WO2022269893A1 - Car position detection device and elevator safety device using same - Google Patents

Car position detection device and elevator safety device using same Download PDF

Info

Publication number
WO2022269893A1
WO2022269893A1 PCT/JP2021/024095 JP2021024095W WO2022269893A1 WO 2022269893 A1 WO2022269893 A1 WO 2022269893A1 JP 2021024095 W JP2021024095 W JP 2021024095W WO 2022269893 A1 WO2022269893 A1 WO 2022269893A1
Authority
WO
WIPO (PCT)
Prior art keywords
mark
car
floor
safety controller
image
Prior art date
Application number
PCT/JP2021/024095
Other languages
French (fr)
Japanese (ja)
Inventor
勇来 齊藤
晃 岩本
義人 大西
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2021/024095 priority Critical patent/WO2022269893A1/en
Publication of WO2022269893A1 publication Critical patent/WO2022269893A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B3/00Applications of devices for indicating or signalling operating conditions of elevators
    • B66B3/02Position or depth indicators

Definitions

  • the present invention relates to a car position detection device that detects the position of a car based on an image inside a hoistway, and an elevator safety device that uses this car position detection device.
  • the governor when the governor detects an overspeed condition, the power supply is cut off or the emergency stop device is activated to bring the car to an emergency stop. Since the governor is equipped with a governor rope that is long, a space for laying the governor rope is required in the hoistway.
  • a measuring device provided in the car captures an image of the uneven surface of the guide rail.
  • the measurement device determines the position and movement of the car based on the image shift between the first frame and the second frame captured at different timings and the time difference between the capture times of the first frame and the second frame. Calculate speed.
  • Patent Document 1 does not necessarily take into consideration anomalies in the car position measurement system. Therefore, when applying the car position detection device according to the technique of Patent Document 1 to a safety device, ensuring the reliability of the safety device becomes a problem.
  • the present invention provides a car position detection device that is highly reliable while measuring the position of a car based on an image of the hoistway, and an elevator safety device that uses this car position detection device. .
  • the car position detection device detects the position of the car of an elevator based on the image in the hoistway.
  • the position of the car is calculated based on the image sensor that acquires the surface image of the guide rail, the first mark and the second mark that are provided close to each other on the surface of the guide rail, and the surface image acquired by the image sensor. and a safety controller for correcting the calculated position of the car based on the images of the first mark and the second mark acquired by the image sensor, wherein the safety controller corrects the position of the first mark or the second mark.
  • an abnormality of the first mark or the second mark is detected, and when the abnormality is detected, the safety controller detects a healthy mark among the first mark and the second mark. is used to measure the position of the car.
  • a car elevator safety device performs safety control of a car based on an image of the inside of a hoistway.
  • the position of the car is calculated based on the image sensor that acquires the surface image of the guide rail, the first mark and the second mark that are provided close to each other on the surface of the guide rail, and the surface image acquired by the image sensor.
  • a safety controller for correcting the calculated position of the car based on the images of the first mark and the second mark acquired by the image sensor, wherein the safety controller corrects the position of the first mark or the second mark.
  • an abnormality of the first mark or the second mark is detected, and when the abnormality is detected, the safety controller detects a healthy mark among the first mark and the second mark. is used to measure the position of the car, and the safety controller controls the running of the car according to the abnormality.
  • the reliability of the car position detection device that measures the position of the car based on the image inside the hoistway and the safety device of the elevator using it is improved.
  • FIG. 1 is a configuration diagram showing the overall configuration of an elevator that is one embodiment of the present invention.
  • the car 1 and the counterweight 2 are mechanically connected to one end and the other end of the main rope 3, respectively.
  • the main rope 3 is wound around a sheave of the hoist 4 .
  • the car 1 and the counterweight 2 are suspended in a hoistway provided in the building. That is, the embodiment is a so-called barrel-type elevator.
  • the hoist 4 is installed in a machine room provided on the hoistway.
  • the motor of the hoisting machine 4 is driven by a power conversion device (for example, an inverter device) of the elevator control device 6 .
  • the elevator control device 6 includes a control section that controls the operation of the car 1 by controlling the power conversion device.
  • the car 1 is movably engaged with a pair of guide rails 5a and 5b via a guide device 20 (for example, guide shoes). Therefore, the car 1 moves between arbitrary floors while being guided by the guide rails 5a and 5b.
  • a guide device 20 for example, guide shoes.
  • a general T-shaped guide rail is applied as the guide rails 5a and 5b.
  • the counterweight 2 moves while being guided by a guide rail for the counterweight (not shown).
  • a safety controller 8 is installed on the top of the car 1.
  • the safety controller 8 is electrically connected to image sensors 9 a and 9 b installed on the top of the car 1 .
  • Image sensors 9a and 9b acquire surface images of guide rails 5a and 5b, which are stationary objects in the hoistway, respectively.
  • the surface images of the guide rails 5a and 5b the surface images of the tips of the T-shaped legs are acquired.
  • the safety controller 8 measures the position of the car 1 based on the surface images of the guide rails 5a and 5b acquired by the image sensors 9a and 9b.
  • the safety controller 8 measures the position of the car 1 in the hoistway (hereinafter referred to as "car position A”) based on the image acquired by the image sensor 9a. In addition, the safety controller 8 measures the position of the car 1 in the hoistway (hereinafter referred to as "car position B") independently of the car position A based on the image acquired by the image sensor 9b. . That is, the safety controller 8 has two car position measurement systems.
  • a CCD, a CMOS sensor, or the like is applied as the image sensors 9a and 9b.
  • the car position measurement system (not shown) that the safety controller 8 has is independent of the car position measurement system that the elevator control device 6 uses for normal operation control.
  • the car position measurement system of the elevator control device 6 includes, for example, a rotational position detector such as a resolver or a rotary encoder for detecting the rotational position of the motor of the hoisting machine 4, and a photoelectric or magnetic sensor provided in the car 1. It is composed of a position detector and a shielding plate (optical shielding or magnetic shielding) for the position detector provided between floors in the hoistway.
  • Floor-to-floor marks 10(1a), 10(2a), 11(1a), 11(2a), 12(1a), 12(2a) is provided.
  • the inter-floor marks 10(1a) and 10(2a) are arranged close to each other on the surface of the guide rail 5a. Therefore, the floor-to-floor marks 10(1a) and 10(2a) are continuously detected by the image sensor 9a while the car 1 is running.
  • inter-floor marks 11(1a) and 11(2a) are positioned adjacent to each other
  • inter-floor marks 12(1a) and 12(2a) are positioned adjacent to each other.
  • Each of the sets of inter-floor marks 10 (1a, 2a), 11 (1a, 2a), 12 (1a, 2a) is located between two floors adjacent in the vertical direction, and is located between these two floors. located near the upper floors of the
  • Floor-to-floor marks 10(1b), 10(2b), 11(1b), 11(2b), 12(1b), 12(2b) is provided.
  • the inter-floor marks 10(1b) and 10(2b) are arranged close to each other on the surface of the guide rail 5b. Therefore, the floor-to-floor marks 10(1b) and 10(2b) are continuously detected by the image sensor 9b while the car 1 is running.
  • inter-floor marks 11(1b) and 11(2b) are positioned adjacent to each other
  • inter-floor marks 12(1b) and 12(2b) are positioned adjacent to each other.
  • Each of the sets of inter-floor marks 10 (1b, 2b), 11 (1b, 2b), 12 (1b, 2b) is located between two vertically adjacent floors, and is located between these two floors. located near the upper floors of the
  • the floor-to-floor marks N(1a) and N(1b) are located at the same height in the hoistway. That is, the floor-to-floor marks N(1a) and N(1b) indicate the same position information. Similarly, N(2a) and N(2b) indicate the same location information.
  • the floor-to-floor mark for example, a sheet-shaped member with a pattern shape such as a one-dimensional barcode or two-dimensional barcode is applied.
  • a sheet-like member is attached to the surface of the guide rail with an adhesive, an adhesive, or the like.
  • floor-to-floor marks may be drawn directly on the guide rail surface using paint or the like. Different position information corresponds to floor-to-floor marks having different pattern shapes.
  • the safety controller 8 detects the car position based on the position information corresponding to the detected floor-to-floor marks. Correct the measured value of A. Further, when the image sensor 9b detects the floor-to-floor marks N(1b) and N(2b) while the car 1 is running, the safety controller 8 detects the position information corresponding to the detected floor-to-floor marks. Correct the measured value of car position B.
  • the safety controller 8 pre-stores mark position data indicating the correspondence between each floor-to-floor mark and position information in the height direction within the hoistway. This position information indicates the height from the reference position in the hoistway to the position where each floor-to-floor mark is provided.
  • the reference position is the floor surface of the lowest floor (not shown), which is the reference floor.
  • the car positions A and B are the reference position, that is, the height from the floor surface of the lowest floor to the floor plate surface of the car 1 .
  • the safety controller 8 determines the installation height of the image sensor 9a in the car 1, i.e. The car position A is calculated by subtracting the height of the image sensor 9a from the floor plate surface of .
  • the safety controller 8 determines the installation height of the image sensor 9b in the car 1, i.e., The car position B is calculated by subtracting the height of the image sensor 9b from the floor plate surface.
  • the safety controller 8 normally sets measured values for the car positions A and B based on the surface images of the guide rails 5a and 5b, respectively.
  • the safety controller 8 detects the floor-to-floor marks N(1a) and N(2a)
  • the safety controller 8 sets the car position A to a calculated value based on the position information of the detected floor-to-floor marks.
  • the safety controller 8 detects the floor-to-floor marks N(1b) and N(2b)
  • the safety controller 8 sets the car position B to a calculated value based on the position information of the detected floor-to-floor marks.
  • At least two floor-to-floor marks are provided between each floor in the hoistway (only two in the embodiment).
  • the car positions A and B are corrected each time the car 1 travels, so that the car position measurement accuracy is improved.
  • the other normal inter-floor mark is used to correct the measurement of the car position A.
  • the car position B can be measured. Improves reliability.
  • the safety controller 8 in the embodiment determines whether there is an abnormality in the inter-floor mark based on the surface images of the guide rails 5a and 5b and the image of the inter-floor mark. In the embodiment, as will be described later, the safety controller 8 calculates the measured values of the car positions A and B based on the surface images of the guide rails 5a and 5b acquired by the image sensors 9a and 9b, and the image Based on the position information indicated by the floor-to-floor mark detected based on the images acquired by the sensors 9a and 9b, it is determined whether there is an abnormality in the floor-to-floor mark.
  • the safety controller 8 sends information about the inter-floor mark determined to be abnormal (hereinafter referred to as "abnormal mark information") to the elevator control device 6 via the tail code 7. Further, the elevator control device 6 records this abnormality mark information in its own device and transmits it to the monitoring server device provided in the control center 30 via the communication network 100 (for example, telephone line, Internet, etc.).
  • the monitoring server device is installed in a remote location geographically separated from the installation location of the elevator. The monitoring server device monitors the operating states of the plurality of elevators by communicating with each elevator control device in the plurality of elevators, including the elevator of the embodiment, via the communication network 100 .
  • the abnormal mark information is information for specifying an inter-floor mark determined to be abnormal. It includes the guide rail (eg, “left rail”), as well as the identification information (eg, “identifier (ID)”) of the floor-to-floor mark.
  • FIG. 2 is a functional block diagram showing the configuration of the safety controller 8 in the embodiment.
  • the safety controller 8 has a computer system such as a microcomputer, and the computer system operates as each part by executing a predetermined program.
  • the safety controller 8 has two independent car position measurement systems. That is, the safety controller 8 includes a car position measurement system (hereinafter referred to as “car position measurement system A”) that measures the car position A based on the image A acquired by the image sensor 9a, and an image sensor 9b. a car position measurement system (hereinafter referred to as “car position measurement system B”) that measures the car position B based on the image B that is displayed.
  • car position measurement system A a car position measurement system that measures the car position A based on the image A acquired by the image sensor 9a
  • an image sensor 9b an image sensor 9b
  • a car position measurement system (hereinafter referred to as “car position measurement system B”) that measures the car position B based on the image B that is displayed.
  • the car position measurement system A using the image sensor 9a includes, as shown in FIG. 806a, image memory 807a, and cage position memory 808a.
  • the car position measurement system B using the image sensor 9b includes an image detection unit 801b, an image comparison unit 802b, a car position calculation unit 803b, a mark detection unit 804b, a correction position detection unit 805b, a mark position memory 806b, and an image memory 807b. , and a car position memory 808b.
  • the function of each part is as follows.
  • the image detection unit 801a detects an image of the surface of the guide rail 5a (FIG. 1) at predetermined time intervals based on the signal from the image sensor 9a.
  • the image memory 807a stores the image detected by the image detection unit 801a.
  • the image comparison unit 802a compares the current image detected by the image detection unit 801a with the previous image stored in the image memory 807a, and measures the deviation between the two images.
  • a comparison means for example, an image correlation method is applied.
  • the deviation between both images corresponds to the amount of movement of the car 1 (FIG. 1).
  • the car position calculation unit 803a calculates the car position A based on the image shift calculated by the image comparison unit 802a. As described above, the calculated image shift corresponds to the amount of movement of the car 1. Therefore, the current car position A is calculated by sequentially integrating the image shifts measured at predetermined time intervals. be done.
  • the car position memory 808a stores the car position calculated by the car position calculation unit 803a.
  • the car position calculation unit 803a reads out the car position A calculated at the previous time and stored in the car position memory 808a from the car position memory 808a, and stores the calculated car position A at the previous time. By adding or subtracting the displacement of the car 1, that is, the amount of movement of the car 1, the current car position A is calculated. By repeatedly executing such calculations while the elevator is in operation, the amount of movement of the car 1 is successively integrated. Thereby, the car position A of the car 1 moving in the hoistway is measured.
  • the mark detection unit 804a identifies the floor-to-floor marks N(1a) and N(2a) by pattern recognition or the like.
  • the mark detection unit 804a stores the basic image data of the floor-to-floor marks N(1a) and N(2a) in advance, and compares the detected image with the basic image data to detect the floor-to-floor mark.
  • N(1a) and N(2a) are detected.
  • the comparison means for example, an image correlation method is applied.
  • the corrected position detector 805a acquires the position information indicated by the detected floor-to-floor marks N(1a) and N(2a) from the mark-position memory 806a.
  • the measured value of car position A calculated in 803a is corrected according to the acquired position information.
  • the cage position calculator 803a outputs the measured value of the cage position A corrected.
  • the error of the car position A accumulated along with the integration of the movement amount of the car 1 is corrected, and the accuracy of the measured value of the car position A is improved.
  • the function of the correction position detection unit 805a related to the abnormality determination of the floor-to-floor marks N(1a) and N(2a) will be described later.
  • the mark position memory 806a stores in advance correspondence data between floor-to-floor marks N(1a) and N(2a) and position information indicated by floor-to-floor marks N(1a) and N(2a).
  • an image detection unit 801b In addition, in the car position measurement system B, an image detection unit 801b, an image comparison unit 802b, a car position calculation unit 803b, a mark detection unit 804b, a correction position detection unit 805b, a mark position memory 806b, an image memory 807b, and a car position memory.
  • Each function of 808b is an image detection unit 801a, an image comparison unit 802a, a car position calculation unit 803a, a mark detection unit 804a, a correction position detection unit 805a, a mark position memory 806a, and an image memory 807a in the car position measurement system A.
  • the functions of the car position memory 808a are examples of the car position memory 808a.
  • the abnormalities of the floor-to-floor marks are, for example, delamination, peeling, contamination, defacement, and defects.
  • the corrected position detection unit 805a When the mark detection unit 804a detects the floor-to-floor marks N(1a) and N(2a), the corrected position detection unit 805a provided in the car position measurement system A detects the detected floor-to-floor distance from the mark position memory 806a. Read the position information of the mark. Further, when the mark detection unit 804a has not detected the inter-floor marks N(1a) and N(2a), the correction position detection unit 805a reads from the mark position memory 806a the detected N( 1a) and read the position information of N(2a).
  • the mark abnormality determination unit 813a uses the position information of the floor-to-floor marks N(1a) and N(2a) read by the corrected position detection unit 805a and the current car position A before correction calculated by the car position calculation unit 803a. By comparing with the measured values of , it is determined whether there is an abnormality in the floor-to-floor marks N(1a) and N(2a). For example, if there is a large difference between the detected position information of the inter-floor mark and the measured value of the car position A (see S6 in FIG.
  • the mark abnormality determination unit 813a determines that the inter-floor mark is abnormal.
  • the mark abnormality determination unit 813a determines that the floor-to-floor mark is normal, it corrects the current measured value of the car position A calculated by the car-position calculation unit 803a to the position information of the floor-to-floor mark.
  • the inter-floor mark abnormality detection function in the car position measurement system B is the same as the inter-floor mark abnormality detection function in the car position measurement system A. Therefore, the function of the mark abnormality determination section 813b is the same as the function of the mark abnormality determination section 813a.
  • the safety controller 8 further has a car position determining unit 811, a car stopping unit 812, and an abnormality processing determining unit 814.
  • the car position determination unit 811 determines the measured value of the car position A output by the car position calculation unit 803a and the measured value of the car position B output by the car position calculation unit 803b. to determine whether the image sensor 9a or the image sensor 9b is faulty. In the embodiment, the car position determination unit 811 calculates the difference between the measured value of the car position A and the measured value of the car position B, and determines whether the magnitude (absolute value) of the difference is equal to or less than a predetermined value. do.
  • the car position determination unit 811 determines that the image sensors 9a and 9b are normal and not out of order. Further, when the magnitude (absolute value) of the difference exceeds a predetermined value, the car position determination unit 811 determines that the image sensor 9a or the image sensor 9b is out of order.
  • the car position determination unit 811 determines that the image sensors 9a and 9b are normal, it determines the measured value of the car position A as the current position of the car 1.
  • the car position determination unit 811 may determine the measured value of the car position B as the current position of the car 1 .
  • the car position determining unit 811 determines that the image sensor 9a or the image sensor 9b is out of order, it causes the car stopping unit 812 to send a stop command to forcibly stop the hoisting machine 4.
  • the motor (not shown) that drives the hoisting machine 4 is stopped and the electromagnetic brake device (not shown) is brought into a braking state. .
  • the abnormality processing determination unit 814 sends out abnormality detection data and abnormal mark information.
  • the floor-to-floor mark whose position information is closest to the current measured values of car positions A and B is abnormal, and the information about this floor-to-floor mark stored in the mark position memory is stored. This is regarded as abnormal mark information.
  • the external notification unit 63 which is a communication unit, notifies the monitoring server provided in the control center 30 of the abnormality. Anomaly detection data and anomaly mark information are transmitted via the communication network 100 as notification data.
  • FIG. 3 is a schematic diagram showing an example of an image of the exposed surfaces of the guide rails 5a and 5b (FIG. 1).
  • FIG. 3 shows an image I(t) at time t and an image I(t+ ⁇ t) at time t+ ⁇ t ( ⁇ t: frame period) acquired by the image sensors 9a and 9b (FIGS. 1 and 2).
  • Both images are images of the exposed surface of the steel material that constitutes the guide rails 5a and 5b, and show the pattern of the luminance distribution indicating the unevenness distribution on the exposed surface of the steel material. Note that the car 1 (FIG. 1) is lowered from time t to time t+ ⁇ t.
  • an image shift d occurs between the image I(t) and the image I(t+ ⁇ t), as shown in FIG.
  • This image shift d is calculated in the embodiment by comparing the image I(t) and the image I(t+ ⁇ t) using an image correlation method.
  • the image I(t) or a portion thereof is moved in the image frame by a predetermined amount along the longitudinal direction of the guide rails 5a and 5b.
  • a correlation function value between the image I(t) and the image I(t+ ⁇ t) is calculated. The total amount of movement of the image I(t) when the correlation function value is the maximum value is taken as the image shift d.
  • the image shift d corresponds to the amount of movement (the amount of descent in FIG. 3) of the car 1 at time ⁇ t.
  • the direction in which the image shifts in the image frame indicates the moving direction (upward or downward) of the car 1 . Therefore, if the sign of the image shift is set according to the direction of image shift, for example, if the downward direction (upward direction) is positive and the upward direction (downward direction) is negative, the image shift d is calculated every ⁇ t. By calculating and adding to the car position at startup, the current car position can be measured.
  • the guide rails 5a and 5b are preferably surface-finished by polishing or the like in order to make the surfaces uneven.
  • the image sensors 9a and 9b preferably have light sources for illuminating the surfaces of the guide rails 5a and 5b, respectively. As a result, the car position measurement accuracy is improved.
  • FIG. 4 is a flow chart showing the operation of the safety controller 8 (FIGS. 1 and 2) in the embodiment.
  • FIG. 5 is a flow chart showing the operation of the safety controller 8 between the connectors AB and between the connectors AC in the flow chart of FIG.
  • step S1 after starting operation, the safety controller 8 detects the current images A and B of the surfaces of the guide rails 5a and 5b based on the image signals from the image sensors 9a and 9b using the image detection units 801a and 801b. get. After executing step S1, the safety controller 8 next executes car position calculation processing (steps S2 to S4).
  • the safety controller 8 first calculates the car position A by executing steps S2 to S4, and then calculates the car position B by executing steps S2 to S4 again.
  • the image shift between the current image X and the image X at the previous time point calculated by the image comparing section is substantially zero, it is determined that the current image X and the image X at the previous time point are the same.
  • step S3 the safety controller 8 uses the image deviation ( ⁇ 0) between the current image X and the previous image X calculated by the image comparison unit 802x as the amount of movement of the car 1. After executing step S3, the safety controller 8 next executes step S4.
  • the safety controller 8 After completing the car position calculation process, the safety controller 8 next executes the car position correction process (steps S5 to S10, S16). Note that the car position correction processing includes the abnormality detection processing of the floor-to-floor mark.
  • the safety controller 8 first corrects the car position A by executing steps S5 to S10 and S16, and then corrects the car position B by executing steps S5 to S10 and S16 again.
  • the safety controller 8 determines that the floor-to-floor mark is detected (YES in step S5), it then executes step S6. Further, when the safety controller 8 determines that the floor-to-floor mark is not detected (NO in step S5), it then executes step S7.
  • step S6 the safety controller 8 uses the position information corresponding to the detected floor-to-floor mark read out from the mark position memory x by the correction position detection unit 805x, that is, the current mark position, and the mark position calculated in steps S2 to S4.
  • the mark abnormality determination unit 813x determines whether the magnitude (absolute value) of the difference from the calculated car position X is equal to or less than the first threshold.
  • the safety controller 8 determines whether or not the current mark position is close to the calculated car position X in step S6.
  • the first threshold value is set in consideration of the normal accuracy of the calculated value of the car position X in steps S2 to S4, the normal operating state (speed, etc.) of the car 1, and the like.
  • step S6 determines that the magnitude (absolute value) of the difference between the mark position and the car position X is equal to or less than the first threshold value (YES in step S6), that is, when it determines that there is no abnormality in the floor-to-floor mark.
  • step S8 is executed. Further, when the safety controller 8 determines that the magnitude (absolute value) of the difference between the mark position and the car position X is greater than the first threshold value (NO in step S6), it determines that there is an abnormality in the floor-to-floor mark. Then, step S16 is executed next.
  • step S7 the safety controller 8 detects the position information corresponding to the normal inter-floor mark already detected at the previous point in time, read out from the mark position memory x by the correction position detector 805x, that is, the mark position at the previous point in time. Then, the mark abnormality determination unit 813x determines whether the magnitude (absolute value) of the difference from the car position X calculated in steps S2 to S4 is equal to or less than the second threshold. In step S7, the safety controller 8 determines whether the car 1 has not reached the position where the inter-floor mark is detected since the inter-floor mark was detected at the previous time. It should be noted that the second threshold is mainly set in consideration of the installation interval of the floor-to-floor marks.
  • step S7 determines that the magnitude (absolute value) of the difference between the mark position at the previous point in time and the car position X is equal to or less than the second threshold value (YES in step S7), that is, there is no abnormality in the floor-to-floor mark. If so, then step S9 is executed. Further, when the safety controller 8 determines that the magnitude (absolute value) of the difference between the mark position at the previous time point and the car position X is greater than the second threshold (NO in step S7), If it is determined that there is an abnormality, then step S16 is executed.
  • step S8 the safety controller 8 uses the mark abnormality determination section 813x or the correction position detection section 805x to convert the calculated value of the car position X in steps S2 to S4 into the position information indicated by the detected floor-to-floor mark. is corrected to a predetermined value according to In this case, the car position calculator 803x outputs the corrected car position X.
  • the mark abnormality determination section 813x or the correction position detection section 805x converts the calculated value of the car position X in steps S2 to S4 into the position information indicated by the detected floor-to-floor mark. is corrected to a predetermined value according to In this case, the car position calculator 803x outputs the corrected car position X.
  • the car position X is the height of the floor plate surface of the car 1 in the hoistway. ) is the height of the floor plate surface of the car 1 in the hoistway when the floor-to-floor mark is detected, the car position X is corrected to the value of the position information.
  • step S8 the safety controller 8 then executes step S9.
  • step S16 the safety controller 8 uses the mark abnormality determination unit 813x to determine the result of the abnormality detection processing of the floor-to-floor mark based on the determinations in steps S6 and S7 (NO in step S6, NO in step S7). is detected as an abnormality in the floor-to-floor mark.
  • step S16 the safety controller 8 ends the car position correction process.
  • the image X recorded in the image memory 807x in step S9 and the cage position X recorded in the cage position memory 808x in step S10 are the image X at the previous point in time, respectively, in the next control period or frame period. It is used as the car position X at the previous time.
  • step S11 After completing the car position correction process (steps S5 to S10, S16), the safety controller 8 next executes step S11.
  • step S11 the safety controller 8 determines whether or not the floor-to-floor mark has been detected at the previous time. That is, the safety controller 8 continuously detects inter-floor marks N(1x) and N(2x), for example, 11(a), 11(2a), 11(1b) and 11(2b), It is determined whether or not the car position correction process (steps S5 to S10, S16) has ended.
  • the safety controller 8 detects the image of the floor-to-floor mark for the floor-to-floor mark determined to be abnormal in step S7. Assuming that it is a mark, step S11 is executed. Note that the safety controller 8 regards the floor-to-floor mark determined to be abnormal in steps S6 and S7 as the detected floor-to-floor mark based on the processing result of step S16, and executes step S11.
  • the safety controller 8 determines that the floor-to-floor mark has been detected at the previous point (YES in step S11). If it is determined that the position correction processing (steps S5 to S10, S16) has been completed, next, the floor-to-floor mark abnormality processing (S12, S17 to S22) shown in FIG. 5 is executed. Further, when the safety controller 8 determines that the floor-to-floor mark has not been detected at the previous point (NO in step S11), that is, the floor-to-floor mark N which is provided between the same floors and which can be continuously detected. For (1x) and N(2x), if it is determined that the car position correction processing (steps S5 to S10, S16) has not been completed, the processing after step S1 is repeatedly executed.
  • step S12 the safety controller 8 selects between-floor marks N(1a) and N(2a) for which car position correction processing (steps S5 to S10 and S16) including abnormality detection processing (steps S6 and S7) has been completed.
  • the safety controller 8 determines that any one of N(1a), N(2a), N(1b), and N2(b) is abnormal (YES in step S12), it then executes step S17.
  • step S17 the safety controller 8 uses the abnormality processing determination unit 814 to send out abnormality detection data and abnormality mark information. As described above, when the elevator control device 6 shown in FIG. 2 receives the abnormality detection data and the abnormality mark information from the safety controller 8, it transmits the abnormality detection data and the abnormality mark information to the control center 30 as the abnormality notification data. . After executing step S17, the safety controller 8 next executes step S18.
  • step S18 the safety controller 8 selects either the set N (1a, 2a) of the inter-floor marks provided on the guide rail 5a or the set N (1b, 2b) of the inter-floor marks provided on the guide rail 5b.
  • step S20 is executed.
  • step S19 is executed.
  • step S19 the safety controller 8 executes correction processing of the car position A, similar to steps S8 to S10 shown in FIG. . Furthermore, the safety controller 8 performs correction processing for the car position B in the same manner as steps S8 to S10 shown in FIG. After executing step S19, the safety controller 8 next executes car position determination processing (steps S13 to S15) shown in FIG. The car position determination process (steps S13 to S15) will be described later.
  • N(1a, 2a) and N(1b, 2b) it has been determined that all the inter-floor marks forming the set are abnormal. Therefore, in step S20, it is determined whether or not there is a sound inter-floor mark in the other of N(1a, 2a) and N(1b, 2b).
  • step S21 is executed. Further, when the safety controller 8 determines that either of the inter-floor marks N(1x) and N(2x) is sound in either N(1a, 2a) or N(1b, 2b) (step NO in S20), then step S22 is executed.
  • step S21 the safety controller 8 uses the abnormality process determination unit 814 to select stopping of the car 1 as the abnormality process.
  • the car stop unit 812 is used to send a stop command for forcibly stopping the hoisting machine 4 .
  • the motor (not shown) that drives the hoisting machine 4 is stopped and the electromagnetic brake device (not shown) is brought into a braking state. .
  • step S21 the safety controller 8 ends a series of processes as shown in FIG.
  • step S22 the safety controller 8 selects the nearest floor operation of the car 1 as the abnormal process by the abnormal process determination unit 814.
  • the safety controller 8 uses the abnormal process determining unit 814 to instruct the elevator control device 6 to operate the car 1 to the nearest floor. Send the operation command.
  • the elevator control device 6 controls the hoisting machine 4 by the hoisting machine control unit 61 to drive the car 1 to the floor closest to the current position. to land.
  • the safety controller uses the sound inter-floor mark to detect the car position by the car position measurement system (A or B) provided with this inter-floor mark, and continues the operation.
  • step S22 the safety controller 8 ends a series of processes as shown in FIG.
  • the safety controller 8 executes car position determination processing (steps S13 to S15) in order to determine the car position used for safety control, for example, to determine whether or not to operate the safety device.
  • step S13 the safety controller 8 uses the car position determination unit 811 to compare the current car position A and car position B to determine whether there is a failure in the image sensors 9a and 9b. In the embodiment, as shown in FIG. 4, the safety controller 8 determines whether the magnitude (absolute value) of the difference between the car position A and the car position B is equal to or less than a predetermined value.
  • step S13 If the magnitude of the difference between car position A and car position B is equal to or less than a predetermined value (YES in step S13), then the safety controller 8 executes step S14. Further, when the magnitude of the difference between the car position A and the car position B is larger than the predetermined value, the safety controller 8 next executes step S15.
  • step S14 the safety controller 8 uses the car position determination unit 811 to determine the car position A as the car position to be used for safety control at this time. After executing step S14, the safety controller 8 terminates the series of processes (FIGS. 4 and 5).
  • step S15 the safety controller 8 determines that at least one of the image sensors 9a and 9b is out of order, and uses the abnormality processing determination section 814 to determine to stop the car 1.
  • the safety controller 8 decides to block the car 1
  • the car blocking section 812 is used to create and send out a car blocking command. As a result, the car 1 is forcibly stopped.
  • the safety controller 8 terminates the series of processes (FIGS. 4 and 5).
  • the safety controller 8 While the elevator is in operation, the safety controller 8 repeatedly executes the above-described series of processes (FIGS. 4 and 5) every control cycle or every image acquisition cycle (frame cycle).
  • the safety controller calculates the position of the car 1 based on the surface images of the guide rails 5a and 5b acquired by the image sensors 9a and 9b, and calculates the calculated position of the car 1. , are provided close to each other on the surfaces of the guide rails 5a and 5b, and are corrected based on position information of a plurality of floor-to-floor marks detected based on the surface images of the guide rails 5a and 5b. Furthermore, the safety controller 8 determines whether there is an abnormality in the inter-floor marks based on these surface images, and continues to measure the car position using the inter-floor marks determined to be sound. This improves the reliability of the car position detection device that measures the position of the car based on the image of the hoistway.
  • the safety controller 8 determines that the floor-to-floor mark is abnormal according to the above embodiment, it controls the running of the car 1 as safety control for the car 1 .
  • the car 1 is forcibly stopped or driven to the nearest floor.
  • the reliability of the safety device of the elevator provided with the car position detection device for measuring the position of the car based on the image in the hoistway is improved. If any of the plurality of floor-to-floor marks is healthy when an abnormality in the floor-to-floor mark is detected, the car 1 may be run at a speed lower than the rated speed.
  • the above-described embodiment includes two car position measurement systems, that is, a car position measurement system A using the image sensor 9a and a car position measurement system B using the image sensor 9b. Only one car position measurement system may be used.
  • the floor-to-floor mark is provided on one of the pair of guide rails (5a, 5b). Further, when an abnormality in the inter-floor mark is detected, if any of the adjacent inter-floor marks is sound, the car position is measured using the sound inter-floor mark. While continuing, normal operation is continued. Note that the nearest floor operation of the car 1 may be executed. If all of the adjacent floor-to-floor marks are abnormal, the car 1 is forcibly stopped.
  • the redundancy of the cage position measurement system improves the reliability of the cage position detection device. Furthermore, the possibility that the operation of the car 1 can be continued increases when an abnormality in the floor-to-floor mark is detected.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
  • the elevator may be a so-called machine room-less elevator in which the hoist and elevator control device are installed in the hoistway.

Landscapes

  • Indicating And Signalling Devices For Elevators (AREA)

Abstract

Disclosed is a highly reliable car position detection device that measures the position of a passenger car on the basis of images of the inside of a shaft. This car position detection device detects the position of a passenger car (1) on the basis of images of the inside of a shaft and comprises: an image sensor (9a) that acquires a surface image of a guide rail (5a); first marks (10(1a), 11(1a), 12(1a)) and second marks (10(2a), 11(2a), 12(2a)) that are provided near each other on the surface of the guide rail; and a safety controller (8) that, on the basis of an image of the first marks and the second marks, corrects the position of the passenger car as calculated on the basis of the surface image acquired by the image sensor. Upon detecting an abnormality in the first marks or the second marks on the basis of position information for the first marks or the second marks and the calculated position of the passenger car, the safety controller uses the good marks from among the first marks and the second marks to measure the position of the passenger car.

Description

かご位置検出装置、並びにそれを用いるエレベータの安全装置Car position detector and elevator safety device using same
 本発明は、昇降路内の画像に基づいて乗りかごの位置を検出するかご位置検出装置、並びに、このかご位置検出装置を用いるエレベータの安全装置に関する。 The present invention relates to a car position detection device that detects the position of a car based on an image inside a hoistway, and an elevator safety device that uses this car position detection device.
 エレベータの安全装置においては、ガバナにより過速度状態を検知すると、動力電源を遮断したり、非常止め装置を動作させたりして、乗りかごを非常停止する。ガバナは、長尺物であるガバナロープを備えているため、昇降路内において、ガバナロープを敷設するスペースを要する。 In the elevator safety device, when the governor detects an overspeed condition, the power supply is cut off or the emergency stop device is activated to bring the car to an emergency stop. Since the governor is equipped with a governor rope that is long, a space for laying the governor rope is required in the hoistway.
 このようなガバナに代えて、昇降路内の画像を用いて乗りかごの速度や位置を検出する技術が知られている(特許文献1参照)。 Instead of using such a governor, there is a known technique for detecting the speed and position of the car using an image inside the hoistway (see Patent Document 1).
 例えば、特許文献1に記載の技術では、乗りかごに設けられる計測装置が、ガイドレールの凹凸表面の画像を取り込む。計測装置は、取り込んだタイミングが異なる第1のフレームと第2のフレームとの間の画像のずれと、第1のフレームおよび第2のフレームにおける取り込み時間の時間差とから、乗りかごの位置および移動速度を算出する。 For example, in the technique described in Patent Literature 1, a measuring device provided in the car captures an image of the uneven surface of the guide rail. The measurement device determines the position and movement of the car based on the image shift between the first frame and the second frame captured at different timings and the time difference between the capture times of the first frame and the second frame. Calculate speed.
国際公開第2021/038984号WO2021/038984
 特許文献1に記載の技術では、かご位置計測系の異常については、必ずしも考慮されてはいない。このため、特許文献1の技術によるかご位置検出装置を安全装置に適用する場合、安全装置の信頼性の確保が問題となる。 The technology described in Patent Document 1 does not necessarily take into consideration anomalies in the car position measurement system. Therefore, when applying the car position detection device according to the technique of Patent Document 1 to a safety device, ensuring the reliability of the safety device becomes a problem.
 そこで、本発明は、昇降路内の画像に基づいて乗りかごの位置を計測しながらも、信頼性の高い、かご位置検出装置、並びに、このかご位置検出装置を用いるエレベータの安全装置を提供する。 SUMMARY OF THE INVENTION Accordingly, the present invention provides a car position detection device that is highly reliable while measuring the position of a car based on an image of the hoistway, and an elevator safety device that uses this car position detection device. .
 上記課題を解決するために、本発明によるかご位置検出装置は、昇降路内の画像に基づいてエレベータの乗りかごの位置を検出するものであって、乗りかごに設けられ、乗りかごを案内するガイドレールの表面画像を取得する画像センサと、ガイドレールの表面に、互いに近接して設けられる第1マークおよび第2マークと、画像センサが取得する表面画像に基づいて、乗りかごの位置を算出し、算出された乗りかごの位置を、画像センサが取得する第1マークおよび第2マークの画像に基づいて補正する安全コントローラと、を備え、安全コントローラは、第1マークまたは第2マークの位置情報と、算出された乗りかごの位置とに基づいて、第1マークまたは第2マークの異常を検出し、安全コントローラは、異常を検出すると、第1マークおよび第2マークの内の健全なマークを用いて乗りかごの位置を計測する。 In order to solve the above-mentioned problems, the car position detection device according to the present invention detects the position of the car of an elevator based on the image in the hoistway. The position of the car is calculated based on the image sensor that acquires the surface image of the guide rail, the first mark and the second mark that are provided close to each other on the surface of the guide rail, and the surface image acquired by the image sensor. and a safety controller for correcting the calculated position of the car based on the images of the first mark and the second mark acquired by the image sensor, wherein the safety controller corrects the position of the first mark or the second mark. Based on the information and the calculated position of the car, an abnormality of the first mark or the second mark is detected, and when the abnormality is detected, the safety controller detects a healthy mark among the first mark and the second mark. is used to measure the position of the car.
 上記課題を解決するために、本発明によるかごエレベータの安全装置は、昇降路内の画像に基づいて乗りかごの安全制御を実行するものであって、乗りかごに設けられ、乗りかごを案内するガイドレールの表面画像を取得する画像センサと、ガイドレールの表面に、互いに近接して設けられる第1マークおよび第2マークと、画像センサが取得する表面画像に基づいて、乗りかごの位置を算出し、算出された乗りかごの位置を、画像センサが取得する第1マークおよび第2マークの画像に基づいて補正する安全コントローラと、を備え、安全コントローラは、第1マークまたは第2マークの位置情報と、算出された乗りかごの位置とに基づいて、第1マークまたは第2マークの異常を検出し、安全コントローラは、異常を検出すると、第1マークおよび第2マークの内の健全なマークを用いて乗りかごの位置を計測し、安全コントローラは、異常に応じて、乗りかごの走行を制御する。 In order to solve the above problems, a car elevator safety device according to the present invention performs safety control of a car based on an image of the inside of a hoistway. The position of the car is calculated based on the image sensor that acquires the surface image of the guide rail, the first mark and the second mark that are provided close to each other on the surface of the guide rail, and the surface image acquired by the image sensor. and a safety controller for correcting the calculated position of the car based on the images of the first mark and the second mark acquired by the image sensor, wherein the safety controller corrects the position of the first mark or the second mark. Based on the information and the calculated position of the car, an abnormality of the first mark or the second mark is detected, and when the abnormality is detected, the safety controller detects a healthy mark among the first mark and the second mark. is used to measure the position of the car, and the safety controller controls the running of the car according to the abnormality.
 本発明によれば、昇降路内の画像に基づき乗りかごの位置を計測するかご位置検出装置、並びにそれを用いるエレベータの安全装置の信頼性が向上する。 According to the present invention, the reliability of the car position detection device that measures the position of the car based on the image inside the hoistway and the safety device of the elevator using it is improved.
 上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。 Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
実施形態であるエレベータの全体構成を示す構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram which shows the whole structure of the elevator which is embodiment. 実施形態における安全コントローラの構成を示す機能ブロック図である。It is a functional block diagram showing the configuration of a safety controller in the embodiment. ガイドレールの露出表面の画像の一例を示す模式図である。It is a schematic diagram which shows an example of the image of the exposed surface of a guide rail. 実施形態における安全コントローラの動作を示すフローチャートである。It is a flow chart which shows operation of a safety controller in an embodiment. 図4のフローチャートにおけるAB間およびAC間における安全コントローラの動作を示すフローチャートである。5 is a flow chart showing the operation of the safety controller between AB and between AC in the flow chart of FIG. 4;
 以下、本発明による一実施形態であるエレベータについて、図面を用いながら説明する。各図において、参照番号が同一のものは同一の構成要件あるいは類似の機能を備えた構成要件を示している。 An elevator that is one embodiment according to the present invention will be described below with reference to the drawings. In each figure, the same reference numbers denote the same components or components with similar functions.
 図1は、本発明の一実施形態であるエレベータの全体構成を示す構成図である。 FIG. 1 is a configuration diagram showing the overall configuration of an elevator that is one embodiment of the present invention.
 図1に示すように、実施形態においては、乗りかご1および釣合おもり2が、それぞれ主ロープ3の一端および他端に機械的に接続される。主ロープ3は、巻上機4が有するシーブに巻き掛けられる。これにより、乗りかご1および釣合おもり2が、建築物に設けられる昇降路内に吊られる。すなわち、実施形態は、いわゆる、つるべ式のエレベータである。なお、実施形態において、巻上機4は、昇降路上に設けられる機械室内に設置される。 As shown in FIG. 1, in the embodiment, the car 1 and the counterweight 2 are mechanically connected to one end and the other end of the main rope 3, respectively. The main rope 3 is wound around a sheave of the hoist 4 . Thereby, the car 1 and the counterweight 2 are suspended in a hoistway provided in the building. That is, the embodiment is a so-called barrel-type elevator. In addition, in the embodiment, the hoist 4 is installed in a machine room provided on the hoistway.
 巻上機4が有するモータが回転して、シーブが回転駆動されると、主ロープ3が、シーブと主ロープ3との間の摩擦力によって直線的に駆動される。これにより、乗りかご1および釣合おもり2は、昇降路内を、互いに上下反対方向に移動する。 When the motor of the hoisting machine 4 rotates and drives the sheave to rotate, the main rope 3 is linearly driven by the frictional force between the sheave and the main rope 3 . As a result, the car 1 and the counterweight 2 move in opposite directions in the hoistway.
 なお、巻上機4が有するモータは、エレベータ制御装置6が備える電力変換装置(例えば、インバータ装置)によって駆動される。なお、エレベータ制御装置6は、電力変換装置を制御して乗りかご1の運転を制御する制御部を備えている。 The motor of the hoisting machine 4 is driven by a power conversion device (for example, an inverter device) of the elevator control device 6 . The elevator control device 6 includes a control section that controls the operation of the car 1 by controlling the power conversion device.
 乗りかご1は、案内装置20(例えば、ガイドシュー)を介して、一対のガイドレール5a,5bに、移動可能に係合する。このため、乗りかご1は、ガイドレール5a,5bに案内されながら、任意の階床間で移動する。なお、実施形態では、ガイドレール5a,5bとして、一般的なT型ガイドレールが適用される。また、釣合おもり2は、図示されない釣合おもり用のガイドレールに案内されながら移動する。 The car 1 is movably engaged with a pair of guide rails 5a and 5b via a guide device 20 (for example, guide shoes). Therefore, the car 1 moves between arbitrary floors while being guided by the guide rails 5a and 5b. In addition, in the embodiment, a general T-shaped guide rail is applied as the guide rails 5a and 5b. The counterweight 2 moves while being guided by a guide rail for the counterweight (not shown).
 乗りかご1の上部には、安全コントローラ8が設置されている。安全コントローラ8は、乗りかご1の上部に設置される画像センサ9a,9bと電気的に接続されている。画像センサ9a,9bは、それぞれ、昇降路内における静止物であるガイドレール5a,5bの表面画像を取得する。実施形態では、ガイドレール5a,5bの表面画像として、T字の足部の先端部の表面画像が取得される。安全コントローラ8は、画像センサ9a,9bによって取得されるガイドレール5a,5bの表面画像に基づいて、乗りかご1の位置を計測する。 A safety controller 8 is installed on the top of the car 1. The safety controller 8 is electrically connected to image sensors 9 a and 9 b installed on the top of the car 1 . Image sensors 9a and 9b acquire surface images of guide rails 5a and 5b, which are stationary objects in the hoistway, respectively. In the embodiment, as the surface images of the guide rails 5a and 5b, the surface images of the tips of the T-shaped legs are acquired. The safety controller 8 measures the position of the car 1 based on the surface images of the guide rails 5a and 5b acquired by the image sensors 9a and 9b.
 安全コントローラ8は、画像センサ9aによって取得される画像に基づいて、昇降路内における乗りかご1の位置(以下、「かご位置A」と記す)を計測する。また、安全コントローラ8は、画像センサ9bによって取得される画像に基づいて、昇降路内における乗りかご1の位置(以下、「かご位置B」と記す)を、かご位置Aとは独立に計測する。すなわち、安全コントローラ8は、2系統のかご位置計測系を有している。 The safety controller 8 measures the position of the car 1 in the hoistway (hereinafter referred to as "car position A") based on the image acquired by the image sensor 9a. In addition, the safety controller 8 measures the position of the car 1 in the hoistway (hereinafter referred to as "car position B") independently of the car position A based on the image acquired by the image sensor 9b. . That is, the safety controller 8 has two car position measurement systems.
 画像センサ9a,9bとしては、CCDやCMOSセンサなどが適用される。 A CCD, a CMOS sensor, or the like is applied as the image sensors 9a and 9b.
 安全コントローラ8が有するかご位置計測系(図示せず)は、エレベータ制御装置6が通常の運転制御に用いるかご位置計測系とは独立している。エレベータ制御装置6が有するかご位置計測系は、例えば、巻上機4のモータの回転位置を検出するレゾルバもしくはロータリエンコーダなどの回転位置検出器と、乗りかご1に設けられる光電式もしくは磁気式の位置検出器と、昇降路内の階床間に設けられる、位置検出器用の遮蔽板(光遮蔽もしくは磁気遮蔽)とによって構成される。 The car position measurement system (not shown) that the safety controller 8 has is independent of the car position measurement system that the elevator control device 6 uses for normal operation control. The car position measurement system of the elevator control device 6 includes, for example, a rotational position detector such as a resolver or a rotary encoder for detecting the rotational position of the motor of the hoisting machine 4, and a photoelectric or magnetic sensor provided in the car 1. It is composed of a position detector and a shielding plate (optical shielding or magnetic shielding) for the position detector provided between floors in the hoistway.
 ガイドレール5aの表面には、昇降路内における高さ方向の位置情報を示す、階床間マーク10(1a),10(2a),11(1a),11(2a),12(1a),12(2a)が設けられる。階床間マーク10(1a)および10(2a)は、ガイドレール5aの表面において、互いに近接して配置される。このため、階床間マーク10(1a)および10(2a)は、乗りかご1が走行中に、画像センサ9aによって、連続して検出される。同様に、階床間マーク11(1a)および11(2a)は互いに近接して配置され、そして、階床間マーク12(1a)および12(2a)は互いに近接して配置される。 Floor-to-floor marks 10(1a), 10(2a), 11(1a), 11(2a), 12(1a), 12(2a) is provided. The inter-floor marks 10(1a) and 10(2a) are arranged close to each other on the surface of the guide rail 5a. Therefore, the floor-to-floor marks 10(1a) and 10(2a) are continuously detected by the image sensor 9a while the car 1 is running. Similarly, inter-floor marks 11(1a) and 11(2a) are positioned adjacent to each other, and inter-floor marks 12(1a) and 12(2a) are positioned adjacent to each other.
 ここで、ガイドレール5aの表面において互いに近接して配置される一組の階床間マークN(1a)およびN(2a)(N=10,11,12)を、N(1a,2a)と表す。階床間マークの組10(1a,2a),11(1a,2a),12(1a,2a)の各々は、上下方向で隣接する二つの階床間に位置するとともに、これら二つの階床の内の上側の階床の近くに位置する。 Here, a set of floor-to-floor marks N(1a) and N(2a) (N=10, 11, 12) arranged close to each other on the surface of the guide rail 5a is denoted by N(1a, 2a). show. Each of the sets of inter-floor marks 10 (1a, 2a), 11 (1a, 2a), 12 (1a, 2a) is located between two floors adjacent in the vertical direction, and is located between these two floors. located near the upper floors of the
 ガイドレール5bの表面には、昇降路内における高さ方向の位置情報を示す、階床間マーク10(1b),10(2b),11(1b),11(2b),12(1b),12(2b)が設けられる。階床間マーク10(1b)および10(2b)は、ガイドレール5bの表面において、互いに近接して配置される。このため、階床間マーク10(1b)および10(2b)は、乗りかご1が走行中に、画像センサ9bによって、連続して検出される。同様に、階床間マーク11(1b)および11(2b)は互いに近接して配置され、そして、階床間マーク12(1b)および12(2b)は互いに近接して配置される。 Floor-to-floor marks 10(1b), 10(2b), 11(1b), 11(2b), 12(1b), 12(2b) is provided. The inter-floor marks 10(1b) and 10(2b) are arranged close to each other on the surface of the guide rail 5b. Therefore, the floor-to-floor marks 10(1b) and 10(2b) are continuously detected by the image sensor 9b while the car 1 is running. Similarly, inter-floor marks 11(1b) and 11(2b) are positioned adjacent to each other, and inter-floor marks 12(1b) and 12(2b) are positioned adjacent to each other.
 ここで、ガイドレール5bの表面において互いに近接して配置される一組の階床間マークN(1b)およびN(2b)(N=10,11,12)を、N(1b,2b)と表す。階床間マークの組10(1b,2b),11(1b,2b),12(1b,2b)の各々は、上下方向で隣接する二つの階床間に位置するとともに、これら二つの階床の内の上側の階床の近くに位置する。 Here, a set of floor-to-floor marks N(1b) and N(2b) (N=10, 11, 12) arranged close to each other on the surface of the guide rail 5b is denoted by N(1b, 2b). show. Each of the sets of inter-floor marks 10 (1b, 2b), 11 (1b, 2b), 12 (1b, 2b) is located between two vertically adjacent floors, and is located between these two floors. located near the upper floors of the
 階床間マークN(1a),N(1b)は、昇降路内において同じ高さに位置する。すなわち、階床間マークN(1a),N(1b)は、同じ位置情報を示す。同様に、N(2a),N(2b)は同じ位置情報を示す。 The floor-to-floor marks N(1a) and N(1b) are located at the same height in the hoistway. That is, the floor-to-floor marks N(1a) and N(1b) indicate the same position information. Similarly, N(2a) and N(2b) indicate the same location information.
 階床間マークとしては、例えば、一次元バーコードや二次元バーコードなどのパターン形状が描かれているシート状の部材が適用される。この場合、シート状の部材が、ガイドレールの表面に、接着剤や粘着剤などにより貼り付けられる。また、階床間マークは、塗料などを用いて、ガイドレール表面に直接描かれてもよい。なお、異なる位置情報には、異なるパターン形状の階床間マークが対応する。 As the floor-to-floor mark, for example, a sheet-shaped member with a pattern shape such as a one-dimensional barcode or two-dimensional barcode is applied. In this case, a sheet-like member is attached to the surface of the guide rail with an adhesive, an adhesive, or the like. Alternatively, floor-to-floor marks may be drawn directly on the guide rail surface using paint or the like. Different position information corresponds to floor-to-floor marks having different pattern shapes.
 安全コントローラ8は、乗りかご1が走行中に、画像センサ9aによって階床間マークN(1a),N(2a)を検出すると、検出される階床間マークに対応する位置情報により、かご位置Aの計測値を補正する。また、安全コントローラ8は、乗りかご1が走行中に、画像センサ9bによって階床間マークN(1b),N(2b)を検出すると、検出される階床間マークに対応する位置情報により、かご位置Bの計測値を補正する。 When the image sensor 9a detects the floor-to-floor marks N(1a) and N(2a) while the car 1 is traveling, the safety controller 8 detects the car position based on the position information corresponding to the detected floor-to-floor marks. Correct the measured value of A. Further, when the image sensor 9b detects the floor-to-floor marks N(1b) and N(2b) while the car 1 is running, the safety controller 8 detects the position information corresponding to the detected floor-to-floor marks. Correct the measured value of car position B.
 安全コントローラ8は、各階床間マークと、昇降路内の高さ方向における位置情報との対応を示す、マーク位置データを、予め記憶している。この位置情報は、昇降路内の基準位置から各階床間マークが設けられている位置までの高さを示す。実施形態では、基準位置を、基準階である最下階(図示せず)の床面としている。 The safety controller 8 pre-stores mark position data indicating the correspondence between each floor-to-floor mark and position information in the height direction within the hoistway. This position information indicates the height from the reference position in the hoistway to the position where each floor-to-floor mark is provided. In the embodiment, the reference position is the floor surface of the lowest floor (not shown), which is the reference floor.
 実施形態では、かご位置A,Bを、基準位置、すなわち最下階の床面から、乗りかご1の床板面までの高さとしている。この場合、安全コントローラ8は、画像センサ9aによって検出される階床間マークN(1a),N(2a)の位置情報から、乗りかご1における画像センサ9aの設置高さ、すなわち、乗りかご1の床板面からの画像センサ9aの高さを減算することにより、かご位置Aを算出する。また、安全コントローラ8は、画像センサ9bによって検出される階床間マークN(1b),N(2b)の位置情報から、乗りかご1における画像センサ9bの設置高さ、すなわち、乗りかご1の床板面からの画像センサ9bの高さを減算することにより、かご位置Bを算出する。 In the embodiment, the car positions A and B are the reference position, that is, the height from the floor surface of the lowest floor to the floor plate surface of the car 1 . In this case, the safety controller 8 determines the installation height of the image sensor 9a in the car 1, i.e. The car position A is calculated by subtracting the height of the image sensor 9a from the floor plate surface of . In addition, the safety controller 8 determines the installation height of the image sensor 9b in the car 1, i.e., The car position B is calculated by subtracting the height of the image sensor 9b from the floor plate surface.
 安全コントローラ8は、かご位置A,Bとして、通常は、それぞれガイドレール5a,5bの表面画像に基づく計測値を設定する。安全コントローラ8は、階床間マークN(1a),N(2a)を検出すると、検出される階床間マークの位置情報に基づく算出値を、かご位置Aとして設定する。また、安全コントローラ8は、階床間マークN(1b),N(2b)を検出すると、検出される階床間マークの位置情報に基づく算出値を、かご位置Bとして設定する。これにより、誤差が蓄積されたかご位置A,Bが補正される。 The safety controller 8 normally sets measured values for the car positions A and B based on the surface images of the guide rails 5a and 5b, respectively. When the safety controller 8 detects the floor-to-floor marks N(1a) and N(2a), the safety controller 8 sets the car position A to a calculated value based on the position information of the detected floor-to-floor marks. When the safety controller 8 detects the floor-to-floor marks N(1b) and N(2b), the safety controller 8 sets the car position B to a calculated value based on the position information of the detected floor-to-floor marks. As a result, the car positions A and B in which errors have been accumulated are corrected.
 階床間マークは、昇降路内における各階床間で少なくとも二つ設けられる(実施形態では、二つのみ)。これにより、乗りかご1の走行ごとに、かご位置A,Bが補正されるので、かご位置の計測精度が向上する。さらに、一組の階床間マークN(1a,2a)の内、一方の階床間マークが異常である場合、他方の健全な階床間マークによって補正することにより、かご位置Aの計測の信頼性が向上する。また、一組の階床間マークN(1b,2b)の内、一方の階床間マークが異常である場合、他方の健全な階床間マークによって補正することにより、かご位置Bの計測の信頼性が向上する。 At least two floor-to-floor marks are provided between each floor in the hoistway (only two in the embodiment). As a result, the car positions A and B are corrected each time the car 1 travels, so that the car position measurement accuracy is improved. Furthermore, if one of the set of inter-floor marks N (1a, 2a) is abnormal, the other normal inter-floor mark is used to correct the measurement of the car position A. Improves reliability. Further, if one of the set of floor-to-floor marks N (1b, 2b) is abnormal, by correcting it with the other normal floor-to-floor mark, the car position B can be measured. Improves reliability.
 実施形態における安全コントローラ8は、ガイドレール5a,5bの表面画像および階床間マークの画像に基づいて、階床間マークの異常の有無を判定する。なお、実施形態では、後述するように、安全コントローラ8は、画像センサ9a,9bによって取得されるガイドレール5a,5bの表面画像に基づいて算出されるかご位置A,Bの計測値と、画像センサ9a,9bによって取得される画像に基づいて検出される階床間マークが示す位置情報とに基づいて、階床間マークの異常の有無を判定する。 The safety controller 8 in the embodiment determines whether there is an abnormality in the inter-floor mark based on the surface images of the guide rails 5a and 5b and the image of the inter-floor mark. In the embodiment, as will be described later, the safety controller 8 calculates the measured values of the car positions A and B based on the surface images of the guide rails 5a and 5b acquired by the image sensors 9a and 9b, and the image Based on the position information indicated by the floor-to-floor mark detected based on the images acquired by the sensors 9a and 9b, it is determined whether there is an abnormality in the floor-to-floor mark.
 安全コントローラ8は、異常であると判定した階床間マークに関する情報(以下、「異常マーク情報」と記す)を、テールコード7を介してエレベータ制御装置6に送る。さらに、エレベータ制御装置6は、この異常マーク情報を自装置内に記録するとともに、通信網100(例えば、電話回線、インターネットなど)を介して管制センタ30が備える監視サーバ装置へ送信する。監視サーバ装置は、エレベータの設置場所から地理的に離れた遠隔地に設置される。そして、監視サーバ装置は、通信網100を介して、実施形態のエレベータを含む複数のエレベータにおける各エレベータ制御装置と通信することにより、複数のエレベータの稼働状態を監視する。 The safety controller 8 sends information about the inter-floor mark determined to be abnormal (hereinafter referred to as "abnormal mark information") to the elevator control device 6 via the tail code 7. Further, the elevator control device 6 records this abnormality mark information in its own device and transmits it to the monitoring server device provided in the control center 30 via the communication network 100 (for example, telephone line, Internet, etc.). The monitoring server device is installed in a remote location geographically separated from the installation location of the elevator. The monitoring server device monitors the operating states of the plurality of elevators by communicating with each elevator control device in the plurality of elevators, including the elevator of the embodiment, via the communication network 100 .
 異常マーク情報は、異常と判定される階床間マークを特定するための情報であり、例えば、階床間マークが設けられている階床位置(例えば、「n階・n+1階間」)およびガイドレール(例えば、「左側レール」)、並びに階床間マークの識別情報(例えば、「識別子(ID)」)を含む。 The abnormal mark information is information for specifying an inter-floor mark determined to be abnormal. It includes the guide rail (eg, “left rail”), as well as the identification information (eg, “identifier (ID)”) of the floor-to-floor mark.
 図2は、実施形態における安全コントローラ8の構成を示す機能ブロック図である。 FIG. 2 is a functional block diagram showing the configuration of the safety controller 8 in the embodiment.
 実施形態において、安全コントローラ8はマイクロコンピュータなどのコンピュータシステムを備え、コンピュータシステムが、所定のプログラムを実行することにより、各部として動作する。 In the embodiment, the safety controller 8 has a computer system such as a microcomputer, and the computer system operates as each part by executing a predetermined program.
 上述のように、安全コントローラ8は、互いに独立する二つのかご位置計測系を有する。すなわち、安全コントローラ8は、画像センサ9aによって取得される画像Aに基づいてかご位置Aを計測するかご位置計測系(以下、「かご位置計測系A」と記す)と、画像センサ9bによって取得される画像Bに基づいてかご位置Bを計測するかご位置計測系(以下、「かご位置計測系B」と記す)と、を有する。 As described above, the safety controller 8 has two independent car position measurement systems. That is, the safety controller 8 includes a car position measurement system (hereinafter referred to as "car position measurement system A") that measures the car position A based on the image A acquired by the image sensor 9a, and an image sensor 9b. a car position measurement system (hereinafter referred to as “car position measurement system B”) that measures the car position B based on the image B that is displayed.
 画像センサ9aを用いる、かご位置計測系Aは、図2に示すように、画像検出部801a、画像比較部802a、かご位置演算部803a、マーク検出部804a、補正位置検出部805a、マーク位置メモリ806a、画像メモリ807a、および、かご位置メモリ808aによって構成される。また、画像センサ9bを用いる、かご位置計測系Bは、画像検出部801b、画像比較部802b、かご位置演算部803b、マーク検出部804b、補正位置検出部805b、マーク位置メモリ806b、画像メモリ807b、および、かご位置メモリ808bによって構成される。各部の機能は、次のとおりである。 The car position measurement system A using the image sensor 9a includes, as shown in FIG. 806a, image memory 807a, and cage position memory 808a. The car position measurement system B using the image sensor 9b includes an image detection unit 801b, an image comparison unit 802b, a car position calculation unit 803b, a mark detection unit 804b, a correction position detection unit 805b, a mark position memory 806b, and an image memory 807b. , and a car position memory 808b. The function of each part is as follows.
 画像検出部801aは、画像センサ9aからの信号に基づいて、ガイドレール5a(図1)の表面の画像を、所定時間間隔で検出する。 The image detection unit 801a detects an image of the surface of the guide rail 5a (FIG. 1) at predetermined time intervals based on the signal from the image sensor 9a.
 画像メモリ807aは、画像検出部801aが検出した画像を記憶する。 The image memory 807a stores the image detected by the image detection unit 801a.
 画像比較部802aは、画像検出部801aによって検出される現時点の画像と、画像メモリ807aが記憶する前時点の画像とを比較して、両画像のずれを計測する。なお、比較手段として、例えば、画像相関法が適用される。実施形態では、両画像のずれは乗りかご1(図1)の移動量に相当する。 The image comparison unit 802a compares the current image detected by the image detection unit 801a with the previous image stored in the image memory 807a, and measures the deviation between the two images. As a comparison means, for example, an image correlation method is applied. In the embodiment, the deviation between both images corresponds to the amount of movement of the car 1 (FIG. 1).
 かご位置演算部803aは、画像比較部802aによって算出された画像のずれに基づいて、かご位置Aを演算する。前述のように、算出された画像のずれは乗りかご1の移動量に相当するので、所定時間間隔で計測される画像のずれを、逐次、積算することにより、現時点でのかご位置Aが算出される。 The car position calculation unit 803a calculates the car position A based on the image shift calculated by the image comparison unit 802a. As described above, the calculated image shift corresponds to the amount of movement of the car 1. Therefore, the current car position A is calculated by sequentially integrating the image shifts measured at predetermined time intervals. be done.
 かご位置メモリ808aは、かご位置演算部803aによって演算されたかご位置を記憶する。 The car position memory 808a stores the car position calculated by the car position calculation unit 803a.
 なお、かご位置演算部803aは、前時点に演算されて、かご位置メモリ808aに記憶されたかご位置Aをかご位置メモリ808aから読み出し、読み出した前時点のかご位置Aに、現時点で算出した画像のずれすなわち乗りかご1の移動量を加算もしくは減算することにより、現時点におけるかご位置Aを算出する。このような演算が、エレベータの稼働中に繰り返し実行されることにより、乗りかご1の移動量が、逐次、積算される。これにより、昇降路内を移動する乗りかご1のかご位置Aが計測される。 The car position calculation unit 803a reads out the car position A calculated at the previous time and stored in the car position memory 808a from the car position memory 808a, and stores the calculated car position A at the previous time. By adding or subtracting the displacement of the car 1, that is, the amount of movement of the car 1, the current car position A is calculated. By repeatedly executing such calculations while the elevator is in operation, the amount of movement of the car 1 is successively integrated. Thereby, the car position A of the car 1 moving in the hoistway is measured.
 マーク検出部804aは、画像検出部801aによって検出される現時点の画像に基づいて、階床間マークN(1a),N(2a)(N=10,11,12:図1)を検出する。マーク検出部804aは、パターン認識などにより、階床間マークN(1a),N(2a)を識別する。この場合、マーク検出部804aは、予め階床間マークN(1a),N(2a)の基本画像データを記憶し、検出された画像と基本画像データとを比較することにより、階床間マークN(1a),N(2a)を検出する。なお、比較手段としては、例えば、画像相関法が適用される。 The mark detection unit 804a detects floor-to-floor marks N(1a), N(2a) (N=10, 11, 12: FIG. 1) based on the current image detected by the image detection unit 801a. The mark detection unit 804a identifies the floor-to-floor marks N(1a) and N(2a) by pattern recognition or the like. In this case, the mark detection unit 804a stores the basic image data of the floor-to-floor marks N(1a) and N(2a) in advance, and compares the detected image with the basic image data to detect the floor-to-floor mark. N(1a) and N(2a) are detected. As the comparison means, for example, an image correlation method is applied.
 補正位置検出部805aは、検出された階床間マークN(1a),N(2a)が示す位置情報をマーク位置メモリ806aから取得し、階床間マークに異常がない場合、かご位置演算部803aで演算されるかご位置Aの計測値を、取得した位置情報に応じて補正する。この場合、かご位置演算部803aは、補正されたかご位置Aの計測値を出力する。これにより、乗りかご1の移動量の積算に伴い蓄積されたかご位置Aの誤差が補正され、かご位置Aの計測値の精度が向上する。なお、階床間マークN(1a),N(2a)の異常判定に関わる補正位置検出部805aの機能については、後述する。 The corrected position detector 805a acquires the position information indicated by the detected floor-to-floor marks N(1a) and N(2a) from the mark-position memory 806a. The measured value of car position A calculated in 803a is corrected according to the acquired position information. In this case, the cage position calculator 803a outputs the measured value of the cage position A corrected. As a result, the error of the car position A accumulated along with the integration of the movement amount of the car 1 is corrected, and the accuracy of the measured value of the car position A is improved. The function of the correction position detection unit 805a related to the abnormality determination of the floor-to-floor marks N(1a) and N(2a) will be described later.
 マーク位置メモリ806aは、階床間マークN(1a),N(2a)と、階床間マークN(1a),N(2a)が示す位置情報との対応データを、予め記憶している。 The mark position memory 806a stores in advance correspondence data between floor-to-floor marks N(1a) and N(2a) and position information indicated by floor-to-floor marks N(1a) and N(2a).
 なお、かご位置計測系Bにおける、画像検出部801b、画像比較部802b、かご位置演算部803b、マーク検出部804b、補正位置検出部805b、マーク位置メモリ806b、画像メモリ807b、および、かご位置メモリ808bの各機能は、それぞれ、かご位置計測系Aにおける、画像検出部801a、画像比較部802a、かご位置演算部803a、マーク検出部804a、補正位置検出部805a、マーク位置メモリ806a、画像メモリ807a、および、かご位置メモリ808aの各機能と同様である。 In addition, in the car position measurement system B, an image detection unit 801b, an image comparison unit 802b, a car position calculation unit 803b, a mark detection unit 804b, a correction position detection unit 805b, a mark position memory 806b, an image memory 807b, and a car position memory. Each function of 808b is an image detection unit 801a, an image comparison unit 802a, a car position calculation unit 803a, a mark detection unit 804a, a correction position detection unit 805a, a mark position memory 806a, and an image memory 807a in the car position measurement system A. , and the functions of the car position memory 808a.
 次に、各かご位置計測系が備える階床間マークの異常検出機能について説明する。 Next, we will explain the abnormality detection function of the floor-to-floor marks provided in each car position measurement system.
 なお、階床間マークの異常とは、例えば、剥離、剥落、汚染、汚損、欠損などである。 It should be noted that the abnormalities of the floor-to-floor marks are, for example, delamination, peeling, contamination, defacement, and defects.
 かご位置計測系Aが備える補正位置検出部805aは、マーク検出部804aによって階床間マークN(1a),N(2a)が検出される場合、マーク位置メモリ806aから、検出された階床間マークの位置情報を読み出す。また、補正位置検出部805aは、マーク検出部804aによって階床間マーN(1a),N(2a)が検出されていない場合、マーク位置メモリ806aから、現時点よりも前に検出されたN(1a),N(2a)の位置情報を読み出す。 When the mark detection unit 804a detects the floor-to-floor marks N(1a) and N(2a), the corrected position detection unit 805a provided in the car position measurement system A detects the detected floor-to-floor distance from the mark position memory 806a. Read the position information of the mark. Further, when the mark detection unit 804a has not detected the inter-floor marks N(1a) and N(2a), the correction position detection unit 805a reads from the mark position memory 806a the detected N( 1a) and read the position information of N(2a).
 マーク異常判定部813aは、補正位置検出部805aによって読み出される階床間マークN(1a),N(2a)の位置情報と、かご位置演算部803aによって演算される現時点のかご位置Aの補正前の計測値とを比較することによって、階床間マークN(1a),N(2a)の異常の有無を判定する。例えば、検出された階床間マークの位置情報と、かご位置Aの計測値との差異が大きい場合や(図4におけるS6参照)、現時点よりも前に検出された階床間マークの位置情報とかご位置Aの計測値との差異が大きく、通常ならば階床間マークが検出される位置であるにも関わらず階床間マークが検出されていない場合に(図4におけるS7参照)、マーク異常判定部813aは、階床間マークが異常であると判定する。 The mark abnormality determination unit 813a uses the position information of the floor-to-floor marks N(1a) and N(2a) read by the corrected position detection unit 805a and the current car position A before correction calculated by the car position calculation unit 803a. By comparing with the measured values of , it is determined whether there is an abnormality in the floor-to-floor marks N(1a) and N(2a). For example, if there is a large difference between the detected position information of the inter-floor mark and the measured value of the car position A (see S6 in FIG. 4), or the position information of the inter-floor mark detected before the current time When the difference from the measured value of the car position A is large and the floor-to-floor mark is not detected although the floor-to-floor mark is normally detected (see S7 in FIG. 4), The mark abnormality determination unit 813a determines that the inter-floor mark is abnormal.
 マーク異常判定部813aは、階床間マークが正常であると判定すると、かご位置演算部803aによって演算される現時点のかご位置Aの計測値を、階床間マークの位置情報に補正する。 When the mark abnormality determination unit 813a determines that the floor-to-floor mark is normal, it corrects the current measured value of the car position A calculated by the car-position calculation unit 803a to the position information of the floor-to-floor mark.
 なお、かご位置計測系Bにおける階床間マーク異常検出機能は、かご位置計測系Aにおける階床間マーク異常検出機能と同様である。したがって、マーク異常判定部813bの機能は、マーク異常判定部813aの機能と同様である。 Note that the inter-floor mark abnormality detection function in the car position measurement system B is the same as the inter-floor mark abnormality detection function in the car position measurement system A. Therefore, the function of the mark abnormality determination section 813b is the same as the function of the mark abnormality determination section 813a.
 安全コントローラ8は、さらに、かご位置決定部811、かご制止部812、異常時処理決定部814を有している。 The safety controller 8 further has a car position determining unit 811, a car stopping unit 812, and an abnormality processing determining unit 814.
 かご位置決定部811は、階床間マークの異常が検出されていない場合、かご位置演算部803aが出力するかご位置Aの計測値と、かご位置演算部803bが出力するかご位置Bの計測値とを比較し、画像センサ9aもしくは画像センサ9bの故障の有無を判定する。実施形態では、かご位置決定部811は、かご位置Aの計測値とかご位置Bの計測値との差分を演算し、差分の大きさ(絶対値)が所定値以下であるか否かを判定する。かご位置決定部811は、差分の大きさ(絶対値)が所定値以下である場合、画像センサ9a,9bは故障しておらず正常であると判定する。また、かご位置決定部811は、差分の大きさ(絶対値)が所定値を超える場合、画像センサ9aまたは画像センサ9bが故障していると判定する。 If no abnormality in the floor-to-floor mark is detected, the car position determination unit 811 determines the measured value of the car position A output by the car position calculation unit 803a and the measured value of the car position B output by the car position calculation unit 803b. to determine whether the image sensor 9a or the image sensor 9b is faulty. In the embodiment, the car position determination unit 811 calculates the difference between the measured value of the car position A and the measured value of the car position B, and determines whether the magnitude (absolute value) of the difference is equal to or less than a predetermined value. do. If the magnitude (absolute value) of the difference is equal to or less than a predetermined value, the car position determination unit 811 determines that the image sensors 9a and 9b are normal and not out of order. Further, when the magnitude (absolute value) of the difference exceeds a predetermined value, the car position determination unit 811 determines that the image sensor 9a or the image sensor 9b is out of order.
 かご位置決定部811は、画像センサ9a,9bが正常であると判定すると、かご位置Aの計測値を、現時点での乗りかご1の位置として決定する。なお、かご位置決定部811は、かご位置Bの計測値を、現時点での乗りかご1の位置として決定してもよい。 When the car position determination unit 811 determines that the image sensors 9a and 9b are normal, it determines the measured value of the car position A as the current position of the car 1. The car position determination unit 811 may determine the measured value of the car position B as the current position of the car 1 .
 また、かご位置決定部811が、画像センサ9aまたは画像センサ9bが故障していると判定すると、かご制止部812に、巻上機4を強制停止するための制止指令を送出させる。この制止指令によって、巻上機4への電力供給が遮断されると、巻上機4を駆動するモータ(図示せず)が停止するとともに、電磁ブレーキ装置(図示せず)が制動状態となる。 Also, when the car position determining unit 811 determines that the image sensor 9a or the image sensor 9b is out of order, it causes the car stopping unit 812 to send a stop command to forcibly stop the hoisting machine 4. When the power supply to the hoisting machine 4 is cut off by this stop command, the motor (not shown) that drives the hoisting machine 4 is stopped and the electromagnetic brake device (not shown) is brought into a braking state. .
 異常時処理決定部814は、マーク異常判定部813aおよびマーク異常判定部813bのいずれかが階床間マークが異常であると判定すると、異常検出データおよび異常マーク情報を送出する。なお、実施形態では、位置情報が現時点でのかご位置A,Bの計測値に最も近い階床間マークが異常であると推定し、マーク位置メモリに記憶されるこの階床間マークに関する情報を異常マーク情報としている。 When either the mark abnormality determination unit 813a or the mark abnormality determination unit 813b determines that the inter-floor mark is abnormal, the abnormality processing determination unit 814 sends out abnormality detection data and abnormal mark information. In the embodiment, it is assumed that the floor-to-floor mark whose position information is closest to the current measured values of car positions A and B is abnormal, and the information about this floor-to-floor mark stored in the mark position memory is stored. This is regarded as abnormal mark information.
 エレベータ制御装置6が備える異常検出部62は、異常時処理決定部814から異常検出データおよび異常マーク情報を受信すると、通信部である外部報知部63によって、管制センタ30が備える監視サーバに、異常報知データとして、異常検出データおよび異常マーク情報を、通信網100を介して送信する。 When the abnormality detection unit 62 provided in the elevator control device 6 receives the abnormality detection data and the abnormality mark information from the abnormality processing determination unit 814, the external notification unit 63, which is a communication unit, notifies the monitoring server provided in the control center 30 of the abnormality. Anomaly detection data and anomaly mark information are transmitted via the communication network 100 as notification data.
 図3は、ガイドレール5a,5b(図1)の露出表面の画像の一例を示す模式図である。 FIG. 3 is a schematic diagram showing an example of an image of the exposed surfaces of the guide rails 5a and 5b (FIG. 1).
 図3では、画像センサ9a,9b(図1,2)によって取得される、時刻tにおける画像I(t)と時刻t+Δt(Δt:フレーム周期)における画像I(t+Δt)を示す。いずれも、ガイドレール5a,5bを構成する鋼材の露出表面の画像であり、鋼材の露出表面における凹凸分布を示す輝度分布のパターンを示す。なお、時刻tから時刻t+Δtまでの間、乗りかご1(図1)は下降している。 FIG. 3 shows an image I(t) at time t and an image I(t+Δt) at time t+Δt (Δt: frame period) acquired by the image sensors 9a and 9b (FIGS. 1 and 2). Both images are images of the exposed surface of the steel material that constitutes the guide rails 5a and 5b, and show the pattern of the luminance distribution indicating the unevenness distribution on the exposed surface of the steel material. Note that the car 1 (FIG. 1) is lowered from time t to time t+Δt.
 乗りかご1が移動しているため、図3に示すように、画像I(t)と画像I(t+Δt)との間では、画像のずれdが生じる。なお、図3では、乗りかご1が下降しているため、画像フレーム中で、上方向に画像のずれdが生じる。この画像のずれdは、実施形態では、画像相関法を用いて、画像I(t)と画像I(t+Δt)を比較することにより算出される。この場合、画像I(t)もしくはその一部(例えば、図3中の位置Pにおける部分)を、画像フレーム中で、ガイドレール5a,5bの長手方向に沿って所定量ずつ移動しながら、移動した画像I(t)と画像I(t+Δt)との相関関数値が算出される。相関関数値が最大値となる場合の画像I(t)の総移動量が画像のずれdとされる。 Since the car 1 is moving, an image shift d occurs between the image I(t) and the image I(t+Δt), as shown in FIG. In FIG. 3, since the car 1 is lowered, an image shift d occurs in the upward direction in the image frame. This image shift d is calculated in the embodiment by comparing the image I(t) and the image I(t+Δt) using an image correlation method. In this case, the image I(t) or a portion thereof (for example, the portion at position P in FIG. 3) is moved in the image frame by a predetermined amount along the longitudinal direction of the guide rails 5a and 5b. A correlation function value between the image I(t) and the image I(t+Δt) is calculated. The total amount of movement of the image I(t) when the correlation function value is the maximum value is taken as the image shift d.
 画像のずれdは、時間Δtにおける乗りかご1の移動量(図3では下降量)に相当する。また、画像フレーム中で画像がずれる方向は、乗りかご1の移動方向(上昇、下降)を示す。したがって、画像のずれる方向に応じて画像のずれの正負を設定すれば、例えば、下方向(上昇方向)を正、上方向(下降方向)を負とすれば、Δtごとに画像のずれdを算出し、起動時のかご位置に積算すれば、現時点におけるかご位置を計測することができる。 The image shift d corresponds to the amount of movement (the amount of descent in FIG. 3) of the car 1 at time Δt. Also, the direction in which the image shifts in the image frame indicates the moving direction (upward or downward) of the car 1 . Therefore, if the sign of the image shift is set according to the direction of image shift, for example, if the downward direction (upward direction) is positive and the upward direction (downward direction) is negative, the image shift d is calculated every Δt. By calculating and adding to the car position at startup, the current car position can be measured.
 なお、ガイドレール5a,5bには、表面に凹凸をつけるために、研磨などにより表面仕上げが施されていることが好ましい。また、画像センサ9a,9bは、それぞれガイドレール5a,5bの表面を照らす光源を備えていることが好ましい。これらにより、かご位置の計測精度が向上する。 It should be noted that the guide rails 5a and 5b are preferably surface-finished by polishing or the like in order to make the surfaces uneven. The image sensors 9a and 9b preferably have light sources for illuminating the surfaces of the guide rails 5a and 5b, respectively. As a result, the car position measurement accuracy is improved.
 図4は、実施形態における安全コントローラ8(図1,2)の動作を示すフローチャートである。 FIG. 4 is a flow chart showing the operation of the safety controller 8 (FIGS. 1 and 2) in the embodiment.
 また、図5は、図4のフローチャートにおける結合子AB間および結合子AC間における安全コントローラ8の動作を示すフローチャートである。 FIG. 5 is a flow chart showing the operation of the safety controller 8 between the connectors AB and between the connectors AC in the flow chart of FIG.
 なお、以下、図2を適宜参照しながら、説明する。 The following description will be made with reference to FIG. 2 as appropriate.
 ステップS1では、安全コントローラ8は、動作開始後、画像検出部801a,801bを用いて、画像センサ9a,9bからの画像信号に基づいて、ガイドレール5a,5bの表面の現画像A,Bを取得する。安全コントローラ8は、ステップS1を実行すると、次に、かご位置算出処理(ステップS2~S4)を実行する。 In step S1, after starting operation, the safety controller 8 detects the current images A and B of the surfaces of the guide rails 5a and 5b based on the image signals from the image sensors 9a and 9b using the image detection units 801a and 801b. get. After executing step S1, the safety controller 8 next executes car position calculation processing (steps S2 to S4).
 安全コントローラ8は、かご位置算出処理において、算出するかご位置Xを、順次、X=A,X=Bとして、ステップS2~S4を繰り返し実行する。実施形態では、安全コントローラ8は、まず、ステップS2~S4を実行してかご位置Aを算出し、次に、再度ステップS2~S4を実行してかご位置Bを算出する。 In the car position calculation process, the safety controller 8 sequentially sets the car position X to be calculated to X=A and X=B, and repeatedly executes steps S2 to S4. In the embodiment, the safety controller 8 first calculates the car position A by executing steps S2 to S4, and then calculates the car position B by executing steps S2 to S4 again.
 ステップS2では、安全コントローラ8は、画像比較部802x(x=a,b)を用いて、現画像Xが、画像メモリ807x(x=a,b)に記録されている前時点の画像Xと同じであるかを判定する。なお、X=A,Bの場合、それぞれx=a,bである(以下、同様)。ここで、画像比較部によって算出される現画像Xと前時点の画像Xとの画像ずれが実質零であるとき、現画像Xと前時点の画像Xとが同じであると判定される。安全コントローラ8は、現画像Xと前時点の画像Xが同じである場合(ステップS2のYES)、乗りかご1の移動量(=0)は算出しなくてもよいため、かご位置算出処理を終了する。また、安全コントローラ8は、現画像Xと前時点の画像Xが同じではない場合(ステップS6のNO)、次に、ステップS3を実行する。 In step S2, the safety controller 8 compares the current image X with the previous image X recorded in the image memory 807x (x=a, b) using the image comparison unit 802x (x=a, b). Determine if they are the same. In addition, when X=A, B, x=a, b, respectively (same below). Here, when the image shift between the current image X and the image X at the previous time point calculated by the image comparing section is substantially zero, it is determined that the current image X and the image X at the previous time point are the same. If the current image X and the previous image X are the same (YES in step S2), the safety controller 8 does not need to calculate the movement amount (=0) of the car 1, so the car position calculation process is executed. finish. If the current image X and the previous image X are not the same (NO in step S6), the safety controller 8 next executes step S3.
 ステップS3では、安全コントローラ8は、画像比較部802xによって算出される現画像Xと前時点の画像Xとの画像ずれ(≠0)を、乗りかご1の移動量とする。安全コントローラ8は、ステップS3を実行後、次に、ステップS4を実行する。 In step S3, the safety controller 8 uses the image deviation (≠0) between the current image X and the previous image X calculated by the image comparison unit 802x as the amount of movement of the car 1. After executing step S3, the safety controller 8 next executes step S4.
 ステップS4では、安全コントローラ8は、かご位置演算部803x(x=a,b)を用いて、ステップS3における移動量算出値に基づいてかご位置Xを算出する。このとき、安全コントローラ8は、かご位置メモリ808x(x=a,b)に記録されている前時点でのかご位置Xの値に、移動量算出値を加減算することによりかご位置Xを算出する。安全コントローラ8は、ステップS4を実行すると、かご位置算出処理を終了する。 In step S4, the safety controller 8 uses the car position calculator 803x (x=a, b) to calculate the car position X based on the movement amount calculated value in step S3. At this time, the safety controller 8 calculates the car position X by adding or subtracting the movement amount calculation value from the value of the car position X at the previous time recorded in the car position memory 808x (x=a, b). . After executing step S4, the safety controller 8 ends the car position calculation process.
 安全コントローラ8は、かご位置算出処理を終了すると、次に、かご位置補正処理(ステップS5~S10,S16)を実行する。なお、かご位置補正処理には、階床間マークの異常検出処理が含まれる。 After completing the car position calculation process, the safety controller 8 next executes the car position correction process (steps S5 to S10, S16). Note that the car position correction processing includes the abnormality detection processing of the floor-to-floor mark.
 安全コントローラ8は、かご位置補正処理において、補正するかご位置Xを、順次、X=A,X=Bとして、ステップS5~S10,S16を繰り返し実行する。実施形態では、安全コントローラ8は、まず、ステップS5~S10,S16を実行してかご位置Aを補正し、次に、再度ステップS5~S10,S16を実行してかご位置Bを補正する。 In the car position correction process, the safety controller 8 sequentially sets the car position X to be corrected to X=A and X=B, and repeatedly executes steps S5 to S10 and S16. In the embodiment, the safety controller 8 first corrects the car position A by executing steps S5 to S10 and S16, and then corrects the car position B by executing steps S5 to S10 and S16 again.
 ステップS5では、安全コントローラ8は、マーク検出部804x(x=a,b)を用いて、現画像Xに基づいて、階床間マーク(図1におけるN(1x),N(2x):N=10,11,12;x=a,b)が検出されているかを判定する。安全コントローラ8は、階床間マークが検出されていると判定すると(ステップS5のYES)、次にステップS6を実行する。また、安全コントローラ8は、階床間マークが検出されていないと判定すると(ステップS5のNO)、次に、ステップS7を実行する。 In step S5, the safety controller 8 uses the mark detector 804x (x=a, b) to detect the floor-to-floor marks (N(1x), N(2x) in FIG. 1) based on the current image X. = 10, 11, 12; x = a, b) is detected. When the safety controller 8 determines that the floor-to-floor mark is detected (YES in step S5), it then executes step S6. Further, when the safety controller 8 determines that the floor-to-floor mark is not detected (NO in step S5), it then executes step S7.
 ステップS6では、安全コントローラ8は、補正位置検出部805xによってマーク位置メモリxから読み出される、検出された階床間マークに対応する位置情報、すなわち現時点でのマーク位置と、ステップS2~S4によって算出されたかご位置Xとの差分の大きさ(絶対値)が第1閾値以下であるかを、マーク異常判定部813xを用いて判定する。安全コントローラ8は、ステップS6において、現時点でのマーク位置がかご位置Xの算出値に近いか否かを判定している。なお、第1閾値は、ステップS2~S4による、かご位置Xの算出値の通常の精度や、乗りかご1の通常の運転状態(速度など)などを考慮して設定される。 In step S6, the safety controller 8 uses the position information corresponding to the detected floor-to-floor mark read out from the mark position memory x by the correction position detection unit 805x, that is, the current mark position, and the mark position calculated in steps S2 to S4. The mark abnormality determination unit 813x determines whether the magnitude (absolute value) of the difference from the calculated car position X is equal to or less than the first threshold. The safety controller 8 determines whether or not the current mark position is close to the calculated car position X in step S6. Note that the first threshold value is set in consideration of the normal accuracy of the calculated value of the car position X in steps S2 to S4, the normal operating state (speed, etc.) of the car 1, and the like.
 安全コントローラ8は、マーク位置と、かご位置Xとの差分の大きさ(絶対値)が第1閾値以下であると判定すると(ステップS6のYES)、すなわち階床間マークに異常なしと判定すると、次に、ステップS8を実行する。また、安全コントローラ8は、マーク位置と、かご位置Xとの差分の大きさ(絶対値)が第1閾値より大きいと判定すると(ステップS6のNO)、すなわち階床間マークに異常有りと判定すると、次に、ステップS16を実行する。 When the safety controller 8 determines that the magnitude (absolute value) of the difference between the mark position and the car position X is equal to or less than the first threshold value (YES in step S6), that is, when it determines that there is no abnormality in the floor-to-floor mark. , then step S8 is executed. Further, when the safety controller 8 determines that the magnitude (absolute value) of the difference between the mark position and the car position X is greater than the first threshold value (NO in step S6), it determines that there is an abnormality in the floor-to-floor mark. Then, step S16 is executed next.
 ステップS7では、安全コントローラ8は、補正位置検出部805xによってマーク位置メモリxから読み出される、既に前時点で検出されている正常な階床間マークに対応する位置情報、すなわち前時点でのマーク位置と、ステップS2~S4によって算出されたかご位置Xとの差分の大きさ(絶対値)が第2閾値以下であるかを、マーク異常判定部813xを用いて判定する。安全コントローラ8は、ステップS7において、乗りかご1が、前時点で階床間マークが検出されて以降、階床間マークが検出される位置に未到達であるかを判定している。なお、第2閾値は、主に、階床間マークの設置間隔を考慮して設定される。 In step S7, the safety controller 8 detects the position information corresponding to the normal inter-floor mark already detected at the previous point in time, read out from the mark position memory x by the correction position detector 805x, that is, the mark position at the previous point in time. Then, the mark abnormality determination unit 813x determines whether the magnitude (absolute value) of the difference from the car position X calculated in steps S2 to S4 is equal to or less than the second threshold. In step S7, the safety controller 8 determines whether the car 1 has not reached the position where the inter-floor mark is detected since the inter-floor mark was detected at the previous time. It should be noted that the second threshold is mainly set in consideration of the installation interval of the floor-to-floor marks.
 安全コントローラ8は、前時点におけるマーク位置と、かご位置Xとの差分の大きさ(絶対値)が第2閾値以下であると判定すると(ステップS7のYES)、すなわち階床間マークに異常なしと判定すると、次に、ステップS9を実行する。また、安全コントローラ8は、前時点でのマーク位置と、かご位置Xとの差分の大きさ(絶対値)が第2閾値より大きいと判定すると(ステップS7のNO)、すなわち階床間マークに異常有りと判定すると、次に、ステップS16を実行する。 When the safety controller 8 determines that the magnitude (absolute value) of the difference between the mark position at the previous point in time and the car position X is equal to or less than the second threshold value (YES in step S7), that is, there is no abnormality in the floor-to-floor mark. If so, then step S9 is executed. Further, when the safety controller 8 determines that the magnitude (absolute value) of the difference between the mark position at the previous time point and the car position X is greater than the second threshold (NO in step S7), If it is determined that there is an abnormality, then step S16 is executed.
 ステップS8では、安全コントローラ8は、マーク異常判定部813xもしくは補正位置検出部805xを用いて、ステップS2~S4による、かご位置Xの算出値を、検出されている階床間マークが示す位置情報に応じた所定値に補正する。この場合、かご位置演算部803xは、補正されたかご位置Xを出力する。 In step S8, the safety controller 8 uses the mark abnormality determination section 813x or the correction position detection section 805x to convert the calculated value of the car position X in steps S2 to S4 into the position information indicated by the detected floor-to-floor mark. is corrected to a predetermined value according to In this case, the car position calculator 803x outputs the corrected car position X. FIG.
 実施形態では、上述のように、かご位置Xを、昇降路内における乗りかご1の床板面の高さとしているので、階床間マークが示す位置情報が、画像センサ9x(x=a,b)が階床間マークを検出しているときにおける、昇降路内における乗りかご1の床板面の高さとすれば、かご位置Xは、位置情報の値に補正される。 In the embodiment, as described above, the car position X is the height of the floor plate surface of the car 1 in the hoistway. ) is the height of the floor plate surface of the car 1 in the hoistway when the floor-to-floor mark is detected, the car position X is corrected to the value of the position information.
 安全コントローラ8は、ステップS8を実行後、次に、ステップS9を実行する。 After executing step S8, the safety controller 8 then executes step S9.
 ステップS9では、安全コントローラ8は、画像検出部801x(x=a,b)によって検出されている現画像Xを画像メモリ807x(x=a,b)に記録する。安全コントローラ8は、ステップS9を実行後、次に、ステップS10を実行する。 In step S9, the safety controller 8 records the current image X detected by the image detection unit 801x (x=a, b) in the image memory 807x (x=a, b). After executing step S9, the safety controller 8 next executes step S10.
 ステップS10では、安全コントローラ8は、かご位置演算部803xが出力するかご位置Xをかご位置メモリ808x(x=a,b)に記録する。安全コントローラ8は、ステップS10を実行すると、かご位置補正処理を終了する。 In step S10, the safety controller 8 records the cage position X output by the cage position calculator 803x in the cage position memory 808x (x=a, b). After executing step S10, the safety controller 8 ends the car position correction process.
 また、ステップS16では、安全コントローラ8は、マーク異常判定部813xを用いて、ステップS6およびS7における判定(ステップS6のNO,ステップS7のNO)に基づき、階床間マークの異常検出処理の結果を、階床間マークの異常検出有りとする。安全コントローラ8は、ステップS16を実行すると、かご位置補正処理を終了する。 Further, in step S16, the safety controller 8 uses the mark abnormality determination unit 813x to determine the result of the abnormality detection processing of the floor-to-floor mark based on the determinations in steps S6 and S7 (NO in step S6, NO in step S7). is detected as an abnormality in the floor-to-floor mark. After executing step S16, the safety controller 8 ends the car position correction process.
 なお、ステップS9において画像メモリ807xに記録される画像Xと、ステップS10においてかご位置メモリ808xに記録されるかご位置Xとは、次の制御周期もしくはフレーム周期において、それぞれ、前時点における画像X、前時点におけるかご位置Xとして用いられる。 Note that the image X recorded in the image memory 807x in step S9 and the cage position X recorded in the cage position memory 808x in step S10 are the image X at the previous point in time, respectively, in the next control period or frame period. It is used as the car position X at the previous time.
 安全コントローラ8は、かご位置補正処理(ステップS5~S10,S16)を終了すると、次に、ステップS11を実行する。 After completing the car position correction process (steps S5 to S10, S16), the safety controller 8 next executes step S11.
 ステップS11では、安全コントローラ8は、前時点で、階床間マークが検出されているか否かを判定する。すなわち、安全コントローラ8は、連続して検出し得る階床間マークN(1x)およびN(2x)、例えば、11(a),11(2a),11(1b)および11(2b)について、かご位置補正処理(ステップS5~S10,S16)が終了したか否かを判定する。ここで、安全コントローラ8は、ステップS16の処理結果に基づき、ステップS7で異常有と判定した階床間マークについては、階床間マークの画像は検出されていないが、検出された階床間マークであるとみなして、ステップS11を実行する。なお、安全コントローラ8は、ステップS16の処理結果に基づき、ステップS6およびステップS7で異常有りと判定した階床間マークを、検出された階床間マークであるとみなして、ステップS11を実行してもよい。 In step S11, the safety controller 8 determines whether or not the floor-to-floor mark has been detected at the previous time. That is, the safety controller 8 continuously detects inter-floor marks N(1x) and N(2x), for example, 11(a), 11(2a), 11(1b) and 11(2b), It is determined whether or not the car position correction process (steps S5 to S10, S16) has ended. Here, based on the processing result of step S16, the safety controller 8 detects the image of the floor-to-floor mark for the floor-to-floor mark determined to be abnormal in step S7. Assuming that it is a mark, step S11 is executed. Note that the safety controller 8 regards the floor-to-floor mark determined to be abnormal in steps S6 and S7 as the detected floor-to-floor mark based on the processing result of step S16, and executes step S11. may
 安全コントローラ8は、前時点で階床間マークが検出されていると判定すると(ステップS11のYES)、すなわち連続して検出し得る階床間マークN(1x)およびN(2x)について、かご位置補正処理(ステップS5~S10,S16)が終了していると判定すると、次に、図5に示す階床間マーク異常時処理(S12,S17~S22)を実行する。また、安全コントローラ8は、前時点で階床間マークが検出されていないと判定すると(ステップS11のNO)、すなわち、同じ階床間に設けられ、連続して検出し得る階床間マークN(1x)およびN(2x)について、かご位置補正処理(ステップS5~S10,S16)が終了していないと判定すると、ステップS1以降の処理を繰り返し実行する。 When the safety controller 8 determines that the floor-to-floor mark has been detected at the previous point (YES in step S11), the continuously detectable floor-to-floor marks N(1x) and N(2x) are detected. If it is determined that the position correction processing (steps S5 to S10, S16) has been completed, next, the floor-to-floor mark abnormality processing (S12, S17 to S22) shown in FIG. 5 is executed. Further, when the safety controller 8 determines that the floor-to-floor mark has not been detected at the previous point (NO in step S11), that is, the floor-to-floor mark N which is provided between the same floors and which can be continuously detected. For (1x) and N(2x), if it is determined that the car position correction processing (steps S5 to S10, S16) has not been completed, the processing after step S1 is repeatedly executed.
 次に、図5に示す階床間マーク異常時処理(S12,S17~S22)について説明する。 Next, the inter-floor mark abnormality processing (S12, S17 to S22) shown in FIG. 5 will be described.
 ステップS12では、安全コントローラ8は、異常検出処理(ステップS6,S7)を含むかご位置補正処理(ステップS5~S10,S16)が終了している階床間マークN(1a),N(2a),N(1b),N2(b)(N=10,11,12)のいずれか、例えば、11(1a),11(2a),11(1b),11(2b)のいずれかが異常であるか否かを判定する。安全コントローラ8は、N(1a),N(2a),N(1b),N2(b)のいずれかが異常であると判定すると(ステップS12のYES)、次に、ステップS17を実行する。また、安全コントローラ8は、N(1a),N(2a),N(1b),N2(b)のいずれも異常がなく、全て健全であると判定すると(ステップS12のNO)、次に、図4に示す、かご位置決定処理(ステップS13~S15)を実行する。なお、かご位置決定処理(ステップS13~S15)については、後述する。 In step S12, the safety controller 8 selects between-floor marks N(1a) and N(2a) for which car position correction processing (steps S5 to S10 and S16) including abnormality detection processing (steps S6 and S7) has been completed. , N(1b), N2(b) (N=10, 11, 12), for example, one of 11(1a), 11(2a), 11(1b), 11(2b) is abnormal. Determine whether or not there is When the safety controller 8 determines that any one of N(1a), N(2a), N(1b), and N2(b) is abnormal (YES in step S12), it then executes step S17. Further, when the safety controller 8 determines that there is no abnormality in any of N(1a), N(2a), N(1b), and N2(b) and that they are all sound (NO in step S12), next, Car position determination processing (steps S13 to S15) shown in FIG. 4 is executed. The car position determination process (steps S13 to S15) will be described later.
 ステップS17では、安全コントローラ8は、異常時処理決定部814を用いて、異常検出データおよび異常マーク情報を送出する。上述のように、図2に示すエレベータ制御装置6は、安全コントローラ8から異常検出データおよび異常マーク情報を受信すると、管制センタ30に、異常報知データとして、異常検出データおよび異常マーク情報を送信する。安全コントローラ8は、ステップS17を実行後、次に、ステップS18を実行する。 In step S17, the safety controller 8 uses the abnormality processing determination unit 814 to send out abnormality detection data and abnormality mark information. As described above, when the elevator control device 6 shown in FIG. 2 receives the abnormality detection data and the abnormality mark information from the safety controller 8, it transmits the abnormality detection data and the abnormality mark information to the control center 30 as the abnormality notification data. . After executing step S17, the safety controller 8 next executes step S18.
 ステップS18では、安全コントローラ8は、ガイドレール5aに設けられる階床間マークの組N(1a,2a)と、ガイドレール5bに設けられる階床間マークの組N(1b,2b)とのいずれかにおいて、組を構成する階床間マークN(1x)およびN(2x)(x=a,b)がすべて異常であるか否かを判定する。安全コントローラ8は、N(1a,2a)およびN(1a,2a)のいずれかの組で、組を構成する階床間マークがすべて異常であると判定すると(ステップS18のYES)、すなわち、ガイドレール5a,5bのいずれかにおいて、同じ階床間に設けられている2個の階床間マークがすべて異常であると判定すると、次に、ステップS20を実行する。また、安全コントローラ8は、N(1a,2a)およびN(1a,2a)の内に、組を構成する階床間マークがすべて異常である組はないと判定すると(ステップS18のNO)、すなわち、ガイドレール5a,5bのいずれにおいても、同じ階床間に設けられている2個の階床間マークのどちらかは健全であると判定すると、次に、ステップS19を実行する。 In step S18, the safety controller 8 selects either the set N (1a, 2a) of the inter-floor marks provided on the guide rail 5a or the set N (1b, 2b) of the inter-floor marks provided on the guide rail 5b. In (1) above, it is determined whether or not all the floor-to-floor marks N(1x) and N(2x) (x=a, b) forming the set are abnormal. When the safety controller 8 determines that all the floor-to-floor marks forming the set are abnormal in either set of N (1a, 2a) and N (1a, 2a) (YES in step S18), If it is determined that the two floor-to-floor marks provided between the same floor on either of the guide rails 5a and 5b are abnormal, then step S20 is executed. Further, when the safety controller 8 determines that there is no set among N (1a, 2a) and N (1a, 2a) in which all the floor-to-floor marks forming the set are abnormal (NO in step S18), That is, if it is determined that either of the two floor-to-floor marks provided between the same floors is sound in both guide rails 5a and 5b, then step S19 is executed.
 ステップS19では、安全コントローラ8は、N(1a,2a)に含まれる健全な階床間マークの位置情報により、図4に示すステップS8~S10と同様に、かご位置Aの補正処理を実行する。さらに、安全コントローラ8は、N(1b,2b)に含まれる健全な階床間マークの位置情報により、図4に示すステップS8~S10と同様に、かご位置Bの補正処理を実行する。安全コントローラ8は、ステップS19を実行後、次に、図4に示す、かご位置決定処理(ステップS13~S15)を実行する。なお、かご位置決定処理(ステップS13~S15)については、後述する。 In step S19, the safety controller 8 executes correction processing of the car position A, similar to steps S8 to S10 shown in FIG. . Furthermore, the safety controller 8 performs correction processing for the car position B in the same manner as steps S8 to S10 shown in FIG. After executing step S19, the safety controller 8 next executes car position determination processing (steps S13 to S15) shown in FIG. The car position determination process (steps S13 to S15) will be described later.
 ステップS20では、安全コントローラ8は、N(1a,2a)およびN(1b,2b)の両方において、組を構成する階床間マークN(1x)およびN(2x)(x=a,b)がすべて異常であるか否かを判定する。前のステップS18において、N(1a,2a)およびN(1b,2b)の一方については、組を構成する階床間マークがすべて異常であると判定されている。したがって、ステップS20では、N(1a,2a)およびN(1b,2b)の他方における、健全な階床間マークの有無が判定される。 In step S20, the safety controller 8 sets floor-to-floor marks N(1x) and N(2x) (x=a,b) forming a set in both N(1a, 2a) and N(1b, 2b). are all abnormal. In the previous step S18, for one of N(1a, 2a) and N(1b, 2b), it has been determined that all the inter-floor marks forming the set are abnormal. Therefore, in step S20, it is determined whether or not there is a sound inter-floor mark in the other of N(1a, 2a) and N(1b, 2b).
 安全コントローラ8は、N(1a,2a)およびN(1b,2b)の両方において、階床間マークN(1x)およびN(2x)がすべて異常であると判定すると(ステップS20のYES)、次に、ステップS21を実行する。また、安全コントローラ8は、N(1a,2a)およびN(1b,2b)のいずれかにおいて、階床間マークN(1x)およびN(2x)のどちらかは健全であると判定すると(ステップS20のNO)、次に、ステップS22を実行する。 When the safety controller 8 determines that the inter-floor marks N(1x) and N(2x) are both abnormal in both N(1a, 2a) and N(1b, 2b) (YES in step S20), Next, step S21 is executed. Further, when the safety controller 8 determines that either of the inter-floor marks N(1x) and N(2x) is sound in either N(1a, 2a) or N(1b, 2b) (step NO in S20), then step S22 is executed.
 ステップS21では、安全コントローラ8は、異常時処理決定部814により、異常時処理として、乗りかご1の制止を選択する。安全コントローラ8は、乗りかご1の制止を選択すると、かご制止部812を用いて、巻上機4を強制停止するための制止指令を送出する。この制止指令によって、巻上機4への電力供給が遮断されると、巻上機4を駆動するモータ(図示せず)が停止するとともに、電磁ブレーキ装置(図示せず)が制動状態となる。 In step S21, the safety controller 8 uses the abnormality process determination unit 814 to select stopping of the car 1 as the abnormality process. When the safety controller 8 selects to stop the car 1 , the car stop unit 812 is used to send a stop command for forcibly stopping the hoisting machine 4 . When the power supply to the hoisting machine 4 is cut off by this stop command, the motor (not shown) that drives the hoisting machine 4 is stopped and the electromagnetic brake device (not shown) is brought into a braking state. .
 安全コントローラ8は、ステップS21を実行後、図4に示すように、一連の処理を終了する。 After executing step S21, the safety controller 8 ends a series of processes as shown in FIG.
 ステップS22では、安全コントローラ8は、異常時処理決定部814により、異常時処理として、乗りかご1の最寄り階運転を選択する。安全コントローラ8は、異常時処理決定部814により、乗りかご1の最寄り階運転を選択すると、異常時処理決定部814を用いて、エレベータ制御装置6へ乗りかご1を最寄り階運転するため最寄り階運転指令を送出する。エレベータ制御装置6は、異常検出部62によって最寄り階運転指令を受信すると、巻上機制御部61により巻上機4を制御して、乗りかご1を現在の位置に最も近い階床まで運転して着床させる。なお、このとき、安全コントローラは、健全な階床間マークを用いて、この階床間マークを備えるかご位置計測系(AまたはB)によりかご位置を検出して、動作を継続する。 In step S22, the safety controller 8 selects the nearest floor operation of the car 1 as the abnormal process by the abnormal process determination unit 814. When the emergency process determining unit 814 selects operation of the car 1 to the nearest floor, the safety controller 8 uses the abnormal process determining unit 814 to instruct the elevator control device 6 to operate the car 1 to the nearest floor. Send the operation command. When the abnormality detection unit 62 receives the nearest floor operation command, the elevator control device 6 controls the hoisting machine 4 by the hoisting machine control unit 61 to drive the car 1 to the floor closest to the current position. to land. At this time, the safety controller uses the sound inter-floor mark to detect the car position by the car position measurement system (A or B) provided with this inter-floor mark, and continues the operation.
 安全コントローラ8は、ステップS22を実行後、図4に示すように、一連の処理を終了する。 After executing step S22, the safety controller 8 ends a series of processes as shown in FIG.
 次に、図4に示す、かご位置決定処理(ステップS13~S15)について説明する。 Next, the car position determination process (steps S13 to S15) shown in FIG. 4 will be described.
 安全コントローラ8は、安全制御、例えば、安全装置の作動の要否の判断、に用いるかご位置を決定するために、かご位置決定処理(ステップS13~S15)を実行する。 The safety controller 8 executes car position determination processing (steps S13 to S15) in order to determine the car position used for safety control, for example, to determine whether or not to operate the safety device.
 ステップS13では、安全コントローラ8は、かご位置決定部811を用いて、現時点でのかご位置Aおよびかご位置Bを比較し、画像センサ9a,9bにおける故障の有無を判定する。実施形態では、図4に示すように、安全コントローラ8は、かご位置Aとかご位置Bの差の大きさ(絶対値)が所定値以下であるかを判定する。 In step S13, the safety controller 8 uses the car position determination unit 811 to compare the current car position A and car position B to determine whether there is a failure in the image sensors 9a and 9b. In the embodiment, as shown in FIG. 4, the safety controller 8 determines whether the magnitude (absolute value) of the difference between the car position A and the car position B is equal to or less than a predetermined value.
 安全コントローラ8は、かご位置Aとかご位置Bの差の大きさが所定値以下である場合(ステップS13のYES)、次に、ステップS14を実行する。また、安全コントローラ8は、かご位置Aとかご位置Bの差の大きさが所定値より大である場合、次に、ステップS15を実行する。 If the magnitude of the difference between car position A and car position B is equal to or less than a predetermined value (YES in step S13), then the safety controller 8 executes step S14. Further, when the magnitude of the difference between the car position A and the car position B is larger than the predetermined value, the safety controller 8 next executes step S15.
 ステップS14では、安全コントローラ8は、かご位置決定部811を用いて、かご位置Aを、現時点において安全制御に用いるかご位置として決定する。安全コントローラ8は、ステップS14を実行すると、一連の処理(図4および図5)を終了する。 In step S14, the safety controller 8 uses the car position determination unit 811 to determine the car position A as the car position to be used for safety control at this time. After executing step S14, the safety controller 8 terminates the series of processes (FIGS. 4 and 5).
 ステップS15では、安全コントローラ8は、画像センサ9a,9bの少なくともどちらかが故障していると判断して、異常時処理決定部814を用いて、乗りかご1の制止を決定する。安全コントローラ8は、乗りかご1の制止を決定すると、かご制止部812を用いて、かご制止指令を作成して送出する。これにより、乗りかご1は、強制停止される。安全コントローラ8は、ステップS15を実行すると、一連の処理(図4および図5)を終了する。 In step S15, the safety controller 8 determines that at least one of the image sensors 9a and 9b is out of order, and uses the abnormality processing determination section 814 to determine to stop the car 1. When the safety controller 8 decides to block the car 1, the car blocking section 812 is used to create and send out a car blocking command. As a result, the car 1 is forcibly stopped. After executing step S15, the safety controller 8 terminates the series of processes (FIGS. 4 and 5).
 なお、安全コントローラ8は、エレベータが稼働中、制御周期ごと、もしくは画像取得周期(フレーム周期)ごとに、上述のような一連の処理(図4および図5)を繰り返し実行する。 While the elevator is in operation, the safety controller 8 repeatedly executes the above-described series of processes (FIGS. 4 and 5) every control cycle or every image acquisition cycle (frame cycle).
 上述の実施形態によれば、安全コントローラが、画像センサ9a,9bによって取得されるガイドレール5a,5bの表面画像に基づいて乗りかご1の位置を算出し、乗りかご1の位置の算出値を、ガイドレール5a,5bの表面において互いに近接して設けられ、ガイドレール5a,5bの表面画像に基づいて検出する複数の階床間マークの位置情報によって補正する。さらに、安全コントローラ8は、これらの表面画像に基づいて、階床間マークの異常の有無を判定し、健全と判定される階床間マークを用いてかご位置の計測を継続する。これにより、昇降路内の画像に基づいて乗りかごの位置を計測するかご位置検出装置の信頼性が向上する。 According to the above-described embodiment, the safety controller calculates the position of the car 1 based on the surface images of the guide rails 5a and 5b acquired by the image sensors 9a and 9b, and calculates the calculated position of the car 1. , are provided close to each other on the surfaces of the guide rails 5a and 5b, and are corrected based on position information of a plurality of floor-to-floor marks detected based on the surface images of the guide rails 5a and 5b. Furthermore, the safety controller 8 determines whether there is an abnormality in the inter-floor marks based on these surface images, and continues to measure the car position using the inter-floor marks determined to be sound. This improves the reliability of the car position detection device that measures the position of the car based on the image of the hoistway.
 また、安全コントローラ8は、上述の実施形態により階床間マークが異常であると判定すると、乗りかご1に対する安全制御として、乗りかご1の走行を制御する。例えば、図5に示すように、乗りかご1を強制停止させたり、最寄り階運転させたりする。これにより、昇降路内の画像に基づいて乗りかごの位置を計測するかご位置検出装置を備えるエレベータの安全装置の信頼性が向上する。なお、階床間マークの異常が検出される場合に、複数の階床間マークのいずれかが健全であれば、乗りかご1を、定格速度よりも低速度で走行させてもよい。 Further, when the safety controller 8 determines that the floor-to-floor mark is abnormal according to the above embodiment, it controls the running of the car 1 as safety control for the car 1 . For example, as shown in FIG. 5, the car 1 is forcibly stopped or driven to the nearest floor. As a result, the reliability of the safety device of the elevator provided with the car position detection device for measuring the position of the car based on the image in the hoistway is improved. If any of the plurality of floor-to-floor marks is healthy when an abnormality in the floor-to-floor mark is detected, the car 1 may be run at a speed lower than the rated speed.
 上述の実施形態は、二つのかご位置計測系、すなわち画像センサ9aが用いられるかご位置計測系Aと画像センサ9bが用いられるかご位置計測系Bを備えているが、これに限らず、どちらか一方のかご位置計測系のみでもよい。この場合、階床間マークは、一対のガイドレール(5a,5b)の一方に設けられる。また、階床間マークの異常が検出される場合に、近接して設けられる複数の階床間マークのいずれかが健全であれば、健全なマ階床間マークを用いてかご位置の計測を継続しながら、通常運転が継続される。なお、乗りかご1の最寄り階運転が実行されてもよい。近接して設けられる複数の階床間マークのすべてが異常である場合には、乗りかご1は強制停止される。 The above-described embodiment includes two car position measurement systems, that is, a car position measurement system A using the image sensor 9a and a car position measurement system B using the image sensor 9b. Only one car position measurement system may be used. In this case, the floor-to-floor mark is provided on one of the pair of guide rails (5a, 5b). Further, when an abnormality in the inter-floor mark is detected, if any of the adjacent inter-floor marks is sound, the car position is measured using the sound inter-floor mark. While continuing, normal operation is continued. Note that the nearest floor operation of the car 1 may be executed. If all of the adjacent floor-to-floor marks are abnormal, the car 1 is forcibly stopped.
 実施形態のように、二つのかご位置計測系を用いる場合、かご位置計測系の冗長化により、かご位置検出装置の信頼性が向上する。さらに、階床間マークの異常が検出される場合に、乗りかご1の運転を継続できる可能性が高まる。 When two cage position measurement systems are used as in the embodiment, the redundancy of the cage position measurement system improves the reliability of the cage position detection device. Furthermore, the possibility that the operation of the car 1 can be continued increases when an abnormality in the floor-to-floor mark is detected.
 また、二つのかご位置計測系を用いる場合、上述のように、画像センサの故障を検出することができる。また、二つの画像を比較することにより、乗りかご1の揺れに伴い画像が変動しても、乗りかごの位置を精度よく計測することができる。このように、二つのかご位置計測系を用いる場合、かご位置検出装置およびこれを用いるエレベータの安全装置を高機能化することができる。 Also, when using two car position measurement systems, it is possible to detect failure of the image sensor as described above. Further, by comparing the two images, even if the images fluctuate due to the shaking of the car 1, the position of the car can be accurately measured. In this way, when two car position measurement systems are used, it is possible to enhance the functions of the car position detection device and the elevator safety device using the same.
 なお、本発明は前述した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、前述した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、実施形態の構成の一部について、他の構成の追加・削除・置き換えをすることが可能である。 It should be noted that the present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. Moreover, it is possible to add, delete, or replace a part of the configuration of the embodiment with another configuration.
 例えば、安全コントローラ8は、画像のずれd(図3)およびフレーム周期Δt(図3)に基づいて、乗りかご1の速度vを計測してもよい。この場合、安全コントローラ8は、dおよびΔtからvを算出する(v=d/Δt)。安全コントローラ8は、vの大きさが所定の過速度値となったら、非常止め装置を作動させる。 For example, the safety controller 8 may measure the speed v of the car 1 based on the image shift d (Fig. 3) and the frame period Δt (Fig. 3). In this case, safety controller 8 calculates v from d and Δt (v=d/Δt). The safety controller 8 activates the safety device when the magnitude of v reaches a predetermined overspeed value.
 また、エレベータは、巻上機やエレベータ制御装置が昇降路内に設置される、いわゆる機械室レスエレベータでもよい。 In addition, the elevator may be a so-called machine room-less elevator in which the hoist and elevator control device are installed in the hoistway.
1…乗りかご、2…釣合おもり、3…主ロープ、4…巻上機、5a,5b…ガイドレール、6…エレベータ制御装置、7…テールコード、8…安全コントローラ、9a,9b…画像センサ、10(1a),10(2a),11(1a),11(2a),12(1a),12(2a)…階床間マーク、10(1b),10(2b),11(1b),11(2b),12(1b),12(2b)…階床間マーク、20…案内装置、30…管制センタ、100…通信網 DESCRIPTION OF SYMBOLS 1... Car, 2... Balance weight, 3... Main rope, 4... Hoisting machine, 5a, 5b... Guide rail, 6... Elevator control device, 7... Tail cord, 8... Safety controller, 9a, 9b... Image Sensors 10(1a), 10(2a), 11(1a), 11(2a), 12(1a), 12(2a) ... Inter-floor marks 10(1b), 10(2b), 11(1b ) , 11 (2b), 12 (1b), 12 (2b) ... inter-floor mark, 20 ... guide device, 30 ... control center, 100 ... communication network

Claims (10)

  1.  昇降路内の画像に基づいてエレベータの乗りかごの位置を検出するかご位置検出装置において、
     前記乗りかごに設けられ、前記乗りかごを案内するガイドレールの表面画像を取得する画像センサと、
     前記ガイドレールの表面に、互いに近接して設けられる第1マークおよび第2マークと、
     前記画像センサが取得する前記表面画像に基づいて、前記乗りかごの前記位置を算出し、算出された前記乗りかごの前記位置を、前記画像センサが取得する前記第1マークおよび前記第2マークの画像に基づいて補正する安全コントローラと、
    を備え、
     前記安全コントローラは、前記第1マークまたは前記第2マークの位置情報と、算出された前記乗りかごの前記位置とに基づいて、前記第1マークまたは前記第2マークの異常を検出し、
     前記安全コントローラは、前記異常を検出すると、前記第1マークおよび前記第2マークの内の健全なマークを用いて前記乗りかごの前記位置を計測することを特徴とするかご位置検出装置。
    In a car position detection device that detects the position of an elevator car based on an image inside a hoistway,
    an image sensor that is provided in the car and acquires a surface image of a guide rail that guides the car;
    a first mark and a second mark provided adjacent to each other on the surface of the guide rail;
    calculating the position of the car based on the surface image acquired by the image sensor; a safety controller that corrects based on the image;
    with
    The safety controller detects an abnormality of the first mark or the second mark based on the position information of the first mark or the second mark and the calculated position of the car;
    The car position detecting device, wherein the safety controller measures the position of the car using a sound mark of the first mark and the second mark when the abnormality is detected.
  2.  請求項1に記載のかご位置検出装置において、
     前記安全コントローラは、前記表面画像に基づいて前記第1マークまたは前記第2マークが検出される場合、検出された前記第1マークまたは前記第2マークの前記位置情報と算出された前記乗りかごの前記位置とに基づいて、前記異常を検出することを特徴とするかご位置検出装置。
    In the car position detection device according to claim 1,
    When the first mark or the second mark is detected based on the surface image, the safety controller controls the position information of the detected first mark or the second mark and the calculated position of the car. A car position detection device, wherein the abnormality is detected based on the position.
  3.  請求項2に記載のかご位置検出装置において、
     前記安全コントローラは、検出された前記第1マークまたは前記第2マークの前記位置情報と算出された前記乗りかごの前記位置との差分に基づいて、前記異常を検出することを特徴とするかご位置検出装置。
    In the car position detection device according to claim 2,
    The safety controller detects the abnormality based on the difference between the detected position information of the first mark or the second mark and the calculated position of the car. detection device.
  4.  請求項1に記載のかご位置検出装置において、
     前記安全コントローラは、前記表面画像に基づいて前記第1マークまたは前記第2マークが検出されない場合、既検出の前記第1マークまたは前記第2マークの前記位置情報と算出された前記乗りかごの前記位置とに基づいて、前記異常を検出することを特徴とするかご位置検出装置。
    In the car position detection device according to claim 1,
    When the first mark or the second mark is not detected based on the surface image, the safety controller controls the position information of the detected first mark or the second mark and the calculated position information of the car. A car position detection device, wherein the abnormality is detected based on the position of the car.
  5.  請求項4に記載のかご位置検出装置において、
     前記安全コントローラは、既検出の前記第1マークまたは前記第2マークの前記位置情報と算出された前記乗りかごの前記位置との差分に基づいて、前記異常を検出することを特徴とするかご位置検出装置。
    In the car position detection device according to claim 4,
    The safety controller detects the abnormality based on the difference between the position information of the detected first mark or the second mark and the calculated position of the car. detection device.
  6.  昇降路内の画像に基づいてエレベータの乗りかごの位置を検出するかご位置検出装置において、
     前記乗りかごに設けられ、前記乗りかごを案内する一対のガイドレールの内の一方のガイドレールの表面画像を取得する第1画像センサと、
     前記乗りかごに設けられ、前記一対のガイドレールの内の他方のガイドレールの表面画像を取得する第2画像センサと、
     前記一方のガイドレールの表面に、互いに近接して設けられる第1マークおよび第2マークと、
     前記他方のガイドレールの表面に、互いに近接して設けられる第3マークおよび第4マークと、
     前記第1画像センサが取得する前記一方のガイドレールの前記表面画像に基づいて、前記乗りかごの第1位置を算出し、算出された前記第1位置を、前記第1画像センサが取得する前記第1マークおよび前記第2マークの画像に基づいて補正するとともに、前記第2画像センサが取得する前記他方のガイドレールの前記表面画像に基づいて、前記乗りかごの第2位置を算出し、算出された前記第2位置を、前記第2画像センサが取得する前記第3マークおよび前記第4マークの画像に基づいて補正する安全コントローラと、
    を備え、
     前記安全コントローラは、前記第1マークまたは前記第2マークの位置情報と、算出された前記乗りかごの前記第1位置とに基づいて、前記第1マークまたは前記第2マークの異常を検出するとともに、前記第3マークまたは前記第4マークの位置情報と、算出された前記乗りかごの前記第2位置とに基づいて、前記第3マークまたは前記第4マークの異常を検出し、
     前記安全コントローラは、前記異常を検出すると、前記第1マークと前記第2マークと前記第3マークと前記第4マークの内の健全なマークを用いて前記乗りかごの前記位置を計測することを特徴とするかご位置検出装置。
    In a car position detection device that detects the position of an elevator car based on an image inside a hoistway,
    a first image sensor provided in the car for acquiring a surface image of one of a pair of guide rails for guiding the car;
    a second image sensor provided in the car for acquiring a surface image of the other guide rail of the pair of guide rails;
    a first mark and a second mark provided close to each other on the surface of the one guide rail;
    a third mark and a fourth mark provided close to each other on the surface of the other guide rail;
    Based on the surface image of the one guide rail acquired by the first image sensor, the first position of the car is calculated, and the calculated first position is acquired by the first image sensor. Correction is performed based on the images of the first mark and the second mark, and a second position of the car is calculated based on the surface image of the other guide rail acquired by the second image sensor. a safety controller that corrects the determined second position based on images of the third mark and the fourth mark acquired by the second image sensor;
    with
    The safety controller detects an abnormality of the first mark or the second mark based on the position information of the first mark or the second mark and the calculated first position of the car. detecting an abnormality of the third mark or the fourth mark based on the position information of the third mark or the fourth mark and the calculated second position of the car;
    When the safety controller detects the abnormality, the safety controller measures the position of the car using healthy marks among the first mark, the second mark, the third mark, and the fourth mark. A car position detection device characterized by:
  7.  昇降路内の画像に基づいて乗りかごの安全制御を実行するエレベータの安全装置において、
     前記乗りかごに設けられ、前記乗りかごを案内するガイドレールの表面画像を取得する画像センサと、
     前記ガイドレールの表面に、互いに近接して設けられる第1マークおよび第2マークと、
     前記画像センサが取得する前記表面画像に基づいて、前記乗りかごの位置を算出し、算出された前記乗りかごの前記位置を、前記画像センサが取得する前記第1マークおよび前記第2マークの画像に基づいて補正する安全コントローラと、
    を備え、
     前記安全コントローラは、前記第1マークまたは前記第2マークの位置情報と、算出された前記乗りかごの前記位置とに基づいて、前記第1マークまたは前記第2マークの異常を検出し、
     前記安全コントローラは、前記異常を検出すると、前記第1マークおよび前記第2マークの内の健全なマークを用いて前記乗りかごの前記位置を計測し、
     前記安全コントローラは、前記異常に応じて、前記乗りかごの走行を制御することを特徴とするエレベータの安全装置。
    In an elevator safety device that performs car safety control based on images in the hoistway,
    an image sensor that is provided in the car and acquires a surface image of a guide rail that guides the car;
    a first mark and a second mark provided adjacent to each other on the surface of the guide rail;
    The position of the car is calculated based on the surface image acquired by the image sensor, and the calculated position of the car is captured in the image of the first mark and the second mark acquired by the image sensor. a safety controller that compensates based on
    with
    The safety controller detects an abnormality of the first mark or the second mark based on the position information of the first mark or the second mark and the calculated position of the car;
    When the safety controller detects the abnormality, the safety controller measures the position of the car using a sound mark of the first mark and the second mark,
    A safety device for an elevator, wherein the safety controller controls running of the car according to the abnormality.
  8.  請求項7に記載のエレベータの安全装置において、
     前記安全コントローラは、前記乗りかごに通常運転を継続させることを特徴とするエレベータの安全装置。
    In the elevator safety device according to claim 7,
    A safety device for an elevator, wherein the safety controller causes the car to continue normal operation.
  9.  請求項7に記載のエレベータの安全装置において、
     前記安全コントローラは、前記乗りかごを最寄り階運転させることを特徴とするエレベータの安全装置。
    In the elevator safety device according to claim 7,
    A safety device for an elevator, wherein the safety controller operates the car to the nearest floor.
  10.  請求項7に記載のエレベータの安全装置において、
     前記安全コントローラは、前記第1マークおよび前記第2マークの両方が異常である場合、前記乗りかごを強制停止させることを特徴とするエレベータの安全装置。
    In the elevator safety device according to claim 7,
    A safety device for an elevator, wherein the safety controller forcibly stops the car when both the first mark and the second mark are abnormal.
PCT/JP2021/024095 2021-06-25 2021-06-25 Car position detection device and elevator safety device using same WO2022269893A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/024095 WO2022269893A1 (en) 2021-06-25 2021-06-25 Car position detection device and elevator safety device using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/024095 WO2022269893A1 (en) 2021-06-25 2021-06-25 Car position detection device and elevator safety device using same

Publications (1)

Publication Number Publication Date
WO2022269893A1 true WO2022269893A1 (en) 2022-12-29

Family

ID=84544427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024095 WO2022269893A1 (en) 2021-06-25 2021-06-25 Car position detection device and elevator safety device using same

Country Status (1)

Country Link
WO (1) WO2022269893A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002274765A (en) * 2001-02-20 2002-09-25 Inventio Ag Method for generating elevator shaft information to conduct elevator control
JP2011073885A (en) * 2005-01-04 2011-04-14 Mitsubishi Electric Corp Mover position/speed detecting device
WO2013007505A1 (en) * 2011-07-13 2013-01-17 Inventio Ag Elevator
US20200198929A1 (en) * 2017-06-27 2020-06-25 Inventio Ag Position determining system and method for determining a car position of an elevator car
WO2021038984A1 (en) * 2019-08-30 2021-03-04 株式会社日立製作所 Measurement device, elevator system, and measurement method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002274765A (en) * 2001-02-20 2002-09-25 Inventio Ag Method for generating elevator shaft information to conduct elevator control
JP2011073885A (en) * 2005-01-04 2011-04-14 Mitsubishi Electric Corp Mover position/speed detecting device
WO2013007505A1 (en) * 2011-07-13 2013-01-17 Inventio Ag Elevator
US20200198929A1 (en) * 2017-06-27 2020-06-25 Inventio Ag Position determining system and method for determining a car position of an elevator car
WO2021038984A1 (en) * 2019-08-30 2021-03-04 株式会社日立製作所 Measurement device, elevator system, and measurement method

Similar Documents

Publication Publication Date Title
KR100681078B1 (en) Elevator device
JP4368854B2 (en) Elevator equipment
US9809419B2 (en) Elevator apparatus
CN107835780B (en) Lift appliance
WO2006073015A1 (en) Elevator bolt detecting device, elevator system, and mover position/speed detecting device
EP3584208B1 (en) Position reference device for elevator
JP7100515B2 (en) Elevator
WO2022269893A1 (en) Car position detection device and elevator safety device using same
WO2022259398A1 (en) Car position detection device and elevator using same
JP3744271B2 (en) Elevator position detection device
WO2022259417A1 (en) Car position detection device and elevator safety device using same
WO2022249383A1 (en) Car position detection device and elevator safety device using same
CN212832218U (en) Elevator car position detection device
JP2018122944A (en) Automatic gap measuring device for passenger conveyor and automatic gap measuring method for passenger conveyor
JP6812506B2 (en) Elevator monitoring method and elevator monitoring device
WO2023175859A1 (en) Elevator device
JPH05294583A (en) Device for detecting abrasion of elevator guide shoe
CN110271930A (en) Elevator car slipping rescues automatic detection device and detection method
EP3892579A1 (en) Elevator safety systems
US20230121292A1 (en) Elevator safety monitoring device
JP7322204B2 (en) Elevator diagnostic system and diagnostic method
WO2023238217A1 (en) Long-object inspection device for elevator
WO2023193931A1 (en) An elevator system and a method
KR100202710B1 (en) Apparatus and its method of driving elevator on rescuing passengers
CN113636423A (en) Elevator car position detection device and detection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947177

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21947177

Country of ref document: EP

Kind code of ref document: A1