WO2022265331A1 - 제어된 면역 작용 기작과 증가된 혈중 반감기를 갖는 fc변이체들 - Google Patents

제어된 면역 작용 기작과 증가된 혈중 반감기를 갖는 fc변이체들 Download PDF

Info

Publication number
WO2022265331A1
WO2022265331A1 PCT/KR2022/008336 KR2022008336W WO2022265331A1 WO 2022265331 A1 WO2022265331 A1 WO 2022265331A1 KR 2022008336 W KR2022008336 W KR 2022008336W WO 2022265331 A1 WO2022265331 A1 WO 2022265331A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
polypeptide
domain
variant
amino acid
Prior art date
Application number
PCT/KR2022/008336
Other languages
English (en)
French (fr)
Inventor
정상택
고상환
최소영
손명호
박소라
김은성
Original Assignee
고려대학교 산학협력단
재단법인 오송첨단의료산업진흥재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220070880A external-priority patent/KR20220167773A/ko
Application filed by 고려대학교 산학협력단, 재단법인 오송첨단의료산업진흥재단 filed Critical 고려대학교 산학협력단
Publication of WO2022265331A1 publication Critical patent/WO2022265331A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants

Definitions

  • the present invention relates to Fc variants with reduced or silenced effector function and/or extended half-life in blood and a method for preparing the same.
  • Therapeutic antibodies are being developed for the treatment of a variety of diseases, the efficacy of some of which derives in part from the Fc region of the antibody mediating one or more effector functions. These effector functions result from the interaction of antibodies and antibody-antigen complexes with cells of the immune system to stimulate a variety of responses, including antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) (Daeron, Annu Rev. Immunol.15:203-234 (1997)).
  • ADCC antibody-dependent cell-mediated cytotoxicity
  • CDC complement-dependent cytotoxicity
  • the effector functions mediated by the Fc region may cause undesirable adverse effects, and thus the development of antibodies with reduced or silenced effector functions is required.
  • the present inventors discover novel Fc variants that have the effect of extending half-life while effector functions of the Fc region, such as antibody-dependent cell-mediated cytotoxicity (ADCC) and/or complement-dependent cytotoxicity (CDC), are reduced or silenced. made an earnest effort to do so.
  • ADCC antibody-dependent cell-mediated cytotoxicity
  • CDC complement-dependent cytotoxicity
  • an object of the present invention is to provide a polypeptide comprising an antibody Fc variant, wherein the Fc variant has reduced binding ability to Fc ⁇ RIIIa compared to a wild type antibody Fc domain.
  • Another object of the present invention is to provide an antibody comprising the polypeptide.
  • Another object of the present invention is to provide a nucleic acid molecule encoding the polypeptide.
  • Another object of the present invention is to provide a vector containing the nucleic acid molecule.
  • Another object of the present invention is to provide a host cell containing the vector.
  • Another object of the present invention is to provide a method for producing a polypeptide comprising an Fc variant having a reduced effector function compared to a wild-type Fc domain.
  • Another object of the present invention is to provide a method for preparing an antibody having a reduced effector function compared to a wild type antibody.
  • Another object of the present invention is an effector function comprising administering a pharmaceutical composition comprising a nucleic acid molecule encoding the polypeptide or a vector containing the nucleic acid molecule to a subject in need thereof. function) to provide a method for delivering an Fc variant with reduced function.
  • the present invention is a polypeptide comprising an antibody Fc variant, wherein the Fc variant has reduced binding ability to Fc ⁇ RIIIa compared to a wild type antibody Fc domain, a polypeptide provides
  • ADCC antibody-dependent cell-mediated cytotoxicity
  • CDC complement-dependent cytotoxicity
  • An antibody is a protein that specifically binds to a particular antigen, and natural antibodies are usually heterodimeric glycoproteins of about 150,000 daltons, composed of two identical light (L) chains and two identical heavy (H) chains.
  • IgA immunoglobulin A
  • IgD immunoglobulin D
  • IgE immunoglobulin D
  • IgG immunoglobulin G
  • IgM immunoglobulin M
  • Papain digestion of antibodies forms two Fab fragments and one Fc fragment, and in human IgG molecules, the Fc region is generated by papain digestion of the N-terminus of Cys 226 (Deisenhofer, Biochemistry 20: 2361-2370, 1981) .
  • the term "Fc region” is used herein to define the C-terminal region of an antibody.
  • the Fc region consists of two identical protein fragments derived from the second and third constant domains of the two heavy chains of an antibody: chain A and chain B.
  • the second and third constant domains are known as CH2 domains and CH3 domains, respectively.
  • the CH2 domain includes the CH2 domain sequence of chain A and the CH2 domain sequence of chain B.
  • the CH3 domain includes the CH3 domain sequence of chain A and the CH3 domain sequence of chain B.
  • the Fc region includes the hinge region defined below.
  • Fc region or “Fc domain” is used to define the C-terminal region of an immunoglobulin heavy chain.
  • An “Fc region sequence” may be a native Fc region sequence or a variant Fc region sequence. Although the boundaries of the Fc region sequences of immunoglobulin heavy chains can vary, human IgG heavy chain Fc region sequences are usually defined as extending from the amino acid residues at position Cys226 or Pro230 to their carboxyl termini.
  • CH2 domain sequence (also called “Cy2” domain sequence) of a human IgG Fc region sequence usually extends from about amino acid 231 to about amino acid 340.
  • a "CH3 domain sequence” includes the extension of the C-terminal residues from the Fc region sequence to the CH2 domain sequence (ie, from about amino acid residue 341 to about amino acid residue 447 of an IgG).
  • a “functional Fc region” retains the "effector function” or "effector function” of a wild-type Fc region.
  • exemplary “effector functions” include C1q binding; complement dependent cytotoxicity; Fc receptor binding; antibody-dependent cell-mediated cytotoxicity (ADCC); phagocytosis; down regulation of cell surface receptors (eg B cell receptor; BCR); and the like.
  • Such effector functions generally require an Fc region to be combined with a binding domain (eg an antibody variable domain) and can be assessed using, for example, various assays disclosed herein.
  • Wild-type Fc region sequence includes an amino acid sequence identical to that of an Fc region found in nature. Wild-type Fc regions include wild-type human IgG1 Fc regions (non-A and A allotypes); wild-type human IgG2 Fc region; wild-type human IgG3 Fc region; and wild-type human IgG4 Fc regions as well as naturally occurring variants thereof.
  • a “variant Fc region sequence” includes an amino acid sequence that differs from a wild-type Fc region sequence by “one or more amino acid modifications” as defined herein.
  • the variant Fc region sequence has at least one amino acid substitution compared to the wild-type Fc region sequence or the Fc region sequence of the parent polypeptide, for example, from about 1 to about 10 amino acid substitutions in the wild-type Fc region sequence or the Fc region sequence of the parent polypeptide; preferably from about 1 to about 5 amino acid substitutions.
  • a variant Fc region sequence herein has at least about 80% identity to, most preferably at least about 90% identity to, more preferably at least about 90% identity to, a wild-type Fc region sequence or an Fc region sequence of a parent polypeptide. have at least about 95% identity with
  • Fc receptor or “FcR” is used to describe a receptor that binds to the Fc region of an antibody.
  • Preferred FcRs are native human FcRs.
  • an FcR is one that binds an IgG antibody (gamma receptor, Fc ⁇ R), including allelic variants and alternatively spliced forms of these receptors, Fc ⁇ RI (CD64), Fc ⁇ RII (CD32), and receptors of the Fc ⁇ RIII (CD16) subclass.
  • FcR also includes the neonatal receptor, FcRn, which is involved in the transfer of maternal IgGs to the fetus (Guyer et al, J. Immunol. 1 17:587 (1976)).
  • Fc ⁇ R does not include FcRn.
  • Antibody-dependent cell-mediated cytotoxicity and “ADCC” refer to non-specific cytotoxic cells expressing FcRs (e.g., natural killer (NK) cells) that recognize antibodies bound on target cells and subsequently induce lysis of the target cells. cells, neutrophils, and macrophages).
  • FcRs e.g., natural killer (NK) cells
  • NK cells the main cells mediating ADCC, express Fc ⁇ RIII and low levels of Fc ⁇ RIIc
  • monocytes express Fc ⁇ Rl, Fc ⁇ RII and Fc ⁇ RIII.
  • a “human effector cell” is a leukocyte that expresses one or more FcRs and performs effector functions. Preferably, the cell expresses at least Fc ⁇ RIII and performs ADCC effector functions. Examples of human leukocytes that mediate ADCC include peripheral blood mononuclear cells (PBMCs), natural killer (NK) cells, monocytes, cytotoxic T cells and neutrophils; PBMCs and NK cells are preferred. Effector cells can be isolated from their natural source, eg blood or PBMCs.
  • PBMCs peripheral blood mononuclear cells
  • NK natural killer cells
  • Effector cells can be isolated from their natural source, eg blood or PBMCs.
  • Fc variants with “reduced”, “silenced”, “negligible” or “negligible” Fc ⁇ R binding affinity and C1q binding affinity are compared to the parent polypeptide or a polypeptide comprising a wild-type Fc region sequence. It has reduced Fc ⁇ R binding activity and C1q binding activity.
  • Fc variants with “reduced”, “silenced”, “negligible” or “removed” Fc ⁇ R binding affinity and C1q binding affinity also have a parent polypeptide or wild-type Fc region sequence.
  • the Fc variant has reduced ADCC compared to the wild-type antibody Fc domain.
  • the Fc variant has reduced CDC compared to the wild-type antibody Fc domain.
  • an Fc variant that “displays reduced or undetectable binding” to an Fc ⁇ R binds all Fc ⁇ Rs with lower affinity than the parent polypeptide. Such variants that exhibit reduced binding to Fc ⁇ R may retain little or no appreciable binding to Fc ⁇ R.
  • the variant exhibits 0-10% binding to an Fc ⁇ R relative to a native IgG Fc region, as determined, for example, in the Examples herein or as measured by change in equilibrium constant.
  • the variant exhibits 0-5% binding to an Fc ⁇ R compared to a native IgG Fc region.
  • the variant exhibits 0-3% binding to an Fc ⁇ R compared to a native IgG Fc region.
  • the variant exhibits 0-1% binding to an Fc ⁇ R relative to a native IgG Fc region.
  • Parent antibody refers to a construct that does not contain amino acid modifications to the hinge region.
  • the parent antibody is one that does not contain amino acid modifications to the hinge region and does contain modifications to the CH3 domain that promote formation of a heterodimeric Fc region.
  • amino acid modification refers to a change in the amino acid sequence of a predetermined amino acid sequence. Exemplary modifications include amino acid substitutions, insertions and/or deletions.
  • an amino acid modification herein is a substitution.
  • an "amino acid modification" at a specified position in an Fc region refers to a substitution or deletion of a specified residue, or insertion of at least one amino acid residue adjacent to the specified residue.
  • An insertion "adjacent to" a specified residue means an insertion within one or both of these residues.
  • the insertion is N-terminal or C-terminal to a specified residue.
  • amino acid substitution refers to the replacement of at least one existing amino acid residue in a predetermined amino acid sequence with another different “alternative” amino acid residue.
  • the replacement residue or residues may be “naturally occurring amino acid residues” (ie those encoded by the genetic code) and may be selected from the group consisting of: alanine (Ala); arginine (Arg); asparagine (Asn); aspartic acid (Asp); cysteine (Cys); glutamine (Gln); glutamic acid (Glu); glycine (Gly); histidine (His); Isoleucine (Ile): Leucine (Leu); Lysine (Lys); methionine (Met); phenylalanine (Phe); Proline (Pro): Serine (Ser); threonine (Thr); tryptophan (Trp); Tyrosine (Tyr); and valine (Val).
  • the replacement moiety is not cysteine.
  • substitutions with one or more non-naturally occurring amino acid residues are also encompassed by the definition of amino acid substitutions herein.
  • a "non-naturally occurring amino acid residue” refers to a residue other than the naturally occurring amino acid residues listed above, which may covalently bind adjacent amino acid residue(s) in a polypeptide chain. Examples of non-naturally occurring amino acid residues include norleucine, ornithine, norvaline, homoserine and other amino acid residue analogs such as Ellman et al. Meth. Enzym. 202:301-336 (1991).
  • An antibody Fc domain can be an Fc domain of an IgA, IgM, IgE, IgD, or IgG antibody, or variants thereof.
  • the domain is an Fc domain of an IgG antibody (eg, an Fc domain of an IgG1, IgG2a, IgG2b, IgG3, or IgG4 antibody).
  • the Fc domain may be an IgG1 Fc domain (eg, trastuzumab or rituximab Fc domain) or an IgG4 Fc domain (eg, nivolumab Fc domain).
  • polypeptide comprising the Fc domain of the present invention
  • some or all of the polypeptide may be non-glycated or glycosylated.
  • the polypeptide may contain one or more regions from antibodies in addition to the Fc domain.
  • the polypeptide may include an antibody-derived antigen binding domain, and a plurality of polypeptides may form an antibody or antibody-like protein.
  • amino acid residue numbers of the antibody Fc domain herein follow the Kabat EU numbering system commonly used in the art (Kabat et al., in Sequences of Proteins of Immunological Interest 5th Ed., U.S. Department of EU index number as in Health and Human Services, NIH Publication No. 91-3242, 1991).
  • the substituted Fc variant of the present invention comprises an amino acid substitution at one or more positions selected from the group consisting of S228, L234, L235, T299 and P329 according to the Kabat EU numbering system.
  • the Fc variants of the present invention have reduced binding ability to Fc ⁇ RIIIa compared to the wild-type antibody Fc domain.
  • the term "avidity” or "binding affinity” herein generally refers to the strength of the sum of non-covalent interactions between a single binding site of a molecule (eg antibody) and its binding partner (eg Fc ⁇ R).
  • the affinity of a molecule X for its partner Y can generally be represented by the dissociation constant (Kd or KD). Affinity can be measured by common methods known in the art, including those described herein.
  • the Fc variants of the present invention preferably have a KD of 10 nM or less, more preferably a KD of 5 nM or less, even more preferably a KD of 3 nM or less, and even more preferably a KD of 1 nM or less for Fc ⁇ RIIIa. , most preferably exhibits a reduced binding force to an unmeasurable level.
  • Fc-fusion refers to a protein in which one or more polypeptides are operably linked to an Fc region or derivative thereof.
  • Fc fusions combine the Fc region of an immunoglobulin with a fusion partner, which generally can be any protein or small molecule.
  • the role of the non-Fc portion of an Fc fusion, i.e. the fusion partner, is to mediate target binding and is therefore functionally similar to the variable region of an antibody.
  • Virtually any protein or small molecule can be linked to Fc to create an Fc fusion.
  • a protein fusion partner may include, but is not limited to, a target-binding region of a receptor, junction attachment, ligand, enzyme, cytokine, chemokine, or some other protein or protein domain.
  • Small molecule fusion partners can include any therapeutic agent that induces Fc fusion to a therapeutic target.
  • a target may be any molecule, preferably an extracellular receptor involved in a disease.
  • GPCRs G-protein coupled receptors
  • ion channels including K+, Na+, Ca+ channels.
  • an Fc protein described herein may, for example, bind to one or more of GABA receptors, purinergic receptors, adrenergic receptors, histamine receptors, opioid receptors, chemokine receptors, glutamate receptors, nicotinic receptors, 5HT (serotonin) receptors, and estrogen receptors.
  • a fusion partner can be a small molecule mimic of a protein that targets a therapeutically useful target.
  • Specific examples of specific drugs that can act as Fc fusion partners are [L. S. Goodman et al, Eds., Goodman and Gilman's The Pharmacological Basis of Therapeutics (McGraw-Hill, New York, ed. 9, 1996).
  • linkers can be used to covalently link an Fc to a fusion partner to create an Fc fusion.
  • the Fc variant comprises one or more amino acid substitutions selected from the group consisting of S228P, L234A, L235A, L235E, T299L and P329G according to the Kabat EU numbering system in the Fc domain of the wild type antibody.
  • the Fc variant comprises the following amino acid substitutions according to the Kabat EU numbering system in the wild-type antibody Fc domain:
  • the Fc variant comprises an additional amino acid mutation for extending half-life compared to the wild-type antibody Fc domain.
  • the Fc variant may further include an amino acid substitution at one or more positions selected from the group consisting of M252, S254, T256, L309, Q311, M428 and N434 according to the Kabat EU numbering system in the Fc domain of the wild type antibody. there is.
  • said additional amino acid substitution may be selected from the group consisting of M252Y, S254T, T256E, L309G, Q311R, M428L and N434S.
  • the additional amino acid substitution may include the following amino acid substitution:
  • the additional amino acid substitution modulates binding and dissociation to the neonatal Fc receptor (FcRn).
  • FcRn neonatal Fc receptor
  • the Fc variant has a binding affinity to FcRn at pH 5.6 to 6.2 (preferably pH 5.8 to 6.0) of 10% or more, 20% or more compared to the wild-type Fc domain. ⁇ , ⁇ 30%, ⁇ 40%, ⁇ 50%, ⁇ 60%, ⁇ 70%, ⁇ 80%, ⁇ 90%, or ⁇ 100%, or at least 2-fold, 3-fold, or 4-fold greater than the wild-type Fc domain.
  • the degree of dissociation of the Fc variant from the neonatal Fc receptor (FcRn) at pH 7.0 to 7.8 is equal to or substantially greater than that of the wild-type Fc domain. may not change to
  • the substituted Fc variants of the present invention showed significantly improved binding affinity under slightly acidic conditions (e.g., pH 5.8 to 6.0) compared to wild-type Fc or other previously developed Fc variants. , showed the same or substantially equal or higher degree of dissociation under neutral conditions (eg, pH 7.0).
  • the substituted Fc variant of the present invention has an increased half-life compared to the wild-type antibody Fc domain.
  • the half-life of the substituted Fc variants of the present invention is 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, 90% or more compared to the wild-type Fc domain. Increased by at least 100% or more, at least 2-fold, at least 3-fold, at least 4-fold, at least 5-fold, at least 6-fold, at least 7-fold, at least 8-fold, at least 9-fold or at least 10-fold more than the wild-type Fc domain there is.
  • the substituted Fc variant of the present invention showed a significantly improved in vivo half-life compared to the wild type.
  • the present invention provides an antibody comprising the above polypeptide.
  • antibody herein is a polyclonal antibody, monoclonal antibody, minibody, domain antibody, bispecific antibody, antibody mimetic, chimeric antibody, antibody conjugate, human antibody or humanized antibody, or means fragment.
  • the half-life of the Fc domain or a polypeptide including the Fc domain is maximized through optimization of the antibody Fc region, while reducing or silencing the effector function.
  • the present invention provides a nucleic acid molecule encoding the polypeptide, a vector containing the nucleic acid molecule, or a host cell containing the vector.
  • Nucleic acid molecules of the present invention may be isolated or recombinant, and include DNA and RNA in single-stranded and double-stranded form, as well as corresponding complementary sequences.
  • An isolated nucleic acid is a nucleic acid that has been separated from surrounding genetic sequences present in the genome of the individual from which the nucleic acid was isolated, in the case of a nucleic acid isolated from a naturally occurring source.
  • the nucleic acid resulting from such a procedure can be understood as an isolated nucleic acid molecule.
  • nucleic acid molecule refers to a nucleic acid molecule in the form of a separate fragment or as a component of a larger nucleic acid construct.
  • Nucleic acids are operably linked when placed into a functional relationship with another nucleic acid sequence.
  • DNA of a full sequence or secretory leader is operably linked to DNA of a polypeptide when the polypeptide is expressed as a preprotein in its pre-secreted form, and a promoter or enhancer is the polypeptide sequence. is operably linked to a coding sequence when it affects transcription of, or when the ribosome binding site is positioned to facilitate translation.
  • operably linked means that the DNA sequences to be linked are contiguous, and in the case of a secretory leader, contiguous and in the same reading frame.
  • enhancers need not be contiguous.
  • Linkage is achieved by ligation at convenient restriction enzyme sites. If such sites do not exist, synthetic oligonucleotide adapters or linkers are used according to conventional methods.
  • vector refers to a carrier capable of inserting a nucleic acid sequence into a cell capable of replicating the nucleic acid sequence.
  • a nucleic acid sequence may be exogenous or heterologous.
  • Vectors include, but are not limited to, plasmids, cosmids, and viruses (eg, AAV, bacteriophage).
  • viruses eg, AAV, bacteriophage.
  • One skilled in the art can construct vectors by standard recombinant techniques (Maniatis, et al., Molecular Cloning , A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor, NY, 1988; and Ausubel et al., In: Current Protocols in Molecular Biology , John, Wiley & Sons, Inc, NY, 1994, etc.).
  • expression vector refers to a vector containing a nucleic acid sequence encoding at least a portion of a gene product to be transcribed. In some cases, the RNA molecule is then translated into a protein, polypeptide, or peptide.
  • Expression vectors may contain various regulatory sequences. Along with regulatory sequences that control transcription and translation, vectors and expression vectors may also contain nucleic acid sequences that serve other functions.
  • the term host cell includes eukaryotes and prokaryotes, and refers to any transformable organism capable of replicating the vector or expressing a gene encoded by the vector.
  • the host cell may be transfected or transformed by the vector, which means a process in which an exogenous nucleic acid molecule is delivered or introduced into the host cell.
  • transformation is used as a meaning including the transfection (Transfected) and transduction (Transduced).
  • the (host) cells of the present invention are not limited, but preferably insect cells or mammalian cells, more preferably Sf9 in the case of insect cells, HEK293 cells in the case of mammalian cells, HeLa cells, ARPE-19 cells, RPE- 1 cell, HepG2 cell, Hep3B cell, Huh-7 cell, C8D1a cell, Neuro2A cell, CHO cell, MES13 cell, BHK-21 cell, COS7 cell, COP5 cell, A549 cell, MCF-7 cell, HC70 cell, HCC1428 cell , BT-549 cells, PC3 cells, LNCaP cells, Capan-1 cells, Panc-1 cells, MIA PaCa-2 cells, SW480 cells, HCT166 cells, LoVo cells, A172 cells, MKN-45 cells, MKN-74 cells, Kato-III cells, NCI-N87 cells, HT-144 cells, SK-MEL-2 cells, SH-SY5Y cells, C6 cells, HT-22 cells,
  • the host cell of the present invention is preferably an isolated host cell.
  • the present invention provides a method for producing a polypeptide comprising an Fc variant having a reduced effector function compared to a wild-type Fc domain, comprising the steps of:
  • the present invention provides a method for producing an antibody with reduced effector function compared to wild type, comprising the steps of:
  • antibody purification may include filtration, HPLC, anion exchange or cation exchange, high performance liquid chromatography (HPLC), affinity chromatography, or a combination thereof, preferably Protein Affinity chromatography using A can be used.
  • the present invention provides a composition comprising the polypeptide, the antibody, the nucleic acid molecule or the vector comprising the Fc variant comprising the amino acid substitution.
  • the composition of the present invention is a pharmaceutical composition.
  • the present invention provides a pharmaceutical composition comprising a polypeptide comprising the Fc variant, a nucleic acid molecule encoding the polypeptide, or a vector comprising the nucleic acid molecule, to a subject in need thereof ( It provides a method for delivering an Fc variant with reduced effector function, comprising the step of administering to a subject.
  • the Fc variant of the present invention has a low Fc ⁇ RIIIa binding affinity and / or no ADCC (antibody dependent cellular cytotoxicity) to the degree of undetectable compared to the control group (eg, rituximab or nivolumab) and/or Complement-Dependent Cytotoxicity (CDC) While exhibiting activity, it has remarkable half-life increasing ability at the same time.
  • ADCC antibody dependent cellular cytotoxicity
  • the pharmaceutical composition of the present invention comprises (a) the polypeptide, a nucleic acid molecule encoding the polypeptide, or a vector containing the nucleic acid molecule; and (b) a pharmaceutically acceptable carrier.
  • the pharmaceutical composition of the present invention may be used for prevention or treatment of a specific disease (eg, tumor, viral or bacterial infection, etc.).
  • a specific disease eg, tumor, viral or bacterial infection, etc.
  • prevention refers to inhibiting the occurrence of a disease or condition in a subject who has not been diagnosed with, but is likely to have, the disease or condition.
  • treatment refers to (a) inhibiting the development of a disease, disorder or condition; (b) alleviation of the disease, condition or symptom; or (c) eliminating the disease, disorder or condition.
  • the composition of the present invention may be a composition for treating viral infection by itself, or may be applied as a therapeutic adjuvant to improve its therapeutic response by being administered together with other pharmacological ingredients. Accordingly, the terms “treatment” or “therapeutic agent” herein include the meaning of “therapeutic aid” or "therapeutic agent”.
  • administration refers to directly administering a therapeutically effective amount of the composition of the present invention to a subject so that the same amount is formed in the body of the subject.
  • the term "pharmaceutically effective amount” or “therapeutically effective amount” refers to the content of the composition contained in a sufficient level to provide a therapeutic or preventive effect of the pharmacological component in the composition to the subject to whom the pharmaceutical composition of the present invention is to be administered. It means, and it is meant to include a “prophylactically effective amount” therein.
  • the term "subject” includes, without limitation, a human, mouse, rat, guinea pig, dog, cat, horse, cow, pig, monkey, chimpanzee, baboon or rhesus monkey. Specifically, the subject of the present invention is a human.
  • the pharmaceutical composition of the present invention contains a pharmaceutically acceptable carrier or excipient.
  • the pharmaceutical composition of the present invention is prepared in unit dosage form by formulation using a pharmaceutically acceptable carrier and/or excipient according to a method that can be easily performed by those skilled in the art. or it may be prepared by incorporating into a multi-dose container.
  • the pharmaceutical composition according to the present invention may be formulated and used in various forms according to conventional methods.
  • it can be formulated into oral formulations such as powders, granules, tablets, capsules, suspensions, emulsions and syrups, and can be formulated and used in the form of external preparations, suppositories and sterile injection solutions.
  • composition of the present invention may contain one or more known active ingredients having anticancer activity, antiviral or antibacterial activity.
  • the pharmaceutical composition of the present invention can be administered orally or parenterally, preferably parenteral administration, such as intravenous injection, transdermal administration, subcutaneous injection, intramuscular injection, intravitreal injection, subretinal injection. Subretinal injection, suprachoroidal injection, eye drop administration, intracerebroventricular injection, intrathecal injection, intraamniotic injection, intra-arterial intraarterial injection, intraarticular injection, intracardiac injection, intracavernous injection, intracerebral injection, intracisternal injection, intracoronary injection (intracoronary injection), intracranial injection, intrathecal injection, epidural injection, intrahippocampal injection, intranasal injection, intraosseous injection injection), intraperitoneal injection, intrathoracic injection, intraspinal injection, intrathoracic injection, intrathymic injection, intrauterine injection , intravaginal injection ( It can be administered by intravaginal injection), intraventricular injection, intravesical injection, subconjunctival injection, intratumoral injection,
  • Preparations for parenteral administration include sterilized aqueous solutions, non-aqueous solvents, suspensions, emulsions, freeze-dried preparations, and suppositories.
  • Propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable esters such as ethyl oleate may be used as non-aqueous solvents and suspending agents.
  • injectable esters such as ethyl oleate
  • witepsol, macrogol, tween 61, cacao butter, laurin paper, glycerogeratin and the like may be used as a base for the suppository.
  • the dosage of the pharmaceutical composition of the present invention may vary depending on the formulation method, administration method, administration time and/or route of administration of the pharmaceutical composition, and the type and degree of response to be achieved by administration of the pharmaceutical composition. , various factors, including the type of subject to be administered, age, weight, general health condition, symptoms or severity of disease, sex, diet, excretion, drugs used simultaneously or at the same time in the subject, and other components of the composition, and the like It can be varied according to similar factors well known in the medical field, and those skilled in the art can easily determine and prescribe an effective dosage for the desired treatment.
  • the administration route and administration method of the pharmaceutical composition of the present invention may be each independent, and are not particularly limited in the method, and any administration route and administration method as long as the pharmaceutical composition can reach the target site can follow
  • the present invention provides a polypeptide comprising an Fc variant in which part of the amino acid sequence of a human antibody Fc domain is substituted with another amino acid sequence, or an antibody comprising the same.
  • the present invention provides a method for preparing the polypeptide or antibody.
  • the Fc variant of the present invention can reduce or silence effector functions and maximize half-life in the body through optimization of some amino acid sequences.
  • Figure 1 shows the SDS-PAGE results of Rituximab (IgG1) Fc double mutant.
  • FIG. 2 shows the results of SEC-HPLC analysis of Rituximab (IgG1) Fc double mutant.
  • FIG. 3 shows the SDS-PAGE results of Nivolumab (IgG4) Fc double mutant.
  • Figure 4 shows the results of SEC-HPLC analysis of Nivolumab (IgG4) Fc double mutant.
  • Figure 5 shows the conditions for measuring the binding force of Rituximab (IgG1) Fc double mutant with Fc ⁇ RIIIa.
  • 6a, 6b, 6c, 6d, and 6e show binding patterns of Rituximab (IgG1) Fc double mutants to Fc ⁇ RIIIa.
  • Figures 7a and 7b show the results of measuring the binding force between human FcRn and Fc double variants at pH 6.0
  • Fig. 7a results of measuring the binding force of four variants (YTE, LS, PFc29, PFc41) compared to Rituximab
  • Fig. 7b effector function As a result of introducing additional TL mutatants that decrease).
  • Figure 8 shows the conditions for measuring the binding force of Nivolumab (IgG4) Fc double mutant with Fc ⁇ RIIIa.
  • FIGS. 9a, 9b, and 9c show the results of analysis of binding patterns of Nivolumab (IgG4) Fc Double Variants to Fc ⁇ RIIIa (FIGS. 9a and 9b: KD values for variants in which SPTL and SPLETL were additionally introduced; FIG. 9c: WT, LS, KD values of PFc29, PFc41).
  • Figures 10a and 10b show ADCC assay results between Rituximab (IgG1) Fc double mutants (Figure 10a: comparison between original form and LALAPG mutant form; Figure 10b: comparison between original form and TL mutant form).
  • FIG. 11a and 11b show CDC assay results between Rituximab (IgG1) Fc double mutants (FIG. 11a: comparison between original form and LALAPG mutant form; FIG. 11b: comparison between original form and TL mutant form).
  • a total of 25 variants were produced by introducing heavy chain and light chain constructs using the pcDNA3.4 vector (Thermo Fisher Scientific, 14697) (Table 1).
  • Fc variants including Rituximab wild type, were transiently expressed in animal cells using the Expi293F expression system (Thermo Fisher Scientific, A14527).
  • Expi293F cells were subcultured to 2x10 6 cells/mL, and the next day, when the cell density reached 2.9x10 6 cells/mL, the cells were prepared in an amount of 270 mL.
  • 15 mL of Opti-MEM1 medium (Thermo Fisher Scientific, 31985070)
  • Opti-MEM1 medium mix a total of 300 ug of plasmid DNA with a heavy chain to light chain transfection ratio of 1:1
  • ExpiFectamine293 transfection reagent (Thermo Fisher Scientific, A14524) 0.81 mL each was mixed and left for 5 minutes, then the DNA-mixed Opti-MEM1 medium mixed with the ExpiFectamine293 transfection reagent mixed Opti-MEM1 medium was mixed well and left at room temperature for 20 minutes.
  • the expression supernatant was subjected to affinity chromatography using an AKTA prime plus (GE healthcare, 11001313) equipped with a HiTrap MabSelect SuRe column (GE healthcare, #11003495), and 300 mL of the supernatant was flowed at a rate of 3 mL per minute.
  • Elution buffer 100 mM citrate buffer, 5% sucrose, pH3.0
  • the protein was finally purified by concentrating while changing the buffer to a pH 7.4 1xPBS buffer (ThermoFisher, 10010031).
  • the produced protein was subjected to SDS-PAGE and SEC-HPLC analysis to secure an antibody with a purity of 92% or more (FIGS. 1 and 2).
  • Nivolumab Fc variants in which SPLE (S228P, L235E), SPLETL (S228P, L235E, T299L), and SPTL (S228P, T299L) mutations were introduced into Nivolumab wild type, YTE, LS, pFc29, and pFc41 variants, respectively, were used as pcDNA3.4 vectors.
  • a total of 20 variants were produced by introducing heavy chain and light chain constructs (Table 2).
  • Fc variants including Nivolumab Wild type, were transiently expressed in animal cells using the ExpiCHO expression system (Thermo Fisher Scientific, A29127).
  • ExpiCHO cells were subcultured to 3x10 6 cells/mL, and the next day, when the cell density reached 6x10 6 cells/mL, cells were prepared in an amount of 200 mL.
  • 8 mL of OptiPRO SFM medium (Thermo Fisher Scientific, 12309050)
  • OptiPRO SFM medium OptiPRO SFM medium
  • ExpiFectamineCHO transfection reagent ThermoFisher, A29129
  • the two media were mixed well and added to 200 ml of ExpiCHO prepared in advance, and cultured in a shaking CO 2 incubator at 37°C, 125 rpm, and 8% CO 2 conditions.
  • the expression supernatant was subjected to affinity chromatography using an AKTA prime plus equipped with a HiTrap MabSelect SuRe column (GE healthcare, 11003495). 300 mL of the supernatant was flowed at a rate of 3 mL per minute. Elution buffer (100 mM citrate buffer, 50 mM NaCl, 5% sucrose, pH3.0) was eluted with 6 fractions of 5 mL each at a rate of 3 mL per minute, and 2-4 fractions were collected.
  • Elution buffer 100 mM citrate buffer, 50 mM NaCl, 5% sucrose, pH3.0
  • the protein was finally purified by concentrating while changing the buffer to a pH 7.4 1xPBS buffer (ThermoFisher, 10010031).
  • the produced protein was subjected to SDS-PAGE and SEC-HPLC analysis to secure an antibody of 95% or more purity (FIGS. 3 and 4).
  • binding force was measured by capturing Fc ⁇ RIIIa as a ligand using Biacore T200 equipment (GE healthcare, 28975001) (FIG. 5).
  • the binding force was measured by capturing the Rituximab-Fc variant as a ligand on a CM5 chip (GE Healthcare, BR100012) using Biacore T200 equipment (GE Healthcare, 28975001).
  • CM5 chip GE Healthcare, BR100012
  • Biacore T200 equipment GE Healthcare, 28975001.
  • the binding force of 4 variants YTE, LS, PFc29, PFc41
  • the binding force was maintained compared to before introduction (FIG. 7).
  • binding force was measured by capturing Fc ⁇ RIIIa as a ligand using Biacore T200 equipment (FIG. 8).
  • Example 3 Confirmation of difference in antibody-dependent cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) reactivity between rituximab (IgG1) Fc double variants
  • ADCC Antibody-Dependent Cellular Mediated Cytotoxicity
  • CD20 is stably expressed Raji cell (ATCC, CCL-86) was selected as the target cell and the experiment was conducted did
  • Raji cells are seeded by counting the cell number in the assay buffer so that the cell number of 1.25x10 4 enters each well in a 96 well white plate, and the test substance (original, LALAPG, TL) is assayed
  • the cells were treated in a 96 well white plate seeded so that the buffer had the highest concentration of 1 ug/mL, 1/3 dilution, and 10 points.
  • Take the effector cell out of the liquid nitrogen container melt it quickly, process it on a 96 well white plate so that the ratio of effector cell to target cell is 25:1, and incubate in a CO 2 incubator (37°C, 5% CO 2 conditions) for 6 hours.
  • Raji cells On the day of the CDC assay, Raji cells (ATCC, CCL-86) were placed in a 96-well V-bottom plate (Corning, 3894) by counting the cell numbers in assay buffer so that 1.2x10 4 cells entered each well and counting the cells. After seeding, the test substance (original, LALAPG, TL) is treated in a 96-well V-bottom plate (Corning, 3894) seeded with cells so that the test substance (original, LALAPG, TL) has a maximum concentration of 1 ug/mL, 1/3 dilution, and 10 points in assay buffer and reacted at room temperature for 15 minutes.
  • Nivolumab-Fc double variants were captured on a CM5 chip at about 160 RU level as a ligand to measure binding force.
  • the binding force measurement was performed in the range of 31.25 to 1000 nM as a total of 6 points by diluting hFcRn with an analyte at a concentration of 1/2 at a concentration of 1000 nM.
  • an Fc duplex introduced with a TL mutatant that reduces the therapeutic effector function that can show an excessive immune response to three variants (LS, PFc29, PFc41) compared to Nivolumab.
  • the binding ability of the variant was greatly improved compared to the control group (FIG. 12).
  • Example 5 Confirmation of effector silencing effect in antibody-dependent cytotoxicity (ADCC) between Nivolumab (IgG4) Fc double variants
  • ADCC Antibody-Dependent Cellular Mediated Cytotoxicity
  • TL mutations were added to Nivolumab (IgG4) Fc variants
  • Raji cells overexpressing hPD-1 Raji cells overexpressing hPD-1 (Raji-hPD-1 cell, Invivogen, raji- hpd1) was selected as the target cell and the experiment was conducted.
  • Example 6 hFcRn Tg mouse pharmacokinetics of Nivolumab (IgG4) TL variants with increased half-life and ablated mechanisms of action
  • mice Human FcRn Tg mice (Jackson Lab., JAX#004919) were used for IgG4-based Nivolumab prepared by introducing half-life increasing mutations LS, PFc29, PFc41 and TL (T299L) mutations reported to inhibit the immune mechanism. The blood half-life improvement effect was compared and verified.

Abstract

본 발명은 항체 Fc 도메인의 아미노산 서열 중 일부가 다른 아미노산 서열로 치환된 Fc 변이체를 포함하는 폴리펩타이드 또는 이를 포함하는 항체에 관한 것이다. 본 발명의 Fc 변이체는 광범위한 항체 및 Fc 융합체 산물에 있어서의 용도를 가질 수 있다. 일면에 있어서, 본 발명의 항체 또는 Fc 융합체는 치료용, 진단용, 또는 연구용 시약(reagent), 바람직하게는 치료용 의약으로 사용될 수 있다. 본 발명의 Fc 변이체는 일부 아미노산 서열의 최적화를 통하여 체 내 반감기를 극대화하면서도, 감소되거나 침묵화된 효과기 기능을 나타낼 수 있다.

Description

제어된 면역 작용 기작과 증가된 혈중 반감기를 갖는 Fc변이체들
본 발명은 이펙터 기능이 감소 또는 침묵화 및/또는 혈중 반감기가 연장된 Fc 변이체 및 이의 제조방법에 관한 것이다.
다양한 질환의 치료를 위해 치료적 항체가 개발되고 있으며, 이들 중 일부 치료적 항체의 효능은 부분적으로 하나 이상의 이펙터 기능을 매개하는 항체의 Fc 영역으로부터 비롯된다. 이들 이펙터 기능은 항체-의존적 세포-매개 세포독성(ADCC) 및 보체 의존적 세포독성(CDC)을 포함하는 다양한 반응을 자극하기 위한 면역계 세포와 항체 및 항체-항원 복합체의 상호작용으로부터 비롯된다(Daeron, Annu. Rev. Immunol. 15:203-234(1997)).
그러나 특정 질환의 치료에 있어서, 상기 Fc 영역에 의해 매개된 이펙터 기능은 바람직하지 않은 역효과를 유발할 수 있고, 따라서 감소되거나 침묵화된 이펙터 기능을 갖는 항체의 개발이 요구된다.
상기한 배경기술로서 설명된 사항들은 본 발명의 배경에 대한 이해 증진을 위한 것일 뿐, 이 기술분야에서 통상의 지식을 가진 자에게 이미 알려진 종래기술에 해당함을 인정하는 것으로 받아들여져서는 안 될 것이다.
본 발명자들은 항체-의존적 세포-매개 세포독성(ADCC) 및/또는 보체 의존적 세포독성(CDC)과 같은 Fc 영역의 이펙터 기능이 감소되거나 침묵화되면서도, 반감기 연장의 효과를 갖는 신규한 Fc 변이체를 발굴하고자 예의 노력을 하였다. 그 결과, 야생형 Fc 도메인의 일부 아미노산 서열을 다른 아미노산 서열로 치환하여 최적화함으로써, 단백질 또는 항체 치료제의 활성에는 거의 영향을 주지 않으면서 이펙터 기능을 감소시키거나 침묵화 시킬 수 있는 방법을 확인함으로써 본 발명을 완성하였다.
따라서, 본 발명의 목적은 항체 Fc 변이체를 포함하는 폴리펩타이드로서, 상기 Fc 변이체는 야생형(wild type) 항체 Fc 도메인과 비교하여 FcγRIIIa에 대한 결합력이 감소된 것을 특징으로 하는, 폴리펩타이드를 제공하는데 있다.
본 발명의 다른 목적은 상기 폴리펩타이드를 포함하는 항체를 제공하는데 있다.
본 발명의 또 다른 목적은 상기 폴리펩타이드를 코딩하는 핵산분자를 제공하는데 있다.
본 발명의 또 다른 목적은 상기 핵산분자를 포함하는 벡터를 제공하는데 있다.
본 발명의 또 다른 목적은 상기 벡터를 포함하는 숙주세포를 제공하는데 있다.
본 발명의 또 다른 목적은 야생형 Fc 도메인과 비교하여 이펙터 기능(effector function)이 감소된 Fc 변이체를 포함하는 폴리펩타이드의 제조방법을 제공하는데 있다.
본 발명의 또 다른 목적은 야생형과 비교하여 이펙터 기능(effector function)이 감소된 항체의 제조방법을 제공하는데 있다.
본 발명의 또 다른 목적은 상기 폴리펩타이드를 코딩하는 핵산분자 또는 상기 핵산분자를 포함하는 벡터를 포함하는 약제학적 조성물을 이를 필요로 하는 대상(subject)에게 투여하는 단계를 포함하는, 이펙터 기능(effector function)이 감소된 Fc 변이체의 전달방법을 제공하는데 있다.
본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.
본 발명의 일 양태에 따르면, 본 발명은 항체 Fc 변이체를 포함하는 폴리펩타이드로서, 상기 Fc 변이체는 야생형(wild type) 항체 Fc 도메인과 비교하여 FcγRIIIa에 대한 결합력이 감소된 것을 특징으로 하는, 폴리펩타이드를 제공한다.
*본 발명자들은 기존의 항체 또는 Fc 영역이 갖고 있는 항체-의존적 세포-매개 세포독성(ADCC) 및/또는 보체 의존적 세포독성(CDC)과 같은 이펙터 기능을 감소시키거나 침묵화하면서도, 반감기 연장의 효과를 갖는 신규한 Fc 변이체를 발굴하였다.
항체는 특정 항원에 특이적으로 결합을 나타내는 단백질로, 천연 항체는 통상 2개의 동일한 경쇄(L) 및 2개의 동일한 중쇄(H)로 구성된, 약 150,000 달톤의 헤테로다이머 당단백질이다.
본 발명에서 사용되는 인간 항체는 IgA, IgD, IgE, IgG 및 IgM의 5개의 주요 클래스가 있으며, 바람직하게는 IgG이다. 항체의 파파인 분해는 2개의 Fab 단편과 1개의 Fc 단편을 형성하며, 인간 IgG 분자에서, Fc 영역은 Cys 226의 N-말단을 파파인 분해함으로써 생성된다(Deisenhofer, Biochemistry 20: 2361-2370, 1981).
본 명세서에서 용어 "Fc 영역"은 항체의 C-말단 영역을 정의하기 위해 사용된다. Fc 영역은 항체의 두 중쇄: 사슬 A 및 사슬 B의 제2 및 제3 불변 도메인에서 유도된 두 동일한 단백질 단편으로 이루어진다. 제2 및 제3 불변 도메인은 각각 CH2 도메인 및 CH3 도메인으로 공지되어 있다. CH2 도메인은 사슬 A의 CH2 도메인 서열 및 사슬 B의 CH2 도메인 서열을 포함한다. CH3 도메인은 사슬 A의 CH3 도메인 서열 및 사슬 B의 CH3 도메인 서열을 포함한다. 본원에서 사용된 Fc 영역에는 아래에서 정의된 힌지 영역이 포함된다.
용어 "Fc 영역" 또는 "Fc 도메인"은 면역글로불린 중쇄의 C-말단 영역을 정의하기 위해 사용된다. "Fc 영역 서열"은 천연 Fc 영역 서열 또는 변이체 Fc 영역 서열일 수 있다. 면역글로불린 중쇄의 Fc 영역 서열의 경계는 변할 수 있지만, 인간 IgG 중쇄 Fc 영역 서열은 보통 위치 Cys226 또는 Pro230의 아미노산 잔기로부터 이들의 카복실 말단까지 연장되는 것으로 정의된다.
인간 IgG Fc 영역 서열의 "CH2 도메인 서열"(또한 일명 "Cy2" 도메인 서열)은 보통 대략 아미노산 231 내지 대략 아미노산 340까지 연장된다.
"CH3 도메인 서열"은 Fc 영역 서열에서 CH2 도메인 서열까지 C-말단 잔기의 연장부(즉 IgG의 대략 아미노산 잔기 341 내지 대략 아미노산 잔기 447)를 포함한다.
"기능적 Fc 영역"은 야생형 Fc 영역의 "효과기 기능" 또는 "이펙터 기능"을 보유한다. 예시적인 "이펙터 기능"에는 C1q 결합; 보체 의존적 세포독성; Fc 수용체 결합; 항체-의존적 세포-매개 세포독성(ADCC); 식균작용; 세포 표면 수용체(예를 들면 B 세포 수용체; BCR)의 하향 조절 등이 포함된다. 그와 같은 효과기 기능은 일반적으로 Fc 영역이 결합 도메인(예를 들면 항체 가변 도메인)과 조합되는 것을 필요로 하며, 예를 들면 본원에 개시된 다양한 분석을 이용해서 평가될 수 있다.
"야생형 Fc 영역 서열"은 자연에서 발견되는 Fc 영역의 아미노산 서열과 동일한 아미노산 서열을 포함한다. 야생형 Fc 영역에는 야생형 인간 IgG1 Fc 영역(비-A 및 A 동종이형); 야생형 인간 IgG2 Fc 영역; 야생형 인간 IgG3 Fc 영역; 및 야생형 인간 IgG4 Fc 영역 뿐만 아니라 이들의 천연 발생 변이체가 포함된다.
"변이체 Fc 영역 서열"은 본원에서 정의된 "하나 이상의 아미노산 변형"에 의해 야생형 Fc 영역 서열과 상이한 아미노산 서열을 포함한다. 변이체 Fc 영역 서열은 야생형 Fc 영역 서열 또는 모 폴리펩타이드의 Fc 영역 서열에 비해 적어도 하나의 아미노산 치환, 예를 들면 야생형 Fc 영역 서열 또는 모 폴리펩타이드의 Fc 영역 서열에 약 1 내지 약 10개 아미노산 치환, 바람직하게는 약 1 내지 약 5개 아미노산 치환을 갖는다. 특정 구현예에서, 본원의 변이체 Fc 영역 서열은 야생형 Fc 영역 서열 또는 모 폴리펩타이드의 Fc 영역 서열과 적어도 약 80% 동일성을, 가장 바람직하게는 그와 적어도 약 90% 동일성을, 더 바람직하게는 그와 적어도 약 95% 동일성을 보유한다.
용어 "Fc 수용체" 또는 "FcR"은 항체의 Fc 영역에 결합하는 수용체를 설명하기 위해 사용된다. 바람직한 FcR은 천연 인간 FcR이다. 게다가, 특정 구현예에서, FcR은 IgG 항체에 결합하는 것(감마 수용체, FcγR)이며, 이들 수용체의 대립유전자 변이체 및 대안적으로 스플라이스된 형태를 포함하는 FcγRI(CD64), FcγRII(CD32), 및 FcγRIII(CD16) 서브클래스의 수용체가 포함된다. 용어 "FcR"에는 또한 신생아 수용체, FcRn이 포함되며, 이는 모계 IgGs의 태아로의 전달에 관여한다(Guyer et al, J. Immunol. 1 17:587(1976)). 용어 "FcγR"에는 FcRn이 포함되지 않는다.
"항체-의존적 세포-매개 세포독성" 및 "ADCC"는 표적 세포 상에 결합된 항체를 인식하고 차후에 표적 세포의 용해를 유도하는 FcRs을 발현하는 비특이적 세포독성 세포(예를 들면 자연 살해(NK) 세포, 중성구, 및 대식구)에서 세포-매개된 반응을 나타낸다. ADCC를 매개하는 주요 세포인, NK 세포는 FcγRIII 및 낮은 수준의 FcγRIIc를 발현하는 반면, 단핵구는 FcγRl, FcγRII 및 FcγRIII을 발현한다.
"인간 이펙터 세포"는 하나 이상의 FcRs을 발현하고 효과기 기능을 수행하는 백혈구이다. 바람직하게는, 세포는 적어도 FcγRIII을 발현하며 ADCC 효과기 기능을 수행한다. ADCC를 매개하는 인간 백혈구의 예에는 말초 혈액 단핵구(PBMC), 자연 살해(NK) 세포, 단핵구, 세포독성 T 세포 및 중성구가 포함되며; PBMCs 및 NK 세포가 바람직하다. 이펙터 세포는 이들의 천연 공급원, 예를 들면 혈액 또는 PBMCs로부터 단리될 수 있다.
"감소된", "침묵화된", "무시해도 좋은" 또는 "제거된" FcγR 결합 친화도 및 C1q 결합 친화도를 갖는 Fc 변이체는 모 폴리펩타이드 또는 야생형 Fc 영역 서열을 포함하는 폴리펩타이드에 비해 줄어든 FcγR 결합 활성 및 C1q 결합 활성을 갖는 것이다. 일부 구현예에서, "감소된", "침묵화된", "무시해도 좋은" 또는 "제거된" FcγR 결합 친화도 및 C1q 결합 친화도를 갖는 Fc 변이체는 또한 모 폴리펩타이드 또는 야생형 Fc 영역 서열을 포함하는 폴리펩타이드에 비해 "감소된", "침묵화된", "무시해도 좋은" 또는 "제거된" ADCC, ADCP 및 CDC 활성을 갖는 Fc 변이체이다.
본 발명의 바람직한 구현예에 따르면, 상기 Fc 변이체는 야생형 항체 Fc 도메인과 비교하여 ADCC가 감소된 것이다.
본 발명의 바람직한 구현예에 따르면, 상기 Fc 변이체는 야생형 항체 Fc 도메인과 비교하여 CDC가 감소된 것이다.
FcγR에 대해 "감소된 또는 검출불가능한 결합을 나타내는" Fc 변이체는 모 폴리펩타이드보다 낮은 친화도로 모든 FcγRs에 결합한다. FcγR에 대해 감소된 결합을 나타내는 그와 같은 변이체는 FcγR에 대해 인식할 만한 결합을 거의 또는 전혀 보유하지 않을 수 있다. 일 구현예에서, 변이체는, 예를 들어 본원에서 실시예에서 결정된 또는 평형 상수의 변화로 측정된 바와 같이, 천연 IgG Fc 영역에 비해 FcγR에 대해 0-10% 결합을 나타낸다. 일 구현예에서, 변이체는 천연 IgG Fc 영역에 비해 FcγR에 대해 0-5% 결합을 나타낸다. 일 구현예에서, 변이체는 천연 IgG Fc 영역에 비해 FcγR에 대해 0-3% 결합을 나타낸다. 일 구현예에서, 변이체는 천연 IgG Fc 영역에 비해 FcγR에 대해 0-1% 결합을 나타낸다.
"모 항체", "모 폴리펩타이드" 또는 "야생형 Fc 영역을 포함하는 폴리펩타이드"는 힌지 영역에 대해 아미노산 변형을 포함하지 않는 작제물을 나타낸다. 일 구현예에서, 모 항체는 힌지 영역에 대한 아미노산 변형을 포함하지 않고 이종이량체 Fc 영역의 형성을 촉진하는 CH3 도메인에 대한 변형을 포함하는 것이다.
"아미노산 변형"은 예정된 아미노산 서열의 아미노산 서열 내 변화를 나타낸다. 예시적인 변형에는 아미노산 치환, 삽입 및/또는 결실이 포함된다. 특정 구현예에서, 본원의 아미노산 변형은 치환이다. 예를 들면 Fc 영역의 명시된 위치"에서의 아미노산 변형"은 명시된 잔기의 치환 또는 결실, 또는 명시된 잔기에 인접한 적어도 하나의 아미노산 잔기의 삽입을 나타낸다. 명시된 잔기에 "인접한" 삽입이란 이들의 하나 또는 두 잔기 내의 삽입을 의미한다. 특정 구현예에서, 삽입은 명시된 잔기에 대해 N-말단 또는 C-말단이다.
"아미노산 치환"은 예정된 아미노산 서열에서 적어도 하나의 기존 아미노산 잔기의 또 하나의 상이한 "대체" 아미노산 잔기를 이용한 대체를 나타낸다. 대체 잔기 또는 잔기들은 "천연 발생 아미노산 잔기"(즉 유전자 암호에 의해 인코딩된 것)일 수 있고, 하기로 구성된 그룹으로부터 선택될 수 있다: 알라닌(Ala); 아르기닌(Arg); 아스파라긴(Asn); 아스파르트산(Asp); 시스테인(Cys); 글루타민(Gln); 글루탐산(Glu); 글리신(Gly); 히스티딘(His); 이소류신(Ile): 류신(Leu); 라이신(Lys); 메티오닌(Met); 페닐알라닌(Phe); 프롤린(Pro): 세린(Ser); 트레오닌(Thr); 트립토판(Trp); 티로신(Tyr); 및 발린(Val). 바람직하게는, 대체 잔기는 시스테인이 아니다. 하나 이상의 비-천연 발생 아미노산 잔기를 이용한 치환이 또한 본원에서 아미노산 치환의 정의에 포괄된다. "비-천연 발생 아미노산 잔기"는 상기 열거된 천연 발생 아미노산 잔기와 다른 잔기를 나타내며, 이는 폴리펩타이드 사슬에서 인접한 아미노산 잔기(들)에 공유 결합할 수 있다. 비-천연 발생 아미노산 잔기의 예에는 노르류신, 오르니틴, 노르발린, 호모세린 및 다른 아미노산 잔기 유사체, 예컨대 [Ellman 등 Meth. Enzym. 202:301-336(1991)]에 기재된 것들이 포함된다.
항체 Fc 도메인은 IgA, IgM, IgE, IgD, 또는 IgG 항체의 Fc 도메인, 혹은 이들의 변형일 수 있다. 일 실시 양태에 있어서는 상기 도메인은 IgG 항체의 Fc 도메인(예를 들면 IgG1, IgG2a, IgG2b, IgG3, 또는 IgG4 항체의 Fc 도메인)이다. 일 실시 양태에 있어서는 상기 Fc 도메인은 IgG1 Fc 도메인(예를 들면, 트라스트주맙 또는 리툭시맙의 Fc 도메인) 또는 IgG4 Fc 도메인(예를 들면, 니볼루맙의 Fc 도메인)일 수 있다. 본 발명의 Fc 도메인을 포함하는 폴리펩타이드는 폴리펩타이드 일부 또는 전체가 당화되어 있지 않거나 당화되어 있을 수 있다. 또한, 폴리펩타이드에 Fc 도메인에 더해 항체에서 유래하는 하나 이상의 영역이 포함될 수도 있다. 추가적으로, 상기 폴리펩타이드에는 항체 유래의 항원 결합 도메인(antigen binding domain)이 포함될 수도 있으며, 복수의 폴리펩타이드가 항체 또는 항체형 단백질을 형성할 수도 있다.
본 명세서에서 항체 Fc 도메인의 아미노산 잔기 번호는 당업계에서 통상적으로 사용되는 카밧 EU 넘버링 시스템(Kabat EU numbering system)에 따른다(Kabat et al., in Sequences of Proteins of Immunological Interest 5th Ed., U.S. Department of Health and Human Services, NIH Publication No. 91-3242, 1991에서와 같은 EU 지수번호).
본 발명의 바람직한 구현 예에 따르면, 본 발명의 치환된 Fc 변이체는 카밧 EU 넘버링 시스템에 따른 S228, L234, L235, T299 및 P329로 구성된 군으로부터 선택되는 1 이상의 위치에서 아미노산 치환을 포함한다.
본 발명의 Fc 변이체는 야생형 항체 Fc 도메인과 비교하여 FcγRIIIa에 대한 결합력이 감소된 것이다.
본 명세서에서 용어 "결합력" 또는 "결합 친화도" 일반적으로 분자(예를 들면, 항체)의 단일 결합 부위 및 그것의 결합 파트너(예를 들면, FcγR) 간의 비공유 상호작용의 총합의 강도를 나타낸다. 분자 X의 그 파트너 Y에 대한 친화도는 일반적으로 해리 상수(Kd 또는 KD)로 나타낼 수 있다. 친화도는 본원에 기재된 것을 포함하는 당해기술에 공지된 일반적 방법에 의해 측정될 수 있다.
본 발명의 Fc 변이체는 FcγRIIIa에 대하여 바람직하게는 10 nM 이하의 KD, 보다 바람직하게는 5 nM 이하의 KD, 보다 더 바람직하게는 3 nM 이하의 KD, 보다 더욱 더 바람직하게는 1 nM 이하의 KD, 가장 바람직하게는 측정 불가 수준의 감소된 결합력을 나타낸다.
본 명세서에서 사용된 "Fc-융합"은 하나 이상의 폴리펩타이드가 Fc 영역 또는 이들의 유도체에 작동가능하게 연결되는 단백질을 의미한다. Fc 융합은 면역글로불린의 Fc 영역과 일반적으로 임의의 단백질 또는 소분자일 수 있는 융합 파트너를 조합한다. Fc 융합의 비-Fc 부분, 즉 융합 파트너의 역할은 표적 결합을 매개하는 것이며, 따라서 항체의 가변 영역과 기능적으로 유사하다. 사실상 임의의 단백질 또는 소분자가 Fc에 연결되어 Fc 융합을 생성할 수 있다. 단백질 융합 파트너에는 비제한적으로 수용체의 표적-결합 영역, 접합 부착, 리간드, 효소, 사이토카인, 케모카인, 또는 일부 다른 단백질 또는 단백질 도메인이 포함될 수 있다. 소분자 융합 파트너에는 치료 표적에 대한 Fc 융합을 유도하는 임의의 치료제가 포함될 수 있다. 그와 같은 표적은 임의의 분자, 바람직하게는 질환에 관여되는 세포외 수용체일 수 있다. 수많은 승인된 소분자 약물의 표적인 표면 수용체의 두 패밀리는 G-단백질 커플링된 수용체(GPCRs), 및 K+, Na+, Ca+ 채널을 포함하는 이온 채널이다. 현재 전세계적으로 시판되는 모든 약물의 거의 70%가 GPCRs을 표적으로 한다. 따라서 본원에 기재된 Fc 단백질은, 예를 들면 하나 이상의 GABA 수용체, 퓨린성 수용체, 아드레날린성 수용체, 히스타민성 수용체, 오피오이드 수용체, 케모카인 수용체, 글루타메이트 수용체, 니코틴 수용체, 5HT(세로토닌) 수용체, 및 에스트로겐 수용체를 표적으로 하는 소분자에 융합될 수 있다. 융합 파트너는 치료적으로 유용한 표적을 표적으로 하는 단백질의 소분자 모방체일 수 있다. Fc 융합 파트너로 작용할 수 있는 특정 약물의 구체적인 예는 [L. S. Goodman et al, Eds., Goodman and Gilman's The Pharmacological Basis of Therapeutics(McGraw-Hill, New York, ed. 9, 1996)]에서 찾아볼 수 있다. 또한, 다양한 링커가 Fc 융합을 생성하기 위해 융합 파트너에 Fc를 공유 연결하기 위해 사용될 수 있다.
본 발명의 바람직한 구현예에 따르면, 상기 Fc 변이체는 야생형 항체 Fc 도메인에서 카밧 EU 넘버링 시스템에 따른 S228P, L234A, L235A, L235E, T299L 및 P329G로 구성된 군으로부터 선택되는 1 이상의 아미노산 치환을 포함하는 것이다.
본 발명의 바람직한 구현예에 따르면, 상기 Fc 변이체는 야생형 항체 Fc 도메인에서 카밧 EU 넘버링 시스템에 따른 하기의 아미노산 치환을 포함하는 것이다:
(i) L234A 및 L235A;
(ii) L234A, L235A 및 P329G;
(iii) T299L;
(iv) L234A, L235A 및 T299L;
(v) S228P 및 L235E;
(vi) S228P, L235E 및 T299L; 또는
(v) S228P 및 T299L.
본 발명의 바람직한 구현예에 따르면, 상기 Fc 변이체는 야생형 항체 Fc 도메인과 비교하여 반감기(Half-life) 연장을 위한 추가의 아미노산 변이를 포함한다.
예를 들어, 상기 Fc 변이체는 야생형 항체 Fc 도메인에서 카밧 EU 넘버링 시스템에 따른 M252, S254, T256, L309, Q311, M428 및 N434로 구성된 군으로부터 선택되는 1 이상의 위치에서 아미노산 치환을 추가로 포함할 수 있다.
본 발명의 바람직한 구현예에 따르면, 상기 추가적인 아미노산 치환은 M252Y, S254T, T256E, L309G, Q311R, M428L 및 N434S로 구성된 군으로부터 선택될 수 있다.
본 발명의 바람직한 구현예에 따르면, 상기 추가적인 아미노산 치환은 하기의 아미노산 치환을 포함할 수 있다:
(i) M252Y, S254T 및 T256E;
(ii) M428L 및 N434S;
(iii) Q311R 및 M428L; 또는
(iv) L309G 및 M428L.
상기 추가적인 아미노산 치환은 FcRn(neonatal Fc receptor)에 대한 결합 및 해리를 조정한다. 특히, 낮은 pH에서 FcRn에 대한 증가된 결합 친화도(binding affinity)를 나타내고, 높은 pH에서 실질적으로 변화된 결합을 나타내지 않은 Fc 변이체, 또는 그의 기능적 변이체를 포함한다.
본 발명의 바람직한 구현예에 따르면, 상기 Fc 변이체는 pH 5.6 내지 6.2(바람직하게는 pH 5.8 내지 6.0)에서 FcRn에 대한 결합 친화도(binding affinity)가 야생형 Fc 도메인과 비교하여 10% 이상, 20% 이상, 30% 이상, 40% 이상, 50% 이상, 60% 이상, 70% 이상, 80% 이상, 90% 이상 또는 100% 이상 증가되거나, 야생형 Fc 도메인 보다 2배 이상, 3배 이상, 4배 이상, 5배 이상, 6배 이상, 7배 이상, 8배 이상, 9배 이상, 10배 이상, 20배 이상, 30배 이상, 40배 이상, 50배 이상, 60배 이상, 70배 이상, 80배 이상, 90배 이상 또는 100배 이상 증가될 수 있다.
본 발명의 바람직한 구현예에 따르면, 상기 Fc 변이체는 pH 7.0 내지 7.8(바람직하게는 pH 7.2 내지 7.6)에서 FcRn(neonatal Fc receptor)으로부터 해리(dissociation)되는 정도가 야생형 Fc 도메인과 비교하여 동일하거나 실질적으로 변화되지 않을 수 있다.
본 발명의 일 실시예에 따르면, 본 발명의 치환된 Fc 변이체는 야생형 Fc 또는 기 개발된 타 Fc 변이체와 비교하여 약산성 조건(예를 들어, pH 5.8 내지 6.0)에서는 매우 향상된 결합 친화도를 나타내었으며, 중성 조건(예를 들어, pH 7.0)에서는 동일하거나 실질적으로 동등 또는 그 이상의 수준의 해리 정도를 나타내었다.
본 발명의 바람직한 구현예에 따르면, 본 발명의 치환된 Fc 변이체는 야생형 항체 Fc 도메인과 비교하여 반감기 (Half-life)가 증가된 것이다.
본 발명의 치환된 Fc 변이체의 반감기는 야생형 Fc 도메인과 비교하여 10% 이상, 20% 이상, 30% 이상, 40% 이상, 50% 이상, 60% 이상, 70% 이상, 80% 이상, 90% 이상 또는 100% 이상 증가되거나, 야생형 Fc 도메인 보다 2배 이상, 3배 이상, 4배 이상, 5배 이상, 6배 이상, 7배 이상, 8배 이상, 9배 이상 또는 10배 이상 증가될 수 있다.
본 발명의 일 실시예에 따르면, 본 발명의 치환된 Fc 변이체는 야생형과 비교하여 월등히 향상된 체 내 반감기를 나타내었다.
본 발명의 또 다른 양태에 따르면, 본 발명은 상기 폴리펩타이드를 포함하는 항체를 제공한다.
본 명세서에서 용어 항체는 폴리클로날 항체, 모노클로날 항체, 미니바디(minibody), 도메인 항체, 이중특이적 항체, 항체 모방체, 키메라 항체, 항체 접합체(conjugate), 인간항체 또는 인간화 항체이거나 이의 단편을 의미한다.
본 발명의 바람직한 구현예에 따르면, 본 발명은 항체 Fc 영역의 최적화를 통해 Fc 도메인 또는 이를 포함하는 폴리펩타이드의 반감기를 극대화하면서도, 이펙터 기능은 감소시키거나 침묵화할 수 있다.
본 발명의 또 다른 양태에 따르면, 본 발명은 상기 폴리펩타이드를 코딩하는 핵산분자, 상기 핵산분자를 포함하는 벡터 또는 상기 벡터를 포함하는 숙주세포를 제공한다.
본 발명의 핵산분자는 단리된 것이거나 재조합된 것일 수 있으며, 단일쇄 및 이중쇄 형태의 DNA 및 RNA뿐만 아니라 대응하는 상보성 서열이 포함된다. 단리된 핵산은 천연 생성 원천에서 단리된 핵산의 경우, 핵산이 단리된 개체의 게놈에 존재하는 주변 유전 서열로부터 분리된 핵산이다. 주형으로부터 효소적으로 또는 화학적으로 합성된 핵산, 예컨대 PCR 산물, cDNA 분자, 또는 올리고뉴클레오타이드의 경우, 이러한 절차로부터 생성된 핵산이 단리된 핵산분자로 이해될 수 있다. 단리된 핵산분자는 별도 단편의 형태 또는 더 큰 핵산 구축물의 성분으로서의 핵산 분자를 나타낸다. 핵산은 다른 핵산 서열과 기능적 관계로 배치될 때 작동가능하게 연결된다. 예를 들면, 전서열 또는 분비 리더(leader)의 DNA는 폴리펩타이드가 분비되기 전의 형태인 전단백질(preprotein)로서 발현되는 경우 폴리펩타이드의 DNA에 작동가능하게 연결되고, 프로모터 또는 인핸서는 폴리펩타이드 서열의 전사에 영향을 주는 경우 코딩 서열에 작동가능하게 연결되며, 또는 리보솜 결합 부위는 번역을 촉진하도록 배치될 때 코딩 서열에 작동가능하게 연결된다. 일반적으로 작동가능하게 연결된은 연결될 DNA 서열들이 인접하여 위치함을 의미하며, 분비 리더의 경우 인접하여 동일한 리딩 프레임 내에 존재하는 것을 의미한다. 그러나 인핸서는 인접하여 위치할 필요는 없다. 연결은 편리한 제한 효소 부위에서 라이게이션에 의해 달성된다. 이러한 부위가 존재하지 않는 경우, 합성 올리고뉴클레오타이드 어댑터 또는 링커를 통상적인 방법에 따라 사용한다.
본 명세서에서 용어 벡터는 핵산 서열을 복제할 수 있는 세포로의 도입을 위해서 핵산 서열을 삽입할 수 있는 전달체를 의미한다. 핵산 서열은 외생 (exogenous) 또는 이종 (heterologous)일 수 있다. 벡터로서는 플라스미드, 코스미드 및 바이러스(예를 들면, AAV, 박테리오파지)를 들 수 있으나, 이에 제한되지 않는다. 당업자는 표준적인 재조합 기술에 의해 벡터를 구축할 수 있다(Maniatis, et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor, N.Y., 1988; 및 Ausubel et al., In: Current Protocols in Molecular Biology, John, Wiley & Sons, Inc, NY, 1994 등).
본 명세서에서 용어 발현 벡터는 전사되는 유전자 산물 중 적어도 일부분을 코딩하는 핵산 서열을 포함한 벡터를 의미한다. 일부의 경우에는 그 후 RNA 분자가 단백질, 폴리펩타이드, 또는 펩타이드로 번역된다. 발현 벡터에는 다양한 조절서열을 포함할 수 있다. 전사 및 번역을 조절하는 조절서열과 함께 벡터 및 발현 벡터에는 또 다른 기능도 제공하는 핵산 서열도 포함될 수 있다.
본 명세서에서 용어 숙주세포는 진핵생물 및 원핵생물을 포함하며, 상기 벡터를 복제할 수 있거나 벡터에 의해 코딩되는 유전자를 발현할 수 있는 임의의 형질 전환 가능한 생물을 의미한다. 숙주세포는 상기 벡터에 의해 형질감염(transfected) 또는 형질전환(transformed) 될 수 있으며, 이는 외생의 핵산분자가 숙주세포 내에 전달되거나 도입되는 과정을 의미한다.
본 명세서에서 용어 "형질전환"은 상기 형질감염(Transfected) 및 형질도입(Transduced)을 포함하는 의미로 사용된다.
본 발명의(숙주)세포는 제한되지 않으나, 바람직하게는 곤충세포 또는 포유동물 세포, 보다 바람직하게는 곤충세포의 경우 Sf9, 포유동물 세포의 경우 HEK293 세포, HeLa 세포, ARPE-19 세포, RPE-1 세포, HepG2 세포, Hep3B 세포, Huh-7 세포, C8D1a 세포, Neuro2A 세포, CHO 세포, MES13 세포, BHK-21 세포, COS7 세포, COP5 세포, A549 세포, MCF-7 세포, HC70 세포, HCC1428 세포, BT-549 세포,PC3 세포, LNCaP 세포, Capan-1 세포, Panc-1 세포, MIA PaCa-2 세포, SW480 세포, HCT166 세포, LoVo 세포, A172 세포, MKN-45 세포, MKN-74 세포, Kato-III 세포, NCI-N87 세포, HT-144 세포, SK-MEL-2 세포, SH-SY5Y 세포, C6 세포, HT-22 세포, PC-12 세포, NIH3T3 세포 등을 이용할 수 있다.
본 발명의 숙주세포는 바람직하게는 단리된 숙주세포이다.
본 발명의 또 다른 양태에 따르면, 본 발명은 하기의 단계를 포함하는 야생형 Fc 도메인과 비교하여 이펙터 기능(effector function)이 감소된 Fc 변이체를 포함하는 폴리펩타이드의 제조방법을 제공한다:
a) 상기 Fc 변이체를 포함하는 폴리펩타이드를 코딩하는 핵산분자를 포함하는 벡터를 포함하는 숙주세포를 배양하는 단계; 및
b) 상기 숙주세포에 의해 발현된 폴리펩타이드를 회수하는 단계.
본 발명의 또 다른 양태에 따르면, 본 발명은 하기의 단계를 포함하는 야생형과 비교하여 이펙터 기능(effector function)이 감소된 항체의 제조방법을 제공한다:
a) 상기 Fc 변이체를 포함하는 폴리펩타이드를 포함하는 항체를 발현하는 숙주세포를 배양하는 단계; 및
b) 상기 숙주세포로부터 발현된 항체를 정제하는 단계.
본 발명의 제조방법에 있어서, 항체의 정제는 여과, HPLC, 음이온 교환 또는 양이온 교환, 고속 액체 크로마토그래피(HPLC), 친화도 크로마토그래피, 또는 이들의 조합을 하는 것이 포함될 수 있으며, 바람직하게는 Protein A를 사용하는 친화 크로마토그래피를 이용할 수 있다.
본 발명의 또 다른 양태에 따르면, 본 발명은 상기 아미노산 치환을 포함하는 Fc 변이체를 포함하는 폴리펩타이드, 상기 항체, 상기 핵산분자 또는 상기 벡터를 포함하는 조성물을 제공한다.
본 발명의 바람직한 구현예에 따르면, 본 발명의 조성물은 약제학적 조성물이다.
본 발명의 또 다른 양태에 따르면, 본 발명은 상기 Fc 변이체를 포함하는 폴리펩타이드, 상기 폴리펩타이드를 코딩하는 핵산분자 또는 상기 핵산분자를 포함하는 벡터를 포함하는 약제학적 조성물을 이를 필요로 하는 대상(subject)에게 투여하는 단계를 포함하는, 이펙터 기능(effector function)이 감소된 Fc 변이체의 전달방법을 제공한다.
본 발명의 일 실시예에 따르면, 본 발명의 Fc 변이체는 대조군(예를 들어, 리툭시맙 또는 니볼루맙) 대비 검출 불가능 정도의 낮은 FcγRIIIa 결합력 및/또는 전혀 없는 정도의 ADCC(antibody dependent cellular cytotoxicity) 및/또는 CDC (Complement-Dependent Cytotoxicity) 활성을 나타내면서, 동시에 현저한 반감기 증가능을 갖는다.
본 발명의 약제학적 조성물은 (a) 상기 폴리펩타이드, 상기 폴리펩타이드를 코딩하는 핵산분자 또는 상기 핵산분자를 포함하는 벡터; 및 (b) 약제학적으로 허용되는 담체를 포함할 수 있다.
본 발명의 약제학적 조성물은 특정 질환(예를 들어, 종양, 바이러스 또는 세균 감염 등)의 예방 또는 치료 용도로 사용될 수 있다.
본 명세서에서 용어 "예방"은 질환 또는 질병을 보유하고 있다고 진단된 적은 없으나, 이러한 질환 또는 질병에 걸릴 가능성이 있는 대상체에서 질환 또는 질병의 발생을 억제하는 것을 의미한다.
본 명세서에서 용어 "치료"는 (a) 질환, 질병 또는 증상의 발전의 억제; (b) 질환, 질병 또는 증상의 경감; 또는 (c) 질환, 질병 또는 증상을 제거하는 것을 의미한다. 본 발명의 조성물은 그 자체로 바이러스 감염 치료용 조성물이 될 수도 있고, 혹은 다른 약리성분과 함께 투여되어 이의 치료 반응성을 향상시키는 치료 보조제로 적용될 수도 있다. 이에, 본 명세서에서 용어 "치료" 또는 "치료제"는 "치료 보조" 또는 "치료 보조제"의 의미를 포함한다.
본 명세서에서 용어 "투여" 또는 "투여하다"는 본 발명의 조성물의 치료적 유효량을 대상체에 직접적으로 투여함으로써 대상체의 체내에서 동일한 양이 형성되도록 하는 것을 말한다.
본 발명에서 용어 "약제학적 유효량" 또는 "치료적 유효량"은 본 발명의 약제학적 조성물을 투여하고자 하는 개체에게 조성물 내의 약리성분이 치료적 또는 예방적 효과를 제공하기에 충분한 정도로 함유된 조성물의 함량을 의미하며, 이에 "예방적 유효량"을 포함하는 의미이다.
본 명세서에서 용어 "대상체"는 제한없이 인간, 마우스, 래트, 기니아 피그, 개, 고양이, 말, 소, 돼지, 원숭이, 침팬지, 비비 또는 붉은털 원숭이를 포함한다. 구체적으로는, 본 발명의 대상체는 인간이다.
본 발명의 바람직한 구현예에 따르면, 본 발명의 약학적 조성물은 약제학적으로 허용되는 담체 또는 부형제를 포함한다.
본 발명의 약제학적 조성물은 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있는 방법에 따라, 약제학적으로 허용되는 담체 및/또는 부형제를 이용하여 제제화 함으로써 단위 용량 형태로 제조되거나 또는 다용량 용기 내에 내입시켜 제조될 수 있다.
본 발명에 따른 약제학적 조성물은 통상의 방법에 따라 다양한 형태로 제형화하여 사용될 수 있다. 예컨대, 산제, 과립제, 정제, 캡슐제, 현탁액, 에멀젼, 시럽 등의 경구형 제형으로 제형화할 수 있고, 외용제, 좌제 및 멸균 주사용액의 형태로 제형화하여 사용될 수 있다.
본 발명의 조성물은 항암 활성, 항 바이러스 또는 항 박테리아 활성을 가진 공지의 유효성분을 1종 이상 함유할 수 있다.
본 발명의 약제학적 조성물은 경구 또는 비경구로 투여할 수 있고, 바람직하게는 비경구 투여이며, 예컨대, 정맥 내 주입, 경피 투여, 피하 주입, 근육 내 주입, 유리체 내 주입(intravitreal injection), 망막 하 주입(subretinal injection), 맥락막위공간 주입(suprachoroidal injection), 점안 투여(eye drop administration), 뇌실 내 주입(intracerebroventricular injection), 척추강 내 주입(intrathecal injection), 양막 내 주입 (intraamniotic injection), 동맥 내 주입 (intraarterial injection), 관절강 내 주입 (intraarticular injection), 심장 내 주입 (intracardiac injection), 음경해면체 내 주입 (intracavernous injection), 뇌 내 주입 (intracerebral injection), 뇌수조 주입 (intracisternal injection), 관상 내 주입 (intracoronary injection), 두개 내 주입 (intracranial injection), 경막 내 주입 (intradural injection), 경막 외 주입 (epidural injection), 해마 내 주입 (intrahippocampal injection), 비강 내 주입 (intranasal injection), 골강 내 주입 (intraosseous injection), 복강 내 주입 (intraperitoneal injection), 흉강 내 주입 (intrapleural injection), 척수 내 주입 (intraspinal injection), 흉곽 내 주입 (intrathoracic injection), 흉선 내 주입 (intrathymic injection), 자궁 내 주입 (intrauterine injection), 질 내 주입 (intravaginal injection), 심실 내 주입 (intraventricular injection), 방광 내 주입 (intravesical injection), 결막 하 주입 (subconjunctival injection) , 종양 내 주입 (intratumoral injection), 국소 주입 및 복강 주입(intraperitoneal injection) 등으로 투여할 수 있다.
상기 비경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조제제, 좌제가 포함된다. 비수성용제, 현탁용제로는 프로필렌글리콜(Propylene glycol), 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위텝솔(witepsol), 마크로골, 트윈(tween) 61, 카카오지, 라우린지, 글리세로제라틴 등이 사용될 수 있다.
본 발명의 약제학적 조성물의 투여량은 상기 약제학적 조성물의 제제화 방법, 투여 방식, 투여 시간 및/또는 투여 경로 등에 의해 다양해질 수 있으며, 상기 약제학적 조성물의 투여로 달성하고자 하는 반응의 종류와 정도, 투여 대상이 되는 개체의 종류, 연령, 체중, 일반적인 건강 상태, 질병의 증세나 정도, 성별, 식이, 배설, 해당 개체에 동시 또는 이시에 함께 사용되는 약물 기타 조성물의 성분 등을 비롯한 여러 인자 및 의약 분야에서 잘 알려진 유사 인자에 따라 다양해질 수 있으며, 당해 기술 분야에서 통상의 지식을 가진 자는 목적하는 치료에 효과적인 투여량을 용이하게 결정하고 처방할 수 있다.
본 발명의 약제학적 조성물의 투여 경로 및 투여 방식은 각각 독립적일 수 있으며, 그 방식에 있어 특별히 제한되지 아니하며, 목적하는 해당 부위에 상기 약학적 조성물이 도달할 수 있는 한 임의의 투여 경로 및 투여 방식에 따를 수 있다.
본 발명의 특징 및 이점을 요약하면 다음과 같다:
(i) 본 발명은 인간 항체 Fc 도메인의 아미노산 서열 중 일부가 다른 아미노산 서열로 치환된 Fc 변이체를 포함하는 폴리펩타이드 또는 이를 포함하는 항체를 제공한다.
(ii) 또한, 본 발명은 상기 폴리펩타이드 또는 항체의 제조방법을 제공한다.
(iii) 본 발명의 Fc 변이체는 일부 아미노산 서열의 최적화를 통하여 이펙터 기능의 감소 또는 침묵화와 동시에 체 내 반감기를 극대화 할 수 있다.
도 1은 Rituximab (IgG1) Fc 이중 변이체의 SDS-PAGE결과를 나타낸다.
도 2는 Rituximab (IgG1) Fc 이중 변이체의 SEC-HPLC 분석결과를 나타낸다.
도 3은 Nivolumab (IgG4) Fc 이중 변이체의 SDS-PAGE결과를 나타낸다.
도 4는 Nivolumab (IgG4) Fc 이중 변이체의 SEC-HPLC분석결과를 나타낸다.
도 5는 Rituximab (IgG1) Fc 이중 변이체의 FcγRIIIa와의 결합력 측정 조건을 나타낸다.
도 6a, 6b, 6c, 6d, 6e는 Rituximab (IgG1) Fc 이중 변이체의 FcγRIIIa와의 결합패턴을 나타낸다.
도 7a, 7b는 pH 6.0 조건에서 인간 FcRn과 Fc 이중 변이체간의 결합력 측정 결과를 나타낸다 (도 7a: Rituximab 대비 변이체 4종 (YTE, LS, PFc29, PFc41)의 결합력 측정 결과; 도 7b: effector function을 줄이는 TL mutatant를 추가 도입한 결과).
도 8은 Nivolumab (IgG4) Fc 이중 변이체의 FcγRIIIa와의 결합력 측정 조건을 나타낸다.
도 9a, 9b, 9c는 Nivolumab (IgG4) Fc Double Variants의 FcγRIIIa와의 결합패턴 분석 결과를 나타낸다(도 9a 및 도 9b: SPTL, SPLETL이 추가로 도입된 변이체들은 KD 값; 도 9c: WT, LS, PFc29, PFc41의 KD 값).
도 10a, 10b는 Rituximab (IgG1) Fc 이중 변이체간의 ADCC Assay 결과를 나타낸다(도 10a: original form과 LALAPG 돌연변이 form의 비교; 도 10b: original form과 TL 돌연변이 form의 비교).
도 11a, 11b는 Rituximab (IgG1) Fc 이중 변이체간의 CDC Assay 결과를 나타낸다(도 11a: original form과 LALAPG 돌연변이 form의 비교; 도 11b: original form과 TL 돌연변이 form의 비교).
도 12는 Nivolumab (IgG4) Fc 이중 변이체간의 pH6.0에서의 hFcRn 결합력을 측정한 결과를 나타낸다.
도 13은 Nivolumab (IgG4) Fc 이중 변이체간의 pH7.4에서의 hFcRn 결합력을 측정한 결과를 나타낸다.
도 14는 Nivolumab (IgG4) Fc 이중 변이체들의 Effector Silencing Effect 확인 (ADCC Assay) 결과를 나타낸다.
이하, 실시 예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시 예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시 예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
실시예
실시예 1: Rituximab (IgG1) 과 Nivolumab (IgG4) 면역작용기작 제거 Fc 변이체 Construct 제작 및 생산
가. Rituximab (IgG1) Fc 이중 변이체 Constructs 제작
Rituximab wild type, YTE, LS, pFc29, pFc41 변이체에 각각 LALA (L234A,L235A) LALAPG (L234A, L235A, P329G), TL (T299L), LALATL (L234A, L235A, T299L) 돌연변이가 도입된 Rituximab Fc 변이체들을 pcDNA3.4 vector(Thermo Fisher Scientific, 14697)를 이용하여 Heavy chain과 Light chain construct를 도입하여 총 25종의 변이체를 제작하였다 (표 1).
SEQ ID NO 변이체 이름 반감기 증가 변이 Effector-silent 변이
1 Rituximab WT -
2 Rituximab-YTE YTE
3 Rituximab-LS LS
4 Rituximab-PFc29 PFc29
5 Rituximab-PFc41 PFc41
6 Rituximab-LALA WT LALA
7 Rituximab-YTE_LALA YTE
8 Rituximab-LS_LALA LS
9 Rituximab-PFc29_LALA PFc29
10 Rituximab-PFc41_LALA PFc41
11 Rituximab-LALPG WT LALPG
12 Rituximab-YTE_LALPG YTE
13 Rituximab-LS_LALPG LS
14 Rituximab-PFc29_LALPG PFc29
15 Rituximab-PFc41_LALPG PFc41
16 Rituximab-TL WT TL
17 Rituximab-YTE_TL YTE
18 Rituximab-LS_TL LS
19 Rituximab-PFc29_TL PFc29
20 Rituximab-PFc41_TL PFc41
21 Rituximab-LALATL WT LALATL
22 Rituximab-YTE_LALATL YTE
23 Rituximab-LS_LALATL LS
24 Rituximab-PFc29_LALATL PFc29
25 Rituximab-PFc41_LALATL PFc41
반감기 증가 변이체 기반 면역작용기작 제거 변이체 추가 도입
나. Rituximab (IgG1) Fc 이중 변이체 발현 정제
Rituximab wild type을 비롯한 Fc 변이체 25종에 대해 Expi293F expression system (Thermo Fisher Scientific, A14527)을 활용하여 동물세포에서 일시 발현하였다.
Transfection 하루 전날 Expi293F 세포를 2x106 cells/mL이 되도록 계대배양하였고 다음날 세포밀도가 2.9x106 cells/mL이 되면 270 mL의 양으로 맞추어 세포를 준비하였다. Opti-MEM1 배지(Thermo Fisher Scientific, 31985070) 15 mL에 heavy chain과 light chain의 transfection ratio를 1:1로 하여 총 300 ug의 plasmid DNA를 섞고, 다른 Opti-MEM1 배지 15 mL에 ExpiFectamine293 transfection reagent (Thermo Fisher Scientific, A14524) 0.81 mL을 각각 섞어 5분 동안 둔 후, DNA를 섞은 Opti-MEM1 배지를 ExpiFectamine293 transfection reagent를 섞은 Opti-MEM1 배지에 잘 섞어 20 분간 상온에 두었다가 미리 준비한 270 ml의 Expi293F에 넣어주고, shaking CO2 incubator (INFORS HT, multitron standard)에서 37℃, 125 rpm, 8% CO2조건으로 배양하였다. 20시간 후 Enhancer1 2.5 mL, Enhancer2 25 mL을 추가로 넣어주어 총 300 mL의 양으로 shaking CO2 incubator에서 37℃, 125 rpm, 8% CO2조건으로 5일간 더 배양한 후 원심분리하여 상등액만 취하였다.
발현 상등액은 HiTrap MabSelect SuRe column (GE healthcare, #11003495)을 장착한 AKTA prime plus (GE healthcare, 11001313)를 이용하여 affinity chromatography를 수행하고, 상등액 300 mL을 분당 3 mL의 속도로 흘려주었다. Elution buffer (100 mM citrate buffer, 5 % Sucrose, pH3.0)를 분당 3 mL의 속도로 5 mL씩 6개의 fraction으로 Elution하고 2~4 fraction을 회수하였다. 30K Amicon ultra centrifugal filter (Millipore, UFC903024)를 이용하여 최종적으로 pH 7.4의 1xPBS buffer (ThermoFisher, 10010031)로 buffer로 바꿔주면서 농축하는 방법으로 단백질을 정제하였다. 생산된 단백질을 SDS-PAGE와 SEC-HPLC분석을 수행하여 92 %이상 순도의 항체를 확보하였다 (도 1 및 2).
다. Nivolumab (IgG4) Fc 이중 변이체 Constructs 제작
Nivolumab wild type, YTE, LS, pFc29, pFc41 변이체에 각각 SPLE (S228P, L235E), SPLETL (S228P, L235E, T299L), SPTL (S228P, T299L) 돌연변이가 도입된 Nivolumab Fc 변이체들을 pcDNA3.4 vector를 이용하여 Heavy chain과 Light chain construct를 도입하여 총 20종의 변이체를 제작하였다 (표 2).
SEQ ID NO 변이체 이름 반감기 증가 변이 Effector-silent 변이
26 Nivolumab WT -
27 Nivolumab-YTE YTE
28 Nivolumab-LS LS
29 Nivolumab-PFc29 PFc29
30 Nivolumab-PFc41 PFc41
31 Nivolumab-LALA WT SPLE
32 Nivolumab-YTE_SPLE YTE
33 Nivolumab-LS_SPLE LS
34 Nivolumab-PFc29_SPLE PFc29
35 Nivolumab-PFc41_SPLE PFc41
36 Nivolumab-SPLETL WT SPLETL
37 Nivolumab-YTE_SPLETL YTE
38 Nivolumab-LS_SPLETL LS
39 Nivolumab-PFc29_SPLETL PFc29
40 Nivolumab-PFc41_SPLETL PFc41
41 Nivolumab-SPTL WT SPTL
42 Nivolumab-YTE_SPTL YTE
43 Nivolumab-LS_SPTL LS
44 Nivolumab-PFc29_SPTL PFc29
45 Nivolumab-PFc41_SPTL PFc41
라. Nivolumab (IgG4) Fc 이중 변이체 발현 정제
Nivolumab Wild type을 비롯한 Fc 변이체 20종에 대해 ExpiCHO expression system (Thermo Fisher Scientific, A29127)을 활용하여 동물세포에서 일시 발현하였다.
Transfection 하루 전날 ExpiCHO 세포를 3x106 cells/mL이 되도록 계대 배양하였고 다음날 세포밀도가 6x106 cells/mL이 되면 200 mL의 양으로 맞추어 세포를 준비하였다. OptiPRO SFM 배지 (Thermo Fisher Scientific, 12309050) 8 mL에 heavy chain과 light chain의 transfection ratio를 1:1로 하여 총 300 ug의 plasmid DNA를 섞고, 다른 OptiPRO SFM배지 7.4 mL에 ExpiFectamineCHO transfection reagent (ThermoFisher, A29129) 0.64 mL을 각각 섞은후 두 배지를 잘 섞어 미리 준비한 200 ml의 ExpiCHO에 넣어주고, shaking CO2 incubator에서 37℃, 125 rpm, 8% CO2조건으로 배양하였다. 20시간 후 ExpiCHO Enhaner 1.2 mL, ExpiCHO Feed 32 mL을 추가로 넣어준 후 32℃, 125 rpm, 5% CO2조건으로 배양하고, 5일후 추가적으로 ExpiCHO Feed 32 ml을 더 넣어 14 일간 배양한 후 원심 분리하여 상등 액만 취하였다.
발현 상등액은 HiTrap MabSelect SuRe column (GE healthcare, 11003495)을 장착한 AKTA prime plus를 이용하여 affinity chromatography를 수행하였다. 상등액 300 mL을 분당 3 mL의 속도로 흘려주었다. Elution buffer (100 mM citrate buffer, 50 mM NaCl, 5% Sucrose, pH3.0)를 분당 3 mL의 속도로 5 mL씩 6개의 fraction으로 Elution하고 2-4 fraction을 회수하였다. 30K Amicon ultra centrifugal filter (Millipore, UFC903024)를 이용하여 최종적으로 pH 7.4의 1xPBS buffer (ThermoFisher, 10010031)로 buffer를 바꿔주면서 농축하는 방법으로 단백질을 정제하였다. 생산된 단백질을 SDS-PAGE와 SEC-HPLC분석을 수행하여 95%이상 순도의 항체를 확보하였다 (도 3 및 4).
실시예 2: Rituximab (IgG1)과 Nivolumab (IgG4) 면역작용기작 제거 Fc 변이체의 FcγRIIIa와 FcRn 결합력 측정
가. Rituximab (IgG1) Fc 이중 변이체의 FcγRIIIa 결합력 측정
FcγRIIIa과 Rituximab variant의 결합력을 측정하기 위하여, Biacore T200 장비(GE healthcare, 28975001)를 이용하여 FcγRIIIa를 ligand로 capture하여 결합력 측정을 진행하였다 (도 5).
*FcγRIIIa와의 결합력 측정 결과, LALA, TL, LALATL, LALAPG 변이체들은 KD 값이 계산되지 않을 정도로 결합력이 현저히 감소되었음을 확인하였다. 하지만 LALA의 경우에는 결합하는 양상은 보였으며, PG 변이가 추가로 도입된 LALAPG 변이체에서는 결합패턴이 나타나지 않았다. TL 변이체의 경우 결합 패턴이 나타나지 않았으므로, LALA변이가 추가로 도입된 LALATL 변이체에서는 추가적인 결합력 감소패턴은 관찰할 수 없었다 (도 6).
나. Rituximab (IgG1) Fc 이중 변이체의 FcRn 결합력 측정
FcRn과 Rituximab-Fc variant의 결합력을 측정하기 위하여, Biacore T200 장비(GE Healthcare, 28975001)를 이용하여 Rituximab-Fc variant를 ligand로 CM5 chip (GE Healthcare, BR100012)에 capture하여 결합력 측정을 진행하였다. Endosome pH인 pH 6.0 조건에서 결합력을 측정한 결과, Rituximab 대비 변이체 4종 (YTE, LS, PFc29, PFc41)의 결합력이 향상되었다. 또한, 과도한 면역반응을 나타낼 수 있는 치료용 작용기작 (effector function)을 줄이는 TL mutatant를 도입하였음에도 도입 전과 비교하여 결합력이 유지되었다 (도 7).
다. Nivolumab (IgG4) Fc 이중 변이체의 FcγRIIIa 결합력 측정
FcγRIIIa와 Nivolumab (IgG4) Fc 이중 변이체의 결합력 측정하기 위하여, Biacore T200 장비를 이용하여 FcγRIIIa를 ligand로 capture하여 결합력 측정을 진행하였다 (도 8).
FcγRIIIa와의 결합력 측정 결과, 기존 Nivolumab 변이체들은 YTE를 제외하고서 FcγRIIIa에 대한 결합력이 어느정도 남아있는 양상을 보였으며 SPTL, SPLETL이 추가로 도입된 변이체들은 KD 값이 계산되지 않을 정도로 결합력이 현저히 감소되었다. LE변이가 추가로 도입된 SPLETL 변이체에서는 추가적인 결합력 감소패턴은 관찰할 수 없었다(도 9a 및 도9b). FcγRIIIa와의 결합은 YTE를 제외하고 WT, LS, PFc29, PFc41에서 나타났으며, 결합력이 낮아서 KD 값을 측정할 수 없었다 (도 9c).
실시예 3: Rituximab (IgG1) Fc 이중 변이체간의 항체의존적 세포독성 (ADCC) 및 보체의존적 세포독성 (CDC)의 반응성 차이 확인
가. ADCC (Antibody-Dependent Cellular Mediated Cytotoxicity) Assay 분석
Rituximab (IgG1) Fc 변이체의 original form과 LALAPG, TL 돌연변이가 추가된 이중 변이체간의 ADCC 반응성을 비교하기 위하여 CD20이 안정적으로 발현되는 Raji cell(ATCC, CCL-86)을 target cell로 선정하여 실험을 진행하였다.
ADCC assay 시험수행 당일에 Raji cell을 96 well white plate에 각각의 well에 1.25x104의 세포수가 들어가도록 assay buffer에 cell number를 계수하여 cells을 seeding하고, 시험물질 (original, LALAPG, TL)을 assay buffer에 최고농도 1 ug/mL, 1/3 dilution, 10 point가 되도록, cells이 seeding된 96 well white plate에 처리하였다. Effector cell을 액체질소 용기에서 꺼내어 재빠르게 녹여서, Effector cell과 target cell의 비율이 25:1이 되도록 96 well white plate에 처리한 후 CO2 incubator (37℃, 5 % CO2 조건)에서 6시간동안 반응 시켰다. 시간이 경과되면 plate를 꺼내어 EnSpire (Perkin Elmer) 장비를 활용하여 Luminescence fold를 측정함으로써 결과 값을 수집하였다. 측정결과 Rituximab (IgG1) original form은 ADCC 반응성이 약 50 fold 이하로 확인되는 반면, LALAPG 돌연변이 form(도 10a)과 TL 돌연변이 form은 ADCC 반응성이 전혀 없는 것으로 확인되었다 (도 10b).
나. CDC (Complement-Dependent Cytotoxicity) Assay 분석
Rituximab (IgG1) Fc 이중 변이체의 original form과 LALAPG, TL mutant의 CDC 반응성을 비교하기 위하여, CD20이 안정적으로 발현되는 Raji cell을 target cell로 선정하여 실험을 진행하였다.
CDC assay 시험 수행 당일에 Raji cell (ATCC, CCL-86)을 96 well V-bottom plate (Corning, 3894)에 각각의 well에 1.2x104의 세포수가 들어가도록 assay buffer에 cell number를 계수하여 cells을 seeding하고, 시험물질 (original, LALAPG, TL)을 assay buffer에 최고농도 1 ug/mL, 1/3 dilution, 10 points가 되도록, cells이 seeding된 96 well V-bottom plate (Corning, 3894)에 처리하여 상온에서 15분 동안 반응시켰다. Complement (Quidel, A112)를 deepfreezer에서 꺼내어 재빠르게 녹여서, 2.5%의 비율이 되도록 96 well V-bottom plate에 처리하여 CO2 incubator (37℃, 5% CO2조건, Eppendorf, GALAXY 170S)에서 1시간동안 반응시킨 다음 시간이 경과되면 plate를 꺼내어 300 g 5분동안 centrifugation을 수행하여 상등액 50 uL을 취하여 새로운 96 well flat-bottom plate (Corning, 3635)에 옮겼다. Cytotox96 reagent (Promega, G1780) 50 uL를 각 well에 넣어주고, 30분동안 반응시킨 후 시간이 경과되면 stop reagent 50 uL를 넣어서 반응을 중지시키고, ELISA plate reader (Molecular Device, VersaMAX)장비를 활용하여 optical density값을 측정하였다.
측정결과 Rituximab (IgG1)의 Original form은 CDC 반응성이 약 50% 이하의 cytotoxicity로 확인되는 반면, LALAPG 돌연변이 form(도 11a)과 TL 돌연변이 form(도 11b)은 CDC 반응성이 전혀 없는 것으로 확인되었다.
실시예 4: Nivolumab (IgG4) Fc 이중 변이체의 pH -dependent 의존 hFcRn 결합력 측정
*hFcRn과 Nivolumab-Fc double variants의 결합력을 측정하기 위하여, Biacore T200 장비를 이용하였다. Anti-idiotype Ab capture method를 사용하여 anti Nivolumab antibody (BIORAD, HCA299)를 고정 후 Nivolumab- Fc duble variants를 ligand로 CM5 chip에 약 160 RU level로 capture하여 결합력 측정을 진행하였다.
결합력 측정은 hFcRn를 analyte로 1000 nM 농도에서 1/2씩 희석하여 총 6 points로서 31.25 내지 1000 nM 구간에서 진행하였다. Endosome pH인 pH 6.0 조건에서 결합력을 측정한 결과, Nivolumab 대비 변이체 3종 (LS, PFc29, PFc41)에 과도한 면역반응을 나타낼 수 있는 치료용 작용기작 (effector function)을 줄이는 TL mutatant를 도입한 Fc 이중 변이체에서의 결합력이 대조군에 비해 크게 향상되었다 (도 12). 현재 market에 출시된 Xencor의 LS 이중 변이체의 경우, 대조군에 대비 pH6.0에서 FcRn과의 결합친화력이 가장 좋았으나 physical pH인 7.4에서의 상대적 해리값이 가장 높아 효율적 해리가 되지 않았다 (도 13). 많은 문헌에서 보고된 바에 따르면 이런 경향성은 실제 체내 약동학에서의 반감기 감소가 예측되며, 두 변이체 pFc29와 pFc41에 비해 길지 않을 수도 있음이 예측되었다. 대조군의 경우 pH7.4에서의 효율적 해리는 가장 좋으나 실제 endosome의 pH 6.0에서의 결합력이 너무 약해 이 또한 체내 반감기가 길지 않음을 예측 할 수 있다.
실시예 5: Nivolumab (IgG4) Fc 이중 변이체간의 항체의존적 세포독성 (ADCC)에서의 Effector Silencing 효과 확인
Nivolumab (IgG4) Fc 변이체들에 TL 돌연변이가 추가된 이중 변이체간의 ADCC(Antibody-Dependent Cellular Mediated Cytotoxicity) 반응성을 비교하기 위하여 hPD-1을 과발현시킨 Raji cell (Raji-hPD-1 cell, Invivogen, raji-hpd1)을 target cell로 선정하여 실험을 진행하였다.
ADCC assay 시험수행 당일에 Raji-hPD-1 cell을 96 well white plate (Thermo Fisher Scientific, 136101)에 각각의 well에 1.25x104의 세포수가 들어가도록 assay buffer에 cell number를 계수하여 cells을 seeding하고, 시험물질 (이중 변이체들)을 assay buffer에 최고농도 1 ug/mL, 1/3 dilution, 10 point가 되도록, cells이 seeding된 96 well white plate 에 처리하였다. Effector cell을 액체질소 용기에서 꺼내어 재빠르게 녹여서, Effector cell과 target cell의 비율이 25:1이 되도록 96 well white plate에 처리한 후 CO2 incubator (37℃, 5% CO2 조건)에서 6시간동안 반응 시켰다. 시간이 경과되면 plate를 꺼내어 EnSpire (Perkin Elmer) 장비를 활용하여 Luminescence fold를 측정함으로써 결과 값을 수집하였다. 측정결과 Nivolumab (IgG4)에 도입된 각 original form 변이체들의 ADCC 반응성은 예상대로 거의 효과 없음으로 확인되었고, original form IgG4 (변이체 포함)들에 미미하게 보이던 ADCC 효과도 TL 돌연변이 도입된 이중 변이체 형태에선 ADCC 반응성이 완전히 없어지는 것으로 확인되었다(도 14).
실시예 6: 반감기 증가와 면역작용기작 제거된 Nivolumab (IgG4) TL 변이체에 대한 hFcRn Tg 마우스 약동학
반감기 증가 돌연변이인 LS, PFc29, PFc41과 면역작용기작이 저해되는 것으로 보고되어 있는 TL (T299L) 돌연변이를 도입하여 제작된 IgG4 기반 Nivolumab에 대하여 인간 FcRn Tg 마우스 (Jackson Lab., JAX#004919)를 이용하여 혈중반감기 향상효과를 비교검증하였다.
Fc 변이체를 포함한 4종의 Nivolumab에 대해 인간 FcRn Tg 마우스 24마리(각 군당 6마리씩 6mg/kg을 I.V (미정맥)로 주사후 facial vein에서 개체별 교차채혈 (총 12회 → 0.5, 2, 8, 24, 72hr ( 0, 1, 4, 12, 72hr), 7, 14, 21, 28, 35, 42, 49 day)에서 얻어진 혈액을 이용하여 ELISA로 농도분석한 후 Phoenix WinNonlin™ (Certara, ver.8.1.0)으로 non-compartmental analysis (NCA) 실시하였다. ELISA 분석결과를 통해 산출된 4종의 약동학 변수를 조사하였다 (표 3).
그 결과, IgG4 항체인 Nivolumab에 도입된 혈중 반감기 변이체 (LS, pFc29와 pFc41)에 TL (T299L) 추가 돌연변이를 도입한 변이체 중 XenCore의 LS mutants의 경우엔 TL 추가 변이체 도입후 반감기가 대조군보다 더 감소됨이 확인 되었다. 이는 pH 7.4 (그림 11)에서의 해리가 다른 두 변이체보다 상대적으로 되지 않고 추가 돌연변이 도입에 따른 상대적 불안정성에 기인한 것으로 추측된다. 반면에, pFc29와 pFc41 두 변이체는 IgG4 backbone 도입시 TL 추가 변이체 도입하에서 immune effector silencing 효과를 극대화 시키고 반감기도 안정적으로 유지시킴을 확인 (표 3)하였다.
Antibodya Antigen Animals per Group Half-Lifeb (days) AUCb
(d*ug/mL)
Clearanceb (mL/d
/kg)
Mean SD Foldc Mean SD Mean SD
WT-TL PD-1 6 7.4 1.8 1.0 506.7 132.1 12.24 3.36
LS-TL PD-1 6 6.53 2.8 0.88 418.2 94.7 14.64 3.6
pF29-TL PD-1 6 10.6 7.5 1.4 552.3 212.2 11.52 2.88
pF41-TL PD-1 6 8.7 1.8 1.2 513.5 141.8 12.24 3.36
hFcRn Tg 마우스를 이용한 Nivolumab Fc 돌연변이체의 PK 분석
aThe Fc region of anti-PD1 Ab (Nivolumab) for the Fc engineered version. Dose level and route : single i.v.infusion at 6 mg/kg.
bHalf-life, area under the curve (AUC), and clearance were computed for individual animals using noncompartment methods and are reported as the mean and standard deviation (SD).
cFold half-life=half-life (double variant in Nivo) / half-life (Nivo-single variant (IgG4+TL))
이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.

Claims (23)

  1. 항체 Fc 변이체를 포함하는 폴리펩타이드로서, 상기 Fc 변이체는 야생형(wild type) 항체 Fc 도메인에서 카밧 EU 넘버링 시스템(Kabat EU numbering system)에 따른 S228, L234, L235, T299 및 P329로 구성된 군으로부터 선택되는 1 이상의 위치에서 아미노산 치환을 포함하며, 야생형 항체 Fc 도메인과 비교하여 FcγRIIIa에 대한 결합력이 감소된 것을 특징으로 하는, 폴리펩타이드.
  2. 제 1 항에 있어서, 상기 Fc 변이체는 야생형 항체 Fc 도메인과 비교하여 ADCC (Antibody-Dependent Cellular Mediated Cytotoxicity)가 감소된 것을 특징으로 하는, 폴리펩타이드.
  3. 제 1 항에 있어서, 상기 Fc 변이체는 야생형 항체 Fc 도메인과 비교하여 CDC (Complement-Dependent Cytotoxicity)가 감소된 것을 특징으로 하는, 폴리펩타이드.
  4. 제 1 항에 있어서, 상기 Fc 변이체는 야생형 항체 Fc 도메인에서 카밧 EU 넘버링 시스템에 따른 S228P, L234A, L235A, L235E, T299L 및 P329G로 구성된 군으로부터 선택되는 1 이상의 아미노산 치환을 포함하는 것을 특징으로 하는, 폴리펩타이드.
  5. 제 4 항에 있어서, 상기 Fc 변이체는 야생형 항체 Fc 도메인에서 카밧 EU 넘버링 시스템에 따른 하기의 아미노산 치환을 포함하는 것을 특징으로 하는, 폴리펩타이드:
    (i) L234A 및 L235A;
    (ii) L234A, L235A 및 P329G;
    (iii) T299L;
    (iv) L234A, L235A 및 T299L;
    (v) S228P 및 L235E;
    (vi) S228P, L235E 및 T299L; 또는
    (v) S228P 및 T299L.
  6. 제 1 항에 있어서, 상기 Fc 변이체는 야생형 항체 Fc 도메인에서 카밧 EU 넘버링 시스템에 따른 M252, S254, T256, L309, Q311, M428 및 N434로 구성된 군으로부터 선택되는 1 이상의 위치에서 아미노산 치환을 추가로 포함하는 것을 특징으로 하는, 폴리펩타이드.
  7. 제 6 항에 있어서, 상기 추가적인 아미노산 치환은 M252Y, S254T, T256E, L309G, Q311R, M428L 및 N434S로 구성된 군으로부터 선택되는 것을 특징으로 하는, 폴리펩타이드.
  8. 제 7 항에 있어서, 상기 추가적인 아미노산 치환은 하기의 아미노산 치환을 포함하는 것을 특징으로 하는, 폴리펩타이드:
    (i) M252Y, S254T 및 T256E;
    (ii) M428L 및 N434S;
    (iii) Q311R 및 M428L; 또는
    (iv) L309G 및 M428L.
  9. 제 8 항에 있어서, 상기 Fc 변이체는 야생형 항체 Fc 도메인과 비교하여 반감기(Half-life)가 증가된 것을 특징으로 하는, 폴리펩타이드.
  10. 제 1 항에 있어서, 상기 항체는 IgG 항체인 것을 특징으로 하는 폴리펩타이드.
  11. 제 10 항에 있어서, 상기 IgG 항체는 IgG1 또는 IgG4 항체인 것을 특징으로 하는 폴리펩타이드.
  12. 제 1 항의 폴리펩타이드를 포함하는 항체.
  13. 제 12 항에 있어서 상기 항체는 폴리클로날 항체, 모노클로날 항체, 미니바디(minibody), 도메인 항체, 이중특이적 항체, 항체 모방체, 키메라 항체, 항체 접합체(conjugate), 인간항체 또는 인간화 항체이거나 이의 단편인 것을 특징으로 하는 항체.
  14. 제 1 항의 폴리펩타이드를 코딩하는 핵산분자.
  15. 제 14 항의 핵산분자를 포함하는 벡터.
  16. 제 15 항의 벡터를 포함하는 숙주세포.
  17. 제 1 항의 폴리펩타이드, 상기 폴리펩타이드를 코딩하는 핵산분자 또는 상기 핵산분자를 포함하는 벡터를 포함하는 약제학적 조성물.
  18. 제 17 항에 있어서, 상기 약제학적 조성물은 약물을 추가적으로 포함하는 것을 특징으로 하는, 약제학적 조성물.
  19. 제 18 항에 있어서, 상기 약제학적 조성물은 Fc 도메인의 이펙터 기능(effector function) 감소용인 것을 특징으로 하는, 약제학적 조성물.
  20. 제 19 항에 있어서, 상기 약제학적 조성물은 반감기 증가용인 것을 특징으로 하는, 약제학적 조성물.
  21. 하기의 단계를 포함하는 야생형 Fc 도메인과 비교하여 이펙터 기능(effector function)이 감소된 Fc 변이체를 포함하는 폴리펩타이드의 제조방법:
    a) 제 1 항의 폴리펩타이드를 코딩하는 핵산분자를 포함하는 벡터를 포함하는 숙주세포를 배양하는 단계; 및
    b) 상기 숙주세포에 의해 발현된 폴리펩타이드를 회수하는 단계.
  22. 하기의 단계를 포함하는 야생형과 비교하여 이펙터 기능(effector function)이 감소된 항체의 제조방법:
    a) 제 1 항의 폴리펩타이드를 포함하는 항체를 발현하는 숙주세포를 배양하는 단계; 및
    b) 상기 숙주세포로부터 발현된 항체를 정제하는 단계.
  23. 제 1 항의 폴리펩타이드, 상기 폴리펩타이드를 코딩하는 핵산분자 또는 상기 핵산분자를 포함하는 벡터를 포함하는 약제학적 조성물을 이를 필요로 하는 대상(subject)에게 투여하는 단계를 포함하는, 이펙터 기능(effector function)이 감소된 Fc 변이체의 전달방법.
PCT/KR2022/008336 2021-06-14 2022-06-14 제어된 면역 작용 기작과 증가된 혈중 반감기를 갖는 fc변이체들 WO2022265331A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20210076561 2021-06-14
KR10-2021-0076561 2021-06-14
KR10-2022-0070880 2022-06-10
KR1020220070880A KR20220167773A (ko) 2021-06-14 2022-06-10 제어된 면역 작용 기작과 증가된 혈중 반감기를 갖는 Fc변이체들

Publications (1)

Publication Number Publication Date
WO2022265331A1 true WO2022265331A1 (ko) 2022-12-22

Family

ID=84527199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/008336 WO2022265331A1 (ko) 2021-06-14 2022-06-14 제어된 면역 작용 기작과 증가된 혈중 반감기를 갖는 fc변이체들

Country Status (1)

Country Link
WO (1) WO2022265331A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8969526B2 (en) * 2011-03-29 2015-03-03 Roche Glycart Ag Antibody Fc variants
KR20160104009A (ko) * 2014-01-15 2016-09-02 에프. 호프만-라 로슈 아게 변형된 FcRn-결합 성질을 갖는 Fc-영역 변이체
KR20170066421A (ko) * 2014-09-12 2017-06-14 제넨테크, 인크. 항-cll-1 항체 및 면역접합체
KR20170078677A (ko) * 2014-11-06 2017-07-07 에프. 호프만-라 로슈 아게 Fcrn-결합이 개질된 fc-영역 변이체 및 이의 사용 방법
US20190016828A1 (en) * 2014-01-15 2019-01-17 Hoffmann-La Roche Inc. Fc-region variants with modified fcrn- and maintained protein a-binding properties

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8969526B2 (en) * 2011-03-29 2015-03-03 Roche Glycart Ag Antibody Fc variants
KR20160104009A (ko) * 2014-01-15 2016-09-02 에프. 호프만-라 로슈 아게 변형된 FcRn-결합 성질을 갖는 Fc-영역 변이체
US20190016828A1 (en) * 2014-01-15 2019-01-17 Hoffmann-La Roche Inc. Fc-region variants with modified fcrn- and maintained protein a-binding properties
KR20170066421A (ko) * 2014-09-12 2017-06-14 제넨테크, 인크. 항-cll-1 항체 및 면역접합체
KR20170078677A (ko) * 2014-11-06 2017-07-07 에프. 호프만-라 로슈 아게 Fcrn-결합이 개질된 fc-영역 변이체 및 이의 사용 방법

Similar Documents

Publication Publication Date Title
US9085625B2 (en) Antibody variants having modifications in the constant region
US10066018B2 (en) Antibody constant region variant
US7217798B2 (en) Alteration of Fc-fusion protein serum half-lives by mutagenesis
JP2022068176A (ja) 操作されたFcコンストラクトに関する組成物及び方法
WO2014084607A1 (ko) 항체 중쇄불변부위의 이종이중체 고효율 형성을 유도하는 ch3 도메인 변이체 쌍, 이의 제조방법, 및 용도
US20140051834A1 (en) Incretin Receptor Ligand Polypeptide Fc-Region Fusion Polypeptides And Conjugates With Altered Fc-Effector Function
WO2020231199A1 (ko) 신규 변형 면역글로불린 fc 융합단백질 및 그의 용도
WO2018186717A1 (ko) 혈중 반감기 향상을 위한 항체 Fc 변이체들
WO2019135668A1 (ko) Ige fc 수용체의 알파 서브유닛의 세포외 도메인, 이를 포함하는 약학적 조성물 및 이의 제조방법
CN115135669A (zh) 修饰的Fc区
WO2021096275A1 (ko) 변형된 인터루킨-7 및 tgf 베타 수용체 ii를 포함하는 융합단백질 및 이의 용도
WO2021154046A1 (ko) pH-감응성 FC 변이체
WO2019135666A1 (ko) Ige fc 수용체의 알파 서브유닛의 세포외 도메인을 포함하는 약학적 조성물
WO2023214833A1 (ko) Glp-1, 면역글로불린 fc, 및 igf-1을 포함하는 융합단백질 및 이의 용도
WO2022265331A1 (ko) 제어된 면역 작용 기작과 증가된 혈중 반감기를 갖는 fc변이체들
WO2020050626A1 (ko) O-글리코실화 가능한 폴리펩타이드 영역을 포함하는 융합 폴리펩타이드
WO2023068718A1 (ko) FCγRIIA 결합 선택성이 향상된 인간 FC 변이체
Zhou et al. Engineered Fc-glycosylation switch to eliminate antibody effector function
US20230295327A1 (en) Fusion protein comprising il-12 and anti-cd20 antibody and use thereof
WO2021107603A2 (en) Long-acting gdf15 fusion protein and pharmaceutical composition comprising same
KR20220167773A (ko) 제어된 면역 작용 기작과 증가된 혈중 반감기를 갖는 Fc변이체들
WO2024005423A1 (ko) 인간 FCγRS 결합력이 제거된 당화 FC 변이체들
WO2023043123A1 (ko) Fcγrⅲa 선택적 결합력 향상 당화 fc 변이체들
WO2024005424A1 (ko) FCγRIIA 결합 선택성이 향상된 인간 FC 변이체
WO2023085779A1 (ko) Fc 변이체를 포함하는 이종이합체 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22825256

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE