WO2022259398A1 - Car position detection device and elevator using same - Google Patents

Car position detection device and elevator using same Download PDF

Info

Publication number
WO2022259398A1
WO2022259398A1 PCT/JP2021/021845 JP2021021845W WO2022259398A1 WO 2022259398 A1 WO2022259398 A1 WO 2022259398A1 JP 2021021845 W JP2021021845 W JP 2021021845W WO 2022259398 A1 WO2022259398 A1 WO 2022259398A1
Authority
WO
WIPO (PCT)
Prior art keywords
car
mark
image
floor
abnormality
Prior art date
Application number
PCT/JP2021/021845
Other languages
French (fr)
Japanese (ja)
Inventor
勇来 齊藤
晃 岩本
義人 大西
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2021/021845 priority Critical patent/WO2022259398A1/en
Publication of WO2022259398A1 publication Critical patent/WO2022259398A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B3/00Applications of devices for indicating or signalling operating conditions of elevators
    • B66B3/02Position or depth indicators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators

Definitions

  • the present invention relates to a car position detection device that detects the position of a car based on an image inside a hoistway, and an elevator using the same.
  • the governor when the governor detects an overspeed condition, the power supply is cut off or the emergency stop device is activated to bring the car to an emergency stop. Since the governor is equipped with a governor rope that is long, a space for laying the governor rope is required in the hoistway.
  • a measuring device provided in the car captures an image of the uneven surface of the guide rail.
  • the measurement device determines the position and movement of the car based on the image shift between the first frame and the second frame captured at different timings and the time difference between the capture times of the first frame and the second frame. Calculate speed.
  • Patent Document 1 does not necessarily take into consideration anomalies in the car position measurement system. Therefore, when applying the car position detection device according to the technique of Patent Document 1 to a safety device, ensuring the reliability of the safety device becomes a problem.
  • the present invention provides a highly reliable car position detection device and an elevator using this car position detection device while measuring the position of the car based on the images in the hoistway.
  • the car position detection device detects the position of the car of an elevator based on the image in the hoistway.
  • the position of the car is calculated based on the image sensor that acquires the surface image of the guide rail, the marks provided on the surface of the guide rail, and the surface image acquired by the image sensor.
  • a safety controller for correcting based on the image of the mark acquired by the image sensor, the safety controller detecting an abnormality in the mark based on the positional information of the mark and the calculated position of the car; detects an abnormality in the mark, it notifies the external device of the abnormality.
  • the car position detection device detects the position of the car of an elevator based on the image in the hoistway.
  • a first image sensor that acquires a surface image of one guide rail of the pair of guide rails
  • a second image sensor that is provided in the car and acquires a surface image of the other guide rail of the pair of guide rails.
  • the car based on the first mark provided on the surface of one guide rail, the second mark provided on the surface of the other guide rail, and the surface image of the one guide rail acquired by the first image sensor, the car and correcting the calculated first position based on the image of the first mark acquired by the first image sensor, and the surface image of the other guide rail acquired by the second image sensor.
  • a safety controller that calculates a second position of the car based on the An abnormality of the first mark is detected based on the position information of the first mark and the calculated first position, and an abnormality of the second mark is detected based on the position information of the second mark and the calculated second position. , and when the safety controller detects an abnormality in the first mark or the second mark, it notifies the external device of the abnormality.
  • an elevator includes a car, a guide rail for guiding the car moving in the hoistway, a control device for controlling the operation of the car, and an image in the hoistway.
  • a car position detection device that detects the position of the car based on the image sensor that acquires the surface image of the guide rail; the mark provided on the surface of the guide rail; a safety controller that calculates the position of the car based on the surface image acquired by the image sensor, and corrects the calculated position of the car based on the image of the mark acquired by the image sensor; detects an abnormality in the mark based on the position information of the mark and the calculated position of the car, and the control device moves the car to the work position during maintenance work on the mark in which the abnormality is detected, Stop the car in the working position.
  • the reliability of the car position detection device that measures the position of the car based on the image inside the hoistway and the elevator using it is improved.
  • FIG. 1 is a configuration diagram showing the overall configuration of an elevator that is one embodiment of the present invention.
  • the car 1 and the counterweight 2 are mechanically connected to one end and the other end of the main rope 3, respectively.
  • the main rope 3 is wound around a sheave of the hoist 4 .
  • the car 1 and the counterweight 2 are suspended in a hoistway provided in the building. That is, the embodiment is a so-called barrel-type elevator.
  • the hoist 4 is installed in a machine room provided on the hoistway.
  • the motor of the hoisting machine 4 is driven by a power conversion device (for example, an inverter device) of the elevator control device 6 .
  • the elevator control device 6 includes a control section that controls the operation of the car 1 by controlling the power conversion device.
  • the car 1 is movably engaged with the guide rails 5a, 5b via a guide device 20 (for example, guide shoes). Therefore, the car 1 moves between arbitrary floors while being guided by the guide rails 5a and 5b.
  • a guide device 20 for example, guide shoes
  • a general T-shaped guide rail is applied as the guide rails 5a and 5b.
  • the counterweight 2 moves while being guided by a guide rail for the counterweight (not shown).
  • a safety controller 8 is installed on the top of the car 1.
  • the safety controller 8 is electrically connected to image sensors 9 a and 9 b installed on the top of the car 1 .
  • Image sensors 9a and 9b acquire surface images of guide rails 5a and 5b, which are stationary objects in the hoistway, respectively.
  • the surface images of the guide rails 5a and 5b the surface images of the tips of the T-shaped legs are acquired.
  • the safety controller 8 measures the position of the car 1 based on the surface images of the guide rails 5a and 5b acquired by the image sensors 9a and 9b.
  • a CCD, a CMOS sensor, or the like is applied as the image sensors 9a and 9b.
  • the car position measurement system (not shown) that the safety controller 8 has is independent of the car position measurement system that the elevator control device 6 uses for normal operation control.
  • the car position measurement system of the elevator control device 6 includes, for example, a rotational position detector such as a resolver or a rotary encoder for detecting the rotational position of the motor of the hoisting machine 4, and a photoelectric or magnetic sensor provided in the car 1. It is composed of a position detector and a shielding plate (optical shielding or magnetic shielding) for the position detector provided between floors in the hoistway.
  • floor-to-floor marks 10a, 11a, and 12a are provided to indicate positional information in the hoistway in the height direction.
  • floor-to-floor marks 10b, 11b, and 12b indicating position information in the height direction in the hoistway are provided on the surface of the guide rail 5b.
  • Each of these floor-to-floor marks is located between two vertically adjacent floors and is located near the upper one of these two floors.
  • the floor-to-floor marks 10a and 10b are located at the same height in the hoistway. That is, the floor-to-floor marks 10a and 10b indicate the same position information.
  • floor-to-floor marks 11a, 11b indicate the same location information
  • floor-to-floor marks 12a, 12b indicate the same location information.
  • floor-to-floor mark for example, a sheet-shaped member with a pattern shape such as a one-dimensional barcode or two-dimensional barcode is applied.
  • a sheet-like member is attached to the surface of the guide rail with an adhesive.
  • floor-to-floor marks may be drawn directly on the guide rail surface using paint or the like.
  • the safety controller 8 detects the measured value of the car position A based on the position information corresponding to the detected floor-to-floor marks. correct. Further, when the image sensor 9b detects the floor-to-floor marks 10b, 11b, and 12b while the car 1 is running, the safety controller 8 determines the car position B based on the position information corresponding to the detected floor-to-floor marks. Correct the measured value.
  • the safety controller 8 pre-stores mark position data indicating the correspondence between each floor-to-floor mark and position information in the height direction within the hoistway. This position information indicates the height from the reference position in the hoistway to the position where each floor-to-floor mark is provided.
  • the reference position is the floor surface of the lowest floor (not shown), which is the reference floor. The lowest floor is located below the intermediate floor FL1 in FIG.
  • the car positions A and B are the reference position, that is, the height from the floor surface of the lowest floor to the floor plate surface of the car 1 .
  • the safety controller 8 determines the installation height of the image sensor 9a in the car 1, that is, the height of the image sensor 9a from the floor plate surface of the car 1, from the position information of the floor-to-floor mark detected by the image sensor 9a.
  • Car position A is calculated by subtracting the height.
  • the safety controller 8 determines the installation height of the image sensor 9b in the car 1, that is, the height of the image sensor 9b from the floor surface of the car 1, from the position information of the floor-to-floor mark detected by the image sensor 9b.
  • the car position B is calculated by subtracting the height.
  • the safety controller 8 normally sets measured values for the car positions A and B based on the surface images of the guide rails 5a and 5b, respectively.
  • the safety controller 8 detects the floor-to-floor marks 10a, 11a, and 12a
  • the safety controller 8 sets the car position A to a calculated value based on the position information of the detected floor-to-floor marks.
  • the safety controller 8 detects the floor-to-floor marks 10b, 11b, and 12b
  • the safety controller 8 sets the car position B to a calculated value based on the position information of the detected floor-to-floor marks.
  • the car positions A and B in which errors have been accumulated are corrected.
  • At least one floor-to-floor mark is provided between each floor in the hoistway (only one in the embodiment).
  • the car positions A and B are corrected each time the car 1 travels, so that the car position measurement accuracy is improved.
  • the floor-to-floor mark for example, a barcode or the like is applied. Note that different inter-floor marks correspond to different position information.
  • the safety controller 8 in the embodiment determines whether there is an abnormality in the inter-floor mark based on the surface images of the guide rails 5a and 5b and the image of the inter-floor mark. In the embodiment, as will be described later, the safety controller 8 calculates the measured values of the car positions A and B based on the surface images of the guide rails 5a and 5b acquired by the image sensors 9a and 9b, and the image Based on the position information indicated by the floor-to-floor mark detected based on the images acquired by the sensors 9a and 9b, it is determined whether there is an abnormality in the floor-to-floor mark.
  • the safety controller 8 sends information about the inter-floor mark determined to be abnormal (hereinafter referred to as "abnormal mark information") to the elevator control device 6 via the tail code 7. Further, the elevator control device 6 records this abnormality mark information in its own device and transmits it to the monitoring server device provided in the control center 30 via the communication network 100 (for example, telephone line, Internet, etc.).
  • the monitoring server device is installed at a remote location away from the installation location of the elevator.
  • the monitoring server device monitors the operating states of the plurality of elevators by communicating with each elevator control device in the plurality of elevators, including the elevator of the embodiment, via the communication network 100 .
  • the abnormality mark information is sent to the maintenance tool 40.
  • maintenance tool 40 reads fault mark information recorded by elevator controller 6 . Thereby, the maintenance tool 40 acquires the error mark information.
  • the maintenance tool 40 has a display section 41 .
  • the acquired abnormality mark information is displayed on the display unit 41 using characters, numbers, and the like.
  • the maintenance tool 40 is a portable terminal device used by maintenance engineers during maintenance work, and consists of a portable personal computer, for example.
  • the maintenance tool 40 stores various data related to maintenance work and elevators to be worked on, has a function of reading data related to the operating state of the elevator recorded by the elevator control device 6, and has a function of commanding the elevator control device 6 to perform maintenance operation. etc.
  • the abnormal mark information is information for specifying an inter-floor mark that is determined to be abnormal. For example, as shown in FIG. 1, the floor position (in FIG. 1, " 3rd and 4th floors”), guide rails (“left rail” in FIG. 1), and identification information of floor-to-floor marks (“ID” in FIG. 1).
  • the maintenance tool 40 may acquire the abnormality mark information recorded in the elevator control device 6 while the elevator is in operation, or may acquire the abnormality mark information detected while the car 1 is being operated for maintenance.
  • the maintenance engineer When a maintenance engineer performs maintenance work on the floor-to-floor mark in which an abnormality has been detected, the maintenance engineer operates the maintenance tool 40 on the ceiling of the car 1 to perform maintenance work on the floor-to-floor mark.
  • the car 1 is moved in maintenance operation mode to a nearby work position.
  • the maintenance tool 40 which has acquired the abnormality mark information, instructs the elevator control device 6 to move the car to the work position according to the position information of the mark between floors where the abnormality is detected, which is included in the abnormality mark information. 1 is moved and stopped.
  • the maintenance engineer performs maintenance work such as replacing floor-to-floor marks.
  • FIG. 2 is a functional block diagram showing the configuration of the safety controller 8 in the embodiment.
  • the safety controller 8 has a computer system such as a microcomputer, and the computer system operates as each part by executing a predetermined program.
  • the safety controller 8 has two independent car position measurement systems. That is, the safety controller 8 includes a car position measurement system (hereinafter referred to as “car position measurement system A”) that measures the car position A based on the image A acquired by the image sensor 9a, and an image sensor 9b. a car position measurement system (hereinafter referred to as “car position measurement system B”) that measures the car position B based on the image B that is displayed.
  • car position measurement system A a car position measurement system that measures the car position A based on the image A acquired by the image sensor 9a
  • an image sensor 9b an image sensor 9b
  • a car position measurement system (hereinafter referred to as “car position measurement system B”) that measures the car position B based on the image B that is displayed.
  • the car position measurement system A using the image sensor 9a includes, as shown in FIG. 806a, image memory 807a, and cage position memory 808a.
  • the car position measurement system B using the image sensor 9b includes an image detection unit 801b, an image comparison unit 802b, a car position calculation unit 803b, a mark detection unit 804b, a correction position detection unit 805b, a mark position memory 806b, and an image memory 807b. , and a car position memory 808b.
  • the function of each part is as follows.
  • the image detection unit 801a detects an image of the surface of the guide rail 5a (FIG. 1) at predetermined time intervals based on the signal from the image sensor 9a.
  • the image memory 807a stores the image detected by the image detection unit 801a.
  • the image comparison unit 802a compares the current image detected by the image detection unit 801a with the previous image stored in the image memory 807a, and measures the deviation between the two images.
  • a comparison means for example, an image correlation method is applied.
  • the deviation between both images corresponds to the amount of movement of the car 1 (FIG. 1).
  • the car position calculation unit 803a calculates the car position A based on the image shift calculated by the image comparison unit 802a. As described above, the calculated image shift corresponds to the amount of movement of the car 1. Therefore, the current car position A is calculated by sequentially integrating the image shifts measured at predetermined time intervals. be done.
  • the car position memory 808a stores the car position calculated by the car position calculation unit 803a.
  • the car position calculation unit 803a reads out the car position A calculated at the previous time and stored in the car position memory 808a from the car position memory 808a, and stores the calculated car position A at the previous time. By adding or subtracting the displacement of the car 1, that is, the amount of movement of the car 1, the current car position A is calculated. By repeatedly executing such calculations while the elevator is in operation, the amount of movement of the car 1 is successively integrated. Thereby, the car position A of the car 1 moving in the hoistway is measured.
  • the mark detection unit 804a detects the floor-to-floor marks 10a, 11a, and 12a (FIG. 1) based on the current image detected by the image detection unit 801a.
  • the mark detection unit 804a identifies the floor-to-floor marks 10a, 11a, and 12a by pattern recognition or the like.
  • the mark detection unit 804a stores the basic image data of the inter-floor marks 10a, 11a, 12a in advance, and compares the detected image with the basic image data to detect the inter-floor marks 10a, 11a, 12a. 12a is detected.
  • the comparison means for example, an image correlation method is applied.
  • the corrected position detection unit 805a acquires the position information indicated by the detected inter-floor marks 10a, 11a, and 12a from the mark position memory 806a, and if there is no abnormality in the inter-floor marks, the car position calculation unit 803a calculates the position information.
  • the measured value of car position A is corrected according to the acquired position information.
  • the cage position calculator 803a outputs the measured value of the cage position A corrected.
  • the error of the car position A accumulated along with the integration of the movement amount of the car 1 is corrected, and the accuracy of the measured value of the car position A is improved.
  • the function of the correction position detection unit 805a related to abnormality determination of the floor-to-floor marks 10a, 11a, and 12a will be described later.
  • the mark position memory 806a preliminarily stores correspondence data between the floor-to-floor marks 10a, 11a, and 12a and the position information indicated by the floor-to-floor marks 10a, 11a, and 12a.
  • an image detection unit 801b In addition, in the car position measurement system B, an image detection unit 801b, an image comparison unit 802b, a car position calculation unit 803b, a mark detection unit 804b, a correction position detection unit 805b, a mark position memory 806b, an image memory 807b, and a car position memory.
  • Each function of 808b is an image detection unit 801a, an image comparison unit 802a, a car position calculation unit 803a, a mark detection unit 804a, a correction position detection unit 805a, a mark position memory 806a, and an image memory 807a in the car position measurement system A.
  • the functions of the car position memory 808a are examples of the car position memory 808a.
  • the abnormalities of the floor-to-floor marks are, for example, delamination, peeling, contamination, defacement, and defects.
  • the corrected position detection unit 805a provided in the car position measurement system A obtains the position information of the detected inter-floor marks from the mark position memory 806a. read out. Further, when the mark detection unit 804a has not detected the inter-floor marks 10a, 11a, 12a, the correction position detection unit 805a detects the marks 10a, 11a, 12a detected before the present time from the mark position memory 806a. Read location information.
  • the mark abnormality determination unit 813a combines the position information of the floor-to-floor marks 10a, 11a, and 12a read by the corrected position detection unit 805a with the measured value of the current car position A before correction calculated by the car position calculation unit 803a. are compared to determine whether there is an abnormality in the floor-to-floor marks 10a, 11a, and 12a. For example, when there is a large difference between the detected position information of the inter-floor mark and the measured value of car position A, is large, and if the inter-floor mark is not detected although the inter-floor mark is normally detected, the mark abnormality determination unit 813a determines that the inter-floor mark is abnormal. Determine that there is.
  • the mark abnormality determination unit 813a determines that the floor-to-floor mark is normal, it corrects the current measured value of the car position A calculated by the car-position calculation unit 803a to the position information of the floor-to-floor mark.
  • the inter-floor mark abnormality detection function in the car position measurement system B is the same as the inter-floor mark abnormality detection function in the car position measurement system A. Therefore, the function of the mark abnormality determination section 813b is the same as the function of the mark abnormality determination section 813a.
  • the safety controller 8 further has a car position determining unit 811, a car stopping unit 812, and an abnormality processing determining unit 814.
  • the car position determination unit 811 determines the measured value of the car position A output by the car position calculation unit 803a and the measured value of the car position B output by the car position calculation unit 803b. to determine whether the image sensor 9a or the image sensor 9b is faulty. In the embodiment, the car position determination unit 811 calculates the difference between the measured value of the car position A and the measured value of the car position B, and determines whether the magnitude (absolute value) of the difference is equal to or less than a predetermined value. do.
  • the car position determination unit 811 determines that the image sensors 9a and 9b are normal and not out of order. Further, when the magnitude (absolute value) of the difference exceeds a predetermined value, the car position determination unit 811 determines that the image sensor 9a or the image sensor 9b is out of order.
  • the car position determination unit 811 determines that the image sensors 9a and 9b are normal, it determines the measured value of the car position A as the current position of the car 1.
  • the car position determination unit 811 may determine the measured value of the car position B as the current position of the car 1 .
  • the car position determining unit 811 determines that the image sensor 9a or the image sensor 9b is out of order, it causes the car stopping unit 812 to send a stop command to forcibly stop the hoisting machine 4.
  • the motor (not shown) that drives the hoisting machine 4 is stopped and the electromagnetic brake device (not shown) is brought into a braking state. .
  • the abnormality processing determination unit 814 sends out abnormality detection data and abnormal mark information.
  • the floor-to-floor mark whose position information is closest to the current measured values of car positions A and B is abnormal, and the information about this floor-to-floor mark stored in the mark position memory is stored. This is regarded as abnormal mark information.
  • the external notification unit 63 which is a communication unit, communicates with the monitoring server provided in the control center 30 and the maintenance Anomaly detection data and anomaly mark information are transmitted to the tool 40 as anomaly notification data.
  • the abnormality detection section 62 records the abnormality detection signal abnormality mark information in the storage device of the hoisting machine control section 61 provided in the elevator control device 6 .
  • the maintenance tool 40 can read the recorded abnormal mark information.
  • the hoisting machine control unit 61 drives the hoisting machine 4 to The car 1 is moved to a work position corresponding to the position information included in the abnormality mark information and stopped.
  • FIG. 3 is a schematic diagram showing an example of an image of the exposed surfaces of the guide rails 5a and 5b (FIG. 1).
  • FIG. 3 shows an image I(t) at time t and an image I(t+ ⁇ t) at time t+ ⁇ t ( ⁇ t: frame period) acquired by the image sensors 9a and 9b (FIGS. 1 and 2).
  • Both images are images of the exposed surface of the steel material that constitutes the guide rails 5a and 5b, and show the pattern of the luminance distribution indicating the unevenness distribution on the exposed surface of the steel material. Note that the car 1 (FIG. 1) is lowered from time t to time t+ ⁇ t.
  • an image shift d occurs between the image I(t) and the image I(t+ ⁇ t), as shown in FIG.
  • This image shift d is calculated in the embodiment by comparing the image I(t) and the image I(t+ ⁇ t) using an image correlation method.
  • the image I(t) or a portion thereof is moved in the image frame by a predetermined amount along the longitudinal direction of the guide rails 5a and 5b.
  • a correlation function value between the image I(t) and the image I(t+ ⁇ t) is calculated. The total amount of movement of the image I(t) when the correlation function value is the maximum value is taken as the image shift d.
  • the image shift d corresponds to the amount of movement (the amount of descent in FIG. 3) of the car 1 at time ⁇ t.
  • the direction in which the image shifts in the image frame indicates the moving direction (upward or downward) of the car 1 . Therefore, if the positive or negative image shift is set according to the direction of image shift, for example, if the downward direction (upward direction) is positive and the upward direction (downward direction) is negative, the image shift d is calculated for each ⁇ t. Then, by accumulating the car position at the time of startup, the car position at the present time can be measured.
  • the guide rails 5a and 5b are preferably surface-finished by polishing or the like in order to make the surfaces uneven.
  • the image sensors 9a and 9b preferably have light sources for illuminating the surfaces of the guide rails 5a and 5b, respectively. As a result, the car position measurement accuracy is improved.
  • FIG. 4 is a flow chart showing the operation of the safety controller 8 (FIGS. 1 and 2) in the embodiment. In addition, it demonstrates, referring FIG. 2 suitably hereafter.
  • step S1 after starting operation, the safety controller 8 detects the current images A and B of the surfaces of the guide rails 5a and 5b based on the image signals from the image sensors 9a and 9b using the image detection units 801a and 801b. get. After executing step S1, the safety controller 8 next executes car position calculation processing (steps S2 to S4).
  • the safety controller 8 first calculates the car position A by executing steps S2 to S4, and then calculates the car position B by executing steps S2 to S4 again.
  • the image shift between the current image X and the image X at the previous time point calculated by the image comparing section is substantially zero, it is determined that the current image X and the image X at the previous time point are the same.
  • step S3 the safety controller 8 uses the image deviation ( ⁇ 0) between the current image X and the previous image X calculated by the image comparison unit 802x as the amount of movement of the car 1. After executing step S3, the safety controller 8 next executes step S8.
  • the safety controller 8 After completing the car position calculation process, the safety controller 8 next executes the car position correction process (steps S5 to S10).
  • the car position correction processing includes the abnormality detection processing of the floor-to-floor mark.
  • the safety controller 8 determines that the floor-to-floor mark is detected (YES in step S5), it then executes step S6. Further, when the safety controller 8 determines that the floor-to-floor mark is not detected (NO in step S5), it then executes step S7.
  • step S6 the safety controller 8 uses the position information corresponding to the detected floor-to-floor mark read out from the mark position memory x by the correction position detection unit 805x, that is, the current mark position, and the mark position calculated in steps S2 to S4.
  • the mark abnormality determination unit 813x determines whether the magnitude (absolute value) of the difference from the calculated car position X is equal to or less than the first threshold.
  • the safety controller 8 determines whether or not the current mark position is close to the calculated car position X in step S6.
  • the first threshold value is set in consideration of the normal accuracy of the calculated value of the car position X in steps S2 to S4, the normal operating state (speed, etc.) of the car 1, and the like.
  • step S6 determines that the magnitude (absolute value) of the difference between the mark position and the car position X is equal to or less than the first threshold value (YES in step S6), that is, when it determines that there is no abnormality in the floor-to-floor mark.
  • step S8 is executed. Further, when the safety controller 8 determines that the magnitude (absolute value) of the difference between the mark position and the car position X is greater than the first threshold value (NO in step S6), it determines that there is an abnormality in the floor-to-floor mark. Then, step S15 is executed next.
  • step S7 the safety controller 8 detects the position information corresponding to the normal inter-floor mark already detected at the previous point in time, read out from the mark position memory x by the correction position detector 805x, that is, the mark position at the previous point in time. Then, the mark abnormality determination unit 813x determines whether the magnitude (absolute value) of the difference from the car position X calculated in steps S2 to S4 is equal to or less than the second threshold. In step S7, the safety controller 8 determines whether the car 1 has not reached the position where the inter-floor mark is detected since the inter-floor mark was detected at the previous time. It should be noted that the second threshold is mainly set in consideration of the installation interval of the floor-to-floor marks.
  • step S7 determines that the magnitude (absolute value) of the difference between the mark position at the previous point in time and the car position X is equal to or less than the second threshold value (YES in step S7), that is, there is no abnormality in the floor-to-floor mark. If so, then step S9 is executed. Further, when the safety controller 8 determines that the magnitude (absolute value) of the difference between the mark position at the previous time point and the car position X is greater than the second threshold (NO in step S7), If it is determined that there is an abnormality, then step S15 is executed.
  • step S8 the safety controller 8 uses the mark abnormality determination section 813x or the correction position detection section 805x to convert the calculated value of the car position X in steps S2 to S4 into the position information indicated by the detected floor-to-floor mark. is corrected to a predetermined value according to In this case, the car position calculator 803x outputs the corrected car position X.
  • the mark abnormality determination section 813x or the correction position detection section 805x converts the calculated value of the car position X in steps S2 to S4 into the position information indicated by the detected floor-to-floor mark. is corrected to a predetermined value according to In this case, the car position calculator 803x outputs the corrected car position X.
  • the car position X is the height of the floor plate surface of the car 1 in the hoistway. ) is the height of the floor plate surface of the car 1 in the hoistway when the floor-to-floor mark is detected, the car position X is corrected to the value of the position information.
  • step S8 the safety controller 8 then executes step S9.
  • the image X recorded in the image memory 807x in step S9 and the cage position X recorded in the cage position memory 808x in step S10 are the image X at the previous point in time, respectively, in the next control period or frame period. It is used as the car position X at the previous time.
  • step S11 After completing the car position correction process (steps S5 to S10, S15), the safety controller 8 next executes step S11.
  • step S11 the safety controller 8 uses the abnormality processing determination unit 814 to determine the left and right marks, that is, the floor-to-floor marks (10a, 11a, 12a) provided on the guide rail 5a and the floor-to-floor marks provided on the guide rail 5b. Based on the execution result of step S15, it is determined whether any of the marks (10b, 11b, 12b) is abnormal.
  • step S11 determines whether or not to operate the safety device.
  • a car position determination process (steps S12 to S14) is executed to determine the car position to be used.
  • step S11 determines in step S11 that one of the left and right marks is abnormal (YES in step S11)
  • step S16 to S17 abnormal processing
  • the safety controller 8 uses the abnormality processing determination unit 814 to determine execution of the abnormality processing for the inter-floor mark.
  • the safety controller 8 decides to execute the inter-floor mark abnormality processing, the safety controller 8 sends out the abnormality detection data and the abnormality mark information as described above (FIG. 2).
  • step S12 the safety controller 8 uses the car position determination unit 811 to compare the current car position A and car position B to determine whether there is a failure in the image sensors 9a and 9b. In the embodiment, as shown in FIG. 4, the safety controller 8 determines whether the magnitude (absolute value) of the difference between the car position A and the car position B is equal to or less than a predetermined value.
  • step S12 If the magnitude of the difference is equal to or less than the predetermined value (YES in step S12), then the safety controller 8 executes step S13. Moreover, when the magnitude of the difference is greater than the predetermined value, the safety controller 8 next executes step S14.
  • step S13 the safety controller 8 uses the car position determination unit 811 to determine the car position A as the car position to be used for safety control at this time.
  • step S14 the safety controller 8 ends the series of processes (steps S1 to S17).
  • step S14 the safety controller 8 determines that the image sensors 9a and 9b are out of order, and uses the abnormality processing determination unit 814 to determine to stop the car 1.
  • the safety controller 8 decides to block the car 1
  • the car blocking section 812 is used to create and send out a car blocking command.
  • the safety controller 8 ends the series of processes (steps S1 to S17).
  • step S16 the safety controller 8 notifies the outside, that is, the monitoring server and the maintenance tool 40 in the control center 30, of the abnormality in the floor-to-floor mark via the elevator control device 6.
  • the elevator control device 6 transmits these data to the monitoring server and the maintenance tool 40 .
  • step S16 the safety controller 8 next executes step S17.
  • step S17 the safety controller 8 uses the abnormality processing determination unit 814 to command the elevator control device 6 to execute abnormality processing.
  • the elevator control device 6 records the abnormality detection data and the abnormality mark information, and when receiving an operation signal from the maintenance tool 40, performs maintenance operation of the car 1 for the maintenance work of the floor-to-floor mark. can be executed.
  • abnormality detection data and the abnormality mark information may also serve as an abnormality processing execution command.
  • step S17 the safety controller 8 ends the series of processes (steps S1 to S17).
  • the safety controller 8 While the elevator is in operation, the safety controller 8 repeatedly executes the series of processes (steps S1 to S17) as described above for each control cycle or image acquisition cycle (frame cycle).
  • the position of the car 1 is calculated based on the surface images of the guide rails 5a and 5b acquired by the image sensors 9a and 9b, and the calculated value of the position of the car 1 is used as the floor-to-floor mark. Based on these surface images, a safety controller correcting the position information determines whether there is an abnormality in the floor-to-floor mark. As a result, the reliability of the car position detection device is improved while measuring the position of the car based on the image of the inside of the hoistway.
  • the information on the detected abnormality is reported to the control center and external maintenance equipment such as maintenance tools.
  • the maintenance tool is operated to automatically carry out maintenance operation of the car 1 to the work position for the maintenance work of the floor-to-floor mark.
  • the floor-to-floor mark can be maintained reliably and quickly. Therefore, the reliability of the elevator safety device using the car position detection device for measuring the position of the car based on the image in the hoistway is improved.
  • the above-described embodiment includes two cage position detection systems, that is, a cage position detection system A using the image sensor 9a and a cage position detection system B using the image sensor 9b. Only one car position detection system may be used. In this case, the floor-to-floor mark is provided on one of the pair of guide rails (5a, 5b).
  • the car 1 may be operated at a low speed, or the car 1 may be driven to the nearest floor and stopped.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.
  • the elevator may be a so-called machine room-less elevator in which the hoist and elevator control device are installed in the hoistway.

Landscapes

  • Indicating And Signalling Devices For Elevators (AREA)

Abstract

Disclosed are a highly reliable car position detection device that measures the position of a car on the basis of an image in a hoistway, and an elevator that uses the car position detection device. This car position detection device detects the position of an elevator car on the basis of an image in a hoistway and comprises: an image sensor (9a) that is installed in a car (1) and acquires an image of the surface of a guide rail (5a) that guides the car; a mark (10a, 11a, 12a) that is provided on the surface of the guide rail; and a safety controller (8) that calculates the position of the car on the basis of the surface image acquired by the image sensor and corrects the calculated position of the car on the basis of the image of the mark acquired by the image sensor. The safety controller detects an abnormality in the mark on the basis of positional information for the mark and the calculated position of the car. Upon detecting an abnormality in the mark, the safety controller reports the abnormality to external devices (30, 40).

Description

かご位置検出装置、並びにこれを用いるエレベータCar position detection device and elevator using the same
 本発明は、昇降路内の画像に基づいて乗りかごの位置を検出するかご位置検出装置、並びにこれを用いるエレベータに関する。 The present invention relates to a car position detection device that detects the position of a car based on an image inside a hoistway, and an elevator using the same.
 エレベータの安全装置においては、ガバナにより過速度状態を検知すると、動力電源を遮断したり、非常止め装置を動作させたりして、乗りかごを非常停止する。ガバナは、長尺物であるガバナロープを備えているため、昇降路内において、ガバナロープを敷設するスペースを要する。 In the elevator safety device, when the governor detects an overspeed condition, the power supply is cut off or the emergency stop device is activated to bring the car to an emergency stop. Since the governor is equipped with a governor rope that is long, a space for laying the governor rope is required in the hoistway.
 このようなガバナに代えて、昇降路内の画像を用いて乗りかごの速度や位置を検出する技術が知られている(特許文献1参照)。 Instead of using such a governor, there is a known technique for detecting the speed and position of the car using an image inside the hoistway (see Patent Document 1).
 例えば、特許文献1に記載の技術では、乗りかごに設けられる計測装置が、ガイドレールの凹凸表面の画像を取り込む。計測装置は、取り込んだタイミングが異なる第1のフレームと第2のフレームとの間の画像のずれと、第1のフレームおよび第2のフレームにおける取り込み時間の時間差とから、乗りかごの位置および移動速度を算出する。 For example, in the technique described in Patent Literature 1, a measuring device provided in the car captures an image of the uneven surface of the guide rail. The measurement device determines the position and movement of the car based on the image shift between the first frame and the second frame captured at different timings and the time difference between the capture times of the first frame and the second frame. Calculate speed.
国際公開第2021/038984号WO2021/038984
 特許文献1に記載の技術では、かご位置計測系の異常については、必ずしも考慮されてはいない。このため、特許文献1の技術によるかご位置検出装置を安全装置に適用する場合、安全装置の信頼性の確保が問題となる。 The technology described in Patent Document 1 does not necessarily take into consideration anomalies in the car position measurement system. Therefore, when applying the car position detection device according to the technique of Patent Document 1 to a safety device, ensuring the reliability of the safety device becomes a problem.
 そこで、本発明は、昇降路内の画像に基づいて乗りかごの位置を計測しながらも、信頼性の高い、かご位置検出装置、並びに、このかご位置検出装置を用いるエレベータを提供する。 Therefore, the present invention provides a highly reliable car position detection device and an elevator using this car position detection device while measuring the position of the car based on the images in the hoistway.
 上記課題を解決するために、本発明によるかご位置検出装置は、昇降路内の画像に基づいてエレベータの乗りかごの位置を検出するものであって、乗りかごに設けられ、乗りかごを案内するガイドレールの表面画像を取得する画像センサと、ガイドレールの表面に設けられるマークと、画像センサが取得する表面画像に基づいて、乗りかごの位置を算出し、算出された乗りかごの位置を、画像センサが取得するマークの画像に基づいて補正する安全コントローラと、を備え、安全コントローラは、マークの位置情報と算出された乗りかごの位置とに基づいて、マークの異常を検出し、安全コントローラは、マークの異常を検出すると、外部装置へ異常について報知する。 In order to solve the above-mentioned problems, the car position detection device according to the present invention detects the position of the car of an elevator based on the image in the hoistway. The position of the car is calculated based on the image sensor that acquires the surface image of the guide rail, the marks provided on the surface of the guide rail, and the surface image acquired by the image sensor. a safety controller for correcting based on the image of the mark acquired by the image sensor, the safety controller detecting an abnormality in the mark based on the positional information of the mark and the calculated position of the car; detects an abnormality in the mark, it notifies the external device of the abnormality.
 上記課題を解決するために、本発明によるかご位置検出装置は、昇降路内の画像に基づいてエレベータの乗りかごの位置を検出するものであって、乗りかごに設けられ、乗りかごを案内する一対のガイドレールの内の一方のガイドレールの表面画像を取得する第1画像センサと、乗りかごに設けられ、一対のガイドレールの内の他方のガイドレールの表面画像を取得する第2画像センサと、一方のガイドレールの表面に設けられる第1マークと、他方のガイドレールの表面に設けられる第2マークと、第1画像センサが取得する一方のガイドレールの表面画像に基づいて、乗りかごの第1位置を算出し、算出された第1位置を、第1画像センサが取得する第1マークの画像に基づいて補正するとともに、第2画像センサが取得する他方のガイドレールの表面画像に基づいて、乗りかごの第2位置を算出し、算出された第2位置を、第2画像センサが取得する第2マークの画像に基づいて補正する安全コントローラと、を備え、安全コントローラは、第1マークの位置情報と算出された第1位置とに基づいて、第1マークの異常を検出するとともに、第2マークの位置情報と算出された第2位置とに基づいて、第2マークの異常を検出し、安全コントローラは、第1マークまたは第2マークの異常を検出すると、外部装置へ異常について報知する。 In order to solve the above-mentioned problems, the car position detection device according to the present invention detects the position of the car of an elevator based on the image in the hoistway. A first image sensor that acquires a surface image of one guide rail of the pair of guide rails, and a second image sensor that is provided in the car and acquires a surface image of the other guide rail of the pair of guide rails. And, based on the first mark provided on the surface of one guide rail, the second mark provided on the surface of the other guide rail, and the surface image of the one guide rail acquired by the first image sensor, the car and correcting the calculated first position based on the image of the first mark acquired by the first image sensor, and the surface image of the other guide rail acquired by the second image sensor. a safety controller that calculates a second position of the car based on the An abnormality of the first mark is detected based on the position information of the first mark and the calculated first position, and an abnormality of the second mark is detected based on the position information of the second mark and the calculated second position. , and when the safety controller detects an abnormality in the first mark or the second mark, it notifies the external device of the abnormality.
 上記課題を解決するために、本発明によるエレベータは、乗りかごと、昇降路内を移動する乗りかごを案内するガイドレールと、乗りかごの運転を制御する制御装置と、昇降路内の画像に基づいて乗りかごの位置を検出するかご位置検出装置と、を備えるものであって、かご位置検出装置は、ガイドレールの表面画像を取得する画像センサと、ガイドレールの表面に設けられるマークと、画像センサが取得する表面画像に基づいて、乗りかごの位置を算出し、算出された乗りかごの位置を、画像センサが取得するマークの画像に基づいて補正する安全コントローラと、を備え、安全コントローラは、マークの位置情報と算出された乗りかごの位置とに基づいて、マークの異常を検出し、制御装置は、異常が検出されたマークの保守作業時に、作業位置まで乗りかごを移動させ、作業位置に乗りかごを停止させる。 In order to solve the above problems, an elevator according to the present invention includes a car, a guide rail for guiding the car moving in the hoistway, a control device for controlling the operation of the car, and an image in the hoistway. a car position detection device that detects the position of the car based on the image sensor that acquires the surface image of the guide rail; the mark provided on the surface of the guide rail; a safety controller that calculates the position of the car based on the surface image acquired by the image sensor, and corrects the calculated position of the car based on the image of the mark acquired by the image sensor; detects an abnormality in the mark based on the position information of the mark and the calculated position of the car, and the control device moves the car to the work position during maintenance work on the mark in which the abnormality is detected, Stop the car in the working position.
 本発明によれば、昇降路内の画像に基づき乗りかごの位置を計測するかご位置検出装置、並びにそれを用いるエレベータの信頼性が向上する。 According to the present invention, the reliability of the car position detection device that measures the position of the car based on the image inside the hoistway and the elevator using it is improved.
 上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。 Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
実施形態であるエレベータの全体構成を示す構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram which shows the whole structure of the elevator which is embodiment. 実施形態における安全コントローラの構成を示す機能ブロック図である。It is a functional block diagram showing the configuration of a safety controller in the embodiment. ガイドレールの露出表面の画像の一例を示す模式図である。It is a schematic diagram which shows an example of the image of the exposed surface of a guide rail. 実施形態における安全コントローラの動作を示すフローチャートである。It is a flow chart which shows operation of a safety controller in an embodiment.
 以下、本発明による一実施形態であるエレベータについて、図面を用いながら説明する。各図において、参照番号が同一のものは同一の構成要件あるいは類似の機能を備えた構成要件を示している。 An elevator that is one embodiment according to the present invention will be described below with reference to the drawings. In each figure, the same reference numbers denote the same components or components with similar functions.
 図1は、本発明の一実施形態であるエレベータの全体構成を示す構成図である。 FIG. 1 is a configuration diagram showing the overall configuration of an elevator that is one embodiment of the present invention.
 図1に示すように、実施形態においては、乗りかご1および釣合おもり2が、それぞれ主ロープ3の一端および他端に機械的に接続される。主ロープ3は、巻上機4が有するシーブに巻き掛けられる。これにより、乗りかご1および釣合おもり2が、建築物に設けられる昇降路内に吊られる。すなわち、実施形態は、いわゆる、つるべ式のエレベータである。なお、実施形態において、巻上機4は、昇降路上に設けられる機械室内に設置される。 As shown in FIG. 1, in the embodiment, the car 1 and the counterweight 2 are mechanically connected to one end and the other end of the main rope 3, respectively. The main rope 3 is wound around a sheave of the hoist 4 . Thereby, the car 1 and the counterweight 2 are suspended in a hoistway provided in the building. That is, the embodiment is a so-called barrel-type elevator. In addition, in the embodiment, the hoist 4 is installed in a machine room provided on the hoistway.
 巻上機4が有するモータが回転して、シーブが回転駆動されると、主ロープ3が、シーブと主ロープ3との間の摩擦力によって直線的に駆動される。これにより、乗りかご1および釣合おもり2は、昇降路内を、互いに上下反対方向に移動する。 When the motor of the hoisting machine 4 rotates and drives the sheave to rotate, the main rope 3 is linearly driven by the frictional force between the sheave and the main rope 3 . As a result, the car 1 and the counterweight 2 move in opposite directions in the hoistway.
 なお、巻上機4が有するモータは、エレベータ制御装置6が備える電力変換装置(例えば、インバータ装置)によって駆動される。なお、エレベータ制御装置6は、電力変換装置を制御して乗りかご1の運転を制御する制御部を備えている。 The motor of the hoisting machine 4 is driven by a power conversion device (for example, an inverter device) of the elevator control device 6 . The elevator control device 6 includes a control section that controls the operation of the car 1 by controlling the power conversion device.
 乗りかご1は、案内装置20(例えば、ガイドシュー)を介して、ガイドレール5a,5bに、移動可能に係合する。このため、乗りかご1は、ガイドレール5a,5bに案内されながら、任意の階床間で移動する。なお、実施形態では、ガイドレール5a,5bとして、一般的なT型ガイドレールが適用される。また、釣合おもり2は、図示されない釣合おもり用のガイドレールに案内されながら移動する。 The car 1 is movably engaged with the guide rails 5a, 5b via a guide device 20 (for example, guide shoes). Therefore, the car 1 moves between arbitrary floors while being guided by the guide rails 5a and 5b. In addition, in the embodiment, a general T-shaped guide rail is applied as the guide rails 5a and 5b. The counterweight 2 moves while being guided by a guide rail for the counterweight (not shown).
 乗りかご1の上部には、安全コントローラ8が設置されている。安全コントローラ8は、乗りかご1の上部に設置される画像センサ9a,9bと電気的に接続されている。画像センサ9a,9bは、それぞれ、昇降路内における静止物であるガイドレール5a,5bの表面画像を取得する。実施形態では、ガイドレール5a,5bの表面画像として、T字の足部の先端部の表面画像が取得される。安全コントローラ8は、画像センサ9a,9bによって取得されるガイドレール5a,5bの表面画像に基づいて、乗りかご1の位置を計測する。 A safety controller 8 is installed on the top of the car 1. The safety controller 8 is electrically connected to image sensors 9 a and 9 b installed on the top of the car 1 . Image sensors 9a and 9b acquire surface images of guide rails 5a and 5b, which are stationary objects in the hoistway, respectively. In the embodiment, as the surface images of the guide rails 5a and 5b, the surface images of the tips of the T-shaped legs are acquired. The safety controller 8 measures the position of the car 1 based on the surface images of the guide rails 5a and 5b acquired by the image sensors 9a and 9b.
 安全コントローラ8は、画像センサ9aによって取得される画像に基づいて、昇降路内における乗りかご1の位置(以下、「かご位置A」と記す)を計測する。また、安全コントローラ8は、画像センサ9bによって取得される画像に基づいて、昇降路内における乗りかご1の位置(以下、「かご位置B」と記す)を、かご位置Aとは独立に計測する。すなわち、安全コントローラ8は、2系統のかご位置計測系を有している。 The safety controller 8 measures the position of the car 1 in the hoistway (hereinafter referred to as "car position A") based on the image acquired by the image sensor 9a. In addition, the safety controller 8 measures the position of the car 1 in the hoistway (hereinafter referred to as "car position B") independently of the car position A based on the image acquired by the image sensor 9b. . That is, the safety controller 8 has two car position measurement systems.
 画像センサ9a,9bとしては、CCDやCMOSセンサなどが適用される。 A CCD, a CMOS sensor, or the like is applied as the image sensors 9a and 9b.
 安全コントローラ8が有するかご位置計測系(図示せず)は、エレベータ制御装置6が通常の運転制御に用いるかご位置計測系とは独立している。エレベータ制御装置6が有するかご位置計測系は、例えば、巻上機4のモータの回転位置を検出するレゾルバもしくはロータリエンコーダなどの回転位置検出器と、乗りかご1に設けられる光電式もしくは磁気式の位置検出器と、昇降路内の階床間に設けられる、位置検出器用の遮蔽板(光遮蔽もしくは磁気遮蔽)とによって構成される。 The car position measurement system (not shown) that the safety controller 8 has is independent of the car position measurement system that the elevator control device 6 uses for normal operation control. The car position measurement system of the elevator control device 6 includes, for example, a rotational position detector such as a resolver or a rotary encoder for detecting the rotational position of the motor of the hoisting machine 4, and a photoelectric or magnetic sensor provided in the car 1. It is composed of a position detector and a shielding plate (optical shielding or magnetic shielding) for the position detector provided between floors in the hoistway.
 ガイドレール5aの表面には、昇降路内における高さ方向の位置情報を示す、階床間マーク10a,11a,12aが設けられる。また、ガイドレール5bの表面には、昇降路内における高さ方向の位置情報を示す階床間マーク10b,11b,12bが設けられる。これらの階床間マークの各々は、上下方向で隣接する二つの階床間に位置するとともに、これら二つの階床の内の上側の階床の近くに位置する。階床間マーク10a,10bは、昇降路内において同じ高さに位置する。すなわち、階床間マーク10a,10bは、同じ位置情報を示す。同様に、階床間マーク11a,11bは同じ位置情報を示し、そして階床間マーク12a,12bは同じ位置情報を示す。 On the surface of the guide rail 5a, floor-to- floor marks 10a, 11a, and 12a are provided to indicate positional information in the hoistway in the height direction. Further, floor-to- floor marks 10b, 11b, and 12b indicating position information in the height direction in the hoistway are provided on the surface of the guide rail 5b. Each of these floor-to-floor marks is located between two vertically adjacent floors and is located near the upper one of these two floors. The floor-to- floor marks 10a and 10b are located at the same height in the hoistway. That is, the floor-to- floor marks 10a and 10b indicate the same position information. Similarly, floor-to- floor marks 11a, 11b indicate the same location information, and floor-to- floor marks 12a, 12b indicate the same location information.
 階床間マークとしては、例えば、一次元バーコードや二次元バーコードなどのパターン形状が描かれているシート状の部材が適用される。この場合、シート状の部材が、ガイドレールの表面に、接着剤により貼り付けられる。また、階床間マークは、塗料などを用いて、ガイドレール表面に直接描かれてもよい。 As the floor-to-floor mark, for example, a sheet-shaped member with a pattern shape such as a one-dimensional barcode or two-dimensional barcode is applied. In this case, a sheet-like member is attached to the surface of the guide rail with an adhesive. Alternatively, floor-to-floor marks may be drawn directly on the guide rail surface using paint or the like.
 安全コントローラ8は、乗りかご1が走行中に、画像センサ9aによって階床間マーク10a,11a,12aを検出すると、検出される階床間マークに対応する位置情報により、かご位置Aの計測値を補正する。また、安全コントローラ8は、乗りかご1が走行中に、画像センサ9bによって階床間マーク10b,11b,12bを検出すると、検出される階床間マークに対応する位置情報により、かご位置Bの計測値を補正する。 When the image sensor 9a detects the floor-to- floor marks 10a, 11a, and 12a while the car 1 is running, the safety controller 8 detects the measured value of the car position A based on the position information corresponding to the detected floor-to-floor marks. correct. Further, when the image sensor 9b detects the floor-to- floor marks 10b, 11b, and 12b while the car 1 is running, the safety controller 8 determines the car position B based on the position information corresponding to the detected floor-to-floor marks. Correct the measured value.
 安全コントローラ8は、各階床間マークと、昇降路内の高さ方向における位置情報との対応を示す、マーク位置データを、予め記憶している。この位置情報は、昇降路内の基準位置から各階床間マークが設けられている位置までの高さを示す。実施形態では、基準位置を、基準階である最下階(図示せず)の床面としている。なお、最下階は、図1中の中間階FL1の下方に位置する。 The safety controller 8 pre-stores mark position data indicating the correspondence between each floor-to-floor mark and position information in the height direction within the hoistway. This position information indicates the height from the reference position in the hoistway to the position where each floor-to-floor mark is provided. In the embodiment, the reference position is the floor surface of the lowest floor (not shown), which is the reference floor. The lowest floor is located below the intermediate floor FL1 in FIG.
 実施形態では、かご位置A,Bを、基準位置、すなわち最下階の床面から、乗りかご1の床板面までの高さとしている。この場合、安全コントローラ8は、画像センサ9aによって検出される階床間マークの位置情報から、乗りかご1における画像センサ9aの設置高さ、すなわち、乗りかご1の床板面からの画像センサ9aの高さを減算することにより、かご位置Aを算出する。また、安全コントローラ8は、画像センサ9bによって検出される階床間マークの位置情報から、乗りかご1における画像センサ9bの設置高さ、すなわち、乗りかご1の床板面からの画像センサ9bの高さを減算することにより、かご位置Bを算出する。 In the embodiment, the car positions A and B are the reference position, that is, the height from the floor surface of the lowest floor to the floor plate surface of the car 1 . In this case, the safety controller 8 determines the installation height of the image sensor 9a in the car 1, that is, the height of the image sensor 9a from the floor plate surface of the car 1, from the position information of the floor-to-floor mark detected by the image sensor 9a. Car position A is calculated by subtracting the height. In addition, the safety controller 8 determines the installation height of the image sensor 9b in the car 1, that is, the height of the image sensor 9b from the floor surface of the car 1, from the position information of the floor-to-floor mark detected by the image sensor 9b. The car position B is calculated by subtracting the height.
 安全コントローラ8は、かご位置A,Bとして、通常は、それぞれガイドレール5a,5bの表面画像に基づく計測値を設定する。安全コントローラ8は、階床間マーク10a,11a,12aを検出すると、検出される階床間マークの位置情報に基づく算出値を、かご位置Aとして設定する。また、安全コントローラ8は、階床間マーク10b,11b,12bを検出すると、検出される階床間マークの位置情報に基づく算出値を、かご位置Bとして設定する。これにより、誤差が蓄積されたかご位置A,Bが補正される。 The safety controller 8 normally sets measured values for the car positions A and B based on the surface images of the guide rails 5a and 5b, respectively. When the safety controller 8 detects the floor-to- floor marks 10a, 11a, and 12a, the safety controller 8 sets the car position A to a calculated value based on the position information of the detected floor-to-floor marks. Further, when the safety controller 8 detects the floor-to- floor marks 10b, 11b, and 12b, the safety controller 8 sets the car position B to a calculated value based on the position information of the detected floor-to-floor marks. As a result, the car positions A and B in which errors have been accumulated are corrected.
 階床間マークは、昇降路内における各階床間で少なとも一つ設けられる(実施形態では、一つのみ)。これにより、乗りかご1の走行ごとに、かご位置A,Bが補正されるので、かご位置の計測精度が向上する。階床間マークとしては、例えば、バーコードなどが適用される。なお、異なる位置情報には、異なる階床間マークが対応する。 At least one floor-to-floor mark is provided between each floor in the hoistway (only one in the embodiment). As a result, the car positions A and B are corrected each time the car 1 travels, so that the car position measurement accuracy is improved. As the floor-to-floor mark, for example, a barcode or the like is applied. Note that different inter-floor marks correspond to different position information.
 実施形態における安全コントローラ8は、ガイドレール5a,5bの表面画像および階床間マークの画像に基づいて、階床間マークの異常の有無を判定する。なお、実施形態では、後述するように、安全コントローラ8は、画像センサ9a,9bによって取得されるガイドレール5a,5bの表面画像に基づいて算出されるかご位置A,Bの計測値と、画像センサ9a,9bによって取得される画像に基づいて検出される階床間マークが示す位置情報とに基づいて、階床間マークの異常の有無を判定する。 The safety controller 8 in the embodiment determines whether there is an abnormality in the inter-floor mark based on the surface images of the guide rails 5a and 5b and the image of the inter-floor mark. In the embodiment, as will be described later, the safety controller 8 calculates the measured values of the car positions A and B based on the surface images of the guide rails 5a and 5b acquired by the image sensors 9a and 9b, and the image Based on the position information indicated by the floor-to-floor mark detected based on the images acquired by the sensors 9a and 9b, it is determined whether there is an abnormality in the floor-to-floor mark.
 安全コントローラ8は、異常であると判定した階床間マークに関する情報(以下、「異常マーク情報」と記す)を、テールコード7を介してエレベータ制御装置6に送る。さらに、エレベータ制御装置6は、この異常マーク情報を自装置内に記録するとともに、通信網100(例えば、電話回線、インターネットなど)を介して管制センタ30が備える監視サーバ装置へ送信する。監視サーバ装置は、エレベータの設置場所から離れた遠隔地に設置される。そして、監視サーバ装置は、通信網100を介して、実施形態のエレベータを含む複数のエレベータにおける各エレベータ制御装置と通信することにより、複数のエレベータの稼働状態を監視する。 The safety controller 8 sends information about the inter-floor mark determined to be abnormal (hereinafter referred to as "abnormal mark information") to the elevator control device 6 via the tail code 7. Further, the elevator control device 6 records this abnormality mark information in its own device and transmits it to the monitoring server device provided in the control center 30 via the communication network 100 (for example, telephone line, Internet, etc.). The monitoring server device is installed at a remote location away from the installation location of the elevator. The monitoring server device monitors the operating states of the plurality of elevators by communicating with each elevator control device in the plurality of elevators, including the elevator of the embodiment, via the communication network 100 .
 エレベータ制御装置6に保守ツール40が接続されている場合、異常マーク情報は保守ツール40に送られる。あるいは、保守ツール40は、エレベータ制御装置6が記録する異常マーク情報を読み取る。これにより、保守ツール40は異常マーク情報を取得する。保守ツール40は表示部41を備えている。取得される異常マーク情報は、表示部41に文字や数字などによって表示される。 When the maintenance tool 40 is connected to the elevator control device 6, the abnormality mark information is sent to the maintenance tool 40. Alternatively, maintenance tool 40 reads fault mark information recorded by elevator controller 6 . Thereby, the maintenance tool 40 acquires the error mark information. The maintenance tool 40 has a display section 41 . The acquired abnormality mark information is displayed on the display unit 41 using characters, numbers, and the like.
 保守ツール40は、保守技術者が保守作業時に用いる携帯用端末機器であり、例えば、携帯用パーソナルコンピュータからなる。保守ツール40は、保守作業や作業対象エレベータに関する各種データを格納するとともに、エレベータ制御装置6が記録しているエレベータの動作状態に関するデータを読み込む機能や、エレベータ制御装置6に保守運転を指令する機能などを有している。 The maintenance tool 40 is a portable terminal device used by maintenance engineers during maintenance work, and consists of a portable personal computer, for example. The maintenance tool 40 stores various data related to maintenance work and elevators to be worked on, has a function of reading data related to the operating state of the elevator recorded by the elevator control device 6, and has a function of commanding the elevator control device 6 to perform maintenance operation. etc.
 異常マーク情報は、異常と判定される階床間マークを特定するための情報であり、例えば、図1に示すように、階床間マークが設けられている階床位置(図1では、「3階・4階間」)およびガイドレール(図1では、「左側レール」)、並びに階床間マークの識別情報(図1では「ID」)を含む。 The abnormal mark information is information for specifying an inter-floor mark that is determined to be abnormal. For example, as shown in FIG. 1, the floor position (in FIG. 1, " 3rd and 4th floors”), guide rails (“left rail” in FIG. 1), and identification information of floor-to-floor marks (“ID” in FIG. 1).
 保守ツール40は、エレベータの稼働中にエレベータ制御装置6に記録された異常マーク情報を取得してもよいし、乗りかご1を保守運転させながら検出された異常マーク情報を取得してもよい。 The maintenance tool 40 may acquire the abnormality mark information recorded in the elevator control device 6 while the elevator is in operation, or may acquire the abnormality mark information detected while the car 1 is being operated for maintenance.
 保守技術者が、異常が検出された階床間マークの保守作業を行う場合、保守技術者は、乗りかご1の天井上で保守ツール40を操作して、保守作業を施す階床間マークの近くの作業位置まで、乗りかご1を保守運転モードで移動させる。この場合、異常マーク情報を取得している保守ツール40は、エレベータ制御装置6に対して、異常マーク情報に含まれる異常が検出された階床間マークの位置情報に応じた作業位置まで乗りかご1を移動させて停止させることを指令する保守運転指令を送出する。これにより、乗りかご1が自動で作業位置まで移動して停止すると、保守技術者は、階床間マークの交換などの保守作業を行う。 When a maintenance engineer performs maintenance work on the floor-to-floor mark in which an abnormality has been detected, the maintenance engineer operates the maintenance tool 40 on the ceiling of the car 1 to perform maintenance work on the floor-to-floor mark. The car 1 is moved in maintenance operation mode to a nearby work position. In this case, the maintenance tool 40, which has acquired the abnormality mark information, instructs the elevator control device 6 to move the car to the work position according to the position information of the mark between floors where the abnormality is detected, which is included in the abnormality mark information. 1 is moved and stopped. As a result, when the car 1 automatically moves to the work position and stops, the maintenance engineer performs maintenance work such as replacing floor-to-floor marks.
 図2は、実施形態における安全コントローラ8の構成を示す機能ブロック図である。 FIG. 2 is a functional block diagram showing the configuration of the safety controller 8 in the embodiment.
 実施形態において、安全コントローラ8はマイクロコンピュータなどのコンピュータシステムを備え、コンピュータシステムが、所定のプログラムを実行することにより、各部として動作する。 In the embodiment, the safety controller 8 has a computer system such as a microcomputer, and the computer system operates as each part by executing a predetermined program.
 上述のように、安全コントローラ8は、互いに独立する二つのかご位置計測系を有する。すなわち、安全コントローラ8は、画像センサ9aによって取得される画像Aに基づいてかご位置Aを計測するかご位置計測系(以下、「かご位置計測系A」と記す)と、画像センサ9bによって取得される画像Bに基づいてかご位置Bを計測するかご位置計測系(以下、「かご位置計測系B」と記す)と、を有する。 As described above, the safety controller 8 has two independent car position measurement systems. That is, the safety controller 8 includes a car position measurement system (hereinafter referred to as "car position measurement system A") that measures the car position A based on the image A acquired by the image sensor 9a, and an image sensor 9b. a car position measurement system (hereinafter referred to as “car position measurement system B”) that measures the car position B based on the image B that is displayed.
 画像センサ9aを用いる、かご位置計測系Aは、図2に示すように、画像検出部801a、画像比較部802a、かご位置演算部803a、マーク検出部804a、補正位置検出部805a、マーク位置メモリ806a、画像メモリ807a、および、かご位置メモリ808aによって構成される。また、画像センサ9bを用いる、かご位置計測系Bは、画像検出部801b、画像比較部802b、かご位置演算部803b、マーク検出部804b、補正位置検出部805b、マーク位置メモリ806b、画像メモリ807b、および、かご位置メモリ808bによって構成される。各部の機能は、次のとおりである。 The car position measurement system A using the image sensor 9a includes, as shown in FIG. 806a, image memory 807a, and cage position memory 808a. The car position measurement system B using the image sensor 9b includes an image detection unit 801b, an image comparison unit 802b, a car position calculation unit 803b, a mark detection unit 804b, a correction position detection unit 805b, a mark position memory 806b, and an image memory 807b. , and a car position memory 808b. The function of each part is as follows.
 画像検出部801aは、画像センサ9aからの信号に基づいて、ガイドレール5a(図1)の表面の画像を、所定時間間隔で検出する。 The image detection unit 801a detects an image of the surface of the guide rail 5a (FIG. 1) at predetermined time intervals based on the signal from the image sensor 9a.
 画像メモリ807aは、画像検出部801aが検出した画像を記憶する。 The image memory 807a stores the image detected by the image detection unit 801a.
 画像比較部802aは、画像検出部801aによって検出される現時点の画像と、画像メモリ807aが記憶する前時点の画像とを比較して、両画像のずれを計測する。なお、比較手段として、例えば、画像相関法が適用される。実施形態では、両画像のずれは乗りかご1(図1)の移動量に相当する。 The image comparison unit 802a compares the current image detected by the image detection unit 801a with the previous image stored in the image memory 807a, and measures the deviation between the two images. As a comparison means, for example, an image correlation method is applied. In the embodiment, the deviation between both images corresponds to the amount of movement of the car 1 (FIG. 1).
 かご位置演算部803aは、画像比較部802aによって算出された画像のずれに基づいて、かご位置Aを演算する。前述のように、算出された画像のずれは乗りかご1の移動量に相当するので、所定時間間隔で計測される画像のずれを、逐次、積算することにより、現時点でのかご位置Aが算出される。 The car position calculation unit 803a calculates the car position A based on the image shift calculated by the image comparison unit 802a. As described above, the calculated image shift corresponds to the amount of movement of the car 1. Therefore, the current car position A is calculated by sequentially integrating the image shifts measured at predetermined time intervals. be done.
 かご位置メモリ808aは、かご位置演算部803aによって演算されたかご位置を記憶する。 The car position memory 808a stores the car position calculated by the car position calculation unit 803a.
 なお、かご位置演算部803aは、前時点に演算されて、かご位置メモリ808aに記憶されたかご位置Aをかご位置メモリ808aから読み出し、読み出した前時点のかご位置Aに、現時点で算出した画像のずれすなわち乗りかご1の移動量を加算もしくは減算することにより、現時点におけるかご位置Aを算出する。このような演算が、エレベータの稼働中に繰り返し実行されることにより、乗りかご1の移動量が、逐次、積算される。これにより、昇降路内を移動する乗りかご1のかご位置Aが計測される。 The car position calculation unit 803a reads out the car position A calculated at the previous time and stored in the car position memory 808a from the car position memory 808a, and stores the calculated car position A at the previous time. By adding or subtracting the displacement of the car 1, that is, the amount of movement of the car 1, the current car position A is calculated. By repeatedly executing such calculations while the elevator is in operation, the amount of movement of the car 1 is successively integrated. Thereby, the car position A of the car 1 moving in the hoistway is measured.
 マーク検出部804aは、画像検出部801aによって検出される現時点の画像に基づいて、階床間マーク10a,11a,12a(図1)を検出する。マーク検出部804aは、パターン認識などにより、階床間マーク10a,11a,12aを識別する。この場合、マーク検出部804aは、予め階床間マーク10a,11a,12aの基本画像データを記憶し、検出された画像と基本画像データとを比較することにより、階床間マーク10a,11a,12aを検出する。なお、比較手段としては、例えば、画像相関法が適用される。 The mark detection unit 804a detects the floor-to- floor marks 10a, 11a, and 12a (FIG. 1) based on the current image detected by the image detection unit 801a. The mark detection unit 804a identifies the floor-to- floor marks 10a, 11a, and 12a by pattern recognition or the like. In this case, the mark detection unit 804a stores the basic image data of the inter-floor marks 10a, 11a, 12a in advance, and compares the detected image with the basic image data to detect the inter-floor marks 10a, 11a, 12a. 12a is detected. As the comparison means, for example, an image correlation method is applied.
 補正位置検出部805aは、検出された階床間マーク10a,11a,12aが示す位置情報をマーク位置メモリ806aから取得し、階床間マークに異常がない場合、かご位置演算部803aで演算されるかご位置Aの計測値を、取得した位置情報に応じて補正する。この場合、かご位置演算部803aは、補正されたかご位置Aの計測値を出力する。これにより、乗りかご1の移動量の積算に伴い蓄積されたかご位置Aの誤差が補正され、かご位置Aの計測値の精度が向上する。なお、階床間マーク10a,11a,12aの異常判定に関わる補正位置検出部805aの機能については、後述する。 The corrected position detection unit 805a acquires the position information indicated by the detected inter-floor marks 10a, 11a, and 12a from the mark position memory 806a, and if there is no abnormality in the inter-floor marks, the car position calculation unit 803a calculates the position information. The measured value of car position A is corrected according to the acquired position information. In this case, the cage position calculator 803a outputs the measured value of the cage position A corrected. As a result, the error of the car position A accumulated along with the integration of the movement amount of the car 1 is corrected, and the accuracy of the measured value of the car position A is improved. The function of the correction position detection unit 805a related to abnormality determination of the floor-to- floor marks 10a, 11a, and 12a will be described later.
 マーク位置メモリ806aは、階床間マーク10a,11a,12aと、階床間マーク10a,11a,12aが示す位置情報との対応データを、予め記憶している。 The mark position memory 806a preliminarily stores correspondence data between the floor-to- floor marks 10a, 11a, and 12a and the position information indicated by the floor-to- floor marks 10a, 11a, and 12a.
 なお、かご位置計測系Bにおける、画像検出部801b、画像比較部802b、かご位置演算部803b、マーク検出部804b、補正位置検出部805b、マーク位置メモリ806b、画像メモリ807b、および、かご位置メモリ808bの各機能は、それぞれ、かご位置計測系Aにおける、画像検出部801a、画像比較部802a、かご位置演算部803a、マーク検出部804a、補正位置検出部805a、マーク位置メモリ806a、画像メモリ807a、および、かご位置メモリ808aの各機能と同様である。 In addition, in the car position measurement system B, an image detection unit 801b, an image comparison unit 802b, a car position calculation unit 803b, a mark detection unit 804b, a correction position detection unit 805b, a mark position memory 806b, an image memory 807b, and a car position memory. Each function of 808b is an image detection unit 801a, an image comparison unit 802a, a car position calculation unit 803a, a mark detection unit 804a, a correction position detection unit 805a, a mark position memory 806a, and an image memory 807a in the car position measurement system A. , and the functions of the car position memory 808a.
 次に、各かご位置計測系が備える階床間マークの異常検出機能について説明する。 Next, we will explain the abnormality detection function of the floor-to-floor marks provided in each car position measurement system.
 なお、階床間マークの異常とは、例えば、剥離、剥落、汚染、汚損、欠損などである。 It should be noted that the abnormalities of the floor-to-floor marks are, for example, delamination, peeling, contamination, defacement, and defects.
 かご位置計測系Aが備える補正位置検出部805aは、マーク検出部804aによって階床間マーク10a,11a,12aが検出される場合、マーク位置メモリ806aから、検出された階床間マークの位置情報を読み出す。また、補正位置検出部805aは、マーク検出部804aによって階床間マーク10a,11a,12aが検出されていない場合、マーク位置メモリ806aから、現時点よりも前に検出された10a,11a,12aの位置情報を読み出す。 When the mark detection unit 804a detects the inter-floor marks 10a, 11a, and 12a, the corrected position detection unit 805a provided in the car position measurement system A obtains the position information of the detected inter-floor marks from the mark position memory 806a. read out. Further, when the mark detection unit 804a has not detected the inter-floor marks 10a, 11a, 12a, the correction position detection unit 805a detects the marks 10a, 11a, 12a detected before the present time from the mark position memory 806a. Read location information.
 マーク異常判定部813aは、補正位置検出部805aによって読み出される階床間マーク10a,11a,12aの位置情報と、かご位置演算部803aによって演算される現時点のかご位置Aの補正前の計測値とを比較することによって、階床間マーク10a,11a,12aの異常の有無を判定する。例えば、検出された階床間マークの位置情報と、かご位置Aの計測値との差異が大きい場合や、現時点よりも前に検出された階床間マークの位置情報とかご位置Aの計測値との差異が大きく、通常ならば階床間マークが検出される位置であるにも関わらず階床間マークが検出されていない場合に、マーク異常判定部813aは、階床間マークが異常であると判定する。 The mark abnormality determination unit 813a combines the position information of the floor-to- floor marks 10a, 11a, and 12a read by the corrected position detection unit 805a with the measured value of the current car position A before correction calculated by the car position calculation unit 803a. are compared to determine whether there is an abnormality in the floor-to- floor marks 10a, 11a, and 12a. For example, when there is a large difference between the detected position information of the inter-floor mark and the measured value of car position A, is large, and if the inter-floor mark is not detected although the inter-floor mark is normally detected, the mark abnormality determination unit 813a determines that the inter-floor mark is abnormal. Determine that there is.
 マーク異常判定部813aは、階床間マークが正常であると判定すると、かご位置演算部803aによって演算される現時点のかご位置Aの計測値を、階床間マークの位置情報に補正する。 When the mark abnormality determination unit 813a determines that the floor-to-floor mark is normal, it corrects the current measured value of the car position A calculated by the car-position calculation unit 803a to the position information of the floor-to-floor mark.
 なお、かご位置計測系Bにおける階床間マーク異常検出機能は、かご位置計測系Aにおける階床間マーク異常検出機能と同様である。したがって、マーク異常判定部813bの機能は、マーク異常判定部813aの機能と同様である。 Note that the inter-floor mark abnormality detection function in the car position measurement system B is the same as the inter-floor mark abnormality detection function in the car position measurement system A. Therefore, the function of the mark abnormality determination section 813b is the same as the function of the mark abnormality determination section 813a.
 安全コントローラ8は、さらに、かご位置決定部811、かご制止部812、異常時処理決定部814を有している。 The safety controller 8 further has a car position determining unit 811, a car stopping unit 812, and an abnormality processing determining unit 814.
 かご位置決定部811は、階床間マークの異常が検出されていない場合、かご位置演算部803aが出力するかご位置Aの計測値と、かご位置演算部803bが出力するかご位置Bの計測値とを比較し、画像センサ9aもしくは画像センサ9bの故障の有無を判定する。実施形態では、かご位置決定部811は、かご位置Aの計測値とかご位置Bの計測値との差分を演算し、差分の大きさ(絶対値)が所定値以下であるか否かを判定する。かご位置決定部811は、差分の大きさ(絶対値)が所定値以下である場合、画像センサ9a,9bは故障しておらず正常であると判定する。また、かご位置決定部811は、差分の大きさ(絶対値)が所定値を超える場合、画像センサ9aまたは画像センサ9bが故障していると判定する。 If no abnormality in the floor-to-floor mark is detected, the car position determination unit 811 determines the measured value of the car position A output by the car position calculation unit 803a and the measured value of the car position B output by the car position calculation unit 803b. to determine whether the image sensor 9a or the image sensor 9b is faulty. In the embodiment, the car position determination unit 811 calculates the difference between the measured value of the car position A and the measured value of the car position B, and determines whether the magnitude (absolute value) of the difference is equal to or less than a predetermined value. do. If the magnitude (absolute value) of the difference is equal to or less than a predetermined value, the car position determination unit 811 determines that the image sensors 9a and 9b are normal and not out of order. Further, when the magnitude (absolute value) of the difference exceeds a predetermined value, the car position determination unit 811 determines that the image sensor 9a or the image sensor 9b is out of order.
 かご位置決定部811は、画像センサ9a,9bが正常であると判定すると、かご位置Aの計測値を、現時点での乗りかご1の位置として決定する。なお、かご位置決定部811は、かご位置Bの計測値を、現時点での乗りかご1の位置として決定してもよい。 When the car position determination unit 811 determines that the image sensors 9a and 9b are normal, it determines the measured value of the car position A as the current position of the car 1. The car position determination unit 811 may determine the measured value of the car position B as the current position of the car 1 .
 また、かご位置決定部811が、画像センサ9aまたは画像センサ9bが故障していると判定すると、かご制止部812に、巻上機4を強制停止するための制止指令を送出させる。この制止指令によって、巻上機4への電力供給が遮断されると、巻上機4を駆動するモータ(図示せず)が停止するとともに、電磁ブレーキ装置(図示せず)が制動状態となる。 Also, when the car position determining unit 811 determines that the image sensor 9a or the image sensor 9b is out of order, it causes the car stopping unit 812 to send a stop command to forcibly stop the hoisting machine 4. When the power supply to the hoisting machine 4 is cut off by this stop command, the motor (not shown) that drives the hoisting machine 4 is stopped and the electromagnetic brake device (not shown) is brought into a braking state. .
 異常時処理決定部814は、マーク異常判定部813aおよびマーク異常判定部813bのいずれかが階床間マークが異常であると判定すると、異常検出データおよび異常マーク情報を送出する。なお、実施形態では、位置情報が現時点でのかご位置A,Bの計測値に最も近い階床間マークが異常であると推定し、マーク位置メモリに記憶されるこの階床間マークに関する情報を異常マーク情報としている。 When either the mark abnormality determination unit 813a or the mark abnormality determination unit 813b determines that the inter-floor mark is abnormal, the abnormality processing determination unit 814 sends out abnormality detection data and abnormal mark information. In the embodiment, it is assumed that the floor-to-floor mark whose position information is closest to the current measured values of car positions A and B is abnormal, and the information about this floor-to-floor mark stored in the mark position memory is stored. This is regarded as abnormal mark information.
 エレベータ制御装置6が備える異常検出部62は、異常時処理決定部814から異常検出データおよび異常マーク情報を受信すると、通信部である外部報知部63によって、管制センタ30が備える監視サーバと、保守ツール40とに、異常報知データとして、異常検出データおよび異常マーク情報を送信する。 When the abnormality detection unit 62 provided in the elevator control device 6 receives the abnormality detection data and the abnormality mark information from the abnormality processing determination unit 814, the external notification unit 63, which is a communication unit, communicates with the monitoring server provided in the control center 30 and the maintenance Anomaly detection data and anomaly mark information are transmitted to the tool 40 as anomaly notification data.
 また、異常検出部62は、異常検出信号異常マーク情報を、エレベータ制御装置6が備える巻上機制御部61の記憶装置に記録する。上述のように、保守ツール40は、記録されている異常マーク情報を読み出すことができる。また、階床間マークの保守作業時に、エレベータ制御装置6が、異常データを受けた保守ツール40からの指令信号を受信すると、巻上機制御部61は、巻上機4を駆動して、異常マーク情報に含まれる位置情報に応じた作業位置まで乗りかご1を移動させて停止させる。 In addition, the abnormality detection section 62 records the abnormality detection signal abnormality mark information in the storage device of the hoisting machine control section 61 provided in the elevator control device 6 . As described above, the maintenance tool 40 can read the recorded abnormal mark information. Further, when the elevator control device 6 receives a command signal from the maintenance tool 40 that has received the abnormal data during the maintenance work of the floor-to-floor mark, the hoisting machine control unit 61 drives the hoisting machine 4 to The car 1 is moved to a work position corresponding to the position information included in the abnormality mark information and stopped.
 図3は、ガイドレール5a,5b(図1)の露出表面の画像の一例を示す模式図である。 FIG. 3 is a schematic diagram showing an example of an image of the exposed surfaces of the guide rails 5a and 5b (FIG. 1).
 図3では、画像センサ9a,9b(図1,2)によって取得される、時刻tにおける画像I(t)と時刻t+Δt(Δt:フレーム周期)における画像I(t+Δt)を示す。いずれも、ガイドレール5a,5bを構成する鋼材の露出表面の画像であり、鋼材の露出表面における凹凸分布を示す輝度分布のパターンを示す。なお、時刻tから時刻t+Δtまでの間、乗りかご1(図1)は下降している。 FIG. 3 shows an image I(t) at time t and an image I(t+Δt) at time t+Δt (Δt: frame period) acquired by the image sensors 9a and 9b (FIGS. 1 and 2). Both images are images of the exposed surface of the steel material that constitutes the guide rails 5a and 5b, and show the pattern of the luminance distribution indicating the unevenness distribution on the exposed surface of the steel material. Note that the car 1 (FIG. 1) is lowered from time t to time t+Δt.
 乗りかご1が移動しているため、図3に示すように、画像I(t)と画像I(t+Δt)との間では、画像のずれdが生じる。なお、図3では、乗りかご1が下降しているため、画像フレーム中で、上方向に画像のずれdが生じる。この画像のずれdは、実施形態では、画像相関法を用いて、画像I(t)と画像I(t+Δt)を比較することにより算出される。この場合、画像I(t)もしくはその一部(例えば、図3中の位置Pにおける部分)を、画像フレーム中で、ガイドレール5a,5bの長手方向に沿って所定量ずつ移動しながら、移動した画像I(t)と画像I(t+Δt)との相関関数値が算出される。相関関数値が最大値となる場合の画像I(t)の総移動量が画像のずれdとされる。 Since the car 1 is moving, an image shift d occurs between the image I(t) and the image I(t+Δt), as shown in FIG. In FIG. 3, since the car 1 is lowered, an image shift d occurs in the upward direction in the image frame. This image shift d is calculated in the embodiment by comparing the image I(t) and the image I(t+Δt) using an image correlation method. In this case, the image I(t) or a portion thereof (for example, the portion at position P in FIG. 3) is moved in the image frame by a predetermined amount along the longitudinal direction of the guide rails 5a and 5b. A correlation function value between the image I(t) and the image I(t+Δt) is calculated. The total amount of movement of the image I(t) when the correlation function value is the maximum value is taken as the image shift d.
 画像のずれdは、時間Δtにおける乗りかご1の移動量(図3では下降量)に相当する。また、画像フレーム中で画像がずれる方向は、乗りかご1の移動方向(上昇、下降)を示す。したがって、画像のずれる方向に応じて画像のずれ正負を設定すれば、例えば、下方向(上昇方向)を正、上方向(下降方向)を負とすれば、Δtごとに画像のずれdを算出し、起動時のかご位置に積算すれば、現時点におけるかご位置を計測することができる。 The image shift d corresponds to the amount of movement (the amount of descent in FIG. 3) of the car 1 at time Δt. Also, the direction in which the image shifts in the image frame indicates the moving direction (upward or downward) of the car 1 . Therefore, if the positive or negative image shift is set according to the direction of image shift, for example, if the downward direction (upward direction) is positive and the upward direction (downward direction) is negative, the image shift d is calculated for each Δt. Then, by accumulating the car position at the time of startup, the car position at the present time can be measured.
 なお、ガイドレール5a,5bには、表面に凹凸をつけるために、研磨などにより表面仕上げが施されていることが好ましい。また、画像センサ9a,9bは、それぞれガイドレール5a,5bの表面を照らす光源を備えていることが好ましい。これらにより、かご位置の計測精度が向上する。 It should be noted that the guide rails 5a and 5b are preferably surface-finished by polishing or the like in order to make the surfaces uneven. The image sensors 9a and 9b preferably have light sources for illuminating the surfaces of the guide rails 5a and 5b, respectively. As a result, the car position measurement accuracy is improved.
 図4は、実施形態における安全コントローラ8(図1,2)の動作を示すフローチャートである。なお、以下、図2を適宜参照しながら、説明する。 FIG. 4 is a flow chart showing the operation of the safety controller 8 (FIGS. 1 and 2) in the embodiment. In addition, it demonstrates, referring FIG. 2 suitably hereafter.
 ステップS1では、安全コントローラ8は、動作開始後、画像検出部801a,801bを用いて、画像センサ9a,9bからの画像信号に基づいて、ガイドレール5a,5bの表面の現画像A,Bを取得する。安全コントローラ8は、ステップS1を実行すると、次に、かご位置算出処理(ステップS2~S4)を実行する。 In step S1, after starting operation, the safety controller 8 detects the current images A and B of the surfaces of the guide rails 5a and 5b based on the image signals from the image sensors 9a and 9b using the image detection units 801a and 801b. get. After executing step S1, the safety controller 8 next executes car position calculation processing (steps S2 to S4).
 安全コントローラ8は、かご位置算出処理において、算出するかご位置Xを、順次、X=A,X=Bとして、ステップS2~S4を繰り返し実行する。実施形態では、安全コントローラ8は、まず、ステップS2~S4を実行してかご位置Aを算出し、次に、再度ステップS2~S4を実行してかご位置Bを算出する。 In the car position calculation process, the safety controller 8 sequentially sets the car position X to be calculated to X=A and X=B, and repeatedly executes steps S2 to S4. In the embodiment, the safety controller 8 first calculates the car position A by executing steps S2 to S4, and then calculates the car position B by executing steps S2 to S4 again.
 ステップS2では、安全コントローラ8は、画像比較部802x(x=a,b)を用いて、現画像Xが、画像メモリ807x(x=a,b)に記録されている前時点の画像Xと同じであるかを判定する。なお、X=A,Bの場合、それぞれx=a,bである(以下、同様)。ここで、画像比較部によって算出される現画像Xと前時点の画像Xとの画像ずれが実質零であるとき、現画像Xと前時点の画像Xとが同じであると判定される。安全コントローラ8は、現画像Xと前時点の画像Xが同じである場合(ステップS2のYES)、乗りかご1の移動量(=0)は算出しなくてもよいため、かご位置算出処理を終了する。また、安全コントローラ8は、現画像Xと前時点の画像Xが同じではない場合(ステップS6のNO)、次に、ステップS3を実行する。 In step S2, the safety controller 8 compares the current image X with the previous image X recorded in the image memory 807x (x=a, b) using the image comparison unit 802x (x=a, b). Determine if they are the same. In addition, when X=A, B, x=a, b, respectively (same below). Here, when the image shift between the current image X and the image X at the previous time point calculated by the image comparing section is substantially zero, it is determined that the current image X and the image X at the previous time point are the same. If the current image X and the previous image X are the same (YES in step S2), the safety controller 8 does not need to calculate the movement amount (=0) of the car 1, so the car position calculation process is executed. finish. If the current image X and the previous image X are not the same (NO in step S6), the safety controller 8 next executes step S3.
 ステップS3では、安全コントローラ8は、画像比較部802xによって算出される現画像Xと前時点の画像Xとの画像ずれ(≠0)を、乗りかご1の移動量とする。安全コントローラ8は、ステップS3を実行後、次に、ステップS8を実行する。 In step S3, the safety controller 8 uses the image deviation (≠0) between the current image X and the previous image X calculated by the image comparison unit 802x as the amount of movement of the car 1. After executing step S3, the safety controller 8 next executes step S8.
 ステップS4では、安全コントローラ8は、かご位置演算部803x(x=a,b)を用いて、ステップS3における移動量算出値に基づいてかご位置Xを算出する。このとき、安全コントローラ8は、かご位置メモリ808x(x=a,b)に記録されている前時点でのかご位置Xの値に、移動量算出値を加減算することによりかご位置Xを算出する。安全コントローラ8は、ステップS4を実行すると、かご位置算出処理を終了する。 In step S4, the safety controller 8 uses the car position calculator 803x (x=a, b) to calculate the car position X based on the movement amount calculated value in step S3. At this time, the safety controller 8 calculates the car position X by adding or subtracting the movement amount calculation value from the value of the car position X at the previous time recorded in the car position memory 808x (x=a, b). . After executing step S4, the safety controller 8 ends the car position calculation process.
 安全コントローラ8は、かご位置算出処理を終了すると、次に、かご位置補正処理(ステップS5~S10)を実行する。なお、かご位置補正処理には、階床間マークの異常検出処理が含まれる。 After completing the car position calculation process, the safety controller 8 next executes the car position correction process (steps S5 to S10). Note that the car position correction processing includes the abnormality detection processing of the floor-to-floor mark.
 安全コントローラ8は、かご位置補正処理において、補正するかご位置Xを、順次、X=A,X=Bとして、ステップS9~S12を繰り返し実行する。実施形態では、安全コントローラ8は、まず、ステップS5~S10を実行してかご位置Aを補正し、次に、再度ステップS5~S10を実行してかご位置Bを補正する。 In the car position correction process, the safety controller 8 sequentially sets the car position X to be corrected to X=A and X=B, and repeatedly executes steps S9 to S12. In the embodiment, the safety controller 8 first corrects the car position A by executing steps S5 to S10, and then corrects the car position B by executing steps S5 to S10 again.
 ステップS5では、安全コントローラ8は、マーク検出部804x(x=a,b)を用いて、現画像Xに基づいて、階床間マーク(図1における10x,11x,12x)が検出されているかを判定する。安全コントローラ8は、階床間マークが検出されていると判定すると(ステップS5のYES)、次にステップS6を実行する。また、安全コントローラ8は、階床間マークが検出されていないと判定すると(ステップS5のNO)、次に、ステップS7を実行する。 In step S5, the safety controller 8 uses the mark detection unit 804x (x=a, b) to determine whether the inter-floor marks (10x, 11x, 12x in FIG. 1) are detected based on the current image X. judge. When the safety controller 8 determines that the floor-to-floor mark is detected (YES in step S5), it then executes step S6. Further, when the safety controller 8 determines that the floor-to-floor mark is not detected (NO in step S5), it then executes step S7.
 ステップS6では、安全コントローラ8は、補正位置検出部805xによってマーク位置メモリxから読み出される、検出された階床間マークに対応する位置情報、すなわち現時点でのマーク位置と、ステップS2~S4によって算出されたかご位置Xとの差分の大きさ(絶対値)が第1閾値以下であるかを、マーク異常判定部813xを用いて判定する。安全コントローラ8は、ステップS6において、現時点でのマーク位置がかご位置Xの算出値に近いか否かを判定している。なお、第1閾値は、ステップS2~S4による、かご位置Xの算出値の通常の精度や、乗りかご1の通常の運転状態(速度など)などを考慮して設定される。 In step S6, the safety controller 8 uses the position information corresponding to the detected floor-to-floor mark read out from the mark position memory x by the correction position detection unit 805x, that is, the current mark position, and the mark position calculated in steps S2 to S4. The mark abnormality determination unit 813x determines whether the magnitude (absolute value) of the difference from the calculated car position X is equal to or less than the first threshold. The safety controller 8 determines whether or not the current mark position is close to the calculated car position X in step S6. Note that the first threshold value is set in consideration of the normal accuracy of the calculated value of the car position X in steps S2 to S4, the normal operating state (speed, etc.) of the car 1, and the like.
 安全コントローラ8は、マーク位置と、かご位置Xとの差分の大きさ(絶対値)が第1閾値以下であると判定すると(ステップS6のYES)、すなわち階床間マークに異常なしと判定すると、次に、ステップS8を実行する。また、安全コントローラ8は、マーク位置と、かご位置Xとの差分の大きさ(絶対値)が第1閾値より大きいと判定すると(ステップS6のNO)、すなわち階床間マークに異常有りと判定すると、次に、ステップS15を実行する。 When the safety controller 8 determines that the magnitude (absolute value) of the difference between the mark position and the car position X is equal to or less than the first threshold value (YES in step S6), that is, when it determines that there is no abnormality in the floor-to-floor mark. , then step S8 is executed. Further, when the safety controller 8 determines that the magnitude (absolute value) of the difference between the mark position and the car position X is greater than the first threshold value (NO in step S6), it determines that there is an abnormality in the floor-to-floor mark. Then, step S15 is executed next.
 ステップS7では、安全コントローラ8は、補正位置検出部805xによってマーク位置メモリxから読み出される、既に前時点で検出されている正常な階床間マークに対応する位置情報、すなわち前時点でのマーク位置と、ステップS2~S4によって算出されたかご位置Xとの差分の大きさ(絶対値)が第2閾値以下であるかを、マーク異常判定部813xを用いて判定する。安全コントローラ8は、ステップS7において、乗りかご1が、前時点で階床間マークが検出されて以降、階床間マークが検出される位置に未到達であるかを判定している。なお、第2閾値は、主に、階床間マークの設置間隔を考慮して設定される。 In step S7, the safety controller 8 detects the position information corresponding to the normal inter-floor mark already detected at the previous point in time, read out from the mark position memory x by the correction position detector 805x, that is, the mark position at the previous point in time. Then, the mark abnormality determination unit 813x determines whether the magnitude (absolute value) of the difference from the car position X calculated in steps S2 to S4 is equal to or less than the second threshold. In step S7, the safety controller 8 determines whether the car 1 has not reached the position where the inter-floor mark is detected since the inter-floor mark was detected at the previous time. It should be noted that the second threshold is mainly set in consideration of the installation interval of the floor-to-floor marks.
 安全コントローラ8は、前時点におけるマーク位置と、かご位置Xとの差分の大きさ(絶対値)が第2閾値以下であると判定すると(ステップS7のYES)、すなわち階床間マークに異常なしと判定すると、次に、ステップS9を実行する。また、安全コントローラ8は、前時点でのマーク位置と、かご位置Xとの差分の大きさ(絶対値)が第2閾値より大きいと判定すると(ステップS7のNO)、すなわち階床間マークに異常有りと判定すると、次に、ステップS15を実行する。 When the safety controller 8 determines that the magnitude (absolute value) of the difference between the mark position at the previous point in time and the car position X is equal to or less than the second threshold value (YES in step S7), that is, there is no abnormality in the floor-to-floor mark. If so, then step S9 is executed. Further, when the safety controller 8 determines that the magnitude (absolute value) of the difference between the mark position at the previous time point and the car position X is greater than the second threshold (NO in step S7), If it is determined that there is an abnormality, then step S15 is executed.
 ステップS8では、安全コントローラ8は、マーク異常判定部813xもしくは補正位置検出部805xを用いて、ステップS2~S4による、かご位置Xの算出値を、検出されている階床間マークが示す位置情報に応じた所定値に補正する。この場合、かご位置演算部803xは、補正されたかご位置Xを出力する。 In step S8, the safety controller 8 uses the mark abnormality determination section 813x or the correction position detection section 805x to convert the calculated value of the car position X in steps S2 to S4 into the position information indicated by the detected floor-to-floor mark. is corrected to a predetermined value according to In this case, the car position calculator 803x outputs the corrected car position X. FIG.
 実施形態では、上述のように、かご位置Xを、昇降路内における乗りかご1の床板面の高さとしているので、階床間マークが示す位置情報が、画像センサ9x(x=a,b)が階床間マークを検出しているときにおける、昇降路内における乗りかご1の床板面の高さとすれば、かご位置Xは、位置情報の値に補正される。 In the embodiment, as described above, the car position X is the height of the floor plate surface of the car 1 in the hoistway. ) is the height of the floor plate surface of the car 1 in the hoistway when the floor-to-floor mark is detected, the car position X is corrected to the value of the position information.
 安全コントローラ8は、ステップS8を実行後、次に、ステップS9を実行する。 After executing step S8, the safety controller 8 then executes step S9.
 ステップS9では、安全コントローラ8は、画像検出部801x(x=a,b)によって検出されている現画像Xを画像メモリ807x(x=a,b)に記録する。安全コントローラ8は、ステップS9を実行後、次に、ステップS10を実行する。 In step S9, the safety controller 8 records the current image X detected by the image detection unit 801x (x=a, b) in the image memory 807x (x=a, b). After executing step S9, the safety controller 8 next executes step S10.
 ステップS10では、安全コントローラ8は、かご位置演算部803xが出力するかご位置Xをかご位置メモリ808x(x=a,b)に記録する。安全コントローラ8は、ステップS10を実行すると、かご位置補正処理を終了する。 In step S10, the safety controller 8 records the cage position X output by the cage position calculator 803x in the cage position memory 808x (x=a, b). After executing step S10, the safety controller 8 ends the car position correction process.
 また、ステップS15では、安全コントローラ8は、マーク異常判定部813xを用いて、ステップS6およびS7における判定(ステップS6のNO,ステップS7のNO)に基づき、階床間マークの異常検出処理の結果を、階床間マーク(図1における10x,11x,12x)の異常検出有りとする。安全コントローラ8は、ステップS15を実行すると、かご位置補正処理を終了する。 Further, in step S15, the safety controller 8 uses the mark abnormality determination unit 813x to determine the result of the abnormality detection processing of the mark between floors based on the determinations in steps S6 and S7 (NO in step S6, NO in step S7). is detected as abnormal in the inter-floor marks (10x, 11x, 12x in FIG. 1). After executing step S15, the safety controller 8 ends the car position correction process.
 なお、ステップS9において画像メモリ807xに記録される画像Xと、ステップS10においてかご位置メモリ808xに記録されるかご位置Xとは、次の制御周期もしくはフレーム周期において、それぞれ、前時点における画像X、前時点におけるかご位置Xとして用いられる。 Note that the image X recorded in the image memory 807x in step S9 and the cage position X recorded in the cage position memory 808x in step S10 are the image X at the previous point in time, respectively, in the next control period or frame period. It is used as the car position X at the previous time.
 安全コントローラ8は、かご位置補正処理(ステップS5~S10,S15)を終了すると、次に、ステップS11を実行する。 After completing the car position correction process (steps S5 to S10, S15), the safety controller 8 next executes step S11.
 ステップS11では、安全コントローラ8は、異常時処理決定部814を用いて、左右マーク、すなわちガイドレール5aに設けられる階床間マーク(10a,11a,12a)並びにガイドレール5bに設けられる階床間マーク(10b,11b,12b)のいずれかが異常であるかを、ステップS15の実行結果に基づいて判定する。 In step S11, the safety controller 8 uses the abnormality processing determination unit 814 to determine the left and right marks, that is, the floor-to-floor marks (10a, 11a, 12a) provided on the guide rail 5a and the floor-to-floor marks provided on the guide rail 5b. Based on the execution result of step S15, it is determined whether any of the marks (10b, 11b, 12b) is abnormal.
 安全コントローラは、ステップS11において、左右マークのいずれもが異常ではないと判定すると(ステップS11のNO)、次に、安全コントローラ8が、安全制御、例えば、安全装置の作動の要否の判断、に用いるかご位置を決定するためのかご位置決定処理(ステップS12~S14)を実行する。 If the safety controller determines in step S11 that neither of the left and right marks is abnormal (NO in step S11), then the safety controller 8 performs safety control, for example, determines whether or not to operate the safety device, A car position determination process (steps S12 to S14) is executed to determine the car position to be used.
 また、安全コントローラ8は、ステップS11において、左右マークのいずれかが異常であると判定すると(ステップS11のYES)、次に、階床間マークの異常時に実行される異常時処理(ステップS16~S17)を実行する。なお、安全コントローラ8は、左右マークのいずれかが異常であると判定するとき、異常時処理決定部814を用いて、階床間マークの異常時処理の実行を決定する。安全コントローラ8は、階床間マークの異常時処理の実行を決定すると、上述のように(図2)、異常検出データおよび異常マーク情報を送出する。 Further, when the safety controller 8 determines in step S11 that one of the left and right marks is abnormal (YES in step S11), next, when the inter-floor mark is abnormal, abnormal processing (steps S16 to S17) is executed. When the safety controller 8 determines that one of the left and right marks is abnormal, it uses the abnormality processing determination unit 814 to determine execution of the abnormality processing for the inter-floor mark. When the safety controller 8 decides to execute the inter-floor mark abnormality processing, the safety controller 8 sends out the abnormality detection data and the abnormality mark information as described above (FIG. 2).
 ステップS12では、安全コントローラ8は、かご位置決定部811を用いて、現時点でのかご位置Aおよびかご位置Bを比較し、画像センサ9a,9bにおける故障の有無を判定する。実施形態では、図4に示すように、安全コントローラ8は、かご位置Aとかご位置Bの差の大きさ(絶対値)が所定値以下であるかを判定する。 In step S12, the safety controller 8 uses the car position determination unit 811 to compare the current car position A and car position B to determine whether there is a failure in the image sensors 9a and 9b. In the embodiment, as shown in FIG. 4, the safety controller 8 determines whether the magnitude (absolute value) of the difference between the car position A and the car position B is equal to or less than a predetermined value.
 安全コントローラ8は、差の大きさが所定値以下である場合(ステップS12のYES)、次に、ステップS13を実行する。また、安全コントローラ8は、差の大きさが所定値より大である場合、次に、ステップS14を実行する。 If the magnitude of the difference is equal to or less than the predetermined value (YES in step S12), then the safety controller 8 executes step S13. Moreover, when the magnitude of the difference is greater than the predetermined value, the safety controller 8 next executes step S14.
 ステップS13では、安全コントローラ8は、かご位置決定部811を用いて、かご位置Aを、現時点において安全制御に用いるかご位置として決定する。安全コントローラ8は、ステップS14を実行すると、一連の処理(ステップS1~S17)を終了する。 In step S13, the safety controller 8 uses the car position determination unit 811 to determine the car position A as the car position to be used for safety control at this time. After executing step S14, the safety controller 8 ends the series of processes (steps S1 to S17).
 ステップS14では、安全コントローラ8は、画像センサ9a,9bが故障していると判断して、異常時処理決定部814を用いて、乗りかご1の制止を決定する。安全コントローラ8は、乗りかご1の制止を決定すると、かご制止部812を用いて、かご制止指令を作成して送出する。これにより、乗りかご1は、強制停止される。安全コントローラ8は、ステップS14を実行すると、一連の処理(ステップS1~S17)を終了する。 In step S14, the safety controller 8 determines that the image sensors 9a and 9b are out of order, and uses the abnormality processing determination unit 814 to determine to stop the car 1. When the safety controller 8 decides to block the car 1, the car blocking section 812 is used to create and send out a car blocking command. As a result, the car 1 is forcibly stopped. After executing step S14, the safety controller 8 ends the series of processes (steps S1 to S17).
 ステップS16では、安全コントローラ8は、エレベータ制御装置6を介して、外部、すなわち管制センタ30における監視サーバおよび保守ツール40に、階床間マークの異常について報知する。実施形態では、上述のように、エレベータ制御装置6は、異常時処理決定部814から異常検出データおよび異常マーク情報を受信すると、これらのデータを監視サーバおよび保守ツール40に送信する。 In step S16, the safety controller 8 notifies the outside, that is, the monitoring server and the maintenance tool 40 in the control center 30, of the abnormality in the floor-to-floor mark via the elevator control device 6. In the embodiment, as described above, when the abnormality detection data and the abnormality mark information are received from the abnormality processing determination unit 814 , the elevator control device 6 transmits these data to the monitoring server and the maintenance tool 40 .
 安全コントローラ8は、ステップS16を実行すると、次にステップS17を実行する。 After executing step S16, the safety controller 8 next executes step S17.
 ステップS17では、安全コントローラ8は、異常時処理決定部814を用いて、エレベータ制御装置6に対して異常時処理の実行を指令する。これにより、エレベータ制御装置6は、異常検出データおよび異常マーク情報を記録したり、保守ツール40からの操作信号を受けた時に、階床間マークの保守作業のための乗りかご1の保守運転を実行したりすることができる。 In step S17, the safety controller 8 uses the abnormality processing determination unit 814 to command the elevator control device 6 to execute abnormality processing. Thereby, the elevator control device 6 records the abnormality detection data and the abnormality mark information, and when receiving an operation signal from the maintenance tool 40, performs maintenance operation of the car 1 for the maintenance work of the floor-to-floor mark. can be executed.
 なお、異常検出データおよび異常マーク情報が、異常時処理実行指令を兼ねてもよい。 It should be noted that the abnormality detection data and the abnormality mark information may also serve as an abnormality processing execution command.
 安全コントローラ8は、ステップS17を実行すると、一連の処理(ステップS1~S17)を終了する。 After executing step S17, the safety controller 8 ends the series of processes (steps S1 to S17).
 なお、安全コントローラ8は、エレベータが稼働中、制御周期ごともしくは画像取得周期(フレーム周期)ごとに、上述のような一連の処理(ステップS1~S17)を繰り返し実行する。 While the elevator is in operation, the safety controller 8 repeatedly executes the series of processes (steps S1 to S17) as described above for each control cycle or image acquisition cycle (frame cycle).
 上述の実施形態によれば、画像センサ9a,9bによって取得されるガイドレール5a,5bの表面画像に基づいて乗りかご1の位置を算出し、乗りかご1の位置の算出値を階床間マークの位置情報によって補正する安全コントローラが、これらの表面画像に基づいて、階床間マークの異常の有無を判定する。これにより、昇降路内の画像に基づいて乗りかごの位置を計測しながらも、かご位置検出装置の信頼性が向上する。 According to the above-described embodiment, the position of the car 1 is calculated based on the surface images of the guide rails 5a and 5b acquired by the image sensors 9a and 9b, and the calculated value of the position of the car 1 is used as the floor-to-floor mark. Based on these surface images, a safety controller correcting the position information determines whether there is an abnormality in the floor-to-floor mark. As a result, the reliability of the car position detection device is improved while measuring the position of the car based on the image of the inside of the hoistway.
 また、階床間マークの異常が検出されると、検出された異常に関する情報を、管制センタや保守ツールのような保守用外部装置に報知する。このような報知を受けたら、保守ツールを操作して、階床間マークの保守作業の作業位置まで自動で乗りかご1を保守運転させる。これらにより、確実かつ迅速に階床間マークを保守することができる。したがって、昇降路内の画像に基づいて乗りかごの位置を計測するかご位置検出装置を用いるエレベータの安全装置の信頼性が向上する。 In addition, when an abnormality in the inter-floor mark is detected, the information on the detected abnormality is reported to the control center and external maintenance equipment such as maintenance tools. Upon receiving such notification, the maintenance tool is operated to automatically carry out maintenance operation of the car 1 to the work position for the maintenance work of the floor-to-floor mark. As a result, the floor-to-floor mark can be maintained reliably and quickly. Therefore, the reliability of the elevator safety device using the car position detection device for measuring the position of the car based on the image in the hoistway is improved.
 なお、上述の実施形態は、二つのかご位置検出系、すなわち画像センサ9aが用いられるかご位置検出系Aと画像センサ9bが用いられるかご位置検出系Bを備えているが、これに限らず、どちらか一方のかご位置検出系のみでもよい。この場合、階床間マークは、一対のガイドレール(5a,5b)の一方に設けられる。 The above-described embodiment includes two cage position detection systems, that is, a cage position detection system A using the image sensor 9a and a cage position detection system B using the image sensor 9b. Only one car position detection system may be used. In this case, the floor-to-floor mark is provided on one of the pair of guide rails (5a, 5b).
 実施形態のように、二つのかご位置検出系を用いる場合、上述のように、画像センサの故障を検出することができる。また、二つの画像を比較することにより、乗りかご1の揺れに伴い画像が変動しても、乗りかごの位置を精度よく計測することができる。このように、二つのかご位置検出系を用いる場合、かご位置検出装置およびこれを用いるエレベータの安全装置を高機能化することができる。さらに、かご位置検出系の冗長化による信頼性向上が可能になる。 When two car position detection systems are used as in the embodiment, failure of the image sensor can be detected as described above. Further, by comparing the two images, even if the images fluctuate due to the shaking of the car 1, the position of the car can be accurately measured. In this way, when two car position detection systems are used, the functions of the car position detection device and the elevator safety device using the same can be enhanced. Furthermore, reliability can be improved by making the car position detection system redundant.
 また、階床間マークの異常が検出される場合の異常時処理として、乗りかご1を低速運転させたり、乗りかご1を最寄り階まで走行させて停止させたりしてもよい。 Also, as an abnormality processing when an abnormality in the floor-to-floor mark is detected, the car 1 may be operated at a low speed, or the car 1 may be driven to the nearest floor and stopped.
 なお、本発明は前述した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、各実施例の構成の一部について、他の構成の追加・削除・置き換えをすることが可能である。 It should be noted that the present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations. Moreover, it is possible to add, delete, or replace a part of the configuration of each embodiment with another configuration.
 例えば、安全コントローラ8は、画像のずれd(図3)およびフレーム周期Δt(図3)に基づいて、乗りかご1の速度vを計測してもよい。この場合、安全コントローラ8は、dおよびΔtからvを算出する(v=d/Δt)。安全コントローラ8は、vの大きさが所定の過速度値となったら、非常止め装置を作動させる。 For example, the safety controller 8 may measure the speed v of the car 1 based on the image shift d (Fig. 3) and the frame period Δt (Fig. 3). In this case, safety controller 8 calculates v from d and Δt (v=d/Δt). The safety controller 8 activates the safety device when the magnitude of v reaches a predetermined overspeed value.
 また、エレベータは、巻上機やエレベータ制御装置が昇降路内に設置される、いわゆる機械室レスエレベータでもよい。 In addition, the elevator may be a so-called machine room-less elevator in which the hoist and elevator control device are installed in the hoistway.
1…乗りかご、2…釣合おもり、3…主ロープ、4…巻上機、5a,5b…ガイドレール、6…エレベータ制御装置、7…テールコード、8…安全コントローラ、9a,9b…画像センサ、10a,10b,11a,11b,12a,12b…階床間マーク、20…案内装置、30…管制センタ、40…保守ツール、41…表示部 DESCRIPTION OF SYMBOLS 1... Car, 2... Balance weight, 3... Main rope, 4... Hoisting machine, 5a, 5b... Guide rail, 6... Elevator control device, 7... Tail cord, 8... Safety controller, 9a, 9b... Image Sensors 10a, 10b, 11a, 11b, 12a, 12b... Floor-to-floor mark 20... Guide device 30... Control center 40... Maintenance tool 41... Display unit

Claims (9)

  1.  昇降路内の画像に基づいてエレベータの乗りかごの位置を検出するかご位置検出装置において、
     前記乗りかごに設けられ、前記乗りかごを案内するガイドレールの表面画像を取得する画像センサと、
     前記ガイドレールの表面に設けられるマークと、
     前記画像センサが取得する前記表面画像に基づいて、前記乗りかごの位置を算出し、算出された前記乗りかごの位置を、前記画像センサが取得する前記マークの画像に基づいて補正する安全コントローラと、
    を備え、
     前記安全コントローラは、前記マークの位置情報と算出された前記乗りかごの位置とに基づいて、前記マークの異常を検出し、
     前記安全コントローラは、前記マークの前記異常を検出すると、外部装置へ前記異常について報知することを特徴とするかご位置検出装置。
    In a car position detection device that detects the position of an elevator car based on an image inside a hoistway,
    an image sensor that is provided in the car and acquires a surface image of a guide rail that guides the car;
    a mark provided on the surface of the guide rail;
    a safety controller that calculates the position of the car based on the surface image acquired by the image sensor, and corrects the calculated position of the car based on the image of the mark acquired by the image sensor; ,
    with
    The safety controller detects an abnormality of the mark based on the position information of the mark and the calculated position of the car,
    The car position detection device, wherein the safety controller notifies an external device of the abnormality when detecting the abnormality of the mark.
  2.  請求項1に記載のかご位置検出装置において、
     前記外部装置が保守ツールであることを特徴とするかご位置検出装置。
    In the car position detection device according to claim 1,
    A car position detection device, wherein the external device is a maintenance tool.
  3.  請求項1に記載のかご位置検出装置において、
     前記外部装置がエレベータ監視用サーバ装置であることを特徴とするかご位置検出装置。
    In the car position detection device according to claim 1,
    A car position detecting device, wherein the external device is an elevator monitoring server device.
  4.  請求項1に記載のかご位置検出装置において、
     前記安全コントローラは、前記表面画像に基づいて前記マークが検出される場合、検出された前記マークの位置情報と算出された前記乗りかごの位置とに基づいて、前記マークの前記異常を検出することを特徴とするかご位置検出装置。
    In the car position detection device according to claim 1,
    When the mark is detected based on the surface image, the safety controller detects the abnormality of the mark based on the position information of the detected mark and the calculated position of the car. A car position detection device characterized by:
  5.  請求項1に記載のかご位置検出装置において、
     前記安全コントローラは、前記表面画像に基づいて前記マークが検出されない場合、既検出の前記マークの位置情報と算出された前記乗りかごの位置とに基づいて、前記マークの前記異常を検出することを特徴とするかご位置検出装置。
    In the car position detection device according to claim 1,
    When the mark is not detected based on the surface image, the safety controller detects the abnormality of the mark based on position information of the detected mark and the calculated position of the car. A car position detection device characterized by:
  6.  昇降路内の画像に基づいてエレベータの乗りかごの位置を検出するかご位置検出装置において、
     前記乗りかごに設けられ、前記乗りかごを案内する一対のガイドレールの内の一方のガイドレールの表面画像を取得する第1画像センサと、
     前記乗りかごに設けられ、前記一対のガイドレールの内の他方のガイドレールの表面画像を取得する第2画像センサと、
     前記一方のガイドレールの表面に設けられる第1マークと、
     前記他方のガイドレールの表面に設けられる第2マークと、
     前記第1画像センサが取得する前記一方のガイドレールの前記表面画像に基づいて、前記乗りかごの第1位置を算出し、算出された前記第1位置を、前記第1画像センサが取得する前記第1マークの画像に基づいて補正するとともに、前記第2画像センサが取得する前記他方のガイドレールの前記表面画像に基づいて、前記乗りかごの第2位置を算出し、算出された前記第2位置を、前記第2画像センサが取得する前記第2マークの画像に基づいて補正する安全コントローラと、
    を備え、
     前記安全コントローラは、前記第1マークの位置情報と算出された前記第1位置とに基づいて、前記第1マークの異常を検出するとともに、前記第2マークの位置情報と算出された前記第2位置とに基づいて、前記第2マークの異常を検出し、
     前記安全コントローラは、前記第1マークまたは前記第2マークの前記異常を検出すると、外部装置へ前記異常について報知することを特徴とするかご位置検出装置。
    In a car position detection device that detects the position of an elevator car based on an image inside a hoistway,
    a first image sensor provided in the car for acquiring a surface image of one of a pair of guide rails for guiding the car;
    a second image sensor provided in the car for acquiring a surface image of the other guide rail of the pair of guide rails;
    a first mark provided on the surface of the one guide rail;
    a second mark provided on the surface of the other guide rail;
    Based on the surface image of the one guide rail acquired by the first image sensor, the first position of the car is calculated, and the calculated first position is acquired by the first image sensor. Correction is performed based on the image of the first mark, and the second position of the car is calculated based on the surface image of the other guide rail acquired by the second image sensor, and the calculated second position of the car is calculated. a safety controller for correcting a position based on the image of the second mark obtained by the second image sensor;
    with
    The safety controller detects an abnormality of the first mark based on the position information of the first mark and the calculated first position, and detects the abnormality of the first mark and the position information of the second mark and the calculated second position. detecting an abnormality of the second mark based on the position;
    The car position detecting device, wherein when the safety controller detects the abnormality of the first mark or the second mark, the safety controller notifies an external device of the abnormality.
  7.  請求項6に記載のかご位置検出装置において、
     前記安全コントローラは、前記第1位置と、前記第2位置と、に基づいて、前記第1画像センサもしくは前記第2画像センサの故障の有無を判定することを特徴とするかご位置検出装置。
    In the car position detection device according to claim 6,
    The car position detection device, wherein the safety controller determines whether or not the first image sensor or the second image sensor has failed based on the first position and the second position.
  8.  乗りかごと、
     昇降路内を移動する前記乗りかごを案内するガイドレールと、
     前記乗りかごの運転を制御する制御装置と、
     前記昇降路内の画像に基づいて前記乗りかごの位置を検出するかご位置検出装置と、
    を備えるエレベータにおいて、
     前記かご位置検出装置は、
     前記ガイドレールの表面画像を取得する画像センサと、
     前記ガイドレールの表面に設けられるマークと、
     前記画像センサが取得する前記表面画像に基づいて、前記乗りかごの位置を算出し、算出された前記乗りかごの位置を、前記画像センサが取得する前記マークの画像に基づいて補正する安全コントローラと、
    を備え、
     前記安全コントローラは、前記マークの位置情報と算出された前記乗りかごの位置とに基づいて、前記マークの異常を検出し、
     前記制御装置は、前記異常が検出された前記マークの保守作業時に、作業位置まで前記乗りかごを移動させ、前記作業位置に前記乗りかごを停止させることを特徴とするエレベータ。
    car and
    a guide rail for guiding the car moving in the hoistway;
    a control device for controlling the operation of the car;
    a car position detection device that detects the position of the car based on the image inside the hoistway;
    In an elevator comprising
    The car position detection device is
    an image sensor that acquires a surface image of the guide rail;
    a mark provided on the surface of the guide rail;
    a safety controller that calculates the position of the car based on the surface image acquired by the image sensor, and corrects the calculated position of the car based on the image of the mark acquired by the image sensor; ,
    with
    The safety controller detects an abnormality of the mark based on the position information of the mark and the calculated position of the car,
    The elevator, wherein the control device moves the car to a work position and stops the car at the work position during maintenance work on the mark in which the abnormality is detected.
  9.  請求項8に記載のエレベータにおいて、
     前記制御装置は、保守ツールからの指令に応じて、前記作業位置まで前記乗りかごを移動させ、前記作業位置に前記乗りかごを停止させることを特徴とするエレベータ。
    An elevator according to claim 8,
    An elevator, wherein the control device moves the car to the working position and stops the car at the working position in response to a command from a maintenance tool.
PCT/JP2021/021845 2021-06-09 2021-06-09 Car position detection device and elevator using same WO2022259398A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/021845 WO2022259398A1 (en) 2021-06-09 2021-06-09 Car position detection device and elevator using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/021845 WO2022259398A1 (en) 2021-06-09 2021-06-09 Car position detection device and elevator using same

Publications (1)

Publication Number Publication Date
WO2022259398A1 true WO2022259398A1 (en) 2022-12-15

Family

ID=84425975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021845 WO2022259398A1 (en) 2021-06-09 2021-06-09 Car position detection device and elevator using same

Country Status (1)

Country Link
WO (1) WO2022259398A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004051279A (en) * 2002-07-17 2004-02-19 Mitsubishi Electric Building Techno Service Co Ltd Elevator control device
JP2011073885A (en) * 2005-01-04 2011-04-14 Mitsubishi Electric Corp Mover position/speed detecting device
JP2017057024A (en) * 2015-09-14 2017-03-23 東芝エレベータ株式会社 Elevator control device
JP2018177489A (en) * 2017-04-18 2018-11-15 株式会社日立製作所 Elevator control system
JP2020007085A (en) * 2018-07-06 2020-01-16 株式会社日立製作所 Elevator speed detection device and elevator
JP2021046304A (en) * 2019-09-19 2021-03-25 株式会社日立ビルシステム Elevator abnormality diagnostic system, elevator abnormality diagnostic device, and elevator abnormality diagnostic method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004051279A (en) * 2002-07-17 2004-02-19 Mitsubishi Electric Building Techno Service Co Ltd Elevator control device
JP2011073885A (en) * 2005-01-04 2011-04-14 Mitsubishi Electric Corp Mover position/speed detecting device
JP2017057024A (en) * 2015-09-14 2017-03-23 東芝エレベータ株式会社 Elevator control device
JP2018177489A (en) * 2017-04-18 2018-11-15 株式会社日立製作所 Elevator control system
JP2020007085A (en) * 2018-07-06 2020-01-16 株式会社日立製作所 Elevator speed detection device and elevator
JP2021046304A (en) * 2019-09-19 2021-03-25 株式会社日立ビルシステム Elevator abnormality diagnostic system, elevator abnormality diagnostic device, and elevator abnormality diagnostic method

Similar Documents

Publication Publication Date Title
US9809419B2 (en) Elevator apparatus
JP4368854B2 (en) Elevator equipment
AU2003202599B2 (en) Method and arrangement for telemonitoring an elevator
US10858218B2 (en) Elevator apparatus
EP2918536B1 (en) Condition monitoring of vertical transport equipment
EP3401264B1 (en) Automatic elevator counterweight inspection systems and methods
JP2020007085A (en) Elevator speed detection device and elevator
EP3666710A1 (en) Safety system based on hoistway access detection
WO2022259398A1 (en) Car position detection device and elevator using same
WO2022269893A1 (en) Car position detection device and elevator safety device using same
KR20220000792A (en) Visual inspection diagnostics
JP3744271B2 (en) Elevator position detection device
WO2022259417A1 (en) Car position detection device and elevator safety device using same
CN113874310A (en) Elevator installation
JP5897212B2 (en) Elevator apparatus and control method thereof
US20190330015A1 (en) Elevator safety system
WO2023175859A1 (en) Elevator device
CN212832218U (en) Elevator car position detection device
WO2022249383A1 (en) Car position detection device and elevator safety device using same
CN110271930A (en) Elevator car slipping rescues automatic detection device and detection method
US11066273B2 (en) Elevator overtravel testing systems and methods
JP2018122944A (en) Automatic gap measuring device for passenger conveyor and automatic gap measuring method for passenger conveyor
JP2017057024A (en) Elevator control device
EP3892579A1 (en) Elevator safety systems
JPH05294583A (en) Device for detecting abrasion of elevator guide shoe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21945075

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21945075

Country of ref document: EP

Kind code of ref document: A1