WO2022270460A1 - (meth)acrylic resin composition, inorganic fine particle-dispersed slurry composition, and inorganic fine particle-dispersed molded product - Google Patents

(meth)acrylic resin composition, inorganic fine particle-dispersed slurry composition, and inorganic fine particle-dispersed molded product Download PDF

Info

Publication number
WO2022270460A1
WO2022270460A1 PCT/JP2022/024519 JP2022024519W WO2022270460A1 WO 2022270460 A1 WO2022270460 A1 WO 2022270460A1 JP 2022024519 W JP2022024519 W JP 2022024519W WO 2022270460 A1 WO2022270460 A1 WO 2022270460A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
meth
acrylic resin
inorganic fine
less
Prior art date
Application number
PCT/JP2022/024519
Other languages
French (fr)
Japanese (ja)
Inventor
丈 大塚
健司 山内
竜也 松窪
由実 金子
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to KR1020237024966A priority Critical patent/KR20240022439A/en
Priority to CN202280012445.4A priority patent/CN116829643A/en
Priority to JP2022541690A priority patent/JPWO2022270460A1/ja
Publication of WO2022270460A1 publication Critical patent/WO2022270460A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/20Esters of polyhydric alcohols or phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure

Definitions

  • the present invention relates to a (meth)acrylic resin composition, an inorganic fine particle-dispersed slurry composition, and an inorganic fine particle-dispersed molding.
  • a composition in which inorganic fine particles such as ceramic powder and glass particles are dispersed in a binder resin is used in the production of laminated electronic components such as laminated ceramic capacitors.
  • laminated ceramic capacitors are generally manufactured using the following method. First, after adding additives such as a plasticizer and a dispersant to a solution of a binder resin dissolved in an organic solvent, ceramic raw material powder is added and uniformly mixed using a ball mill or the like to obtain an inorganic fine particle dispersion slurry composition. obtain.
  • the resulting inorganic fine particle-dispersed slurry composition is cast on the surface of a support such as a release-treated polyethylene terephthalate film, SUS plate, or the like using a doctor blade, reverse roll coater, or the like, and volatile matter such as an organic solvent is removed. After evaporating, the ceramic green sheet is obtained by peeling off from the support. Next, the resulting ceramic green sheets are coated with a conductive paste that will become internal electrodes by screen printing or the like, and a plurality of these sheets are stacked, heated and pressure-bonded to obtain a laminate.
  • the resulting laminate is heated to thermally decompose and remove components such as the binder resin, ie, a so-called degreasing treatment, followed by firing to obtain a fired ceramic body having internal electrodes. Further, external electrodes are applied to the end faces of the fired ceramic body obtained, and fired to complete a laminated ceramic capacitor.
  • Patent Literature 1 discloses a method for efficiently dispersing ceramic powder in a configuration using these binders. Specifically, a method is disclosed in which ceramic powder such as calcium titanate is first pulverized in a solvent such as ethanol, and then a resin such as polyvinyl butyral resin or ethyl cellulose resin is added. Further, Patent Document 2 discloses a method using polyvinyl butyral, cellulose-based polymer, acrylic resin, etc. as a binder.
  • JP 2011-84433 A Japanese Patent Application Laid-Open No. 2020-109761
  • Patent Document 1 has a problem that it has a high decomposition temperature and cannot be applied to applications where low-temperature firing is desirable, such as applications using easily oxidizable metals such as copper or low-melting-point glass.
  • Patent Document 2 describes the use of an acrylic resin, but when fine inorganic fine particles having an average particle size of less than 1 ⁇ m are used, there is a problem that the dispersibility deteriorates. Furthermore, the acrylic resin described in Patent Document 2 has a problem that deterioration due to oxidation occurs during degreasing, which requires a high baking temperature.
  • An object of the present invention is to provide a (meth)acrylic resin composition that has excellent decomposability at low temperatures and that can improve the dispersibility of inorganic fine particles and the effect of suppressing aggregation.
  • Another object of the present invention is to provide an inorganic fine particle-dispersed slurry composition and an inorganic fine particle-dispersed molding using the (meth)acrylic resin composition.
  • the present disclosure (1) is a (meth) acrylic resin and a (meth) acrylic resin composition containing an organic solvent, satisfying any one of the following (1) to (3), the organic solvent A (meth)acrylic resin composition having a weight concentration of OH groups contained therein of 9.0% by weight or more and 28.0% by weight or less.
  • the (meth)acrylic resin contains a high molecular weight (meth)acrylic resin (A) having a weight average molecular weight of 120,000 or more and 300,000 or less, and is contained in the high molecular weight (meth)acrylic resin (A).
  • the weight concentration of the OH group contained in the polymer is 0.4% by weight or more and 2.0% by weight or less.
  • the (meth)acrylic resin contains a high molecular weight (meth)acrylic resin (B) having a weight average molecular weight of more than 300,000 and 500,000 or less, and the high molecular weight (meth)acrylic resin (B) contains The weight concentration of OH groups contained in is 1.3% by weight or more and 3.5% by weight or less.
  • the (meth)acrylic resin contains a low-molecular-weight (meth)acrylic resin (C) having a weight-average molecular weight of 5,000 to 100,000, and the low-molecular-weight (meth)acrylic resin (C)
  • the weight concentration of OH groups contained therein is 1.3% by weight or more and 3.5% by weight or less, and the weight concentration of S atoms contained in the (meth)acrylic resin is 250 ppm or more and 20000 ppm or less.
  • (2) of the present disclosure satisfies (1) and contains a low-molecular-weight (meth)acrylic resin having a weight average molecular weight of 5,000 to 100,000, wherein the low-molecular-weight (meth)acrylic resin contains The weight concentration of the OH group contained is 1.3% by weight or more and 3.5% by weight or less, and the content of the low molecular weight (meth)acrylic resin with respect to 100 parts by weight of the high molecular weight (meth)acrylic resin (A) is 0 (1)
  • the (meth)acrylic resin composition of the present disclosure (1) which is 1 part by weight or more and 10 parts by weight or less.
  • the present disclosure (3) satisfies (1) or (2), and the solubility of the high-molecular-weight (meth)acrylic resin (A) or (B) in ethanol is 10 parts by weight/100 parts by weight or more of ethanol. It is a (meth)acrylic resin composition of the present disclosure (1).
  • the present disclosure (4) satisfies (1) or (2), and the high molecular weight (meth)acrylic resin (A) or (B) is represented by the following formula (a) for all structural units (Meta) of (1) or (3) of the present disclosure containing 79% by weight or more and 96% by weight or less of the structural unit represented by the following formula (b) and 3.1% by weight or more and 17% by weight or less of the structural unit represented by the following formula (b) It is an acrylic resin composition.
  • R 1 represents a linear or branched alkyl group having 1 to 8 carbon atoms
  • R 2 represents the number of carbon atoms in which at least one hydrogen atom is substituted with an OH group It represents 2 to 4 linear or branched alkyl groups.
  • the present disclosure (5) satisfies (1) or (2), and the OH contained in the organic solvent with respect to the weight concentration of OH groups contained in the high molecular weight (meth)acrylic resin (A) or (B)
  • the ratio of the weight concentration of groups is 4.5 or more.46.
  • the (meth)acrylic resin composition according to (1), (3) or (4) of the present disclosure which is 2 or less.
  • the present disclosure (6) satisfies (2), and the (meth)acrylic resin consists only of a high-molecular-weight (meth)acrylic resin (B), and S contained in the (meth)acrylic resin
  • the (meth)acrylic resin composition according to (1), (3), (4) or (5) of the present disclosure wherein the weight concentration of atoms is 250 ppm or more and 20000 ppm or less.
  • the present disclosure (7) is an inorganic fine particle-dispersed slurry composition containing the (meth)acrylic resin composition according to any one of the present disclosures (1) to (6), inorganic fine particles, and a plasticizer.
  • the present disclosure (8) is an inorganic fine particle-dispersed molded product obtained by using the inorganic fine particle-dispersed slurry composition of the present disclosure (7). The present invention will be described in detail below.
  • the present inventors have prepared a (meth)acrylic resin having a predetermined weight average molecular weight, OH group weight concentration, and S atom weight concentration, and By using it in combination with an organic solvent, the binder resin exhibits extremely excellent degradability even at low temperatures, and furthermore, the dispersibility of inorganic fine particles and the effect of suppressing aggregation can be improved. Arrived.
  • the (meth)acrylic resin composition of the present invention contains a (meth)acrylic resin.
  • the (meth)acrylic resin satisfies any one of the following (1) to (3).
  • the (meth)acrylic resin contains a high molecular weight (meth)acrylic resin (A) having a weight average molecular weight of 120,000 or more and 300,000 or less, and is contained in the high molecular weight (meth)acrylic resin (A).
  • the weight concentration of the OH group contained in the polymer is 0.4% by weight or more and 2.0% by weight or less.
  • the (meth)acrylic resin contains a high molecular weight (meth)acrylic resin (B) having a weight average molecular weight of more than 300,000 and 500,000 or less, and the high molecular weight (meth)acrylic resin (B) contains The weight concentration of OH groups contained in is 1.3% by weight or more and 3.5% by weight or less.
  • the (meth)acrylic resin contains a low-molecular-weight (meth)acrylic resin (C) having a weight-average molecular weight of 5,000 to 100,000, and is included in the low-molecular-weight (meth)acrylic resin.
  • the weight concentration of OH groups contained in the (meth)acrylic resin is 1.3 wt % or more and 3.5 wt % or less, and the weight concentration of S atoms contained in the (meth)acrylic resin is 250 ppm or more and 20000 ppm or less.
  • the (meth)acrylic resin contains a high molecular weight (meth)acrylic resin (A).
  • the high molecular weight (meth)acrylic resin (A) has a weight average molecular weight of 120,000 or more and 300,000 or less.
  • the weight average molecular weight is preferably 150,000 or more, more preferably 180,000 or more, preferably 250,000 or less, and more preferably 220,000 or less. Within the above range, the inorganic fine particle-dispersed slurry composition has a sufficient viscosity, and the printability can be improved.
  • the ratio (Mw/Mn) between the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the high molecular weight (meth)acrylic resin (A) is preferably 2 or more, and 8 or less. is preferred.
  • the component having a low degree of polymerization is appropriately contained, so that the viscosity of the inorganic fine particle-dispersed slurry composition is within a suitable range, and the productivity can be enhanced.
  • the sheet strength of the obtained inorganic fine particle-dispersed sheet can be made moderate.
  • the surface smoothness of the resulting ceramic green sheet can be sufficiently improved.
  • the above Mw/Mn is more preferably 3 or more, and more preferably 6 or less.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) are average molecular weights in terms of polystyrene, and can be obtained by performing GPC measurement using, for example, a column LF-804 (manufactured by Showa Denko KK) as a column. can.
  • the weight concentration of OH groups contained in the high molecular weight (meth)acrylic resin (A) is 0.4% by weight or more and 2.0% by weight or less. By setting the amount within the above range, the binder resin exhibits extremely excellent decomposability even at low temperatures, and furthermore, the dispersibility of the inorganic fine particles and the effect of suppressing aggregation can be improved.
  • the weight concentration of the OH group is preferably 0.5% by weight or more, more preferably 0.6% by weight or more, preferably 1.6% by weight or less, and 1.4% by weight. The following are more preferable.
  • the weight concentration of the OH group means the ratio of the weight of the OH group to the total weight of the high-molecular-weight (meth)acrylic resin (A), and can be calculated based on the following formula.
  • Weight concentration of OH groups contained in high molecular weight (meth)acrylic resin (A) [weight of OH groups contained in all monomers/(weight of all monomers + weight of polymerization initiator)] x 100
  • the (meth)acrylic resin contains a high-molecular-weight (meth)acrylic resin (B).
  • the high molecular weight (meth)acrylic resin (A) has a weight average molecular weight of more than 300,000 and 500,000 or less. Within the above range, the dispersibility of the inorganic fine particles can be sufficiently improved when the inorganic fine particle-dispersed slurry composition is prepared. In addition, aggregation of inorganic fine particles can be suppressed.
  • the weight average molecular weight is preferably 320,000 or more, more preferably 330,000 or more, preferably 480,000 or less, and more preferably 450,000 or less. Within the above range, the inorganic fine particle-dispersed slurry composition has a sufficient viscosity, and the printability can be improved. Further, the ratio (Mw/Mn) between the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the high molecular weight (meth)acrylic resin (B) is preferably 2 or more, and 8 or less. is preferred.
  • the component having a low degree of polymerization is appropriately contained, so that the viscosity of the inorganic fine particle-dispersed slurry composition is within a suitable range, and the productivity can be enhanced.
  • the sheet strength of the obtained inorganic fine particle-dispersed sheet can be made moderate.
  • the surface smoothness of the resulting ceramic green sheet can be sufficiently improved.
  • the above Mw/Mn is more preferably 3 or more, and more preferably 6 or less.
  • the weight concentration of OH groups contained in the high molecular weight (meth)acrylic resin (B) is 1.3% by weight or more and 3.5% by weight or less.
  • the weight concentration of the OH group is preferably 1.5% by weight or more, more preferably 2% by weight or more, preferably 3.3% by weight or less, and 3% by weight or less. is more preferred.
  • the weight concentration of the OH group means the ratio of the weight of the OH group to the total weight of the high-molecular-weight (meth)acrylic resin (B), and can be calculated based on the following formula.
  • Weight concentration of OH groups contained in high molecular weight (meth)acrylic resin (B) [weight of OH groups contained in all monomers/(weight of all monomers + weight of polymerization initiator)] x 100
  • the high molecular weight (meth)acrylic resins (A) and (B) preferably have a structural unit represented by the following formula (a), and preferably have a structural unit represented by the following formula (b). .
  • R 1 represents a linear or branched alkyl group having 1 to 8 carbon atoms
  • R 2 represents the number of carbon atoms in which at least one hydrogen atom is substituted with an OH group It represents 2 to 4 linear or branched alkyl groups.
  • R 1 above is more preferably a linear or branched alkyl group having 1 to 4 carbon atoms, such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group and isobutyl group.
  • R 2 is preferably a linear or branched alkyl group having 2 to 4 carbon atoms in which at least one hydrogen atom is substituted with an OH group. -hydroxybutyl group and the like.
  • the content of the structural unit represented by the formula (a) in the high-molecular-weight (meth)acrylic resins (A) and (B) is preferably 79% by weight or more and 96% by weight or less. preferable. By setting it as the said range, low-temperature decomposability can fully be improved.
  • the content of the structural unit represented by the above formula (a) is more preferably 85% by weight or more, and more preferably 95% by weight or less.
  • the content of the structural unit represented by the formula (b) in the high molecular weight (meth)acrylic resins (A) and (B) is preferably 3.1% by weight or more and 17% by weight or less. is preferred. Ethanol is often used as a solvent for binder resins, but acrylic resins generally have lower solubility in ethanol than polyvinyl acetal resins. However, by setting the amount in the above range, the dispersibility of the inorganic fine particles and the effect of suppressing aggregation can be improved. Moreover, the solubility in ethanol can be further enhanced.
  • the content of the structural unit represented by the above formula (2) is more preferably 4% by weight or more, and more preferably 15% by weight or less.
  • the high-molecular-weight (meth)acrylic resins (A) and (B) preferably have segments derived from a (meth)acrylic acid ester having a linear or branched alkyl group having 3 to 4 carbon atoms. By having the above segment, the low-temperature decomposability can be made more excellent.
  • Examples of the (meth)acrylic acid ester having a linear or branched alkyl group having 3 to 4 carbon atoms include n-propyl (meth)acrylate, isopropyl (meth)acrylate, and n-(meth)acrylate. -butyl, isobutyl (meth)acrylate and the like. Among them, isobutyl (meth)acrylate is preferred.
  • the content of the segment derived from the (meth)acrylic acid ester having a linear or branched alkyl group having 3 to 4 carbon atoms in the high-molecular-weight (meth)acrylic resins (A) and (B) is 30% by weight. It is preferably 40% by weight or more, more preferably 40% by weight or more, preferably 95% by weight or less, and more preferably 88% by weight or less.
  • the high-molecular-weight (meth)acrylic resins (A) and (B) may have segments derived from (meth)acrylic acid esters having alkyl groups of 1 to 2 carbon atoms.
  • Examples of the (meth)acrylic acid ester having an alkyl group having 1 to 2 carbon atoms include methyl (meth)acrylate and ethyl (meth)acrylate.
  • the content of the segment derived from the (meth)acrylic acid ester having an alkyl group having 1 to 2 carbon atoms in the high-molecular-weight (meth)acrylic resins (A) and (B) is preferably 0% by weight or more. , more preferably 10% by weight or more, preferably 66.8% by weight or less, and more preferably 46% by weight or less.
  • the high-molecular-weight (meth)acrylic resins (A) and (B) may have a segment derived from a (meth)acrylic acid ester having a linear or branched alkyl group having 5 to 8 carbon atoms. good.
  • Examples of the (meth)acrylic acid ester having a linear or branched alkyl group having 5 to 8 carbon atoms include n-pentyl (meth)acrylate, isopentyl (meth)acrylate, neopentyl (meth)acrylate, Examples include n-hexyl (meth)acrylate, n-heptyl (meth)acrylate, n-octyl (meth)acrylate and 2-ethylhexyl (meth)acrylate.
  • (meth)acrylic acid esters having a linear or branched alkyl group having 6 to 8 carbon atoms are preferred, and 2-ethylhexyl (meth)acrylate is more preferred.
  • the content of the segment derived from the (meth)acrylic acid ester having a linear or branched alkyl group having 5 to 8 carbon atoms in the high molecular weight (meth)acrylic resins (A) and (B) is 0 weight. % or more, more preferably 9 wt % or more, preferably 25 wt % or less, and more preferably 20 wt % or less.
  • the high-molecular-weight (meth)acrylic resins (A) and (B) may have a segment derived from a (meth)acrylic acid ester having a linear or branched alkyl group having 9 or more carbon atoms.
  • Examples of the (meth)acrylic acid ester having a linear or branched alkyl group having 9 or more carbon atoms include n-nonyl (meth)acrylate, isononyl (meth)acrylate, and n (meth)acrylate.
  • the high-molecular-weight (meth)acrylic resins (A) and (B) contain segments derived from (meth)acrylic acid esters having linear or branched alkyl groups in which at least one of the hydrogen atoms is substituted with an OH group. It is preferable to have By having the above segment, the binder resin exhibits extremely excellent degradability even at low temperatures, and furthermore, the dispersibility of the inorganic fine particles and the effect of suppressing aggregation can be improved.
  • the (meth)acrylic acid ester having a linear or branched alkyl group in which at least one of the hydrogen atoms is substituted with an OH group preferably has an OH group weight ratio of 10.5% by weight or more. , more preferably 11.5% by weight or more, and preferably 13.1% by weight or less.
  • the high-molecular-weight (meth)acrylic resins (A) and (B) are (meth)acrylic acid having a linear or branched alkyl group having 2 to 4 carbon atoms in which at least one of the hydrogen atoms is substituted with an OH group. It is preferred to have segments derived from esters.
  • Examples of the (meth)acrylic acid ester having a linear or branched alkyl group having 2 to 4 carbon atoms in which at least one of the hydrogen atoms is substituted with an OH group include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 3-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, etc. is mentioned. Among them, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, and 2-hydroxybutyl (meth)acrylate are preferred.
  • (Meth)acrylic acid ester having a linear or branched alkyl group having 2 to 4 carbon atoms in which at least one hydrogen atom in the high-molecular-weight (meth)acrylic resins (A) and (B) is substituted with an OH group
  • the content of the segment derived from is preferably 3.1% by weight or more, more preferably 5.0% by weight or more, preferably 17.0% by weight or less, and 12.2% by weight % or less.
  • the high-molecular-weight (meth)acrylic resins (A) and (B) are (meth)acrylic acid esters having a linear or branched alkyl group having 5 or more carbon atoms in which at least one of the hydrogen atoms is substituted with an OH group.
  • Examples of the (meth)acrylic acid ester having a linear or branched alkyl group having 5 or more carbon atoms in which at least one of the hydrogen atoms is substituted with an OH group include hydroxypentyl (meth)acrylate, (meth) hydroxyhexyl acrylate, hydroxyheptyl (meth)acrylate, hydroxyoctyl (meth)acrylate and the like.
  • the high-molecular weight (meth)acrylic resins (A) and (B) include segments derived from the (meth)acrylic acid ester, segments derived from (meth)acrylic acid, and (meth)acrylic acid having a glycidyl group. It may have segments derived from other (meth)acrylic acid esters such as esters.
  • the glass transition temperature (Tg) of the high molecular weight (meth)acrylic resins (A) and (B) is preferably 30° C. or higher and 85° C. or lower. By setting the amount within the above range, the amount of the plasticizer to be added can be reduced, and the low-temperature decomposability can be improved.
  • the Tg is more preferably 32° C. or higher, still more preferably 42° C. or higher, even more preferably 45° C. or higher, particularly preferably 50° C. or higher, and 80° C. or lower. is more preferable, and 75° C. or less is even more preferable.
  • the glass transition temperature (Tg) can be measured using, for example, a differential scanning calorimeter (DSC).
  • the above high molecular weight (meth)acrylic resins (A) and (B) preferably have a solubility in ethanol of 10 parts by weight/100 parts by weight or more of ethanol. By setting it as the said range, the dispersibility of an inorganic fine particle and the aggregation inhibitory effect can be improved. In addition, the solubility in organic solvents can be sufficiently increased.
  • the solubility in ethanol is more preferably 50 parts by weight or more, and even more preferably 100 parts by weight or more.
  • the above-mentioned solubility in ethanol means the amount of resin added required until precipitation occurs when dissolved in 100 parts by weight of ethanol in an environment of 25°C.
  • the content of the high molecular weight (meth)acrylic resin (A) in the (meth)acrylic resin composition of the present invention is preferably 5% by weight or more, more preferably 10% by weight or more, and 30% by weight. % or more, preferably 70% by weight or less, and more preferably 60% by weight or less.
  • the content of the high molecular weight (meth)acrylic resin (B) in the (meth)acrylic resin composition of the present invention is preferably 5% by weight or more, more preferably 10% by weight or more, and 30% by weight. % or more, preferably 70% by weight or less, and more preferably 60% by weight or less.
  • the weight concentration of S atoms contained in the (meth)acrylic resin is preferably 250 ppm or more, and preferably 20000 ppm or less. preferable.
  • the binder resin exhibits extremely excellent decomposability even at low temperatures, and furthermore, the dispersibility of the inorganic fine particles and the effect of suppressing aggregation can be improved.
  • the weight concentration of the S atoms is more preferably 400 ppm or more, and more preferably 15000 ppm or less.
  • the weight concentration of S atoms means the ratio of the weight of S atoms to the weight of the (meth)acrylic resin, and can be calculated based on the following formula.
  • Weight concentration of S atoms contained in (meth)acrylic resin [weight of S atoms contained in chain transfer agent/(weight of all monomers + weight of polymerization initiator + weight of chain transfer agent)] ⁇ 100
  • the weight concentration of the S atoms is the weight concentration of the S atoms contained in each (meth)acrylic resin and each (meth)acrylic resin.
  • the weight concentration of S atoms can also be determined by ICP-AES (inductively coupled plasma atomic emission spectrometry).
  • the method for producing the high molecular weight (meth)acrylic resins (A) and (B) is not particularly limited.
  • an organic solvent or the like is added to a raw material monomer mixture containing (meth) acrylic acid ester or the like to prepare a monomer mixture, and a polymerization initiator and a chain transfer agent are added to the obtained monomer mixture, and the above A method of copolymerizing raw material monomers may be mentioned.
  • the polymerization method is not particularly limited, and examples thereof include emulsion polymerization, suspension polymerization, bulk polymerization, interfacial polymerization, and solution polymerization. Among them, solution polymerization is preferred.
  • Examples of the polymerization initiator include t-butyl peroxypivalate, p-menthane hydroperoxide, diisopropylbenzene hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, cumene hydroxyperoxide, t-butyl hydroxyperoxide, cyclohexanone peroxide, disuccinic acid peroxide and the like.
  • Examples of the chain transfer agent include 3-mercapto-1,2-propanediol, 3-mercapto-1-propanol, 3-mercapto-2-butanol, 8-mercapto-1-octanol, mercaptosuccinic acid, and mercaptoacetic acid. etc.
  • the (meth)acrylic resin contains a low molecular weight (meth)acrylic resin (C).
  • the low molecular weight (meth)acrylic resin (C) has a weight average molecular weight of 5,000 or more and 100,000 or less.
  • the weight average molecular weight is more preferably 6,000 or more, still more preferably 8,000 or more, more preferably 90,000 or less, and even more preferably 30,000 or less.
  • the ratio (Mw/Mn) between the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the low molecular weight (meth)acrylic resin (C) is preferably 1.3 or more, and 2 or more. It is more preferable that there is one, and it is preferable that it is 8 or less.
  • the content is within the above range, the component having a low degree of polymerization is appropriately contained, so that the viscosity of the inorganic fine particle-dispersed slurry composition is within a suitable range, and the productivity can be enhanced.
  • the sheet strength of the obtained inorganic fine particle-dispersed sheet can be made moderate. Furthermore, the surface smoothness of the resulting ceramic green sheet can be sufficiently improved.
  • the above Mw/Mn is more preferably 3 or more, and more preferably 6 or less.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) are average molecular weights in terms of polystyrene, and can be obtained by performing GPC measurement using, for example, a column LF-804 (manufactured by Showa Denko KK) as a column. can.
  • the weight concentration of OH groups contained in the low molecular weight (meth)acrylic resin (C) is 1.3% by weight or more and 3.5% by weight or less. By setting the amount within the above range, the binder resin exhibits extremely excellent decomposability even at low temperatures, and furthermore, the dispersibility of the inorganic fine particles and the effect of suppressing aggregation can be improved.
  • the weight concentration of the OH groups is preferably 1.4% by weight or more, preferably 3.3% by weight or less, and more preferably 3.2% by weight or less.
  • the weight concentration of OH groups means the ratio of the weight of OH groups to the total weight of the low-molecular-weight (meth)acrylic resin (C), and can be calculated based on the following formula.
  • Weight concentration of OH groups contained in the low molecular weight (meth) acrylic resin (C) [(weight of OH groups contained in all monomers + weight of OH groups contained in chain transfer agent) / (weight of all monomers + weight of polymerization initiator + weight of chain transfer agent)] ⁇ 100
  • the low-molecular-weight (meth)acrylic resin (C) preferably has a segment derived from a (meth)acrylic acid ester having a linear or branched alkyl group with 3 to 4 carbon atoms. By having the above segment, the low-temperature decomposability can be made more excellent.
  • the (meth)acrylic acid ester having a linear or branched alkyl group having 3 to 4 carbon atoms include n-propyl (meth)acrylate, isopropyl (meth)acrylate, and n-(meth)acrylate. -butyl, isobutyl (meth)acrylate and the like. Among them, isobutyl (meth)acrylate is preferred.
  • the content of the segment derived from the (meth)acrylic acid ester having a linear or branched alkyl group having 3 to 4 carbon atoms in the low molecular weight (meth)acrylic resin (C) is 38% by weight or more. , more preferably 50% by weight or more, preferably 80% by weight or less, and more preferably 75% by weight or less.
  • the low-molecular-weight (meth)acrylic resin (C) may have a segment derived from a (meth)acrylic acid ester having an alkyl group having 1 to 2 carbon atoms.
  • examples of the (meth)acrylic acid ester having an alkyl group having 1 to 2 carbon atoms include methyl (meth)acrylate and ethyl (meth)acrylate.
  • the content of the segment derived from the (meth)acrylic acid ester having an alkyl group having 1 to 2 carbon atoms in the low molecular weight (meth)acrylic resin (C) is preferably 0% by weight or more, and 7% by weight. It is more preferably 33% by weight or less, and more preferably 20.5% by weight or less.
  • the low-molecular-weight (meth)acrylic resin (C) may have a segment derived from a (meth)acrylic acid ester having a linear or branched alkyl group with 5 to 8 carbon atoms.
  • Examples of the (meth)acrylic acid ester having a linear or branched alkyl group having 5 to 8 carbon atoms include n-pentyl (meth)acrylate, isopentyl (meth)acrylate, neopentyl (meth)acrylate, Examples include n-hexyl (meth)acrylate, n-heptyl (meth)acrylate, n-octyl (meth)acrylate and 2-ethylhexyl (meth)acrylate.
  • (meth)acrylic acid esters having a linear or branched alkyl group having 6 to 8 carbon atoms are preferred, and 2-ethylhexyl (meth)acrylate is more preferred.
  • the content of the segment derived from the (meth)acrylic acid ester having a linear or branched alkyl group having 5 to 8 carbon atoms in the low molecular weight (meth)acrylic resin (C) is 0% by weight or more. It is preferably 10% by weight or more, more preferably 40% by weight or less, and more preferably 30% by weight or less.
  • the low-molecular-weight (meth)acrylic resin (C) may have a segment derived from a (meth)acrylic acid ester having a linear or branched alkyl group with 9 or more carbon atoms.
  • Examples of the (meth)acrylic acid ester having a linear or branched alkyl group having 9 or more carbon atoms include n-nonyl (meth)acrylate, isononyl (meth)acrylate, and n (meth)acrylate.
  • the low-molecular-weight (meth)acrylic resin (C) preferably has a segment derived from a (meth)acrylic acid ester having a linear or branched alkyl group in which at least one of the hydrogen atoms is substituted with an OH group.
  • the binder resin exhibits extremely excellent degradability even at low temperatures, and furthermore, the dispersibility of the inorganic fine particles and the effect of suppressing aggregation can be improved.
  • the (meth)acrylic acid ester having a linear or branched alkyl group in which at least one of the hydrogen atoms is substituted with an OH group preferably has an OH group weight ratio of 10.5% by weight or more. , more preferably 11.5% by weight or more, and preferably 13.1% by weight or less.
  • the low-molecular-weight (meth)acrylic resin (C) is derived from a (meth)acrylic acid ester having a linear or branched alkyl group having 2 to 4 carbon atoms in which at least one of the hydrogen atoms is substituted with an OH group. It is preferred to have segments.
  • Examples of the (meth)acrylic acid ester having a linear or branched alkyl group having 2 to 4 carbon atoms in which at least one of the hydrogen atoms is substituted with an OH group include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 3-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, etc. is mentioned. Among them, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, and 2-hydroxybutyl (meth)acrylate are preferred.
  • a segment derived from a (meth)acrylic acid ester having a linear or branched alkyl group having 2 to 4 carbon atoms in which at least one of the hydrogen atoms in the low molecular weight (meth)acrylic resin (C) is substituted with an OH group is preferably 7% by weight or more, more preferably 10% by weight or more, preferably 20% by weight or less, and more preferably 16% by weight or less.
  • the low-molecular-weight (meth)acrylic resin (C) is a segment derived from a (meth)acrylic acid ester having a linear or branched alkyl group having 5 or more carbon atoms in which at least one of the hydrogen atoms is substituted with an OH group. It is preferred to have Examples of the (meth)acrylic acid ester having a linear or branched alkyl group having 5 or more carbon atoms in which at least one of the hydrogen atoms is substituted with an OH group include hydroxypentyl (meth)acrylate, (meth) hydroxyhexyl acrylate, hydroxyheptyl (meth)acrylate, hydroxyoctyl (meth)acrylate and the like.
  • the low-molecular-weight (meth)acrylic resin (C) includes segments derived from the (meth)acrylic acid ester, segments derived from (meth)acrylic acid, glycidyl group-containing (meth)acrylic acid esters, and the like. may have a segment derived from the (meth)acrylic acid ester of.
  • the weight concentration of S atoms contained in the (meth)acrylic resin is 250 ppm or more and 20000 ppm or less.
  • the binder resin exhibits extremely excellent decomposability even at low temperatures, and furthermore, the dispersibility of the inorganic fine particles and the effect of suppressing aggregation can be improved.
  • the weight concentration of the S atoms is preferably 1500 ppm or more, more preferably 3000 ppm or more, preferably 18000 ppm or less, and more preferably 10000 ppm or less.
  • the weight concentration of S atoms means the ratio of the weight of S atoms to the weight of the (meth)acrylic resin, and can be calculated based on the following formula.
  • Weight concentration of S atoms contained in (meth)acrylic resin [weight of S atoms contained in chain transfer agent/(weight of all monomers + weight of polymerization initiator + weight of chain transfer agent)] ⁇ 100
  • the weight concentration of the S atoms is the weight concentration of the S atoms contained in each (meth)acrylic resin and each (meth)acrylic resin.
  • the weight concentration of S atoms can also be determined by ICP-AES (inductively coupled plasma atomic emission spectrometry).
  • the glass transition temperature (Tg) of the low molecular weight (meth)acrylic resin (C) is 30°C or higher and 60°C or lower. By setting the amount within the above range, the amount of the plasticizer to be added can be reduced, and the low-temperature decomposability can be improved.
  • the Tg is preferably 32° C. or higher, more preferably 42° C. or higher, even more preferably 45° C. or higher, preferably 58° C. or lower, and more preferably 50° C. or lower. preferable.
  • the glass transition temperature (Tg) can be measured using, for example, a differential scanning calorimeter (DSC).
  • the content of the low molecular weight (meth)acrylic resin (C) in the (meth)acrylic resin composition of the present invention is preferably 0.006% by weight or more, more preferably 0.01% by weight or more. It is preferably 10% by weight or less, more preferably 8% by weight or less.
  • the (meth)acrylic resin is, in addition to the high molecular weight (meth)acrylic resin (A), further the low molecular weight (meth) ) It is preferable to contain an acrylic resin (B). Further, by containing the low-molecular-weight (meth)acrylic resin (C), the dispersibility of the inorganic fine particles can be further improved.
  • the content of the low molecular weight (meth)acrylic resin (C) is based on 100 parts by weight of the high molecular weight (meth)acrylic resin (A). Therefore, it is preferably 0.1 parts by weight or more, and preferably 10 parts by weight or less. By setting it as the said range, the dispersibility of an inorganic fine particle can be improved more.
  • the content of the low-molecular-weight (meth)acrylic resin (C) with respect to 100 parts by weight of the high-molecular-weight (meth)acrylic resin is more preferably 0.3 parts by weight or more, and is preferably 7.5 parts by weight or less. more preferred.
  • the method for producing the low molecular weight (meth)acrylic resin (C) is not particularly limited.
  • an organic solvent or the like is added to a raw material monomer mixture containing (meth) acrylic acid ester or the like to prepare a monomer mixture, and a polymerization initiator and a chain transfer agent are added to the obtained monomer mixture, and the above A method of copolymerizing raw material monomers may be mentioned.
  • the polymerization method is not particularly limited, and examples thereof include emulsion polymerization, suspension polymerization, bulk polymerization, interfacial polymerization, and solution polymerization. Among them, solution polymerization is preferred.
  • polymerization initiator examples include t-butyl peroxypivalate, p-menthane hydroperoxide, diisopropylbenzene hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, cumene hydroxyperoxide, t-butyl hydroxyperoxide, cyclohexanone peroxide, disuccinic acid peroxide and the like.
  • chain transfer agent examples include 3-mercapto-1,2-propanediol, 3-mercapto-1-propanol, 3-mercapto-2-butanol, 8-mercapto-1-octanol, mercaptosuccinic acid, and mercaptoacetic acid. etc.
  • the (meth)acrylic resin composition of the present invention contains an organic solvent.
  • the weight concentration of OH groups contained in the organic solvent is 9.0% by weight or more and 28.0% by weight or less. By containing the above organic solvent, the dispersibility of the inorganic fine particles and the effect of suppressing aggregation can be improved.
  • the weight concentration of the OH group is preferably 11.0% by weight or more, more preferably 13.0% by weight or more, preferably 26.0% by weight or less, and 24% by weight or less. more preferably 22.5% by weight or less.
  • the weight concentration of the OH group means the ratio of the weight of the OH group to the weight of the entire organic solvent, and can be calculated based on the following formula.
  • Weight concentration of OH groups contained in organic solvent (weight of OH groups contained in all organic solvents/weight of all organic solvents) x 100
  • Ratio of weight concentration of OH groups contained in the organic solvent to weight concentration of OH groups contained in the high molecular weight (meth)acrylic resins (A) and (B) (weight of OH groups contained in the organic solvent
  • the concentration/weight concentration of OH groups contained in the high molecular weight (meth)acrylic resin) is preferably 4.5 or more and preferably 46.2 or less.
  • the above ratio is more preferably 8.1 or more, more preferably 10 or more, more preferably 40 or less, still more preferably 30 or less, and even more preferably 25 or less. It is preferably 20 or less, and particularly preferably 20 or less.
  • the organic solvent contains an organic solvent having an OH group.
  • organic solvents having an OH group include aliphatic alcohols, cyclic alcohols, and alicyclic alcohols.
  • the aliphatic alcohol include ethanol, propanol, isopropanol, heptanol, octanol, decanol, tridecanol, lauryl alcohol, tetradecyl alcohol, cetyl alcohol, 2-ethyl-1-hexanol, octadecyl alcohol, hexadecenol, oleyl alcohol, texanol.
  • the cyclic alcohol include cresol and eugenol.
  • the alicyclic alcohols include cycloalkanols such as cyclohexanol, terpene alcohols such as terpineol and dihydroterpineol, and the like. Among them, aliphatic alcohols are preferred, and ethanol, isopropanol, 2-butyl-2-ethyl-1,3-propanediol, neopentyl glycol and texanol are preferred.
  • the organic solvent having an OH group preferably has a molecular weight of 46 or more, more preferably 60 or more, preferably 220 or less, and more preferably 160 or less.
  • the organic solvent having an OH group preferably has 2 or more carbon atoms, more preferably 3 or more carbon atoms, preferably 12 or less carbon atoms, and more preferably 10 or less carbon atoms.
  • the weight ratio of OH groups contained in the organic solvent having OH groups is preferably 7.5% by weight or more, more preferably 15% by weight or more, and is preferably 21% by weight or more. More preferably, it is 37% by weight or less.
  • the content of the organic solvent having an OH group with respect to the entire organic solvent is preferably 29% by weight or more, more preferably 43% by weight or more, preferably 79% by weight or less, and 61% by weight. The following are more preferable.
  • the organic solvent may contain an organic solvent other than the organic solvent having an OH group.
  • organic solvents include ketones such as acetone, methyl ethyl ketone, dipropyl ketone and diisobutyl ketone, aromatic hydrocarbons such as toluene and xylene, methyl propionate, ethyl propionate, butyl propionate, and butanoic acid.
  • toluene, butyl acetate and methyl ethyl ketone are preferred.
  • the content of the other organic solvent relative to the total organic solvent is preferably 21% by weight or more, more preferably 39% by weight or more, preferably 71% by weight or less, and 57% by weight or less. is more preferable.
  • the content of the organic solvent in the (meth)acrylic resin composition of the present invention is preferably 20% by weight or more, more preferably 30% by weight or more, and preferably 95% by weight or less, It is more preferably 70% by weight or less, and even more preferably 60% by weight or less.
  • the content of the organic solvent in the (meth)acrylic resin composition of the present invention is preferably 25 parts by weight or more, more preferably 100 parts by weight or more, relative to 100 parts by weight of the (meth)acrylic resin. More preferably, it is 2000 parts by weight or less, and more preferably 1500 parts by weight or less.
  • the content of the organic solvent in the (meth)acrylic resin composition of the present invention is preferably 25 parts by weight or more with respect to 100 parts by weight of the high molecular weight (meth)acrylic resin (A), and is 42.9 parts by weight. It is more preferably 1900 parts by weight or less, more preferably 233.3 parts by weight or less, and more preferably 150 parts by weight or less.
  • the content of the organic solvent in the (meth)acrylic resin composition of the present invention is preferably 25 parts by weight or more and 100 parts by weight with respect to 100 parts by weight of the high molecular weight (meth)acrylic resin (B). It is more preferably 2000 parts by weight or less, and more preferably 1500 parts by weight or less.
  • the content of the organic solvent in the (meth)acrylic resin composition of the present invention is preferably 25 parts by weight or more and 1000 parts by weight with respect to 100 parts by weight of the low molecular weight (meth)acrylic resin (C). It is more preferably 1,500,000 parts by weight or less, and more preferably 1,000,000 parts by weight or less.
  • the boiling point of the organic solvent is preferably 90 to 160°C.
  • the evaporation does not become too fast and the handleability is excellent.
  • the boiling point By setting the boiling point to 160° C. or lower, it is possible to improve the strength of the inorganic fine particle dispersed sheet.
  • the method for producing the (meth)acrylic resin composition of the present invention is not particularly limited. A method of mixing a (meth)acrylic resin containing at least one of the meth)acrylic resins (C), the above organic solvent, and other additives added as necessary.
  • the (meth)acrylic resin composition of the present invention has excellent low-temperature decomposability, excellent dispersibility of inorganic fine particles, and excellent aggregation-inhibiting effect. can be used for
  • An inorganic fine particle-dispersed slurry composition containing the (meth)acrylic resin composition of the present invention, inorganic fine particles and a plasticizer is also one aspect of the present invention.
  • the inorganic fine particle-dispersed slurry composition of the present invention contains inorganic fine particles.
  • the inorganic fine particles are not particularly limited, and examples thereof include glass powder, ceramic powder, phosphor fine particles, silicon oxide, and metal fine particles.
  • the glass powder is not particularly limited. Examples include glass powders of various silicon oxides such as 3 -SiO 2 system and LiO 2 -Al 2 O 3 -SiO 2 system. Further, as the glass powder, SnO--B 2 O 3 --P 2 O 5 --Al 2 O 3 mixture, PbO--B 2 O 3 --SiO 2 mixture, BaO--ZnO--B 2 O 3 ---SiO 2 mixture, ZnO -Bi 2 O 3 -B 2 O 3 -SiO 2 mixture, Bi 2 O 3 -B 2 O 3 -BaO-CuO mixture, Bi 2 O 3 -ZnO-B 2 O 3 -Al 2 O 3 -SrO mixture, ZnO - Bi2O3 - B2O3 mixture, Bi2O3 - SiO2 mixture , P2O5 - Na2O - CaO - BaO - Al2O3 - B2O3 mixture , P2O5 -Sn
  • R is an element selected from the group consisting of Zn, Ba, Ca, Mg, Sr, Sn, Ni, Fe and Mn.
  • glass powders of PbO-B 2 O 3 -SiO 2 mixtures, lead-free BaO-ZnO-B 2 O 3 -SiO 2 mixtures or ZnO-Bi 2 O 3 -B 2 O 3 -SiO 2 mixtures, etc. of lead-free glass powder is preferred.
  • the ceramic powder is not particularly limited, and examples thereof include alumina, ferrite, zirconia, zircon, barium zirconate, calcium zirconate, titanium oxide, barium titanate, strontium titanate, calcium titanate, magnesium titanate, zinc titanate, Lanthanum titanate, neodymium titanate, lead zirconium titanate, alumina nitride, silicon nitride, boron nitride, boron carbide, barium stannate, calcium stannate, magnesium silicate, mullite, steatite, cordierite, forsterite, etc. be done.
  • ITO, FTO, niobium oxide, vanadium oxide, tungsten oxide, lanthanum strontium manganite, lanthanum strontium cobalt ferrite, yttrium-stabilized zirconia, gadolinium-doped ceria, nickel oxide, lanthanum chromite, and the like can also be used.
  • the phosphor fine particles are not particularly limited, and for example, blue phosphor substances, red phosphor substances, green phosphor substances, etc., which are conventionally known as phosphor substances for displays, are used.
  • Blue phosphor materials include, for example, MgAl 10 O 17 :Eu, Y 2 SiO 5 :Ce system, CaWO 4 :Pb system, BaMgAl 14 O 23 :Eu system, BaMgAl 16 O 27 :Eu system, BaMg 2 Al 14 O 23 : Eu system, BaMg 2 Al 14 O 27 : Eu system, ZnS: (Ag, Cd) system is used.
  • red phosphor materials include Y2O3 :Eu system, Y2SiO5 :Eu system, Y3Al5O12 :Eu system, Zn3 ( PO4 ) 2 : Mn system , YBO3 :Eu.
  • Green phosphor materials include, for example, Zn2SiO4 :Mn-based, BaAl12O19 :Mn-based, SrAl13O19 : Mn -based, CaAl12O19 : Mn -based, YBO3 : Tb - based, and BaMgAl14O . 23 :Mn system, LuBO3 :Tb system, GdBO3 :Tb system , ScBO3 : Tb system, and Sr6Si3O3Cl4 :Eu system.
  • ZnO Zn system
  • ZnS (Cu, Al) system
  • ZnS Ag system
  • Y 2 O 2 S Eu system
  • ZnS Zn system
  • (Y, Cd) BO 3 Eu system
  • BaMgAl 12 O 23 Eu-based ones
  • the fine metal particles are not particularly limited, and examples thereof include powders of iron, copper, nickel, palladium, platinum, gold, silver, aluminum, tungsten, and alloys thereof.
  • metals such as copper and iron, which have good adsorption properties with carboxyl groups, amino groups, amide groups, etc. and are easily oxidized, can also be suitably used. These metal powders may be used alone or in combination of two or more.
  • various carbon blacks, carbon nanotubes, and the like may be used as the metal fine particles.
  • the inorganic fine particles preferably contain lithium or titanium.
  • low-melting-point glass such as LiO 2 ⁇ Al 2 O 3 ⁇ SiO 2 -based inorganic glass
  • Lithium cobalt composite oxides such as LiCeO2
  • Lithium manganese composite oxides such as LiMnO4
  • lithium titanium phosphate LiTi2 ( PO4) 3 )
  • lithium titanate Li4Ti5O12
  • Li4 / 3Ti5 / 3O 4 LiCoO 2
  • lithium germanium phosphate LiGe 2 (PO 4 ) 3
  • the content of the inorganic fine particles in the inorganic fine particle-dispersed slurry composition of the present invention is not particularly limited, but the preferred lower limit is 10% by weight and the preferred upper limit is 90% by weight. When the amount is 10% by weight or more, sufficient viscosity and excellent coatability can be obtained.
  • the inorganic fine particle-dispersed slurry composition of the present invention further contains a plasticizer.
  • the plasticizer include di(butoxyethyl) adipate, dibutoxyethoxyethyl adipate, triethylene glycol dibutyl, triethylene glycol bis(2-ethylhexanoate), triethylene glycol dihexanoate, acetyl triethyl citrate, acetyl tributyl citrate, acetyl diethyl citrate, acetyl citrate dibutyl, dibutyl sebacate, triacetin, diethyl acetyloxymalonate, diethyl ethoxymalonate and the like.
  • plasticizers it is possible to reduce the amount of plasticizer added compared to the case of using a normal plasticizer (when about 30% by weight is added to the binder, 25% by weight hereinafter, it can be further reduced to 20% by weight or less).
  • a non-aromatic plasticizer that does not contain an aromatic ring such as a benzene ring in its structure, and it is more preferable to use a component derived from adipic acid, triethylene glycol, citric acid or succinic acid.
  • a plasticizer having an aromatic ring is not preferable because it is likely to burn and become soot.
  • the plasticizer preferably has an alkyl group with 2 or more carbon atoms such as ethyl or butyl, and more preferably has an alkyl group with 4 or more carbon atoms.
  • the plasticizer suppresses the absorption of water into the plasticizer and prevents defects such as voids and swelling in the obtained inorganic fine particle dispersion sheet. can do.
  • the alkyl group of the plasticizer is preferably located at the molecular terminal.
  • the plasticizer preferably has a functional group having 2 carbon atoms such as an ethyl group, a functional group having 4 carbon atoms such as a butyl group, and a functional group such as a butoxyethyl group.
  • the functional group is present at the terminal molecular chain.
  • a plasticizer with a functional group with 2 carbon atoms such as an ethyl group in the terminal molecular chain has good compatibility with a segment derived from ethyl methacrylate, and a plasticizer with a functional group with 4 carbon atoms such as a butyl group in the terminal molecule.
  • the agent is compatible with segments derived from butyl methacrylate.
  • a plasticizer having a functional group with 2 or 4 carbon atoms has good compatibility with the high-molecular-weight (meth)acrylic resin according to the present invention, and can preferably improve the brittleness of the resin. Furthermore, a butoxyethyl group is compatible with the composition of both the segment derived from ethyl methacrylate and the segment derived from butyl methacrylate, and can be preferably used.
  • the plasticizer preferably has a carbon:oxygen ratio of 5:1 to 3:1.
  • the carbon:oxygen ratio By setting the carbon:oxygen ratio within the above range, it is possible to improve the combustibility of the plasticizer and prevent the generation of residual carbon. Moreover, compatibility with (meth)acrylic resin can be improved, and a plasticizing effect can be exhibited even with a small amount of plasticizer.
  • high-boiling organic solvents having a propylene glycol skeleton or a trimethylene glycol skeleton can be preferably used as long as they contain an alkyl group having 4 or more carbon atoms and have a carbon:oxygen ratio of 5:1 to 3:1.
  • the boiling point of the plasticizer is preferably 240°C or higher and lower than 390°C.
  • the boiling point is 240° C. or higher, it becomes easy to evaporate in the drying step, and can be prevented from remaining in the molded article.
  • the temperature is less than 390°C, residual carbon can be prevented from being generated.
  • the said boiling point means the boiling point in a normal pressure.
  • the content of the plasticizer in the inorganic fine particle-dispersed slurry composition of the present invention is not particularly limited, but the preferred lower limit is 0.1% by weight and the preferred upper limit is 3.0% by weight. By setting it within the above range, it is possible to reduce the baking residue of the plasticizer.
  • the content of the (meth)acrylic resin composition in the inorganic fine particle-dispersed slurry composition of the present invention is not particularly limited, but the preferred lower limit is 0.5% by weight and the preferred upper limit is 10% by weight.
  • the inorganic fine particle-dispersed slurry composition can be degreased even when fired at a low temperature, and has excellent dispersibility of the inorganic fine particles and an effect of suppressing aggregation of the inorganic fine particles.
  • a more preferable lower limit to the content of the (meth)acrylic resin composition is 1% by weight, and a more preferable upper limit is 7% by weight.
  • the inorganic fine particle-dispersed slurry composition of the present invention may further contain additives such as surfactants.
  • the surfactant is not particularly limited, and examples thereof include cationic surfactants, anionic surfactants, and nonionic surfactants.
  • the nonionic surfactant is not particularly limited, it is preferably a nonionic surfactant having an HLB value of 10 or more and 20 or less.
  • the HLB value is used as an index representing the hydrophilicity and lipophilicity of a surfactant, and several calculation methods have been proposed. is defined as S, the acid value of the fatty acid constituting the surfactant as A, and the HLB value as 20 (1-S/A).
  • nonionic surfactants having polyethylene oxide in which an alkylene ether is added to the fatty chain are suitable, and specifically, for example, polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, etc. are preferably used. be done.
  • the above nonionic surfactant has good thermal decomposability, but if added in a large amount, the thermal decomposability of the inorganic fine particle-dispersed slurry composition may decrease, so the preferred upper limit of the content is 5% by weight. .
  • the viscosity of the inorganic fine particle-dispersed slurry composition of the present invention is not particularly limited.
  • a preferable upper limit is 100 Pa ⁇ s.
  • the obtained inorganic fine particle-dispersed sheet can maintain a predetermined shape after being coated by a die coat printing method or the like. Further, by setting the viscosity to 100 Pa ⁇ s or less, it is possible to prevent problems such as not erasing the coating marks of the die, and to achieve excellent printability.
  • the method for producing the inorganic fine particle-dispersed slurry composition of the present invention is not particularly limited, and conventionally known stirring methods can be mentioned. Examples thereof include a method of stirring other components such as a solvent and optionally added plasticizer with a three-roll roller or the like. The addition order of the components of the inorganic fine particle-dispersed slurry composition can be appropriately set.
  • the inorganic fine particle dispersion slurry composition of the present invention is applied onto a support film that has been subjected to mold release treatment on one side, the organic solvent is dried, and an inorganic fine particle dispersion molding can be produced by molding.
  • an inorganic fine particle dispersion molding is also one aspect of the present invention.
  • the shape of the inorganic fine particle-dispersed molding of the present invention is not particularly limited, but may be, for example, a sheet shape.
  • the inorganic fine particle dispersion slurry composition of the present invention is uniformly coated on a support film by a coating method such as a roll coater, a die coater, a squeeze coater, a curtain coater, or the like. A method of forming a film and the like can be mentioned.
  • a coating method such as a roll coater, a die coater, a squeeze coater, a curtain coater, or the like.
  • a method of forming a film and the like can be mentioned.
  • the polymerization liquid it is preferable to use the polymerization liquid as it is as an inorganic fine particle dispersed slurry composition and process it into an inorganic fine particle dispersed molded product without drying the high molecular weight (meth)acrylic resin.
  • the support film used in producing the inorganic fine particle-dispersed molded article of the present invention is a flexible resin having heat resistance and solvent resistance.
  • a film is preferred. Since the support film has flexibility, the inorganic fine particle-dispersed slurry composition can be applied to the surface of the support film by a roll coater, a blade coater, or the like, and the resulting inorganic fine particle-dispersed sheet-forming film is wound into a roll. It can be stored and supplied as is.
  • the resin forming the support film examples include fluorine-containing resins such as polyethylene terephthalate, polyester, polyethylene, polypropylene, polystyrene, polyimide, polyvinyl alcohol, polyvinyl chloride, and polyfluoroethylene, nylon, and cellulose.
  • the thickness of the support film is preferably 20 to 100 ⁇ m, for example.
  • it is preferable that the surface of the support film is subjected to a release treatment, so that the support film can be easily peeled off in the transfer step.
  • An inorganic fine particle-dispersed molding can be produced by coating and drying the inorganic fine particle-dispersed slurry composition of the present invention.
  • a laminated ceramic capacitor can be produced by using the inorganic fine particle-dispersed slurry composition and the inorganic fine particle-dispersed molded product of the present invention for dielectric green sheets and electrode pastes.
  • a magnetic material can be produced by using the inorganic fine particle-dispersed slurry composition and the inorganic fine particle-dispersed molding of the present invention.
  • the method for producing the laminated ceramic capacitor includes the steps of printing a conductive paste on the inorganic fine particle-dispersed molding of the present invention and drying it to produce a dielectric sheet, and laminating the dielectric sheet. method.
  • the conductive paste contains conductive powder.
  • the material of the conductive powder is not particularly limited as long as it has conductivity, and examples thereof include nickel, palladium, platinum, gold, silver, copper, molybdenum, tin, and alloys thereof. These conductive powders may be used alone or in combination of two or more.
  • a method for printing the conductive paste is not particularly limited, and examples thereof include a screen printing method, a die coat printing method, an offset printing method, a gravure printing method, an inkjet printing method, and the like.
  • the laminated ceramic capacitor is obtained by laminating the dielectric sheets printed with the conductive paste.
  • the present invention it is possible to provide a (meth)acrylic resin composition that has excellent decomposability at low temperatures and that can improve the dispersibility of inorganic fine particles and the effect of suppressing aggregation. Further, an inorganic fine particle-dispersed slurry composition and an inorganic fine particle-dispersed molded product using the (meth)acrylic resin composition can be provided.
  • MMA methyl methacrylate EMA: ethyl methacrylate nBMA: n-butyl methacrylate iBMA: isobutyl methacrylate 2EHMA: 2-ethylhexyl methacrylate HEMA: 2-hydroxyethyl methacrylate HPMA: 2-hydroxypropyl methacrylate HBMA: 2-hydroxybutyl methacrylate
  • Ceramic powder and a plasticizer were added to the obtained (meth)acrylic resin composition so as to have the composition shown in Table 3, and the mixture was kneaded with a high-speed stirrer to obtain an inorganic powder.
  • a microparticle-dispersed slurry composition was prepared.
  • the ceramic powder copper powder (manufactured by Fujino Metal Co., Ltd., average particle size 0.1 ⁇ m), glass frit (manufactured by AGC, average particle size 0.8 ⁇ m), and as the plasticizer, di(butoxyethyl) adipate. was used.
  • Weight concentration of OH groups contained in high molecular weight (meth)acrylic resin [weight of OH groups contained in all monomers/(weight of all monomers + weight of polymerization initiator)] ⁇ 100 Weight concentration of OH groups contained in the low molecular weight (meth) acrylic resin: [(weight of OH groups contained in all monomers + weight of OH groups contained in chain transfer agent) / (weight of all monomers + chain transfer Weight of agent + weight of polymerization initiator)] ⁇ 100 Weight concentration of OH groups contained in organic solvent: (weight of OH groups contained in all organic solvents/weight of all organic solvents) x 100
  • Weight concentration of S atom contained in the (meth)acrylic resin [weight of S atoms contained in chain transfer agent/(weight of all monomers + weight of polymerization initiator + weight of chain transfer agent)] ⁇ 100
  • the weight concentration of the S atoms is the weight concentration of the S atoms contained in each (meth)acrylic resin and each (meth)acrylic resin. ) calculated based on the mixing ratio of the acrylic resin.
  • the inorganic fine particle dispersion slurry composition is printed in an environment of a temperature of 23 ° C. and a humidity of 50%, and the condition is 100 ° C. for 30 minutes. Solvent drying was performed in a blower oven. Using the obtained printed pattern, measurements were made at 10 points with a surface roughness meter (Surfcom, manufactured by Tokyo Seimitsu Co., Ltd.). In addition, the following were used as a screen printer, a screen plate, and a printing glass substrate.
  • Screen printer (MT-320TV, manufactured by Microtec) Screen plate (manufactured by Tokyo Process Service Co., Ltd., ST500, emulsion 2 ⁇ m, 2012 pattern, screen frame 320 mm ⁇ 320 mm)
  • Printed glass substrate (soda glass, 150 mm x 150 mm, thickness 1.5 mm) When the surface roughness is small, it can be said that the dispersibility of the inorganic fine particles is excellent.
  • the present invention it is possible to provide a (meth)acrylic resin composition that has excellent decomposability at low temperatures and that can improve the dispersibility of inorganic fine particles and the effect of suppressing aggregation. Further, an inorganic fine particle-dispersed slurry composition and an inorganic fine particle-dispersed molded product using the (meth)acrylic resin composition can be provided.

Abstract

The present invention provides a (meth)acrylic resin composition which has excellent degradability at a low temperature and can improve the dispersibility and aggregation inhibitory effect of inorganic fine particles. Moreover, the present invention provides an inorganic fine particle-dispersed slurry composition and an inorganic fine particle-dispersed molded product which use said (meth)acrylic resin composition. The present invention is a (meth)acrylic resin composition containing a (meth)acrylic resin and an organic solvent, wherein the (meth)acrylic resin composition satisfies any of the following (1)-(3), and the weight concentration of the OH group contained in the organic solvent is 9.0-28.0 wt%: (1) the (meth)acrylic resin includes a high-molecular-weight (meth)acrylic resin (A) having a weight-average molecular weight of 120,000-300,000, and the weight concentration of the OH group contained in the high-molecular-weight (meth)acrylic resin (A) is 0.4-2.0 wt%; (2) the (meth)acrylic resin includes a high-molecular-weight (meth)acrylic resin (B) having a weight-average molecular weight of 300,000-500,000 (exclusive of 300,000), and the weight concentration of the OH group contained in the high-molecular-weight (meth)acrylic resin (B) is 1.3-3.5 wt%; and (3) the (meth)acrylic resin includes a low-molecular-weight (meth)acrylic resin (C) having a weight-average molecular weight of 5,000-100,000, the weight concentration of the OH group contained in the low-molecular-weight (meth)acrylic resin (C) is 1.3-3.5 wt%, and the weight concentration of the S atom contained in the (meth)acrylic resin is 250-20,000 ppm.

Description

(メタ)アクリル樹脂組成物、無機微粒子分散スラリー組成物及び無機微粒子分散成形物(Meth)acrylic resin composition, inorganic fine particle dispersion slurry composition and inorganic fine particle dispersion molding
本発明は、(メタ)アクリル樹脂組成物、無機微粒子分散スラリー組成物及び無機微粒子分散成形物に関する。 TECHNICAL FIELD The present invention relates to a (meth)acrylic resin composition, an inorganic fine particle-dispersed slurry composition, and an inorganic fine particle-dispersed molding.
セラミック粉末、ガラス粒子等の無機微粒子をバインダー樹脂に分散させた組成物が、積層セラミクスコンデンサ等の積層電子部品の生産に用いられている。
このような積層セラミクスコンデンサは、一般に、次のような方法を用いて製造される。まず、バインダー樹脂を有機溶剤に溶解した溶液に、可塑剤、分散剤等の添加剤を添加した後、セラミック原料粉末を加え、ボールミル等を用いて均一に混合して無機微粒子分散スラリー組成物を得る。
得られた無機微粒子分散スラリー組成物を、ドクターブレード、リバースロールコーター等を用いて、離型処理したポリエチレンテレフタレートフィルム、SUSプレート等の支持体表面に流延成形し、有機溶剤等の揮発分を溜去させた後、支持体から剥離してセラミックグリーンシートを得る。
次に、得られたセラミックグリーンシート上に内部電極となる導電ペーストをスクリーン印刷等により塗工し、これを複数枚積み重ね、加熱及び圧着して積層体を得る。得られた積層体を加熱して、バインダー樹脂等の成分を熱分解して除去する処理、いわゆる脱脂処理を行った後、焼成することによって、内部電極を備えたセラミック焼成体を得る。更に、得られたセラミック焼成体の端面に外部電極を塗布し、焼成することによって、積層セラミクスコンデンサが完成する。
A composition in which inorganic fine particles such as ceramic powder and glass particles are dispersed in a binder resin is used in the production of laminated electronic components such as laminated ceramic capacitors.
Such laminated ceramic capacitors are generally manufactured using the following method. First, after adding additives such as a plasticizer and a dispersant to a solution of a binder resin dissolved in an organic solvent, ceramic raw material powder is added and uniformly mixed using a ball mill or the like to obtain an inorganic fine particle dispersion slurry composition. obtain.
The resulting inorganic fine particle-dispersed slurry composition is cast on the surface of a support such as a release-treated polyethylene terephthalate film, SUS plate, or the like using a doctor blade, reverse roll coater, or the like, and volatile matter such as an organic solvent is removed. After evaporating, the ceramic green sheet is obtained by peeling off from the support.
Next, the resulting ceramic green sheets are coated with a conductive paste that will become internal electrodes by screen printing or the like, and a plurality of these sheets are stacked, heated and pressure-bonded to obtain a laminate. The resulting laminate is heated to thermally decompose and remove components such as the binder resin, ie, a so-called degreasing treatment, followed by firing to obtain a fired ceramic body having internal electrodes. Further, external electrodes are applied to the end faces of the fired ceramic body obtained, and fired to complete a laminated ceramic capacitor.
近年、積層セラミクスコンデンサの微細化に伴い、用いる無機微粒子の微細化も進んでいる。微細化した無機微粒子はペースト中で凝集しやすく、凝集が生じると脱脂工程及び焼成工程においてボイドが残りやすくなったり、積層セラミクスコンデンサとした際に、無機微粒子の分散性が低下した結果、製品の電気特性を低下させる原因となる。 In recent years, along with the miniaturization of multilayer ceramic capacitors, the miniaturization of inorganic fine particles to be used has also progressed. Fine inorganic particles tend to agglomerate in the paste, and if agglomeration occurs, voids tend to remain in the degreasing and firing processes. It causes deterioration of electrical characteristics.
バインダー樹脂としては、例えば、エチルセルロースやポリビニルアセタール樹脂(PVB)が用いられることが一般的である。例えば、特許文献1には、これらのバインダーを用いる構成において、セラミック粉末を効率的に分散させる方法が開示されている。具体的には、チタン酸カルシウム等のセラミック粉末をエタノール等の溶剤中で一次解砕し、その後、ポリビニルブチラール樹脂、エチルセルロース樹脂等の樹脂を添加する方法が開示されている。
また、特許文献2には、ポリビニルブチラール、セルロース系高分子の他、アクリル樹脂等をバインダーとして用いる方法が開示されている。
As the binder resin, for example, ethyl cellulose and polyvinyl acetal resin (PVB) are generally used. For example, Patent Literature 1 discloses a method for efficiently dispersing ceramic powder in a configuration using these binders. Specifically, a method is disclosed in which ceramic powder such as calcium titanate is first pulverized in a solvent such as ethanol, and then a resin such as polyvinyl butyral resin or ethyl cellulose resin is added.
Further, Patent Document 2 discloses a method using polyvinyl butyral, cellulose-based polymer, acrylic resin, etc. as a binder.
特開2011-84433号公報JP 2011-84433 A 特開2020-109761号公報Japanese Patent Application Laid-Open No. 2020-109761
しかしながら、特許文献1に記載のポリビニルアセタール樹脂は、分解温度が高く、低温焼成が望ましい用途、例えば、酸化しやすい銅等の金属や低融点ガラス等を用いる用途に適用できないという問題がある。
また、特許文献2にはアクリル系樹脂を用いることが記載されているが、平均粒子径が1μmを下回る微小な無機微粒子を用いる場合、分散性が悪化するという問題がある。更に、特許文献2に記載のアクリル樹脂では、高い焼成温度が必要となる脱脂中に酸化による劣化が生じるという問題がある。
However, the polyvinyl acetal resin described in Patent Document 1 has a problem that it has a high decomposition temperature and cannot be applied to applications where low-temperature firing is desirable, such as applications using easily oxidizable metals such as copper or low-melting-point glass.
Further, Patent Document 2 describes the use of an acrylic resin, but when fine inorganic fine particles having an average particle size of less than 1 μm are used, there is a problem that the dispersibility deteriorates. Furthermore, the acrylic resin described in Patent Document 2 has a problem that deterioration due to oxidation occurs during degreasing, which requires a high baking temperature.
本発明は、低温で優れた分解性を有するとともに、無機微粒子の分散性や凝集抑制効果を向上させることができる(メタ)アクリル樹脂組成物を提供することを目的とする。また、該(メタ)アクリル樹脂組成物を用いる無機微粒子分散スラリー組成物、無機微粒子分散成形物を提供することを目的とする。 An object of the present invention is to provide a (meth)acrylic resin composition that has excellent decomposability at low temperatures and that can improve the dispersibility of inorganic fine particles and the effect of suppressing aggregation. Another object of the present invention is to provide an inorganic fine particle-dispersed slurry composition and an inorganic fine particle-dispersed molding using the (meth)acrylic resin composition.
本開示(1)は、(メタ)アクリル樹脂、及び、有機溶剤を含有する(メタ)アクリル樹脂組成物であって、下記(1)~(3)の何れか1つを満たし、前記有機溶剤中に含まれるOH基の重量濃度が9.0重量%以上28.0重量%以下である(メタ)アクリル樹脂組成物である。
(1)前記(メタ)アクリル樹脂は、重量平均分子量が12万以上30万以下の高分子量(メタ)アクリル樹脂(A)を含有し、前記高分子量(メタ)アクリル樹脂(A)中に含まれるOH基の重量濃度が0.4重量%以上2.0重量%以下である。
(2)前記(メタ)アクリル樹脂は、重量平均分子量が30万を超え50万以下である高分子量(メタ)アクリル樹脂(B)を含有し、前記高分子量(メタ)アクリル樹脂(B)中に含まれるOH基の重量濃度が1.3重量%以上3.5重量%以下である。
(3)前記(メタ)アクリル樹脂は、重量平均分子量が0.5万以上10万以下である低分子量(メタ)アクリル樹脂(C)を含有し、前記低分子量(メタ)アクリル樹脂(C)中に含まれるOH基の重量濃度が1.3重量%以上3.5重量%以下であり、前記(メタ)アクリル樹脂中に含まれるS原子の重量濃度が250ppm以上20000ppm以下である。
本開示(2)は、(1)を満たし、かつ、重量平均分子量が0.5万以上10万以下である低分子量(メタ)アクリル樹脂を含有し、前記低分子量(メタ)アクリル樹脂中に含まれるOH基の重量濃度が1.3重量%以上3.5重量%以下であり、高分子量(メタ)アクリル樹脂(A)100重量部に対する前記低分子量(メタ)アクリル樹脂の含有量が0.1重量部以上10重量部以下である本開示(1)の(メタ)アクリル樹脂組成物である。
本開示(3)は、(1)又は(2)を満たし、かつ、高分子量(メタ)アクリル樹脂(A)又は(B)のエタノールへの溶解度が10重量部/エタノール100重量部以上である本開示(1)の(メタ)アクリル樹脂組成物である。
本開示(4)は、(1)又は(2)を満たし、かつ、高分子量(メタ)アクリル樹脂(A)又は(B)は、全構成単位に対して、下記式(a)で表される構成単位を79重量%以上96重量%以下、下記式(b)で表される構成単位を3.1重量%以上17重量%以下含有する本開示(1)又は(3)の(メタ)アクリル樹脂組成物である。
Figure JPOXMLDOC01-appb-C000002
式(a)中、Rは炭素数1~8の直鎖状又は分岐状アルキル基を表し、式(b)中、Rは、水素原子の少なくとも1つがOH基で置換された炭素数2~4の直鎖状又は分岐状アルキル基を表す。
本開示(5)は、(1)又は(2)を満たし、かつ、高分子量(メタ)アクリル樹脂(A)又は(B)中に含まれるOH基の重量濃度に対する有機溶剤中に含まれるOH基の重量濃度の比(有機溶剤中に含まれるOH基の重量濃度/高分子量(メタ)アクリル樹脂(A)又は(B)中に含まれるOH基の重量濃度)が4.5以上46.2以下である本開示(1)、(3)又は(4)の(メタ)アクリル樹脂組成物である。
本開示(6)は、(2)を満たし、かつ、(メタ)アクリル樹脂は、高分子量(メタ)アクリル樹脂(B)のみからなるものであり、前記(メタ)アクリル樹脂中に含まれるS原子の重量濃度が250ppm以上20000ppm以下である本開示(1)、(3)、(4)又は(5)の(メタ)アクリル樹脂組成物である。
本開示(7)は、本開示(1)~(6)の何れかの(メタ)アクリル樹脂組成物、無機微粒子、及び、可塑剤を含有する無機微粒子分散スラリー組成物である。
本開示(8)は、本開示(7)の無機微粒子分散スラリー組成物を用いてなる無機微粒子分散成形物である。
以下に本発明を詳述する。
The present disclosure (1) is a (meth) acrylic resin and a (meth) acrylic resin composition containing an organic solvent, satisfying any one of the following (1) to (3), the organic solvent A (meth)acrylic resin composition having a weight concentration of OH groups contained therein of 9.0% by weight or more and 28.0% by weight or less.
(1) The (meth)acrylic resin contains a high molecular weight (meth)acrylic resin (A) having a weight average molecular weight of 120,000 or more and 300,000 or less, and is contained in the high molecular weight (meth)acrylic resin (A). The weight concentration of the OH group contained in the polymer is 0.4% by weight or more and 2.0% by weight or less.
(2) The (meth)acrylic resin contains a high molecular weight (meth)acrylic resin (B) having a weight average molecular weight of more than 300,000 and 500,000 or less, and the high molecular weight (meth)acrylic resin (B) contains The weight concentration of OH groups contained in is 1.3% by weight or more and 3.5% by weight or less.
(3) The (meth)acrylic resin contains a low-molecular-weight (meth)acrylic resin (C) having a weight-average molecular weight of 5,000 to 100,000, and the low-molecular-weight (meth)acrylic resin (C) The weight concentration of OH groups contained therein is 1.3% by weight or more and 3.5% by weight or less, and the weight concentration of S atoms contained in the (meth)acrylic resin is 250 ppm or more and 20000 ppm or less.
(2) of the present disclosure satisfies (1) and contains a low-molecular-weight (meth)acrylic resin having a weight average molecular weight of 5,000 to 100,000, wherein the low-molecular-weight (meth)acrylic resin contains The weight concentration of the OH group contained is 1.3% by weight or more and 3.5% by weight or less, and the content of the low molecular weight (meth)acrylic resin with respect to 100 parts by weight of the high molecular weight (meth)acrylic resin (A) is 0 (1) The (meth)acrylic resin composition of the present disclosure (1), which is 1 part by weight or more and 10 parts by weight or less.
The present disclosure (3) satisfies (1) or (2), and the solubility of the high-molecular-weight (meth)acrylic resin (A) or (B) in ethanol is 10 parts by weight/100 parts by weight or more of ethanol. It is a (meth)acrylic resin composition of the present disclosure (1).
The present disclosure (4) satisfies (1) or (2), and the high molecular weight (meth)acrylic resin (A) or (B) is represented by the following formula (a) for all structural units (Meta) of (1) or (3) of the present disclosure containing 79% by weight or more and 96% by weight or less of the structural unit represented by the following formula (b) and 3.1% by weight or more and 17% by weight or less of the structural unit represented by the following formula (b) It is an acrylic resin composition.
Figure JPOXMLDOC01-appb-C000002
In formula (a), R 1 represents a linear or branched alkyl group having 1 to 8 carbon atoms, and in formula (b), R 2 represents the number of carbon atoms in which at least one hydrogen atom is substituted with an OH group It represents 2 to 4 linear or branched alkyl groups.
The present disclosure (5) satisfies (1) or (2), and the OH contained in the organic solvent with respect to the weight concentration of OH groups contained in the high molecular weight (meth)acrylic resin (A) or (B) The ratio of the weight concentration of groups (the weight concentration of OH groups contained in the organic solvent/the weight concentration of OH groups contained in the high-molecular-weight (meth)acrylic resin (A) or (B)) is 4.5 or more.46. The (meth)acrylic resin composition according to (1), (3) or (4) of the present disclosure, which is 2 or less.
The present disclosure (6) satisfies (2), and the (meth)acrylic resin consists only of a high-molecular-weight (meth)acrylic resin (B), and S contained in the (meth)acrylic resin The (meth)acrylic resin composition according to (1), (3), (4) or (5) of the present disclosure, wherein the weight concentration of atoms is 250 ppm or more and 20000 ppm or less.
The present disclosure (7) is an inorganic fine particle-dispersed slurry composition containing the (meth)acrylic resin composition according to any one of the present disclosures (1) to (6), inorganic fine particles, and a plasticizer.
The present disclosure (8) is an inorganic fine particle-dispersed molded product obtained by using the inorganic fine particle-dispersed slurry composition of the present disclosure (7).
The present invention will be described in detail below.
本発明者らは、所定の重量平均分子量、OH基の重量濃度、S原子の重量濃度を有する(メタ)アクリル樹脂と、OH基の重量濃度が9.0重量%以上28.0重量%以下である有機溶剤とを組み合わせて用いることにより、バインダー樹脂が低温でも極めて優れた分解性を発現しつつ、更に、無機微粒子の分散性、凝集抑制効果を向上できることを見出し、本発明を完成するに至った。 The present inventors have prepared a (meth)acrylic resin having a predetermined weight average molecular weight, OH group weight concentration, and S atom weight concentration, and By using it in combination with an organic solvent, the binder resin exhibits extremely excellent degradability even at low temperatures, and furthermore, the dispersibility of inorganic fine particles and the effect of suppressing aggregation can be improved. Arrived.
本発明の(メタ)アクリル樹脂組成物は、(メタ)アクリル樹脂を含有する。
上記(メタ)アクリル樹脂は、下記(1)~(3)の何れか1つを満たす。
(1)前記(メタ)アクリル樹脂は、重量平均分子量が12万以上30万以下の高分子量(メタ)アクリル樹脂(A)を含有し、前記高分子量(メタ)アクリル樹脂(A)中に含まれるOH基の重量濃度が0.4重量%以上2.0重量%以下である。
(2)前記(メタ)アクリル樹脂は、重量平均分子量が30万を超え50万以下である高分子量(メタ)アクリル樹脂(B)を含有し、前記高分子量(メタ)アクリル樹脂(B)中に含まれるOH基の重量濃度が1.3重量%以上3.5重量%以下である。
(3)前記(メタ)アクリル樹脂は、重量平均分子量が0.5万以上10万以下である低分子量(メタ)アクリル樹脂(C)を含有し、前記低分子量(メタ)アクリル樹脂中に含まれるOH基の重量濃度が1.3重量%以上3.5重量%以下であり、前記(メタ)アクリル樹脂中に含まれるS原子の重量濃度が250ppm以上20000ppm以下である。上記構成を満たすことで、無機微粒子分散スラリー組成物とした際、無機微粒子の分散性を充分向上させることができる。また、無機微粒子の凝集を抑制することができる。
The (meth)acrylic resin composition of the present invention contains a (meth)acrylic resin.
The (meth)acrylic resin satisfies any one of the following (1) to (3).
(1) The (meth)acrylic resin contains a high molecular weight (meth)acrylic resin (A) having a weight average molecular weight of 120,000 or more and 300,000 or less, and is contained in the high molecular weight (meth)acrylic resin (A). The weight concentration of the OH group contained in the polymer is 0.4% by weight or more and 2.0% by weight or less.
(2) The (meth)acrylic resin contains a high molecular weight (meth)acrylic resin (B) having a weight average molecular weight of more than 300,000 and 500,000 or less, and the high molecular weight (meth)acrylic resin (B) contains The weight concentration of OH groups contained in is 1.3% by weight or more and 3.5% by weight or less.
(3) The (meth)acrylic resin contains a low-molecular-weight (meth)acrylic resin (C) having a weight-average molecular weight of 5,000 to 100,000, and is included in the low-molecular-weight (meth)acrylic resin. The weight concentration of OH groups contained in the (meth)acrylic resin is 1.3 wt % or more and 3.5 wt % or less, and the weight concentration of S atoms contained in the (meth)acrylic resin is 250 ppm or more and 20000 ppm or less. By satisfying the above configuration, the dispersibility of the inorganic fine particles can be sufficiently improved when an inorganic fine particle-dispersed slurry composition is prepared. In addition, aggregation of inorganic fine particles can be suppressed.
<高分子量(メタ)アクリル樹脂(A)>
上記(1)を満たす本発明の(メタ)アクリル樹脂組成物において、上記(メタ)アクリル樹脂は、高分子量(メタ)アクリル樹脂(A)を含有する。
上記高分子量(メタ)アクリル樹脂(A)は、重量平均分子量が12万以上30万以下である。
上記範囲とすることで、無機微粒子分散スラリー組成物とした際、無機微粒子の分散性を充分向上させることができる。また、無機微粒子の凝集を抑制することができる。
上記重量平均分子量は、15万以上であることが好ましく、18万以上であることがより好ましく、25万以下であることが好ましく、22万以下であることがより好ましい。
上記範囲とすることで、無機微粒子分散スラリー組成物とした際、充分な粘度を有するものとなり、また、印刷性に向上できる。
また、上記高分子量(メタ)アクリル樹脂(A)の重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は、2以上であることが好ましく、8以下であることが好ましい。
上記範囲内とすることで、低重合度の成分が適度に含有されるため、無機微粒子分散スラリー組成物の粘度が好適な範囲となり、生産性を高めることができる。また、得られる無機微粒子分散シートのシート強度を適度なものとできる。更に、得られるセラミックグリーンシートの表面平滑性を充分に向上させることができる。
上記Mw/Mnは3以上であることがより好ましく、6以下であることがより好ましい。
なお、重量平均分子量(Mw)、数平均分子量(Mn)は、ポリスチレン換算による平均分子量であり、カラムとして例えばカラムLF-804(昭和電工社製)を用いてGPC測定を行うことで得ることができる。
<High molecular weight (meth)acrylic resin (A)>
In the (meth)acrylic resin composition of the present invention satisfying the above (1), the (meth)acrylic resin contains a high molecular weight (meth)acrylic resin (A).
The high molecular weight (meth)acrylic resin (A) has a weight average molecular weight of 120,000 or more and 300,000 or less.
Within the above range, the dispersibility of the inorganic fine particles can be sufficiently improved when the inorganic fine particle-dispersed slurry composition is prepared. In addition, aggregation of inorganic fine particles can be suppressed.
The weight average molecular weight is preferably 150,000 or more, more preferably 180,000 or more, preferably 250,000 or less, and more preferably 220,000 or less.
Within the above range, the inorganic fine particle-dispersed slurry composition has a sufficient viscosity, and the printability can be improved.
In addition, the ratio (Mw/Mn) between the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the high molecular weight (meth)acrylic resin (A) is preferably 2 or more, and 8 or less. is preferred.
When the content is within the above range, the component having a low degree of polymerization is appropriately contained, so that the viscosity of the inorganic fine particle-dispersed slurry composition is within a suitable range, and the productivity can be enhanced. In addition, the sheet strength of the obtained inorganic fine particle-dispersed sheet can be made moderate. Furthermore, the surface smoothness of the resulting ceramic green sheet can be sufficiently improved.
The above Mw/Mn is more preferably 3 or more, and more preferably 6 or less.
The weight average molecular weight (Mw) and number average molecular weight (Mn) are average molecular weights in terms of polystyrene, and can be obtained by performing GPC measurement using, for example, a column LF-804 (manufactured by Showa Denko KK) as a column. can.
上記高分子量(メタ)アクリル樹脂(A)中に含まれるOH基の重量濃度が0.4重量%以上2.0重量%以下である。
上記範囲とすることで、バインダー樹脂が低温でも極めて優れた分解性を発現しつつ、更に、無機微粒子の分散性、凝集抑制効果を向上させることができる。
上記OH基の重量濃度は、0.5重量%以上であることが好ましく、0.6重量%以上であることがより好ましく、1.6重量%以下であることが好ましく、1.4重量%以下であることがより好ましい。
上記OH基の重量濃度は、高分子量(メタ)アクリル樹脂(A)全体の重量に対するOH基の重量の割合を意味し、以下の式に基づいて算出することができる。
高分子量(メタ)アクリル樹脂(A)中に含まれるOH基の重量濃度=[全モノマー中に含まれるOH基の重量/(全モノマーの重量+重合開始剤の重量)]×100
The weight concentration of OH groups contained in the high molecular weight (meth)acrylic resin (A) is 0.4% by weight or more and 2.0% by weight or less.
By setting the amount within the above range, the binder resin exhibits extremely excellent decomposability even at low temperatures, and furthermore, the dispersibility of the inorganic fine particles and the effect of suppressing aggregation can be improved.
The weight concentration of the OH group is preferably 0.5% by weight or more, more preferably 0.6% by weight or more, preferably 1.6% by weight or less, and 1.4% by weight. The following are more preferable.
The weight concentration of the OH group means the ratio of the weight of the OH group to the total weight of the high-molecular-weight (meth)acrylic resin (A), and can be calculated based on the following formula.
Weight concentration of OH groups contained in high molecular weight (meth)acrylic resin (A) = [weight of OH groups contained in all monomers/(weight of all monomers + weight of polymerization initiator)] x 100
<高分子量(メタ)アクリル樹脂(B)>
上記(2)を満たす本発明の(メタ)アクリル樹脂組成物において、上記(メタ)アクリル樹脂は、高分子量(メタ)アクリル樹脂(B)を含有する。
上記高分子量(メタ)アクリル樹脂(A)は、重量平均分子量が30万を超え50万以下である。
上記範囲とすることで、無機微粒子分散スラリー組成物とした際、無機微粒子の分散性を充分向上させることができる。また、無機微粒子の凝集を抑制することができる。
上記重量平均分子量は、32万以上であることが好ましく、33万以上であることがより好ましく、48万以下であることが好ましく、45万以下であることがより好ましい。
上記範囲とすることで、無機微粒子分散スラリー組成物とした際、充分な粘度を有するものとなり、また、印刷性に向上できる。
また、上記高分子量(メタ)アクリル樹脂(B)の重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は、2以上であることが好ましく、8以下であることが好ましい。
上記範囲内とすることで、低重合度の成分が適度に含有されるため、無機微粒子分散スラリー組成物の粘度が好適な範囲となり、生産性を高めることができる。また、得られる無機微粒子分散シートのシート強度を適度なものとできる。更に、得られるセラミックグリーンシートの表面平滑性を充分に向上させることができる。
上記Mw/Mnは3以上であることがより好ましく、6以下であることがより好ましい。
<High molecular weight (meth)acrylic resin (B)>
In the (meth)acrylic resin composition of the present invention satisfying the above (2), the (meth)acrylic resin contains a high-molecular-weight (meth)acrylic resin (B).
The high molecular weight (meth)acrylic resin (A) has a weight average molecular weight of more than 300,000 and 500,000 or less.
Within the above range, the dispersibility of the inorganic fine particles can be sufficiently improved when the inorganic fine particle-dispersed slurry composition is prepared. In addition, aggregation of inorganic fine particles can be suppressed.
The weight average molecular weight is preferably 320,000 or more, more preferably 330,000 or more, preferably 480,000 or less, and more preferably 450,000 or less.
Within the above range, the inorganic fine particle-dispersed slurry composition has a sufficient viscosity, and the printability can be improved.
Further, the ratio (Mw/Mn) between the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the high molecular weight (meth)acrylic resin (B) is preferably 2 or more, and 8 or less. is preferred.
When the content is within the above range, the component having a low degree of polymerization is appropriately contained, so that the viscosity of the inorganic fine particle-dispersed slurry composition is within a suitable range, and the productivity can be enhanced. In addition, the sheet strength of the obtained inorganic fine particle-dispersed sheet can be made moderate. Furthermore, the surface smoothness of the resulting ceramic green sheet can be sufficiently improved.
The above Mw/Mn is more preferably 3 or more, and more preferably 6 or less.
上記高分子量(メタ)アクリル樹脂(B)中に含まれるOH基の重量濃度が1.3重量%以上3.5重量%以下である。
上記範囲とすることで、バインダー樹脂が低温でも極めて優れた分解性を発現しつつ、更に、無機微粒子の分散性、凝集抑制効果を向上させることができる。
上記OH基の重量濃度は、1.5重量%以上であることが好ましく、2重量%以上であることがより好ましく、3.3重量%以下であることが好ましく、3重量%以下であることがより好ましい。
上記OH基の重量濃度は、高分子量(メタ)アクリル樹脂(B)全体の重量に対するOH基の重量の割合を意味し、以下の式に基づいて算出することができる。
高分子量(メタ)アクリル樹脂(B)中に含まれるOH基の重量濃度=[全モノマー中に含まれるOH基の重量/(全モノマーの重量+重合開始剤の重量)]×100
The weight concentration of OH groups contained in the high molecular weight (meth)acrylic resin (B) is 1.3% by weight or more and 3.5% by weight or less.
By setting the amount within the above range, the binder resin exhibits extremely excellent decomposability even at low temperatures, and furthermore, the dispersibility of the inorganic fine particles and the effect of suppressing aggregation can be improved.
The weight concentration of the OH group is preferably 1.5% by weight or more, more preferably 2% by weight or more, preferably 3.3% by weight or less, and 3% by weight or less. is more preferred.
The weight concentration of the OH group means the ratio of the weight of the OH group to the total weight of the high-molecular-weight (meth)acrylic resin (B), and can be calculated based on the following formula.
Weight concentration of OH groups contained in high molecular weight (meth)acrylic resin (B) = [weight of OH groups contained in all monomers/(weight of all monomers + weight of polymerization initiator)] x 100
上記高分子量(メタ)アクリル樹脂(A)及び(B)は、下記式(a)で表される構成単位を有することが好ましく、下記式(b)で表される構成単位を有することが好ましい。 The high molecular weight (meth)acrylic resins (A) and (B) preferably have a structural unit represented by the following formula (a), and preferably have a structural unit represented by the following formula (b). .
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
式(a)中、Rは炭素数1~8の直鎖状又は分岐状アルキル基を表し、式(b)中、Rは、水素原子の少なくとも1つがOH基で置換された炭素数2~4の直鎖状又は分岐状アルキル基を表す。
上記Rとしては、炭素数1~4の直鎖状又は分岐状アルキル基であることがより好ましく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基等が挙げられる。
上記Rとしては、水素原子の少なくとも1つがOH基で置換された炭素数2~4の直鎖状又は分岐状アルキル基が好ましく、例えば、2-ヒドロキシエチル基、2-ヒドロキシプロピル基、2-ヒドロキシブチル基等が挙げられる。
In formula (a), R 1 represents a linear or branched alkyl group having 1 to 8 carbon atoms, and in formula (b), R 2 represents the number of carbon atoms in which at least one hydrogen atom is substituted with an OH group It represents 2 to 4 linear or branched alkyl groups.
R 1 above is more preferably a linear or branched alkyl group having 1 to 4 carbon atoms, such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group and isobutyl group. etc.
R 2 is preferably a linear or branched alkyl group having 2 to 4 carbon atoms in which at least one hydrogen atom is substituted with an OH group. -hydroxybutyl group and the like.
上記高分子量(メタ)アクリル樹脂(A)及び(B)における上記式(a)で表される構成単位の含有量は、79重量%以上であることが好ましく、96重量%以下であることが好ましい。
上記範囲とすることで、低温分解性を充分に高めることができる。
上記式(a)で表される構成単位の含有量は、85重量%以上であることがより好ましく、95重量%以下であることがより好ましい。
The content of the structural unit represented by the formula (a) in the high-molecular-weight (meth)acrylic resins (A) and (B) is preferably 79% by weight or more and 96% by weight or less. preferable.
By setting it as the said range, low-temperature decomposability can fully be improved.
The content of the structural unit represented by the above formula (a) is more preferably 85% by weight or more, and more preferably 95% by weight or less.
上記高分子量(メタ)アクリル樹脂(A)及び(B)における上記式(b)で表される構成単位の含有量は、3.1重量%以上であることが好ましく、17重量%以下であることが好ましい。
バインダー樹脂に対する溶媒としてはエタノールがよく用いられるが、一般的にアクリル樹脂はポリビニルアセタール樹脂よりもエタノールに対する溶解性が低く、一次解砕後にアクリル樹脂を添加すると無機微粒子が凝集してしまうという問題があるが、上記範囲とすることで、無機微粒子の分散性や凝集抑制効果を向上させることができる。
また、エタノールに対する溶解性をより高めることができる。
上記式(2)で表される構成単位の含有量は、4重量%以上であることがより好ましく、15重量%以下であることがより好ましい。
The content of the structural unit represented by the formula (b) in the high molecular weight (meth)acrylic resins (A) and (B) is preferably 3.1% by weight or more and 17% by weight or less. is preferred.
Ethanol is often used as a solvent for binder resins, but acrylic resins generally have lower solubility in ethanol than polyvinyl acetal resins. However, by setting the amount in the above range, the dispersibility of the inorganic fine particles and the effect of suppressing aggregation can be improved.
Moreover, the solubility in ethanol can be further enhanced.
The content of the structural unit represented by the above formula (2) is more preferably 4% by weight or more, and more preferably 15% by weight or less.
上記高分子量(メタ)アクリル樹脂(A)及び(B)は、炭素数3~4の直鎖状又は分岐状アルキル基を有する(メタ)アクリル酸エステルに由来するセグメントを有することが好ましい。
上記セグメントを有することで、低温分解性により優れたものとできる。
上記炭素数3~4の直鎖状又は分岐状アルキル基を有する(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル等が挙げられる。なかでも、(メタ)アクリル酸イソブチルが好ましい。
The high-molecular-weight (meth)acrylic resins (A) and (B) preferably have segments derived from a (meth)acrylic acid ester having a linear or branched alkyl group having 3 to 4 carbon atoms.
By having the above segment, the low-temperature decomposability can be made more excellent.
Examples of the (meth)acrylic acid ester having a linear or branched alkyl group having 3 to 4 carbon atoms include n-propyl (meth)acrylate, isopropyl (meth)acrylate, and n-(meth)acrylate. -butyl, isobutyl (meth)acrylate and the like. Among them, isobutyl (meth)acrylate is preferred.
上記高分子量(メタ)アクリル樹脂(A)及び(B)における炭素数3~4の直鎖状又は分岐状アルキル基を有する(メタ)アクリル酸エステルに由来するセグメントの含有量は、30重量%以上であることが好ましく、40重量%以上であることがより好ましく、95重量%以下であることが好ましく、88重量%以下であることがより好ましい。 The content of the segment derived from the (meth)acrylic acid ester having a linear or branched alkyl group having 3 to 4 carbon atoms in the high-molecular-weight (meth)acrylic resins (A) and (B) is 30% by weight. It is preferably 40% by weight or more, more preferably 40% by weight or more, preferably 95% by weight or less, and more preferably 88% by weight or less.
上記高分子量(メタ)アクリル樹脂(A)及び(B)は、炭素数1~2のアルキル基を有する(メタ)アクリル酸エステルに由来するセグメントを有していてもよい。
上記炭素数1~2のアルキル基を有する(メタ)アクリル酸エステルとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチルが挙げられる。
The high-molecular-weight (meth)acrylic resins (A) and (B) may have segments derived from (meth)acrylic acid esters having alkyl groups of 1 to 2 carbon atoms.
Examples of the (meth)acrylic acid ester having an alkyl group having 1 to 2 carbon atoms include methyl (meth)acrylate and ethyl (meth)acrylate.
上記高分子量(メタ)アクリル樹脂(A)及び(B)における炭素数1~2のアルキル基を有する(メタ)アクリル酸エステルに由来するセグメントの含有量は、0重量%以上であることが好ましく、10重量%以上であることがより好ましく、66.8重量%以下であることが好ましく、46重量%以下であることがより好ましい。 The content of the segment derived from the (meth)acrylic acid ester having an alkyl group having 1 to 2 carbon atoms in the high-molecular-weight (meth)acrylic resins (A) and (B) is preferably 0% by weight or more. , more preferably 10% by weight or more, preferably 66.8% by weight or less, and more preferably 46% by weight or less.
上記高分子量(メタ)アクリル樹脂(A)及び(B)は、炭素数5~8の直鎖状又は分岐状のアルキル基を有する(メタ)アクリル酸エステルに由来するセグメントを有していてもよい。
上記炭素数5~8の直鎖状又は分岐状のアルキル基を有する(メタ)アクリル酸エステルとしては、(メタ)アクリル酸n-ペンチル、(メタ)アクリル酸イソペンチル、(メタ)アクリル酸ネオペンチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸n-ヘプチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸2-エチルヘキシル等が挙げられる。なかでも、炭素数6~8の直鎖状又は分岐状のアルキル基を有する(メタ)アクリル酸エステルが好ましく、(メタ)アクリル酸2-エチルヘキシルがより好ましい。
The high-molecular-weight (meth)acrylic resins (A) and (B) may have a segment derived from a (meth)acrylic acid ester having a linear or branched alkyl group having 5 to 8 carbon atoms. good.
Examples of the (meth)acrylic acid ester having a linear or branched alkyl group having 5 to 8 carbon atoms include n-pentyl (meth)acrylate, isopentyl (meth)acrylate, neopentyl (meth)acrylate, Examples include n-hexyl (meth)acrylate, n-heptyl (meth)acrylate, n-octyl (meth)acrylate and 2-ethylhexyl (meth)acrylate. Among them, (meth)acrylic acid esters having a linear or branched alkyl group having 6 to 8 carbon atoms are preferred, and 2-ethylhexyl (meth)acrylate is more preferred.
上記高分子量(メタ)アクリル樹脂(A)及び(B)における炭素数5~8の直鎖状又は分岐状のアルキル基を有する(メタ)アクリル酸エステルに由来するセグメントの含有量は、0重量%以上であることが好ましく、9重量%以上であることがより好ましく、25重量%以下であることが好ましく、20重量%以下であることがより好ましい。 The content of the segment derived from the (meth)acrylic acid ester having a linear or branched alkyl group having 5 to 8 carbon atoms in the high molecular weight (meth)acrylic resins (A) and (B) is 0 weight. % or more, more preferably 9 wt % or more, preferably 25 wt % or less, and more preferably 20 wt % or less.
上記高分子量(メタ)アクリル樹脂(A)及び(B)は、炭素数9以上の直鎖状又は分岐状のアルキル基を有する(メタ)アクリル酸エステルに由来するセグメントを有していてもよい。
上記炭素数9以上の直鎖状又は分岐状のアルキル基を有する(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸n-ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸n-デシル、(メタ)アクリル酸イソデシル、(メタ)アクリル酸n-ラウリル、(メタ)アクリル酸イソラウリル、(メタ)アクリル酸n-ステアリル、(メタ)アクリル酸イソステアリル等が挙げられる。
The high-molecular-weight (meth)acrylic resins (A) and (B) may have a segment derived from a (meth)acrylic acid ester having a linear or branched alkyl group having 9 or more carbon atoms. .
Examples of the (meth)acrylic acid ester having a linear or branched alkyl group having 9 or more carbon atoms include n-nonyl (meth)acrylate, isononyl (meth)acrylate, and n (meth)acrylate. -decyl, isodecyl (meth)acrylate, n-lauryl (meth)acrylate, isolauryl (meth)acrylate, n-stearyl (meth)acrylate, isostearyl (meth)acrylate and the like.
上記高分子量(メタ)アクリル樹脂(A)及び(B)は、水素原子の少なくとも1つがOH基で置換された直鎖状又は分岐状アルキル基を有する(メタ)アクリル酸エステルに由来するセグメントを有することが好ましい。
上記セグメントを有することにより、バインダー樹脂が低温でも極めて優れた分解性を発現しつつ、更に、無機微粒子の分散性、凝集抑制効果を向上させることができる。
The high-molecular-weight (meth)acrylic resins (A) and (B) contain segments derived from (meth)acrylic acid esters having linear or branched alkyl groups in which at least one of the hydrogen atoms is substituted with an OH group. It is preferable to have
By having the above segment, the binder resin exhibits extremely excellent degradability even at low temperatures, and furthermore, the dispersibility of the inorganic fine particles and the effect of suppressing aggregation can be improved.
上記水素原子の少なくとも1つがOH基で置換された直鎖状又は分岐状アルキル基を有する(メタ)アクリル酸エステルとしては、OH基の重量の割合が10.5重量%以上であるものが好ましく、11.5重量%以上であるものがより好ましく、13.1重量%以下であるものが好ましい。 The (meth)acrylic acid ester having a linear or branched alkyl group in which at least one of the hydrogen atoms is substituted with an OH group preferably has an OH group weight ratio of 10.5% by weight or more. , more preferably 11.5% by weight or more, and preferably 13.1% by weight or less.
上記高分子量(メタ)アクリル樹脂(A)及び(B)は、水素原子の少なくとも1つがOH基で置換された炭素数2~4の直鎖状又は分岐状アルキル基を有する(メタ)アクリル酸エステルに由来するセグメントを有することが好ましい。
上記水素原子の少なくとも1つがOH基で置換された炭素数2~4の直鎖状又は分岐状アルキル基を有する(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル等が挙げられる。なかでも、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチルが好ましい。
The high-molecular-weight (meth)acrylic resins (A) and (B) are (meth)acrylic acid having a linear or branched alkyl group having 2 to 4 carbon atoms in which at least one of the hydrogen atoms is substituted with an OH group. It is preferred to have segments derived from esters.
Examples of the (meth)acrylic acid ester having a linear or branched alkyl group having 2 to 4 carbon atoms in which at least one of the hydrogen atoms is substituted with an OH group include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 3-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, etc. is mentioned. Among them, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, and 2-hydroxybutyl (meth)acrylate are preferred.
上記高分子量(メタ)アクリル樹脂(A)及び(B)における水素原子の少なくとも1つがOH基で置換された炭素数2~4の直鎖状又は分岐状アルキル基を有する(メタ)アクリル酸エステルに由来するセグメントの含有量は、3.1重量%以上であることが好ましく、5.0重量%以上であることがより好ましく、17.0重量%以下であることが好ましく、12.2重量%以下であることがより好ましい。 (Meth)acrylic acid ester having a linear or branched alkyl group having 2 to 4 carbon atoms in which at least one hydrogen atom in the high-molecular-weight (meth)acrylic resins (A) and (B) is substituted with an OH group The content of the segment derived from is preferably 3.1% by weight or more, more preferably 5.0% by weight or more, preferably 17.0% by weight or less, and 12.2% by weight % or less.
上記高分子量(メタ)アクリル樹脂(A)及び(B)は、水素原子の少なくとも1つがOH基で置換された炭素数5以上の直鎖状又は分岐状アルキル基を有する(メタ)アクリル酸エステルに由来するセグメントを有することが好ましい。
上記水素原子の少なくとも1つがOH基で置換された炭素数5以上の直鎖状又は分岐状アルキル基を有する(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸ヒドロキシペンチル、(メタ)アクリル酸ヒドロキシヘキシル、(メタ)アクリル酸ヒドロキシヘプチル、(メタ)アクリル酸ヒドロキシオクチル等が挙げられる。
The high-molecular-weight (meth)acrylic resins (A) and (B) are (meth)acrylic acid esters having a linear or branched alkyl group having 5 or more carbon atoms in which at least one of the hydrogen atoms is substituted with an OH group. It is preferred to have a segment derived from
Examples of the (meth)acrylic acid ester having a linear or branched alkyl group having 5 or more carbon atoms in which at least one of the hydrogen atoms is substituted with an OH group include hydroxypentyl (meth)acrylate, (meth) hydroxyhexyl acrylate, hydroxyheptyl (meth)acrylate, hydroxyoctyl (meth)acrylate and the like.
上記高分子量(メタ)アクリル樹脂(A)及び(B)は、上記(メタ)アクリル酸エステルに由来するセグメントの他、(メタ)アクリル酸に由来するセグメント、グリシジル基を有する(メタ)アクリル酸エステル等の他の(メタ)アクリル酸エステルに由来するセグメントを有していてもよい。 The high-molecular weight (meth)acrylic resins (A) and (B) include segments derived from the (meth)acrylic acid ester, segments derived from (meth)acrylic acid, and (meth)acrylic acid having a glycidyl group. It may have segments derived from other (meth)acrylic acid esters such as esters.
上記高分子量(メタ)アクリル樹脂(A)及び(B)のガラス転移温度(Tg)は30℃以上85℃以下であることが好ましい。
上記範囲とすることで、可塑剤の添加量を少なくすることができ、また、低温分解性を向上させることができる。
上記Tgは32℃以上であることがより好ましく、42℃以上であることが更に好ましく、45℃以上であることが更により好ましく、50℃以上であることが特に好ましく、80℃以下であることがより好ましく、75℃以下であることが更に好ましい。
なお、上記ガラス転移温度(Tg)は、例えば、示差走査熱量計(DSC)等を用いて測定することができる。
The glass transition temperature (Tg) of the high molecular weight (meth)acrylic resins (A) and (B) is preferably 30° C. or higher and 85° C. or lower.
By setting the amount within the above range, the amount of the plasticizer to be added can be reduced, and the low-temperature decomposability can be improved.
The Tg is more preferably 32° C. or higher, still more preferably 42° C. or higher, even more preferably 45° C. or higher, particularly preferably 50° C. or higher, and 80° C. or lower. is more preferable, and 75° C. or less is even more preferable.
The glass transition temperature (Tg) can be measured using, for example, a differential scanning calorimeter (DSC).
上記高分子量(メタ)アクリル樹脂(A)及び(B)は、エタノールへの溶解度が10重量部/エタノール100重量部以上であることが好ましい。
上記範囲とすることで、無機微粒子の分散性、凝集抑制効果を向上させることができる。また、有機溶剤への溶解度を充分に高めることができる。
上記エタノールへの溶解度は、50重量部以上であることがより好ましく、100重量部以上であること更に好ましい。
上記エタノールへの溶解度は、25℃の環境下でエタノール100重量部に溶解させた際、析出物が生じるまでに要した樹脂の添加量を意味する。
The above high molecular weight (meth)acrylic resins (A) and (B) preferably have a solubility in ethanol of 10 parts by weight/100 parts by weight or more of ethanol.
By setting it as the said range, the dispersibility of an inorganic fine particle and the aggregation inhibitory effect can be improved. In addition, the solubility in organic solvents can be sufficiently increased.
The solubility in ethanol is more preferably 50 parts by weight or more, and even more preferably 100 parts by weight or more.
The above-mentioned solubility in ethanol means the amount of resin added required until precipitation occurs when dissolved in 100 parts by weight of ethanol in an environment of 25°C.
本発明の(メタ)アクリル樹脂組成物における上記高分子量(メタ)アクリル樹脂(A)の含有量は、5重量%以上であることが好ましく、10重量%以上であることがより好ましく、30重量%以上であることが更に好ましく、70重量%以下であることが好ましく、60重量%以下であることがより好ましい。 The content of the high molecular weight (meth)acrylic resin (A) in the (meth)acrylic resin composition of the present invention is preferably 5% by weight or more, more preferably 10% by weight or more, and 30% by weight. % or more, preferably 70% by weight or less, and more preferably 60% by weight or less.
本発明の(メタ)アクリル樹脂組成物における上記高分子量(メタ)アクリル樹脂(B)の含有量は、5重量%以上であることが好ましく、10重量%以上であることがより好ましく、30重量%以上であることが更に好ましく、70重量%以下であることが好ましく、60重量%以下であることがより好ましい。 The content of the high molecular weight (meth)acrylic resin (B) in the (meth)acrylic resin composition of the present invention is preferably 5% by weight or more, more preferably 10% by weight or more, and 30% by weight. % or more, preferably 70% by weight or less, and more preferably 60% by weight or less.
また、上記(2)を満たす本発明の(メタ)アクリル樹脂組成物において、上記(メタ)アクリル樹脂中に含まれるS原子の重量濃度は250ppm以上であることが好ましく、20000ppm以下であることが好ましい。
上記範囲とすることで、バインダー樹脂が低温でも極めて優れた分解性を発現しつつ、更に、無機微粒子の分散性、凝集抑制効果を向上させることができる。
上記S原子の重量濃度は、400ppm以上であることがより好ましく、15000ppm以下であることがより好ましい。
上記S原子の重量濃度は、(メタ)アクリル樹脂の重量に対するS原子の重量の割合を意味し、以下の式に基づいて算出することができる。
(メタ)アクリル樹脂中に含まれるS原子の重量濃度=[連鎖移動剤に含まれるS原子の重量/(全モノマーの重量+重合開始剤の重量+連鎖移動剤の重量)]×100
なお、上記(メタ)アクリル樹脂組成物が複数の(メタ)アクリル樹脂を含有する場合、上記S原子の重量濃度は、各(メタ)アクリル樹脂中に含まれるS原子の重量濃度及び各(メタ)アクリル樹脂の配合割合に基づいて算出することができる。
また、上記S原子の重量濃度は、ICP-AES(誘導結合プラズマ発光分光分析法)によっても求めることができる。
In the (meth)acrylic resin composition of the present invention satisfying the above (2), the weight concentration of S atoms contained in the (meth)acrylic resin is preferably 250 ppm or more, and preferably 20000 ppm or less. preferable.
By setting the amount within the above range, the binder resin exhibits extremely excellent decomposability even at low temperatures, and furthermore, the dispersibility of the inorganic fine particles and the effect of suppressing aggregation can be improved.
The weight concentration of the S atoms is more preferably 400 ppm or more, and more preferably 15000 ppm or less.
The weight concentration of S atoms means the ratio of the weight of S atoms to the weight of the (meth)acrylic resin, and can be calculated based on the following formula.
Weight concentration of S atoms contained in (meth)acrylic resin = [weight of S atoms contained in chain transfer agent/(weight of all monomers + weight of polymerization initiator + weight of chain transfer agent)] × 100
When the (meth)acrylic resin composition contains a plurality of (meth)acrylic resins, the weight concentration of the S atoms is the weight concentration of the S atoms contained in each (meth)acrylic resin and each (meth)acrylic resin. ) can be calculated based on the mixing ratio of the acrylic resin.
The weight concentration of S atoms can also be determined by ICP-AES (inductively coupled plasma atomic emission spectrometry).
上記高分子量(メタ)アクリル樹脂(A)及び(B)を製造する方法は特に限定されない。例えば、(メタ)アクリル酸エステル等を含む原料モノマー混合物に有機溶剤等を加えてモノマー混合液を調整し、更に、得られたモノマー混合液に重合開始剤、連鎖移動剤を添加して、上記原料モノマーを共重合させる方法が挙げられる。
重合させる方法は特に限定されず、乳化重合、懸濁重合、塊状重合、界面重合、溶液重合等が挙げられる。なかでも、溶液重合が好ましい。
The method for producing the high molecular weight (meth)acrylic resins (A) and (B) is not particularly limited. For example, an organic solvent or the like is added to a raw material monomer mixture containing (meth) acrylic acid ester or the like to prepare a monomer mixture, and a polymerization initiator and a chain transfer agent are added to the obtained monomer mixture, and the above A method of copolymerizing raw material monomers may be mentioned.
The polymerization method is not particularly limited, and examples thereof include emulsion polymerization, suspension polymerization, bulk polymerization, interfacial polymerization, and solution polymerization. Among them, solution polymerization is preferred.
上記重合開始剤としては、例えば、t-ブチルパーオキシピバレート、P-メンタンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、クメンハイドロキシパーオキサイド、t-ブチルハイドロキシパーオキサイド、過酸化シクロヘキサノン、ジコハク酸パーオキサイド等が挙げられる。
上記連鎖移動剤としては、例えば、3-メルカプト-1,2-プロパンジオール、3-メルカプト-1-プロパノール、3-メルカプト-2-ブタノール、8-メルカプト-1-オクタノール、メルカプトコハク酸、メルカプト酢酸等が挙げられる。
Examples of the polymerization initiator include t-butyl peroxypivalate, p-menthane hydroperoxide, diisopropylbenzene hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, cumene hydroxyperoxide, t-butyl hydroxyperoxide, cyclohexanone peroxide, disuccinic acid peroxide and the like.
Examples of the chain transfer agent include 3-mercapto-1,2-propanediol, 3-mercapto-1-propanol, 3-mercapto-2-butanol, 8-mercapto-1-octanol, mercaptosuccinic acid, and mercaptoacetic acid. etc.
<低分子量(メタ)アクリル樹脂(C)>
上記(3)を満たす本発明の(メタ)アクリル樹脂組成物において、上記(メタ)アクリル樹脂は、低分子量(メタ)アクリル樹脂(C)を含有する。
本明細書において、上記低分子量(メタ)アクリル樹脂(C)は、重量平均分子量が0.5万以上10万以下である。
上記低分子量(メタ)アクリル樹脂(C)を含有することで、無機微粒子に分散性を向上させることができる。
上記重量平均分子量は、0.6万以上であることがより好ましく、0.8万以上であることが更に好ましく、9万以下であることがより好ましく、3万以下であることが更に好ましい。
また、上記低分子量(メタ)アクリル樹脂(C)の重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は、1.3以上であることが好ましく、2以上であることがより好ましく、8以下であることが好ましい。
上記範囲内とすることで、低重合度の成分が適度に含有されるため、無機微粒子分散スラリー組成物の粘度が好適な範囲となり、生産性を高めることができる。また、得られる無機微粒子分散シートのシート強度を適度なものとできる。更に、得られるセラミックグリーンシートの表面平滑性を充分に向上できる。
上記Mw/Mnは3以上であることがより好ましく、6以下であることがより好ましい。
なお、重量平均分子量(Mw)、数平均分子量(Mn)は、ポリスチレン換算による平均分子量であり、カラムとして例えばカラムLF-804(昭和電工社製)を用いてGPC測定を行うことで得ることができる。
<Low molecular weight (meth)acrylic resin (C)>
In the (meth)acrylic resin composition of the present invention satisfying the above (3), the (meth)acrylic resin contains a low molecular weight (meth)acrylic resin (C).
In this specification, the low molecular weight (meth)acrylic resin (C) has a weight average molecular weight of 5,000 or more and 100,000 or less.
By containing the low-molecular-weight (meth)acrylic resin (C), the dispersibility of the inorganic fine particles can be improved.
The weight average molecular weight is more preferably 6,000 or more, still more preferably 8,000 or more, more preferably 90,000 or less, and even more preferably 30,000 or less.
Further, the ratio (Mw/Mn) between the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the low molecular weight (meth)acrylic resin (C) is preferably 1.3 or more, and 2 or more. It is more preferable that there is one, and it is preferable that it is 8 or less.
When the content is within the above range, the component having a low degree of polymerization is appropriately contained, so that the viscosity of the inorganic fine particle-dispersed slurry composition is within a suitable range, and the productivity can be enhanced. In addition, the sheet strength of the obtained inorganic fine particle-dispersed sheet can be made moderate. Furthermore, the surface smoothness of the resulting ceramic green sheet can be sufficiently improved.
The above Mw/Mn is more preferably 3 or more, and more preferably 6 or less.
The weight average molecular weight (Mw) and number average molecular weight (Mn) are average molecular weights in terms of polystyrene, and can be obtained by performing GPC measurement using, for example, a column LF-804 (manufactured by Showa Denko KK) as a column. can.
上記低分子量(メタ)アクリル樹脂(C)中に含まれるOH基の重量濃度は、1.3重量%以上3.5重量%以下である。
上記範囲とすることで、バインダー樹脂が低温でも極めて優れた分解性を発現しつつ、更に、無機微粒子の分散性、凝集抑制効果を向上させることができる。
上記OH基の重量濃度は、1.4重量%以上であることが好ましく、3.3重量%以下であることが好ましく、3.2重量%以下であることがより好ましい。
上記OH基の重量濃度は、低分子量(メタ)アクリル樹脂(C)全体の重量に対するOH基の重量の割合を意味し、以下の式に基づいて算出することができる。
低分子量(メタ)アクリル樹脂(C)中に含まれるOH基の重量濃度=[(全モノマー中に含まれるOH基の重量+連鎖移動剤に含まれるOH基の重量)/(全モノマーの重量+重合開始剤の重量+連鎖移動剤の重量)]×100
The weight concentration of OH groups contained in the low molecular weight (meth)acrylic resin (C) is 1.3% by weight or more and 3.5% by weight or less.
By setting the amount within the above range, the binder resin exhibits extremely excellent decomposability even at low temperatures, and furthermore, the dispersibility of the inorganic fine particles and the effect of suppressing aggregation can be improved.
The weight concentration of the OH groups is preferably 1.4% by weight or more, preferably 3.3% by weight or less, and more preferably 3.2% by weight or less.
The weight concentration of OH groups means the ratio of the weight of OH groups to the total weight of the low-molecular-weight (meth)acrylic resin (C), and can be calculated based on the following formula.
Weight concentration of OH groups contained in the low molecular weight (meth) acrylic resin (C) = [(weight of OH groups contained in all monomers + weight of OH groups contained in chain transfer agent) / (weight of all monomers + weight of polymerization initiator + weight of chain transfer agent)] × 100
上記低分子量(メタ)アクリル樹脂(C)は、炭素数3~4の直鎖状又は分岐状アルキル基を有する(メタ)アクリル酸エステルに由来するセグメントを有することが好ましい。
上記セグメントを有することで、低温分解性により優れたものとできる。
上記炭素数3~4の直鎖状又は分岐状アルキル基を有する(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル等が挙げられる。なかでも、(メタ)アクリル酸イソブチルが好ましい。
The low-molecular-weight (meth)acrylic resin (C) preferably has a segment derived from a (meth)acrylic acid ester having a linear or branched alkyl group with 3 to 4 carbon atoms.
By having the above segment, the low-temperature decomposability can be made more excellent.
Examples of the (meth)acrylic acid ester having a linear or branched alkyl group having 3 to 4 carbon atoms include n-propyl (meth)acrylate, isopropyl (meth)acrylate, and n-(meth)acrylate. -butyl, isobutyl (meth)acrylate and the like. Among them, isobutyl (meth)acrylate is preferred.
上記低分子量(メタ)アクリル樹脂(C)における炭素数3~4の直鎖状又は分岐状アルキル基を有する(メタ)アクリル酸エステルに由来するセグメントの含有量は、38重量%以上であることが好ましく、50重量%以上であることがより好ましく、80重量%以下であることが好ましく、75重量%以下であることがより好ましい。 The content of the segment derived from the (meth)acrylic acid ester having a linear or branched alkyl group having 3 to 4 carbon atoms in the low molecular weight (meth)acrylic resin (C) is 38% by weight or more. , more preferably 50% by weight or more, preferably 80% by weight or less, and more preferably 75% by weight or less.
上記低分子量(メタ)アクリル樹脂(C)は、炭素数1~2のアルキル基を有する(メタ)アクリル酸エステルに由来するセグメントを有していてもよい。
上記炭素数1~2のアルキル基を有する(メタ)アクリル酸エステルとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチルが挙げられる。
The low-molecular-weight (meth)acrylic resin (C) may have a segment derived from a (meth)acrylic acid ester having an alkyl group having 1 to 2 carbon atoms.
Examples of the (meth)acrylic acid ester having an alkyl group having 1 to 2 carbon atoms include methyl (meth)acrylate and ethyl (meth)acrylate.
上記低分子量(メタ)アクリル樹脂(C)における炭素数1~2のアルキル基を有する(メタ)アクリル酸エステルに由来するセグメントの含有量は、0重量%以上であることが好ましく、7重量%以上であることがより好ましく、33重量%以下であることが好ましく、20.5重量%以下であることがより好ましい。 The content of the segment derived from the (meth)acrylic acid ester having an alkyl group having 1 to 2 carbon atoms in the low molecular weight (meth)acrylic resin (C) is preferably 0% by weight or more, and 7% by weight. It is more preferably 33% by weight or less, and more preferably 20.5% by weight or less.
上記低分子量(メタ)アクリル樹脂(C)は、炭素数5~8の直鎖状又は分岐状のアルキル基を有する(メタ)アクリル酸エステルに由来するセグメントを有していてもよい。
上記炭素数5~8の直鎖状又は分岐状のアルキル基を有する(メタ)アクリル酸エステルとしては、(メタ)アクリル酸n-ペンチル、(メタ)アクリル酸イソペンチル、(メタ)アクリル酸ネオペンチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸n-ヘプチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸2-エチルヘキシル等が挙げられる。なかでも、炭素数6~8の直鎖状又は分岐状のアルキル基を有する(メタ)アクリル酸エステルが好ましく、(メタ)アクリル酸2-エチルヘキシルがより好ましい。
The low-molecular-weight (meth)acrylic resin (C) may have a segment derived from a (meth)acrylic acid ester having a linear or branched alkyl group with 5 to 8 carbon atoms.
Examples of the (meth)acrylic acid ester having a linear or branched alkyl group having 5 to 8 carbon atoms include n-pentyl (meth)acrylate, isopentyl (meth)acrylate, neopentyl (meth)acrylate, Examples include n-hexyl (meth)acrylate, n-heptyl (meth)acrylate, n-octyl (meth)acrylate and 2-ethylhexyl (meth)acrylate. Among them, (meth)acrylic acid esters having a linear or branched alkyl group having 6 to 8 carbon atoms are preferred, and 2-ethylhexyl (meth)acrylate is more preferred.
上記低分子量(メタ)アクリル樹脂(C)における炭素数5~8の直鎖状又は分岐状のアルキル基を有する(メタ)アクリル酸エステルに由来するセグメントの含有量は、0重量%以上であることが好ましく、10重量%以上であることがより好ましく、40重量%以下であることが好ましく、30重量%以下であることがより好ましい。 The content of the segment derived from the (meth)acrylic acid ester having a linear or branched alkyl group having 5 to 8 carbon atoms in the low molecular weight (meth)acrylic resin (C) is 0% by weight or more. It is preferably 10% by weight or more, more preferably 40% by weight or less, and more preferably 30% by weight or less.
上記低分子量(メタ)アクリル樹脂(C)は、炭素数9以上の直鎖状又は分岐状のアルキル基を有する(メタ)アクリル酸エステルに由来するセグメントを有していてもよい。
上記炭素数9以上の直鎖状又は分岐状のアルキル基を有する(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸n-ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸n-デシル、(メタ)アクリル酸イソデシル、(メタ)アクリル酸n-ラウリル、(メタ)アクリル酸イソラウリル、(メタ)アクリル酸n-ステアリル、(メタ)アクリル酸イソステアリル等が挙げられる。
The low-molecular-weight (meth)acrylic resin (C) may have a segment derived from a (meth)acrylic acid ester having a linear or branched alkyl group with 9 or more carbon atoms.
Examples of the (meth)acrylic acid ester having a linear or branched alkyl group having 9 or more carbon atoms include n-nonyl (meth)acrylate, isononyl (meth)acrylate, and n (meth)acrylate. -decyl, isodecyl (meth)acrylate, n-lauryl (meth)acrylate, isolauryl (meth)acrylate, n-stearyl (meth)acrylate, isostearyl (meth)acrylate and the like.
上記低分子量(メタ)アクリル樹脂(C)は、水素原子の少なくとも1つがOH基で置換された直鎖状又は分岐状アルキル基を有する(メタ)アクリル酸エステルに由来するセグメントを有することが好ましい。
上記セグメントを有することにより、バインダー樹脂が低温でも極めて優れた分解性を発現しつつ、更に、無機微粒子の分散性、凝集抑制効果を向上させることができる。
The low-molecular-weight (meth)acrylic resin (C) preferably has a segment derived from a (meth)acrylic acid ester having a linear or branched alkyl group in which at least one of the hydrogen atoms is substituted with an OH group. .
By having the above segment, the binder resin exhibits extremely excellent degradability even at low temperatures, and furthermore, the dispersibility of the inorganic fine particles and the effect of suppressing aggregation can be improved.
上記水素原子の少なくとも1つがOH基で置換された直鎖状又は分岐状アルキル基を有する(メタ)アクリル酸エステルとしては、OH基の重量の割合が10.5重量%以上であるものが好ましく、11.5重量%以上であるものがより好ましく、13.1重量%以下であるものが好ましい。 The (meth)acrylic acid ester having a linear or branched alkyl group in which at least one of the hydrogen atoms is substituted with an OH group preferably has an OH group weight ratio of 10.5% by weight or more. , more preferably 11.5% by weight or more, and preferably 13.1% by weight or less.
上記低分子量(メタ)アクリル樹脂(C)は、水素原子の少なくとも1つがOH基で置換された炭素数2~4の直鎖状又は分岐状アルキル基を有する(メタ)アクリル酸エステルに由来するセグメントを有することが好ましい。
上記水素原子の少なくとも1つがOH基で置換された炭素数2~4の直鎖状又は分岐状アルキル基を有する(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル等が挙げられる。なかでも、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチルが好ましい。
The low-molecular-weight (meth)acrylic resin (C) is derived from a (meth)acrylic acid ester having a linear or branched alkyl group having 2 to 4 carbon atoms in which at least one of the hydrogen atoms is substituted with an OH group. It is preferred to have segments.
Examples of the (meth)acrylic acid ester having a linear or branched alkyl group having 2 to 4 carbon atoms in which at least one of the hydrogen atoms is substituted with an OH group include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 3-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, etc. is mentioned. Among them, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, and 2-hydroxybutyl (meth)acrylate are preferred.
上記低分子量(メタ)アクリル樹脂(C)における水素原子の少なくとも1つがOH基で置換された炭素数2~4の直鎖状又は分岐状アルキル基を有する(メタ)アクリル酸エステルに由来するセグメントの含有量は、7重量%以上であることが好ましく、10重量%以上であることがより好ましく、20重量%以下であることが好ましく、16重量%以下であることがより好ましい。 A segment derived from a (meth)acrylic acid ester having a linear or branched alkyl group having 2 to 4 carbon atoms in which at least one of the hydrogen atoms in the low molecular weight (meth)acrylic resin (C) is substituted with an OH group is preferably 7% by weight or more, more preferably 10% by weight or more, preferably 20% by weight or less, and more preferably 16% by weight or less.
上記低分子量(メタ)アクリル樹脂(C)は、水素原子の少なくとも1つがOH基で置換された炭素数5以上の直鎖状又は分岐状アルキル基を有する(メタ)アクリル酸エステルに由来するセグメントを有することが好ましい。
上記水素原子の少なくとも1つがOH基で置換された炭素数5以上の直鎖状又は分岐状アルキル基を有する(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸ヒドロキシペンチル、(メタ)アクリル酸ヒドロキシヘキシル、(メタ)アクリル酸ヒドロキシヘプチル、(メタ)アクリル酸ヒドロキシオクチル等が挙げられる。
The low-molecular-weight (meth)acrylic resin (C) is a segment derived from a (meth)acrylic acid ester having a linear or branched alkyl group having 5 or more carbon atoms in which at least one of the hydrogen atoms is substituted with an OH group. It is preferred to have
Examples of the (meth)acrylic acid ester having a linear or branched alkyl group having 5 or more carbon atoms in which at least one of the hydrogen atoms is substituted with an OH group include hydroxypentyl (meth)acrylate, (meth) hydroxyhexyl acrylate, hydroxyheptyl (meth)acrylate, hydroxyoctyl (meth)acrylate and the like.
上記低分子量(メタ)アクリル樹脂(C)は、上記(メタ)アクリル酸エステルに由来するセグメントの他、(メタ)アクリル酸に由来するセグメント、グリシジル基を有する(メタ)アクリル酸エステル等の他の(メタ)アクリル酸エステルに由来するセグメントを有していてもよい。 The low-molecular-weight (meth)acrylic resin (C) includes segments derived from the (meth)acrylic acid ester, segments derived from (meth)acrylic acid, glycidyl group-containing (meth)acrylic acid esters, and the like. may have a segment derived from the (meth)acrylic acid ester of.
また、上記(3)を満たす本発明の(メタ)アクリル樹脂組成物において、上記(メタ)アクリル樹脂中に含まれるS原子の重量濃度は250ppm以上20000ppm以下である。
上記範囲とすることで、バインダー樹脂が低温でも極めて優れた分解性を発現しつつ、更に、無機微粒子の分散性、凝集抑制効果を向上させることができる。
上記S原子の重量濃度は、1500ppm以上であることが好ましく、3000ppm以上であることがより好ましく、18000ppm以下であることが好ましく、10000ppm以下であることがより好ましい。
上記S原子の重量濃度は、(メタ)アクリル樹脂の重量に対するS原子の重量の割合を意味し、以下の式に基づいて算出することができる。
(メタ)アクリル樹脂中に含まれるS原子の重量濃度=[連鎖移動剤に含まれるS原子の重量/(全モノマーの重量+重合開始剤の重量+連鎖移動剤の重量)]×100
なお、上記(メタ)アクリル樹脂組成物が複数の(メタ)アクリル樹脂を含有する場合、上記S原子の重量濃度は、各(メタ)アクリル樹脂中に含まれるS原子の重量濃度及び各(メタ)アクリル樹脂の配合割合に基づいて算出することができる。
また、上記S原子の重量濃度は、ICP-AES(誘導結合プラズマ発光分光分析法)によっても求めることができる。
In the (meth)acrylic resin composition of the present invention satisfying the above (3), the weight concentration of S atoms contained in the (meth)acrylic resin is 250 ppm or more and 20000 ppm or less.
By setting the amount within the above range, the binder resin exhibits extremely excellent decomposability even at low temperatures, and furthermore, the dispersibility of the inorganic fine particles and the effect of suppressing aggregation can be improved.
The weight concentration of the S atoms is preferably 1500 ppm or more, more preferably 3000 ppm or more, preferably 18000 ppm or less, and more preferably 10000 ppm or less.
The weight concentration of S atoms means the ratio of the weight of S atoms to the weight of the (meth)acrylic resin, and can be calculated based on the following formula.
Weight concentration of S atoms contained in (meth)acrylic resin = [weight of S atoms contained in chain transfer agent/(weight of all monomers + weight of polymerization initiator + weight of chain transfer agent)] × 100
When the (meth)acrylic resin composition contains a plurality of (meth)acrylic resins, the weight concentration of the S atoms is the weight concentration of the S atoms contained in each (meth)acrylic resin and each (meth)acrylic resin. ) can be calculated based on the mixing ratio of the acrylic resin.
The weight concentration of S atoms can also be determined by ICP-AES (inductively coupled plasma atomic emission spectrometry).
上記低分子量(メタ)アクリル樹脂(C)のガラス転移温度(Tg)は30℃以上60℃以下である。
上記範囲とすることで、可塑剤の添加量を少なくすることができ、また、低温分解性を向上させることができる。
上記Tgは32℃以上であることが好ましく、42℃以上であることがより好ましく、45℃以上であることが更により好ましく、58℃以下であることが好ましく、50℃以下であることがより好ましい。
なお、上記ガラス転移温度(Tg)は、例えば、示差走査熱量計(DSC)等を用いて測定することができる。
The glass transition temperature (Tg) of the low molecular weight (meth)acrylic resin (C) is 30°C or higher and 60°C or lower.
By setting the amount within the above range, the amount of the plasticizer to be added can be reduced, and the low-temperature decomposability can be improved.
The Tg is preferably 32° C. or higher, more preferably 42° C. or higher, even more preferably 45° C. or higher, preferably 58° C. or lower, and more preferably 50° C. or lower. preferable.
The glass transition temperature (Tg) can be measured using, for example, a differential scanning calorimeter (DSC).
本発明の(メタ)アクリル樹脂組成物における上記低分子量(メタ)アクリル樹脂(C)の含有量は、0.006重量%以上であることが好ましく、0.01重量%以上であることがより好ましく、10重量%以下であることが好ましく、8重量%以下であることがより好ましい。 The content of the low molecular weight (meth)acrylic resin (C) in the (meth)acrylic resin composition of the present invention is preferably 0.006% by weight or more, more preferably 0.01% by weight or more. It is preferably 10% by weight or less, more preferably 8% by weight or less.
また、上記(1)を満たす本発明の(メタ)アクリル樹脂組成物において、上記(メタ)アクリル樹脂は、上記高分子量(メタ)アクリル樹脂(A)に加えて、更に、上記低分子量(メタ)アクリル樹脂(B)を含有することが好ましい。
更に、上記低分子量(メタ)アクリル樹脂(C)を含有することで、無機微粒子の分散性をより向上させることができる。
Further, in the (meth)acrylic resin composition of the present invention satisfying the above (1), the (meth)acrylic resin is, in addition to the high molecular weight (meth)acrylic resin (A), further the low molecular weight (meth) ) It is preferable to contain an acrylic resin (B).
Further, by containing the low-molecular-weight (meth)acrylic resin (C), the dispersibility of the inorganic fine particles can be further improved.
上記(1)を満たす本発明の(メタ)アクリル樹脂組成物において、上記低分子量(メタ)アクリル樹脂(C)の含有量は、上記高分子量(メタ)アクリル樹脂(A)100重量部に対して、0.1重量部以上であることが好ましく、10重量部以下であることが好ましい。
上記範囲とすることで、無機微粒子の分散性をより向上させることができる。
上記高分子量(メタ)アクリル樹脂100重量部に対する低分子量(メタ)アクリル樹脂(C)の含有量は、0.3重量部以上であることがより好ましく、7.5重量部以下であることがより好ましい。
In the (meth)acrylic resin composition of the present invention that satisfies the above (1), the content of the low molecular weight (meth)acrylic resin (C) is based on 100 parts by weight of the high molecular weight (meth)acrylic resin (A). Therefore, it is preferably 0.1 parts by weight or more, and preferably 10 parts by weight or less.
By setting it as the said range, the dispersibility of an inorganic fine particle can be improved more.
The content of the low-molecular-weight (meth)acrylic resin (C) with respect to 100 parts by weight of the high-molecular-weight (meth)acrylic resin is more preferably 0.3 parts by weight or more, and is preferably 7.5 parts by weight or less. more preferred.
上記低分子量(メタ)アクリル樹脂(C)を製造する方法は特に限定されない。例えば、(メタ)アクリル酸エステル等を含む原料モノマー混合物に有機溶剤等を加えてモノマー混合液を調整し、更に、得られたモノマー混合液に重合開始剤、連鎖移動剤を添加して、上記原料モノマーを共重合させる方法が挙げられる。
重合させる方法は特に限定されず、乳化重合、懸濁重合、塊状重合、界面重合、溶液重合等が挙げられる。なかでも、溶液重合が好ましい。
The method for producing the low molecular weight (meth)acrylic resin (C) is not particularly limited. For example, an organic solvent or the like is added to a raw material monomer mixture containing (meth) acrylic acid ester or the like to prepare a monomer mixture, and a polymerization initiator and a chain transfer agent are added to the obtained monomer mixture, and the above A method of copolymerizing raw material monomers may be mentioned.
The polymerization method is not particularly limited, and examples thereof include emulsion polymerization, suspension polymerization, bulk polymerization, interfacial polymerization, and solution polymerization. Among them, solution polymerization is preferred.
上記重合開始剤としては、例えば、t-ブチルパーオキシピバレート、P-メンタンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、クメンハイドロキシパーオキサイド、t-ブチルハイドロキシパーオキサイド、過酸化シクロヘキサノン、ジコハク酸パーオキサイド等が挙げられる。 Examples of the polymerization initiator include t-butyl peroxypivalate, p-menthane hydroperoxide, diisopropylbenzene hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, cumene hydroxyperoxide, t-butyl hydroxyperoxide, cyclohexanone peroxide, disuccinic acid peroxide and the like.
上記連鎖移動剤としては、例えば、3-メルカプト-1,2-プロパンジオール、3-メルカプト-1-プロパノール、3-メルカプト-2-ブタノール、8-メルカプト-1-オクタノール、メルカプトコハク酸、メルカプト酢酸等が挙げられる。 Examples of the chain transfer agent include 3-mercapto-1,2-propanediol, 3-mercapto-1-propanol, 3-mercapto-2-butanol, 8-mercapto-1-octanol, mercaptosuccinic acid, and mercaptoacetic acid. etc.
<有機溶剤>
本発明の(メタ)アクリル樹脂組成物は、有機溶剤を含有する。
上記有機溶剤中に含まれるOH基の重量濃度は、9.0重量%以上28.0重量%以下である。
上記有機溶剤を含有することにより、無機微粒子の分散性、凝集抑制効果を向上させることができる。
上記OH基の重量濃度は、11.0重量%以上であることが好ましく、13.0重量%以上であることがより好ましく、26.0重量%以下であることが好ましく、24重量%以下であることがより好ましく、22.5重量%以下であることが更に好ましい。
上記OH基の重量濃度は、有機溶剤全体の重量に対するOH基の重量の割合を意味し、以下の式に基づいて算出することができる。
有機溶剤中に含まれるOH基の重量濃度=(全有機溶剤中に含まれるOH基の重量/全有機溶剤の重量)×100
<Organic solvent>
The (meth)acrylic resin composition of the present invention contains an organic solvent.
The weight concentration of OH groups contained in the organic solvent is 9.0% by weight or more and 28.0% by weight or less.
By containing the above organic solvent, the dispersibility of the inorganic fine particles and the effect of suppressing aggregation can be improved.
The weight concentration of the OH group is preferably 11.0% by weight or more, more preferably 13.0% by weight or more, preferably 26.0% by weight or less, and 24% by weight or less. more preferably 22.5% by weight or less.
The weight concentration of the OH group means the ratio of the weight of the OH group to the weight of the entire organic solvent, and can be calculated based on the following formula.
Weight concentration of OH groups contained in organic solvent = (weight of OH groups contained in all organic solvents/weight of all organic solvents) x 100
上記高分子量(メタ)アクリル樹脂(A)及び(B)中に含まれるOH基の重量濃度に対する上記有機溶剤中に含まれるOH基の重量濃度の比(有機溶剤中に含まれるOH基の重量濃度/高分子量(メタ)アクリル樹脂中に含まれるOH基の重量濃度)は、4.5以上であることが好ましく、46.2以下であることが好ましい。
上記範囲とすることで、無機微粒子の分散性、凝集抑制効果をより向上させることができる。
上記比は、8.1以上であることがより好ましく、10以上であることが更に好ましく、40以下であることがより好ましく、30以下であることが更に好ましく、25以下であることが更により好ましく、20以下であることが特に好ましい。
Ratio of weight concentration of OH groups contained in the organic solvent to weight concentration of OH groups contained in the high molecular weight (meth)acrylic resins (A) and (B) (weight of OH groups contained in the organic solvent The concentration/weight concentration of OH groups contained in the high molecular weight (meth)acrylic resin) is preferably 4.5 or more and preferably 46.2 or less.
By setting the amount within the above range, the dispersibility of the inorganic fine particles and the effect of suppressing aggregation can be further improved.
The above ratio is more preferably 8.1 or more, more preferably 10 or more, more preferably 40 or less, still more preferably 30 or less, and even more preferably 25 or less. It is preferably 20 or less, and particularly preferably 20 or less.
上記有機溶剤は、OH基を有する有機溶剤を含有する。
上記OH基を有する有機溶剤としては、例えば、脂肪族アルコール、環状アルコール、脂環式アルコール等が挙げられる。
上記脂肪族アルコールとしては、例えば、エタノール、プロパノール、イソプロパノール、ヘプタノール、オクタノール、デカノール、トリデカノール、ラウリルアルコール、テトラデシルアルコール、セチルアルコール、2-エチル-1-ヘキサノール、オクタデシルアルコール、ヘキサデセノール、オレイルアルコール、テキサノール、2-ブチル-2-エチル-1,3-プロパンジオール、ネオペンチルグリコール等が挙げられる。
上記環状アルコールとしては、例えば、クレゾール、オイゲノール等が挙げられる。
上記脂環式アルコールとしては、例えば、シクロヘキサノール等のシクロアルカノール、テルピネオール、ジヒドロテルピネオール等のテルペンアルコール等が挙げられる。
なかでも、脂肪族アルコールが好ましく、エタノール、イソプロパノール、2-ブチル-2-エチル-1,3-プロパンジオール、ネオペンチルグリコール、テキサノールが好ましい。
The organic solvent contains an organic solvent having an OH group.
Examples of organic solvents having an OH group include aliphatic alcohols, cyclic alcohols, and alicyclic alcohols.
Examples of the aliphatic alcohol include ethanol, propanol, isopropanol, heptanol, octanol, decanol, tridecanol, lauryl alcohol, tetradecyl alcohol, cetyl alcohol, 2-ethyl-1-hexanol, octadecyl alcohol, hexadecenol, oleyl alcohol, texanol. , 2-butyl-2-ethyl-1,3-propanediol, neopentyl glycol and the like.
Examples of the cyclic alcohol include cresol and eugenol.
Examples of the alicyclic alcohols include cycloalkanols such as cyclohexanol, terpene alcohols such as terpineol and dihydroterpineol, and the like.
Among them, aliphatic alcohols are preferred, and ethanol, isopropanol, 2-butyl-2-ethyl-1,3-propanediol, neopentyl glycol and texanol are preferred.
上記OH基を有する有機溶剤は、分子量が46以上であることが好ましく、60以上であることがより好ましく、220以下であることが好ましく、160以下であることがより好ましい。
また、上記OH基を有する有機溶剤は、炭素数が2以上であることが好ましく、3以上であることがより好ましく、12以下であることが好ましく、10以下であることがより好ましい。
The organic solvent having an OH group preferably has a molecular weight of 46 or more, more preferably 60 or more, preferably 220 or less, and more preferably 160 or less.
The organic solvent having an OH group preferably has 2 or more carbon atoms, more preferably 3 or more carbon atoms, preferably 12 or less carbon atoms, and more preferably 10 or less carbon atoms.
上記OH基を有する有機溶剤中に含まれるOH基の重量の割合は、7.5重量%以上であることが好ましく、15重量%以上であることがより好ましく、21重量%以上であることが更に好ましく、37重量%以下であることが好ましい。 The weight ratio of OH groups contained in the organic solvent having OH groups is preferably 7.5% by weight or more, more preferably 15% by weight or more, and is preferably 21% by weight or more. More preferably, it is 37% by weight or less.
上記有機溶剤全体に対するOH基を有する有機溶剤の含有量は、29重量%以上であることが好ましく、43重量%以上であることがより好ましく、79重量%以下であることが好ましく、61重量%以下であることがより好ましい。 The content of the organic solvent having an OH group with respect to the entire organic solvent is preferably 29% by weight or more, more preferably 43% by weight or more, preferably 79% by weight or less, and 61% by weight. The following are more preferable.
上記有機溶剤は、OH基を有する有機溶剤以外の他の有機溶剤を含有していてもよい。
上記他の有機溶剤としては、例えば、アセトン、メチルエチルケトン、ジプロピルケトン、ジイソブチルケトン等のケトン類、トルエン、キシレン等の芳香族炭化水素類、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸ブチル、ブタン酸メチル、ブタン酸エチル、ブタン酸ブチル、ペンタン酸メチル、ペンタン酸エチル、ペンタン酸ブチル、ヘキサン酸メチル、ヘキサン酸エチル、ヘキサン酸ブチル、酢酸エチル、酢酸ブチル、酢酸ヘキシル、酢酸2-エチルヘキシル、酪酸2-エチルヘキシル等のエステル類等が挙げられる。
なかでも、トルエン、酢酸ブチル、メチルエチルケトンが好ましい。
The organic solvent may contain an organic solvent other than the organic solvent having an OH group.
Examples of the other organic solvents include ketones such as acetone, methyl ethyl ketone, dipropyl ketone and diisobutyl ketone, aromatic hydrocarbons such as toluene and xylene, methyl propionate, ethyl propionate, butyl propionate, and butanoic acid. Methyl, ethyl butanoate, butyl butanoate, methyl pentanoate, ethyl pentanoate, butyl pentanoate, methyl hexanoate, ethyl hexanoate, butyl hexanoate, ethyl acetate, butyl acetate, hexyl acetate, 2-ethylhexyl acetate, butyric acid 2 - Esters such as ethylhexyl.
Among them, toluene, butyl acetate and methyl ethyl ketone are preferred.
上記有機溶剤全体に対する上記他の有機溶剤の含有量は、21重量%以上であることが好ましく、39重量%以上であることがより好ましく、71重量%以下であることが好ましく、57重量%以下であることがより好ましい。 The content of the other organic solvent relative to the total organic solvent is preferably 21% by weight or more, more preferably 39% by weight or more, preferably 71% by weight or less, and 57% by weight or less. is more preferable.
本発明の(メタ)アクリル樹脂組成物における上記有機溶剤の含有量は、20重量%以上であることが好ましく、30重量%以上であることがより好ましく、95重量%以下であることが好ましく、70重量%以下であることがより好ましく、60重量%以下であることが更に好ましい。 The content of the organic solvent in the (meth)acrylic resin composition of the present invention is preferably 20% by weight or more, more preferably 30% by weight or more, and preferably 95% by weight or less, It is more preferably 70% by weight or less, and even more preferably 60% by weight or less.
本発明の(メタ)アクリル樹脂組成物における上記有機溶剤の含有量は、上記(メタ)アクリル樹脂100重量部に対して、25重量部以上であることが好ましく、100重量部以上であることがより好ましく、2000重量部以下であることが好ましく、1500重量部以下であることがより好ましい。 The content of the organic solvent in the (meth)acrylic resin composition of the present invention is preferably 25 parts by weight or more, more preferably 100 parts by weight or more, relative to 100 parts by weight of the (meth)acrylic resin. More preferably, it is 2000 parts by weight or less, and more preferably 1500 parts by weight or less.
本発明の(メタ)アクリル樹脂組成物における上記有機溶剤の含有量は、上記高分子量(メタ)アクリル樹脂(A)100重量部に対して、25重量部以上であることが好ましく、42.9重量部以上であることがより好ましく、1900重量部以下であることが好ましく、233.3重量部以下であることがより好ましく、150重量部以下であることがより好ましい。 The content of the organic solvent in the (meth)acrylic resin composition of the present invention is preferably 25 parts by weight or more with respect to 100 parts by weight of the high molecular weight (meth)acrylic resin (A), and is 42.9 parts by weight. It is more preferably 1900 parts by weight or less, more preferably 233.3 parts by weight or less, and more preferably 150 parts by weight or less.
本発明の(メタ)アクリル樹脂組成物における上記有機溶剤の含有量は、上記高分子量(メタ)アクリル樹脂(B)100重量部に対して、25重量部以上であることが好ましく、100重量部以上であることがより好ましく、2000重量部以下であることが好ましく、1500重量部以下であることがより好ましい。 The content of the organic solvent in the (meth)acrylic resin composition of the present invention is preferably 25 parts by weight or more and 100 parts by weight with respect to 100 parts by weight of the high molecular weight (meth)acrylic resin (B). It is more preferably 2000 parts by weight or less, and more preferably 1500 parts by weight or less.
本発明の(メタ)アクリル樹脂組成物における上記有機溶剤の含有量は、上記低分子量(メタ)アクリル樹脂(C)100重量部に対して、25重量部以上であることが好ましく、1000重量部以上であることがより好ましく、1,500,000重量部以下であることが好ましく、1,000,000重量部以下であることがより好ましい。 The content of the organic solvent in the (meth)acrylic resin composition of the present invention is preferably 25 parts by weight or more and 1000 parts by weight with respect to 100 parts by weight of the low molecular weight (meth)acrylic resin (C). It is more preferably 1,500,000 parts by weight or less, and more preferably 1,000,000 parts by weight or less.
上記有機溶剤の沸点は90~160℃であることが好ましい。上記沸点が90℃以上であることで、蒸発が早くなりすぎず、取り扱い性に優れる。上記沸点を160℃以下とすることで、無機微粒子分散シートの強度を向上させることが可能となる。 The boiling point of the organic solvent is preferably 90 to 160°C. When the boiling point is 90° C. or higher, the evaporation does not become too fast and the handleability is excellent. By setting the boiling point to 160° C. or lower, it is possible to improve the strength of the inorganic fine particle dispersed sheet.
本発明の(メタ)アクリル樹脂組成物を作製する方法は特に限定されないが、例えば、上記高分子量(メタ)アクリル樹脂(A)、上記高分子量(メタ)アクリル樹脂(B)、上記高分子量(メタ)アクリル樹脂(C)のうちの少なくとも1つを含む(メタ)アクリル樹脂、上記有機溶剤、必要に応じて添加されるその他の添加剤を混合する方法が挙げられる。 The method for producing the (meth)acrylic resin composition of the present invention is not particularly limited. A method of mixing a (meth)acrylic resin containing at least one of the meth)acrylic resins (C), the above organic solvent, and other additives added as necessary.
本発明の(メタ)アクリル樹脂組成物は、低温分解性に優れるとともに、無機微粒子の分散性、凝集抑制効果に優れることから、無機微粒子及び可塑剤を組み合わせて、無機微粒子分散スラリー組成物として好適に用いることができる。 The (meth)acrylic resin composition of the present invention has excellent low-temperature decomposability, excellent dispersibility of inorganic fine particles, and excellent aggregation-inhibiting effect. can be used for
本発明の(メタ)アクリル樹脂組成物、無機微粒子及び可塑剤を含有する無機微粒子分散スラリー組成物もまた本発明の1つである。 An inorganic fine particle-dispersed slurry composition containing the (meth)acrylic resin composition of the present invention, inorganic fine particles and a plasticizer is also one aspect of the present invention.
<無機微粒子>
本発明の無機微粒子分散スラリー組成物は、無機微粒子を含有する。
上記無機微粒子は特に限定されず、例えば、ガラス粉末、セラミック粉末、蛍光体微粒子、珪素酸化物等、金属微粒子等が挙げられる。
<Inorganic fine particles>
The inorganic fine particle-dispersed slurry composition of the present invention contains inorganic fine particles.
The inorganic fine particles are not particularly limited, and examples thereof include glass powder, ceramic powder, phosphor fine particles, silicon oxide, and metal fine particles.
上記ガラス粉末は特に限定されず、例えば、酸化ビスマスガラス、ケイ酸塩ガラス、鉛ガラス、亜鉛ガラス、ボロンガラス等のガラス粉末や、CaO-Al-SiO系、MgO-Al-SiO系、LiO-Al-SiO系等の各種ケイ素酸化物のガラス粉末等が挙げられる。
また、上記ガラス粉末として、SnO-B-P-Al混合物、PbO-B-SiO混合物、BaO-ZnO-B-SiO混合物、ZnO-Bi-B-SiO混合物、Bi-B-BaO-CuO混合物、Bi-ZnO-B-Al-SrO混合物、ZnO-Bi-B混合物、Bi-SiO混合物、P-NaO-CaO-BaO-Al-B混合物、P-SnO混合物、P-SnO-B混合物、P-SnO-SiO混合物、CuO-P-RO混合物、SiO-B-ZnO-NaO-LiO-NaF-V混合物、P-ZnO-SnO-RO-RO混合物、B-SiO-ZnO混合物、B-SiO-Al-ZrO混合物、SiO-B-ZnO-RO-RO混合物、SiO-B-Al-RO-RO混合物、SrO-ZnO-P混合物、SrO-ZnO-P混合物、BaO-ZnO-B-SiO混合物等のガラス粉末も用いることができる。なお、Rは、Zn、Ba、Ca、Mg、Sr、Sn、Ni、Fe及びMnからなる群より選択される元素である。
特に、PbO-B-SiO混合物のガラス粉末や、鉛を含有しないBaO-ZnO-B-SiO混合物又はZnO-Bi-B-SiO混合物等の無鉛ガラス粉末が好ましい。
The glass powder is not particularly limited. Examples include glass powders of various silicon oxides such as 3 -SiO 2 system and LiO 2 -Al 2 O 3 -SiO 2 system.
Further, as the glass powder, SnO--B 2 O 3 --P 2 O 5 --Al 2 O 3 mixture, PbO--B 2 O 3 --SiO 2 mixture, BaO--ZnO--B 2 O 3 ---SiO 2 mixture, ZnO -Bi 2 O 3 -B 2 O 3 -SiO 2 mixture, Bi 2 O 3 -B 2 O 3 -BaO-CuO mixture, Bi 2 O 3 -ZnO-B 2 O 3 -Al 2 O 3 -SrO mixture, ZnO - Bi2O3 - B2O3 mixture, Bi2O3 - SiO2 mixture , P2O5 - Na2O - CaO - BaO - Al2O3 - B2O3 mixture , P2O5 -SnO mixture, P2O5 - SnO - B2O3 mixture, P2O5 - SnO - SiO2 mixture, CuO - P2O5 - RO mixture , SiO2 - B2O3 - ZnO - Na2 O—Li 2 O—NaF—V 2 O 5 mixture, P 2 O 5 —ZnO—SnO—R 2 O—RO mixture, B 2 O 3 —SiO 2 —ZnO mixture, B 2 O 3 —SiO 2 —Al 2O3 - ZrO2 mixture, SiO2 - B2O3 - ZnO - R2O - RO mixture, SiO2 - B2O3 - Al2O3 - RO - R2O mixture, SrO-ZnO-P 2 O 5 mixtures, SrO--ZnO--P 2 O 5 mixtures, BaO--ZnO--B 2 O 3 --SiO 2 mixtures, and other glass powders can also be used. R is an element selected from the group consisting of Zn, Ba, Ca, Mg, Sr, Sn, Ni, Fe and Mn.
In particular, glass powders of PbO-B 2 O 3 -SiO 2 mixtures, lead-free BaO-ZnO-B 2 O 3 -SiO 2 mixtures or ZnO-Bi 2 O 3 -B 2 O 3 -SiO 2 mixtures, etc. of lead-free glass powder is preferred.
上記セラミック粉末は特に限定されず、例えば、アルミナ、フェライト、ジルコニア、ジルコン、ジルコン酸バリウム、ジルコン酸カルシウム、酸化チタン、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸亜鉛、チタン酸ランタン、チタン酸ネオジウム、チタン酸ジルコン鉛、窒化アルミナ、窒化ケイ素、窒化ホウ素、炭化ホウ素、錫酸バリウム、錫酸カルシウム、珪酸マグネシウム、ムライト、ステアタイト、コーディエライト、フォルステライト等が挙げられる。
また、ITO、FTO、酸化ニオブ、酸化バナジウム、酸化タングステン、ランタンストロンチウムマンガナイト、ランタンストロンチウムコバルトフェライト、イットリウム安定化ジルコニア、ガドリニウムドープセリア、酸化ニッケル、ランタンクロマイト等も使用することができる。
上記蛍光体微粒子は特に限定されず、例えば、蛍光体物質としては、ディスプレイ用の蛍光体物質として従来知られている青色蛍光体物質、赤色蛍光体物質、緑色蛍光体物質などが用いられる。青色蛍光体物質としては、例えば、MgAl1017:Eu、YSiO:Ce系、CaWO:Pb系、BaMgAl1423:Eu系、BaMgAl1627:Eu系、BaMgAl1423:Eu系、BaMgAl1427:Eu系、ZnS:(Ag,Cd)系のものが用いられる。赤色蛍光体物質としては、例えば、Y:Eu系、YSiO:Eu系、YAl12:Eu系、Zn(PO:Mn系、YBO:Eu系、(Y,Gd)BO:Eu系、GdBO:Eu系、ScBO:Eu系、LuBO:Eu系のものが用いられる。緑色蛍光体物質としては、例えば、ZnSiO:Mn系、BaAl1219:Mn系、SrAl1319:Mn系、CaAl1219:Mn系、YBO:Tb系、BaMgAl1423:Mn系、LuBO:Tb系、GdBO:Tb系、ScBO:Tb系、Sr6SiCl:Eu系のものが用いられる。その他、ZnO:Zn系、ZnS:(Cu,Al)系、ZnS:Ag系、YS:Eu系、ZnS:Zn系、(Y,Cd)BO:Eu系、BaMgAl1223:Eu系のものも用いることができる。
The ceramic powder is not particularly limited, and examples thereof include alumina, ferrite, zirconia, zircon, barium zirconate, calcium zirconate, titanium oxide, barium titanate, strontium titanate, calcium titanate, magnesium titanate, zinc titanate, Lanthanum titanate, neodymium titanate, lead zirconium titanate, alumina nitride, silicon nitride, boron nitride, boron carbide, barium stannate, calcium stannate, magnesium silicate, mullite, steatite, cordierite, forsterite, etc. be done.
ITO, FTO, niobium oxide, vanadium oxide, tungsten oxide, lanthanum strontium manganite, lanthanum strontium cobalt ferrite, yttrium-stabilized zirconia, gadolinium-doped ceria, nickel oxide, lanthanum chromite, and the like can also be used.
The phosphor fine particles are not particularly limited, and for example, blue phosphor substances, red phosphor substances, green phosphor substances, etc., which are conventionally known as phosphor substances for displays, are used. Blue phosphor materials include, for example, MgAl 10 O 17 :Eu, Y 2 SiO 5 :Ce system, CaWO 4 :Pb system, BaMgAl 14 O 23 :Eu system, BaMgAl 16 O 27 :Eu system, BaMg 2 Al 14 O 23 : Eu system, BaMg 2 Al 14 O 27 : Eu system, ZnS: (Ag, Cd) system is used. Examples of red phosphor materials include Y2O3 :Eu system, Y2SiO5 :Eu system, Y3Al5O12 :Eu system, Zn3 ( PO4 ) 2 : Mn system , YBO3 :Eu. (Y,Gd)BO 3 :Eu system, GdBO 3 :Eu system, ScBO 3 :Eu system, and LuBO 3 :Eu system. Green phosphor materials include, for example, Zn2SiO4 :Mn-based, BaAl12O19 :Mn-based, SrAl13O19 : Mn -based, CaAl12O19 : Mn -based, YBO3 : Tb - based, and BaMgAl14O . 23 :Mn system, LuBO3 :Tb system, GdBO3 :Tb system , ScBO3 : Tb system, and Sr6Si3O3Cl4 :Eu system. In addition, ZnO: Zn system, ZnS: (Cu, Al) system, ZnS: Ag system, Y 2 O 2 S: Eu system, ZnS: Zn system, (Y, Cd) BO 3 : Eu system, BaMgAl 12 O 23 : Eu-based ones can also be used.
上記金属微粒子は特に限定されず、例えば、鉄、銅、ニッケル、パラジウム、白金、金、銀、アルミニウム、タングステンやこれらの合金等からなる粉末等が挙げられる。
また、カルボキシル基、アミノ基、アミド基等との吸着特性が良好で酸化されやすい銅や鉄等の金属も好適に用いることができる。これらの金属粉末は、単独で用いてもよく、2種以上を併用してもよい。
また、上記金属微粒子は、金属錯体のほか、種々のカーボンブラック、カーボンナノチューブ等を使用してもよい。
The fine metal particles are not particularly limited, and examples thereof include powders of iron, copper, nickel, palladium, platinum, gold, silver, aluminum, tungsten, and alloys thereof.
In addition, metals such as copper and iron, which have good adsorption properties with carboxyl groups, amino groups, amide groups, etc. and are easily oxidized, can also be suitably used. These metal powders may be used alone or in combination of two or more.
In addition to metal complexes, various carbon blacks, carbon nanotubes, and the like may be used as the metal fine particles.
上記無機微粒子は、リチウム又はチタンを含有することが好ましい。具体的には例えば、LiO・Al・SiO系無機ガラス等の低融点ガラス、LiS-M(M=B、Si、Ge、P)等のリチウム硫黄系ガラス、LiCeO等のリチウムコバルト複合酸化物、LiMnO等のリチウムマンガン複合酸化物、リチウムニッケル複合酸化物、リチウムバナジウム複合酸化物、リチウムジルコニウム複合酸化物、リチウムハフニウム複合酸化物、ケイリン酸リチウム(Li3.5Si0.50.5)、リン酸チタンリチウム(LiTi(PO)、チタン酸リチウム(LiTi12)、Li4/3Ti5/3、LiCoO、リン酸ゲルマニウムリチウム(LiGe(PO)、Li-SiS系ガラス、LiGeS-LiPS系ガラス、LiSiO、LiMn、LiS-P系ガラス・セラミクス、LiO-SiO、LiO-V-SiO、LiS-SiS-LiSiO系ガラス、LiPON等のイオン導電性酸化物、LiO-P-B、LiO-GeOBa等の酸化リチウム化合物、LiAlTi(PO系ガラス、LaLiTiO系ガラス、LiGe系ガラス、LiLaZr12系ガラス、LiSiCl系ガラス、LiNbO等のリチウムニオブ酸化物、Li-β-アルミナ等のリチウムアルミナ化合物、Li14Zn(GeO等のリチウム亜鉛酸化物等が挙げられる。 The inorganic fine particles preferably contain lithium or titanium. Specifically, for example, low-melting-point glass such as LiO 2 ·Al 2 O 3 ·SiO 2 -based inorganic glass, lithium sulfur-based glass such as Li 2 SM x Sy (M=B, Si, Ge, P) , Lithium cobalt composite oxides such as LiCeO2 , Lithium manganese composite oxides such as LiMnO4 , Lithium nickel composite oxides, Lithium vanadium composite oxides, Lithium zirconium composite oxides, Lithium hafnium composite oxides, Lithium silicate phosphate (Li 3.5Si0.5P0.5O4 ), lithium titanium phosphate ( LiTi2 ( PO4) 3 ) , lithium titanate ( Li4Ti5O12 ), Li4 / 3Ti5 / 3O 4 , LiCoO 2 , lithium germanium phosphate (LiGe 2 (PO 4 ) 3 ), Li 2 —SiS glass, Li 4 GeS 4 —Li 3 PS 4 glass, LiSiO 3 , LiMn 2 O 4 , Li 2 S— P 2 S 5 based glass/ceramics, Li 2 O—SiO 2 , Li 2 O—V 2 O 5 —SiO 2 , LiS—SiS 2 —Li 4 SiO 4 based glass, ion conductive oxides such as LiPON, Li Lithium oxide compounds such as 2 O—P 2 O 5 —B 2 O 3 and Li 2 O—GeO 2 Ba, Li x Aly Ti z ( PO 4 ) 3 -based glass, La x Li y TiO z -based glass, Li xGeyPzO4 - based glass , Li7La3Zr2O12 - based glass , LivSiwPxSyClz - based glass, lithium niobium oxides such as LiNbO3 , Li - β-alumina, etc. Examples include lithium alumina compounds and lithium zinc oxides such as Li 14 Zn(GeO 4 ) 4 .
本発明の無機微粒子分散スラリー組成物における上記無機微粒子の含有量としては特に限定されないが、好ましい下限が10重量%、好ましい上限が90重量%である。10重量%以上とすることで、充分な粘度を有し、優れた塗工性を有するものとでき、90重量%以下とすることで、無機微粒子の分散性に優れるものとできる。 The content of the inorganic fine particles in the inorganic fine particle-dispersed slurry composition of the present invention is not particularly limited, but the preferred lower limit is 10% by weight and the preferred upper limit is 90% by weight. When the amount is 10% by weight or more, sufficient viscosity and excellent coatability can be obtained.
<その他>
本発明の無機微粒子分散スラリー組成物は、更に、可塑剤を含有する。
上記可塑剤としては、例えば、アジピン酸ジ(ブトキシエチル)、アジピン酸ジブトキシエトキシエチル、トリエチレングリコールジブチル、トリエチレングリコールビス(2-エチルヘキサノエート)、トリエチレングリコールジヘキサノエート、アセチルクエン酸トリエチル、アセチルクエン酸トリブチル、アセチルクエン酸ジエチル、アセチルクエン酸ジブチル、セバシン酸ジブチル、トリアセチン、アセチルオキシマロン酸ジエチル、エトキシマロン酸ジエチル等が挙げられる。
これらの可塑剤を用いることで、通常の可塑剤を使用する場合と比較して可塑剤添加量を低減することが可能となる(バインダーに対して30重量%程度添加されるところ、25重量%以下、更に20重量%以下に低減可能)。
なかでも、構造中にベンゼン環等の芳香環を含まない非芳香族の可塑剤を使用することが好ましく、アジピン酸、トリエチレングリコール、クエン酸又はコハク酸に由来する成分を含有することがより好ましい。なお、芳香環を有する可塑剤は、燃焼して煤になりやすいため好ましくない。
<Others>
The inorganic fine particle-dispersed slurry composition of the present invention further contains a plasticizer.
Examples of the plasticizer include di(butoxyethyl) adipate, dibutoxyethoxyethyl adipate, triethylene glycol dibutyl, triethylene glycol bis(2-ethylhexanoate), triethylene glycol dihexanoate, acetyl triethyl citrate, acetyl tributyl citrate, acetyl diethyl citrate, acetyl citrate dibutyl, dibutyl sebacate, triacetin, diethyl acetyloxymalonate, diethyl ethoxymalonate and the like.
By using these plasticizers, it is possible to reduce the amount of plasticizer added compared to the case of using a normal plasticizer (when about 30% by weight is added to the binder, 25% by weight hereinafter, it can be further reduced to 20% by weight or less).
Among them, it is preferable to use a non-aromatic plasticizer that does not contain an aromatic ring such as a benzene ring in its structure, and it is more preferable to use a component derived from adipic acid, triethylene glycol, citric acid or succinic acid. preferable. A plasticizer having an aromatic ring is not preferable because it is likely to burn and become soot.
また、上記可塑剤としては、エチル基、ブチル基等の炭素数2以上のアルキル基を有するものが好ましく、炭素数4以上のアルキル基を有するものがより好ましい。
上記可塑剤は、炭素数が2以上のアルキル基を含有することで、可塑剤への水分の吸収を抑制して、得られる無機微粒子分散シートにボイドやふくれ等の不具合を発生することを防止することができる。特に、可塑剤のアルキル基は分子末端に位置していることが好ましい。
また、上記可塑剤は、エチル基等の炭素数が2の官能基、ブチル基等の炭素数が4の官能基、ブトキシエチル基等の官能基を有することが好ましい。上記官能基は末端分子鎖に存在することが好ましい。
末端分子鎖にエチル基等の炭素数が2の官能基を持つ可塑剤はメタクリル酸エチルに由来するセグメントとの相性がよく、末端分子にブチル基等の炭素数が4の官能基を持つ可塑剤はメタクリル酸ブチルに由来するセグメントとの相性が良い。炭素数が2又は4の官能基を持つ可塑剤は本発明にかかる高分子量(メタ)アクリル樹脂との相性が良く、樹脂の脆性を好ましく改善することができる。更には、ブトキシエチル基はメタクリル酸エチルに由来するセグメント及びメタクリル酸ブチルに由来するセグメントの両方の組成と相性がよく好ましく用いることができる。
The plasticizer preferably has an alkyl group with 2 or more carbon atoms such as ethyl or butyl, and more preferably has an alkyl group with 4 or more carbon atoms.
By containing an alkyl group having 2 or more carbon atoms, the plasticizer suppresses the absorption of water into the plasticizer and prevents defects such as voids and swelling in the obtained inorganic fine particle dispersion sheet. can do. In particular, the alkyl group of the plasticizer is preferably located at the molecular terminal.
Further, the plasticizer preferably has a functional group having 2 carbon atoms such as an ethyl group, a functional group having 4 carbon atoms such as a butyl group, and a functional group such as a butoxyethyl group. Preferably, the functional group is present at the terminal molecular chain.
A plasticizer with a functional group with 2 carbon atoms such as an ethyl group in the terminal molecular chain has good compatibility with a segment derived from ethyl methacrylate, and a plasticizer with a functional group with 4 carbon atoms such as a butyl group in the terminal molecule. The agent is compatible with segments derived from butyl methacrylate. A plasticizer having a functional group with 2 or 4 carbon atoms has good compatibility with the high-molecular-weight (meth)acrylic resin according to the present invention, and can preferably improve the brittleness of the resin. Furthermore, a butoxyethyl group is compatible with the composition of both the segment derived from ethyl methacrylate and the segment derived from butyl methacrylate, and can be preferably used.
上記可塑剤は、炭素:酸素比が5:1~3:1であることが好ましい。
炭素:酸素比を上記範囲とすることで、可塑剤の燃焼性を向上させて、残留炭素の発生を防止することができる。また、(メタ)アクリル樹脂との相溶性を向上させて、少量の可塑剤でも可塑化効果を発揮させることができる。
また、プロピレングリコール骨格やトリメチレングリコール骨格の高沸点有機溶剤も、炭素数が4以上のアルキル基を含有し、炭素:酸素比が5:1~3:1であれば好ましく用いることができる。
The plasticizer preferably has a carbon:oxygen ratio of 5:1 to 3:1.
By setting the carbon:oxygen ratio within the above range, it is possible to improve the combustibility of the plasticizer and prevent the generation of residual carbon. Moreover, compatibility with (meth)acrylic resin can be improved, and a plasticizing effect can be exhibited even with a small amount of plasticizer.
Also, high-boiling organic solvents having a propylene glycol skeleton or a trimethylene glycol skeleton can be preferably used as long as they contain an alkyl group having 4 or more carbon atoms and have a carbon:oxygen ratio of 5:1 to 3:1.
上記可塑剤の沸点は240℃以上390℃未満であることが好ましい。上記沸点が240℃以上であることで、乾燥工程で蒸発しやすくなり、成形体への残留を防止できる。また、390℃未満であることで、残留炭素が生じることを防止できる。なお、上記沸点は、常圧での沸点をいう。 The boiling point of the plasticizer is preferably 240°C or higher and lower than 390°C. When the boiling point is 240° C. or higher, it becomes easy to evaporate in the drying step, and can be prevented from remaining in the molded article. In addition, when the temperature is less than 390°C, residual carbon can be prevented from being generated. In addition, the said boiling point means the boiling point in a normal pressure.
本発明の無機微粒子分散スラリー組成物における上記可塑剤の含有量としては特に限定されないが、好ましい下限は0.1重量%、好ましい上限は3.0重量%である。上記範囲内とすることで、可塑剤の焼成残渣を少なくすることができる。 The content of the plasticizer in the inorganic fine particle-dispersed slurry composition of the present invention is not particularly limited, but the preferred lower limit is 0.1% by weight and the preferred upper limit is 3.0% by weight. By setting it within the above range, it is possible to reduce the baking residue of the plasticizer.
本発明の無機微粒子分散スラリー組成物における上記(メタ)アクリル樹脂組成物の含有量は特に限定されないが、好ましい下限は0.5重量%、好ましい上限は10重量%である。
上記範囲とすることで、低温で焼成しても脱脂可能であり、また、無機微粒子の分散性及び凝集抑制効果に優れる無機微粒子分散スラリー組成物とすることができる。
上記(メタ)アクリル樹脂組成物の含有量は、より好ましい下限が1重量%、より好ましい上限が7重量%である。
The content of the (meth)acrylic resin composition in the inorganic fine particle-dispersed slurry composition of the present invention is not particularly limited, but the preferred lower limit is 0.5% by weight and the preferred upper limit is 10% by weight.
When the content is within the above range, the inorganic fine particle-dispersed slurry composition can be degreased even when fired at a low temperature, and has excellent dispersibility of the inorganic fine particles and an effect of suppressing aggregation of the inorganic fine particles.
A more preferable lower limit to the content of the (meth)acrylic resin composition is 1% by weight, and a more preferable upper limit is 7% by weight.
本発明の無機微粒子分散スラリー組成物は、更に、界面活性剤等の添加剤を含有してもよい。
上記界面活性剤は特に限定されず、例えば、カチオン系界面活性剤、アニオン系界面活性剤、ノニオン系界面活性剤が挙げられる。
上記ノニオン系界面活性剤としては特に限定されないが、HLB値が10以上20以下のノニオン系界面活性剤であることが好ましい。ここで、HLB値とは、界面活性剤の親水性、親油性を表す指標として用いられるものであって、計算方法がいくつか提案されており、例えば、エステル系の界面活性剤について、鹸化価をS、界面活性剤を構成する脂肪酸の酸価をAとし、HLB値を20(1-S/A)等の定義がある。具体的には、脂肪鎖にアルキレンエーテルを付加させたポリエチレンオキサイドを有するノニオン系界面活性剤が好適であり、具体的には例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル等が好適に用いられる。なお、上記ノニオン系界面活性剤は、熱分解性がよいが、大量に添加すると無機微粒子分散スラリー組成物の熱分解性が低下することがあるため、含有量の好ましい上限は5重量%である。
The inorganic fine particle-dispersed slurry composition of the present invention may further contain additives such as surfactants.
The surfactant is not particularly limited, and examples thereof include cationic surfactants, anionic surfactants, and nonionic surfactants.
Although the nonionic surfactant is not particularly limited, it is preferably a nonionic surfactant having an HLB value of 10 or more and 20 or less. Here, the HLB value is used as an index representing the hydrophilicity and lipophilicity of a surfactant, and several calculation methods have been proposed. is defined as S, the acid value of the fatty acid constituting the surfactant as A, and the HLB value as 20 (1-S/A). Specifically, nonionic surfactants having polyethylene oxide in which an alkylene ether is added to the fatty chain are suitable, and specifically, for example, polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, etc. are preferably used. be done. The above nonionic surfactant has good thermal decomposability, but if added in a large amount, the thermal decomposability of the inorganic fine particle-dispersed slurry composition may decrease, so the preferred upper limit of the content is 5% by weight. .
本発明の無機微粒子分散スラリー組成物の粘度は特に限定されないが、20℃においてB型粘度計を用いプローブ回転数を5rpmに設定して測定した場合の粘度の好ましい下限が0.1Pa・s、好ましい上限が100Pa・sである。
上記粘度を0.1Pa・s以上とすることで、ダイコート印刷法等により塗工した後、得られる無機微粒子分散シートが所定の形状を維持することが可能となる。また、上記粘度を100Pa・s以下とすることで、ダイの塗出痕が消えない等の不具合を防止して、印刷性に優れるものとできる。
The viscosity of the inorganic fine particle-dispersed slurry composition of the present invention is not particularly limited. A preferable upper limit is 100 Pa·s.
By setting the viscosity to 0.1 Pa·s or more, the obtained inorganic fine particle-dispersed sheet can maintain a predetermined shape after being coated by a die coat printing method or the like. Further, by setting the viscosity to 100 Pa·s or less, it is possible to prevent problems such as not erasing the coating marks of the die, and to achieve excellent printability.
本発明の無機微粒子分散スラリー組成物を作製する方法は特に限定されず、従来公知の攪拌方法が挙げられ、具体的には、例えば、上記(メタ)アクリル樹脂組成物、上記無機微粒子、上記有機溶剤及び必要に応じて添加される可塑剤等の他の成分を3本ロール等で攪拌する方法等が挙げられる。上記無機微粒子分散スラリー組成物の構成成分の添加順序は適宜設定することができる。 The method for producing the inorganic fine particle-dispersed slurry composition of the present invention is not particularly limited, and conventionally known stirring methods can be mentioned. Examples thereof include a method of stirring other components such as a solvent and optionally added plasticizer with a three-roll roller or the like. The addition order of the components of the inorganic fine particle-dispersed slurry composition can be appropriately set.
本発明の無機微粒子分散スラリー組成物を、片面離型処理を施した支持フィルム上に塗工し、有機溶剤を乾燥させ、成形することで、無機微粒子分散成形物を製造することができる。このような無機微粒子分散成形物もまた本発明の1つである。
本発明の無機微粒子分散成形物の形状は特に限定されないが、例えば、シート等の形状とすることができる。
The inorganic fine particle dispersion slurry composition of the present invention is applied onto a support film that has been subjected to mold release treatment on one side, the organic solvent is dried, and an inorganic fine particle dispersion molding can be produced by molding. Such an inorganic fine particle dispersion molding is also one aspect of the present invention.
The shape of the inorganic fine particle-dispersed molding of the present invention is not particularly limited, but may be, for example, a sheet shape.
本発明の無機微粒子分散成形物の製造方法としては、例えば、本発明の無機微粒子分散スラリー組成物をロールコーター、ダイコーター、スクイズコーター、カーテンコーター等の塗工方式によって支持フィルム上に均一に塗膜を形成する方法等が挙げられる。
なお、無機微粒子分散成形物を製造する場合、重合液をそのまま無機微粒子分散スラリー組成物として、高分子量(メタ)アクリル樹脂を乾燥させずに、無機微粒子分散成形物に加工することが好ましい。
高分子量(メタ)アクリル樹脂を乾燥させると、再度溶液化した際にパーティクルと呼ばれる未乾燥粒子が発生し、このようなパーティクルは、カートリッジフィルター等を用いた濾過でも除去することが難しく、無機微粒子分散成形物の強度に悪影響を及ぼすためである。
As a method for producing the inorganic fine particle dispersion molding of the present invention, for example, the inorganic fine particle dispersion slurry composition of the present invention is uniformly coated on a support film by a coating method such as a roll coater, a die coater, a squeeze coater, a curtain coater, or the like. A method of forming a film and the like can be mentioned.
When producing an inorganic fine particle dispersed molded product, it is preferable to use the polymerization liquid as it is as an inorganic fine particle dispersed slurry composition and process it into an inorganic fine particle dispersed molded product without drying the high molecular weight (meth)acrylic resin.
When high-molecular-weight (meth)acrylic resin is dried, undried particles called particles are generated when it is resolubilized, and such particles are difficult to remove even by filtration using a cartridge filter or the like. This is because it adversely affects the strength of the dispersion molding.
例えば、本発明の無機微粒子分散成形物がシート状である場合、本発明の無機微粒子分散成形物を製造する際に用いる支持フィルムは、耐熱性及び耐溶剤性を有するとともに可撓性を有する樹脂フィルムであることが好ましい。支持フィルムが可撓性を有することにより、ロールコーター、ブレードコーターなどによって支持フィルムの表面に無機微粒子分散スラリー組成物を塗布することができ、得られる無機微粒子分散シート形成フィルムをロール状に巻回した状態で保存し、供給することができる。 For example, when the inorganic fine particle-dispersed molded article of the present invention is in the form of a sheet, the support film used in producing the inorganic fine particle-dispersed molded article of the present invention is a flexible resin having heat resistance and solvent resistance. A film is preferred. Since the support film has flexibility, the inorganic fine particle-dispersed slurry composition can be applied to the surface of the support film by a roll coater, a blade coater, or the like, and the resulting inorganic fine particle-dispersed sheet-forming film is wound into a roll. It can be stored and supplied as is.
上記支持フィルムを形成する樹脂としては、例えばポリエチレンテレフタレート、ポリエステル、ポリエチレン、ポリプロピレン、ポリスチレン、ポリイミド、ポリビニルアルコール、ポリ塩化ビニル、ポリフロロエチレン等の含フッ素樹脂、ナイロン、セルロース等が挙げられる。
上記支持フィルムの厚みは、例えば、20~100μmが好ましい。
また、支持フィルムの表面には離型処理が施されていることが好ましく、これにより、転写工程において、支持フィルムの剥離操作を容易に行うことができる。
Examples of the resin forming the support film include fluorine-containing resins such as polyethylene terephthalate, polyester, polyethylene, polypropylene, polystyrene, polyimide, polyvinyl alcohol, polyvinyl chloride, and polyfluoroethylene, nylon, and cellulose.
The thickness of the support film is preferably 20 to 100 μm, for example.
Moreover, it is preferable that the surface of the support film is subjected to a release treatment, so that the support film can be easily peeled off in the transfer step.
本発明の無機微粒子分散スラリー組成物を塗工乾燥することで無機微粒子分散成形物を製造することができる。
また、本発明の無機微粒子分散スラリー組成物、無機微粒子分散成形物を、誘電体グリーンシート、電極ペーストに用いることで積層セラミクスコンデンサを製造することができる。また、本発明の無機微粒子分散スラリー組成物、無機微粒子分散成形物を使用することで磁性材料を製造することができる。
An inorganic fine particle-dispersed molding can be produced by coating and drying the inorganic fine particle-dispersed slurry composition of the present invention.
Moreover, a laminated ceramic capacitor can be produced by using the inorganic fine particle-dispersed slurry composition and the inorganic fine particle-dispersed molded product of the present invention for dielectric green sheets and electrode pastes. A magnetic material can be produced by using the inorganic fine particle-dispersed slurry composition and the inorganic fine particle-dispersed molding of the present invention.
上記積層セラミクスコンデンサを製造する方法としては、本発明の無機微粒子分散成形物に導電ペーストを印刷、乾燥して、誘電体シートを作製する工程、及び、前記誘電体シートを積層する工程を有する製造方法が挙げられる。 The method for producing the laminated ceramic capacitor includes the steps of printing a conductive paste on the inorganic fine particle-dispersed molding of the present invention and drying it to produce a dielectric sheet, and laminating the dielectric sheet. method.
上記導電ペーストは、導電粉末を含有するものである。
上記導電粉末の材質は、導電性を有する材質であれば特に限定されず、例えば、ニッケル、パラジウム、白金、金、銀、銅、モリブデン、錫及びこれらの合金等が挙げられる。これらの導電粉末は、単独で用いてもよく、2種以上を併用してもよい。
The conductive paste contains conductive powder.
The material of the conductive powder is not particularly limited as long as it has conductivity, and examples thereof include nickel, palladium, platinum, gold, silver, copper, molybdenum, tin, and alloys thereof. These conductive powders may be used alone or in combination of two or more.
上記導電ペーストを印刷する方法は特に限定されず、例えば、スクリーン印刷法、ダイコート印刷法、オフセット印刷法、グラビア印刷法、インクジェット印刷法等が挙げられる。 A method for printing the conductive paste is not particularly limited, and examples thereof include a screen printing method, a die coat printing method, an offset printing method, a gravure printing method, an inkjet printing method, and the like.
上記積層セラミクスコンデンサの製造方法では、上記導電ペーストを印刷した誘電体シートを積層することで、積層セラミクスコンデンサが得られる。 In the manufacturing method of the laminated ceramic capacitor, the laminated ceramic capacitor is obtained by laminating the dielectric sheets printed with the conductive paste.
本発明によれば、低温で優れた分解性を有するとともに、無機微粒子の分散性や凝集抑制効果を向上させることができる(メタ)アクリル樹脂組成物を提供することができる。また、該(メタ)アクリル樹脂組成物を用いる無機微粒子分散スラリー組成物、無機微粒子分散成形物を提供することができる。 According to the present invention, it is possible to provide a (meth)acrylic resin composition that has excellent decomposability at low temperatures and that can improve the dispersibility of inorganic fine particles and the effect of suppressing aggregation. Further, an inorganic fine particle-dispersed slurry composition and an inorganic fine particle-dispersed molded product using the (meth)acrylic resin composition can be provided.
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 EXAMPLES The present invention will be described in more detail with reference to Examples below, but the present invention is not limited to these Examples.
(製造例1~28、高分子量(メタ)アクリル樹脂の作製)
攪拌機、冷却器、温度計、湯浴、及び、窒素ガス導入口を備えた2Lセパラブルフラスコを用意し、2Lセパラブルフラスコに、表1に示す配合となるようにモノマー合計100重量部を投入した。更に、有機溶剤として酢酸ブチル50重量部とを混合し、モノマー混合液を得た。
なお、モノマーとしては、以下のものを用いた。
MMA:メチルメタクリレート
EMA:エチルメタクリレート
nBMA:n-ブチルメタクリレート
iBMA:イソブチルメタクリレート
2EHMA:2-エチルヘキシルメタクリレート
HEMA:2-ヒドロキシエチルメタクリレート
HPMA:2-ヒドロキシプロピルメタクリレート
HBMA:2-ヒドロキシブチルメタクリレート
(Production Examples 1 to 28, Production of High Molecular Weight (Meth) Acrylic Resin)
A 2 L separable flask equipped with a stirrer, cooler, thermometer, hot water bath, and nitrogen gas inlet is prepared, and a total of 100 parts by weight of monomers are added to the 2 L separable flask so that the composition shown in Table 1 is obtained. did. Furthermore, 50 parts by weight of butyl acetate was mixed as an organic solvent to obtain a monomer mixture.
In addition, the following were used as a monomer.
MMA: methyl methacrylate EMA: ethyl methacrylate nBMA: n-butyl methacrylate iBMA: isobutyl methacrylate 2EHMA: 2-ethylhexyl methacrylate HEMA: 2-hydroxyethyl methacrylate HPMA: 2-hydroxypropyl methacrylate HBMA: 2-hydroxybutyl methacrylate
得られたモノマー混合液を、窒素ガスを用いて20分間バブリングすることにより溶存酸素を除去した後、セパラブルフラスコ系内を窒素ガスで置換し攪拌しながら湯浴が沸騰するまで昇温した。重合開始剤及び連鎖移動剤を表1に示す添加量となるように加えた。
重合開始から7時間後、室温まで冷却し重合を終了させた。その後130℃のオーブンで得られた樹脂溶液を乾燥させ有機溶剤を取り除いた。これにより、高分子量(メタ)アクリル樹脂を得た。
なお、重合開始剤及び連鎖移動剤としては、以下のものを用いた。
<重合開始剤>
t-ブチルパーオキシピバレート
<連鎖移動剤>
CT-1:3-メルカプト-1,2-プロパンジオール
CT-2:3-メルカプト-1-プロパノール
CT-3:3-メルカプト-2-ブタノール
CT-4:8-メルカプト-1-オクタノール
CT-5:メルカプトコハク酸
After nitrogen gas was bubbled through the obtained monomer mixture for 20 minutes to remove dissolved oxygen, the inside of the separable flask system was replaced with nitrogen gas, and the temperature was raised until the water bath boiled while stirring. A polymerization initiator and a chain transfer agent were added in amounts shown in Table 1.
After 7 hours from the initiation of polymerization, the mixture was cooled to room temperature to complete the polymerization. After that, the obtained resin solution was dried in an oven at 130° C. to remove the organic solvent. Thus, a high molecular weight (meth)acrylic resin was obtained.
In addition, the following were used as a polymerization initiator and a chain transfer agent.
<Polymerization initiator>
t-butyl peroxypivalate <chain transfer agent>
CT-1: 3-mercapto-1,2-propanediol CT-2: 3-mercapto-1-propanol CT-3: 3-mercapto-2-butanol CT-4: 8-mercapto-1-octanol CT-5 : Mercaptosuccinic acid
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(製造例29~62、低分子量(メタ)アクリル樹脂及びその他の(メタ)アクリル樹脂の作製)
攪拌機、冷却器、温度計、湯浴、及び、窒素ガス導入口を備えた2Lセパラブルフラスコを用意した。2Lセパラブルフラスコに、表2に示す配合となるようにモノマー合計100重量部投入した。更に、有機溶剤として酢酸ブチル50重量部とを混合し、モノマー混合液を得た。
なお、モノマーとしては、製造例1~28で挙げたものと同様のものを用いた。
(Production Examples 29 to 62, Preparation of Low Molecular Weight (Meth) Acrylic Resins and Other (Meth) Acrylic Resins)
A 2 L separable flask equipped with a stirrer, cooler, thermometer, hot water bath, and nitrogen gas inlet was prepared. A total of 100 parts by weight of the monomers were charged into a 2-L separable flask so as to obtain the formulation shown in Table 2. Furthermore, 50 parts by weight of butyl acetate was mixed as an organic solvent to obtain a monomer mixture.
As the monomer, the same monomers as mentioned in Production Examples 1 to 28 were used.
得られたモノマー混合液を、窒素ガスを用いて20分間バブリングすることにより溶存酸素を除去した後、セパラブルフラスコ系内を窒素ガスで置換し攪拌しながら湯浴が沸騰するまで昇温した。重合開始剤及び連鎖移動剤を表2に示す種類及び添加量となるように加えた。
重合開始から7時間後、室温まで冷却し重合を終了させた。その後130℃のオーブンで得られた樹脂溶液を乾燥させ有機溶剤を取り除いた。これにより、低分子量(メタ)アクリル樹脂を得た。
なお、重合開始剤及び連鎖移動剤としては、製造例1~28で挙げたものと同様のものを用いた。
After nitrogen gas was bubbled through the obtained monomer mixture for 20 minutes to remove dissolved oxygen, the inside of the separable flask system was replaced with nitrogen gas, and the temperature was raised until the water bath boiled while stirring. Polymerization initiators and chain transfer agents were added in the types and amounts shown in Table 2.
After 7 hours from the initiation of polymerization, the mixture was cooled to room temperature to complete the polymerization. After that, the obtained resin solution was dried in an oven at 130° C. to remove the organic solvent. A low-molecular-weight (meth)acrylic resin was thus obtained.
As the polymerization initiator and the chain transfer agent, the same ones as mentioned in Production Examples 1 to 28 were used.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(実施例1~29、比較例1~8)
(1)樹脂組成物の作製
表4に示す通りの配合となるように有機溶剤を混合して混合溶剤を得た。表3に示す配合となるように(メタ)アクリル樹脂、混合溶剤を混合して(メタ)アクリル樹脂組成物を得た。
なお、有機溶剤としては、以下のものを用いた。
トルエン
酢酸エチル
メチルエチルケトン
エタノール
イソプロパノール
2-ブチル-2-エチル-1,3-プロパンジオール(BEPG)
ネオペンチルグリコール(NPG)
テキサノール
(Examples 1 to 29, Comparative Examples 1 to 8)
(1) Preparation of resin composition Organic solvents were mixed so as to have the composition shown in Table 4 to obtain a mixed solvent. A (meth)acrylic resin and a mixed solvent were mixed so as to have the formulation shown in Table 3 to obtain a (meth)acrylic resin composition.
In addition, the following was used as an organic solvent.
toluene ethyl methyl ethyl ketone ethanol isopropanol 2-butyl-2-ethyl-1,3-propanediol (BEPG)
Neopentyl glycol (NPG)
Texanol
(2)無機微粒子分散スラリー組成物の作製
得られた(メタ)アクリル樹脂組成物に表3の配合となるようにセラミック粉末、可塑剤を添加して、高速撹拌機で混錬して、無機微粒子分散スラリー組成物を作製した。
なお、セラミック粉末としては、銅粉末(藤野金属社製、平均粒子径0.1μm)、ガラスフリット(AGC社製、平均粒子径0.8μm)、可塑剤としては、アジピン酸ジ(ブトキシエチル)を用いた。
(2) Preparation of Inorganic Fine Particle Dispersed Slurry Composition Ceramic powder and a plasticizer were added to the obtained (meth)acrylic resin composition so as to have the composition shown in Table 3, and the mixture was kneaded with a high-speed stirrer to obtain an inorganic powder. A microparticle-dispersed slurry composition was prepared.
As the ceramic powder, copper powder (manufactured by Fujino Metal Co., Ltd., average particle size 0.1 μm), glass frit (manufactured by AGC, average particle size 0.8 μm), and as the plasticizer, di(butoxyethyl) adipate. was used.
<評価>
実施例及び比較例で得られた高分子量(メタ)アクリル樹脂、低分子量(メタ)アクリル樹脂、無機微粒子分散スラリー組成物について以下の評価を行った。結果を表1~3に示した。
<Evaluation>
The high-molecular-weight (meth)acrylic resins, low-molecular-weight (meth)acrylic resins, and inorganic fine particle-dispersed slurry compositions obtained in Examples and Comparative Examples were evaluated as follows. The results are shown in Tables 1-3.
(1)重量平均分子量測定
得られた高分子量(メタ)アクリル樹脂及び低分子量(メタ)アクリル樹脂について、カラムとしてLF-804(SHOKO社製)を用い、ゲルパーミエーションクロマトグラフィーにより、ポリスチレン換算による重量平均分子量(Mw)を測定した。
(1) Weight-average molecular weight measurement For the obtained high-molecular-weight (meth)acrylic resin and low-molecular-weight (meth)acrylic resin, using LF-804 (manufactured by SHOKO) as a column, gel permeation chromatography was performed. Weight average molecular weight (Mw) was measured.
(2)OH基の重量濃度の算出
以下の方法により、高分子量(メタ)アクリル樹脂中に含まれるOH基の重量濃度、低分子量(メタ)アクリル樹脂中に含まれるOH基の重量濃度、有機溶剤中に含まれるOH基の重量濃度を算出した。
高分子量(メタ)アクリル樹脂中に含まれるOH基の重量濃度:[全モノマー中に含まれるOH基の重量/(全モノマーの重量+重合開始剤の重量)]×100
低分子量(メタ)アクリル樹脂中に含まれるOH基の重量濃度:[(全モノマー中に含まれるOH基の重量+連鎖移動剤に含まれるOH基の重量)/(全モノマーの重量+連鎖移動剤の重量+重合開始剤の重量)]×100
有機溶剤中に含まれるOH基の重量濃度:(全有機溶剤中に含まれるOH基の重量/全有機溶剤の重量)×100
(2) Calculation of the weight concentration of OH groups By the following method, the weight concentration of OH groups contained in the high molecular weight (meth) acrylic resin, the weight concentration of OH groups contained in the low molecular weight (meth) acrylic resin, the organic The weight concentration of OH groups contained in the solvent was calculated.
Weight concentration of OH groups contained in high molecular weight (meth)acrylic resin: [weight of OH groups contained in all monomers/(weight of all monomers + weight of polymerization initiator)] × 100
Weight concentration of OH groups contained in the low molecular weight (meth) acrylic resin: [(weight of OH groups contained in all monomers + weight of OH groups contained in chain transfer agent) / (weight of all monomers + chain transfer Weight of agent + weight of polymerization initiator)] × 100
Weight concentration of OH groups contained in organic solvent: (weight of OH groups contained in all organic solvents/weight of all organic solvents) x 100
(3)S原子の重量濃度の算出
以下の方法により、(メタ)アクリル樹脂中に含まれるS原子の重量濃度を算出した。
(メタ)アクリル樹脂中に含まれるS原子の重量濃度=[連鎖移動剤に含まれるS原子の重量/(全モノマーの重量+重合開始剤の重量+連鎖移動剤の重量)]×100
なお、上記(メタ)アクリル樹脂組成物が複数の(メタ)アクリル樹脂を含有する場合、上記S原子の重量濃度は、各(メタ)アクリル樹脂中に含まれるS原子の重量濃度及び各(メタ)アクリル樹脂の配合割合に基づいて算出した。
(3) Calculation of weight concentration of S atom The weight concentration of S atom contained in the (meth)acrylic resin was calculated by the following method.
Weight concentration of S atoms contained in (meth)acrylic resin = [weight of S atoms contained in chain transfer agent/(weight of all monomers + weight of polymerization initiator + weight of chain transfer agent)] × 100
When the (meth)acrylic resin composition contains a plurality of (meth)acrylic resins, the weight concentration of the S atoms is the weight concentration of the S atoms contained in each (meth)acrylic resin and each (meth)acrylic resin. ) calculated based on the mixing ratio of the acrylic resin.
(4)エタノールへの溶解度の測定
25℃の環境下でエタノール100重量部に対して、得られた高分子量(メタ)アクリル樹脂を少しずつ溶解させ、析出物が生じるまでに要した高分子量(メタ)アクリル樹脂の添加量をエタノールへの溶解度とした。
(4) Measurement of solubility in ethanol The obtained high molecular weight (meth)acrylic resin was gradually dissolved in 100 parts by weight of ethanol in an environment of 25 ° C., and the high molecular weight ( The amount of meth)acrylic resin added was defined as the solubility in ethanol.
(5)低温分解性(TGDTA特性)
得られた無機微粒子分散スラリー組成物をTG-DTAのプラチナパンに詰め、30℃から5℃/minにて昇温し、溶媒を蒸発、樹脂、可塑剤を熱分解させた。その後、重量が52.1重量%を示した(90重量%脱脂が終了した)時間を測定した。
(5) Low temperature decomposability (TGDTA characteristics)
The obtained inorganic fine particle-dispersed slurry composition was packed in a TG-DTA platinum pan, and the temperature was raised from 30° C. to 5° C./min to evaporate the solvent and thermally decompose the resin and plasticizer. After that, the time when the weight showed 52.1% by weight (90% by weight degreasing was completed) was measured.
(6)濾過性
得られた無機微粒子分散スラリー組成物を2.5mlのシリンジに2ml取り、シリンジの先端に外径0.81mm内径0.51mm長さ38mmの注射針を付け、5kgfの力をかけたときに、スラリー組成物が注射針の先からすべて出るまでの時間を測定した。
スラリー組成物が注射針の先からすべて出るまでの時間が短いと濾過性に優れているといえ、濾過性に優れる場合、無機微粒子の凝集抑制効果が高いといえる。
(6) Filterability 2 ml of the obtained inorganic fine particle dispersion slurry composition was put into a 2.5 ml syringe, and an injection needle with an outer diameter of 0.81 mm, an inner diameter of 0.51 mm and a length of 38 mm was attached to the tip of the syringe, and a force of 5 kgf was applied. The time until all the slurry composition came out of the tip of the injection needle was measured.
It can be said that when the time until the slurry composition is completely discharged from the tip of the injection needle is short, the filterability is excellent.
(7)表面粗さ
スクリーン印刷機とスクリーン版、印刷ガラス基板を用いて、温度23℃、湿度50%の環境下にて無機微粒子分散スラリー組成物の印刷を行い、100℃30分の条件下で送風オーブンにて溶剤乾燥を行った。得られた印刷パターンを用いて、表面粗さ計(サーフコム、東京精密社製)にて10か所測定した。
なお、スクリーン印刷機、スクリーン版、印刷ガラス基板として以下のものを用いた。
スクリーン印刷機(MT-320TV、マイクロテック社製)
スクリーン版(東京プロセスサービス社製、ST500、乳剤2μm、2012パターン、スクリーン枠320mm×320mm)
印刷ガラス基板(ソーダーガラス、150mm×150mm、厚み1.5mm)
表面粗さが小さいと、無機微粒子の分散性に優れているといえる。
(7) Surface roughness Using a screen printer, a screen plate, and a printing glass substrate, the inorganic fine particle dispersion slurry composition is printed in an environment of a temperature of 23 ° C. and a humidity of 50%, and the condition is 100 ° C. for 30 minutes. Solvent drying was performed in a blower oven. Using the obtained printed pattern, measurements were made at 10 points with a surface roughness meter (Surfcom, manufactured by Tokyo Seimitsu Co., Ltd.).
In addition, the following were used as a screen printer, a screen plate, and a printing glass substrate.
Screen printer (MT-320TV, manufactured by Microtec)
Screen plate (manufactured by Tokyo Process Service Co., Ltd., ST500, emulsion 2 μm, 2012 pattern, screen frame 320 mm × 320 mm)
Printed glass substrate (soda glass, 150 mm x 150 mm, thickness 1.5 mm)
When the surface roughness is small, it can be said that the dispersibility of the inorganic fine particles is excellent.
(8)エタノール洗浄性
無機微粒子分散スラリー組成物10重量部に対してエタノール100重量部を添加し、超音波を照射した。樹脂がエタノールに完全に溶解するまでの時間を測定した。
(8) 100 parts by weight of ethanol was added to 10 parts by weight of the inorganic fine particle-dispersed slurry composition for washing with ethanol, and ultrasonic waves were applied. The time required for the resin to completely dissolve in ethanol was measured.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
本発明によれば、低温で優れた分解性を有するとともに、無機微粒子の分散性や凝集抑制効果を向上させることができる(メタ)アクリル樹脂組成物を提供することができる。また、該(メタ)アクリル樹脂組成物を用いる無機微粒子分散スラリー組成物、無機微粒子分散成形物を提供することができる。

 
According to the present invention, it is possible to provide a (meth)acrylic resin composition that has excellent decomposability at low temperatures and that can improve the dispersibility of inorganic fine particles and the effect of suppressing aggregation. Further, an inorganic fine particle-dispersed slurry composition and an inorganic fine particle-dispersed molded product using the (meth)acrylic resin composition can be provided.

Claims (8)

  1. (メタ)アクリル樹脂、及び、有機溶剤を含有する(メタ)アクリル樹脂組成物であって、
    下記(1)~(3)のいずれか1つを満たし、
    前記有機溶剤中に含まれるOH基の重量濃度が9.0重量%以上28.0重量%以下である、(メタ)アクリル樹脂組成物。
    (1)前記(メタ)アクリル樹脂は、重量平均分子量が12万以上30万以下の高分子量(メタ)アクリル樹脂(A)を含有し、
    前記高分子量(メタ)アクリル樹脂(A)中に含まれるOH基の重量濃度が0.4重量%以上2.0重量%以下である。
    (2)前記(メタ)アクリル樹脂は、重量平均分子量が30万を超え50万以下である高分子量(メタ)アクリル樹脂(B)を含有し、
    前記高分子量(メタ)アクリル樹脂(B)中に含まれるOH基の重量濃度が1.3重量%以上3.5重量%以下である。
    (3)前記(メタ)アクリル樹脂は、重量平均分子量が0.5万以上10万以下である低分子量(メタ)アクリル樹脂(C)を含有し、
    前記低分子量(メタ)アクリル樹脂(C)中に含まれるOH基の重量濃度が1.3重量%以上3.5重量%以下であり、
    前記(メタ)アクリル樹脂中に含まれるS原子の重量濃度が250ppm以上20000ppm以下である。
    (Meth)acrylic resin and a (meth)acrylic resin composition containing an organic solvent,
    satisfy any one of the following (1) to (3),
    A (meth)acrylic resin composition, wherein the weight concentration of OH groups contained in the organic solvent is 9.0% by weight or more and 28.0% by weight or less.
    (1) The (meth)acrylic resin contains a high molecular weight (meth)acrylic resin (A) having a weight average molecular weight of 120,000 or more and 300,000 or less,
    The weight concentration of OH groups contained in the high molecular weight (meth)acrylic resin (A) is 0.4% by weight or more and 2.0% by weight or less.
    (2) the (meth)acrylic resin contains a high molecular weight (meth)acrylic resin (B) having a weight average molecular weight of more than 300,000 and not more than 500,000,
    The weight concentration of OH groups contained in the high molecular weight (meth)acrylic resin (B) is 1.3% by weight or more and 3.5% by weight or less.
    (3) The (meth)acrylic resin contains a low molecular weight (meth)acrylic resin (C) having a weight average molecular weight of 5,000 to 100,000,
    The weight concentration of OH groups contained in the low molecular weight (meth)acrylic resin (C) is 1.3% by weight or more and 3.5% by weight or less,
    The weight concentration of S atoms contained in the (meth)acrylic resin is 250 ppm or more and 20000 ppm or less.
  2. (1)を満たし、かつ、重量平均分子量が0.5万以上10万以下である低分子量(メタ)アクリル樹脂を含有し、前記低分子量(メタ)アクリル樹脂中に含まれるOH基の重量濃度が1.3重量%以上3.5重量%以下であり、高分子量(メタ)アクリル樹脂(A)100重量部に対する前記低分子量(メタ)アクリル樹脂の含有量が0.1重量部以上10重量部以下である、請求項1に記載の(メタ)アクリル樹脂組成物。 It contains a low-molecular-weight (meth)acrylic resin that satisfies (1) and has a weight-average molecular weight of 5,000 to 100,000, and the weight concentration of OH groups contained in the low-molecular-weight (meth)acrylic resin. is 1.3% by weight or more and 3.5% by weight or less, and the content of the low molecular weight (meth)acrylic resin with respect to 100 parts by weight of the high molecular weight (meth)acrylic resin (A) is 0.1 parts by weight or more and 10 parts by weight 3. The (meth)acrylic resin composition according to claim 1, which is 1 part or less.
  3. (1)又は(2)を満たし、かつ、高分子量(メタ)アクリル樹脂(A)又は(B)のエタノールへの溶解度が10重量部/エタノール100重量部以上である、請求項1に記載の(メタ)アクリル樹脂組成物。 2. The method according to claim 1, wherein (1) or (2) is satisfied, and the solubility of the high-molecular-weight (meth)acrylic resin (A) or (B) in ethanol is 10 parts by weight/100 parts by weight or more in ethanol. (Meth)acrylic resin composition.
  4. (1)又は(2)を満たし、かつ、高分子量(メタ)アクリル樹脂(A)又は(B)は、全構成単位に対して、下記式(a)で表される構成単位を79重量%以上96重量%以下、下記式(b)で表される構成単位を3.1重量%以上17重量%以下含有する、請求項1又は3に記載の(メタ)アクリル樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    式(a)中、Rは炭素数1~8の直鎖状又は分岐状アルキル基を表し、式(b)中、Rは、水素原子の少なくとも1つがOH基で置換された炭素数2~4の直鎖状又は分岐状アルキル基を表す。
    (1) or (2) is satisfied, and the high-molecular-weight (meth)acrylic resin (A) or (B) contains 79% by weight of structural units represented by the following formula (a) with respect to all structural units. 4. The (meth)acrylic resin composition according to claim 1 or 3, containing 96% by weight or less and 3.1% by weight or more and 17% by weight or less of structural units represented by the following formula (b).
    Figure JPOXMLDOC01-appb-C000001
    In formula (a), R 1 represents a linear or branched alkyl group having 1 to 8 carbon atoms, and in formula (b), R 2 represents the number of carbon atoms in which at least one hydrogen atom is substituted with an OH group It represents 2 to 4 linear or branched alkyl groups.
  5. (1)又は(2)を満たし、かつ、高分子量(メタ)アクリル樹脂(A)又は(B)中に含まれるOH基の重量濃度に対する有機溶剤中に含まれるOH基の重量濃度の比(有機溶剤中に含まれるOH基の重量濃度/高分子量(メタ)アクリル樹脂(A)又は(B)中に含まれるOH基の重量濃度)が4.5以上46.2以下である、請求項1、3又は4に記載の(メタ)アクリル樹脂組成物。 (1) or (2) is satisfied, and the ratio of the weight concentration of OH groups contained in the organic solvent to the weight concentration of OH groups contained in the high molecular weight (meth)acrylic resin (A) or (B) ( The weight concentration of OH groups contained in the organic solvent/the weight concentration of OH groups contained in the high molecular weight (meth)acrylic resin (A) or (B)) is 4.5 or more and 46.2 or less. The (meth)acrylic resin composition according to 1, 3 or 4.
  6. (2)を満たし、かつ、(メタ)アクリル樹脂は、高分子量(メタ)アクリル樹脂(B)のみからなるものであり、
    前記(メタ)アクリル樹脂中に含まれるS原子の重量濃度が250ppm以上20000ppm以下である、請求項1、3、4又は5に記載の(メタ)アクリル樹脂組成物。
    (2) is satisfied, and the (meth)acrylic resin consists only of a high-molecular-weight (meth)acrylic resin (B),
    The (meth)acrylic resin composition according to claim 1, 3, 4 or 5, wherein the (meth)acrylic resin has a weight concentration of S atoms of 250 ppm or more and 20000 ppm or less.
  7. 請求項1~6の何れかに記載の(メタ)アクリル樹脂組成物、無機微粒子、及び、可塑剤を含有する、無機微粒子分散スラリー組成物。 An inorganic fine particle-dispersed slurry composition comprising the (meth)acrylic resin composition according to any one of claims 1 to 6, inorganic fine particles, and a plasticizer.
  8. 請求項7に記載の無機微粒子分散スラリー組成物を用いてなる、無機微粒子分散成形物。 An inorganic fine particle-dispersed molding obtained by using the inorganic fine particle-dispersed slurry composition according to claim 7.
PCT/JP2022/024519 2021-06-21 2022-06-20 (meth)acrylic resin composition, inorganic fine particle-dispersed slurry composition, and inorganic fine particle-dispersed molded product WO2022270460A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237024966A KR20240022439A (en) 2021-06-21 2022-06-20 (meth)acrylic resin composition, inorganic fine particle dispersion slurry composition, and inorganic fine particle dispersion molded product
CN202280012445.4A CN116829643A (en) 2021-06-21 2022-06-20 (meth) acrylic resin composition, inorganic fine particle dispersion slurry composition, and inorganic fine particle dispersion molded article
JP2022541690A JPWO2022270460A1 (en) 2021-06-21 2022-06-20

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021102531 2021-06-21
JP2021-102531 2021-06-21

Publications (1)

Publication Number Publication Date
WO2022270460A1 true WO2022270460A1 (en) 2022-12-29

Family

ID=84545689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024519 WO2022270460A1 (en) 2021-06-21 2022-06-20 (meth)acrylic resin composition, inorganic fine particle-dispersed slurry composition, and inorganic fine particle-dispersed molded product

Country Status (5)

Country Link
JP (1) JPWO2022270460A1 (en)
KR (1) KR20240022439A (en)
CN (1) CN116829643A (en)
TW (1) TW202311318A (en)
WO (1) WO2022270460A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048303A1 (en) * 2022-08-30 2024-03-07 積水化学工業株式会社 (meth)acrylic resin particles, vehicle composition, slurry composition, and method for manufacturing electronic components

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5399252A (en) * 1977-02-01 1978-08-30 Bush Boake Allen Ltd Polymer composition controllably discharging active components
JP2001002884A (en) * 1999-06-16 2001-01-09 Chisso Corp Resin composition and manufacture of coated film
JP2001011278A (en) * 1999-06-29 2001-01-16 Toagosei Co Ltd Polymer composition, and curable composition and coating composition both prepared therefrom
JP2001200480A (en) * 2000-01-20 2001-07-27 Nof Corp Fiber-finishing agent, finish liquid, finishing method and finished fiber
JP2001245913A (en) * 1999-12-28 2001-09-11 Lion Corp Nonaqueous thermo-gel composition
WO2008015911A1 (en) * 2006-07-31 2008-02-07 Konica Minolta Opto, Inc. Polarizing plate protection film, polarizing plate and liquid crystal display
JP2008510602A (en) * 2004-08-27 2008-04-10 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Use of statistical copolymers
JP2008285645A (en) * 2007-04-20 2008-11-27 Tokuyama Dental Corp Curing composition
JP2012233178A (en) * 2011-04-22 2012-11-29 Mitsubishi Chemicals Corp Copolymer, cosmetic composition and hair cosmetic
JP2013170226A (en) * 2012-02-21 2013-09-02 Toyo Ink Sc Holdings Co Ltd Curable resin composition
JP2014125603A (en) * 2012-12-27 2014-07-07 Nippon Synthetic Chem Ind Co Ltd:The Acrylic resin composition, acrylic adhesive, adhesive for electronic device, electronic device using the same, and method of producing acrylic resin composition
JP2016047923A (en) * 2014-08-25 2016-04-07 荒川化学工業株式会社 Hard coating agent for decorative film, cured film, plastic film and molded article
CN105754523A (en) * 2016-03-10 2016-07-13 常州浩阳水性新材料有限公司 Water-based diffusion film glue and preparation method thereof
CN106750385A (en) * 2016-11-30 2017-05-31 江苏经纬技术创新咨询有限公司 A kind of preparation method of redispersable latex powder
WO2018003432A1 (en) * 2016-06-27 2018-01-04 旭硝子株式会社 Resin composition, coating liquid, release film-equipped mold, and method for producing same
WO2018230564A1 (en) * 2017-06-16 2018-12-20 株式会社Adeka Coating composition
JP2019104667A (en) * 2017-12-14 2019-06-27 竹本油脂株式会社 Additive for hydraulic composition, and hydraulic composition
WO2020071382A1 (en) * 2018-10-03 2020-04-09 Agc株式会社 Dispersion and method for manufacturing resin-coated metal foil

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011084433A (en) 2009-10-15 2011-04-28 Tdk Corp Methods for producing ceramic slurry, green sheet and electronic component
JP2020109761A (en) 2020-02-26 2020-07-16 株式会社ノリタケカンパニーリミテド Conductive paste and method for forming conductor film

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5399252A (en) * 1977-02-01 1978-08-30 Bush Boake Allen Ltd Polymer composition controllably discharging active components
JP2001002884A (en) * 1999-06-16 2001-01-09 Chisso Corp Resin composition and manufacture of coated film
JP2001011278A (en) * 1999-06-29 2001-01-16 Toagosei Co Ltd Polymer composition, and curable composition and coating composition both prepared therefrom
JP2001245913A (en) * 1999-12-28 2001-09-11 Lion Corp Nonaqueous thermo-gel composition
JP2001200480A (en) * 2000-01-20 2001-07-27 Nof Corp Fiber-finishing agent, finish liquid, finishing method and finished fiber
JP2008510602A (en) * 2004-08-27 2008-04-10 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Use of statistical copolymers
WO2008015911A1 (en) * 2006-07-31 2008-02-07 Konica Minolta Opto, Inc. Polarizing plate protection film, polarizing plate and liquid crystal display
JP2008285645A (en) * 2007-04-20 2008-11-27 Tokuyama Dental Corp Curing composition
JP2012233178A (en) * 2011-04-22 2012-11-29 Mitsubishi Chemicals Corp Copolymer, cosmetic composition and hair cosmetic
JP2013170226A (en) * 2012-02-21 2013-09-02 Toyo Ink Sc Holdings Co Ltd Curable resin composition
JP2014125603A (en) * 2012-12-27 2014-07-07 Nippon Synthetic Chem Ind Co Ltd:The Acrylic resin composition, acrylic adhesive, adhesive for electronic device, electronic device using the same, and method of producing acrylic resin composition
JP2016047923A (en) * 2014-08-25 2016-04-07 荒川化学工業株式会社 Hard coating agent for decorative film, cured film, plastic film and molded article
CN105754523A (en) * 2016-03-10 2016-07-13 常州浩阳水性新材料有限公司 Water-based diffusion film glue and preparation method thereof
WO2018003432A1 (en) * 2016-06-27 2018-01-04 旭硝子株式会社 Resin composition, coating liquid, release film-equipped mold, and method for producing same
CN106750385A (en) * 2016-11-30 2017-05-31 江苏经纬技术创新咨询有限公司 A kind of preparation method of redispersable latex powder
WO2018230564A1 (en) * 2017-06-16 2018-12-20 株式会社Adeka Coating composition
JP2019104667A (en) * 2017-12-14 2019-06-27 竹本油脂株式会社 Additive for hydraulic composition, and hydraulic composition
WO2020071382A1 (en) * 2018-10-03 2020-04-09 Agc株式会社 Dispersion and method for manufacturing resin-coated metal foil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048303A1 (en) * 2022-08-30 2024-03-07 積水化学工業株式会社 (meth)acrylic resin particles, vehicle composition, slurry composition, and method for manufacturing electronic components

Also Published As

Publication number Publication date
KR20240022439A (en) 2024-02-20
TW202311318A (en) 2023-03-16
CN116829643A (en) 2023-09-29
JPWO2022270460A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
JP6523546B1 (en) Resin composition, inorganic fine particle dispersed slurry composition, inorganic fine particle dispersed sheet, method of manufacturing all solid battery, and method of manufacturing laminated ceramic capacitor
US7651764B2 (en) Release layer paste and method of production of a multilayer type electronic device
JP4269000B2 (en) Binder resin, vehicle composition and inorganic fine particle dispersed paste composition
JP6438538B2 (en) Inorganic fine particle-dispersed paste composition, inorganic fine particle-dispersed sheet, and method for producing inorganic fine-particle dispersed sheet
US20060035071A1 (en) Release layer paste and method of production of multilayer type electronic device
WO2022270460A1 (en) (meth)acrylic resin composition, inorganic fine particle-dispersed slurry composition, and inorganic fine particle-dispersed molded product
JP7197752B1 (en) Slurry composition for manufacturing all-solid-state battery and method for manufacturing all-solid-state battery
JP2022014285A (en) Slurry composition and method for producing ceramic compact
JP7329037B2 (en) Resin composition for sintering, inorganic fine particle dispersion slurry composition, and inorganic fine particle dispersion sheet
JP5095377B2 (en) Binder resin for inorganic fine particle dispersed paste composition, inorganic fine particle dispersed paste composition, inorganic fine particle dispersed paste composition for forming green sheet, and green sheet
WO2023136228A1 (en) Vehicle composition for inorganic particle dispersion, method for producing vehicle composition for inorganic particle dispersion, inorganic particle dispersion slurry composition, and method for producing electronic component
WO2024048303A1 (en) (meth)acrylic resin particles, vehicle composition, slurry composition, and method for manufacturing electronic components
JP7246420B2 (en) (Meth)acrylic resin composition, vehicle composition for dispersing inorganic fine particles, slurry composition for dispersing inorganic fine particles, and inorganic fine particle-dispersed sheet
JP2021042370A (en) Slurry composition for dispersing inorganic fine particle, inorganic fine particle dispersion sheet, and manufacturing method of inorganic fine particle dispersion sheet
WO2023286717A1 (en) Slurry composition for all-solid-state battery production and method for producing all-solid-state battery
JP2012107176A (en) Inorganic fine particle dispersion paste
JP2023127556A (en) Dispersant, filler dispersion, filler dispersion slurry composition, and filler dispersion molding
JP2023039156A (en) Inorganic fine particle-dispersed slurry composition and production method of inorganic fine particle-dispersed sheet obtained using the same
JP2024027682A (en) Slurry composition, electronic components, and method for producing electronic components

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022541690

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828377

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280012445.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE