WO2022269832A1 - Discharge control circuit - Google Patents

Discharge control circuit Download PDF

Info

Publication number
WO2022269832A1
WO2022269832A1 PCT/JP2021/023856 JP2021023856W WO2022269832A1 WO 2022269832 A1 WO2022269832 A1 WO 2022269832A1 JP 2021023856 W JP2021023856 W JP 2021023856W WO 2022269832 A1 WO2022269832 A1 WO 2022269832A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
battery
battery module
control circuit
discharge control
Prior art date
Application number
PCT/JP2021/023856
Other languages
French (fr)
Japanese (ja)
Inventor
和征 榊原
Original Assignee
株式会社EViP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社EViP filed Critical 株式会社EViP
Priority to PCT/JP2021/023856 priority Critical patent/WO2022269832A1/en
Priority to JP2023529345A priority patent/JP7461093B2/en
Publication of WO2022269832A1 publication Critical patent/WO2022269832A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present invention relates to a discharge control circuit.
  • lithium ion secondary batteries with high energy density are often used as battery power sources for driving motors.
  • Electric vehicles have a motor drive system that requires a large current to drive heavy objects, and the discharge current during the discharge of the lithium-ion secondary battery is the cause of the risk of ignition due to variations in the driving of the electric vehicle. Therefore, it is important to avoid the risk of ignition by appropriate discharge control.
  • the present invention has been made in view of such a background, and aims to provide a technique capable of performing appropriate discharge control.
  • the main invention of the present invention for solving the above problems is a discharge control circuit, which has a battery cell group and an energization interrupting element for outputting or stopping the discharge output of the battery cell group, and supplies power to a load.
  • the discharge current from the battery module exceeds a current threshold determined according to the voltage or temperature of the battery module, the current cut-off element is used to discharge the battery module group. Stop output.
  • FIG. 1 is a circuit block diagram showing an outline of a configuration of a battery module 2 according to this embodiment;
  • FIG. 1 is a circuit block diagram showing an outline of a configuration of a discharge control circuit 100 according to this embodiment;
  • FIG. FIG. 5 is a graph showing an outline of the safety characteristics of the discharge control circuit 100 according to the present embodiment during overcurrent discharge of the lithium-ion secondary battery.
  • 1 is a circuit block diagram showing an outline of a configuration of a discharge control circuit charge 101 according to this embodiment;
  • FIG. 3 is a flow chart showing an outline of control of the main controller 12 of the discharge control circuit 101 according to the present embodiment;
  • FIG. FIG. 4 is a graph showing an outline of safety characteristics of the discharge control circuit 101 according to the present embodiment during overcurrent discharge of the lithium-ion secondary battery.
  • the battery module 2 includes a high-voltage rated battery cell group 1H in which a plurality of lithium-ion secondary battery cells are connected in series, and an FET 4 as an energization interrupting element for outputting or stopping the discharge output. connect to terminal 5 through
  • the module controller 3 detects the voltage of the battery cell group 1H or the current of the battery cell group 1H, that is, the voltage appearing across the shunt resistor 6, and turns on or off the FET 4 according to the detection result. Controls output or stop of discharge output from terminal 5 .
  • a discharge control circuit 100 connects a plurality of battery modules 2 in series to form a battery module group 2, and applies the output voltage of the battery module group 2 to a load 9 via a fuse 8.
  • the load 9 is, for example, a motor drive circuit including an electric vehicle motor (not shown) and an inverter.
  • lithium ion secondary batteries may ignite due to abnormal heat generation inside the battery cell if the discharge continues for a predetermined time or longer at a current value exceeding a predetermined value.
  • the relationship, that is, the safety characteristic is a solid line 1 drawn as a generally downwardly convex curve with respect to two axes consisting of a current value axis and a time axis.
  • the current value is relatively small, such as the current value Ix in FIG.
  • the lithium-ion secondary battery may ignite first without the fuse element blowing in the area, and further, due to variations in charging before the start of overcurrent discharge or variations in remaining capacity between battery cells in the battery module.
  • an overcharged state that is, an overvoltage state, or when the temperature of the battery module during discharge is high, as shown by the solid line 2
  • the characteristic shifts to shorten the time until ignition as a whole.
  • the issue of safety design matching which has and avoids said ignition to varying safety characteristics for said various conditions, is important.
  • the discharge control circuit 101 has the same configuration as the discharge circuit 100 without the fuse 8, and the main controller 12 communicates with the battery modules 2 using the insulated communication signal 3 to perform the battery
  • the information in the module 2 is acquired, and the FET 4 in the battery module 2 is instructed to be turned on or off as necessary according to the flowchart shown later.
  • Step 1 the main controller 12 of the discharge circuit 101 detects whether the load 9 is being driven.
  • the driving of the load 9 is detected by a method in which the main controller 12 detects the state of the load 9 using communication (not shown), or a method in which the discharge current of the battery module 2 is detected using the insulating communication signal 3. Also good. If it is determined in Step 1 that the load 9 is not being driven, that is, the electric vehicle is stopped or has been charged, the process proceeds to Step 2, where the voltage of the battery cell group 1H in the battery module 2 is detected.
  • Step 4 When it is determined that the voltage of at least one lithium-ion secondary battery cell in the battery cell group 1H of any one battery module 2 out of the battery module 2 groups has exceeded a predetermined value, the process proceeds to Step 4, where the overcurrent determination threshold is set to trip. While the characteristic B is selected, if it is determined that the voltage of one of the lithium ion secondary battery cells in the two groups of battery modules does not exceed a predetermined value, the process proceeds to Step 5, and the trip characteristic A is used as the overcurrent determination threshold. Select and store, and return to Step1.
  • Step 1 after selecting the trip characteristic A or B as the overcurrent determination threshold, it is detected whether or not the load 9 is being driven.
  • the process proceeds to Step 6, measures the discharge current value of the battery module 22, and proceeds to Step 7.
  • Step 7 the temperature of the battery cell group 1H of the battery module 2 is detected, and when it is determined that the temperature of the battery cell group 1H exceeds a predetermined value, the process proceeds to Step 8, and the trip characteristic C is set as the overcurrent determination threshold.
  • the process proceeds to Step 9, and the trip characteristic B is selected as the overcurrent determination threshold.
  • the trip characteristics B and C are the two-dot chain line B and the two-dot chain line C that draw downward convex curves with respect to the two axes of the current value axis and the time axis shown in the graph of FIG.
  • the ignition characteristics of the lithium-ion secondary battery shown correspond to the fact that the time to ignition is shortened according to the temperature of the battery cell.
  • Step 10 it is detected whether or not the discharge current and discharge time of the battery module 2 exceed the trip characteristics B or C selected in the previous Step.
  • the FETs 4 of all the battery modules 2 are turned off to stop the output of the battery module 2 group.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

[Problem] To make it possible to appropriately control electrical discharging. [Solution] A discharge control circuit comprising a battery cell group and a current applying/interrupting element that outputs or stops electrical discharge output of the battery cell group, the circuit being connected to battery modules for supplying power to a load, and the current applying/interrupting element being used to stop electrical discharge output of the battery module group in cases in which the discharge current from the battery modules exceeds a current threshold value determined in accordance with the voltage or temperature of the battery modules.

Description

放電制御回路discharge control circuit
 本発明は、放電制御回路に関する。 The present invention relates to a discharge control circuit.
 近年、地球環境への配慮から、内燃機関すなわちエンジンで駆動するエンジン駆動式自動車がモータで駆動する電気自動車に置き換わりつつある。特に、モータを駆動するための電池電源にエネルギー密度の高いリチウムイオン二次電池が多く使用されている。 In recent years, in consideration of the global environment, internal combustion engines, that is, engine-driven vehicles are being replaced by motor-driven electric vehicles. In particular, lithium ion secondary batteries with high energy density are often used as battery power sources for driving motors.
特開2017-225241号公報JP 2017-225241 A
 電気自動車は重量物を駆動するために大電流を要するモータ駆動システムを有する特性上、電気自動車の駆動中のばらつき等によりリチウムイオン二次電池の放電中にその放電電流が前記発火リスクの原因となる過電流領域に入る可能性が少なからずあるため、適切な放電制御により発火リスクを回避することが重要な課題である。 Electric vehicles have a motor drive system that requires a large current to drive heavy objects, and the discharge current during the discharge of the lithium-ion secondary battery is the cause of the risk of ignition due to variations in the driving of the electric vehicle. Therefore, it is important to avoid the risk of ignition by appropriate discharge control.
 本発明はこのような背景を鑑みてなされたものであり、適切な放電制御を行うことができる技術を提供することを目的とする。 The present invention has been made in view of such a background, and aims to provide a technique capable of performing appropriate discharge control.
 上記課題を解決するための本発明の主たる発明は、放電制御回路であって、電池セル群と前記電池セル群の放電出力を出力または停止する通電遮断素子とを有し、負荷へ電力を供給する電池モジュールと接続され、前記電池モジュールからの放電電流が、前記電池モジュールの電圧または温度に応じて決定される電流閾値を超えた場合に、前記通電遮断素子を用いて前記電池モジュール群の放電出力を停止する。 The main invention of the present invention for solving the above problems is a discharge control circuit, which has a battery cell group and an energization interrupting element for outputting or stopping the discharge output of the battery cell group, and supplies power to a load. When the discharge current from the battery module exceeds a current threshold determined according to the voltage or temperature of the battery module, the current cut-off element is used to discharge the battery module group. Stop output.
 その他本願が開示する課題やその解決方法については、発明の実施形態の欄及び図面により明らかにされる。 Other problems disclosed by the present application and their solutions will be clarified in the section of the embodiment of the invention and the drawings.
 本発明によれば、適切な放電制御を行うことができる。 According to the present invention, appropriate discharge control can be performed.
本実施形態に係るう電池モジュール2の構成の概略を示す回路ブロック図である。1 is a circuit block diagram showing an outline of a configuration of a battery module 2 according to this embodiment; FIG. 本実施形態に係るう放電制御回路100の構成の概略を示す回路ブロック図である。1 is a circuit block diagram showing an outline of a configuration of a discharge control circuit 100 according to this embodiment; FIG. 本実施形態に係るう放電制御回路100のリチウムイオン二次電池の過電流放電時の安全特性の概略を示すグラフ図である。FIG. 5 is a graph showing an outline of the safety characteristics of the discharge control circuit 100 according to the present embodiment during overcurrent discharge of the lithium-ion secondary battery. 本実施形態に係るう放電制御回路充電101の構成の概略を示す回路ブロック図である。1 is a circuit block diagram showing an outline of a configuration of a discharge control circuit charge 101 according to this embodiment; FIG. 本実施形態に係るう放電制御回路101のメインコントローラ12の制御の概略を示すフローチャート図である。3 is a flow chart showing an outline of control of the main controller 12 of the discharge control circuit 101 according to the present embodiment; FIG. 本実施形態に係るう放電制御回路101のリチウムイオン二次電池の過電流放電時の安全特性の概略を示すグラフ図である。FIG. 4 is a graph showing an outline of safety characteristics of the discharge control circuit 101 according to the present embodiment during overcurrent discharge of the lithium-ion secondary battery.
 図1に示すように、電池モジュール2は、複数のリチウムイオン二次電池セルが直列接続された高電圧定格の電池セル群1Hを、その放電出力を出力または停止する通電遮断素子としてのFET4を介して端子5に接続する。モジュールコントローラ3は、電池セル群1Hの電圧、または、電池セル群1Hの電流、すなわち、シャント抵抗6の両端に現れる電圧を検知して、その検知結果に応じてFET4をオンまたはオフに操作し端子5からの放電出力の出力または停止を制御する。 As shown in FIG. 1, the battery module 2 includes a high-voltage rated battery cell group 1H in which a plurality of lithium-ion secondary battery cells are connected in series, and an FET 4 as an energization interrupting element for outputting or stopping the discharge output. connect to terminal 5 through The module controller 3 detects the voltage of the battery cell group 1H or the current of the battery cell group 1H, that is, the voltage appearing across the shunt resistor 6, and turns on or off the FET 4 according to the detection result. Controls output or stop of discharge output from terminal 5 .
 図2に示すように、放電制御回路100は、複数の電池モジュール2を直列接続して電池モジュール2群を構成し、前記電池モジュール2群の出力電圧をヒューズ8を介して負荷9へ印加する。前記負荷9は、例えば、図示しない電気自動車のモータおよびインバータを備えるモータ駆動回路である。 As shown in FIG. 2, a discharge control circuit 100 connects a plurality of battery modules 2 in series to form a battery module group 2, and applies the output voltage of the battery module group 2 to a load 9 via a fuse 8. . The load 9 is, for example, a motor drive circuit including an electric vehicle motor (not shown) and an inverter.
 図3に示すように、リチウムイオン二次電池は、過電流放電時に、所定値を超える電流値で所定時間以上放電を継続すると電池セル内部の異常発熱に起因して発火に至ることがある。前記電流値が相対的に小さいほど過電流放電開始から発火に至るまでの時間は相対的に長くなる特性を有し、その過電流の電流値と前記放電開始から発火に至るまでの時間との関係すなわち安全特性は、電流値軸と時間軸で成る2軸に対して概ね下に凸の曲線で描かれる実線1となる。 As shown in FIG. 3, during overcurrent discharge, lithium ion secondary batteries may ignite due to abnormal heat generation inside the battery cell if the discharge continues for a predetermined time or longer at a current value exceeding a predetermined value. The smaller the current value, the longer the time from the start of overcurrent discharge to ignition. The relationship, that is, the safety characteristic, is a solid line 1 drawn as a generally downwardly convex curve with respect to two axes consisting of a current value axis and a time axis.
 リチウムイオン二次電池の過電流放電による発火を防ぐ目的として放電経路にヒューズを介する例があるが、特に、前記ヒューズのトリップ特性、すなわち、通電電流値と通電開始からヒューズエレメントの溶断に至るまでの時間との関係は点線2で示すような特性の物もあり、前記リチウムイオン二次電池と前記ヒューズとの組み合わせ次第では、例えば、図3における電流値Ixのような電流値の比較的小さい領域でヒューズエレメントが溶断することなくリチウムイオン二次電池が先に発火することがあり、さらには、過電流放電開始前の充電時のばらつきまたは電池モジュール内の電池セル間の残容量ばらつきに伴う過充電状態すなわち過電圧状態の場合、または、放電時の前記電池モジュールの温度が高い場合は、実線2に示すように前記発火に至るまでの時間が全体的に短くなる方向にシフトする特性をも有し、前記様々な条件に対して変化する安全特性に対して前記発火を回避する安全設計マッチングの課題が重要である。 In order to prevent ignition due to overcurrent discharge of a lithium ion secondary battery, there is an example in which a fuse is used in the discharge path. The relationship between time and time is shown by the dotted line 2. Depending on the combination of the lithium ion secondary battery and the fuse, for example, the current value is relatively small, such as the current value Ix in FIG. The lithium-ion secondary battery may ignite first without the fuse element blowing in the area, and further, due to variations in charging before the start of overcurrent discharge or variations in remaining capacity between battery cells in the battery module. In the case of an overcharged state, that is, an overvoltage state, or when the temperature of the battery module during discharge is high, as shown by the solid line 2, the characteristic shifts to shorten the time until ignition as a whole. The issue of safety design matching, which has and avoids said ignition to varying safety characteristics for said various conditions, is important.
 図4に示すように、放電制御回路101は、前記放電回路100のヒューズ8を削除した構成に等しく、メインコントローラ12が、絶縁性通信信号3を用いて電池モジュール2と通信をそれぞれ行い前記電池モジュール2内の情報を取得し、後述のフローチャート図に従い必要に応じて前記電池モジュール2内のFET4をオンまたはオフに操作するように指示する。これにより、ハードウェアを変更せずソフトウェアの改良により安全性の向上とコストアップの抑制の両立を実現する。 As shown in FIG. 4, the discharge control circuit 101 has the same configuration as the discharge circuit 100 without the fuse 8, and the main controller 12 communicates with the battery modules 2 using the insulated communication signal 3 to perform the battery The information in the module 2 is acquired, and the FET 4 in the battery module 2 is instructed to be turned on or off as necessary according to the flowchart shown later. As a result, it is possible to achieve both improved safety and reduced cost by improving software without changing hardware.
 前記放電回路101のメインコントローラ12の制御について、次に、図5のフローチャート図を用いて説明する。 Next, the control of the main controller 12 of the discharge circuit 101 will be explained using the flow chart of FIG.
 放電回路101のメインコントローラ12は、Step1にて、負荷9が駆動しているか否かを検知する。前記負荷9の駆動の検知はメインコントローラ12が図示しない通信を用いて負荷9の状態を検知する方法、または、絶縁性通信信号3を用いて電池モジュール2の放電電流を検知する方法を用いても良い。Step1にて、前記負荷9が駆動していない、すなわち、電気自動車が停車中または充電完了後であると判定するとStep2へ移行し、電池モジュール2内の電池セル群1Hの電圧を検知する。電池モジュール2群の内のいずれか1個の電池モジュール2の電池セル群1H少なくとも1個のリチウムイオン二次電池セルの電圧が所定値を超えたと判定するとStep4へ移行し過電流判定閾値としてトリップ特性Bを選択する一方、前記電池モジュール2群のいずれか1個前記リチウムイオ二次電池セルのの電圧が所定値を超えていないと判定するとStep5へ移行し過電流判定閾値としてトリップ特性Aを選択および記憶し、Step1へ帰還する。 In Step 1, the main controller 12 of the discharge circuit 101 detects whether the load 9 is being driven. The driving of the load 9 is detected by a method in which the main controller 12 detects the state of the load 9 using communication (not shown), or a method in which the discharge current of the battery module 2 is detected using the insulating communication signal 3. Also good. If it is determined in Step 1 that the load 9 is not being driven, that is, the electric vehicle is stopped or has been charged, the process proceeds to Step 2, where the voltage of the battery cell group 1H in the battery module 2 is detected. When it is determined that the voltage of at least one lithium-ion secondary battery cell in the battery cell group 1H of any one battery module 2 out of the battery module 2 groups has exceeded a predetermined value, the process proceeds to Step 4, where the overcurrent determination threshold is set to trip. While the characteristic B is selected, if it is determined that the voltage of one of the lithium ion secondary battery cells in the two groups of battery modules does not exceed a predetermined value, the process proceeds to Step 5, and the trip characteristic A is used as the overcurrent determination threshold. Select and store, and return to Step1.
 前記過電流判定閾値としてトリップ特性AまたはBを選択した後のStep1にて、負荷9が駆動しているか否かを検知する。前記負荷9が駆動中すなわち電気自動車が走行中であると判定した場合、Step6へ移行し電池モジュール22の放電電流値を測定しStep7へ移行する。Step7にて、電池モジュール2の電池セル群1Hの温度を検知し、前記電池セル群1Hの温度が所定値を超えたと判定した場合にStep8に移行して前記過電流判定閾値としてトリップ特性Cを選択する一方、前記電池セル群1Hの温度が所定値を超えていないと判定した場合にStep9に移行して前記過電流判定閾値としてトリップ特性Bを選択する。前記トリップ特性BおよびCは、図6のグラフ図に示す電流値軸と時間軸で成る2軸に対して下に凸の曲線を描く二点鎖線Bおよび二点鎖線Cであり、実線1で示すリチウムイオン二次電池の発火特性が電池セルの温度に応じて発火に至る時間が短縮されることに対応するものとなる。Step10では、電池モジュール2の放電電流および放電時間が、以前のStepで選択されたトリップ特性BまたはCを超えるか否かを検知し、前記トリップ特性BまたはCを超えたと判定するとStep11へ移行し全ての電池モジュール2のFET4をオフに操作して電池モジュール2群の出力を停止する。  In Step 1 after selecting the trip characteristic A or B as the overcurrent determination threshold, it is detected whether or not the load 9 is being driven. When it is determined that the load 9 is being driven, that is, the electric vehicle is running, the process proceeds to Step 6, measures the discharge current value of the battery module 22, and proceeds to Step 7. In Step 7, the temperature of the battery cell group 1H of the battery module 2 is detected, and when it is determined that the temperature of the battery cell group 1H exceeds a predetermined value, the process proceeds to Step 8, and the trip characteristic C is set as the overcurrent determination threshold. On the other hand, if it is determined that the temperature of the battery cell group 1H does not exceed the predetermined value, the process proceeds to Step 9, and the trip characteristic B is selected as the overcurrent determination threshold. The trip characteristics B and C are the two-dot chain line B and the two-dot chain line C that draw downward convex curves with respect to the two axes of the current value axis and the time axis shown in the graph of FIG. The ignition characteristics of the lithium-ion secondary battery shown correspond to the fact that the time to ignition is shortened according to the temperature of the battery cell. In Step 10, it is detected whether or not the discharge current and discharge time of the battery module 2 exceed the trip characteristics B or C selected in the previous Step. The FETs 4 of all the battery modules 2 are turned off to stop the output of the battery module 2 group.
 これらによって、電池セルの電圧および温度に応じて過電流放電時に発火に至る時間が変化する特性も全て含めて発火を未然に防止でき電気自動車の安全性を向上できる。 With these, it is possible to prevent ignition in advance and improve the safety of electric vehicles, including all the characteristics that change the time to ignition during overcurrent discharge according to the voltage and temperature of the battery cell.
 以上、本実施形態について説明したが、上記実施形態は本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物も含まれる。 Although the present embodiment has been described above, the above embodiment is intended to facilitate understanding of the present invention, and is not intended to limit and interpret the present invention. The present invention can be modified and improved without departing from its spirit, and the present invention also includes equivalents thereof.
  12  メインコントローラ
  100 放電制御回路
  101 放電制御回路
12 Main Controller 100 Discharge Control Circuit 101 Discharge Control Circuit

Claims (4)

  1.  電池セル群と前記電池セル群の放電出力を出力または停止する通電遮断素子とを有し、負荷へ電力を供給する電池モジュールと接続され、
     前記電池モジュールからの放電電流が、前記電池モジュールの電圧または温度に応じて決定される電流閾値を超えた場合に、前記通電遮断素子を用いて前記電池モジュール群の放電出力を停止する放電制御回路。
    Connected to a battery module having a battery cell group and an energization interrupting element for outputting or stopping the discharge output of the battery cell group and supplying power to a load,
    A discharge control circuit that stops the discharge output of the battery module group using the current interruption device when the discharge current from the battery module exceeds a current threshold determined according to the voltage or temperature of the battery module. .
  2.  前記電流閾値は、電流値軸および放電時間軸から成る2軸に対して下に凸の曲線であり、かつ、前記電圧または前記温度に応じて前記曲線が前記放電時間軸下方向にシフトする請求項1に記載の放電制御回路。 The current threshold is a downward convex curve with respect to two axes consisting of a current value axis and a discharge time axis, and the curve shifts downward on the discharge time axis according to the voltage or the temperature. Item 2. The discharge control circuit according to item 1.
  3.  前記負荷は電気自動車のモータ駆動回路である請求項1または2に記載の放電制御回路。 The discharge control circuit according to claim 1 or 2, wherein the load is a motor drive circuit for an electric vehicle.
  4.  前記電池セル群は、複数のリチウムイオン二次電池セルが直列接続されて構成され、
     前記電池モジュールは、複数が直列接続されて電池モジュール群を構成して負荷へ電力を供給し、
     前記電圧は、前記電池モジュール群の内の少なくとも1個の電池モジュールの前記リチウムイオン二次電池セルの電圧である、
     請求項1ないし3のいずれか1項に記載の放電制御回路。
    The battery cell group is configured by connecting a plurality of lithium ion secondary battery cells in series,
    a plurality of the battery modules are connected in series to form a battery module group and supply power to a load;
    The voltage is the voltage of the lithium-ion secondary battery cell of at least one battery module in the battery module group,
    4. The discharge control circuit according to claim 1.
PCT/JP2021/023856 2021-06-23 2021-06-23 Discharge control circuit WO2022269832A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/023856 WO2022269832A1 (en) 2021-06-23 2021-06-23 Discharge control circuit
JP2023529345A JP7461093B2 (en) 2021-06-23 2021-06-23 Discharge Control Circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/023856 WO2022269832A1 (en) 2021-06-23 2021-06-23 Discharge control circuit

Publications (1)

Publication Number Publication Date
WO2022269832A1 true WO2022269832A1 (en) 2022-12-29

Family

ID=84545414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023856 WO2022269832A1 (en) 2021-06-23 2021-06-23 Discharge control circuit

Country Status (2)

Country Link
JP (1) JP7461093B2 (en)
WO (1) WO2022269832A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11108969A (en) * 1997-08-08 1999-04-23 Harness Syst Tech Res Ltd Overcurrent detection circuit
JP2012009339A (en) * 2010-06-25 2012-01-12 Hitachi Maxell Energy Ltd Battery pack and connected battery packs
JP2014027803A (en) * 2012-07-27 2014-02-06 Hitachi Koki Co Ltd Power supply device
JP2016082642A (en) * 2014-10-14 2016-05-16 株式会社豊田自動織機 Overcurrent abnormality detection device and overcurrent abnormality detection method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11108969A (en) * 1997-08-08 1999-04-23 Harness Syst Tech Res Ltd Overcurrent detection circuit
JP2012009339A (en) * 2010-06-25 2012-01-12 Hitachi Maxell Energy Ltd Battery pack and connected battery packs
JP2014027803A (en) * 2012-07-27 2014-02-06 Hitachi Koki Co Ltd Power supply device
JP2016082642A (en) * 2014-10-14 2016-05-16 株式会社豊田自動織機 Overcurrent abnormality detection device and overcurrent abnormality detection method

Also Published As

Publication number Publication date
JP7461093B2 (en) 2024-04-03
JPWO2022269832A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
JP6647912B2 (en) Vehicle power control method and system for jump start
KR101686280B1 (en) Battery management system and switching method thereof
US8593111B2 (en) Assembled battery system
CN108656968B (en) Power supply device for vehicle
US11077761B2 (en) Power supply system for vehicle
KR101866063B1 (en) System for controlling relay of an auxiliary battery and method thereof
CN104935026B (en) Battery cell arrangement with battery cells and current limiting circuit and corresponding method
US20110291481A1 (en) Power source apparatus with fuse-implemented over-current cut-off
US20140315048A1 (en) Battery module and control method thereof
CN102161315A (en) Vehicle power supply apparatus
US11843274B2 (en) Charge control apparatus for controlling charging of an energy storage device via purality of charging paths connected in parallel anssociated energy storage appartus, and an associated charging method
CN108352714B (en) Power supply device and battery unit
EP4119390A1 (en) Battery control
KR102066413B1 (en) Safety control system of battery
JP2018198519A (en) Vehicle power supply device
WO2022269832A1 (en) Discharge control circuit
US20130207461A1 (en) High-voltage battery system
JP6668210B2 (en) Power supply control device and power supply system
KR101866059B1 (en) System and method for charging vehicle battery
KR20190115966A (en) Battery System with PRU(Power Regurator Unit for Caravan
WO2022269833A1 (en) Charge control circuit
WO2023073978A1 (en) Battery module and battery power supply circuit
WO2022269835A1 (en) Battery power supply circuit
JP2010063198A (en) Power supply unit and method for charging power storage means
WO2023073976A1 (en) Battery module and battery power supply circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947117

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023529345

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21947117

Country of ref document: EP

Kind code of ref document: A1