has basically the same structure as the machine tool according to the second embodiment. Hereinafter, descriptions of overlapping structures will not be repeated.
  • electric device control unit 91 determines in advance the temporary stop time (tg-tf) for driving coolant pump 66 according to the second command (OFF command).
  • tg-tf temporary stop time
  • OFF command the second command
  • the coolant is changed from the first command (ON command) to the second command (OFF command)
  • the coolant pump 66 is controlled so that the operation of the pump 66 continues in the first operating state (normal operation).
  • the power consumption of the coolant pump 66 is reduced by continuing the operation of the coolant pump 66 in the first operating state (normal operation). can be further reduced.
  • Embodiment 3 of the present invention configured in this way, the effects described in Embodiments 1 and 2 can be obtained in the same manner.
  • This invention is applied to machine tools such as machining centers or lathes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Auxiliary Devices For Machine Tools (AREA)

Abstract

This machine tool is provided with: a coolant pump that can select one operation state from among a first operation state (normal operation), a second operation state (idling operation), and a third operation state (stopped state); and a control device for controlling the machine tool. The control device is provided with: a program execution unit that executes a workpiece machining program including a first instruction that instructs to drive a coolant pump and a second instruction that instructs to temporarily stop the driving of the coolant pump; and an electrical instrument control unit that controls, with the second instruction, the coolant pump to switch the operation of the coolant pump to the second operation state (idling operation) if the temporary stop time by the second instruction for the driving of the coolant pump is equal to or less than a first prescribed value, and that controls, with the second instruction, the coolant pump to switch the operation of the coolant pump to the third operation state (stopped state) if the temporary stop time by the second instruction for the driving of the coolant pump is greater than the first prescribed value.

Description

工作機械Machine Tools
 この発明は、工作機械に関する。 This invention relates to machine tools.
 たとえば、特開2000-167736号公報(特許文献1)には、工具のアンクランプシリンダを作動させるための第1ポンプユニットと、ワーククランプ装置を作動させるための第2ポンプユニットとを備える工作機械が開示されている。第2ポンプユニットは、モータをアイドリング状態とする運転準備工程の時と、ワークのクランプ状態またはアンクランプ状態を保持する保圧工程の時とのモータの回転速度が、ワークのクランプまたはアンクランプ動作する工程の時のモータの回転速度よりも低くなるように制御される。 For example, Japanese Patent Laying-Open No. 2000-167736 (Patent Document 1) discloses a machine tool comprising a first pump unit for operating an unclamping cylinder of a tool and a second pump unit for operating a workpiece clamping device. is disclosed. In the second pump unit, the rotation speed of the motor during the operation preparation process in which the motor is in an idling state and in the pressure holding process in which the workpiece is held in the clamped or unclamped state is adjusted to the workpiece clamping or unclamping operation. It is controlled to be lower than the rotational speed of the motor during the step of turning on.
特開2000-167736号公報JP-A-2000-167736
 工作機械においては、クーラントポンプまたはミストコレクタ等の各種の電気機器が利用されている。これらの電気機器は、工作機械の稼働中に常時駆動している必要はなく、一般的に、ワーク加工の進行に合わせて電気機器の駆動の一時停止と再開とが繰り返される。しかしながら、電気機器に流れる電流は、電気機器の駆動再開時に大きくなるため(突入電流)、電気機器の駆動の一時停止と再開とが繰り返されると、消費電力が増大するという問題がある。 Machine tools use various electrical devices such as coolant pumps and mist collectors. These electric devices do not need to be driven all the time while the machine tool is in operation, and generally the driving of the electric devices is repeatedly stopped and restarted in accordance with the progress of work machining. However, since the current flowing through the electrical equipment increases when the electrical equipment is restarted (inrush current), there is a problem that power consumption increases when the electrical equipment is repeatedly stopped and restarted.
 そこでこの発明の目的は、上記の課題を解決することであり、電気機器の消費電力を低く抑えることが可能な工作機械を提供することである。 Therefore, the object of the present invention is to solve the above problems, and to provide a machine tool that can reduce the power consumption of electrical equipment.
 この発明に従った工作機械は、第1電力が供給される第1運転状態と、第1電力よりも小さい第2電力が供給される第2運転状態と、電力の供給が停止される第3運転状態とのいずれかの運転状態を選択可能であり、電力が供給されることによって駆動する電気機器と、工作機械を制御するための制御装置とを備える。制御装置は、電気機器の駆動を命令する第1命令と、電気機器の駆動の一時停止を命令する第2命令とを含むワークの加工プログラムを実行するプログラム実行部と、第2命令による電気機器の駆動の一時停止時間が第1所定値以下である場合には、第2命令によって、電気機器の運転が第2運転状態に切り替わるように電気機器を制御し、第2命令による電気機器の駆動の一時停止時間が第1所定値よりも大きい場合には、第2命令によって、電気機器の運転が第3運転状態に切り替わるように電気機器を制御する電気機器制御部とを有する。 A machine tool according to the present invention has a first operating state in which a first power is supplied, a second operating state in which a second power smaller than the first power is supplied, and a third operating state in which the power supply is stopped. It is possible to select one of the operating states and the operating state, and it is provided with an electric device that is driven by being supplied with electric power, and a control device for controlling the machine tool. The control device includes a program execution unit for executing a workpiece machining program including a first command for commanding to drive the electrical device and a second command for commanding to temporarily stop driving the electrical device; is less than or equal to the first predetermined value, the second command controls the electrical device so that the operation of the electrical device is switched to the second operation state, and the second command drives the electrical device. an electrical equipment control unit that controls the electrical equipment so that the operation of the electrical equipment is switched to the third operation state by the second command when the temporary stop time of is greater than the first predetermined value.
 このように構成された工作機械によれば、電気機器の駆動の一時停止時間が相対的に長い場合には、第2運転状態における第2電力の消費が続くことに起因する消費電力の増大を回避するため、電気機器の運転を第3運転状態に切り替える。また、電気機器の駆動の一時停止時間が相対的に短い場合には、電気機器の運転再開時の突入電流に起因する電力消費の増大を回避するために、電気機器の運転を第2運転状態に切り替える。これにより、電気機器の消費電力を低く抑えることができる。 According to the machine tool configured in this way, when the drive suspension time of the electrical equipment is relatively long, the increase in power consumption caused by the continued consumption of the second power in the second operating state can be suppressed. To avoid this, the operation of the electrical equipment is switched to the third operating state. In addition, when the temporary stop time of the electric equipment is relatively short, the operation of the electric equipment is put into the second operation state in order to avoid an increase in power consumption due to the rush current when the electric equipment is restarted. switch to As a result, the power consumption of the electrical equipment can be kept low.
 また好ましくは、電気機器制御部は、第2命令による電気機器の駆動の一時停止時間が、第1所定値よりも小さい第2所定値以下である場合には、第1命令から第2命令の移行に伴って、電気機器の運転が第1運転状態を継続するように電気機器を制御する。 Moreover, preferably, the electrical device control unit, when the suspension time of driving the electrical device according to the second command is equal to or less than a second predetermined value that is smaller than the first predetermined value, Along with the shift, the electrical equipment is controlled so that the operation of the electrical equipment continues in the first operating state.
 このように構成された工作機械によれば、電気機器の駆動の一時停止時間がさらに短い場合には、電気機器を運転を第1運転状態で継続することによって、電気機器の消費電力をさらに低く抑えることができる。 According to the machine tool configured in this manner, the power consumption of the electrical equipment can be further reduced by continuing the operation of the electrical equipment in the first operating state when the temporary stop time of the driving of the electrical equipment is even shorter. can be suppressed.
 また好ましくは、電気機器は、クーラントポンプまたはミストコレクタである。
 このように構成された工作機械によれば、クーラントポンプまたはミストコレクタの消費電力を低く抑えることができる。
Also preferably, the electrical device is a coolant pump or a mist collector.
According to the machine tool configured in this way, the power consumption of the coolant pump or mist collector can be kept low.
 また好ましくは、第2命令は、自動工具交換装置による工具交換時、または、自動パレット交換装置によるパレット交換時に実行される。 Also preferably, the second command is executed during tool change by an automatic tool changer or pallet change by an automatic pallet changer.
 このように構成された工作機械によれば、自動工具交換装置による工具交換、または、自動パレット交換装置によるパレット交換は、短時間で実行されるため、この間、電気機器の運転を第2運転状態とすることによって、クーラントポンプまたはミストコレクタの消費電力を低く抑えることができる。 According to the machine tool configured as described above, the tool change by the automatic tool changer or the pallet change by the automatic pallet changer is executed in a short time. By doing so, the power consumption of the coolant pump or mist collector can be kept low.
 また好ましくは、電気機器は、クーラントポンプである。工作機械は、クーラントポンプにより圧送するクーラントを貯留するクーラントタンクと、クーラントポンプからのクーラントの流路を、クーラントを加工エリア内に供給する第1流路と、クーラントをクーラントタンクに戻す第2流路との間で切り替える切り替えバルブとをさらに備える。制御装置は、電気機器の運転が第2運転状態に切り替えられた場合に、クーラントポンプからのクーラントの流路を第2流路に切り替えるように、切り替えバルブを制御する。 Also preferably, the electric device is a coolant pump. The machine tool includes a coolant tank for storing coolant pressure-fed by a coolant pump, a first flow channel for supplying the coolant from the coolant pump into the machining area, and a second flow channel for returning the coolant to the coolant tank. and a switching valve for switching between the channel and the channel. The control device controls the switching valve to switch the coolant flow path from the coolant pump to the second flow path when the operation of the electric device is switched to the second operation state.
 このように構成された工作機械によれば、電気機器の第2運転状態において、クーラントポンプからのクーラントが加工エリア内に供給されることを防止できる。 According to the machine tool configured in this way, it is possible to prevent the supply of coolant from the coolant pump into the machining area in the second operating state of the electrical equipment.
 以上に説明したように、この発明に従えば、電気機器の消費電力を低く抑えることが可能な工作機械を提供することができる。 As explained above, according to the present invention, it is possible to provide a machine tool capable of keeping the power consumption of electrical equipment low.
この発明の実施の形態1における工作機械を示す斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a perspective view which shows the machine tool in Embodiment 1 of this invention. 図1中の工作機械を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing the machine tool in FIG. 1; 図1および図2中の工作機械における制御系を示すブロック図である。FIG. 3 is a block diagram showing a control system in the machine tool in FIGS. 1 and 2; FIG. 図1および図2中の工作機械において、ワーク加工の流れと、クーラントポンプの駆動命令および運転状態との関係を示す表である。FIG. 3 is a table showing the relationship between the work machining flow and the coolant pump drive command and operating state in the machine tool shown in FIGS. 1 and 2 ; FIG. 図1および図2中の工作機械において、クーラントポンプに流れる電流の変化を示すグラフである。FIG. 3 is a graph showing changes in current flowing through a coolant pump in the machine tool shown in FIGS. 1 and 2. FIG. この発明の実施の形態2の工作機械における主軸クーラントのシステムを模式的に示す図である。FIG. 6 is a diagram schematically showing a spindle coolant system in a machine tool according to Embodiment 2 of the present invention; 図6中の工作機械において、ワーク加工の流れと、クーラントポンプの駆動命令および運転状態との関係を示す表である。FIG. 7 is a table showing the relationship between the flow of work machining and the drive command and operating state of a coolant pump in the machine tool of FIG. 6; FIG. 図6中の工作機械において、クーラントポンプに流れる電流の変化を示すグラフである。7 is a graph showing changes in current flowing through a coolant pump in the machine tool shown in FIG. 6; この発明の実施の形態3における工作機械において、ワーク加工の流れと、クーラントポンプの駆動命令および運転状態との関係を示す表である。10 is a table showing the relationship between the work machining flow and the coolant pump drive command and operating state in the machine tool according to Embodiment 3 of the present invention. この発明の実施の形態3における工作機械において、クーラントポンプに流れる電流の変化を示すグラフである。9 is a graph showing changes in current flowing through a coolant pump in a machine tool according to Embodiment 3 of the present invention;
 この発明の実施の形態について、図面を参照して説明する。なお、以下で参照する図面では、同一またはそれに相当する部材には、同じ番号が付されている。 An embodiment of the present invention will be described with reference to the drawings. In the drawings referred to below, the same or corresponding members are given the same numbers.
 (実施の形態1)
 図1は、この発明の実施の形態1における工作機械を示す斜視図である。図2は、図1中の工作機械を模式的に示す断面図である。
(Embodiment 1)
FIG. 1 is a perspective view showing a machine tool according to Embodiment 1 of the present invention. 2 is a cross-sectional view schematically showing the machine tool in FIG. 1. FIG.
 図1および図2を参照して、工作機械100は、ワークに回転する工具を接触させることによって、ワーク加工を行なうマシニングセンタであり、より特定的には、工具の回転中心軸が水平方向に延びる横形マシニングセンタである。工作機械100は、コンピュータによる数値制御によって、ワーク加工のための各種動作が自動化されたNC(Numerical Control)工作機械である。 Referring to FIGS. 1 and 2, machine tool 100 is a machining center that processes a workpiece by bringing a rotating tool into contact with the workpiece. More specifically, the central axis of rotation of the tool extends horizontally. It is a horizontal machining center. The machine tool 100 is an NC (Numerical Control) machine tool in which various operations for machining a workpiece are automated by numerical control by a computer.
 図中には、水平方向に平行で、かつ、工具の回転中心軸に平行なZ軸と、水平方向に平行で、かつ、工具の回転中心軸に直交するX軸と、鉛直方向に平行なY軸とが示されている。 In the figure, the Z-axis parallel to the horizontal direction and parallel to the center axis of rotation of the tool, the X-axis parallel to the horizontal direction and perpendicular to the center axis of rotation of the tool, and the Y-axis is shown.
 まず、工作機械100の全体構造について説明する。工作機械100は、カバー体21を有する。カバー体21は、加工エリア120と、段取りステーション130とを区画形成するとともに、工作機械100の外観をなしている。 First, the overall structure of the machine tool 100 will be described. The machine tool 100 has a cover body 21 . The cover body 21 partitions the machining area 120 and the setup station 130 and forms the appearance of the machine tool 100 .
 加工エリア120は、ワークの加工が行なわれる空間であり、ワーク加工に伴う切屑または切削油等の異物が加工エリア120の外部に漏出しないように密閉されている。 The machining area 120 is a space in which the work is machined, and is sealed so that foreign matter such as chips or cutting oil that accompany the machining of the work does not leak out of the machining area 120 .
 段取りステーション130は、Z軸方向において加工エリア120と隣り合って設けられている。段取りステーション130は、パレットPに対して加工エリア120における加工前のワークを装着したり、パレットPから加工エリア120における加工後のワークを取り外したりするための空間である。段取りステーション130には、パレットPを載置するためのパレット載置台(不図示)が設置されている。 The setup station 130 is provided adjacent to the machining area 120 in the Z-axis direction. The set-up station 130 is a space for mounting the work before machining in the machining area 120 on the pallet P and removing the work after machining in the machining area 120 from the pallet P. A pallet placement table (not shown) for placing the pallet P is installed in the setup station 130 .
 カバー体21は、第1カバー23と、第2カバー24と、天井カバー22と、正面扉25とを有する。 The cover body 21 has a first cover 23, a second cover 24, a ceiling cover 22, and a front door 25.
 第1カバー23および第2カバー24は、X軸方向において、互いに対向して配置されている。第2カバー24を挟んで加工エリア120の反対側には、工具を格納するための工具マガジン(不図示)が設けられている。天井カバー22は、工作機械100の天井に配置されている。天井カバー22は、加工エリア120の上方に配置されている。 The first cover 23 and the second cover 24 are arranged facing each other in the X-axis direction. A tool magazine (not shown) for storing tools is provided on the opposite side of the processing area 120 with the second cover 24 interposed therebetween. The ceiling cover 22 is arranged on the ceiling of the machine tool 100 . The ceiling cover 22 is arranged above the processing area 120 .
 第1カバー23には、第1カバー開口部26が設けられている。第1カバー開口部26は、加工エリア120を外部空間に開放している。正面扉25は、第1カバー開口部26に設けられている。正面扉25は、第1カバー開口部26を開口させる開位置と、第1カバー開口部26を閉塞する閉位置(図1中に示される正面扉25の位置)との間で動作可能である。 A first cover opening 26 is provided in the first cover 23 . The first cover opening 26 opens the processing area 120 to the outside space. The front door 25 is provided at the first cover opening 26 . The front door 25 is operable between an open position that opens the first cover opening 26 and a closed position that closes the first cover opening 26 (the position of the front door 25 shown in FIG. 1). .
 カバー体21は、段取りステーションカバー51と、段取りステーション扉52とをさらに有する。段取りステーションカバー51および段取りステーション扉52は、段取りステーション130を区画形成している。 The cover body 21 further has a setup station cover 51 and a setup station door 52 . A setup station cover 51 and a setup station door 52 define a setup station 130 .
 段取りステーションカバー51には、第2カバー開口部53が設けられている。第2カバー開口部53は、段取りステーション130を外部空間に開放している。作業者は、第2カバー開口部53を通じて段取りステーション130内にアクセス可能である。段取りステーション扉52は、第2カバー開口部53に設けられている。段取りステーション扉52は、第2カバー開口部53を開口させる開位置と、第2カバー開口部53を閉塞する閉位置(図1中に示される段取りステーション扉52の位置)との間で動作可能である。 A second cover opening 53 is provided in the setup station cover 51 . A second cover opening 53 opens the setup station 130 to the outside space. A worker can access the interior of the setup station 130 through the second cover opening 53 . The setup station door 52 is provided in the second cover opening 53 . The setup station door 52 is operable between an open position that opens the second cover opening 53 and a closed position that closes the second cover opening 53 (the position of the setup station door 52 shown in FIG. 1). is.
 工作機械100は、操作部28をさらに有する。操作部28は、加工エリア120の外部に設けられている。操作部28は、第1カバー23に取り付けられている。操作部28は、第1カバー開口部26と隣接して設けられている。操作部28は、作業者が工作機械100を操作する際に用いる各種のボタンおよびスイッチ、ならびに、工作機械100におけるワークの加工状態等を示す表示部などを含む。 The machine tool 100 further has an operation unit 28. The operation unit 28 is provided outside the processing area 120 . The operating portion 28 is attached to the first cover 23 . The operating portion 28 is provided adjacent to the first cover opening 26 . The operation unit 28 includes various buttons and switches used by the operator to operate the machine tool 100, a display unit for indicating the machining state of the work in the machine tool 100, and the like.
 工作機械100は、ベッド14と、工具主軸12と、テーブル16とをさらに有する。工具主軸12およびテーブル16は、加工エリア120に配置されている。 The machine tool 100 further has a bed 14, a tool spindle 12 and a table 16. Tool spindle 12 and table 16 are arranged in machining area 120 .
 ベッド14は、工具主軸12およびテーブル16等を支持するためのベース部材であり、工場などの床面に設置されている。ベッド14は、鋳物から構成されている。 The bed 14 is a base member for supporting the tool spindle 12, the table 16, etc., and is installed on the floor of a factory or the like. Bed 14 is constructed from a casting.
 工具主軸12は、ドリル、リーマーまたはフライス等の工具を、Z軸に平行な回転中心軸110を中心に回転させる。工具主軸12には、工具を着脱可能に保持するためのクランプ機構が内蔵されている。工具主軸12は、図示しないコラム等によりベッド14上に支持されている。工具主軸12は、コラム等に設けられた各種の送り機構、案内機構およびサーボモータなどにより、X軸方向およびY軸方向に移動可能である。 The tool spindle 12 rotates a tool such as a drill, reamer, or milling cutter around a rotation center axis 110 parallel to the Z-axis. The tool spindle 12 incorporates a clamp mechanism for detachably holding the tool. The tool spindle 12 is supported on a bed 14 by a column or the like (not shown). The tool spindle 12 can be moved in the X-axis direction and the Y-axis direction by various feed mechanisms, guide mechanisms, servomotors, etc. provided on a column or the like.
 テーブル16は、ワークを保持するための装置である。テーブル16には、パレットPが着脱可能に装着されている。パレットPには、たとえば、ワークが取り付けられるイケール等の治具が搭載される。テーブル16は、ベッド14等に設けられた各種の送り機構、案内機構およびサーボモータなどにより、Z軸方向に移動可能である。 The table 16 is a device for holding a work. A pallet P is detachably attached to the table 16 . On the pallet P, for example, jigs such as tombstones to which works are attached are mounted. The table 16 can be moved in the Z-axis direction by various feed mechanisms, guide mechanisms, servo motors, and the like provided on the bed 14 and the like.
 工作機械100は、自動工具交換装置(ATC:Automatic Tool Changer)17と、自動パレット交換装置(APC:Automatic Pallet Changer)18とをさらに有する(後出の図3を参照)。 The machine tool 100 further has an automatic tool changer (ATC) 17 and an automatic pallet changer (APC) 18 (see FIG. 3 below).
 自動工具交換装置17は、工具主軸12と、工具マガジン(不図示)との間において、工具を自動的に交換する。自動パレット交換装置18は、加工エリア120内のテーブル16と、段取りステーション130内のパレット載置台との間において、パレットPを自動的に交換する。 The automatic tool changer 17 automatically changes tools between the tool spindle 12 and a tool magazine (not shown). The automatic pallet exchange device 18 automatically exchanges the pallet P between the table 16 in the processing area 120 and the pallet table in the setup station 130 .
 工作機械100は、クーラントタンク61と、クーラントポンプ63と、クーラント吐出装置71とをさらに有する。 The machine tool 100 further has a coolant tank 61 , a coolant pump 63 and a coolant discharge device 71 .
 クーラントタンク61は、クーラントを貯留可能なタンク形状を有する。クーラントタンク61は、加工エリア120内からクーラントを回収可能なように構成されている。クーラントタンク61には、クーラントが貯留されている。クーラントタンク61は、工場などの床面に設置されている。クーラントタンク61は、ベッド14に対して併設されている。 The coolant tank 61 has a tank shape capable of storing coolant. The coolant tank 61 is configured to be able to collect coolant from within the machining area 120 . Coolant is stored in the coolant tank 61 . The coolant tank 61 is installed on the floor of a factory or the like. A coolant tank 61 is provided side by side with the bed 14 .
 クーラントポンプ63は、クーラントタンク61に設けられている。クーラントポンプ63は、その駆動に伴って、クーラントタンク61に貯留されたクーラントを加工エリア120に向けて圧送する。クーラントポンプ63は、クーラントをさらに段取りステーション130に向けて圧送してもよい。 The coolant pump 63 is provided in the coolant tank 61. The coolant pump 63 pumps the coolant stored in the coolant tank 61 toward the machining area 120 as it is driven. Coolant pump 63 may pump coolant further toward setup station 130 .
 クーラント吐出装置71は、加工エリア120に配置されている。クーラント吐出装置71は、クーラントを吐出可能なように構成されている。クーラント吐出装置71は、たとえば、円筒状のノズル、または、クーラントの吐出口が設けられたブロック体等からなる。クーラント吐出装置71は、加工エリア120において、クーラントポンプ63から圧送されるクーラントを吐出する。 The coolant discharge device 71 is arranged in the processing area 120 . The coolant discharge device 71 is configured to discharge coolant. The coolant discharge device 71 is composed of, for example, a cylindrical nozzle or a block body provided with a coolant discharge port. The coolant discharge device 71 discharges the coolant pressure-fed from the coolant pump 63 in the machining area 120 .
 クーラント吐出装置71は、天井クーラント吐出装置71Cと、ベースクーラント吐出装置71Bとを有する。 The coolant discharge device 71 has a ceiling coolant discharge device 71C and a base coolant discharge device 71B.
 天井クーラント吐出装置71Cは、天井カバー22に取り付けられている。天井クーラント吐出装置71Cは、主に、天井カバー22から加工エリア120の全体にクーラントを供給することにより、ワーク加工に伴って生じた切屑を加工エリア120内から排出することを目的としている。ベースクーラント吐出装置71Bは、ベッド14に取り付けられている。ベースクーラント吐出装置71Bは、主に、ベッド14の壁面にクーラントを供給することにより、ワーク加工に伴って生じた切屑を加工エリア120内から排出することを目的としている。 The ceiling coolant discharge device 71C is attached to the ceiling cover 22. The purpose of the ceiling coolant discharge device 71C is mainly to discharge chips generated during the machining of the workpiece from within the machining area 120 by supplying coolant from the ceiling cover 22 to the entire machining area 120 . The base coolant discharge device 71B is attached to the bed 14. As shown in FIG. The base coolant discharge device 71B is mainly intended to discharge chips generated by machining the workpiece from the machining area 120 by supplying coolant to the wall surface of the bed 14 .
 工作機械100は、ミストコレクタ31をさらに有する。ミストコレクタ31は、支持脚33を介して、天井カバー22上に設けられている。 The machine tool 100 further has a mist collector 31. The mist collector 31 is provided on the ceiling cover 22 via support legs 33 .
 加工エリア120内において、クーラントを用いてワークの加工を行なうと、加工熱により温められたクーラントがミスト状(霧状)となったオイルミストが発生する。ミストコレクタ31には、加工エリア120からオイルミストが導かれる。ミストコレクタ31は、空気中に含まれるオイルミストを回収し、清浄な空気を排出するための装置である。 When a workpiece is processed using coolant in the processing area 120, an oil mist is generated in which the coolant heated by processing heat turns into a mist (fog). Oil mist is led from the processing area 120 to the mist collector 31 . The mist collector 31 is a device for collecting oil mist contained in the air and discharging clean air.
 ミストコレクタ31は、ケース体36を有する。ケース体36は、ミストコレクタ31の外観をなす筐体からなる。ケース体36は、全体として、仮想上の中心軸101を中心とする円筒形状を有する。 The mist collector 31 has a case body 36. The case body 36 is made up of a housing that forms the appearance of the mist collector 31 . The case body 36 as a whole has a cylindrical shape centered on a virtual central axis 101 .
 ケース体36には、吸気口34と、排気口37とが設けられている。吸気口34は、中心軸101の軸方向におけるケース体36の一方端において、中心軸101の軸方向を向いて開口している。排気口37は、中心軸101の軸方向におけるケース体36の他方端において、中心軸101の半径方向外側を向いて開口している。 The case body 36 is provided with an intake port 34 and an exhaust port 37 . Air inlet 34 opens toward the axial direction of central axis 101 at one end of case body 36 in the axial direction of central axis 101 . At the other end of case body 36 in the axial direction of central axis 101 , exhaust port 37 opens outward in the radial direction of central axis 101 .
 ミストコレクタ31は、ダクト32を介してカバー体21に接続されている。ケース体36内の空間は、ダクト32を通じて加工エリア120と連通している。ダクト32の一方端は、吸気口34に接続され、ダクト32の他方端は、天井カバー22に接続されている。 The mist collector 31 is connected to the cover body 21 via a duct 32. The space inside the case body 36 communicates with the processing area 120 through the duct 32 . One end of the duct 32 is connected to the intake port 34 and the other end of the duct 32 is connected to the ceiling cover 22 .
 ミストコレクタ31は、フィルタ44と、ミストコレクタ用モータ42と、ファン43とをさらに有する。フィルタ44は、ケース体36に収容されている。フィルタ44は、オイルミストを捕集可能なように構成されている。フィルタ44は、微細な孔が並ぶ網目状のメッシュ体からなる。 The mist collector 31 further has a filter 44 , a mist collector motor 42 and a fan 43 . The filter 44 is housed in the case body 36 . Filter 44 is configured to be able to collect oil mist. The filter 44 consists of a net-like mesh body in which fine holes are arranged.
 ミストコレクタ用モータ42およびファン43は、ケース体36に収容されている。ミストコレクタ用モータ42の出力軸は、ファン43およびフィルタ44に接続されている。ミストコレクタ用モータ42の駆動時、ミストコレクタ用モータ42の出力軸から出力された回転が、ファン43およびフィルタ44に伝達される。ファン43が回転することにより、ケース体36内には、吸気口34から排気口37に向かう空気流れが形成される。 The mist collector motor 42 and the fan 43 are housed in the case body 36 . The output shaft of the mist collector motor 42 is connected to the fan 43 and the filter 44 . When the mist collector motor 42 is driven, the rotation output from the output shaft of the mist collector motor 42 is transmitted to the fan 43 and the filter 44 . As the fan 43 rotates, an air flow is formed in the case body 36 from the intake port 34 toward the exhaust port 37 .
 加工エリア120内で発生したオイルミストを含む空気は、ファン43の回転に伴って、ダクト32を通ってミストコレクタ31に導かれる。空気は、吸気口34を通じてケース体36内に吸引される。空気は、ケース体36内において、回転するフィルタ44を通過する。このとき、空気がフィルタ44の網目を通過する一方で、空気中に含まれるオイルミストは、高速回転するフィルタ44と衝突することによって、フィルタ44の網目を通過することができない。これにより、フィルタ44を通過した空気と、フィルタ44により遮断され、液化されたオイルミストとが分離される。 Air containing oil mist generated in the processing area 120 is guided to the mist collector 31 through the duct 32 as the fan 43 rotates. Air is sucked into the case body 36 through the intake port 34 . Air passes through a rotating filter 44 inside the case body 36 . At this time, while the air passes through the mesh of the filter 44, the oil mist contained in the air cannot pass through the mesh of the filter 44 by colliding with the filter 44 rotating at high speed. As a result, the air that has passed through the filter 44 is separated from the liquefied oil mist blocked by the filter 44 .
 分離されたオイルミストは、図示しないドレンを通り、工作機械100の加工エリア120内またはクーラントタンク61に回収される。オイルミストが分離された清浄な空気は、排気口37を通じて外部空間に排出される。 The separated oil mist passes through a drain (not shown) and is collected in the machining area 120 of the machine tool 100 or in the coolant tank 61. The clean air from which the oil mist has been separated is discharged to the external space through the exhaust port 37 .
 なお、ミストコレクタにおいてオイルミストを回収する方式は、特に限定されない。ミストコレクタで用いられるフィルタは、定期的に交換されるフィルタであってもよいし、オイルミストの回収方式が、遠心分離方式であってもよい。 The method of collecting the oil mist in the mist collector is not particularly limited. The filter used in the mist collector may be a filter that is replaced periodically, and the oil mist collection method may be a centrifugal separation method.
 図3は、図1および図2中の工作機械における制御系を示すブロック図である。図3を参照して、工作機械100は、制御装置81をさらに有する。制御装置81は、工作機械100を制御する。制御装置81は、工作機械100に備え付けられ、工作機械100における各種動作を制御するための制御盤に内装されている。 FIG. 3 is a block diagram showing the control system in the machine tool in FIGS. 1 and 2. Referring to FIG. 3, machine tool 100 further has a control device 81 . A control device 81 controls the machine tool 100 . The control device 81 is installed in the machine tool 100 and incorporated in a control panel for controlling various operations in the machine tool 100 .
 制御装置81は、プログラム記憶部82と、プログラム実行部83と、工具主軸制御部84と、テーブル制御部85と、APC制御部86と、ATC制御部96と、電気機器制御部91とを有する。 The control device 81 has a program storage unit 82, a program execution unit 83, a tool spindle control unit 84, a table control unit 85, an APC control unit 86, an ATC control unit 96, and an electrical equipment control unit 91. .
 プログラム記憶部82には、工作機械100の作業者によって作成されたワーク加工のための実行プログラム(数値制御プログラム)が記憶されている。プログラム記憶部82は、一例として、フラッシュメモリである。 The program storage unit 82 stores an execution program (numerical control program) created by the operator of the machine tool 100 for machining the workpiece. The program storage unit 82 is, for example, a flash memory.
 プログラム実行部83は、プログラム記憶部82に記憶された実行プログラムを実行する。より具体的には、プログラム実行部83は、実行プログラムの命令を読み取って、工具主軸制御部84、テーブル制御部85、APC制御部86、ATC制御部96および電気機器制御部91の各々に制御信号を出力する。工具主軸制御部84は、プログラム実行部83からの制御信号を受けて、工具主軸12を回転させるための工具主軸モータ87、および、工具主軸12をX軸方向およびY軸方向に移動させるための工具主軸送りモータ88を制御する。テーブル制御部85は、プログラム実行部83からの制御信号を受けて、テーブル16をZ軸方向に移動させるためのテーブル送りモータ89を制御する。 The program execution unit 83 executes the execution program stored in the program storage unit 82. More specifically, the program execution unit 83 reads the instructions of the execution program and causes the tool spindle control unit 84, the table control unit 85, the APC control unit 86, the ATC control unit 96, and the electric equipment control unit 91 to control each of them. Output a signal. The tool spindle control section 84 receives a control signal from the program execution section 83 and operates a tool spindle motor 87 for rotating the tool spindle 12 and a tool spindle motor 87 for moving the tool spindle 12 in the X-axis direction and the Y-axis direction. It controls the tool spindle feed motor 88 . The table control section 85 receives a control signal from the program execution section 83 and controls a table feed motor 89 for moving the table 16 in the Z-axis direction.
 APC制御部86は、プログラム実行部83からの制御信号を受けて、自動パレット交換装置18のアームを旋回動作させるためのAPC旋回モータ97を制御する。ATC制御部96は、プログラム実行部83からの制御信号を受けて、自動工具交換装置17のアームを旋回動作させるためのATC旋回モータ98を制御する。電気機器制御部91は、プログラム実行部83からの制御信号を受けて、クーラントポンプ63およびミストコレクタ31(ミストコレクタ用モータ42)の各電気機器を制御する。 The APC control unit 86 receives a control signal from the program execution unit 83 and controls the APC turning motor 97 for turning the arm of the automatic pallet changer 18 . The ATC control unit 96 receives a control signal from the program execution unit 83 and controls an ATC turning motor 98 for turning the arm of the automatic tool changer 17 . The electrical device control section 91 receives a control signal from the program execution section 83 and controls each electrical device such as the coolant pump 63 and the mist collector 31 (mist collector motor 42).
 続いて、クーラントポンプ63の駆動を制御する方法について説明する。図4は、図1および図2中の工作機械において、ワーク加工の流れと、クーラントポンプの駆動命令および運転状態との関係を示す表である。図5は、図1および図2中の工作機械において、クーラントポンプに流れる電流の変化を示すグラフである。 Next, a method for controlling the driving of the coolant pump 63 will be described. FIG. 4 is a table showing the relationship between the flow of work machining and the drive command and operating state of the coolant pump in the machine tool shown in FIGS. FIG. 5 is a graph showing changes in the current flowing through the coolant pump in the machine tool shown in FIGS. 1 and 2. FIG.
 図3から図5を参照して、プログラム記憶部82に記憶される実行プログラムは、クーラントポンプ63の駆動を命令する第1命令(ON命令)と、クーラントポンプ63の駆動の一時停止を命令する第2命令(OFF命令)とを含む。プログラム実行部83は、プログラム記憶部82に記憶された第1命令(ON命令)および第2命令(OFF命令)に対応する制御信号を電気機器制御部91に出力する。 3 to 5, the execution program stored in the program storage unit 82 includes a first command (ON command) for commanding the driving of the coolant pump 63 and a command for temporarily stopping the driving of the coolant pump 63. and a second instruction (OFF instruction). Program execution unit 83 outputs control signals corresponding to the first command (ON command) and the second command (OFF command) stored in program storage unit 82 to electric device control unit 91 .
 クーラントポンプ63は、第1電力が供給される第1運転状態と、第1電力よりも小さい第2電力が供給される第2運転状態と、電力の供給が停止される第3運転状態とのいずれかの運転状態を選択可能である。第1運転状態は、クーラントポンプ63の通常運転の状態に対応している。第2運転状態は、クーラントポンプ63のアイドリング運転の状態に対応している。第3運転状態は、クーラントポンプ63の停止状態に対応している。 The coolant pump 63 has a first operating state in which the first power is supplied, a second operating state in which the second power smaller than the first power is supplied, and a third operating state in which the power supply is stopped. Either operating state can be selected. The first operating state corresponds to the normal operating state of the coolant pump 63 . The second operating state corresponds to the idling operation state of the coolant pump 63 . The third operating state corresponds to the stopped state of the coolant pump 63 .
 電気機器制御部91は、プログラム実行部83からクーラントポンプ63に対する第2命令(OFF命令)を受けた場合、まず、プログラム記憶部82に記憶された実行プログラムに基づいて、第2命令(OFF命令)によりクーラントポンプ63の駆動の一時停止が継続される時間を特定する。 When receiving the second command (OFF command) for the coolant pump 63 from the program execution unit 83, the electric device control unit 91 first executes the second command (OFF command) based on the execution program stored in the program storage unit 82. ) specifies the time during which the coolant pump 63 is temporarily stopped.
 次に、電気機器制御部91は、特定されたクーラントポンプ63の駆動の一時停止時間が予め定められた第1所定値以下であるか否かを判断する。次に、電気機器制御部91は、第2命令(OFF命令)によるクーラントポンプ63の駆動の一時停止時間が第1所定値X以下であると判断した場合には、第2命令(OFF命令)によって、クーラントポンプ63の運転が第2運転状態(アイドリング運転)に切り替わるようにクーラントポンプ63を制御する。電気機器制御部91は、第2命令(OFF命令)によるクーラントポンプ63の駆動の一時停止時間が第1所定値よりも大きいと判断した場合には、第2命令(OFF命令)によって、クーラントポンプ63の運転が第3運転状態(停止状態)に切り替わるようにクーラントポンプ63を制御する。 Next, the electrical device control unit 91 determines whether or not the specified suspension time of driving the coolant pump 63 is equal to or less than a predetermined first predetermined value. Next, when the electric device control unit 91 determines that the temporary stop time of the driving of the coolant pump 63 by the second command (OFF command) is equal to or less than the first predetermined value X, the second command (OFF command) controls the coolant pump 63 so that the operation of the coolant pump 63 is switched to the second operation state (idling operation). When the electric device control unit 91 determines that the temporary stop time of the driving of the coolant pump 63 by the second command (OFF command) is longer than the first predetermined value, the electric device control unit 91 turns on the coolant pump by the second command (OFF command). The coolant pump 63 is controlled so that the operation of the coolant pump 63 is switched to the third operation state (stopped state).
 以下、図4および図5に示されるワーク加工の流れを参照しながら、クーラントポンプ63の駆動を制御する方法の具体例について説明する。 A specific example of a method for controlling the driving of the coolant pump 63 will be described below with reference to the flow of work machining shown in FIGS.
 図4および図5中では、ワーク加工の流れの一例として、ワークを荒削り加工するステップ(S101,時間Ta~Tb)と、工具主軸12および工具マガジンの間で工具交換を行なうステップ(S102,時間Tb~Tc)と、新たな工具を用いてワークを仕上げ加工するステップ(S103,時間Tc~Td)と、工具主軸12に測定スタイラスを装着して、ワークの形状を測定するステップ(S104,時間Td~Te)と、S104のステップにおける測定結果に基づいて、ワークを修正加工するステップ(S105,時間Te~Tf)と、加工エリア120および段取りステーション130の間でパレット交換するステップ(S106,時間Tf~Tg)とを挙げた順に実行する場合が想定されている。 In FIGS. 4 and 5, as an example of the flow of work machining, the step of roughing the work (S101, time Ta to Tb) and the step of exchanging tools between the tool spindle 12 and the tool magazine (S102, time Tb to Tc), a step of finishing the work using a new tool (S103, time Tc to Td), and a step of mounting a measurement stylus on the tool spindle 12 and measuring the shape of the work (S104, time Td to Te), a step of correcting and machining the workpiece based on the measurement results in step S104 (S105, time Te to Tf), and a step of exchanging pallets between the machining area 120 and the setup station 130 (S106, time Tf to Tg) are assumed to be executed in the order listed.
 プログラム実行部83は、S101のステップが開始されるタイミング(時間Ta)で、第1命令(ON命令)に対応する制御信号を電気機器制御部91に出力する。電気機器制御部91は、プログラム実行部83からの制御信号を受けて、クーラントポンプ63の運転が第1運転状態(通常運転)となるようにクーラントポンプ63を制御する。 The program execution unit 83 outputs a control signal corresponding to the first command (ON command) to the electric device control unit 91 at the timing (time Ta) when step S101 is started. The electrical device control unit 91 receives a control signal from the program execution unit 83 and controls the coolant pump 63 so that the coolant pump 63 operates in the first operating state (normal operation).
 次に、プログラム実行部83は、S101のステップが終了し、S102のステップが開始されるタイミング(時間Tb)で、第2命令(OFF命令)に対応する制御信号を電気機器制御部91に出力する。電気機器制御部91は、プログラム記憶部82に記憶された実行プログラムに基づいて、S102のステップの実行時間(Tc-Tb)を算出し、その算出値を第2命令(OFF命令)によるクーラントポンプ63の駆動の一時停止時間として特定する。電気機器制御部91は、第2命令(OFF命令)によるクーラントポンプ63の駆動の一時停止時間(Tc-Tb)が、予め定められた第1所定値X以下であると判断して(Tc-Tb≦X)、クーラントポンプ63の運転が第2運転状態(アイドリング運転)に切り替わるようにクーラントポンプ63を制御する。 Next, the program execution unit 83 outputs a control signal corresponding to the second command (OFF command) to the electric device control unit 91 at the timing (time Tb) at which the step of S101 ends and the step of S102 starts. do. The electrical device control unit 91 calculates the execution time (Tc−Tb) of the step of S102 based on the execution program stored in the program storage unit 82, and uses the calculated value as the coolant pump power supply by the second command (OFF command). 63 is identified as the drive suspension time. The electric device control unit 91 determines that the temporary stop time (Tc-Tb) of driving the coolant pump 63 by the second command (OFF command) is equal to or less than the predetermined first predetermined value X (Tc- Tb≦X), the coolant pump 63 is controlled so that the operation of the coolant pump 63 is switched to the second operation state (idling operation).
 次に、プログラム実行部83は、S102のステップが終了し、S103のステップが開始されるタイミング(時間Tc)で、第1命令(ON命令)に対応する制御信号を電気機器制御部91に出力する。電気機器制御部91は、プログラム実行部83からの制御信号を受けて、クーラントポンプ63の運転が第1運転状態(通常運転)に切り替わるようにクーラントポンプ63を制御する。 Next, the program execution unit 83 outputs a control signal corresponding to the first command (ON command) to the electric device control unit 91 at the timing (time Tc) at which the step of S102 is completed and the step of S103 is started. do. The electrical device control unit 91 receives the control signal from the program execution unit 83 and controls the coolant pump 63 so that the operation of the coolant pump 63 is switched to the first operating state (normal operation).
 次に、プログラム実行部83は、S103のステップが終了し、S104のステップが開始されるタイミング(時間Td)で、第2命令(OFF命令)に対応する制御信号を電気機器制御部91に出力する。電気機器制御部91は、プログラム記憶部82に記憶された実行プログラムに基づいて、S104のステップの実行時間(Te-Td)を算出し、その算出値を第2命令(OFF命令)によるクーラントポンプ63の駆動の一時停止時間として特定する。電気機器制御部91は、第2命令(OFF命令)によるクーラントポンプ63の駆動の一時停止時間(Te-Td)が、予め定められた第1所定値Xよりも大きいと判断して(Te-Td>X)、クーラントポンプ63の運転が第3運転状態(停止状態)に切り替わるようにクーラントポンプ63を制御する。 Next, the program execution unit 83 outputs a control signal corresponding to the second command (OFF command) to the electric device control unit 91 at the timing (time Td) at which the step of S103 ends and the step of S104 starts. do. The electrical device control unit 91 calculates the execution time (Te-Td) of the step of S104 based on the execution program stored in the program storage unit 82, and uses the calculated value as the coolant pump power supply by the second command (OFF command). 63 is identified as the drive suspension time. The electric device control unit 91 determines that the temporary stop time (Te-Td) of driving the coolant pump 63 by the second command (OFF command) is longer than a predetermined first predetermined value X (Te- Td>X), the coolant pump 63 is controlled so that the operation of the coolant pump 63 is switched to the third operation state (stopped state).
 次に、プログラム実行部83は、S104のステップが終了し、S105のステップが開始されるタイミング(時間Te)で、第1命令(ON命令)に対応する制御信号を電気機器制御部91に出力する。電気機器制御部91は、プログラム実行部83からの制御信号を受けて、クーラントポンプ63の運転が第1運転状態(通常運転)に切り替わるようにクーラントポンプ63を制御する。 Next, the program execution unit 83 outputs a control signal corresponding to the first command (ON command) to the electric device control unit 91 at the timing (time Te) at which the step of S104 ends and the step of S105 starts. do. The electrical device control unit 91 receives the control signal from the program execution unit 83 and controls the coolant pump 63 so that the operation of the coolant pump 63 is switched to the first operating state (normal operation).
 次に、プログラム実行部83は、S105のステップが終了し、S106のステップが開始されるタイミング(時間Tf)で、第2命令(OFF命令)に対応する制御信号を電気機器制御部91に出力する。電気機器制御部91は、プログラム記憶部82に記憶された実行プログラムに基づいて、S106のステップの実行時間(Tg-Tf)を算出し、その算出値を第2命令(OFF命令)によるクーラントポンプ63の駆動の一時停止時間として特定する。電気機器制御部91は、第2命令(OFF命令)によるクーラントポンプ63の駆動の一時停止時間(Tg-Tf)が、予め定められた第1所定値X以下であると判断して(Tg-Tf≦X)、クーラントポンプ63の運転が第2運転状態(アイドリング運転)に切り替わるようにクーラントポンプ63を制御する。 Next, the program execution unit 83 outputs a control signal corresponding to the second command (OFF command) to the electric device control unit 91 at the timing (time Tf) at which the step of S105 ends and the step of S106 starts. do. The electric device control unit 91 calculates the execution time (Tg−Tf) of the step of S106 based on the execution program stored in the program storage unit 82, and uses the calculated value as the coolant pump power supply by the second command (OFF command). 63 is identified as the drive suspension time. The electric device control unit 91 determines that the temporary stop time (Tg-Tf) of driving of the coolant pump 63 by the second command (OFF command) is equal to or less than a predetermined first predetermined value X (Tg- Tf≦X), the coolant pump 63 is controlled so that the operation of the coolant pump 63 is switched to the second operation state (idling operation).
 なお、クーラントポンプ63の上記切り替え制御には、予め決められたブロック数の分だけプログラムを先読みする制御装置81の先読み機能を利用してもよい。 For the switching control of the coolant pump 63, a pre-reading function of the control device 81 that pre-reads programs for a predetermined number of blocks may be used.
 たとえば、電気機器制御部91は、プログラム実行部83がクーラントポンプ63の停止命令(OFF命令)を読み取ったタイミングで、プログラムの先読み機能を用いて、その後に続くクーラントポンプ63の再起動指令(ON命令)を認識し、クーラントポンプ63の駆動の一時停止時間を特定することで、クーラントポンプ63の上記切り替え制御を行なってもよい。電気機器制御部91は、プログラムの先読み機能を用いて、このあとに実行されるクーラントポンプ63の停止命令(OFF命令)と、続く再起動指令(ON命令)とを認識し、クーラントポンプ63の駆動の一時停止時間を特定することで、クーラントポンプ63の上記切り替え制御に備えてもよい。 For example, at the timing when the program execution unit 83 reads a stop command (OFF command) for the coolant pump 63, the electric device control unit 91 uses the prefetch function of the program to issue a subsequent restart command (ON command) for the coolant pump 63. The switching control of the coolant pump 63 may be performed by recognizing the command) and specifying the temporary stop time of driving the coolant pump 63 . The electrical device control unit 91 uses the read-ahead function of the program to recognize the stop command (OFF command) of the coolant pump 63 and the following restart command (ON command) of the coolant pump 63 to be executed after this, and The switching control of the coolant pump 63 may be provided by specifying the drive suspension time.
 また、電気機器制御部91は、プログラム実行部83がクーラントポンプ63の停止命令(OFF命令)を含むプログラム行から所定行数(たとえば、10行)先までプログラムを先読みし、先読みしたプログラム行の中にクーラントポンプ63の再起動指令(ON命令)が含まれるか否かを特定してもよい。電気機器制御部91は、先読みしたプログラム行の中にクーラントポンプ63の再起動指令(ON命令)が含まれる場合には、再起動指令(ON命令)が発せられるまでのクーラントポンプ63の駆動の一時停止時間が短いと判断して、クーラントポンプ63を完全に停止させることなく、アイドリング運転に切り替えるという制御を行なってもよい。 In addition, the electric device control unit 91 prefetches the program up to a predetermined number of lines (for example, 10 lines) ahead of the program execution unit 83 including the instruction to stop the coolant pump 63 (OFF instruction), and reads the prefetched program line. It may be specified whether or not a restart command (ON command) for the coolant pump 63 is included therein. When the read-ahead program line includes a restart command (ON command) for the coolant pump 63, the electric device control unit 91 controls the driving of the coolant pump 63 until the restart command (ON command) is issued. It may be determined that the temporary stop time is short, and control may be performed to switch to idling operation without completely stopping the coolant pump 63 .
 図5に示されるように、クーラントポンプ63には、第1運転状態(通常運転)において、電流Daが流れ、第2運転状態(アイドリング運転)において、電流Daよりも小さい電流Dbが流れる。このため、第2運転状態(アイドリング運転)が継続する間、第1運転状態(通常運転)における消費電力よりは小さいものの、一定の電力が消費され続けることになる。 As shown in FIG. 5, the coolant pump 63 receives a current Da in the first operating state (normal operation), and a current Db smaller than the current Da in the second operating state (idling operation). Therefore, while the second operating state (idling operation) continues, a certain amount of electric power continues to be consumed although it is smaller than the power consumption in the first operating state (normal operation).
 また、クーラントポンプ63には、第3運転状態(停止状態)から第1運転状態(通常運転)に切り替わるタイミングで、電流Daよりも大きい突入電流Dcが流れる一方、第2運転状態(アイドリング運転)から第1運転状態(通常運転)に切り替わるタイミングでは、そのような突入電流が発生しない。このため、クーラントポンプ63の運転が第3運転状態(停止状態)から第1運転状態(通常運転)に移行する場合、突入電流の発生に起因して、クーラントポンプ63における消費電力が増大する。 In the coolant pump 63, at the timing of switching from the third operating state (stopped state) to the first operating state (normal operation), a rush current Dc larger than the current Da flows, while the coolant pump 63 is in the second operating state (idling operation). Such an inrush current does not occur at the timing of switching from the first operating state (normal operation) to the first operating state (normal operation). Therefore, when the operation of the coolant pump 63 shifts from the third operation state (stopped state) to the first operation state (normal operation), power consumption in the coolant pump 63 increases due to the occurrence of inrush current.
 本実施の形態では、ワークの形状を測定するステップ(S104)では、クーラントポンプ63の駆動の一時停止時間が比較的長いため、S103のステップからS104のステップに移る際に、クーラントポンプ63の運転を第1運転状態(通常運転)から第3運転状態(停止状態)に切り替える。これにより、S104のステップからS105のステプに移る際に突入電流が生じるものの、第2運転状態(アイドリング運転)において長時間に渡って一定電力が消費されるということを回避できる。これにより、クーラントポンプ63の消費電力を低く抑えることができる。 In the present embodiment, in the step of measuring the shape of the workpiece (S104), the temporary stop time of driving the coolant pump 63 is relatively long. is switched from the first operating state (normal operation) to the third operating state (stopped state). As a result, it is possible to avoid constant power consumption over a long period of time in the second operating state (idling operation), although an inrush current occurs when shifting from step S104 to step S105. Thereby, the power consumption of the coolant pump 63 can be kept low.
 また、自動工具交換を行なうステップ(S102)および自動パレット交換を行なうステップ(S106)では、クーラントポンプ63の駆動の一時停止時間が比較的短いため、S101のステップからS102のステップに移る際、および、S105のステップからS106のステップに移る際に、クーラントポンプ63の運転を第1運転状態(通常運転)から第2運転状態(アイドリング運転)に切り替える。これにより、S102およびS106のステップで短時間だけ一定電力が消費されるものの、クーラントポンプ63の再開時に突入電流が発生することを回避できる。これにより、クーラントポンプ63の消費電力を低く抑えることができる。 Further, in the step of automatic tool change (S102) and the step of automatic pallet change (S106), the temporary stop time of the coolant pump 63 is relatively short. , S105 to S106, the operation of the coolant pump 63 is switched from the first operating state (normal operation) to the second operating state (idling operation). As a result, although constant power is consumed for a short period of time in steps S102 and S106, it is possible to avoid the occurrence of rush current when the coolant pump 63 is restarted. Thereby, the power consumption of the coolant pump 63 can be kept low.
 以上に説明した、この発明の実施の形態1における工作機械100の構成についてまとめると、本実施の形態における工作機械100は、第1電力が供給される第1運転状態(通常運転)と、第1電力よりも小さい第2電力が供給される第2運転状態(アイドリング運転)と、電力の供給が停止される第3運転状態(停止状態)とのいずれかの運転状態を選択可能であり、電力が供給されることによって駆動する電気機器としてのクーラントポンプ63と、工作機械100を制御するための制御装置81とを備える。制御装置81は、クーラントポンプ63の駆動を命令する第1命令(ON命令)と、クーラントポンプ63の駆動の一時停止を命令する第2命令(OFF命令)とを含むワークの加工プログラムを実行するプログラム実行部83と、第2命令(OFF命令)によるクーラントポンプ63の駆動の一時停止時間が第1所定値X以下である場合には、第2命令(OFF命令)によって、クーラントポンプ63の運転が第2運転状態(アイドリング運転)に切り替わるようにクーラントポンプ63を制御し、第2命令(OFF命令)によるクーラントポンプ63の駆動の一時停止時間が第1所定値Xよりも大きい場合には、第2命令(OFF命令)によって、クーラントポンプ63の運転が第3運転状態(停止状態)に切り替わるようにクーラントポンプ63を制御する電気機器制御部91とを有する。 To summarize the configuration of machine tool 100 according to Embodiment 1 of the present invention described above, machine tool 100 according to the present embodiment has a first operating state (normal operation) in which first electric power is supplied, It is possible to select an operating state from a second operating state (idling operation) in which a second power smaller than 1 power is supplied and a third operating state (stopped state) in which the supply of power is stopped, It includes a coolant pump 63 as an electric device driven by being supplied with electric power, and a control device 81 for controlling the machine tool 100 . The control device 81 executes a workpiece machining program including a first command (ON command) to command driving of the coolant pump 63 and a second command (OFF command) to temporarily stop driving the coolant pump 63. When the temporary stop time of the driving of the coolant pump 63 by the program execution unit 83 and the second command (OFF command) is equal to or less than the first predetermined value X, the coolant pump 63 is operated by the second command (OFF command). controls the coolant pump 63 to switch to the second operating state (idling operation), and when the temporary stop time of the coolant pump 63 by the second command (OFF command) is longer than the first predetermined value X, and an electric device control section 91 for controlling the coolant pump 63 so that the operation of the coolant pump 63 is switched to the third operating state (stopped state) in response to a second command (OFF command).
 このように構成された、この発明の実施の形態1における工作機械100によれば、クーラントポンプ63の消費電力を低減させることで、工作機械100の省エネルギー性を高めることができる。 According to the machine tool 100 according to Embodiment 1 of the present invention configured in this way, the power consumption of the coolant pump 63 is reduced, thereby improving the energy saving performance of the machine tool 100.
 なお、本実施の形態では、クーラントポンプ63の制御について説明したが、これに限られず、たとえば、本発明がミストコレクタ31(ミストコレクタ用モータ42)の制御に適用されてもよい。 Although control of the coolant pump 63 has been described in the present embodiment, the present invention is not limited to this and may be applied to control of the mist collector 31 (mist collector motor 42), for example.
 また、本発明における工作機械は、横形マシニングセンタに限られず、たとえば、立形マシニングセンタ、旋盤、旋削機能と、ミーリング機能とを有する複合加工機、または、ワークの付加加工(AM(Additive manufacturing)加工)と、ワークの除去加工(SM(Subtractive manufacturing)加工)とが可能なAM/SMハイブリッド加工機にも適用可能である。 Further, the machine tool in the present invention is not limited to a horizontal machining center. and a workpiece removal machining (SM (subtractive manufacturing) machining).
 (実施の形態2)
 図6は、この発明の実施の形態2の工作機械における主軸クーラントのシステムを模式的に示す図である。図7は、図6中の工作機械において、ワーク加工の流れと、クーラントポンプの駆動命令および運転状態との関係を示す表である。図8は、図6中の工作機械において、クーラントポンプに流れる電流の変化を示すグラフである。
(Embodiment 2)
FIG. 6 is a diagram schematically showing a spindle coolant system in a machine tool according to Embodiment 2 of the present invention. FIG. 7 is a table showing the relationship between the work machining flow and the drive command and operating state of the coolant pump in the machine tool shown in FIG. 8 is a graph showing changes in the current flowing through the coolant pump in the machine tool shown in FIG. 6. FIG.
 本実施の形態における工作機械は、実施の形態1における工作機械100と比較して、基本的には同様の構造を備える。以下、重複する構造については、その説明を繰り返さない。 The machine tool according to the present embodiment has basically the same structure as the machine tool 100 according to the first embodiment. Hereinafter, descriptions of overlapping structures will not be repeated.
 図2および図6から図8を参照して、本実施の形態における工作機械は、クーラントポンプ66をさらに有する。クーラントポンプ66は、クーラントタンク61に設けられている。クーラントポンプ66は、その駆動に伴って、クーラントタンク61に貯留されたクーラントを加工エリア120に向けて圧送する。  With reference to Figures 2 and 6 to 8, the machine tool in the present embodiment further has a coolant pump 66. A coolant pump 66 is provided in the coolant tank 61 . The coolant pump 66 pumps the coolant stored in the coolant tank 61 toward the machining area 120 as it is driven.
 本実施の形態では、クーラント吐出装置71が、主軸クーラント吐出装置71Sをさらに有する。主軸クーラント吐出装置71Sは、工具主軸12に設けられている。主軸クーラント吐出装置71Sは、工具主軸12に保持された工具の刃先からクーラントを吐出するスピンドルスルー仕様である。主軸クーラント吐出装置71Sは、主に、ワークの加工点にクーラントを供給することにより、ワークの加工点の発熱を抑えたり、ワークおよび工具の間を潤滑したりすることを目的としている。 In the present embodiment, the coolant discharge device 71 further has a spindle coolant discharge device 71S. The spindle coolant discharge device 71S is provided on the tool spindle 12 . The spindle coolant discharge device 71</b>S is of a spindle through specification that discharges coolant from the cutting edge of the tool held by the tool spindle 12 . The main spindle coolant discharge device 71S is mainly intended to suppress heat generation at the machining point of the workpiece and to lubricate between the workpiece and the tool by supplying coolant to the machining point of the workpiece.
 主軸クーラント吐出装置71Sは、加工エリア120において、クーラントポンプ66から圧送されるクーラントを吐出する。 The spindle coolant discharge device 71S discharges coolant pressure-fed from the coolant pump 66 in the machining area 120 .
 本実施の形態における工作機械は、切り替えバルブ79と、第1流路76と、第2流路77と、第3流路78とをさらに有する。切り替えバルブ79は、クーラントポンプ66から工具主軸12(主軸クーラント吐出装置71S)に向けて供給されるクーラントの流路の経路上に設けられている。第3流路78は、クーラントポンプ66から延出し、切り替えバルブ79に接続されている。第1流路76は、切り替えバルブ79から延出し、工具主軸12(主軸クーラント吐出装置71S)に接続されている。第2流路77は、切り替えバルブ79から延出し、クーラントタンク61に戻されている。 The machine tool in this embodiment further has a switching valve 79 , a first flow path 76 , a second flow path 77 and a third flow path 78 . The switching valve 79 is provided on the flow path of the coolant supplied from the coolant pump 66 toward the tool spindle 12 (spindle coolant discharge device 71S). A third flow path 78 extends from the coolant pump 66 and is connected to a switching valve 79 . The first flow path 76 extends from the switching valve 79 and is connected to the tool spindle 12 (spindle coolant discharge device 71S). The second flow path 77 extends from the switching valve 79 and returns to the coolant tank 61 .
 切り替えバルブ79は、クーラントポンプ66からのクーラントの流路を、クーラントを加工エリア120内の工具主軸12(主軸クーラント吐出装置71S)に向けて供給する第1流路76と、クーラントをクーラントタンク61に戻す第2流路77との間で切り替え可能である。 The switching valve 79 has a first flow path 76 for supplying coolant from the coolant pump 66 toward the tool spindle 12 (spindle coolant discharge device 71S) in the machining area 120 and a coolant tank 61 for supplying the coolant. It is possible to switch between the second flow path 77 returning to the
 切り替えバルブ79によりクーラントポンプ66からのクーラントの流路が第1流路76に切り替えられた場合、第1流路76および第3流路78の間が連通され、第2流路77および第3流路78の間が遮断される。切り替えバルブ79によりクーラントポンプ66からのクーラントの流路が第2流路77に切り替えられた場合、第2流路77および第3流路78の間が連通され、第1流路76および第3流路78の間が遮断される。 When the switching valve 79 switches the coolant flow path from the coolant pump 66 to the first flow path 76, the first flow path 76 and the third flow path 78 are communicated with each other, and the second flow path 77 and the third flow path 78 are communicated with each other. Between the flow paths 78 is cut off. When the switching valve 79 switches the coolant flow path from the coolant pump 66 to the second flow path 77, the second flow path 77 and the third flow path 78 are communicated with each other, and the first flow path 76 and the third flow path 78 are communicated with each other. Between the flow paths 78 is cut off.
 図7および図8中では、ワーク加工の流れの一例として、スピンドルスルー仕様の工具をクランプするステップ(S111,時間ta~tb)と、スピンドルスルー仕様の工具を用いて、ワークを加工するステップ(S112,時間tb~tc~td~te~tf~tg~th~ti)と、スピンドルスルー仕様の工具をアンクランプするステップ(S113,時間ti~tj)とを挙げた順に実行する場合が想定されている。 In FIGS. 7 and 8, as an example of the flow of work machining, a step of clamping a spindle-through specification tool (S111, time ta to tb) and a step of machining a work using a spindle-through specification tool ( S112, times tb-tc-td-te-tf-tg-th-ti) and the step of unclamping the spindle-through specification tool (S113, times ti-tj) may be executed in this order. ing.
 電気機器制御部91は、S111のステップが終了し、S112のステップが開始されるタイミング(時間tb)で、クーラントポンプ66の運転が第2運転状態(アイドリング運転)となるようにクーラントポンプ66を制御する。 The electric device control unit 91 operates the coolant pump 66 so that the operation of the coolant pump 66 is in the second operation state (idling operation) at the timing (time tb) at which the step of S111 is completed and the step of S112 is started. Control.
 次に、プログラム実行部83は、S112のステップの間の複数のタイミング(tc,td,te,tf,tg,th)で、ワーク加工の進行に合わせて、第1命令(ON命令)に対応する制御信号と、第2命令(OFF命令)に対応する制御信号とを交互に繰り返して電気機器制御部91に出力する。 Next, the program execution unit 83 responds to the first command (ON command) at a plurality of timings (tc, td, te, tf, tg, th) during step S112 in accordance with the progress of workpiece machining. The control signal to turn on and the control signal corresponding to the second command (OFF command) are alternately repeated and output to the electrical equipment control section 91 .
 電気機器制御部91は、プログラム実行部83から第1命令(ON命令)に対応する制御信号が入力された場合に、クーラントポンプ66の運転が第1運転状態(通常運転)となるようにクーラントポンプ66を制御する。 When a control signal corresponding to the first command (ON command) is input from the program execution unit 83, the electrical device control unit 91 controls the coolant supply so that the coolant pump 66 is in the first operating state (normal operation). Control the pump 66;
 電気機器制御部91は、プログラム実行部83から第2命令(OFF命令)に対応する制御信号が入力された場合に、プログラム記憶部82に記憶された実行プログラムに基づいて、第2命令(OFF命令)によるクーラントポンプ66の駆動の一時停止時間(te-td,tg-tf,tk-th)を特定する。なお、tkは、次回のスルースピンドル仕様の工具を用いたワーク加工が開始される時間に対応する。 When the control signal corresponding to the second command (OFF command) is input from the program execution unit 83, the electric device control unit 91 executes the second command (OFF command) based on the execution program stored in the program storage unit 82. The temporary stop time (te-td, tg-tf, tk-th) of driving the coolant pump 66 by command) is specified. Note that tk corresponds to the time when the next work machining using the through-spindle specification tool is started.
 電気機器制御部91は、第2命令(OFF命令)によるクーラントポンプ66の駆動の一時停止時間(te-td,tg-tf)が、予め定められた第1所定値X以下であると判断して(te-td≦X,tg-tf≦X)、クーラントポンプ66の運転が第2運転状態(アイドリング運転)に切り替わるようにクーラントポンプ66を制御する。 The electric device control unit 91 determines that the temporary stop time (te-td, tg-tf) of the driving of the coolant pump 66 by the second command (OFF command) is equal to or less than the predetermined first predetermined value X. (te-td≦X, tg-tf≦X), the coolant pump 66 is controlled so that the operation of the coolant pump 66 is switched to the second operation state (idling operation).
 電気機器制御部91は、第2命令(OFF命令)によるクーラントポンプ66の駆動の一時停止時間(tk-th)が、予め定められた第1所定値Xよりも大きいと判断して(tk-th>X)、クーラントポンプ66の運転が第3運転状態(停止状態)に切り替わるようにクーラントポンプ66を制御する。本実施の形態では、電気機器制御部91が、スピンドルスルー仕様の工具をアンクランプするステップ(S113)の実行時に、第3運転状態(停止状態)に切り替わるようにクーラントポンプ66を制御する。 The electric device control unit 91 determines that the temporary stop time (tk-th) of driving of the coolant pump 66 by the second command (OFF command) is longer than the first predetermined value X (tk-th). th>X), the coolant pump 66 is controlled so that the operation of the coolant pump 66 is switched to the third operation state (stopped state). In the present embodiment, the electrical device control unit 91 controls the coolant pump 66 to switch to the third operating state (stopped state) when executing the step (S113) of unclamping the spindle-through specification tool.
 制御装置81は、クーラントポンプ66の運転が第1運転状態(通常運転)に切り替えられた場合に、クーラントポンプ66からのクーラントの流路を第1流路76に切り替えるように、切り替えバルブ79を制御する。制御装置81は、クーラントポンプ66の運転が第2運転状態(アイドリング運転)に切り替えられた場合に、クーラントポンプ66からのクーラントの流路を第2流路77に切り替えるように、切り替えバルブ79を制御する。 When the operation of the coolant pump 66 is switched to the first operating state (normal operation), the control device 81 operates the switching valve 79 so as to switch the coolant flow path from the coolant pump 66 to the first flow path 76. Control. The control device 81 operates the switching valve 79 so as to switch the coolant flow path from the coolant pump 66 to the second flow path 77 when the operation of the coolant pump 66 is switched to the second operation state (idling operation). Control.
 本実施の形態では、ワークを加工するステップ(S112)の間において、クーラントの吐出を一時的に停止する時間が比較的短いため、クーラントポンプ66の運転を第2運転状態(アイドリング運転)に切り替える。また、S112のステップが完了した後、次のスピンドルスルー仕様の工具を用いたワーク加工のステップまでの間において、クーラントの吐出を停止する時間が比較的長いため、クーラントポンプ66の運転を第3運転状態(停止状態)に切り替える。これにより、実施の形態1と同様に、クーラントポンプ66の消費電力を小さく抑えることができる。 In the present embodiment, during the step (S112) of machining the workpiece, the time during which the discharge of coolant is temporarily stopped is relatively short, so the operation of the coolant pump 66 is switched to the second operation state (idling operation). . In addition, after the step of S112 is completed, the coolant discharge is stopped for a relatively long time until the next step of machining a workpiece using a spindle-through specification tool. Switch to the running state (stopped state). As a result, the power consumption of the coolant pump 66 can be reduced as in the first embodiment.
 また、クーラントポンプ66の運転が第2運転状態(アイドリング運転)に切り替えられた場合に、クーラントポンプ66からのクーラントの流路を第2流路77に切り替えることによって、クーラントをクーラントタンク61に戻す。これにより、加工エリア120におけるワーク加工で必要がないタイミングで、クーラントが工具主軸12(主軸クーラント吐出装置71S)より吐出されることを防止できる。 Further, when the operation of the coolant pump 66 is switched to the second operation state (idling operation), the flow path of the coolant from the coolant pump 66 is switched to the second flow path 77 to return the coolant to the coolant tank 61. . As a result, it is possible to prevent the coolant from being discharged from the tool spindle 12 (spindle coolant discharge device 71S) at a timing unnecessary for machining the workpiece in the machining area 120 .
 このように構成された、この発明の実施の形態2における工作機械によれば、実施の形態1に記載の効果を同様に奏することができる。 According to the machine tool according to Embodiment 2 of the present invention configured in this way, the effects described in Embodiment 1 can be achieved in the same manner.
 (実施の形態3)
 図9は、この発明の実施の形態3における工作機械において、ワーク加工の流れと、クーラントポンプの駆動命令および運転状態との関係を示す表である。図10は、この発明の実施の形態3における工作機械において、クーラントポンプに流れる電流の変化を示すグラフである。
(Embodiment 3)
FIG. 9 is a table showing the relationship between the work machining flow and the drive command and operating state of the coolant pump in the machine tool according to Embodiment 3 of the present invention. FIG. 10 is a graph showing changes in the current flowing through the coolant pump in the machine tool according to Embodiment 3 of the present invention.
 本実施の形態における工作機械は、実施の形態2における工作機械と比較して、基本的には同様の構造を備える。以下、重複する構造については、その説明を繰り返さない。 The machine tool according to the present embodiment has basically the same structure as the machine tool according to the second embodiment. Hereinafter, descriptions of overlapping structures will not be repeated.
 図9および図10を参照して、本実施の形態では、電気機器制御部91が、第2命令(OFF命令)によるクーラントポンプ66の駆動の一時停止時間(tg-tf)が、予め定められた第1所定値Xよりもさらに小さい第2所定値Y以下である場合に(tg-tf≦Y)、第1命令(ON命令)から第2命令(OFF命令)の移行に伴って、クーラントポンプ66の運転が第1運転状態(通常運転)を継続するようにクーラントポンプ66を制御する。 9 and 10, in the present embodiment, electric device control unit 91 determines in advance the temporary stop time (tg-tf) for driving coolant pump 66 according to the second command (OFF command). When it is equal to or less than a second predetermined value Y which is smaller than the first predetermined value X (tg−tf≦Y), the coolant is changed from the first command (ON command) to the second command (OFF command) The coolant pump 66 is controlled so that the operation of the pump 66 continues in the first operating state (normal operation).
 このような構成によれば、クーラントポンプ66の駆動の一時停止時間がさらに短い場合には、クーラントポンプ66を運転を第1運転状態(通常運転)で継続することによって、クーラントポンプ66の消費電力をさらに低減させることができる。 According to such a configuration, when the temporary stop time of the driving of the coolant pump 66 is even shorter, the power consumption of the coolant pump 66 is reduced by continuing the operation of the coolant pump 66 in the first operating state (normal operation). can be further reduced.
 このように構成された、この発明の実施の形態3における工作機械によれば、実施の形態1および実施の形態2に記載の効果を同様に奏することができる。 According to the machine tool according to Embodiment 3 of the present invention configured in this way, the effects described in Embodiments 1 and 2 can be obtained in the same manner.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered illustrative in all respects and not restrictive. The scope of the present invention is indicated by the scope of the claims rather than the above description, and is intended to include all changes within the scope and meaning equivalent to the scope of the claims.
 この発明は、マシニングセンタまたは旋盤等の工作機械に適用される。 This invention is applied to machine tools such as machining centers or lathes.
 12 工具主軸、14 ベッド、16 テーブル、17 自動工具交換装置、18 自動パレット交換装置、21 カバー体、22 天井カバー、23 第1カバー、24 第2カバー、25 正面扉、26 第1カバー開口部、28 操作部、31 ミストコレクタ、32 ダクト、33 支持脚、34 吸気口、36 ケース体、37 排気口、42 ミストコレクタ用モータ、43 ファン、44 フィルタ、51 段取りステーションカバー、52 段取りステーション扉、53 第2カバー開口部、61 クーラントタンク、63,66 クーラントポンプ、71 クーラント吐出装置、71B ベースクーラント吐出装置、71C 天井クーラント吐出装置、71S 主軸クーラント吐出装置、76 第1流路、77 第2流路、78 第3流路、79 切り替えバルブ、81 制御装置、82 プログラム記憶部、83 プログラム実行部、84 工具主軸制御部、85 テーブル制御部、86 APC制御部、96 ATC制御部、87 工具主軸モータ、88 工具主軸送りモータ、89 テーブル送りモータ、91 電気機器制御部、97 APC旋回モータ、98 ATC旋回モータ、100 工作機械、101 中心軸、110 回転中心軸、120 加工エリア、130 段取りステーション、P パレット、X 第1所定値、Y 第2所定値。 12 tool spindle, 14 bed, 16 table, 17 automatic tool changer, 18 automatic pallet changer, 21 cover body, 22 ceiling cover, 23 first cover, 24 second cover, 25 front door, 26 first cover opening , 28 operation unit, 31 mist collector, 32 duct, 33 support leg, 34 intake port, 36 case body, 37 exhaust port, 42 mist collector motor, 43 fan, 44 filter, 51 setup station cover, 52 setup station door, 53 second cover opening, 61 coolant tank, 63, 66 coolant pump, 71 coolant discharge device, 71B base coolant discharge device, 71C ceiling coolant discharge device, 71S spindle coolant discharge device, 76 first flow path, 77 second flow path, 78 third flow path, 79 switching valve, 81 control device, 82 program storage unit, 83 program execution unit, 84 tool spindle control unit, 85 table control unit, 86 APC control unit, 96 ATC control unit, 87 tool spindle Motor, 88 Tool spindle feed motor, 89 Table feed motor, 91 Electrical equipment control unit, 97 APC swing motor, 98 ATC swing motor, 100 Machine tool, 101 Center shaft, 110 Rotation center shaft, 120 Machining area, 130 Setup station, P palette, X first predetermined value, Y second predetermined value.

Claims (5)

  1.  工作機械であって、
     第1電力が供給される第1運転状態と、前記第1電力よりも小さい第2電力が供給される第2運転状態と、電力の供給が停止される第3運転状態とのいずれかの運転状態を選択可能であり、電力が供給されることによって駆動する電気機器と、
     前記工作機械を制御するための制御装置とを備え、
     前記制御装置は、
     前記電気機器の駆動を命令する第1命令と、前記電気機器の駆動の一時停止を命令する第2命令とを含むワークの加工プログラムを実行するプログラム実行部と、
     前記第2命令による前記電気機器の駆動の一時停止時間が第1所定値以下である場合には、前記第2命令によって、前記電気機器の運転が前記第2運転状態に切り替わるように前記電気機器を制御し、前記第2命令による前記電気機器の駆動の一時停止時間が前記第1所定値よりも大きい場合には、前記第2命令によって、前記電気機器の運転が前記第3運転状態に切り替わるように前記電気機器を制御する電気機器制御部とを有する、工作機械。
    a machine tool,
    Operation in any one of a first operating state in which the first power is supplied, a second operating state in which the second power smaller than the first power is supplied, and a third operating state in which the power supply is stopped an electric device having selectable states and driven by being supplied with electric power;
    a control device for controlling the machine tool;
    The control device is
    a program execution unit for executing a workpiece machining program including a first command for commanding driving of the electric device and a second command for commanding temporary stop of driving of the electric device;
    When the temporary stop time of the driving of the electric device according to the second command is equal to or less than a first predetermined value, the electric device is switched to the second operation state according to the second command. and when the temporary stop time of the drive of the electric device according to the second command is longer than the first predetermined value, the operation of the electric device is switched to the third operation state by the second command and an electrical device control unit that controls the electrical device as follows.
  2.  前記電気機器制御部は、前記第2命令による前記電気機器の駆動の一時停止時間が、前記第1所定値よりも小さい第2所定値以下である場合には、前記第1命令から前記第2命令の移行に伴って、前記電気機器の運転が前記第1運転状態を継続するように前記電気機器を制御する、請求項1に記載の工作機械。 The electrical device control unit, when the temporary stop time of the driving of the electrical device according to the second command is equal to or less than a second predetermined value smaller than the first predetermined value, the second predetermined value from the first command to the second predetermined value. 2. The machine tool according to claim 1, wherein the electrical equipment is controlled so that the operation of the electrical equipment continues in the first operating state in accordance with the transition of the command.
  3.  前記電気機器は、クーラントポンプまたはミストコレクタである、請求項1または2に記載の工作機械。 The machine tool according to claim 1 or 2, wherein the electrical equipment is a coolant pump or a mist collector.
  4.  前記第2命令は、自動工具交換装置による工具交換時、または、自動パレット交換装置によるパレット交換時に実行される、請求項3に記載の工作機械。 4. The machine tool according to claim 3, wherein said second command is executed when a tool is changed by an automatic tool changer or when a pallet is changed by an automatic pallet changer.
  5.  前記電気機器は、クーラントポンプであり、さらに、
     前記クーラントポンプにより圧送するクーラントを貯留するクーラントタンクと、
     前記クーラントポンプからのクーラントの流路を、クーラントを加工エリア内に供給する第1流路と、クーラントを前記クーラントタンクに戻す第2流路との間で切り替える切り替えバルブとを備え、
     前記制御装置は、前記電気機器の運転が前記第2運転状態に切り替えられた場合に、前記クーラントポンプからのクーラントの流路を前記第2流路に切り替えるように、前記切り替えバルブを制御する、請求項1から4のいずれか1項に記載の工作機械。
    The electrical device is a coolant pump, and
    a coolant tank that stores the coolant pumped by the coolant pump;
    A switching valve for switching a coolant flow path from the coolant pump between a first flow path that supplies coolant into the machining area and a second flow path that returns coolant to the coolant tank,
    The control device controls the switching valve so as to switch a coolant flow path from the coolant pump to the second flow path when the operation of the electrical device is switched to the second operation state. A machine tool according to any one of claims 1 to 4.
PCT/JP2021/026944 2021-07-19 2021-07-19 Machine tool WO2023002526A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/026944 WO2023002526A1 (en) 2021-07-19 2021-07-19 Machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/026944 WO2023002526A1 (en) 2021-07-19 2021-07-19 Machine tool

Publications (1)

Publication Number Publication Date
WO2023002526A1 true WO2023002526A1 (en) 2023-01-26

Family

ID=84979834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026944 WO2023002526A1 (en) 2021-07-19 2021-07-19 Machine tool

Country Status (1)

Country Link
WO (1) WO2023002526A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000329072A (en) * 1999-05-19 2000-11-28 Sayama Seisakusho:Kk Water supplying method
WO2013099843A1 (en) * 2011-12-27 2013-07-04 株式会社 荏原製作所 Water supply device and water supply method
JP2013134563A (en) * 2011-12-26 2013-07-08 Jtekt Corp Flexible production system
JP2015135649A (en) * 2014-01-20 2015-07-27 Dmg森精機株式会社 Nc program generation device in consideration of power saving
JP2018158402A (en) * 2017-03-22 2018-10-11 株式会社ジェイテクト Machining apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000329072A (en) * 1999-05-19 2000-11-28 Sayama Seisakusho:Kk Water supplying method
JP2013134563A (en) * 2011-12-26 2013-07-08 Jtekt Corp Flexible production system
WO2013099843A1 (en) * 2011-12-27 2013-07-04 株式会社 荏原製作所 Water supply device and water supply method
JP2015135649A (en) * 2014-01-20 2015-07-27 Dmg森精機株式会社 Nc program generation device in consideration of power saving
JP2018158402A (en) * 2017-03-22 2018-10-11 株式会社ジェイテクト Machining apparatus

Similar Documents

Publication Publication Date Title
JP3705999B2 (en) Chip cleaning equipment for machine tools
KR102427733B1 (en) Tool turret of machine tool
WO2023002526A1 (en) Machine tool
JP7007513B1 (en) Machine tools, control methods, and control programs
JP2006075916A (en) Protective cover opening/closing device for machine tool
CN100416437C (en) Machine tool and method for operating a tool of this type
JP6892543B1 (en) Machine Tools
JP6777829B1 (en) Machine tools and their control devices and control methods
JP2002192434A (en) Automatic tool changer
WO2024095359A1 (en) Coolant apparatus and machine tool
JPH09300173A (en) Method and system of cooling main spindle of machine tool
JP2002273601A (en) Multispindle machine tool
JP3418453B2 (en) Cooling device for spindle unit in printed circuit board processing machine
KR101891576B1 (en) Vertical machining center with automatic pallet changer
JP7179941B1 (en) Machine Tools
WO2024038518A1 (en) Liquid treatment apparatus
JP4672288B2 (en) Control device for controlling movement of movable part of machine tool, machine tool having control device, and moving method of movable part
JP4281218B2 (en) lathe
CN116475848B (en) Multi-working-procedure integrated machine tool
CN221231980U (en) Five-axis turning, milling and grinding integrated machine
JPH01281840A (en) Chip removing device
JP2002254249A (en) Wire-cut electric discharge machining method and device
JP7085076B1 (en) Machine tools, control methods, and control programs
KR101378689B1 (en) Method for controlling rotational speed of twin arm for automatic tool changer
KR100324642B1 (en) Dual Rotary Table Control Unit and Method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950882

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE