WO2023001134A1 - 流体驱动装置 - Google Patents

流体驱动装置 Download PDF

Info

Publication number
WO2023001134A1
WO2023001134A1 PCT/CN2022/106407 CN2022106407W WO2023001134A1 WO 2023001134 A1 WO2023001134 A1 WO 2023001134A1 CN 2022106407 W CN2022106407 W CN 2022106407W WO 2023001134 A1 WO2023001134 A1 WO 2023001134A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive device
working medium
fluid drive
circuit board
cavity
Prior art date
Application number
PCT/CN2022/106407
Other languages
English (en)
French (fr)
Inventor
胡梅宴
Original Assignee
杭州奥科美瑞科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州奥科美瑞科技有限公司 filed Critical 杭州奥科美瑞科技有限公司
Priority to KR1020247003787A priority Critical patent/KR20240028491A/ko
Priority to EP22845299.1A priority patent/EP4375510A1/en
Publication of WO2023001134A1 publication Critical patent/WO2023001134A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C11/00Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • F04C29/047Cooling of electronic devices installed inside the pump housing, e.g. inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • F04C2240/403Electric motor with inverter for speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/808Electronic circuits (e.g. inverters) installed inside the machine

Definitions

  • the present application relates to the field of vehicles, in particular to components of a vehicle lubrication system and/or cooling system.
  • the fluid drive device mainly provides the power source for the lubrication system and/or cooling system of the vehicle.
  • the fluid drive device includes circuit board components.
  • the circuit board components will generate heat during operation. If the heat accumulates to a certain extent and cannot be dissipated in time, it will affect the circuit board. component performance, thereby reducing the service life of the fluid drive.
  • the purpose of the present application is to provide a fluid drive device, which is beneficial to the heat dissipation of the circuit board assembly, thereby improving the service life of the fluid drive device.
  • a fluid drive device comprising a first rotor assembly, a second rotor assembly, a stator assembly and a circuit board assembly, the second rotor assembly is in transmission connection with the first rotor assembly, the stator assembly is connected to the circuit board assembly electrical connection;
  • the fluid drive device has a first chamber and a second chamber, the first rotor assembly is located in the first chamber, the stator assembly and the circuit board assembly are located in the second chamber, and the first A working medium can flow through the first cavity, and the second cavity can accommodate the working medium.
  • the second cavity contains the working medium, at least part of the circuit board assembly can be in contact with the working medium in the second cavity.
  • the fluid drive device has a first chamber and a second chamber, the first rotor assembly is located in the first chamber, the stator assembly and the circuit board assembly are located in the second chamber, the first chamber can have a working medium to flow through, and the second chamber is located in the second chamber.
  • the cavity can accommodate the working medium, and when the second cavity contains the working medium, at least part of the circuit board assembly can be in contact with the working medium located in the second cavity; this enables the working medium located in the second cavity to be in contact with the heat generated by the circuit board assembly
  • the heat exchange is carried out, which is beneficial to the heat dissipation of the circuit board assembly, and further helps to improve the service life of the fluid drive device.
  • Fig. 1 is a schematic cross-sectional structure diagram of the first embodiment of the fluid drive device in the present application
  • Fig. 2 is a schematic diagram of the front view of the partial structure of the fluid drive device without the upper cover in Fig. 1;
  • Fig. 3 is a schematic diagram of the three-dimensional structure of the circuit board assembly in Fig. 1 at a viewing angle;
  • Fig. 4 is a three-dimensional schematic view of the circuit board assembly in Fig. 1 from another perspective;
  • Fig. 5 is a schematic cross-sectional structure diagram of a second embodiment of the fluid drive device in the present application.
  • the fluid drive device in the following embodiments can mainly provide flowing power for the working medium of the vehicle lubrication system and/or cooling system, and specifically can provide flowing power for the working medium of the lubrication system and/or cooling system in the vehicle transmission system.
  • the fluid drive device 100 includes a first rotor assembly 1, a stator assembly 2, a second rotor assembly 3 and a circuit board assembly 4, where the circuit board assembly 4 may have a power supply for the coil in the stator assembly 2 It can also have the function of real-time controlling the operation of the first rotor assembly 1 according to the operating environment;
  • the fluid drive device 100 includes a first cavity 80 and a second cavity 90, the first rotor assembly 1 is arranged in the first cavity 80, and the stator The component 2, the second rotor component 3 and the circuit board component 4 are arranged in the second cavity 90;
  • the stator component 2 includes a stator core 21, an insulating frame 22 and a winding 23, and the insulating frame 22 covers at least part of the stator core 21 On the surface, the winding 23 is wound on the insulating frame 22; when the fluid drive device 100 is working, the circuit board assembly 4 controls the stator assembly 2 to generate a changing excitation magnetic field by controlling the current in the winding 23 passing through the stator assembly 2
  • the first rotor assembly 1 includes a first rotor 11 and a second rotor 12, the first rotor 11 includes a plurality of internal teeth, the second rotor 12 includes a plurality of external teeth, the first rotor 11
  • a hydraulic chamber 801 is formed between the inner teeth of the second rotor 12 and the outer teeth of the second rotor.
  • the hydraulic chamber 801 is also a part of the first chamber 80.
  • the first rotor 11 is sleeved on the second rotor 12 perimeter.
  • the fluid drive device 100 also includes an inflow channel 13 and an outflow channel (not shown), the working medium can enter the hydraulic chamber 801 through the inflow channel 13, and the working medium can pass through the outflow channel (not shown) Leaving the hydraulic chamber 801; because there is a certain eccentricity between the first rotor 11 and the second rotor 12, when the second rotor 12 rotates, part of the external teeth of the second rotor 12 mesh with part of the internal teeth of the first rotor 11, Therefore, the first rotor 11 is driven to rotate. During the first rotor 11 and the second rotor 12 rotate one circle, the internal volume of the hydraulic chamber 801 changes.
  • the volume in the hydraulic chamber 801 gradually increases to form a partial vacuum, and the working medium is sucked into the hydraulic chamber 801 from the inflow channel 13.
  • the first rotor 11 and the second rotor 12 continue to rotate, they are originally full of working fluid.
  • the volume of the hydraulic chamber 801 of the medium gradually decreases, and the working medium is squeezed, so that the working medium entering the hydraulic chamber 801 is pressed out to the outflow channel (not shown) to generate flow power; in this embodiment, the fluid
  • the driving device 100 also includes a shaft 5, which can drive part of the first rotor assembly 1 to rotate.
  • the shaft 5 can drive the first rotor 11 to rotate.
  • one side of the shaft 5 is connected to the first rotor assembly 1.
  • a rotor 11 is connected, and the other side of the shaft 5 is connected with the second rotor assembly 3 , and the second rotor assembly 3 drives the second rotor 12 to rotate through the shaft 5 , thereby realizing the rotation of the first rotor assembly 1 .
  • the fluid drive device 100 also includes a motor housing 6 , an upper cover 7 and a bottom cover 8 .
  • the motor housing 6 is located between the upper cover 7 and the bottom cover 8 between the motor housing 6 and the bottom cover 8 between the motor housing 6 and the bottom cover 8 between, one side of the motor housing 6 is relatively fixedly connected to the upper cover 7, and the other side of the motor housing 6 is relatively fixedly connected to the bottom cover 8;
  • the motor housing 6 has a first accommodating cavity 61, and the stator assembly 2 Located in the first accommodation chamber 61, the first accommodation chamber 61 forms part of the second chamber 90, the bottom cover 8 has a second accommodation chamber 81, the circuit board assembly 4 is located in the second accommodation chamber 81, and the second accommodation chamber 81 forms part of the second chamber 90.
  • the bottom cover 8 may not be provided with the second accommodation chamber 81, and at this time the circuit board assembly 4 may also be located in the first accommodation chamber 61, and the first accommodation chamber 61 may also be the second accommodation chamber that constitutes the entire Two chambers 90; referring to Fig. 1, the connection between the bottom cover 8 and the corresponding peripheral side wall of the first accommodating chamber 61 is sealed, which helps to prevent the working medium in the second chamber 90 from flowing from the bottom cover 8 to the first chamber 90.
  • the connection between the surrounding side walls corresponding to the accommodation chamber 61 leaks to the outside; at the same time, the fluid drive device is made more compact in the axial direction, which is beneficial to the miniaturization design of the fluid drive device.
  • FIG. 1 the connection between the bottom cover 8 and the corresponding peripheral side wall of the first accommodating chamber 61 is sealed, which helps to prevent the working medium in the second chamber 90 from flowing from the bottom cover 8 to the first chamber 90.
  • the connection between the surrounding side walls corresponding to the accommodation chamber 61 leaks to the outside; at the same
  • the fluid drive device 100 further includes a first sealing ring 9, the bottom cover 8 has a groove 82, and the groove 82 is recessed from the outer peripheral surface of the bottom cover 8, and at least part of the first sealing ring
  • the ring 9 is located in the groove 82 , one side of the first sealing ring 9 abuts against the bottom surface corresponding to the groove 82 , and the other side of the first sealing ring 9 abuts against the corresponding peripheral sidewall of the first accommodation cavity 61 .
  • the second chamber 90 contains the working medium, it is beneficial to reduce the leakage of the working medium in the second chamber 90, thereby improving the oil supply efficiency of the fluid drive device.
  • FIG. 1 is a schematic structural diagram of the first embodiment of the fluid drive device in the present application; the structure of the first embodiment of the fluid drive device will be described in detail below.
  • the second cavity 90 can accommodate the working medium, when the second cavity 90 contains the working medium, at least part of the circuit board assembly 4 can be in contact with the working medium in the second cavity 90;
  • the working medium can exchange heat with the heat generated by the circuit board assembly 4 , which is beneficial to the heat dissipation of the circuit board assembly 4 , and further helps to improve the service life of the fluid drive device 100 .
  • the first cavity 80 communicates with the second cavity 90; specifically, referring to FIG. 1, the wall surface corresponding to the first cavity 80 includes a bottom wall 802, which can support the first The rotor assembly 1; the fluid drive device 100 also includes a first channel 10, the first channel 10 runs through the upper and lower surfaces of the bottom wall 802, the first channel 10 can communicate with the first cavity 80 and the second cavity 90, at least Part of the working medium can flow into the second cavity 90 through the first channel 10 and contact at least part of the circuit board assembly 4 in the second cavity 90, so that the working medium in the second cavity 90 can interact with the circuit board assembly 4.
  • stator assembly 2 can also be located in the second cavity 90 The working medium is in contact, so that the heat generated by the stator assembly 2 can also exchange heat with the working medium located in the second cavity 90, thereby facilitating the heat dissipation of the stator assembly 2, and further improving the service life of the fluid drive device 100;
  • the fluid drive device 100 also includes a second channel 20 , the second channel 20 is set to pass through the upper end surface of the shaft 5 and the lower end surface of the shaft 5 ; through the second channel 20 , the second cavity 90
  • the working medium can leave the second chamber 90; the outlet of the second channel 20 is closer to the inflow channel 13 than the inlet of the first channel 10, and the pressure of the working medium at the inlet of the first channel 10 is greater than that of the working medium at the second channel 20
  • the pressure at the outlet of the outlet makes the working medium form a pressure difference at the inlet of the first channel 10 and the outlet of the second channel 20, according to the principle that the working medium flows from a place with high pressure to a place with low pressure, so that the second chamber
  • the working medium in 90 can flow toward the outlet of the second channel 20, that is, the working medium in the second cavity 90 can leave the second cavity 90 through the second channel 20; since the stator assembly 2 and the circuit board assembly 4 are arranged in the first In the second cavity 90, the flowing working medium can be
  • the second channel 20 communicates with the outflow channel of the fluid driving device 100 . That is to say, the working medium in the second chamber 90 is directly input to the outside of the fluid drive device through the outflow channel, which is beneficial to heat dissipation of the circuit board assembly and/or stator assembly in the second chamber 90, and at the same time makes the fluid drive
  • the structure of the device is more compact, which is beneficial to realize the miniaturization design of the fluid drive device.
  • Figure 1 shows the flow direction of the working medium.
  • the working medium has two flow directions.
  • the thick dashed line in Figure 1 is the first flow direction
  • the thick solid line is the second flow direction
  • the working medium flows into the volume cavity between the first rotor assembly 1 from the inflow channel 13, and then the working medium flows out of the volume cavity from the outflow channel;
  • Part of the working medium entering the volume cavity between the first rotor assembly 1 flows from the first channel 10 to the second cavity 90, and then the working medium in the second cavity 90 flows out from the second channel 20 to the outflow channel;
  • the inflow direction of the working medium is the vertical direction
  • the outflow direction of the working medium is the horizontal direction, where the "vertical direction” and “horizontal direction” are the directions when the fluid drive device 100 is placed in the state shown in Figure 1,
  • the inflow direction of the working medium and the outflow direction of the working medium is the vertical direction
  • the outflow direction of the working medium is the horizontal direction, where the "vertical direction” and “horizontal direction”
  • the second chamber 90 can accommodate the working medium through the communication between the first chamber 80 and the second chamber 90 , and at least part of the circuit board assembly 4 can communicate with the working medium located in the second chamber 90 .
  • medium contact of course, as other implementation modes, it is also possible to realize that the second cavity 90 contains the working medium through other means, for example, corresponding inflow passages and outflow passages may be provided on the motor housing, so that The working medium directly enters the second chamber 90 from the inflow channel on the motor housing, and the outflow channel on the motor housing directly leaves the second chamber 90.
  • the second chamber 90 can communicate with the first chamber 80, and also Can not be connected.
  • the circuit board assembly 4 and/or the stator assembly 2 in the second cavity 90 can also be dissipated, which is conducive to improving the output of the fluid drive device.
  • Efficiency for example, pumping efficiency.
  • circuit board assembly 4 comprises substrate 41 and electronic components and parts 42, and electronic components and parts 42 are fixedly connected with substrate 41, and the outer surface of at least part electronic components and parts 42 is covered with protective film;
  • the device 42 is corroded by the working medium, and the electronic components 42 include capacitors, resistors, inductors, processors and other electronic components.
  • the fluid drive device 100 also includes a temperature sensing unit 44, the temperature sensing unit 44 is electrically connected to the circuit board assembly 4, the temperature sensing unit 44 is electrically connected to the substrate 41, and the temperature sensing unit 44 is connected to the working medium located in the second chamber 90. Contact to detect the temperature of the working medium in the second chamber 90; in this way, the control system can adjust the operating state of the fluid drive device 100 according to the temperature of the working medium.
  • the temperature sensing unit 44 can be a thermistor or a temperature sensor and other temperature detection components.
  • the substrate 41 includes a front surface 411 and a reverse surface 412 , the front surface 411 is opposite to the reverse surface 412 , and along the height direction of the fluid drive device 100 , the front surface 411 is closer to the first rotor assembly than the reverse surface 412 1.
  • the temperature sensing unit 44 is supported on the front side 411, the electronic components 42 include heating electronic components, the heating electronic components include field effect transistors (Mosfet), capacitors 421, etc., and the heating electronic components are arranged on the back side 412, which is conducive to preventing The heat of the heat-generating electronic components interferes with the detection accuracy of the temperature-sensing unit 44 .
  • the temperature-sensing unit 44 can also be supported on the back side 412 , and at this time, the heat-generating electronic components are supported on the front side 411 correspondingly.
  • the circuit board assembly 4 further includes an adhesive portion 43, the adhesive portion 43 is supported on the substrate 41, and the adhesive portion 43 is bonded to the substrate 41.
  • the adhesive portion 43 and the substrate 41 The back side 412 is bonded, and the outer contour of the adhesive part 43 is closed.
  • the electronic components arranged on the back side 412 of the substrate 41 are all located in the area surrounded by the adhesive part 43.
  • the adhesive part 43 The enclosed area is filled with a protective film, and the protective film covers at least part of the electronic components; the height of the protective film is less than or equal to the height of the adhesive part 43; in this embodiment, the adhesive part 43 is formed by curing the adhesive to protect The film is formed by curing the glue, by setting the adhesive part 43 around the electronic component 42 that needs to be covered with a protective film, and the height of the protective film is less than or equal to the height of the adhesive part 43, so that when the glue is placed on the area to be coated At this time, the adhesive part 43 can prevent the glue from overflowing the outside of the circuit board assembly 4 or prevent the glue from overflowing the designated area, thereby helping to ensure the thickness of the glue when it is solidified into a protective film, and then helping to improve the protective film to prevent the electronic components 42 from being subjected to the working medium.
  • the circuit board assembly 4 only includes an adhesive portion 43, and the adhesive portion 43 is arranged near the outer periphery of the reverse side 412 of the substrate 41, and the electronic components 42 located on the reverse side 412 are located The area surrounded by the adhesive part 43 is provided with a protective film.
  • the reverse side 412 of the circuit board assembly 4 can also be provided with two or more adhesive parts 43.
  • the shapes and sizes of the adhesive parts 43 can be the same or different, and the positions of the adhesive parts 43 can be According to the adaptive design of the position of the electronic components 42 that need to be covered with a protective film; in addition, as another embodiment, the front surface 411 of the circuit board assembly 4 can also be provided with a corresponding adhesive part 43 .
  • FIG. 5 is a schematic structural diagram of a second embodiment of the fluid drive device in the present application; the structure of the second embodiment of the fluid drive device will be described in detail below.
  • the second cavity 90 can accommodate the working medium.
  • the second cavity 90 contains the working medium, at least part of the circuit board assembly 4 can be in contact with the working medium located in the second cavity 90;
  • the working medium can exchange heat with the heat generated by the circuit board assembly 4 , which is beneficial to the heat dissipation of the circuit board assembly 4 , and further helps to improve the service life of the fluid drive device 100 .
  • the first chamber 80 communicates with the second chamber 90; specifically, in this embodiment, the shaft 5 includes a second passage 20, and the second passage 20 is set to pass through the first chamber of the shaft 5.
  • the fluid drive device 100 has an inflow channel 13, and the second channel 20 communicates with the inflow channel 13, and the working medium of the inflow channel 13 can flow into the second chamber 90 through the second channel 20 And be in contact with at least part of the circuit board assembly 4 in the second chamber 90, so that the working medium in the second chamber 90 can exchange heat with the heat generated by the circuit board assembly 4, thereby facilitating the circuit board assembly 4 heat dissipation, which is beneficial to improve the service life of the fluid drive device 100; further, in this embodiment, at least part of the stator assembly 2 can also be in contact with the working medium in the second chamber 90, so that the heat generated by the stator assembly 2 is also It can exchange heat with the working medium located in the second chamber 90, which is beneficial to the
  • the wall corresponding to the first chamber 80 includes a bottom The wall 802, the bottom wall 802 can support the first rotor assembly 1; the fluid drive device 100 also includes a first passage 10, the first passage 10 runs through the upper and lower surfaces of the bottom wall 802, and the first passage 10 can communicate with the first chamber 80 and the second chamber 80.
  • the pressure of the working medium at the inlet of the second passage 20 is greater than the pressure of the working medium at the outlet of the first passage 10, through the first passage 10 the working medium in the second chamber 90 can leave the second chamber 90; Since the pressure of the working medium at the inlet of the second passage 20 is greater than the pressure of the working medium at the outlet of the first passage 10, the working medium is at the inlet of the second passage 20 and the working medium is at the outlet of the first passage 10.
  • a pressure difference is formed, based on the principle that the working medium flows from a place with high pressure to a place with low pressure, so that the working medium in the second chamber 90 can flow toward the outlet of the first passage 10, because the stator assembly 2 and the circuit board assembly 4 Arranged in the second chamber 90 , the flowing working medium can take away at least part of the heat of the stator assembly 2 and the circuit board assembly 4 , thereby further improving the heat dissipation efficiency of the stator assembly 2 and the circuit board assembly 4 .
  • the passage of the working medium flowing into the second cavity 90 and the working medium flowing out of the second cavity 90 are different; for other structures of the fluid drive device 100 in this embodiment, refer to The first embodiment of the fluid drive device will not be described here one by one.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

一种流体驱动装置,包括第一转子组件(1)、第二转子组件(3)、定子组件(2)以及电路板组件(4),第二转子组件(3)与第一转子组件传动连接(1),定子组件(2)与电路板组件(4)电连接。流体驱动装置具有第一腔(80)和第二腔(90),第一转子组件(2)位于第一腔(80),第二转子组件(3)、定子组件(2)以及电路板组件(4)位于第二腔(90),第一腔(80)能够有工作介质流通,第二腔(90)能够容纳工作介质,当第二腔(90)容纳有工作介质时,至少部分电路板组件(4)能够与位于第二腔(90)的工作介质接触。该流体驱动装置的工作介质能够对电路板进行散热,有利于提高使用寿命。

Description

流体驱动装置
本申请要求于2021年07月19日提交中国专利局、申请号为202110814680.0、发明名称为“流体驱动装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种车辆领域,尤其涉及车辆润滑***和/或冷却***的零部件。
背景技术
流体驱动装置主要为车辆的润滑***和/或冷却***提供动力源,流体驱动装置包括电路板组件,电路板组件在工作时会产生热量,热量累计到一定程度无法及时散出将会影响电路板组件的性能,从而降低流体驱动装置的使用寿命。
发明内容
本申请的目的在于提供一种流体驱动装置,有利于电路板组件的散热,从而有利于提高流体驱动装置的使用寿命。
为实现上述目的,本申请的一种实施方式采用如下技术方案:
一种流体驱动装置,包括第一转子组件、第二转子组件、定子组件以及电路板组件,所述第二转子组件与所述第一转子组件传动连接,所述定子组件与所述电路板组件电连接;所述流体驱动装置具有第一腔和第二腔,所述第一转子组件位于所述第一腔,所述定子组件和所述电路板组件位于所述第二腔,所述第一腔能够有工作介质流通,所述第二腔能够容纳工作 介质,当所述第二腔容纳有工作介质时,至少部分所述电路板组件能够与位于所述第二腔的工作介质接触。
本申请的技术方案中,流体驱动装置具有第一腔和第二腔,第一转子组件位于第一腔,定子组件和电路板组件位于第二腔,第一腔能够有工作介质流通,第二腔能够容纳工作介质,当第二腔容纳有工作介质时,至少部分电路板组件能够与位于第二腔的工作介质接触;这样使得位于第二腔的工作介质能够与电路板组件所产生的热量进行热交换,从而有利于电路板组件的散热,进而有利于提高流体驱动装置的使用寿命。
附图说明
图1是本申请中流体驱动装置的第一种实施方式的一个剖面结构示意图;
图2是图1中未装配上盖的流体驱动装置的部分结构的一个正视结构示意图;
图3是图1中电路板组件的在一个视角上的立体结构示意图;
图4是图1中电路板组件的在另一个视角上的立体结构示意图;
图5是本申请中流体驱动装置的第二种实施方式的一个剖面结构示意图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明:
以下结合附图对本申请的具体实施方式进行详细说明。首先,需要说明的是,在本说明书中提到或可能提到的上、下、左、右、前、后、内侧、 外侧、顶部、底部等方位用语是相对于对应附图中所示的构造进行定义的,它们是相对的概念,因此有可能会根据其所处不同位置、不同使用状态而进行相应地变化。所以,也不应当将这些或者其他的方位用语解释为限制性用语。
以下实施例中的流体驱动装置主要能够为车辆润滑***和/或冷却***的工作介质提供流动的动力,具体能够为车辆传动***中的润滑***和/或冷却***的工作介质提供流动的动力。
参见图1和图2,流体驱动装置100包括第一转子组件1、定子组件2、第二转子组件3以及电路板组件4,这里的电路板组件4可以具有给定子组件2中的线圈供电的功能,也可以具有根据运行环境对第一转子组件1的运转进行实时控制的功能;流体驱动装置100包括第一腔80、第二腔90,第一转子组件1设置于第一腔80,定子组件2、第二转子组件3以及电路板组件4设置于第二腔90;定子组件2包括定子铁芯21、绝缘架22以及绕组23,绝缘架22至少包覆于定子铁芯21的至少部分表面,绕组23缠绕于绝缘架22;流体驱动装置100工作时,电路板组件4通过控制通过定子组件2的绕组23中的电流按照预定的规律变化,从而控制定子组件2产生变化的激励磁场,第二转子组件3在激励磁场的作用下转动,第二转子组件3与第一转子组件传动连接,第二转子组件3能够直接或间接地带动第一转子组件1转动,第一转子组件1转动时,第一转子组件1之间的液压腔801的容积发生变化,使得工作介质被压出至出流通道从而产生流动的动力;本实施方式中工作介质为冷却油;参见图1,本实施例中,沿着流体驱动装置100的高度方向,定子铁芯21位于第一转子组件1和电路 板组件4之间,定子铁芯21比电路板组件4更靠近第一转子组件1;当然,作为其他实施例,沿着流体驱动装置100的高度方向,也可以是至少部分电路板组件4位于第一转子组件1和定子铁芯21之间,电路板组件4比定子铁芯21更靠近第一转子组件1。
具体地,参见图1至图2,第一转子组件1包括第一转子11和第二转子12,第一转子11包括多个内齿,第二转子12包括多个外齿,第一转子11的内齿和第二转子12的外齿之间形成有液压腔801,本实施例中,液压腔801也是第一腔80的一部分,本实施例中,第一转子11套设于第二转子12的外周。再参见图1,流体驱动装置100还包括进流通道13和出流通道(未示出),工作介质能够通过进流通道13进入液压腔801,工作介质能够通过出流通道(未示出)离开液压腔801;由于第一转子11与第二转子12之间存在一定的偏心距,第二转子12在转动时,第二转子12的部分外齿与第一转子11的部分内齿啮合,从而带动第一转子11转动,在第一转子11和第二转子12旋转一圈的过程中,液压腔801内容积发生变化,具体地,当第一转子11组件1从起始处转动到某一角度时,液压腔801内的容积逐渐增大从而形成局部真空,工作介质就从进流通道13被吸入至液压腔801,当第一转子11和第二转子12继续转动时,原来充满工作介质的液压腔801容积逐渐减小,工作介质受到挤压,从而使得进入液压腔801内的工作介质被压出至出流通道(未示出)从而产生流动的动力;本实施例中,流体驱动装置100还包括轴5,轴5能够带动部分第一转子组件1转动,具体地,本实施例中,轴5能够带动第一转子11转动,本实施例中,轴5的一侧与第一转子11连接,轴5的另一侧与第二转子组件3连接,第 二转子组件3通过轴5带动第二转子12转动,从而实现第一转子组件1的转动。
参见图1,流体驱动装置100还包括电机壳体6、上盖7和底盖8,沿着流体驱动装置100的高度方向,至少部分电机壳体6位于上盖7和底盖8之间,电机壳体6的一侧与上盖7相对固定连接,电机壳体6的另一侧与底盖8相对固定连接;电机壳体6具有第一容纳腔61,定子组件2位于第一容纳腔61,第一容纳腔61构成部分第二腔90,底盖8具有第二容纳腔81,电路板组件4位于第二容纳腔81,第二容纳腔81构成部分第二腔90,当然,作为其他实施方式,底盖8也可以不设置第二容纳腔81,此时电路板组件4也可以是位于第一容纳腔61,第一容纳腔61也可以是构成全部的第二腔90;参见图1,底盖8与第一容纳腔61所对应的周侧壁之间的连接处密封设置,这样有利于防止第二腔90内的工作介质从底盖8与第一容纳腔61所对应的周侧壁之间的连接处泄漏至外侧;同时,使得流体驱动装置在轴向方向更加的紧凑,有利于流体驱动装置小型化设计。具体地,参见图1,本实施例中,流体驱动装置100还包括第一密封圈9,底盖8具有凹槽82,凹槽82自底盖8的外周面凹陷设置,至少部分第一密封圈9位于凹槽82,第一密封圈9的一侧与凹槽82所对应的底面抵接,第一密封圈9的另一侧与第一容纳腔61所对应的周侧壁抵接。通过这样的方式,当第二腔90容纳有工作介质时,有利于减少第二腔90内工作介质的渗漏,进而提高流体驱动装置的供油的效率。
参见图1,图1为本申请中流体驱动装置的第一种实施方式的结构示意图;以下将对流体驱动装置的第一种实施方式的结构进行详细介绍。
参见图1,第二腔90能够容纳工作介质,当第二腔90容纳有工作介质时,至少部分电路板组件4能够与位于第二腔90的工作介质接触;这样使得位于第二腔90的工作介质能够与电路板组件4所产生的热量进行热交换,从而有利于电路板组件4的散热,进而有利于提高流体驱动装置100的使用寿命。
具体地,参见图1,本实施例中,第一腔80与第二腔90连通;具体地,参见图1,第一腔80所对应的壁面包括底壁802,底壁802能够支撑第一转子组件1;流体驱动装置100还包括第一通道10,第一通道10贯穿底壁802的上下表面,第一通道10能够连通第一腔80和第二腔90,第一腔80内的至少部分工作介质能够通过第一通道10流入第二腔90并与位于第二腔90内的电路板组件4的至少部分接触,这样使得位于第二腔90的工作介质能够与电路板组件4所产生的热量进行热交换,从而有利于电路板组件4的散热,进而有利于提高流体驱动装置100的使用寿命;进一步地,本实施例中,至少部分定子组件2也能够与位于第二腔90的工作介质接触,这样使得定子组件2所产生的热量也能够与位于第二腔90的工作介质进行热交换,从而有利于定子组件2的散热,进而进一步有利于提高流体驱动装置100的使用寿命;参见图1,本实施例中,流体驱动装置100还包括第二通道20,第二通道20设置为贯穿轴5的上端面和轴5的下端面;通过第二通道20使得第二腔90内的工作介质能够离开第二腔90;第二通道20的出口比第一通道10的进口更靠近进流通道13,工作介质在第一通道10的进口处的压力大于工作介质在第二通道20的出口处的压力;这样使得工作介质在第一通道10的进口和第二通道20的出口处形成压力 差,根据工作介质从压力高的地方流向压力低的地方的原理,从而使得第二腔90内的工作介质能够向第二通道20的出口方向流动,即通过第二通道20使得第二腔90内的工作介质能够离开第二腔90;由于定子组件2和电路板组件4设置于第二腔90内,流动的工作介质可以带走定子组件2和电路板组件4的至少部分热量,从而进一步有利于提高定子组件2和电路板组件4的散热效率;参见图1,本实施例中,第二通道20与流体驱动装置100的出流通道连通。也就是说,第二腔90内的工作介质通过出流通道直接的输入至流体驱动装置的外部,有利于对第二腔90内的电路板组件和/或定子组件进行散热,同时使得流体驱动装置的结构更加的紧凑,有利于实现流体驱动装置的小型化设计。
参见图1,图1示出了工作介质的流动方向,具体地,工作介质有两条流动方向,为了更好地说明工作的流动方向,图1中粗虚线为第一流动方向,粗实线为第二流动方向,在第一流动方向中,工作介质从进流通道13流入第一转子组件1之间的容积腔,然后工作介质从出流通道流出容积腔;在第二流动方向中,进入第一转子组件1之间的容积腔的部分工作介质从第一通道10流入至第二腔90,然后第二腔90内的工作介质从第二通道20流出至出流通道;本实施例中,工作介质的进流方向为竖直方向,工作介质的出流方向为水平方向,这里的“竖直方向”和“水平方向”是将流体驱动装置100如图1状态安放时的方向,当然,作为其他实施方式,工作介质的进流方向和工作介质的出流方向也可以是平行设置。
参见图1,本实施例中,是通过第一腔80与第二腔90连通的方式来使得第二腔90能够容纳有工作介质,至少部分电路板组件4能够与位于第 二腔90的工作介质接触;当然,作为其他实施方式,也可以是通过其他的手段来实现第二腔90容纳有工作介质,譬如,可以是在电机壳体上开设对应的进流通道和出流通道,使得工作介质从电机壳体上的进流通道直接进入第二腔90,电机壳体上的出流通道直接离开第二腔90,此时第二腔90和第一腔80可以连通,也可以不连通。通过这样的方式,第二腔90和第一腔80在不连通的情况下,还可以对第二腔90内电路板组件4和/或定子组件2进行散热,有利于提高流体驱动装置的输出效率,例如,泵油效率。
参见图3和图4,电路板组件4包括基板41和电子元器件42,电子元器件42与基板41固定连接,至少部分电子元器件42的外表面覆有防护膜;这样有利于防止电子元器件42遭受工作介质的腐蚀,这里的电子元器件42包括电容、电阻、电感、处理器等其他电子元器件。
参见图4,流体驱动装置100还包括感温单元44,感温单元44与电路板组件4电连接,感温单元44与基板41电连接,感温单元44与位于第二腔90的工作介质接触以检测第二腔90的工作介质的温度;这样控制***可以根据工作介质的温度对流体驱动装置100的运行状态进行调整,本实施例中,感温单元44可以是热敏电阻或者温度传感器等其他温度探测元件。
参见图3和图4,本实施例中,基板41包括正面411和反面412,正面411与反面412相对设置,沿着流体驱动装置100的高度方向,正面411比反面412更靠近第一转子组件1,感温单元44支撑于正面411,电子元器件42包括发热电子元器件,发热电子元器件包括场效晶体管(Mosfet)、电容421等,发热电子元器件设置于反面412,这样有利于防止发热电子 元器件的热量干扰感温单元44检测的准确性,当然,作为其他实施方式,感温单元44也可以支撑于反面412,此时对应地,发热电子元器件支撑于正面411。
参见图3,电路板组件4还包括胶粘部43,胶粘部43支撑于基板41,胶粘部43与基板41粘接,具体地,本实施例中,胶粘部43与基板41的反面412粘接,胶粘部43的外轮廓呈封闭状,本实施例中,设置于基板41的反面412的电子元器件均位于胶粘部43所围成的区域内,在胶粘部43所围成的区域内填充有防护膜,防护膜覆盖至少部分电子元器件;防护膜的高度小于等于胶粘部43的高度;本实施例中,胶粘部43通过胶黏剂固化形成,防护膜通过胶水固化形成,通过在需要覆防护膜的电子元器件42的四周设置胶粘部43,且防护膜的高度小于等于胶粘部43的高度,这样当将胶水置于需要涂覆的区域时,胶粘部43能够防止胶水溢出电路板组件4的外侧或者防止胶水溢出指定区域,从而有利于保证胶水固化成防护膜时的厚度,进而有利于提高防护膜防止电子元器件42遭受工作介质的腐蚀的可靠性;参见图3,本实施例中,电路板组件4只包括一个胶粘部43,胶粘部43靠近基板41的反面412的外周设置,位于反面412的电子元器件42位于胶粘部43所围成的区域,胶粘部43所围成的区域均设有防护膜,通过这样的方式,有利于实现电控板组件的批量生产,简化电路板组件的工艺路线,有利于降低电路板组件的生产成本,进而降低流体驱动装置的生产成本。当然,作为其他实施方式,电路板组件4的反面412也可以设置两个或多个胶粘部43,此时胶粘部43的形状大小可以相同,也可以不同,胶粘部43的位置可以根据需要覆防护膜的电子元器件42的位置适应 性设计;另外,作为其他实施方式,电路板组件4的正面411也可以设置相应地胶粘部43。
参见图5,图5为本申请中流体驱动装置的第二种实施方式的结构示意图;以下将对流体驱动装置的第二种实施方式的结构进行详细介绍。
参见图5,第二腔90能够容纳工作介质,当第二腔90容纳有工作介质时,至少部分电路板组件4能够与位于第二腔90的工作介质接触;这样使得位于第二腔90的工作介质能够与电路板组件4所产生的热量进行热交换,从而有利于电路板组件4的散热,进而有利于提高流体驱动装置100的使用寿命。
具体地,参见图5,本实施例中,第一腔80与第二腔90连通;具体地,本实施例中,轴5包括第二通道20,第二通道20设置为贯穿轴5的第一端面和轴5的第二端面;流体驱动装置100具有进流通道13,第二通道20与进流通道13连通,通过第二通道20使得进流通道13的工作介质能够流入第二腔90并与位于第二腔90内的电路板组件4的至少部分接触,这样使得位于第二腔90的工作介质能够与电路板组件4所产生的热量进行热交换,从而有利于电路板组件4的散热,进而有利于提高流体驱动装置100的使用寿命;进一步地,本实施例中,至少部分定子组件2也能够与位于第二腔90的工作介质接触,这样使得定子组件2所产生的热量也能够与位于第二腔90的工作介质进行热交换,从而有利于定子组件2的散热,进而进一步有利于提高流体驱动装置100的使用寿命;参见图1,第一腔80所对应的壁面包括底壁802,底壁802能够支撑第一转子组件1;流体驱动装置100还包括第一通道10,第一通道10贯穿底壁802的上下表面, 第一通道10能够连通第一腔80和第二腔90,工作介质在第二通道20的进口处的压力大于工作介质在第一通道10的出口处的压力,通过第一通道10使得第二腔90内的工作介质能够离开第二腔90;由于工作介质在第二通道20的进口处的压力大于工作介质在第一通道10的出口处的压力,这样使得工作介质在第二通道20的进口处与工作介质在第一通道10的出口处形成压力差,根据工作介质从压力高的地方流向压力低的地方的原理,从而使得第二腔90内的工作介质能够向第一通道10的出口方向流动,由于定子组件2和电路板组件4设置于第二腔90内,流动的工作介质可以带走定子组件2和电路板组件4的至少部分热量,从而进一步有利于提高定子组件2和电路板组件4的散热效率。
与流体驱动装置的第一种实施方式相比,本实施方式中,工作介质流入第二腔90和工作介质流出第二腔90的通道不同;本实施例中流体驱动装置100的其他结构可参考流体驱动装置的第一种实施方式,在此就不一一赘述了。
需要说明的是:以上实施例仅用于说明本申请而并非限制本申请所描述的技术方案,尽管本说明书参照上述的实施例对本申请已进行了详细的说明,但是,本领域的普通技术人员应当理解,所属技术领域的技术人员仍然可以对本申请进行修改或者等同替换,而一切不脱离本申请的精神和范围的技术方案及其改进,均应涵盖在本申请的权利要求范围内。

Claims (15)

  1. 一种流体驱动装置,包括第一转子组件、第二转子组件、定子组件以及电路板组件,所述第二转子组件与所述第一转子组件传动连接,所述定子组件与所述电路板组件电连接;其特征在于:所述流体驱动装置具有第一腔和第二腔,所述第一转子组件位于所述第一腔,所述定子组件和所述电路板组件位于所述第二腔,所述第一腔能够有工作介质流通,所述第二腔能够容纳工作介质,当所述第二腔容纳有工作介质时,所述电路板组件的至少部分能够与位于所述第二腔的工作介质接触。
  2. 根据权利要求1所述的流体驱动装置,其特征在于:所述第一转子组件、所述定子组件、所述电路板组件沿着所述流体驱动装置的高度方向设置,至少部分所述定子组件能够与位于所述第二腔的工作介质接触。
  3. 根据权利要求1或2所述的流体驱动装置,其特征在于:所述第一腔所对应的壁面包括底壁,所述底壁能够支撑所述第一转子组件;所述流体驱动装置包括第一通道,所述第一通道贯穿所述底壁的上下表面,所述第一通道能够连通所述第一腔和所述第二腔。
  4. 根据权利要求3所述的流体驱动装置,其特征在于:所述第一腔内的至少部分工作介质能够通过所述第一通道流入所述第二腔;所述流体驱动装置还包括轴,所述轴的一端与部分所述第一转子组件连接,所述轴的另一端与所述第二转子组件连接;所述轴包括第二通道,所述第二通道设置为贯穿所述轴的第一端面和所述轴的第二端面,所述流体驱动装置工作时,工作介质在所述第一通道的进口处的压力大于工作介质在所述第二通道的出口处的压力,工作介质能够通过所述第二通道离开所述第二腔。
  5. 根据权利要求3所述的流体驱动装置,其特征在于:所述流体驱动装置还包括轴,所述轴的一端与部分所述第一转子组件连接,所述轴的另一端与所述第二转子组件连接;所述轴包括第二通道,所述第二通道设置为贯穿所述轴的第一端面和所述轴的第二端面;所述流体驱动装置具有进流通道,所述第二通道连通所述进流通道,所述第二通道连通所述第二腔;所述流体驱动装置工作时,工作介质在所述第二通道的进口处的压力大于工作介质在所述第一通道的出口处的压力。
  6. 根据权利要求1或2所述的流体驱动装置,其特征在于:所述电路板组件包括基板和电子元器件,所述电子元器件与所述基板固定连接,至少部分所述电子元器件的外表面覆有防护膜。
  7. 根据权利要求3所述的流体驱动装置,其特征在于:所述电路板组件包括基板和电子元器件,所述电子元器件与所述基板固定连接,至少部分所述电子元器件的外表面覆有防护膜。
  8. 根据权利要求4或5所述的流体驱动装置,其特征在于:所述电路板组件包括基板和电子元器件,所述电子元器件与所述基板固定连接,至少部分所述电子元器件的外表面覆有防护膜。
  9. 根据权利要求6所述的流体驱动装置,其特征在于:所述电路板组件还包括胶粘部,所述胶粘部支撑于所述基板,所述胶粘部与所述基板粘接,所述胶粘部的外轮廓呈封闭状,覆有所述防护膜的至少部分所述电子元器件位于所述胶粘部所围成的区域;所述防护膜的高度小于等于所述胶粘部的高度。
  10. 根据权利要求7所述的流体驱动装置,其特征在于:所述电路板 组件还包括胶粘部,所述胶粘部支撑于所述基板,所述胶粘部与所述基板粘接,所述胶粘部的外轮廓呈封闭状,覆有所述防护膜的至少部分所述电子元器件位于所述胶粘部所围成的区域;所述防护膜的高度小于等于所述胶粘部的高度。
  11. 根据权利要求8所述的流体驱动装置,其特征在于:所述电路板组件还包括胶粘部,所述胶粘部支撑于所述基板,所述胶粘部与所述基板粘接,所述胶粘部的外轮廓呈封闭状,覆有所述防护膜的至少部分所述电子元器件位于所述胶粘部所围成的区域;所述防护膜的高度小于等于所述胶粘部的高度。
  12. 根据权利要求6至11任一所述的流体驱动装置,其特征在于:所述流体驱动装置还包括感温单元,所述感温单元与所述电路板组件电连接,所述感温单元与所述基板电连接,所述感温单元与位于所述第二腔的工作介质接触以检测所述第二腔的工作介质的温度。
  13. 根据权利要求12所述的流体驱动装置,其特征在于:所述基板包括正面和反面,沿着所述流体驱动装置的高度方向,所述正面比所述反面更靠近所述第一转子组件,所述电子元器件包括发热电子元器件,所述感温单元支撑于所述正面和所述反面中的其中一面,所述发热电子元器支撑于所述正面和所述反面中的另外一面。
  14. 根据权利要求1至13任一项所述的流体驱动装置,其特征在于:所述流体驱动装置还包括电机壳体、上盖和底盖,沿着所述流体驱动装置的高度方向,至少部分所述电机壳***于所述上盖和所述底盖之间,所述电机壳体的一侧与所述上盖相对固定连接,所述电机壳体的另一侧与所述 电机壳体相对固定连接;所述电机壳体具有第一容纳腔,至少部分所述定子组件位于所述第一容纳腔,所述第一容纳腔构成至少部分所述第二腔,所述底盖与所述第一容纳腔所对应的周侧壁密封设置。
  15. 根据权利要求14所述的流体驱动装置,其特征在于:所述流体驱动装置还包括第一密封圈,所述底盖具有凹槽,所述凹槽自所述底盖的外周面凹陷设置,至少部分所述第一密封圈位于所述凹槽,所述第一密封圈的一侧与所述凹槽所对应的所述底面抵接,所述第一密封圈的另一侧与所述第一容纳腔所对应的周侧壁抵接。
PCT/CN2022/106407 2021-07-19 2022-07-19 流体驱动装置 WO2023001134A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020247003787A KR20240028491A (ko) 2021-07-19 2022-07-19 유체 구동 장치
EP22845299.1A EP4375510A1 (en) 2021-07-19 2022-07-19 Fluid drive device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110814680.0A CN115638104A (zh) 2021-07-19 2021-07-19 流体驱动装置
CN202110814680.0 2021-07-19

Publications (1)

Publication Number Publication Date
WO2023001134A1 true WO2023001134A1 (zh) 2023-01-26

Family

ID=84940792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106407 WO2023001134A1 (zh) 2021-07-19 2022-07-19 流体驱动装置

Country Status (4)

Country Link
EP (1) EP4375510A1 (zh)
KR (1) KR20240028491A (zh)
CN (1) CN115638104A (zh)
WO (1) WO2023001134A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014001637A (ja) * 2012-06-15 2014-01-09 Jtekt Corp 電動ポンプ装置
CN105375830A (zh) * 2015-12-16 2016-03-02 西北工业大学 一种自冷却式一体化燃油泵用高压无刷直流电机控制装置
WO2018062093A1 (ja) * 2016-09-30 2018-04-05 日本電産トーソク株式会社 ポンプ装置
CN109424539A (zh) * 2017-08-31 2019-03-05 杭州三花研究院有限公司 电子油泵
CN112112796A (zh) * 2019-06-19 2020-12-22 杭州三花研究院有限公司 电动泵

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014001637A (ja) * 2012-06-15 2014-01-09 Jtekt Corp 電動ポンプ装置
CN105375830A (zh) * 2015-12-16 2016-03-02 西北工业大学 一种自冷却式一体化燃油泵用高压无刷直流电机控制装置
WO2018062093A1 (ja) * 2016-09-30 2018-04-05 日本電産トーソク株式会社 ポンプ装置
CN109424539A (zh) * 2017-08-31 2019-03-05 杭州三花研究院有限公司 电子油泵
CN112112796A (zh) * 2019-06-19 2020-12-22 杭州三花研究院有限公司 电动泵

Also Published As

Publication number Publication date
EP4375510A1 (en) 2024-05-29
CN115638104A (zh) 2023-01-24
KR20240028491A (ko) 2024-03-05

Similar Documents

Publication Publication Date Title
US11622472B2 (en) Liquid-cooling heat exchange apparatus
JP6855845B2 (ja) モータ及び電動オイルポンプ
JP4096267B2 (ja) 駆動装置
KR100614987B1 (ko) 모터 일체형 내접 기어식 펌프 및 전자 기기
KR100677624B1 (ko) 액체냉각시스템 및 이를 채용한 전자기기
EP1482175A2 (en) Electric powered pump
KR101601100B1 (ko) 냉각수 유동 통로를 갖는 전동식 워터 펌프
WO2018159480A1 (ja) 電動オイルポンプ
JP2016039672A (ja) 電動オイルポンプ装置
TWM516708U (zh) 水冷裝置
WO2013038608A1 (ja) 油圧ユニット
JP2019527790A (ja) 内部能動冷却機能付きコントローラおよびモータ内蔵ポンプアセンブリ
WO2023001134A1 (zh) 流体驱动装置
JP2005337095A (ja) 電動ポンプ
CN110195706A (zh) 一种利用自身介质散热的电子水泵
WO2022057784A1 (zh) 电子油泵
US20210396233A1 (en) Glanded pump with ring capacitor
JP2024527783A (ja) 流体駆動装置
TWI747065B (zh) 薄型泵浦
WO2020253173A1 (zh) 全地形车
KR20150048946A (ko) 방열 기능을 개선한 캔드 모터 펌프
WO2024116949A1 (ja) 回転体装置
CN219549116U (zh) 电动油泵装置
CN116600526A (zh) 流体驱动装置
JP5019532B2 (ja) Ehd現象を利用した回転型ポンプ及び冷却装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845299

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024502232

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18580592

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20247003787

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022845299

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022845299

Country of ref document: EP

Effective date: 20240219