WO2023001211A1 - 一种分析绵羊毛用性状的基因芯片、分子探针组合、试剂盒及应用 - Google Patents

一种分析绵羊毛用性状的基因芯片、分子探针组合、试剂盒及应用 Download PDF

Info

Publication number
WO2023001211A1
WO2023001211A1 PCT/CN2022/106906 CN2022106906W WO2023001211A1 WO 2023001211 A1 WO2023001211 A1 WO 2023001211A1 CN 2022106906 W CN2022106906 W CN 2022106906W WO 2023001211 A1 WO2023001211 A1 WO 2023001211A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheep
wool
traits
application
analyzing
Prior art date
Application number
PCT/CN2022/106906
Other languages
English (en)
French (fr)
Inventor
李孟华
李心
罗凌云
杨继
吕锋骅
Original Assignee
中国农业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国农业大学 filed Critical 中国农业大学
Publication of WO2023001211A1 publication Critical patent/WO2023001211A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/124Animal traits, i.e. production traits, including athletic performance or the like
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Definitions

  • the invention relates to the field of biotechnology, specifically to the technical field of sheep detection, and more specifically to a gene chip for sheep wool traits, a molecular probe combination, a kit and its application.
  • Sheep is one of the most important economic animals in the world, not only as food for human consumption, but also as a source of dairy products.
  • its wool value also plays an important role in social development.
  • SNP single nucleotide polymorphisms
  • SNP-based SNP chip is a convenient and efficient tool for modern genetic breeding. Because it is easy to realize high-throughput and automatic detection of SNP, it can detect the change of each base pair on genomic DNA, including insertion, deletion, inversion, conversion, etc. , has become a very ideal SNP detection technology, and it is used more and more in the field of sheep breeding.
  • the present invention provides a molecular probe combination, gene chip, kit and application for analyzing sheep wool.
  • Point information can quickly and accurately realize sheep tail fat deposition evaluation, breed screening, breed identification, breed traceability, and sheep breeding, which is conducive to the protection and improvement of germplasm resources, with short time consumption, low cost and broad market benefits.
  • the present invention provides the following technical solutions:
  • 2A method for analyzing sheep wool traits comprising comparing the 2849 SNP site genotypes of the genomic DNA of the sheep to be tested with the 3072 SNP site genotypes of the control sheep genomic DNA; the 2849 SNP site genotypes 2849 SNP sites shown in Table 1.
  • molecular probe combination for analyzing sheep wool traits, said molecular probe combination detects the SNP site combination shown in Table 1 in the sample to be tested, and the physical position information of the site combination in Table 1 is based on sheep v4 .0 Confirmed by genome sequence alignment.
  • the present invention provides a combination of SNP sites for the analysis of sheep wool traits consisting of only 2849 SNP sites. Good performance, can quickly evaluate the wool traits of individual sheep from the genetic level to obtain more accurate breeding evaluation information, select the wool traits that are difficult to measure in the early stage, shorten the generation interval, speed up the breeding process, and save breeding costs.
  • using the combination of SNP sites for wool traits provided by the present invention can also realize the identification and traceability of sheep breeds from the perspective of sheep wool performance, and provide technical support for the protection of germplasm resources and the improvement of germplasm resources.
  • the probe combinations, gene chips, and kits formed based on the SNP loci for analyzing the traits of sheep wool provided by the present invention have small throughput, low cost, easier analysis, wide applicability, and broad market prospects.
  • Figure 1 is the Manhattan map of the Chinese Merino sheep (fine-wool sheep) Vs Altay sheep (MFW versus ALS) group;
  • Figure 2 is the Manhattan map of the Chinese Merino sheep (fine-wool sheep) Vs Tan sheep (MFW versus TAN) group;
  • Figure 3 is the Manhattan diagram of the Chinese Merino sheep (superfine wool sheep) Vs Altay sheep (MSF versus ALS) group;
  • Figure 4 is the Manhattan diagram of the Chinese Merino sheep (superfine wool sheep) Vs Tan sheep (MSF versus TAN) group;
  • Figure 5 is the Manhattan diagram of the Shetland sheep Vs Altay sheep (SHE versus ALS) group
  • Fig. 6 is a result diagram of the significance test performed on the judgment result of the group threshold analysis in the present application.
  • sheep wool referred to in the present invention are a comprehensive reflection of multiple indicators, including shearing amount, net wool rate, hair length, and capillary degree.
  • the wool shearing amount of this breed is high, the net wool rate is high, and the fineness is good, and the wool is long, it is judged that the wool performance of this breed is good.
  • the above-mentioned index values can be adjusted, and then the variety threshold value of wool performance can be adjusted, which is not limited in the present invention.
  • SNP in the present invention refers to single nucleotide polymorphism (Single Nucleotide Polymorphism), mainly refers to the DNA sequence polymorphism caused by the variation of a single nucleotide on the genome level, the single nucleotide Acid variations include those resulting from single base transitions, transversions, insertions, or deletions.
  • the molecular markers referred to in the present invention are all heritable and detectable DNA sequences or proteins, including but not limited to molecular markers based on molecular hybridization, such as RFLP, MinisatelliteDNA; molecular markers based on PCR technology, such as RAPD, STS, SSR and SCAR; DNA markers based on restriction enzyme digestion and PCR technology; molecular markers based on DNA chip technology, such as SNP; analytical marker technology based on EST database development, etc.
  • the molecular markers provided by the invention can be used for genome mapping, gene location research, map-based gene cloning, species relationship and system classification, and the like.
  • the probe referred to in the present invention is a nucleic acid sequence (DNA or RNA) with a detection label and known sequence that is complementary to the target gene, such as Taqman-MGB probe.
  • the kit referred to in the present invention is any kit routinely used in the art that contains reagents for detection or experimentation, so that operators can get rid of the burdensome reagent preparation and optimization process.
  • it includes primers for amplifying the site information provided by the present invention, molecular markers or probes or gene chips for detecting the site information provided by the present invention, and enzymes and gene chips used for amplification. buffer, or also detect with a fluorescent label.
  • Samples carrying genetic information in individual sheep in Step 1 are collected by conventional methods in the art, including but not limited to blood, cells, tissues, skin, hair, excrement, and the like. Extract the genetic information (such as DNA) in the sample for high-depth sequencing, use SAMtools and GATK to compare with the sheep 4.0 reference genome (obtained from NCBI) released in 2015, and combine the two methods to obtain a common result to form a SNP
  • genetic information referred to in the present invention refers to the information that organisms pass from parent to offspring, or from cell to cell each time each cell divides, in order to replicate the same thing as itself.
  • the extraction of genetic information (such as DNA) in the sample for high-depth sequencing can be done by biological companies, such as Huada Gene Company, Illumina Company, etc.
  • the high-depth sequencing method adopts conventional methods in the field or methods of biological companies.
  • the average sequencing depth is ⁇ 25.7 ⁇ , and the resequencing analysis process is used for high-depth sequencing.
  • the inventor will Chinese Merino sheep ( Fine-wool sheep) Vs Altay sheep (MFW versus ALS) as a group, Chinese Merino sheep (fine-wool sheep) Vs Tan sheep (MFW versus TAN) as a group, Chinese Merino sheep (ultra-fine-wool sheep) Vs Altay sheep (MSF versus ALS) as a group, Chinese Merino sheep (superfine wool) Vs Tan sheep (MSF versus TAN) as a group, Shetland sheep Vs Altay sheep (SHE versus ALS) A group.
  • Use XP-CLR to scan the multi-locus allele frequency difference between each sheep group, and scan out the functional areas related to wool use (the scanned Manhattan map is shown in Figure 1-5, and use ⁇ ratio (ie ⁇ value) to mine the functional areas related to wool use in the sheep breeds in each group, and then take the intersection of the two results to screen out the functional areas related to wool use.
  • probes such as tanqman probes also belongs to the protection scope of the present invention.
  • the SNP gene chip of the present application adopts conventional method to immobilize the primers or probes obtained in Example 2 on polymer substrates, such as nylon membranes, nitrocellulose membranes, plastics, silica gel wafers, micro-magnetic beads, etc., or to immobilize the probes
  • polymer substrates such as nylon membranes, nitrocellulose membranes, plastics, silica gel wafers, micro-magnetic beads, etc.
  • the primers or probes obtained in Example 2 are directly synthesized on a glass plate, or on a hard surface such as glass, and the use method of the SNP gene chip of the present application is the same as the conventional method.
  • the SNP detection kit for hair includes primers or probes or gene chips obtained based on the combination of SNP sites obtained in Example 1.
  • the corresponding detection reagents are also included, for example, when the Taqman probe is obtained based on the combination of SNP sites obtained in Example 1, it also includes buffers, ligases, AceQUniversal U +Probe Master Mix V2, TaqMan Probe, etc.
  • the purchased sheep are detected for wool, and the shearing amount, net wool rate, hair length, and capillary degree of the sheep are observed at the same time.
  • the first-level standard (GB/T 2426-1981) of the introduction of Xinjiang fine-wool sheep breed identification is adopted to observe the sheep, specifically:
  • the peripheral blood of sheep was collected by conventional methods, and the whole genome DNA in it was collected;
  • Adopt conventional methods to design gene chips according to the site information in the SNP site combination provided by the present invention detect the whole genome DNA of the sheep to be tested, and obtain the typing result of each site in each lamb (that is, each site Whether it is the result of homozygosity, heterozygosity, mutant homozygosity or base deletion), the detection result is obtained by calculating the frequency value of the typing result of each site and comparing it with the population threshold.
  • the observation results show that the excellent sheep are all sheep that meet the first-class standard in the chip test results, and the wool performance of poor sheep is inferior to the sheep that meet the first-class standard according to the chip test results.
  • the population threshold in the present application is obtained by analyzing the population with good wool traits and the population with poor wool traits, and the method is the same as above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

提供一种分析绵羊毛用性状的基因芯片、分子探针组合、试剂盒及应用,涉及生物技术领域,基于研究发现的能够分析绵羊毛用特征的2849个SNP位点组合制成分子探针组合、基因芯片、试剂盒,用于分析绵羊毛用性状,从基因水平对早期难以度量的性状进行检测,不仅能加速育种进程,节约育种成本,还能够用于绵羊品种的筛选、鉴定、绵羊系谱的重构、种质资源的保护以及种质资源的改良。

Description

一种分析绵羊毛用性状的基因芯片、分子探针组合、试剂盒及应用 技术领域
本发明涉及生物技术领域,具体涉及绵羊检测技术领域,更具体的涉及绵羊毛用性状的基因芯片、分子探针组合、试剂盒及应用。
背景技术
绵羊是世界上最重要的经济动物之一,不仅可以作为食物供人类食用,还能作为奶制品的来源,此外,其毛用价值也在社会发展中发挥了重要作用。随着近年来毛织用品市场经济价值的不断走低,我国毛用为主的绵羊数量不断减少,但毛用制品的优势依然存在,为了更好的分析研究绵羊的毛用性能,获得更佳的优质的羊毛,同时也为了保护绵羊品种,已经有越来越多的科研工作者利用基因分析研究绵羊的毛用性状。
目前,分子标记技术由于其准确度高、可操作性强等优点越来越受到重视,其中基于单核苷酸多态性(single nucleotide polymorphisms,SNP)的分子标记技术应用得越来越广泛。SNP作为生物基因组中的一种遗传分子标记,在动植物遗传进化分析、重要经济形状筛选、分子育种等方面起着越来越重要的作用。基于SNP的SNP芯片是进行现代遗传育种便捷高效的工具,由于其容易实现SNP高通量、自动化检测,可以检测出基因组DNA上每个碱基对的变化,包括***、缺失、颠倒、转换等,已经成为非常理想的SNP检测技术,在绵羊育种领域中的运用也越来越多。
尽管已经商业化的绵羊SNP芯片(Illumina Ovine SNP50 Beadchip(50K)、Illumina Sheep HD Genotyping Beadchip(680K)和Illumina Ovine LD(5K)),覆盖了绵羊全基因组的超过54K个SNP位点,用于遗传育种、全基因组关联分析、数量性状基因座定位、基因优选及比较基因组学等研究。但是现有的绵羊SNP芯片由于主要依据西方品种绵羊的数据,缺乏中国绵羊品种与国外绵羊品种结合的SNP数据,仍存在位点均匀性不足、对功能性位点和区域的体现不足、超过10%的位点在中国绵羊群体为极低频位点等诸多问题,因此设计一款适用于中国绵羊群体且能对绵羊毛用性状进行快速有效检测的SNP芯片,有着十分重要的意义。
发明内容
为满足我国当前绵羊品种研究以及农业生产上对绵羊毛用的检测的需求,本发明提供了一种分析绵羊毛用的分子探针组合、基因芯片、试剂盒及应用,利用本发明提供的位点信息,能够快速准确的实现绵羊尾部脂肪沉积评价、品种筛选、品种鉴定、品种溯源、绵羊育种,有利于种质资源保护以及种质资源改良,耗时短、成本低、市场效益广阔。
为实现本发明的技术目的,本发明提供以下技术方案:
①2849个位点组合用于分析绵羊毛用性状的用途,所述2849个位点组合的物理位置信息基于绵羊v4.0基因组序列比对确定,所述2849个位点组合的物理信息如表1所示。
表12849个位点组合的物理信息
Figure PCTCN2022106906-appb-000001
Figure PCTCN2022106906-appb-000002
Figure PCTCN2022106906-appb-000003
Figure PCTCN2022106906-appb-000004
Figure PCTCN2022106906-appb-000005
Figure PCTCN2022106906-appb-000006
Figure PCTCN2022106906-appb-000007
Figure PCTCN2022106906-appb-000008
Figure PCTCN2022106906-appb-000009
Figure PCTCN2022106906-appb-000010
Figure PCTCN2022106906-appb-000011
Figure PCTCN2022106906-appb-000012
Figure PCTCN2022106906-appb-000013
Figure PCTCN2022106906-appb-000014
Figure PCTCN2022106906-appb-000015
Figure PCTCN2022106906-appb-000016
Figure PCTCN2022106906-appb-000017
Figure PCTCN2022106906-appb-000018
Figure PCTCN2022106906-appb-000019
Figure PCTCN2022106906-appb-000020
Figure PCTCN2022106906-appb-000021
Figure PCTCN2022106906-appb-000022
②分析绵羊毛用性状的方法,包括将待测绵羊的基因组DNA的2849个SNP位点基因型与对照绵羊基因组DNA的所述3072个SNP位点基因型进行比较;所述2849个SNP位点为表1所示的2849个SNP位点。
③分析绵羊毛用性状的分子探针组合,所述分子探针组合检测待测样品中如表1所示的SNP位点组合,所述表1中的位点组合的物理位置信息基于绵羊v4.0基因组序列比对确定。
④分析绵羊毛用性状的基因芯片,所述基因芯片负载③所述的分子探针组合。
⑤分析绵羊毛用性状的试剂盒,其具有③所述的分子探针组合或④所述的基因芯片。
⑥分析绵羊毛用性状的方法,包括应用权利要求③所述的分子探针组合或④所述的基因芯片或⑤所述的试剂盒对待测样品进行检测。
⑦上述的分子探针组合或基因芯片或试剂盒具有如下任一所述的用途:
(1)在评价绵羊毛用性状中的应用;
(2)在绵羊品种筛选的应用;
(3)在绵羊品种鉴定中的应用;
(4)在绵羊品种溯源中的应用;
(5)在绵羊育种中的应用;
(6)在种质资源保护中的应用;
(7)在种质资源改良中的应用;
(8)在绵羊系谱重构中的应用。
有益效果:
1、本发明基于对国内外众多绵羊的遗传资源研究,提供一种仅由2849个SNP位点组成的绵羊毛用性状分析的SNP位点组合,本发明提供的SNP位点组合具有国内外通用性好,能快速从基因水平上对绵羊个体的毛用性状进行评价,以获得更准确的育种评估信息,对早期难以度量的毛用性状进行选择,缩短世代间隔,加速育种进程,节约育种成本;此外,利用本发明提供的毛用性状SNP位点组合,还能够从绵羊毛用性能的角度实现绵羊品种的鉴定和溯源,为种质资源保护和种质资源的改良提供技术支持。
2、基于本发明提供的绵羊毛用性状分析SNP位点形成的探针组合、基因芯片、试剂盒具有通量小、成本低,分析更容易,普适性广,市场前景广阔。
附图说明
图1是中国美利奴羊(细毛羊)Vs阿勒泰羊(MFW versus ALS)组的曼哈顿图;
图2是中国美利奴羊(细毛羊)Vs滩羊(MFW versus TAN)组的曼哈顿图;
图3是中国美利奴羊(超细毛羊)Vs阿勒泰羊(MSF versus ALS)组的曼哈顿图;
图4是中国美利奴羊(超细毛羊)Vs滩羊(MSF versus TAN)组的曼哈顿图;
图5是设德兰羊Vs阿勒泰羊(SHE versus ALS)组的曼哈顿图;
图6是本申请对群体阈值分析的判定结果进行了显著性检验的结果图。
具体实施方式
下面参考具体实施方式的详细描述来进一步阐明本发明,但这些实施例仅仅是说明性的,而不能理解为对本发明的限制。若未特别指明,实施例中所采用的技术手段为本领域技术人员所熟知的常规手段,可以参照《生物信息学与功能基因组学》原著第三版或者相关书籍进行,所采用的生物信息软件和产品也均为可商业获得的。未详细描述的各种过程和方法是本领域中公知的常规方法,所用材料来源、商品名以及有必要列出其组成成分者,均在首次出现时标明,其后所用相同试剂如无特殊说明,均以首次标明的内容相同。此外,还需要说明的是,本发明提供的位点组合及应用均是本申请的发明人经过艰苦的创造性劳动和优化工作才得以完成。
在本文前述的位点组合部分中所描述的特征和优点,同样适用于基于位点组合所形成的分子探针组合、基因芯片、试剂盒以及其应用,在此不再赘述。
需要说明的是,本发明所称的绵羊毛用性状是多个指标的综合体现,包括剪毛量、净毛率、毛长、毛细度,其中,剪毛量和净毛率是评价毛用绵羊品种的指标,剪毛量和净毛率越高,则该品种较好;毛吸细度是绵羊毛品质的重要物理指标,在细度相同的情况下,羊毛越长,纺纱性能越高,成品的品质越好。当该品种的剪毛量高、净毛率高,且毛细度好,羊毛长的情况下,则判定该品种的毛用性能好。当然,根据市场需求的不同,上述指标值可以调整,进而调整毛用性能的品种阈值,本发明不做限制。
本发明的所称的SNP是指单核苷酸多态性(Single Nucleotide Polymorphism),主要是指在基因组水平上由单个核苷酸的变异所引起的DNA序列多态性,所述单个核苷酸的变异包括由单个碱基的转换、颠换、***或缺失所导致的变异。
需要说明的是,本发明所称的分子标记为一切可遗传的并可检测的DNA序列或蛋白质,包括但不限于基于分子杂交的分子标记,如RFLP、MinisatelliteDNA;基于PCR技术的分子标记,如RAPD、STS、SSR和SCAR;基于限制性酶切和PCR技术的DNA标记;基于DNA芯片技术的分子标记,如SNP;基于EST数据库发展的分析标记技术等。本发明提供的分子标记可以用于基因组作图、和基因定位研究、基于图谱的基因克隆、物种亲缘关系和***分类等。
需要说明的是,本发明所称的探针是一段带有检测标记,且顺序已知的,与目的基因互补的核酸序列(DNA或RNA),例如Taqman-MGB探针。
需要说明的是,本发明所称的试剂盒为本领域常规使用的任意一种包含检测或实验所用试剂,便于操作人员能够摆脱繁重的试剂配制及优化过程的盒子。在本发明的一个实施例中,其中包含有扩增本发明提供的位点信息的引物、检测本发明提供的位点信息的分子标记或探针或基因芯片,还包括扩增所用的酶和缓冲液,或者还检测用的荧光标记。
实施例1毛用性状SNP位点组合的获得
1、绵羊个体的选择
为了实现国内外绵羊品种的更加全面的覆盖,申请人对遍布于亚洲、欧洲、非洲和中东的248个绵羊个体进行遗传信息采集,其中包括16个野羊亚洲摩弗伦品种、172个地方品种和60个培育品种,具体涉及到中国山东的小尾寒羊、泗水裘皮羊、大尾寒羊、洼地绵羊,中国江苏的湖羊,中国宁夏的滩羊,中国新疆的阿勒泰羊、巴什拜羊、杜泊绵羊、中国美利奴羊(细毛羊)、中国美利奴羊(超细毛羊)、萨福克羊、策勒黑羊、多浪羊、Waggir Sheep羊,芬兰的芬兰羊(Finnsheep)、荷兰的威桑岛羊(Ouessant)、设德兰羊(Shetland)、索洛格诺羊(Solognote)、哥特兰岛羊(Gotland)、德伦特希思羊(Drente Heathen),埃塞俄比亚的邦加羊(Bonga Sheep)、阿法尔羊(Afar Sheep),尼日尔的姆博罗罗羊(Mbororo Sheep),尼日利亚的扬卡羊(Yankasa Sheep),非洲乍得的西非矮羊(West African Dwarf Sheep)、乌达羊(Uda Sheep),非洲布基纳法索的贾隆凯羊(Djallonké Sheep)、摩西羊(Mossi Sheep)、萨赫勒羊(Sahelian Sheep),西非喀麦隆的喀麦隆羊(Cameroon Sheep),***的阿华西绵羊(Awassi Sheep)、哈姆达尼羊(Hamdani Sheep),阿塞拜疆的马泽克羊(Mazekh Sheep),伊朗的灰设拉子羊(Grey-Shiraz Sheep)、盖泽尔羊(Ghezel Sheep)、阿夫沙里羊(Afshari Sheep)、沙尔羊(Shal Sheep)、马奎羊(Makui Sheep)、莫哈尼羊(Moghani Sheep),巴基斯坦的卡拉库尔羊(Karakul Sheep),伊朗舍赫尔科德的亚洲摩弗伦(Asiatic mouflon)。
2、绵羊全基因的总SNP集合的获得
采用本领域常规方法采集步骤1中绵羊个体中载有遗传信息的样本,该样本包括但不限于血液、细胞、组织、皮肤、毛发、***物等。提取样本中的遗传信息(例如DNA)进行高深度测序,利用SAMtools和GATK两种方式与2015年发布的绵羊4.0参考基因组(从NCBI获得)进行对比,并将两种方式获得共同结果形成一个SNP集合,共计2836万个SNP位点,作为绵羊全基因的总SNP集合。
需要说明的是,本发明所称的遗传信息(genetic information)是指生物为复制与自己相同的东西、由亲代传递给子代、或各细胞每次***时由细胞传递给细胞的信息。
需要说明的是,提取样本中的遗传信息(例如DNA)进行高深度测序可以由生物公司完成,例如华大基因公司,illumina公司等,高深度测序方法采用本领域常规方法或生物公司的方法,在本发明的一个实施例中,采用平均测序深度为~25.7×,应用重测序分析流程进行高深度测序。
3、候选基因及所在功能区域的筛选
3.1对不同毛用的绵羊遗传信息样本处理
筛选毛用的绵羊品种,并根据不同绵羊品种在毛用性状上表现出来的显著差异,对相应的遗传信息样本进行分组,在本发明的一个实施例中,发明人将中国美利奴羊(细毛羊)Vs阿勒泰羊(MFW versus ALS)设为一组、中国美利奴羊(细毛羊)Vs滩羊(MFW versus TAN)设为一组、中国美利奴羊(超细毛羊)Vs阿勒泰羊(MSF versus ALS)设为一组、中国美利奴羊(超细毛羊)Vs滩羊(MSF versus TAN)设为一组、设德兰羊Vs阿勒泰羊(SHE versus ALS)设为一组。
3.2对分组后不同毛用的绵羊遗传信息的处理
应用XP-CLR扫荡每个绵羊组之间的多基因座等位基因频率差异,扫描出与毛用相关的功能区域(扫描得到的曼哈顿图如图1-5所示,同时利用πratio(即π值)挖掘每组中的绵羊品种中与毛用相关的功能区 域,然后取两种结果的交集,筛选出毛用相关的功能区域。
参照已公开的基因研究成果对区域内的基因进行筛选,最终确定20个与毛用相关的、功能十分确定的候选基因BMP4、COL17A1、DSG2、DSG3、DSG4、FGF6、IGF1R、IRF2BP2、KATNAL1、KRT1、KRT17、KRT2、KRT5、KRT71、KRT72、KRT74、KRT77、LRRC15、PRKCA、TP63,进而通过perl脚本确定上述候选基因对应的功能区域。
4、毛用SNP位点组合的获得
利用bedtools在总的SNP集合中寻找步骤3中确定的候选基因所在功能区域对应的SNP位点,得到与BMP4、COL17A1、DSG2、DSG3、DSG4、FGF6、IGF1R、IRF2BP2、KATNAL1、KRT1、KRT17、KRT2、KRT5、KRT71、KRT72、KRT74、KRT77、LRRC15、PRKCA、TP63共20个毛用相关的功能基因相关联,且仅包含2849个snp位点的毛用位点组合。
实施例2引物组合及探针组合的制备
本领域技术人员根据本发明提供的毛用SNP位点组合中的每一个位点的序列信息设计引物,并将设计得到的引物利进行二级结构评估和Tm值评估,最终获得特异性好、灵敏度高,并且可以在同一反应条件下实现检测目的的引物。
其中,二级结构评估及Tm值评估可以采用本领域常用的任一一种方式进行,例如采用DNA folding form评估其二级结构,具体参见(http://unafold.rna.albany.edu/?q=mfold/DNA-Folding-Form),然后采用软件RaW-Probe评估其Tm值。
上述方法均为常规方法,根据本申请提供的毛用SNP位点组合中的位点信息,不再需要付出创造性劳动的情况下就能获得,因此,根据本申请提供的毛用SNP位点组合获得引物也属于本发明的保护范围。
同样的,利用本发明提供的毛用SNP位点组合制备探针,例如tanqman探针也属于本发明的保护范围。
实施例3基因芯片的制备
本申请的SNP基因芯片是采用常规方法将实施例2获得的引物或探针固定在聚合物基片上,例如尼龙膜、硝酸纤维膜、塑料、硅胶晶片、微型磁珠等,或将探针固定在玻璃板上,或在玻璃等硬质表面上直接合成实施例2获得的引物或探针,本申请的SNP基因芯片的使用方法与常规方法相同。
需要说明的是,本领域技术人员可以采用任一一种方式制备检测绵羊毛用的SNP基因芯片,同样也可以委托生物公司制备,但是基于本申请提供的毛用SNP位点组合制备的SNP基因芯片均属于本发明的保护范围。
实施例4绵羊毛用性状的分析试剂盒
本申请的提供的毛用SNP检测试剂盒包括基于实施例1获得的SNP位点组合获得的引物或探针或基因芯片。根据使用类型的不同,还包括相应的检测试剂,例如当基于实施例1获得的SNP位点组合获得的为Taqman探针时,还包括荧光定量PCR反应常规使用的缓冲液、连接酶、AceQUniversal U+Probe Master Mix V2,TaqMan Probe等。
本领域技术人员根据使用方式的不同配置不同的绵羊毛用性状检测的SNP试剂盒,但是基于本申请提供的毛用SNP位点组合配置的绵羊毛用性状检测SNP检测试剂盒均属于本发明的保护范围。
实施例5绵羊毛用性状的检测
基于本申请的实施例1提供的分析绵羊毛用性状的SNP位点组合对采购的绵羊进行毛用检测,同时观察绵羊的剪毛量、净毛率、毛长、毛细度,在本发明的一个实施例中,采用新疆细毛羊品种鉴定的引种的一级标准(GB/T 2426-1981)对绵羊进行观察,具体为:
采用常规方法采集绵羊的外周血,并其中的全基因组DNA;
采用常规方法根据本发明提供的SNP位点组合中的位点信息设计基因芯片,对待测绵羊的全基因组DNA进行检测,获得每只羊羔中每个位点的分型结果(即每个位点是否为纯合子、杂合子、突变型纯合子或碱基缺失的结果),通过计算每个位点的分型结果的频率值,并与群体阈值进行比较,获得检测结果。
观察结果显示,芯片检测结果显示优异的绵羊均为符合一级标准的绵羊,芯片结果显示较差的绵羊其毛用性能劣于符合一级标准的绵羊。
需要说明的是,本申请的所述群体阈值是通过对毛用性状好的群体以及毛用性状差的群体进行分析获 得,方法同上。
本申请对毛用性状好的群体以及毛用性状差的群体进行分析的判定结果进行了显著性检验(独立样本曼惠特尼U检验),结果如图6所示,根据图中结果可以看出,P<0.01,差异极显著,可见采用本发明方法进行判定的结果具有准确性和有效性。
工业应用
本领域技术人员基于本申请提供的仅由2849个SNP位点组成的分析绵羊毛用性状的SNP位点组合形成的探针组合、基因芯片和试剂盒,在基因组水平上对绵羊个体的毛用性状进行评价和遗传评估,也可进行品种筛选、品种鉴定。对早期难以度量的性状进行选择,缩短世代间隔,加速育种进程,从而节约大量的育种成本,还能够应用于绵羊品种溯源和种质资源保护和种质资源改良中。
以上所述仅为帮助理解本发明的优选实例,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化,在不违背本发明的思想下,本领域技术人员在此基础上对本发明作出的各种改动或者修改,同样应属于本发明的范围。

Claims (7)

  1. 2849个位点组合用于分析绵羊毛用性状的用途,所述2849个位点组合的物理位置信息基于绵羊v4.0基因组序列比对确定,所述2849个位点组合的物理信息如表1所示。
  2. 分析绵羊毛用性状的方法,包括将待测绵羊的基因组DNA的2849个SNP位点基因型与对照绵羊基因组DNA的所述3072个SNP位点基因型进行比较;所述2849个SNP位点为表1所示的2849个SNP位点。
  3. 分析绵羊毛用性状的分子探针组合,所述分子探针组合检测待测样品中如表1所示的SNP位点组合,所述表1中的位点组合的物理位置信息基于绵羊v4.0基因组序列比对确定。
  4. 分析绵羊毛用性状的基因芯片,所述基因芯片负载有权利要求3所述的分子探针组合。
  5. 分析绵羊毛用性状的试剂盒,其具有权利要求3所述的分子探针组合或权利要求4所述的基因芯片。
  6. 分析绵羊毛用性状的方法,包括应用权利要求3所述的分子探针组合或权利要求4所述的基因芯片或权利要求5所述的试剂盒对待测样品进行检测。
  7. 权利要求3所述的分子探针组合或权利要求4所述的基因芯片或权利要求5所述的试剂盒具有如下任一所述的用途:
    (1)在评价绵羊毛用性状中的应用;
    (2)在绵羊品种筛选的应用;
    (3)在绵羊品种鉴定中的应用;
    (4)在绵羊品种溯源中的应用;
    (5)在绵羊育种中的应用;
    (6)在种质资源保护中的应用;
    (7)在种质资源改良中的应用;
    (8)在绵羊系谱重构中的应用。
PCT/CN2022/106906 2021-07-23 2022-07-20 一种分析绵羊毛用性状的基因芯片、分子探针组合、试剂盒及应用 WO2023001211A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110834457.2 2021-07-23
CN202110834457.2A CN113278716B (zh) 2021-07-23 2021-07-23 分析绵羊毛用性状的基因芯片、分子探针组合、试剂盒及应用

Publications (1)

Publication Number Publication Date
WO2023001211A1 true WO2023001211A1 (zh) 2023-01-26

Family

ID=77287067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106906 WO2023001211A1 (zh) 2021-07-23 2022-07-20 一种分析绵羊毛用性状的基因芯片、分子探针组合、试剂盒及应用

Country Status (2)

Country Link
CN (1) CN113278716B (zh)
WO (1) WO2023001211A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117385061A (zh) * 2023-12-13 2024-01-12 中国农业科学院北京畜牧兽医研究所 一种与湖羊生长性状相关的分子标记及其应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113278716B (zh) * 2021-07-23 2021-11-09 中国农业大学 分析绵羊毛用性状的基因芯片、分子探针组合、试剂盒及应用
CN114790483B (zh) * 2022-05-30 2023-06-23 中国农业科学院兰州畜牧与兽药研究所 一种与细毛羊净毛率相关的snp位点组合及其应用
CN117089633B (zh) * 2023-10-20 2023-12-29 中国农业大学 分析山羊绒毛有无的分子标记组合及应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008014550A1 (en) * 2006-07-31 2008-02-07 The University Of Sydney Markers for pigmentation
US20110033849A1 (en) * 2007-07-13 2011-02-10 Ovita Limited Ovine identification method
CN109694915A (zh) * 2019-01-08 2019-04-30 甘肃农业大学 一种与绵羊尾脂重相关的分子标记及其应用
CN112029872A (zh) * 2020-09-22 2020-12-04 中国农业科学院北京畜牧兽医研究所 一种与细毛羊羊毛性状相关的snp标记及其检测引物组、试剂盒、检测方法和应用
CN112695107A (zh) * 2021-03-23 2021-04-23 中国农业大学 一种肉用绵羊生长性能snp位点组合及其应用
CN112695108A (zh) * 2021-03-23 2021-04-23 中国农业大学 一种肉用绵羊繁殖性能snp位点组合及其应用
CN113278716A (zh) * 2021-07-23 2021-08-20 中国农业大学 分析绵羊毛用性状的基因芯片、分子探针组合、试剂盒及应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107217096A (zh) * 2017-06-21 2017-09-29 中国农业科学院北京畜牧兽医研究所 利用微流控SNP芯片检测绵羊FecB基因多态性的方法
CN107267618B (zh) * 2017-07-03 2020-10-09 甘肃农业大学 与绵羊羊毛细度相关的遗传标记及其应用
CN109182558B (zh) * 2018-11-12 2020-08-25 中山大学孙逸仙纪念医院 能预示和鉴定绵羊羊毛自然长度的分子标记引物对及应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008014550A1 (en) * 2006-07-31 2008-02-07 The University Of Sydney Markers for pigmentation
US20110033849A1 (en) * 2007-07-13 2011-02-10 Ovita Limited Ovine identification method
CN109694915A (zh) * 2019-01-08 2019-04-30 甘肃农业大学 一种与绵羊尾脂重相关的分子标记及其应用
CN112029872A (zh) * 2020-09-22 2020-12-04 中国农业科学院北京畜牧兽医研究所 一种与细毛羊羊毛性状相关的snp标记及其检测引物组、试剂盒、检测方法和应用
CN112695107A (zh) * 2021-03-23 2021-04-23 中国农业大学 一种肉用绵羊生长性能snp位点组合及其应用
CN112695108A (zh) * 2021-03-23 2021-04-23 中国农业大学 一种肉用绵羊繁殖性能snp位点组合及其应用
CN113278716A (zh) * 2021-07-23 2021-08-20 中国农业大学 分析绵羊毛用性状的基因芯片、分子探针组合、试剂盒及应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BOLORMAA SUNDUIMIJID, SWAN ANDREW A., BROWN DANIEL J., HATCHER SUE, MOGHADDAR NASIR, VAN DER WERF JULIUS H., GODDARD MICHAEL E., D: "Multiple-trait QTL mapping and genomic prediction for wool traits in sheep", GENETICS SELECTION EVOLUTION, vol. 49, no. 1, 1 December 2017 (2017-12-01), XP093026071, DOI: 10.1186/s12711-017-0337-y *
HONGCHANG ZHAO;TINGTING GUO;ZENGKUI LU;JIANBIN LIU;SHAOHUA ZHU;GUOYAN QIAO;MEI HAN;CHAO YUAN;TIANXIANG WANG;FANWEN LI;YAJUN ZHANG;: "Genome-wide association studies detects candidate genes for wool traits by re-sequencing in Chinese fine-wool sheep", BMC GENOMICS, BIOMED CENTRAL LTD, LONDON, UK, vol. 22, no. 1, 18 February 2021 (2021-02-18), London, UK , pages 1 - 13, XP021286362, DOI: 10.1186/s12864-021-07399-3 *
LING Y.H., XIANG H., ZHANG G., DING J.P., ZHANG Z.J., ZHANG Y.H., HAN J.L., MA Y.H., ZHANG X.R.: "Identification of complete linkage disequilibrium in the DSG4 gene and its association with wool length and crimp in Chinese indigenous sheep", GENETICS AND MOLECULAR RESEARCH, vol. 13, no. 3, 1 January 2014 (2014-01-01), pages 5617 - 5625, XP093026073, DOI: 10.4238/2014.July.25.17 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117385061A (zh) * 2023-12-13 2024-01-12 中国农业科学院北京畜牧兽医研究所 一种与湖羊生长性状相关的分子标记及其应用
CN117385061B (zh) * 2023-12-13 2024-03-15 中国农业科学院北京畜牧兽医研究所 一种与湖羊生长性状相关的分子标记及其应用

Also Published As

Publication number Publication date
CN113278716B (zh) 2021-11-09
CN113278716A (zh) 2021-08-20

Similar Documents

Publication Publication Date Title
WO2023001211A1 (zh) 一种分析绵羊毛用性状的基因芯片、分子探针组合、试剂盒及应用
CN112695107B (zh) 一种肉用绵羊生长性能snp位点组合及其应用
CN113278712B (zh) 分析绵羊毛色的基因芯片、分子探针组合、试剂盒及应用
WO2023001212A1 (zh) 分析绵羊产奶性能的基因芯片、分子探针组合、试剂盒及应用
WO2023001209A1 (zh) 分析绵羊脂尾的基因芯片、分子探针组合、试剂盒及应用
CA2512110A1 (en) Compositions, methods, and systems for inferring bovine breed
CN115029451B (zh) 一种绵羊液相芯片及其应用
CN114959059B (zh) 一种与细毛羊羊毛纤维直径变异系数相关的snp位点组合及其应用
CN113278714B (zh) 分析绵羊是否有角的基因芯片、分子探针组合、试剂盒及应用
CN114790483B (zh) 一种与细毛羊净毛率相关的snp位点组合及其应用
CN107988385B (zh) 一种检测肉牛PLAG1基因Indel标记的方法及其专用试剂盒
WO2023231940A1 (zh) 一种与细毛羊羊毛纤维直径相关的snp位点组合及其应用
CN113293220B (zh) 分析绵羊耳部大小的基因芯片、分子探针组合、试剂盒及应用
CN113278713B (zh) 绵羊多角性状的基因芯片、分子探针组合、试剂盒及应用
CN117106936B (zh) 分析山羊毛色性状的分子标记组合及应用
CN117089636B (zh) 分析山羊肉用性能的分子标记组合及应用
CN117106935B (zh) 分析山羊有无角性状的分子标记组合及应用
CN117089634B (zh) 分析山羊奶用性能的分子标记组合及应用
CN117089635B (zh) 分析山羊繁殖性能的分子标记组合及应用
CN117089633B (zh) 分析山羊绒毛有无的分子标记组合及应用
CN117126948B (zh) 分析山羊耳性状的分子标记组合及其应用
CN113801941B (zh) 用于检测牛无角基因的引物组、试剂盒及方法
CN108427866B (zh) 一种基于分子标记技术的农作物自交系类群的鉴定方法
CN113278715A (zh) 分析绵羊***数的基因芯片、分子探针组合、试剂盒及应用
CN117025786A (zh) 一种基于靶向捕获测序的细毛羊50k snp液相芯片及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE